# R&S<sup>®</sup>ETL-K470 CDR Signal Analysis Software Manual







This manual applies to the following instrument, version 3.51 and later:

• R&S<sup>®</sup>ETL (2112.0004.13)

The following software options are described:

• R&S<sup>®</sup>ETL-K470 CDR Signal Analysis Software (1346.8884.02)

The following hardware options are recommended:

• R&S<sup>®</sup>ETL-B203 RF Preselector (2112.0327.03)

Mühldorfstr. 15, 81671 München, Germany Phone: +49 89 41 29 - 0 Fax: +49 89 41 29 12 164 Email: info@rohde-schwarz.com Internet: www.rohde-schwarz.com Subject to change – Data without tolerance limits is not binding. R&S<sup>®</sup> is a registered trademark of Rohde & Schwarz GmbH & Co. KG. Trade names are trademarks of the owners.

1346.8926.02 | Version 01 | R&S®ETL-K470

© 2019 Rohde & Schwarz GmbH & Co. KG

The following abbreviations are used throughout this manual: R&S<sup>®</sup>ETL-CDR Signal Analysis Software is abbreviated as R&S ETL-CDR software. R&S<sup>®</sup>VSE is abbreviated as R&S VSE.

## Contents

| 1   | Preface5                                                  |
|-----|-----------------------------------------------------------|
| 1.1 | About this Manual5                                        |
| 1.2 | Typographical Conventions6                                |
| 2   | Welcome to the R&S ETL CDR software7                      |
| 2.1 | Introduction to Vector Signal Analysis7                   |
| 2.2 | Installing the R&S ETL CDR software8                      |
| 2.3 | Starting the R&S ETL CDR software10                       |
| 2.4 | Understanding the Display Information12                   |
| 3   | CDR Measurement and Results14                             |
| 3.1 | CDR Parameters14                                          |
| 3.2 | Evaluation Methods for CDR Measurements15                 |
| 4   | Configuring CDR Measurements33                            |
| 4.1 | Configuration Overview                                    |
| 4.2 | CDR Configuration                                         |
| 4.3 | Input and Frontend Settings                               |
| 4.4 | Trigger Settings45                                        |
| 4.5 | Data Acquisition48                                        |
| 4.6 | Result Ranges                                             |
| 4.7 | Synchronization, Demodulation and Tracking52              |
| 5   | Analyzing CDR Vector Signals57                            |
| 5.1 | Result Configuration57                                    |
| 5.2 | Table Configuration59                                     |
| 5.3 | Units                                                     |
| 5.4 | Y-Scaling60                                               |
| 5.5 | Markers                                                   |
| 5.6 | Trace Settings                                            |
| 5.7 | Trace / Data Export Configuration70                       |
| 6   | How to Perform Measurements in the R&S ETL CDR software72 |
| 7   | Remote Commands for CDR Measurements73                    |

| 7.1        | Introduction                                      | 73  |
|------------|---------------------------------------------------|-----|
| 7.2        | Common Suffixes                                   | 78  |
| 7.3        | Activating CDR Measurements                       | 79  |
| 7.4        | Configuring CDR Measurements                      | 79  |
| 7.5        | Analysis                                          | 106 |
| 7.6        | Configuring the Result Display                    | 128 |
| 7.7        | Retrieving Results                                | 138 |
| 7.8        | Status Reporting System                           | 160 |
| 7.9        | Programming Examples: OFDM Vector Signal Analysis | 163 |
|            | Annex                                             |     |
| Α          | Menu Reference                                    | 167 |
| <b>A.1</b> | Common R&S ETL CDR software Menus                 | 167 |
| A.2        | CDR Signal Analysis Menus                         | 169 |
| в          | Reference of Toolbar Functions                    | 172 |
| С          | Formulae                                          | 176 |
| C.1        | I/Q Impairments                                   |     |
|            | List of Remote Commands (ETL CDR)                 | 177 |
|            |                                                   |     |
|            | Index                                             | 181 |

## 1 Preface

## **1.1 About this Manual**

This R&S ETL CDR software manual provides all the information **specific to the application**. All general software functions and settings common to all applications are described in the R&S VSE base software user manual.

The main focus in this manual is on the measurement results and the tasks required to obtain them. The following topics are included:

- Welcome to the R&S ETL CDR software Introduction to and getting familiar with the application, installation information
- Measurements and result displays
   Details on supported measurements and their result types
- Measurement basics Background information on basic terms and principles in the context of the measurement
- Configuration and analysis

A concise description of all functions and settings available to configure measurements and analyze results with their corresponding remote control command

- How to perform measurements in the R&S ETL CDR software The basic procedure to perform each measurement and step-by-step instructions for more complex tasks or alternative methods
- Measurement examples
   Detailed measurement examples to guide you through typical measurement sce
  - narios and allow you to try out the application immediately
  - Optimizing and troubleshooting the measurement
     Hints and tips on how to handle errors and optimize the measurement configuration
- Remote commands for CDR measurements

Remote commands required to configure and perform CDR measurements in a remote environment, sorted by tasks (Commands required to set up the environment or to perform common tasks in the software are provided in the R&S VSE base software user manual.) Programming examples demonstrate the use of many commands and can usually be executed directly for test purposes

- Annex
   Reference material
- List of remote commands Alphabetical list of all remote commands described in the manual
- Index

## **1.2 Typographical Conventions**

The following text markers are used throughout this documentation:

| Convention                               | Description                                                                                                                                                |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "Graphical user interface ele-<br>ments" | All names of graphical user interface elements on the screen, such as dialog boxes, menus, options, buttons, and softkeys are enclosed by quotation marks. |
| [Keys]                                   | Key and knob names are enclosed by square brackets.                                                                                                        |
| File names, commands, program code       | File names, commands, coding samples and screen output are distin-<br>guished by their font.                                                               |
| Input                                    | Input to be entered by the user is displayed in italics.                                                                                                   |
| Links                                    | Links that you can click are displayed in blue font.                                                                                                       |
| "References"                             | References to other parts of the documentation are enclosed by quota-<br>tion marks.                                                                       |

Introduction to Vector Signal Analysis

## 2 Welcome to the R&S ETL CDR software

The R&S ETL CDR software performs vector and scalar measurements on convergent digital radio (CDR) signals. To perform the measurements, it converts RF signals into the complex baseband.

The R&S ETL CDR software features:

- Analysis of convergent digital radio (CDR) signals as defined by People's Republic of China, Radio, Film and Television Industry Standard GY/T 268.1-2013
- I/Q-based measurement results such as MER, constellation diagrams, power spectrum

This user manual contains a description of the functionality that the application provides, including remote control operation.



The R&S ETL CDR software is based on the R&S VSE Vector Signal Explorer Base Software. Functions that are not discussed in this manual are the same as in the I/Q Analyzer application and are described in the R&S VSE base software user manual. The latest version is available for download at the product homepage http://

www.rohde-schwarz.com/product/VSE.html.

Note, however, that the R&S ETL CDR software does not support the full functionality of the R&S VSE software.

In particular, the following restrictions apply:

- No instruments other than R&S ETL are supported.
- Only a single R&S ETL can be connected.
- Only a single instance of the R&S VSE can be connected to the same R&S ETL at the same time.
- Only the R&S ETL CDR software (OFDM VSA) and the I/Q Analyzer are supported as measurement modes. (Regardless of any other option licenses that may be available on an FS-PC dongle, for example.)

| • | Introduction to Vector Signal Analysis | 7  |
|---|----------------------------------------|----|
| • | Installing the R&S ETL CDR software    | 8  |
| • | Starting the R&S ETL CDR software      | 10 |
| • | Understanding the Display Information  | 12 |

### 2.1 Introduction to Vector Signal Analysis

The goal of vector signal analysis is to determine the quality of the signal that is transmitted by the device under test (DUT) by comparing it against an ideal signal. The DUT is usually connected with the analyzer via a cable. The key task of the analyzer is to determine the ideal signal. Hence, the analyzer aims to reconstruct the ideal signal from the measured signal that is transmitted by the DUT. This ideal signal is commonly referred to as the *reference signal*, while the signal from the DUT is called the *measurement signal*.

After extracting the reference signal, the R&S ETL CDR software compares the measurement signal and the reference signal, and the results of this comparison are displayed.

#### Example:

The most common vector signal analysis measurement is the MER (Modulation Error Ratio) measurement. Here, the complex baseband reference signal is subtracted from the complex baseband measurement signal. The magnitude of this error vector represents the MER value. The MER has the advantage that it "summarizes" all potential errors and distortions in one single value. If the MER value is high, the signal quality of the DUT is high.



Figure 2-1: Simplified schema of vector signal analysis

## 2.2 Installing the R&S ETL CDR software

#### 2.2.1 Installing Required Components

The following software components must be installed to run the R&S ETL CDR software successfully:

- Microsoft .NET Framework 4.0
- R&S License Server
- VISA (Virtual Instrument Software Architecture)

The R&S License Server and Microsoft .NET Framework 4.0 are installed automatically during installation of the R&S ETL CDR software.

VISA can be installed directly during installation of the R&S ETL CDR software, or manually, independently of the R&S ETL CDR software installation.

#### Installing the Microsoft .NET Framework

When you install the R&S ETL CDR software via the provided installation file (see Chapter 2.2.2, "Installing the R&S ETL CDR software", on page 9), the installer automatically checks whether the required Microsoft .NET Framework version is available on the PC. If not, an internet connection to the Microsoft website is established to download the Framework version 4.0 (due to the large file size). Thus, before attempting to install the R&S ETL CDR software, ensure that a strong internet connection is available from the PC, as downloading can take some time. Alternatively, download the Framework 4.0 version from the internet manually before you start the R&S ETL CDR software installation.

#### Installing VISA

It is also necessary to install VISA (Virtual Instrument Software Architecture) on the PC to access instruments connected via IEEE or LAN bus.

It is recommended that you use the R&S VISA driver. The R&S VISA driver is supplied with the R&S ETL CDR software installation, and can be installed together with the R&S ETL CDR software (see Chapter 2.2.2, "Installing the R&S ETL CDR software", on page 9).



Once the R&S ETL CDR software is installed, a status icon in the status bar indicates whether the VISA installation is available.

#### 2.2.2 Installing the R&S ETL CDR software

The R&S ETL CDR software is based on the R&S VSE base software. To install the R&S ETL CDR software, the R&S VSE software installation package is used. It consists of one file, whose name contains the main version number, e.g. VSESetup\_V1.60.exe. It is referred to as VSESetup.exe throughout this description. Download the file from the Rohde & Schwarz web page at http://www.rohde-schwarz.com/software/VSE.

The R&S ETL CDR software can only be installed on PCs using the 64-bit version of Windows 7 or Windows 10. Installation on an R&S ETL instrument is not supported. It is recommended that you copy the R&S VSE installation file to the hard disk of the PC before you execute it.

#### To install the R&S ETL CDR software

- 1. Execute the VSESetup\_XXX.exe file on the PC.
- 2. Select the required options to install:
  - Unless you have ensured the required R&S VISA is installed manually before starting the R&S VSE installation on a PC, be sure to keep the "R&S VISA" option selected.
  - "R&S VSE Vector Signal Explorer software"
  - "R&S VSE K96 OFDM signal analysis"

- "Activate R&S ETL-CDR K470"
- 3. Select "Install".

The installer performs the following actions:

- Checks for the required Microsoft .NET Framework versions on the PC, and if necessary, downloads the required version from the Internet, before installing both versions
- If enabled, installs the R&S VISA software on the PC
- Installs the R&S ETL CDR software including an uninstall tool
- Creates a shortcut on the desktop
- If necessary (the software specifically asks you), sets the required environment variables

This step can require administrator rights on the PC.

When the installation is complete, the dialog box turns green and all selected options are indicated as "OK".

#### 2.2.3 Deinstalling the R&S ETL CDR software

Access: "Start" > "All Programs" > "Rohde-Schwarz" > "VSE" > [version\_number] > "Uninstall VSE"

or: (Windows 7) "Start" > "Control Panel" > "Add or Remove Software"

or: (Windows 10) "Start" > "Settings" > "System" > "Apps & features" > "R&S VSE Signal Analyzer" > "Uninstall".

You can uninstall the R&S VSE itself via the uninstall tool available in the R&S VSE folder, or via the standard Windows "Add or Remove Software" function.

### 2.3 Starting the R&S ETL CDR software

The R&S ETL CDR software is an application in the R&S VSE software.



#### Prerequisites for starting the R&S ETL CDR software

Before you start the R&S ETL CDR software, the following prerequisites must be met:

- An Ethernet connection from the PC to an R&S ETL must be established.
  - The R&S ETL must have a valid R&S ETL-K470 CDR license and a firmware version 3.51 or later.



The R&S ETL-K470 CDR license is a single license. That means only a single instance of the R&S VSE can be connected to the same R&S ETL at the same time. If a second R&S VSE instance (running on a different PC) attempts to connect to the same R&S ETL, the second R&S VSE instance displays the following message: "ETL connection broken or removed. Shutting down application." The second instance then shuts down automatically after 30 seconds.

#### To start the R&S ETL CDR software

- Start the R&S VSE via the Windows "Start Menu" entry or the shortcut on the desktop.
- Enter the IP address of the connected R&S ETL. If no valid R&S ETL-K470 CDR license is found, the software does not start.

The R&S VSE software runs in an exclusive CDR mode. CDR mode is designed to analyze CDR signals within the R&S VSE software. The correct channel "OFDM VSA" is started automatically when the software is launched. Additionally, you can start it by creating a measurement channel in CDR mode.

#### To activate the R&S ETL CDR software

1. O Channel

Select the "Add Channel" function in the Sequence tool window.

A dialog box opens that contains all operating modes and applications currently available in your R&S VSE.



2. Select the "OFDM VSA" item.

Understanding the Display Information



The R&S VSE opens a new measurement channel for the R&S ETL CDR software.

### 2.4 Understanding the Display Information

The following figure shows a measurement diagram during analyzer operation. All different information areas are labeled. They are explained in more detail in the following sections.

|                                                       |                    |                                         | Ξ×      |
|-------------------------------------------------------|--------------------|-----------------------------------------|---------|
| Ref Level -10.00 dBm Sample Rate 816.0 kHz Config CDF | _S09T1I16D64A1 FFT | 2048                                    | SGL     |
| Att 25 dB Freq 100.0 MHz Capture Time                 | 320.9 ms CP Lengt  | th [1x384, 56x240] Trigger to Frame 0 s |         |
| • * 1 M VSA: 1 Magnitude Capture                      | 🗢 1 Clrw 🗗 👔       | 🔹 🔆 OFDM VSA: 3 Power Spectrum 💿 1 Clrw | 81      |
| 0 dam Ref. 0.000 dam                                  |                    | -60 d8m                                 |         |
|                                                       |                    | -70 d8m                                 |         |
|                                                       |                    |                                         |         |
| -30 dBm-                                              |                    |                                         |         |
|                                                       |                    |                                         |         |
| -60 dBm                                               |                    | 200.088                                 |         |
|                                                       |                    | -110 dBm                                |         |
| -80 dBm                                               |                    | -120 dBm                                |         |
| 0.0 s                                                 | 320.899509804 ms   | -408.0 kHz 408                          | i.0 kHz |

1 = Color coding for windows of same channel

2 = Channel bar with measurement settings

3 = Window title bar with diagram-specific (trace) information

4 = Diagram area

5 = Diagram footer with diagram-specific information, depending on result display

#### **Channel bar information**

In the R&S ETL CDR software, the following settings are shown:

#### Table 2-1: Information displayed in the channel bar in the R&S ETL CDR software

| Ref Level    | Reference level                             |
|--------------|---------------------------------------------|
| Att          | Mechanical and electronic RF attenuation    |
| Freq         | Center frequency for the RF signal          |
| Offset       | Reference level offset                      |
| SRate        | Sample Rate (fixed to 816 kHz)              |
| Config       | Currently loaded configuration file         |
| Capture Time | How long data was captured in current sweep |
| FFT          | FFT size                                    |

Understanding the Display Information

| CP Length        | Cyclic prefix length of the beacon (CP1) and the data body (CP2)   |
|------------------|--------------------------------------------------------------------|
| Trigger to Frame | Offset between the trigger event and the start of the CDR subframe |

In addition, the channel bar also displays information on instrument settings that affect the measurement results even though this is not immediately apparent from the display of the measured values (e.g. transducer or trigger settings). This information is displayed only when applicable for the current measurement. For details, see the R&S VSE base software user manual.

#### Window title bar information

For each diagram, the header provides the following information:



#### Figure 2-2: Window title bar information in R&S ETL CDR software

- 0 = Color coding for windows of same channel
- 1 = Edit result display function
- 2 = Channel name
- 3 = Window number
- 4 = Window type
- 5 = Trace color, trace number, trace mode
- 6 = Dock/undock window function
- 7 = Close window function

#### Diagram area

The diagram area displays the results according to the selected result displays (see Chapter 3.2, "Evaluation Methods for CDR Measurements", on page 15).

#### **Diagram footer information**

The diagram footer (beneath the diagram) contains the start and stop symbols or time of the evaluation range.

#### Status bar information

The software status, errors and warnings and any irregularities in the software are indicated in the status bar at the bottom of the R&S VSE window.

**CDR** Parameters

## 3 CDR Measurement and Results

For each measurement, a separate measurement channel is activated. Each measurement channel can provide multiple result displays, which are displayed in individual windows. The measurement windows can be rearranged and configured in the R&S ETL CDR software to meet your requirements. All windows that belong to the same measurement (including the channel bar) are indicated by a colored line at the top of the window title bar.

#### To add further result displays for the CDR channel

Select the I "Add Window" icon from the toolbar, or select the "Window > New Window" menu item.

For details on working with channels and windows, see the "Operating Basics" chapter in the R&S VSE base software user manual.

| • | CD | R F | Para | me | ters |     |   |        | <br>. 1 | 4 |
|---|----|-----|------|----|------|-----|---|--------|---------|---|
|   | -  |     |      |    |      | 1.0 | ~ | 000.04 |         | - |

Evaluation Methods for CDR Measurements......15

## 3.1 CDR Parameters

Several signal parameters are determined during vector signal analysis and displayed in the Result Summary.

For details concerning the calculation of individual parameters, see Chapter C, "Formulae", on page 176.

| Parameter                                                     | Description                                                                                                                                                                                                      | SCPI Parameter |  |  |  |  |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|
| MER [dB]                                                      | Average Modulation Error Ratio (MER) for all data and all<br>pilot cells of the analyzed frames. The MER is the ratio of the<br>RMS power of the ideal reference signal to the RMS power<br>of the error vector. | MER[:ALL]      |  |  |  |  |
| MER Data Symbols<br>[dB]                                      | Average Modulation Error Ratio of the payload symbols over all data carriers                                                                                                                                     | MER:DATA       |  |  |  |  |
| MER Pilot Symbols<br>[dB]                                     | Average Modulation Error Ratio of the payload symbols over all pilot carriers                                                                                                                                    | MER:PILot      |  |  |  |  |
| I/Q offset [dB]                                               | Transmitter center frequency leakage relative to the total Tx channel power                                                                                                                                      | IQOFset        |  |  |  |  |
| Gain imbalance [dB]                                           | Amplification of the quadrature phase component of the sig-<br>nal relative to the amplification of the in-phase component                                                                                       | GIMBalance     |  |  |  |  |
| Quadrature error [°]                                          | Phase angle between Q-channel and I-channel deviating from the ideal 90 degrees; measure for crosstalk from the Q-branch into the I-branch                                                                       | QUADerror      |  |  |  |  |
| *) Required to retrieve the parameter result,                 |                                                                                                                                                                                                                  |                |  |  |  |  |
| See FETCh:SUMM: <parameter>[:AVERage] on page 141</parameter> |                                                                                                                                                                                                                  |                |  |  |  |  |

Table 3-1: CDR parameters

| Parameter                                                                           | Description                                                                                                                                                                                                                                                                                                                  | SCPI Parameter |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Frequency Error [Hz]                                                                | Frequency error between the signal and the currently defined center frequency                                                                                                                                                                                                                                                | FERRor         |
|                                                                                     | The R&S ETL CDR software is designed to compensate car-<br>rier offsets of up to ±2 kHz. For higher frequency offsets, you<br>must configure the Maximum Carrier Offset and the filters<br>accordingly (see Chapter 4.7, "Synchronization, Demodula-<br>tion and Tracking", on page 52 and "Filter Settings"<br>on page 50). |                |
|                                                                                     | The absolute frequency error includes the frequency error of<br>the connected R&S ETL and that of the DUT. If possible, the<br>transmitter connected R&S ETL and the DUT should be<br>synchronized (using an external reference).                                                                                            |                |
|                                                                                     | See R&S VSE base software user manual > "Configuring<br>Instruments"                                                                                                                                                                                                                                                         |                |
| Sample Clock Error                                                                  | Clock error between the signal and the sample clock of the R&S ETL CDR software in parts per million (ppm), i.e. the symbol timing error                                                                                                                                                                                     | SERRor         |
|                                                                                     | If possible, the transmitter connected R&S ETL and the DUT should be synchronized (using an external reference).                                                                                                                                                                                                             |                |
|                                                                                     | See R&S VSE base software user manual > "Configuring<br>Instruments"                                                                                                                                                                                                                                                         |                |
| Frame Power                                                                         | Average time domain power of the analyzed subframe                                                                                                                                                                                                                                                                           | POWer          |
| Crest factor [dB]                                                                   | The ratio of the peak power to the mean power of the ana-<br>lyzed subframe                                                                                                                                                                                                                                                  | CRESt          |
| Trigger to Frame [s]                                                                | (Displayed in channel bar only, not included in Result Sum-<br>mary.)                                                                                                                                                                                                                                                        | FETCh:TTFRame? |
|                                                                                     | The time offset between the trigger event and the start of the first CDR subframe                                                                                                                                                                                                                                            |                |
| *) Required to retrieve                                                             | the parameter result,                                                                                                                                                                                                                                                                                                        |                |
| See FETCh:SUMM: <p< td=""><td>arameter&gt;[:AVERage] on page 141</td><td></td></p<> | arameter>[:AVERage] on page 141                                                                                                                                                                                                                                                                                              |                |

## 3.2 Evaluation Methods for CDR Measurements

The data that was measured by the R&S ETL CDR software can be evaluated using various different methods without having to start a new measurement. Which results are displayed depends on the selected evaluation.

The CDR measurement provides the following evaluation methods:

| Allocation Matrix        |    |
|--------------------------|----|
| CCDF                     |    |
| Channel Flatness         |    |
| Constellation Diagram    |    |
| Constellation vs Carrier |    |
| Constellation vs Symbol  | 21 |
| MER vs Carrier           |    |
| MER vs Symbol.           | 23 |
| MER vs Symbol vs Carrier |    |
|                          |    |

| Group Delay                | 25 |
|----------------------------|----|
| Impulse Response           | 25 |
| Magnitude Capture          | 26 |
| Marker Table               | 27 |
| Power vs Carrier           | 27 |
| Power vs Symbol            |    |
| Power vs Symbol vs Carrier | 29 |
| Power Spectrum             | 30 |
| Result Summary             | 30 |
| Signal Flow                | 31 |
|                            |    |

#### Allocation Matrix

The Allocation Matrix display is a graphical representation of the OFDM cell structure defined by the current CDR configuration.

Use markers to get more detailed information on the individual cells.

| o GFDM VSA: 2 Allocation Matrix 🗗 📅 |       |       |                    |            |             |      |  |                    |   |          |
|-------------------------------------|-------|-------|--------------------|------------|-------------|------|--|--------------------|---|----------|
| Service Data                        | 64OAM | Servi | ce Description 160 | DAM Svster | n Info OPSK | Zero |  | PilotConstellation | D | ontCare  |
|                                     |       |       |                    |            |             |      |  |                    |   |          |
| 800 carr                            |       |       |                    |            |             |      |  |                    |   |          |
| 600 carr                            |       | _     |                    |            |             |      |  | - <u></u>          |   |          |
| 400 carr                            |       |       |                    |            |             |      |  |                    |   |          |
| 200 carr                            |       |       |                    |            |             |      |  |                    |   |          |
| 0 carr                              |       |       |                    |            |             |      |  |                    |   |          |
| -200 carr                           |       |       |                    |            |             |      |  |                    |   |          |
| -400 carr                           |       | _     |                    |            |             |      |  |                    |   |          |
| -600 carr                           |       |       |                    |            |             |      |  |                    |   |          |
| -800 carr                           |       |       |                    |            |             |      |  |                    |   |          |
| 0.0 sym                             |       |       |                    |            |             |      |  |                    |   | 56.0 sym |



The legend for the color coding is displayed at the top of the matrix.

#### Markers in the Allocation Matrix

Using markers you can detect individual allocation points for a specific symbol or carrier. When you activate a marker in the Allocation Matrix, its position is defined by the symbol and carrier number the point belongs to. The marker result indicates the I and Q values of the point.

See also "Markers in the Constellation diagram and Allocation Matrix" on page 63.

#### Remote command:

```
LAY:ADD? '1', RIGH, AMATrix, see LAYout:ADD[:WINDow]? on page 132
TRACe<n>[:DATA]? on page 150, see Chapter 7.7.4.1, "Allocation Matrix",
on page 155
TRACe<n>[:DATA]:X? on page 151
TRACe<n>[:DATA]:Y? on page 151
Symbol unit: UNIT:SAXes on page 113
```

#### CCDF

The CCDF results display shows the probability of an amplitude exceeding the mean power. The x-axis displays power relative to the measured mean power.



Figure 3-2: CCDF display

#### Remote command:

LAY:ADD? '1', RIGH, CCDF, see LAYout:ADD[:WINDow]? on page 132 TRACe:DATA?, see Chapter 7.7.4.2, "CCDF", on page 155 TRACe<n>[:DATA]:X? on page 151

#### **Channel Flatness**

The Channel Flatness display shows the amplitude of the channel transfer function vs. carrier.

The channel flatness can only be calculated at valid carrier locations. This means that a gap appears between the upper and lower half subband for spectrum mode index 9, 10, 22, and 23.



Figure 3-3: Channel Flatness Display

Remote command:

LAY:ADD? '1', RIGH, CHFL, see LAYout:ADD[:WINDow]? on page 132 TRACe:DATA?, see Chapter 7.7.4.3, "Channel Flatness", on page 155 TRACe<n>[:DATA]:X? on page 151 Carrier unit: UNIT:CAXes on page 111

#### **Constellation Diagram**

The Constellation Diagram shows the inphase and quadrature results for the analyzed input data. The ideal points for the selected cell types are displayed for reference purposes.



Figure 3-4: Constellation diagram

The legend for the color coding is displayed at the top of the matrix. If you click on one of the codes, only the selected constellation points are displayed. Click again, and all constellation points are displayed again (according to the constellation filter, see Chapter 5.1, "Result Configuration", on page 57).

#### Markers in the Constellation diagram

Using markers you can detect individual constellation points for a specific symbol or carrier. When you activate a marker in the Constellation diagram, its position is defined by the symbol and carrier number the point belongs to. The marker result indicates the I and Q values of the point.

OFDM VSA: 4 Constellation -----Main Service 64OAM Service Description 16OAM System Info OPSK PilotConstellation M1[1] -0.771737 Marker 1 0.155145 488 7.0 sym carr

**Evaluation Methods for CDR Measurements** 

Figure 3-5: Marker in a Constellation diagram

See also "Markers in the Constellation diagram and Allocation Matrix" on page 63. Remote command:

LAY: ADD? '1', RIGH, CONS, see LAYout: ADD[:WINDow]? on page 132 TRACe: DATA?, see Chapter 7.7.4.4, "Constellation Diagram", on page 155 Marker I/Q values:

CALCulate<n>:MARKer<m>:Z? on page 147

#### **Constellation vs Carrier**

The Constellation vs. Carrier display shows the inphase and quadrature magnitude results of all analyzed symbols over the corresponding carriers. The inphase values are displayed as yellow dots; the quadrature-values are displayed as blue dots.

| <ul> <li>OFDM VS/</li> </ul> | A: 2 Constellation vs Ca                                                                                       | rrier        |      | <b>O</b> 1 Re    | al O 2 Imagi | nary 🗗 🛙 |
|------------------------------|----------------------------------------------------------------------------------------------------------------|--------------|------|------------------|--------------|----------|
| 1.4                          |                                                                                                                |              |      |                  |              |          |
|                              |                                                                                                                |              |      |                  |              |          |
| 1.2                          |                                                                                                                |              |      |                  |              |          |
| 1                            |                                                                                                                | 1411         |      |                  |              |          |
|                              | 1 miles                                                                                                        |              |      |                  |              |          |
| 0.8                          | ·····                                                                                                          | -            |      |                  |              |          |
| 0.6                          |                                                                                                                |              |      |                  |              |          |
| 0.4                          | ·····                                                                                                          | <u>↔</u>     |      |                  |              |          |
| 0.4                          |                                                                                                                | **           |      | Qu ()            |              |          |
| 0.2                          |                                                                                                                | +            | •••• |                  |              |          |
| 0                            |                                                                                                                |              |      |                  |              |          |
| 0                            |                                                                                                                |              | _    |                  |              |          |
| -0.2                         |                                                                                                                |              |      |                  |              |          |
| -0.4                         | in and the second s |              | ÷    | of reformedan    |              |          |
|                              |                                                                                                                | ***          |      |                  |              |          |
| -0.6                         |                                                                                                                |              |      |                  |              |          |
| -0.8                         |                                                                                                                | <del>~</del> |      |                  |              |          |
|                              |                                                                                                                | elun         |      | lage configer of |              |          |
| -1                           |                                                                                                                | ***          | ···· |                  |              |          |
| -1.2                         |                                                                                                                |              |      |                  |              |          |
| 1.4                          |                                                                                                                |              |      |                  |              |          |
| -1.4                         |                                                                                                                |              |      |                  |              |          |
| -1024 carr                   |                                                                                                                |              |      |                  |              | 1024 car |

Figure 3-6: Constellation vs. Carrier display

**Note:** This result display is only available if synchronization is successful.

Remote command:

LAY: ADD? '1', RIGH, CCAR, see LAYout: ADD[:WINDow]? on page 132 TRACe: DATA?, see Chapter 7.7.4, "Using the TRACe[:DATA] Command", on page 154 Carrier unit: UNIT: CAXes on page 111

#### **Constellation vs Symbol**

The Constellation vs. Symbol display shows the inphase and quadrature magnitude results of all analyzed carriers over the corresponding symbols. The inphase values are displayed as yellow dots; the quadrature-values are displayed as blue dots.

| <ul> <li>OFDM VSA: 2 Constellation vs Symbol</li> </ul> |      | ဝ 1 Real O 2 Imaginary  🔒 🍿 |
|---------------------------------------------------------|------|-----------------------------|
|                                                         |      |                             |
| 1.2                                                     |      |                             |
|                                                         |      |                             |
|                                                         |      |                             |
|                                                         |      |                             |
|                                                         |      |                             |
|                                                         |      |                             |
| 0.4                                                     |      |                             |
|                                                         |      |                             |
|                                                         |      |                             |
|                                                         |      |                             |
|                                                         |      |                             |
| -0.4                                                    | <br> |                             |
|                                                         |      |                             |
|                                                         |      |                             |
|                                                         |      |                             |
|                                                         |      |                             |
|                                                         |      |                             |
|                                                         |      |                             |
| 0.0 sym                                                 |      | 56.0 sym                    |

Figure 3-7: Constellation vs. Symbol display

Note: This result display is only available if synchronization is successful.

#### Remote command:

LAY: ADD? '1', RIGH, CSYM, see LAYout: ADD[:WINDow]? on page 132 TRACe: DATA?, see Chapter 7.7.4, "Using the TRACe[:DATA] Command", on page 154 Symbol unit: UNIT: SAXes on page 113

#### MER vs Carrier

The MER vs Carrier display shows the MER of each carrier of the analyzed subframe in the frequency domain. The results are provided in dB. Multiple traces display statistical evaluations over carriers.



Figure 3-8: MER vs Carrier display

**Note:** This result display is only available if synchronization is successful. Guard carriers to the left and right of the spectrum are not included in the MER calculation. However, zero cells and the DC carrier are included.

#### Remote command:

LAY:ADD? '1', RIGH, MVC, see LAYout:ADD[:WINDow]? on page 132 TRACe:DATA?, see Chapter 7.7.4.7, "MER vs Carrier", on page 157 TRACe<n>[:DATA]:X? on page 151 Carrier unit: UNIT:CAXes on page 111

#### MER vs Symbol

The MER vs. Symbol display shows the MER of each symbol of the analyzed subframe in the time domain. The results are provided in dB. Multiple traces display statistical evaluations over symbols.



Figure 3-9: MER vs Symbol display

**Note:** This result display is only available if synchronization is successful. Guard carriers to the left and right of the spectrum are not included in the MER calculation. However, zero cells and the DC carrier are included.

Remote command:

LAY:ADD? '1', RIGH, MVSY, see LAYout:ADD[:WINDow]? on page 132 TRACe:DATA?, see Chapter 7.7.4.8, "MER vs Symbol", on page 157 TRACe<n>[:DATA]:X? on page 151 Symbol unit: UNIT:SAXes on page 113

#### MER vs Symbol vs Carrier

The MER vs Symbol vs Carrier display shows the MER of each carrier (frequency domain) and in each symbol (time domain) of the analyzed subframe.



Figure 3-10: MER vs Symbol vs Carrier display

The MER values are represented by colors. The corresponding color map is displayed at the top of the result display.

Note: This result display is only available if synchronization is successful.

Remote command:

LAY:ADD? '1', RIGH, MVSC, see LAYout:ADD[:WINDow]? on page 132 TRACe:DATA?, see Chapter 7.7.4.9, "MER vs Symbol vs Carrier", on page 157 TRACe<n>[:DATA]:X? on page 151 TRACe<n>[:DATA]:Y? on page 151 Carrier unit: UNIT:CAXes on page 111 Symbol unit: UNIT:SAXes on page 113

#### **Group Delay**

The Group Delay display shows the relative group delay of the transmission channel per carrier.

The group delay can only be calculated at valid carrier locations. This means that a gap appears between the upper and lower half subband for spectrum mode index 9, 10, 22, and 23.



#### Remote command:

LAY:ADD? '1', RIGH, GDEL, see LAYout:ADD[:WINDow]? on page 132 TRACe:DATA?, see Chapter 7.7.4.11, "Group Delay", on page 158 TRACe<n>[:DATA]:X? on page 151 Carrier unit: UNIT:CAXes on page 111

#### Impulse Response

The Channel Impulse Response display shows the impulse response of the channel and its position within the guard interval. The start and the end of the cyclic prefix are marked with blue lines. CP1 describes the cyclic prefix of the beacon. CP2 describes the cyclic prefix of the data body. The impulse response calculation is based on the data body, hence the valid echo detection range is indicated by CP2. Multiple traces display statistical evaluations over the upper and lower subband.



Figure 3-11: Channel Impulse Response Display

#### Remote command:

LAY:ADD? '1', RIGH, IRES, see LAYout: ADD[:WINDow]? on page 132 TRACe:DATA?, see Chapter 7.7.4.12, "Impulse Response", on page 158 TRACe<n>[:DATA]:X? on page 151 Linear/ logarithmic scaling: UNIT: IRESponse on page 112

#### **Magnitude Capture**

The capture buffer contains the complete range of captured data for the last sweep. The Magnitude Capture display shows the power of the captured I/Q data in dBm versus time. The analyzed frames are identified with a green bar at the bottom of the Magnitude Capture display.



Figure 3-12: Magnitude Capture display

#### Remote command:

LAY:ADD? '1', RIGH, MCAP, see LAYout:ADD[:WINDow]? on page 132 TRACe:DATA?, see Chapter 7.7.4.13, "Magnitude Capture", on page 159 TRACe<n>[:DATA]:X? on page 151 Time unit: UNIT:TAXes on page 113

#### Marker Table

Displays a table with the current marker values for the active markers.

| 🔹 3 Marker Table |      |     |         |          |  |
|------------------|------|-----|---------|----------|--|
| Wnd              | Туре | Ref | X-Value | Y-Value  |  |
| 1                | M1   |     | 0.256   | 0.00 dB  |  |
| 1                | D2   | M1  | 415.512 | -1.94 dB |  |
| 1                | D3   | M1  | 489.512 | -1.95 dB |  |
| 1                | D4   | M1  | 266.512 | -2.00 dB |  |

#### Remote command:

LAY:ADD? '1', RIGH, MTAB, see LAYout:ADD[:WINDow]? on page 132 Results:

CALCulate<n>:MARKer<m>:X on page 117 CALCulate<n>:MARKer<m>:Y? on page 147

#### **Power vs Carrier**

The Power vs. Carrier display shows the power of all OFDM symbols in the analyzed subframes for each carrier. The power is measured with a resolution bandwidth equal to the carrier spacing.



Figure 3-13: Power vs Carrier display

Note: This result display is only available if synchronization is successful.

#### Remote command:

LAY:ADD? '1', RIGH, PCAR, see LAYout:ADD[:WINDow]? on page 132 TRACe:DATA?, see Chapter 7.7.4.14, "Power vs Carrier", on page 159 TRACe<n>[:DATA]:X? on page 151 Carrier unit: UNIT:CAXes on page 111

#### **Power vs Symbol**

The Power vs Symbol display shows the power of all OFDM carriers in the analyzed subframes for each symbol. The power is measured with a resolution bandwidth equal to the carrier spacing. Carriers which contain 'Zero'-cells over the complete symbol range (e.g. guard carriers or DC carrier) are excluded.



Figure 3-14: Power vs Symbol display

Note: This result display is only available if synchronization is successful.

#### Remote command:

LAY:ADD? '1', RIGH, PSYM, see LAYout:ADD[:WINDow]? on page 132 TRACe:DATA?, see Chapter 7.7.4.15, "Power vs Symbol", on page 159 TRACe<n>[:DATA]:X? on page 151 Symbol unit: UNIT:SAXes on page 113

#### Power vs Symbol vs Carrier

The Power vs Carrier vs Symbol display shows the power of each carrier (= frequency domain) in each symbol (= time domain) of the analyzed subframes in dBm. The power is measured with a resolution bandwidth that equals the carrier spacing.



Figure 3-15: Power vs Symbol vs Carrier display

The power levels are represented by colors. The corresponding color map is displayed at the top of the result display.

Note: This result display is only available if synchronization is successful.

Remote command:

LAY:ADD? '1', RIGH, PSC, see LAYout:ADD[:WINDow]? on page 132 TRACe:DATA?, see Chapter 7.7.4.16, "Power vs Symbol vs Carrier", on page 160 TRACe<n>[:DATA]:X? on page 151 TRACe<n>[:DATA]:Y? on page 151 Carrier unit: UNIT:CAXes on page 111 Symbol unit: UNIT:SAXes on page 113

#### **Power Spectrum**

The Power Spectrum display shows the power in dBm vs frequency results of the complete capture buffer. This display is always available.



Figure 3-16: Power Spectrum display

#### Remote command:

LAY: ADD? '1', RIGH, PSP, see LAYout: ADD[:WINDow]? on page 132 TRACe: DATA?, see Chapter 7.7.4.17, "Power Spectrum", on page 160 Frequency unit: UNIT: FAXes on page 112

#### **Result Summary**

The Result Summary table provides numerical measurement results.

| <ul> <li>OFDM VSA: 2 Result</li> </ul> | t Summary |      | - T T |
|----------------------------------------|-----------|------|-------|
|                                        | Average   | Unit |       |
| MER All                                | 35.665    | dB   |       |
| MER Data Symbols                       | 35.610    | dB   |       |
| MER Pilot Symbols                      | 36.298    | dB   |       |
| I/Q Offset                             | -80.676   | dB   |       |
| Gain Imbalance                         | -0.001    | dB   |       |
| Quadrature Error                       | -0.006    | 0    |       |
| Frequency Error                        | -28.762   | Hz   |       |
| Sample Clock Error                     | -0.297    | ppm  |       |
| Frame Power                            | -13.857   | dBm  |       |
| Crest Factor                           | 10.659    | dB   |       |

Figure 3-17: Result Summary display

For details on the individual results, see Table 3-1.

Remote command:

LAY: ADD? '1', RIGH, RSUM, see LAYout: ADD[:WINDow]? on page 132 Results:

FETCh:SUMMary[:ALL]? on page 140

#### **Signal Flow**

The Signal Flow display shows a detailed description of the current measurement status. If demodulation is not successful, it provides useful hints on possible reasons. Unused blocks are shown in gray.



Figure 3-18: Signal Flow display

For the synchronization blocks, a colored bar provides information about the reliability of the synchronization result. If the level in the bar falls below the thresholds indicated by the horizontal line, the color of the bar changes from green to yellow and finally to red. If the synchronization of the block fails, all succeeding arrows change their color, too.

Remote command:

LAY: ADD? '1', RIGH, SFL, see LAYout: ADD[:WINDow]? on page 132 Retrieving results:

Chapter 7.7.2, "Retrieving Signal Flow Results", on page 141

## 4 Configuring CDR Measurements

CDR measurements require the R&S ETL-K470 CDR Signal Analysis Software license for the R&S ETL CDR software.



#### **General R&S VSE functions**

The application-independent functions for general tasks in the R&S VSE software are also available for CDR measurements and are described in the R&S VSE base software user manual. In particular, this comprises the following functionality:

- Controlling instruments and capturing I/Q data
- Data management
- General software preferences and information

| • | Configuration Overview                      | .33 |
|---|---------------------------------------------|-----|
| • | CDR Configuration                           | .35 |
| • | Input and Frontend Settings                 | .38 |
| • | Trigger Settings                            | .45 |
| • | Data Acquisition                            | .48 |
| • | Result Ranges                               | 52  |
| • | Synchronization. Demodulation and Tracking. | .52 |
|   | -,,,,,,,,,,,,,                              |     |

## 4.1 Configuration Overview

Throughout the measurement configuration, an overview of the most important currently defined settings is provided in the "Overview".

The "Overview" is displayed when you select the "Overview" icon in the main toolbar, or the "Meas Setup > Overview" menu item.

**Configuration Overview** 



Figure 4-1: Configuration "Overview" for CDR measurements

In addition to the main measurement settings, the "Overview" provides quick access to the main settings dialog boxes. Thus, you can easily configure an entire measurement channel from input over processing to evaluation by stepping through the dialog boxes as indicated in the "Overview".

In particular, the "Overview" provides quick access to the following configuration dialog boxes (listed in the recommended order of processing):

- CDR Configuration See Chapter 4.2, "CDR Configuration", on page 35
- Input/Frontend See Chapter 4.3, "Input and Frontend Settings", on page 38
- Trigger See Chapter 4.4, "Trigger Settings", on page 45
- Data Acquisition See Chapter 4.5, "Data Acquisition", on page 48
- Result Range See Chapter 4.6, "Result Ranges", on page 52
- Synchronization and Demodulation Settings See Chapter 4.7, "Synchronization, Demodulation and Tracking", on page 52
- Tracking See Chapter 4.7, "Synchronization, Demodulation and Tracking", on page 52
- Result Configuration See Chapter 5.1, "Result Configuration", on page 57

#### To configure settings

Select any button in the "Overview" to open the corresponding dialog box. Select a setting in the channel bar (at the top of the measurement channel tab) to change a specific setting.

| Preset Channel        | . 35 | ; |
|-----------------------|------|---|
| Specific Settings for | . 35 | ; |

#### Preset Channel

Select the "Preset Channel" button in the lower left-hand corner of the "Overview" to restore all measurement settings in the current channel to their default values.

Remote command:

SYSTem:PRESet:CHANnel[:EXEC] on page 79

#### **Specific Settings for**

The channel may contain several windows for different results. Thus, the settings indicated in the "Overview" and configured in the dialog boxes vary depending on the selected window.

Select an active window from the "Specific Settings for" selection list that is displayed in the "Overview" and in all window-specific configuration dialog boxes.

The "Overview" and dialog boxes are updated to indicate the settings for the selected window.

### 4.2 CDR Configuration

You must describe the expected CDR input signal so that the R&S ETL CDR software can compare the measured signal to the expected reference signal. Depending on the CDR configuration, a predefined configuration file is loaded to the R&S ETL CDR software which contains all other parameters required for the CDR measurement.

R&S®ETL-K470

**CDR** Configuration

| CD  | DR Configuration |                            |                                                                                                                                                                  |     |  |  |  |  |
|-----|------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|
|     | [                | CDR Configuration          |                                                                                                                                                                  |     |  |  |  |  |
|     |                  | Spectrum Mode Index        |                                                                                                                                                                  | 9 • |  |  |  |  |
|     |                  | Transmission Mode          | 1 •                                                                                                                                                              |     |  |  |  |  |
|     |                  | Service Description Inform | 16QAM *                                                                                                                                                          |     |  |  |  |  |
|     |                  | Service Data Modulation    | 64QAM 🝷                                                                                                                                                          |     |  |  |  |  |
| ×.  |                  | Enable Service Data Hiera  | On Off                                                                                                                                                           |     |  |  |  |  |
| ЖWQ |                  | Service Data Hierarchical  | alpha = 1                                                                                                                                                        |     |  |  |  |  |
| B   | [                | Configuration File Details |                                                                                                                                                                  |     |  |  |  |  |
|     |                  | Number of Subcarriers:     | 2048                                                                                                                                                             |     |  |  |  |  |
|     |                  | Number of Symbols:         |                                                                                                                                                                  |     |  |  |  |  |
|     |                  | Cyclic Prefix Length:      | [1x384, 56x240]                                                                                                                                                  |     |  |  |  |  |
|     |                  | Description:               | Spectrum Mode Index: 9<br>Transmission Mode: 1<br>Service Description Modulation: 16QAM<br>Service Data Modulation: 64QAM<br>Service Data Hierarchical Coding: 1 |     |  |  |  |  |
|     | Ľ                |                            |                                                                                                                                                                  |     |  |  |  |  |

Based on the CDR configuration, all relevant measurement parameters are set automatically in the R&S ETL CDR software:

- Configuration file
- Sample rate
- FFT
- CP length
- Filter settings
- Result length

Except for the filter settings, these parameters cannot be configured manually.

#### Filtering CDR signals

The R&S ETL CDR software uses an automatic filtering, especially designed for CDR signals. This filtering consists of two parts.

- The first filter is a channel filter to suppress the adjacent channels.
- The second filter is a high-pass filter to suppress the FM signal between the upper subband and the lower subband for spectrum mode index 9, 10, 22, or 23.

Depending on the spectrum mode index, the filter is automatically configured to remove the highest FM-deviation frequencies, without suppressing the CDR OFDM carriers. For the predefined filter configuration, a maximum carrier frequency offset of ±2 kHz is allowed. For higher frequency offsets, you must configure the Maximum Car-
rier Offset and the filters accordingly (see Chapter 4.7, "Synchronization, Demodulation and Tracking", on page 52 and "Filter Settings" on page 50).

| Spectrum Mode Index                        |  |
|--------------------------------------------|--|
| Transmission Mode                          |  |
| Service Description Information Modulation |  |
| Service Data Modulation                    |  |
| Enable Service Data Hierarchical Coding    |  |
| Service Data Hierarchical Coding           |  |
| Configuration File Details                 |  |
| L Number of Subcarriers                    |  |
| L Number of Symbols                        |  |
| L Cyclic Prefix Length                     |  |
| L System description                       |  |

#### Spectrum Mode Index

Defines the used spectrum mode according to the CDR standard. The spectrum mode index defines the distance between the lower and the upper half subband. The filter settings are adapted automatically according to the spectrum mode index.

See also "Filtering CDR signals" on page 36.

Remote command: CONFigure:CDR:SMODe on page 81

#### **Transmission Mode**

Defines the used transmission mode according to the CDR standard. The transmission mode defines the CDR demodulation and measurement parameters. The following settings are adapted automatically according to the transmission mode:

- FFT
- CP length
- Result length

Remote command: CONFigure:CDR:TMODe on page 81

#### **Service Description Information Modulation**

Defines the modulation type used for the service description information.

Remote command: CONFigure:CDR:IMODulation on page 81

#### **Service Data Modulation**

Defines the modulation type used for the service data.

Remote command: CONFigure:CDR:DMODulation on page 80

#### **Enable Service Data Hierarchical Coding**

If enabled, hierarchical coding for the service data is allowed (not for QPSK service data modulation). You can define the alpha parameter for coding in Service Data Hierarchical Coding.

If disabled, the coding parameter  $\alpha$  = 1 is used.

Remote command:

CONFigure:CDR:HCODing:STATe on page 80

#### Service Data Hierarchical Coding

If hierarchical coding is enabled for service data (see Enable Service Data Hierarchical Coding), the alpha parameter for coding is defined here. Otherwise the coding parameter  $\alpha = 1$  is used.

Remote command: CONFigure:CDR:HCODing on page 80

#### **Configuration File Details**

Indicates the most important measurement settings from the predefined configuration file for reference.

#### 

Indicates the number of subcarriers used by the signal.

#### 

Indicates the number of OFDM symbols.

#### 

Indicates the length of the cyclic prefix (CP) area of an OFDM symbol in the time domain as a number of samples.

Since CDR signals use a beacon, two cyclic prefix lengths are indicated here.

- CP1 describes the cyclic prefix of the beacon.
- CP2 describes the cyclic prefix of the data body.

#### 

Provides a description of the signal configured in the file.

## 4.3 Input and Frontend Settings

Access: "Overview" > "Input/Frontend"

Or: "Input & Output"

The R&S ETL CDR software can evaluate signals from different input sources.

The frequency and amplitude settings represent the "frontend" of the measurement setup.

| • | Input Source Settings | 38   |
|---|-----------------------|------|
| • | Frequency Settings    | . 42 |

#### 4.3.1 Input Source Settings

Access: "Overview" > "Input/Frontend" > "Input Source"

Or: "Input & Output" > "Input Source"

The R&S ETL CDR software can control the input sources of the connected instrument.

#### 4.3.1.1 Radio Frequency Input

Access: "Overview" > "Input/Frontend" > "Input Source" > "Radio Frequency"

Or: "Input & Output" > "Input Source" > "Radio Frequency"

The default input source for the R&S ETL CDR software is "Radio Frequency".

| Inpu     | ut/Frontend        |                                                                                                                                    |                      |
|----------|--------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|          | Input Source       | Frequency                                                                                                                          | Amplitude            |
|          | Instrument         | File Instrument: 😑 ETL-3*                                                                                                          | ▼ Input Source: RF ▼ |
|          | Radio<br>Frequency | Impedance 50Ω 75Ω<br>Input Connector RF                                                                                            | 2                    |
| OFDM VSA | I/Q File           | Preselector State     On     Off       Preselector Mode     Wide     Narrow       10 dB Min     On     Off       Input     1     2 |                      |

Figure 4-2: RF input source settings for an R&S ETL

| Input Type (Instrument / File) | 39 |
|--------------------------------|----|
| Instrument                     | 40 |
| Impedance                      | 40 |
| Preselector State              | 40 |

#### Input Type (Instrument / File)

Selects an instrument or a file as the type of input provided to the channel.

#### Remote command:

INSTrument:BLOCk:CHANnel[:SETTings]:SOURce<si> on page 85
INPut<ip>:SELect on page 84

#### Instrument

Specifies a configured instrument to be used for input. For the R&S ETL CDR software, only an R&S ETL can be specified.

#### Impedance

By default, the R&S ETL has an input impedance of 50  $\Omega$ . If the optional preselector R&S ETL-B203 is installed, the reference impedance for the measured levels of the connected R&S ETL can be set to 50  $\Omega$  or 75  $\Omega$ .

This value also affects the unit conversion.

Remote command: INPut<ip>: IMPedance on page 83

#### **Preselector State**

Turns the optional preselector R&S ETL-B203 on or off, if installed. No further settings are available for the preselector.

Remote command: INPut<ip>:PRESelection[:STATe] on page 84

#### 4.3.1.2 I/Q File Input

Access: "Overview" > "Input" > "Input Source" > "I/Q File"

Access: "Overview" > "Input/Frontend" > "Input Source" > "I/Q File"

Or: "Input & Output" > "Input Source" > "I/Q File"

Alternatively to "live" data input from a connected instrument, measurement data to be analyzed by the R&S ETL CDR software can also be provided "offline" by a stored data file. This allows you to perform a measurement on any R&S ETL, store the results to a file, and analyze the stored data partially or as a whole at any time using the R&S ETL CDR software. Note that analysis with the R&S ETL CDR software requires an R&S ETL with the R&S ETL-K470 CDR Signal Analysis Software license installed to be connected.



#### Loading a file via drag&drop

You can load a file simply by selecting it in a file explorer and dragging it to the R&S ETL CDR software. Drop it into the "Measurement Group Setup" window or the channel bar for any channel. The channel is automatically configured for file input, if necessary. If the file contains all essential information, the file input is immediately displayed in the channel. Otherwise, the "Recall I/Q Recording" dialog box is opened for the selected file so you can enter the missing information.

For details see the R&S VSE base software user manual.



The "Input Source" settings defined in the "Input" dialog box are identical to those configured for a specific channel in the "Measurement Group Setup" window.

(See "Controlling Instruments and Capturing Data" in the R&S VSE base software user manual).

Input and Frontend Settings

| nput/    | /Frontend          |                                                                                                            |                                                   |           |                   |             | x |
|----------|--------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------|-------------------|-------------|---|
|          | Input Source       | Frequency                                                                                                  | ,                                                 | Amplitude |                   |             |   |
|          | Instrument         | File Instrument: ETL-3*                                                                                    | <ul> <li>Input Source:</li> </ul>                 | RF *      |                   |             |   |
| A        | Radio<br>Frequency | Input File<br>C:\temp\CDR_S09T1164D16A1_fmDe<br>Saved by:<br>Comment:<br>Date & Time:                      | 775kHz.iq.tar<br>VSE_1.50<br>2018-06-28 13:01:40  |           |                   | Select File |   |
| OFDM VSA | I/Q File           | Sample Rate:<br>Acquisition Bandwidth:<br>Number of Samples:<br>Duration of Signal:<br>Number of Channels: | 816 kHz<br>652.8 kHz<br>326701<br>400.369 ms<br>1 |           |                   |             |   |
|          |                    | Settings<br>Zero Padding                                                                                   |                                                   |           | File Repetitions: | 1<br>Off    |   |
|          |                    |                                                                                                            |                                                   |           |                   |             |   |



Encrypted .wv files can also be imported. Note, however, that traces resulting from encrypted file input cannot be exported or stored in a saveset.

See the Data Management chapter in the R&S VSE base software user manual.

| nput Type (Instrument / File) | 41   |  |
|-------------------------------|------|--|
| nput File                     | . 41 |  |
| Zero Padding                  | 41   |  |

#### Input Type (Instrument / File)

Selects an instrument or a file as the type of input provided to the channel.

Remote command:

INSTrument:BLOCk:CHANnel[:SETTings]:SOURce<si> on page 85
INPut<ip>:SELect on page 84

#### Input File

Specifies the I/Q data file to be used for input.

Select "Select File" to open the "Load I/Q File" dialog box.

(See "Data Management - Loading the I/Q Data File" in the R&S VSE base software user manual).

#### Zero Padding

Enables or disables zero padding for input from an I/Q data file that requires resampling. For resampling, a number of samples are required due to filter settling. These samples can either be taken from the provided I/Q data, or the software can add the required number of samples (zeros) at the beginning and end of the file. If enabled, the required number of samples are inserted as zeros at the beginning and end of the file. The entire input data is analyzed. However, the additional zeros can effect the determined spectrum of the I/Q data. If zero padding is enabled, a status message is displayed.

If disabled (default), no zeros are added. The required samples for filter settling are taken from the provided I/Q data in the file. The start time in the R&S VSE Player is adapted to the actual start (after filter settling).

**Note:** You can activate zero padding directly when you load the file, or afterwards in the "Input Source" settings.

Remote command: INPut<ip>:FILE:ZPADing on page 83

### 4.3.2 Frequency Settings

 Input/Frontend

 Input Source
 Frequency

 Center
 100.0 MHz

 Center Frequency Stepsize

 Stepsize

 Manual

 Value

 Input Source

Access: "Input & Output" > "Frequency"

| Center Frequency          |    |
|---------------------------|----|
| Center Frequency Stepsize | 43 |
| Frequency Offset          | 43 |

#### **Center Frequency**

Defines the center frequency of the signal in Hertz.

 $0 \text{ Hz} \le f_{\text{center}} \le f_{\text{max}}$ 

f<sub>max</sub> and span<sub>min</sub> depend on the instrument and are specified in the data sheet.

**Note:** For file input, you can shift the center frequency of the current measurement compared to the stored measurement data. The maximum shift depends on the sample rate of the file data.

$$CF_{shift_{max}} = CF_{file} \pm rac{SR_{file}}{2}$$

If the file does not provide the center frequency, it is assumed to be 0 Hz.

In order to ensure that the input data remains within the valid analysis bandwidth, define the center frequency and the analysis bandwidth for the measurement such that the following applies:

$$CF + rac{ABW_{channel}}{2} > CF_{file} + rac{ABW_{file}}{2}$$
 $CF - rac{ABW_{channel}}{2} > CF_{file} - rac{ABW_{file}}{2}$ 

Remote command:

[SENSe:]FREQuency:CENTer on page 86

#### **Center Frequency Stepsize**

Defines the step size when scrolling through center frequency values. The step size can be set to a predefined value, or it can be manually set to a user-defined value.

"Auto" The step size is set to the default value of 1 MHz.

"Manual" Defines a user-defined step size for the center frequency. Enter the step size in the "Value" field.

Remote command:

[SENSe:]FREQuency:CENTer:STEP:AUTO on page 87 [SENSe:]FREQuency:CENTer:STEP on page 87

#### **Frequency Offset**

Shifts the displayed frequency range along the x-axis by the defined offset.

This parameter has no effect on the instrument's hardware, or on the captured data or on data processing. It is simply a manipulation of the final results in which absolute frequency values are displayed. Thus, the x-axis of a spectrum display is shifted by a constant offset if it shows absolute frequencies. However, if it shows frequencies relative to the signal's center frequency, it is not shifted.

A frequency offset can be used to correct the display of a signal that is slightly distorted by the measurement setup, for example.

The allowed values range from -100 GHz to 100 GHz. The default setting is 0 Hz.

Remote command:

[SENSe:]FREQuency:OFFSet on page 87

#### 4.3.3 Amplitude Settings

Access: "Overview" > "Input/Frontend" > "Amplitude"

Or: "Input & Output" > "Amplitude"

Amplitude settings determine how the connected R&S ETL must process or display the expected input power levels.

Input and Frontend Settings

| Frontend          |            |           |                    |        |        |
|-------------------|------------|-----------|--------------------|--------|--------|
| input Source      |            | Frequency |                    | Amplit | ude    |
| Reference Level — |            |           | Input Settings —   |        |        |
| Value             | -25.0 dBm  |           | Preamplifier       | On     | Off    |
| Offset (          | 0.0 dB     |           | Input Coupling     | AC     | DC     |
|                   | Auto Level |           | Impedance          | 50Ω    | 75Ω    |
| Attenuation       |            |           | Electronic Attenua | ation  |        |
| Mode              | Auto N     | /lanual   | State              | On     | Off    |
|                   |            |           | Mode               | Auto   | Manual |
| Value 1           | 10.0 dB    |           | Value              | 0 dB   |        |

| Reference Level                  | 44 |
|----------------------------------|----|
| L Shifting the Display (Offset ) |    |
| RF Attenuation                   |    |
| L Attenuation Mode / Value       | 45 |
| Input Settings                   |    |
| L Preamplifier                   | 45 |
| L Impedance                      |    |
|                                  |    |

#### **Reference Level**

Defines the expected maximum reference level. Signal levels above this value may not be measured correctly. This is indicated by an "IF Overload" status display.

The reference level can also be used to scale power diagrams; the reference level is then used as the maximum on the y-axis.

Since the hardware of the connected R&S ETL is adapted according to this value, it is recommended that you set the reference level close above the expected maximum signal level. Thus you ensure an optimum measurement (no compression, good signal-to-noise ratio).

Remote command:

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RLEVel on page 88

#### Shifting the Display (Offset ) ← Reference Level

Defines an arithmetic level offset. This offset is added to the measured level. In some result displays, the scaling of the y-axis is changed accordingly.

Define an offset if the signal is attenuated or amplified before it is fed into the R&S ETL CDR software so the application shows correct power results. All displayed power level results are shifted by this value.

The setting range is ±200 dB in 0.01 dB steps.

Note, however, that the *internal* reference level (used to adjust the hardware settings to the expected signal) ignores any "Reference Level Offset". Thus, it is important to keep in mind the actual power level the R&S ETL CDR software must handle. Do not rely on the displayed reference level (internal reference level = displayed reference level - offset).

Remote command:

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RLEVel:OFFSet on page 88

#### **RF** Attenuation

Defines the attenuation applied to the RF input of the R&S ETL.

#### Attenuation Mode / Value ← RF Attenuation

The RF attenuation can be set automatically as a function of the selected reference level (Auto mode). This ensures that no overload occurs at the RF Input connector for the current reference level. It is the default setting.

In "Manual" mode, you can set the RF attenuation in 1 dB steps (down to 0 dB). Other entries are rounded to the next integer value. The range is specified in the data sheet. If the defined reference level cannot be set for the defined RF attenuation, the reference level is adjusted accordingly and the warning "limit reached" is displayed.

**NOTICE!** Risk of hardware damage due to high power levels. When decreasing the attenuation manually, ensure that the power level does not exceed the maximum level allowed at the RF input, as an overload may lead to hardware damage.

Remote command: INPut<ip>:ATTenuation on page 88 INPut<ip>:ATTenuation:AUTO on page 89

#### Input Settings

Some input settings affect the measured amplitude of the signal, as well.

#### **Preamplifier** — Input Settings

You can use a preamplifier to analyze RF input from DUTs with low output power.

Remote command: INPut<ip>:GAIN:STATe on page 91

#### Impedance Input Settings

By default, the R&S ETL has an input impedance of 50  $\Omega$ . If the optional preselector R&S ETL-B203 is installed, the reference impedance for the measured levels of the connected R&S ETL can be set to 50  $\Omega$  or 75  $\Omega$ .

This value also affects the unit conversion.

Remote command: INPut<ip>:IMPedance on page 83

## 4.4 Trigger Settings

Access: "Input & Output" > "Trigger"

**Trigger Settings** 

Trigger settings determine when the input signal is measured.

| Trig | jger           |               |               |          | x       |
|------|----------------|---------------|---------------|----------|---------|
|      | Trigger Source | Trigg         | ger In/Out    |          |         |
| 4    | Source         | Ext Trigger 1 | •             |          |         |
| M VS | Level          | 1.4 V         | Drop-Out Time | 0.0 s    |         |
| OFD  | Offset         | 0.0 s         | Slope         | Rising   | Falling |
|      | Hysteresis     | 3.0 dB        | Holdoff       | 150.0 ns |         |
|      |                |               |               |          |         |

| Trigger Source        | 46 |
|-----------------------|----|
| L Free Run            |    |
| L External Trigger 1  | 46 |
| L IF Power            | 46 |
| L Magnitude (Offline) | 47 |
| Trigger Level         | 47 |
| Trigger Offset        | 47 |
| Hysteresis            | 47 |
| Trigger Holdoff       | 48 |
| Slope                 |    |
|                       |    |

#### **Trigger Source**

Selects the trigger source. If a trigger source other than "Free Run" is set, "TRG" is displayed in the channel bar and the trigger source is indicated.

Remote command: TRIGger[:SEQuence]:SOURce on page 94

#### Free Run ← Trigger Source

No trigger source is considered. Data acquisition is started manually or automatically and continues until stopped explicitly.

Remote command: TRIG:SOUR IMM, see TRIGger[:SEQuence]:SOURce on page 94

#### External Trigger 1 - Trigger Source

Data acquisition starts when the TTL signal fed into the trigger input connector of the R&S ETL CDR software meets or exceeds the specified trigger level.

(See "Trigger Level " on page 47).

Remote command: TRIG:SOUR EXT See TRIGger[:SEQuence]:SOURce on page 94

#### IF Power - Trigger Source

The R&S ETL CDR software starts capturing data as soon as the trigger level is exceeded around the third intermediate frequency.

Trigger Settings

For frequency sweeps, the third IF represents the start frequency. The trigger bandwidth at the third IF depends on the RBW and sweep type.

For measurements on a fixed frequency (e.g. zero span or I/Q measurements), the third IF represents the center frequency.

(The third IF represents the center frequency.)

This trigger source is only available for RF input.

The available trigger levels depend on the RF attenuation and preamplification. A reference level offset, if defined, is also considered.

For details on available trigger levels and trigger bandwidths, see the data sheet.

Remote command: TRIG:SOUR IFP, see TRIGger[:SEQuence]:SOURce on page 94

#### Magnitude (Offline) ← Trigger Source

For (offline) input from a file, rather than an instrument. Triggers on a specified signal level.

Remote command: TRIG:SOUR MAGN, see TRIGger[:SEQuence]:SOURce on page 94

#### Trigger Level

Defines the trigger level for the specified trigger source.

For details on supported trigger levels, see the data sheet.

Remote command:

TRIGger[:SEQuence]:LEVel[:EXTernal<port>] on page 93

#### Trigger Offset

Defines the time offset between the trigger event and the start of the measurement.

| Offset > 0: | Start of the measurement is delayed     |
|-------------|-----------------------------------------|
| Offset < 0: | Measurement starts earlier (pretrigger) |

(If supported by the connected R&S ETL.)

Remote command:

TRIGger[:SEQuence]:HOLDoff[:TIME] on page 92

#### Hysteresis

Defines the distance in dB to the trigger level that the trigger source must exceed before a trigger event occurs. Setting a hysteresis avoids unwanted trigger events caused by noise oscillation around the trigger level.

This setting is only available for "IF Power" or "Magnitude (Offline)" trigger sources.

The range of the value is between 3 dB and 50 dB with a step width of 1 dB.

Remote command:

TRIGger[:SEQuence]:IFPower:HYSTeresis on page 92
TRIGger[:SEQuence]:MAPower:HYSTeresis on page 94

Data Acquisition

#### **Trigger Holdoff**

Defines the minimum time (in seconds) that must pass between two trigger events. Trigger events that occur during the holdoff time are ignored.

Remote command:

```
TRIGger[:SEQuence]:IFPower:HOLDoff on page 92
TRIGger[:SEQuence]:MAPower:HOLDoff on page 93
```

#### Slope

For all trigger sources except time, you can define whether triggering occurs when the signal rises to the trigger level or falls down to it.

```
Remote command:
TRIGger[:SEQuence]:SLOPe on page 94
```

# 4.5 Data Acquisition

Configure how data is to be acquired in the "Data Acquisition" dialog box.

| quisition                                                                                                    |                                                 |                 |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------|
| ata Acquisition                                                                                              |                                                 |                 |
| I/Q Capture                                                                                                  |                                                 |                 |
| Capture Time                                                                                                 | 320.0 ms                                        |                 |
| Capture Length                                                                                               | 261121                                          |                 |
| Swap I/Q                                                                                                     | On                                              | Off             |
| Data Acquisition                                                                                             |                                                 |                 |
| Sample Rate                                                                                                  | 816.0 kHz                                       |                 |
| Maximum Bandwidth                                                                                            | Auto 80 MHz                                     | 512 MHz 1200 MH |
| Filter Settings                                                                                              |                                                 |                 |
| Filter Settings                                                                                              | Auto                                            | Manual          |
| -                                                                                                            |                                                 |                 |
| Filter State                                                                                                 | On                                              | Off             |
| Filter State                                                                                                 | On                                              | Off             |
| Filter State Channel Filter 6dB Bandwidth                                                                    | 0n 410.0 kHz                                    | Off             |
| Filter State<br>Channel Filter<br>6dB Bandwidth<br>50dB Bandwidth                                            | On 410.0 kHz 417.0 kHz                          | Off             |
| Filter State Channel Filter 6dB Bandwidth 50dB Bandwidth Highpass Filter                                     | On<br>410.0 kHz<br>417.0 kHz                    | Off             |
| Filter State Channel Filter GdB Bandwidth 50dB Bandwidth Highpass Filter Highpass Filter State               | On<br>410.0 kHz<br>417.0 kHz<br>On              | Off             |
| Filter State Channel Filter 6dB Bandwidth 50dB Bandwidth Highpass Filter Highpass Filter State 6dB Bandwidth | On<br>410.0 kHz<br>417.0 kHz<br>On<br>290.0 kHz | Off             |

Data Acquisition

| Capture Time          | 49 |
|-----------------------|----|
| Capture Length        |    |
| Swap I/Q              |    |
| Sample Rate           |    |
| Maximum Bandwidth     | 50 |
| Filter Settings       | 50 |
| Filter State          | 50 |
| 6-dB Bandwidth        | 50 |
| 50-dB Bandwidth       | 51 |
| Highpass Filter State | 51 |
| 6-dB Bandwidth        | 51 |
| 50-dB Bandwidth       | 51 |
| Refresh               | 52 |
|                       |    |

#### **Capture Time**

Specifies the duration (and therefore the amount of data) to be captured in the capture buffer. If the capture time is too short, demodulation will fail. In particular, if the result length does not fit in the capture buffer, demodulation will fail.

For CDR, this means:

A CDR subframe has a duration of 160 ms. This is the minimal capture time for a successful demodulation for a triggered capture. The default capture time is 320.9 ms, so that untriggered captures will also contain one complete CDR subframe. For deactivated filters (see "Filter Settings" on page 50), the maximum capture time is 641.8 ms.

Remote command:

[SENSe:]SWEep:TIME on page 99

#### **Capture Length**

Defines the number of samples to be captured during each measurement. The required Capture Time is adapted accordingly.

#### Remote command:

[SENSe:]SWEep:LENGth on page 99

#### Swap I/Q

Activates or deactivates the inverted I/Q modulation. If the I and Q parts of the signal from the DUT are interchanged, the R&S ETL CDR software can do the same to compensate for it.

| On  | I and Q signals are interchanged<br>Inverted sideband, Q+j*I   |
|-----|----------------------------------------------------------------|
| Off | I and Q signals are not interchanged<br>Normal sideband, I+j*Q |

#### Remote command:

[SENSe:]SWAPiq on page 98

#### Sample Rate

Defines the I/Q data sample rate of the R&S ETL CDR software.

For the R&S ETL CDR software, the sample rate is fixed to 816 kHz.

Remote command: TRACe:IQ:SRATe on page 99

#### **Maximum Bandwidth**

Depending on the connected R&S ETL, the maximum bandwidth to be used by the R&S ETL CDR software for I/Q data acquisition can be restricted. This setting is only available if a bandwidth extension option is installed on the connected R&S ETL. Otherwise the maximum bandwidth is determined automatically.

The available values depend on the instrument and the installed bandwidth extension options. For details see the instrument's documentation.

For the R&S ETL CDR software, the maximum bandwidth is always determined automatically.

Remote command:

TRACe:IQ:WBANd[:STATe] on page 100
TRACe:IQ:WBANd:MBWidth on page 100

#### Filter Settings

Defines whether the filters are configured automatically according to the loaded configuration file.

Remote command: INPut<ip>:FILTer:CHANnel[:LPASs]:AUTO on page 96

#### **Filter State**

Defines whether a channel filter - and a highpass filter, if active - is applied to the I/Q data before OFDM demodulation.

Remote command: INPut<ip>:FILTer:CHANnel[:LPASs][:STATe] on page 98

#### 6-dB Bandwidth

Configures the bandwidth of the channel filter at which an attenuation of 6 dB is reached (see Figure 4-3). The filter bandwidth cannot be higher than the current Sample Rate. If necessary, the filter bandwidth is adapted to the current sample rate.

Data Acquisition



Figure 4-3: Definition of filter bandwidths

#### Remote command:

INPut<ip>:FILTer:CHANnel[:LPASs]:SDBBw on page 97

#### 50-dB Bandwidth

Configures the 50-dB bandwidth of the channel filter. The 50-dB bandwidth is the bandwidth at which the filter reaches an attenuation of 50 dB (see Figure 4-3). This bandwidth must always be larger than the "6-dB Bandwidth" on page 50. If necessary, the 50-dB bandwidth is adapted to the current 6-dB bandwidth.

Remote command:

INPut<ip>:FILTer:CHANnel[:LPASs]:FDBBw on page 97

#### **Highpass Filter State**

Activates or deactivates an additional internal highpass filter.

Remote command: INPut<ip>:FILTer:CHANnel:HPASs[:STATe] on page 97

#### 6-dB Bandwidth

Configures the bandwidth of the high pass filter at which an attenuation of 6 dB is reached (see Figure 4-3). The filter bandwidth cannot be higher than the current 6-dB Bandwidth of the channel filter. If necessary, the filter bandwidth is adapted to the same value.

Remote command: INPut<ip>:FILTer:CHANnel:HPASs:SDBBw on page 96

#### 50-dB Bandwidth

Indicates the 50-dB bandwidth of the high pass filter. The 50-dB bandwidth is the bandwidth at which the filter reaches an attenuation of 50 dB (see Figure 4-3). This bandwidth must always be smaller than the 6-dB Bandwidth of the high pass filter.

The 50-dB bandwidth cannot be defined manually. It is automatically determined according to the relation between the 6-dB bandwidth and the 50-dB bandwidth of the channel filter (see 6-dB Bandwidth and 50-dB Bandwidth).

Synchronization, Demodulation and Tracking

Remote command: INPut<ip>:FILTer:CHANnel:HPASs:FDBBw? on page 96

#### Refresh

Access: "Auto Set" toolbar: 😒

Repeats the evaluation of the data currently in the capture buffer without capturing new data. This is useful after changing settings, for example filters or evaluation ranges.

Remote command:

INITiate:REFResh on page 96

## 4.6 Result Ranges

The result range is an extract from the capture buffer and defines the data basis used for further analysis.

| Bur | st Search / Result Range  |         |      | X   |
|-----|---------------------------|---------|------|-----|
|     | Burst Search Resul        | t Range |      |     |
| VSA | Result Range              |         |      |     |
| DM  | Max No of Frames to Analy | ze 1    |      |     |
| ō   | Result Length             | 57      | Symb | ols |
|     |                           |         |      |     |

| Max No of Frames to Analyze | 52 |
|-----------------------------|----|
| Result Length               |    |

#### Max No of Frames to Analyze

Defines the maximum number of OFDM frames from the current capture buffer to be included in analysis.

For the R&S ETL CDR software, a single subframe is analyzed.

#### **Result Length**

Configures the number of OFDM symbols per subframe to be analyzed. This value is determined automatically based on the Transmission Mode (see Chapter 4.2, "CDR Configuration", on page 35). Note that this default value is the maximum value, lower values can be entered manually.

Remote command: [SENSe:]DEMod:FORMat:NOFSymbols on page 100

## 4.7 Synchronization, Demodulation and Tracking

Access: "Overview" > "Sync / Demod"/"Tracking"

**Or**: "Meas Setup" > "Sync / Demod"/"Tracking"

Synchronization, Demodulation and Tracking

| Syn   | ic / Track / Demod                         | X                    |
|-------|--------------------------------------------|----------------------|
|       | Synchronization                            |                      |
|       | Time Synchronization                       | Cyclic Prefix *      |
|       | Parameter Estimation                       | Pilot-Aided *        |
|       | Modulation Detection                       | Configuration File * |
|       | Thresholds                                 |                      |
|       | Minimum Time Sync Metric                   | 0.5                  |
|       | Minimum Frame Sync Metric                  | 0.5                  |
| _     | Tracking                                   |                      |
| N VS4 | Phase Tracking                             | On Off               |
| OFD   | Timing Tracking                            | On Off               |
|       | Level Tracking                             | On Off               |
|       | Channel Compensation                       | On Off               |
|       | Demodulation                               |                      |
|       | FFT Shift relative to Cyclic Prefix Length | 0.5                  |
|       | Maximum Carrier Offset                     | 5                    |
|       | Cyclic Delay                               | 0                    |

The following settings determine how the input signal is synchronized, demodulated, and tracked.

| Time Synchronization                       | 53 |
|--------------------------------------------|----|
| Parameter Estimation                       | 54 |
| Modulation Detection                       | 54 |
| Synchronization Thresholds                 | 54 |
| L Minimum Time Sync Metric                 | 54 |
| L Minimum Frame Sync Metric                | 54 |
| Phase Tracking                             | 55 |
| Timing Tracking                            | 55 |
| Level Tracking                             |    |
| Channel Compensation                       | 55 |
| FFT Shift relative to Cyclic Prefix Length | 55 |
| Maximum Carrier Offset                     | 56 |
| Cyclic Delay                               | 56 |
|                                            |    |

#### **Time Synchronization**

Specifies the synchronization method in the time domain.

For the R&S ETL CDR software, time synchronization always uses the cyclic prefix method, which performs a correlation of the cyclic prefix with the end of the FFT interval.

Remote command:

[SENSe:]DEMod:TSYNc on page 103

#### **Parameter Estimation**

Defines which parts of the OFDM signal are used for the parameter estimation.

For the R&S ETL CDR software, parameter estimation always considers only the predefined pilot cells.

Remote command: [SENSe:]DEMod:FSYNc on page 102

#### **Modulation Detection**

Specifies how the modulation of the data cells is detected.

The R&S ETL CDR software can use the modulation configured in the configuration file for each cell.

For the R&S ETL CDR software, modulation detection always uses the modulation format configured for the cell.

Remote command:

[SENSe:]DEMod:MDETect on page 103

#### Synchronization Thresholds

If you require a particular reliability in synchronization results, define thresholds for the success of synchronization required to calculate results. The current reliability is indicated in the Signal Flow.

High thresholds are useful if several similar, but not identical frames, must be distinguished. In this case, it is important that the application synchronizes only to the correct frame in order to obtain correct results.

On the other hand, if the signal quality is poor, only a low level of reliability in synchronization can be achieved. In this case, high thresholds may prevent the application from evaluating any frames at all.

#### 

Defines the minimum reliability required for time synchronization.

Values between 0 and 1 are allowed, where:

- 0: low threshold, a very poor reliability is sufficient to synchronize successfully (always fulfilled)
- 1: high threshold, time synchronization must be absolutely reliable to be successful (only possible for ideal signal).

The default value is 0.5, that means: for a reliability of 50 %, time synchronization is successful.

#### 

Defines the minimum correlation rate of the CP or preample for frame synchronization to be successful.

Values between 0 and 1 are allowed, where:

- 0: low threshold, a very poor correlation is sufficient to synchronize successfully (always fulfilled)
- 1: high threshold, correlation must be very precise for frame synchronization to be successful (only possible for ideal signal).

The default value is 0.5, that means: for a correlation of 50 %, frame synchronization is successful.

#### **Phase Tracking**

Defines whether phase tracking is used to improve the signal quality. The compensation is done on a per-symbol basis.

Remote command:

SENSe: TRACking: PHASe on page 104

#### Timing Tracking

Defines whether timing tracking is used to improve the signal quality (for sample clock deviations). The compensation is done on a per-symbol basis.

Remote command: SENSe: TRACking: TIME on page 104

#### Level Tracking

Defines whether level tracking is used to improve the signal quality (for power level deviations). The compensation is done on a per-symbol basis.

Remote command: SENSe: TRACking: LEVel on page 103

#### **Channel Compensation**

Defines whether channel tracking is used to improve the signal quality (for the channel transfer function). The compensation is done on a per-carrier basis.

Remote command:

[SENSe:]COMPensate:CHANnel on page 101

#### FFT Shift relative to Cyclic Prefix Length

Defines the starting point of the FFT relative to the cyclic prefix length. Thus, you can shift the FFT start sample within the guard interval. This is useful if relevant parts of the channel impulse response fall outside the cyclic prefix interval.

A value of 0 is the first sample; a value of 1.0 is the last sample of the cyclic prefix.



Remote command:

[SENSe:]DEMod:FFTShift on page 102

#### **Maximum Carrier Offset**

The R&S ETL CDR software can compensate for possible carrier offsets. However, searching for offsets slows down the measurement. This setting defines the range of carriers in which the R&S ETL CDR software searches for an offset.

To eliminate the search for carrier offset altogether, set the number of carriers to 0. In this case, the center frequency offset must be less than half the carrier distance to obtain useful results.

The default value of 5 carriers allows for a frequency offset compensation of up to  $\pm 2$  kHz.

Remote command:

[SENSe:]DEMod:COFFset on page 102

#### Cyclic Delay

Defines a cyclic shift of the FFT values for each OFDM symbol on the transmitter end before adding the cyclic prefix. This known shift should be compensated in the receiver to get a correct channel phase response.

For the R&S ETL CDR software, the cyclic delay is always assumed to be 0.

Remote command: [SENSe:]DEMod:CDD on page 101

# 5 Analyzing CDR Vector Signals

Access: "Overview" > "Result Configuration"

General result analysis settings concerning the trace, markers, windows etc. can be configured. They are identical to the analysis functions in the base unit except for the special window functions.

| • | Result Configuration              | 57   |
|---|-----------------------------------|------|
| • | Table Configuration               | . 59 |
| • | Units                             | .59  |
| • | Y-Scaling.                        | .60  |
| • | Markers                           | .62  |
| • | Trace Settings                    | .68  |
| • | Trace / Data Export Configuration | 70   |
|   |                                   |      |

# 5.1 Result Configuration

Some result displays provide further settings.

| sult ( | Configuration        |                     |                    |                    |
|--------|----------------------|---------------------|--------------------|--------------------|
| Ν      | Markers              | Markers Setting     | s Result Configura | ation Table Config |
| Г      | MER Settings         |                     |                    |                    |
|        | Normalize MER to     | RMS Pilots and Data |                    | •                  |
|        | Frame Averaging      | Mean Square         |                    |                    |
| ſ      | Constellation Displa | y                   |                    |                    |
|        | Modulation Type      | Pilots and Data     |                    | •                  |
|        | Modulation           | All                 |                    | •                  |
|        | Symbol               | ✓ AII 0             |                    |                    |
|        | Carrier              | ☑ AII -1            |                    |                    |
|        | Point Size           | 1x1                 |                    | -                  |
|        |                      |                     |                    |                    |
|        |                      |                     |                    |                    |
| rmali  | ze MFR to            |                     |                    |                    |
| ame /  | Averaging            |                     |                    |                    |
| nstel  | lation Display - N   | Iodulation Type     |                    |                    |
| nstel  | lation Display - N   | Iodulation          |                    |                    |
| nstel  | lation Display - S   | wmbol               |                    |                    |

#### Normalize MER to

Specifies the OFDM cells which are averaged to get the reference magnitude for MER normalization.

| "RMS Pilots &<br>Data"  | RMS value of the pilot and data cells  |
|-------------------------|----------------------------------------|
| "RMS Data"              | RMS value of the data cells            |
| "RMS Pilots"            | RMS value of the pilot cells           |
| "Peak Pilots &<br>Data" | Peak value of the pilot and data cells |
| "Peak Data"             | Peak value of the data cells           |
| "Peak Pilots"           | Peak value of the pilot cells          |
| "None"                  | Normalization is turned off.           |

#### Remote command:

[SENSe:]DEMod:EVMCalc:NORMalize on page 107

#### Frame Averaging

Not available for the R&S ETL CDR software.

#### **Constellation Display - Modulation Type**

The constellation diagram includes only symbols for the selected modulation types. The selected modulation types are indicated in the constellation diagram for reference.

Remote command: CONFigure:FILTer<n>:MODulation:TYPE on page 108

#### **Constellation Display - Modulation**

The constellation diagram includes only symbols with the selected modulation.

Remote command: CONFigure:FILTer<n>:MODulation on page 107

#### **Constellation Display - Symbol**

The constellation diagram includes all or only the specified symbol number. The first symbol number is 0.

Remote command: CONFigure:FILTer<n>:SYMBol on page 108

#### **Constellation Display - Carrier**

The constellation diagram includes symbols for all or only for the specified carrier number.

Remote command: CONFigure:FILTer<n>:CARRier on page 107

#### **Constellation Display - Point Size**

Defines the size of the individual points in a constellation diagram.

Units

# 5.2 Table Configuration

Access: "Overview" > "Result Configuration" > "Table Config"

Or: "Meas Setup" > "Result Configuration" > "Table Config" tab

During each measurement, a large number of characteristic signal parameters are determined. Select the parameters to be included in the table. For a description of the individual parameters, see Chapter 3.1, "CDR Parameters", on page 14.

| Resu | It Configuration        |                  |                      |              |
|------|-------------------------|------------------|----------------------|--------------|
|      | Markers                 | Markers Settings | Result Configuration | Table Config |
|      | Table Config            |                  |                      |              |
|      | MER AII                 |                  |                      |              |
|      | MER Data Symbols        |                  |                      |              |
|      | MER Pilot Symbols       |                  |                      |              |
|      | ☑ I/Q Offset            |                  |                      |              |
|      | 👿 Gain Imbalance        |                  |                      |              |
|      | <b>Quadrature Error</b> |                  |                      |              |
|      | V Frequency Error       |                  |                      |              |
|      | Sample Clock Error      |                  |                      |              |
|      | Frame Power             |                  |                      |              |
| /SA  | V Crest Factor          |                  |                      |              |
| Ξ    |                         |                  |                      |              |
| E    |                         |                  |                      |              |
| 5    |                         |                  |                      |              |

## 5.3 Units

Access: "Overview" > "Result Configuration" > "Units"

Or: "Meas Setup" > "Result Configuration" > "Units" tab

For some result configurations, the unit of the displayed values can be configured.

Y-Scaling

| arkers<br>Result Units | dB       |   | Table Config | Units |
|------------------------|----------|---|--------------|-------|
| Result Units           | dB       |   |              |       |
| MER                    | dB       |   |              |       |
|                        |          |   |              |       |
| mpulse Response        | dB       | • |              |       |
| Symbol Axes            | Symbols  | • |              |       |
| Carrier Axes           | Carriers | • |              |       |
| lime Axes              | Seconds  | • |              |       |
| Frequency Axes         | Hertz    | • |              |       |
|                        |          |   |              |       |

#### Remote command:

UNIT: IRESponse on page 112 UNIT: SAXes on page 113 UNIT: CAXes on page 111 UNIT: TAXes on page 113 UNIT: FAXes on page 112

# 5.4 Y-Scaling

Access: "Overview" > "Result Configuration" > "Y Scaling"

Or: "Meas Setup" > "Result Configuration" > "Y Scaling" tab

The scaling for the vertical axis is highly configurable, using either absolute or relative values. Note that scaling settings are window-specific and not available for all result displays.

Y-Scaling

| Andress          | Mauleona Cattines           | Maulson Coanab | Desult Canfin | Table Config | V Scoling |  |
|------------------|-----------------------------|----------------|---------------|--------------|-----------|--|
| Markers          | Markers Settings            | Marker Search  | Result Config | Table Config | Y Scaling |  |
| Automatic grid s | scaling:                    |                |               |              |           |  |
| Auto             | On Off                      |                |               |              |           |  |
|                  | Auto Scale Once             |                |               |              |           |  |
| Scaling accordin | g to min and max values: —— |                |               |              |           |  |
|                  |                             | Spectrum       |               |              |           |  |
| Max              | 8.0 dBm                     |                |               |              |           |  |
| Min              | 12.0 dBm                    | 80 GBM         | Ker SU dBm    | _            |           |  |
|                  | -12/0 GDIII                 |                |               | _            |           |  |
| Scaling accordin | g to reference and per div: | -              |               |              |           |  |
| Per Division     | 2.0 dB                      | 2.0 dB         | -             | _            |           |  |
|                  |                             |                |               | _            |           |  |
| Ret Position     | 100.0 %                     |                |               | _            |           |  |
| Ref Value        | 8.0 dBm                     | -120 dB        | m ————        |              |           |  |
|                  |                             | <u></u>        |               |              |           |  |
|                  |                             |                |               |              |           |  |
|                  |                             |                |               |              |           |  |
|                  |                             |                |               |              |           |  |
|                  |                             |                |               |              |           |  |
|                  |                             |                |               |              |           |  |
|                  |                             |                |               |              |           |  |
|                  |                             |                |               |              |           |  |

| Automatic Grid Scaling                     | 61 |
|--------------------------------------------|----|
| Auto Scale Once                            |    |
| Absolute Scaling (Min/Max Values)          | 61 |
| Relative Scaling (Reference/ per Division) |    |
| L Per Division                             |    |
| L Ref Position                             |    |
| L Ref Value                                |    |
|                                            |    |

#### **Automatic Grid Scaling**

The y-axis is scaled automatically according to the current measurement settings and results (continuously).

**Note: Tip**: To update the scaling automatically *once* when this setting for continuous scaling is off, use the Auto Scale Once function.

Remote command:

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:AUTO on page 109

#### Auto Scale Once

If enabled, both the x-axis and y-axis are automatically adapted to the current measurement results (only once, not dynamically) in the selected window.

Remote command: DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:AUTO on page 109

#### Absolute Scaling (Min/Max Values)

Define the scaling using absolute minimum and maximum values.

Remote command:

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:MAXimum on page 109
DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:MINimum on page 110

#### Relative Scaling (Reference/ per Division)

Define the scaling relative to a reference value, with a specified value range per division.

#### Per Division ← Relative Scaling (Reference/ per Division)

Defines the value range to be displayed per division of the diagram (1/10 of total range).

**Note:** The value defined per division refers to the default display of 10 divisions on the y-axis. If fewer divisions are displayed (e.g. because the window is reduced in height), the range per division is increased to display the same result range in the smaller window. In this case, the per division value does not correspond to the actual display.

Remote command:

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:PDIVision on page 110

#### Ref Position ← Relative Scaling (Reference/ per Division)

Defines the position of the reference value in percent of the total y-axis range.

Remote command: DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RPOSition on page 111

#### Ref Value ← Relative Scaling (Reference/ per Division)

Defines the reference value to be displayed at the specified reference position.

Remote command: DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RVALue on page 111

## 5.5 Markers

Access: "Overview" > "Result Config" > "Markers"

Or: "Marker"

Markers help you analyze your measurement results by determining particular values in the diagram. Thus you can extract numeric values from a graphical display.



#### Markers in 3-dimensional diagrams

Some diagrams have a third dimension - in addition to the x-axis and y-axis they show a third dimension (z-dimension) of results using different colors. For such diagrams, you must define the position of the marker both in the x-dimension and in the y-dimension to obtain the results in the z-dimension.

# (1)

#### Markers in the Constellation diagram and Allocation Matrix

Using markers in a Constellation diagram you can detect individual constellation points for a specific symbol or carrier. When you activate a marker in the Constellation diagram, its position is defined by the symbol and carrier number the point belongs to, while the marker result indicates the I and Q values of the point.

Similarly, you can define markers in an Allocation Matrix by selecting the symbol and carrier number.

Using markers in the Constellation diagram and Allocation Matrix you can scroll through the points for a specific carrier, for example. Activate a marker, then use the rotary knob or mouse wheel to move the marker from one symbol to the next.

| • | Individual Marker Settings   | .63  |
|---|------------------------------|------|
| • | General Marker Settings      | . 66 |
| • | Marker Positioning Functions | .67  |

### 5.5.1 Individual Marker Settings

Access: "Overview" > "Result Config" > "Markers"

**Or**: "Marker" > "Marker"

In CDR evaluations, up to 16 markers can be activated in each diagram at any time.

| Resu    | ılt Configura | ation                         |                            |                    |               |       |                   |               |                         |               |                  | X    |
|---------|---------------|-------------------------------|----------------------------|--------------------|---------------|-------|-------------------|---------------|-------------------------|---------------|------------------|------|
|         | Markers       |                               | Markers                    | Settings           | Marker Search | Resul | : Config          | Table         | e Config                | Y Scaling     |                  |      |
|         | 1-5           | Selected<br>Marker 1          | State<br>On Off            | X-Value            |               |       | Type<br>NormDelta | Ref<br>Marker | Link to<br>Marker Trace |               |                  |      |
| 4       | 6-11          | Delta 1<br>Delta 2<br>Delta 3 | On Off<br>On Off<br>On Off | 0                  |               |       | Norm Delta        |               | OF * 1 *                |               |                  |      |
| OFDM VS | 12-16         | Delta 4<br>Delta 5            | On Off                     | 0<br>0<br>All Mark | ers Off       |       | Norm Delta        | 1 *           | OF * 1 *                |               |                  |      |
|         |               |                               |                            |                    |               |       |                   |               |                         |               |                  |      |
|         |               |                               |                            |                    |               |       |                   |               |                         | Specifics for | 3: Power Spectro | im 🔹 |

| Place New Marker                                             | 64   |
|--------------------------------------------------------------|------|
| Merker 1 / Delta Marker 1 / Delta Marker 2 / Delta Marker 16 | . 64 |
| Selected Marker                                              | 64   |
| Marker State                                                 | 64   |
| X-value                                                      | 64   |

Markers

| Y-value                         | 65 |
|---------------------------------|----|
| Marker Type                     | 65 |
| Reference Marker                | 65 |
| Linking to Another Marker       | 65 |
| Assigning the Marker to a Trace | 66 |
| All Marker Off                  | 66 |
|                                 |    |

#### Place New Marker

Activates the next currently unused marker and sets it to the peak value of the current trace in the current window.

#### Marker 1 / Delta Marker 1 / Delta Marker 2 / Delta Marker 16

To activate a marker, select the arrow on the marker selection list in the toolbar, or select a marker from the "Marker" > "Select Marker" menu. Enter the marker position ("X-value") in the edit dialog box.

To deactivate a marker, select the marker name in the marker selection list in the toolbar (not the arrow) to display the "Select Marker" dialog box. Change the "State" to "Off".

Marker 1 is always the default reference marker for relative measurements. If activated, markers 2 to 16 are delta markers that refer to marker 1. These markers can be converted into markers with absolute value display using the "Marker Type" function.

#### Remote command:

```
CALCulate<n>:MARKer<m>[:STATe] on page 116
CALCulate<n>:MARKer<m>:X on page 117
CALCulate<n>:MARKer<m>:Y? on page 147
CALCulate<n>:DELTamarker<m>[:STATe] on page 119
CALCulate<n>:DELTamarker<m>:X on page 119
CALCulate<n>:MARKer<m>:Y? on page 147
CALCulate<n>:DELTamarker<m>:Y? on page 145
```

#### **Selected Marker**

Marker name. The marker which is currently selected for editing is highlighted orange.

Remote command: Marker selected via suffix <m> in remote commands.

#### Marker State

Activates or deactivates the marker in the diagram.

#### Remote command:

CALCulate<n>:MARKer<m>[:STATe] on page 116 CALCulate<n>:DELTamarker<m>[:STATe] on page 119

#### X-value

Defines the position of the marker on the x-axis.

For Constellation diagrams, the position is defined by a symbol number.

#### Remote command:

CALCulate<n>:DELTamarker<m>:X on page 119 CALCulate<n>:MARKer<m>:X on page 117

Markers

#### Y-value

Defines the position of the marker on the y-axis for 3-dimensional diagrams.

For Constellation diagrams, the position is defined by a carrier number.

Remote command:

```
CALCulate<n>:DELTamarker<m>:Y? on page 145
CALCulate<n>:MARKer<m>:Y? on page 147
```

#### Marker Type

⊸

Toggles the marker type.

The type for marker 1 is always "Normal", the type for delta marker 1 is always "Delta". These types cannot be changed.

**Note:** If normal marker 1 is the active marker, switching the "Mkr Type" activates an additional delta marker 1. For any other marker, switching the marker type does not activate an additional marker, it only switches the type of the selected marker.

- "Normal" A normal marker indicates the absolute value at the defined position in the diagram.
- "Delta" A delta marker defines the value of the marker relative to the specified reference marker (marker 1 by default).

Remote command:

CALCulate<n>:MARKer<m>[:STATe] on page 116 CALCulate<n>:DELTamarker<m>[:STATe] on page 119

#### **Reference Marker**

Defines a marker as the reference marker which is used to determine relative analysis results (delta marker values).

If the reference marker is deactivated, the delta marker referring to it is also deactivated.

Remote command: CALCulate<n>:DELTamarker<m>:MREF on page 118

#### Linking to Another Marker

Links the current marker to the marker selected from the list of active markers. If the xaxis value of the initial marker is changed, the linked marker follows to the same position on the x-axis. Linking is off by default.

Using this function you can set two markers on different traces to measure the difference (e.g. between a max hold trace and a min hold trace or between a measurement and a reference trace).

#### Remote command:

CALCulate<n>:MARKer<m>:LINK:TO:MARKer<m> on page 116 CALCulate<n>:DELTamarker<m>:LINK:TO:MARKer<m> on page 118 CALCulate<n>:DELTamarker<m>:LINK on page 118

#### Assigning the Marker to a Trace

The "Trace" setting assigns the selected marker to an active trace. The trace determines which value the marker shows at the marker position. If the marker was previously assigned to a different trace, the marker remains on the previous frequency or time, but indicates the value of the new trace.

If a trace is turned off, the assigned markers and marker functions are also deactivated.

Remote command: CALCulate<n>:MARKer<m>:TRACe on page 117

#### All Marker Off

8

Deactivates all markers in one step.

Remote command: CALCulate<n>:MARKer<m>:AOFF on page 115

#### 5.5.2 General Marker Settings

Access: "Overview" > "Result Configuration" > "Marker Settings"

Or: "Marker" > "Marker" > "Marker Settings" tab

| Res        | sult Configuration |                  |
|------------|--------------------|------------------|
|            | Markers            | Markers Settings |
|            | Marker Table       |                  |
|            | Auto On            | Off              |
|            | Marker Info        |                  |
|            | On                 | Off              |
|            |                    |                  |
|            |                    |                  |
| <b>VSA</b> |                    |                  |
| OFDM V     |                    |                  |

#### Marker Table Display

Defines how the marker information is displayed.

"On" Displays the marker information in a table in a separate area beneath the diagram.

"Off" No separate marker table is displayed.

Remote command:

DISPlay[:WINDow<n>]:MTABle on page 120

#### **Marker Info**

Turns the marker information displayed in the diagram on and off.



Remote command:

DISPlay:MINFo[:STATe] on page 120

### 5.5.3 Marker Positioning Functions

The following functions set the currently selected marker to the result of a peak search.

#### Access: "Marker" toolbar

| Peak Search         | 67 |
|---------------------|----|
| Search Next Peak    | 67 |
| Search Minimum      | 67 |
| Search Next Minimum | 68 |

#### Peak Search

 $\mathbf{X}$ 

Sets the selected marker/delta marker to the maximum of the trace. If no marker is active, marker 1 is activated.

#### Remote command:

CALCulate<n>:MARKer<m>:MAXimum[:PEAK] on page 125 CALCulate<n>:DELTamarker<m>:MAXimum[:PEAK] on page 122

#### Search Next Peak

Sets the selected marker/delta marker to the next (lower) maximum of the assigned trace. If no marker is active, marker 1 is activated.

«ڴ, ڴ

#### Remote command:

```
CALCulate<n>:MARKer<m>:MAXimum:NEXT on page 124
CALCulate<n>:MARKer<m>:MAXimum:RIGHt on page 124
CALCulate<n>:MARKer<m>:MAXimum:LEFT on page 124
CALCulate<n>:DELTamarker<m>:MAXimum:NEXT on page 122
CALCulate<n>:DELTamarker<m>:MAXimum:RIGHt on page 122
CALCulate<n>:DELTamarker<m>:MAXimum:RIGHt on page 122
CALCulate<n>:DELTamarker<m>:MAXimum:LEFT on page 121
```

#### Search Minimum

嬱

Sets the selected marker/delta marker to the minimum of the trace. If no marker is active, marker 1 is activated.

**Trace Settings** 

```
Remote command:
```

CALCulate<n>:MARKer<m>:MINimum[:PEAK] on page 126 CALCulate<n>:DELTamarker<m>:MINimum[:PEAK] on page 123

#### Search Next Minimum

Sets the selected marker/delta marker to the next (higher) minimum of the selected trace. If no marker is active, marker 1 is activated.

,♥,

Remote command:

```
CALCulate<n>:MARKer<m>:MINimum:NEXT on page 125
CALCulate<n>:MARKer<m>:MINimum:LEFT on page 125
CALCulate<n>:MARKer<m>:MINimum:RIGHt on page 125
CALCulate<n>:DELTamarker<m>:MINimum:NEXT on page 123
CALCulate<n>:DELTamarker<m>:MINimum:LEFT on page 122
CALCulate<n>:DELTamarker<m>:MINimum:LEFT on page 122
```

## 5.6 Trace Settings

Access: "Trace" > "Trace"

| Traces   |                                   |  |  |
|----------|-----------------------------------|--|--|
|          | Traces                            |  |  |
|          | Trace Modes                       |  |  |
|          | Trace 1 Average 💌                 |  |  |
|          | Trace 2 Max 💌                     |  |  |
|          | Trace 3 Min 💌                     |  |  |
| OFDM VSA | Quick Config<br>Preset All Traces |  |  |
|          |                                   |  |  |

The trace settings determine how the measured data is analyzed and displayed in the window.

Depending on the result display, between 1 and 3 traces are available.



Trace data can also be exported to an ASCII file for further analysis. For details, see Chapter 5.7, "Trace / Data Export Configuration", on page 70.

| Trace 1/Trace 2/Trace 3                  | 69 |
|------------------------------------------|----|
| Trace Mode                               |    |
| Predefined Trace Settings - Quick Config | 69 |

#### Trace 1/Trace 2/Trace 3

Selects the corresponding trace for configuration. The currently selected trace is highlighted orange.

Remote command:

DISPlay[:WINDow<n>]:TRACe<t>[:STATe] on page 115
Selected via numeric suffix of TRACe<t> commands

#### **Trace Mode**

Defines the update mode for subsequent traces.

| "Clear/ Write" | Overwrite mode (default): the trace is overwritten by each measure-<br>ment.                                                                                                                         |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "Max Hold"     | The maximum value is determined over several measurements and displayed. The R&S ETL CDR software saves each trace point in the trace memory only if the new value is greater than the previous one. |
| "Min Hold"     | The minimum value is determined from several measurements and displayed. The R&S ETL CDR software saves each trace point in the trace memory only if the new value is lower than the previous one.   |
| "Average"      | The average is formed over several measurements.                                                                                                                                                     |
| "View"         | The current contents of the trace memory are frozen and displayed.                                                                                                                                   |
| "Blank"        | Removes the selected trace from the display.                                                                                                                                                         |
| Domoto commo   | ad.                                                                                                                                                                                                  |

Remote command:

DISPlay[:WINDow<n>]:TRACe<t>:MODE on page 114

#### **Predefined Trace Settings - Quick Config**

Commonly required trace settings have been predefined and can be applied very quickly by selecting the appropriate button.

| Function             | Trace Settings |             |  |
|----------------------|----------------|-------------|--|
| Preset All Traces    | Trace 1:       | Clear Write |  |
|                      |                | Blank       |  |
| Set Trace Mode       | Trace 1:       | Max Hold    |  |
| Max   Avg   Min      | Trace 2:       | Average     |  |
|                      | Trace 3:       | Min Hold    |  |
|                      |                | Blank       |  |
| Set Trace Mode       | Trace 1:       | Max Hold    |  |
| Max   ClrWrite   Min |                |             |  |

| Function | Trace Settings |             |  |
|----------|----------------|-------------|--|
|          | Trace 2:       | Clear Write |  |
|          | Trace 3:       | Min Hold    |  |
|          |                | Blank       |  |

## 5.7 Trace / Data Export Configuration

Access: "Edit" > "Trace Export"

Traces resulting from encrypted file input cannot be exported.



The standard data management functions (e.g. saving or loading instrument settings, or exporting the I/Q data in other formats) that are available for all R&S VSE applications are not described here.

See the R&S VSE base software user manual for a description of the standard functions.

| Tra | ces                                           |                       |  |  |  |
|-----|-----------------------------------------------|-----------------------|--|--|--|
|     |                                               |                       |  |  |  |
|     | Traces                                        | Trace / Data Export   |  |  |  |
|     | Export all Traces                             |                       |  |  |  |
|     | 📝 Include Instrument and Measurement Settings |                       |  |  |  |
|     | Export all Traces for Selected Graph          |                       |  |  |  |
|     | Trace to Export                               | 1                     |  |  |  |
|     | Decimal Separator                             | Point Comma           |  |  |  |
|     | Expor                                         | t Trace to ASCII File |  |  |  |
|     |                                               |                       |  |  |  |

| Export all Traces and all Table Results   | 70 |
|-------------------------------------------|----|
| Include Instrument & Measurement Settings | 71 |
| Export All Traces for Selected Graph      | 71 |
| Trace to Export                           | 71 |
| Decimal Separator                         | 71 |
| Export Trace to ASCII File                | 71 |

#### **Export all Traces and all Table Results**

Selects all displayed traces and result tables (e.g. Result Summary, marker table etc.) in the current application for export to an ASCII file.

Alternatively, you can select one specific trace only for export (see Trace to Export ).

The results are output in the same order as they are displayed on the screen: window by window, trace by trace, and table row by table row.

Remote command:

FORMat:DEXPort:TRACes on page 149

#### Include Instrument & Measurement Settings

Includes additional instrument and measurement settings in the header of the export file for result data.

Remote command: FORMat:DEXPort:HEADer on page 149

#### **Export All Traces for Selected Graph**

Includes all traces for the currently selected graphical result display in the export file.

Remote command: FORMat:DEXPort:GRAPh on page 149

#### Trace to Export

Defines an individual trace to be exported to a file.

This setting is not available if Export all Traces and all Table Results is selected.

#### **Decimal Separator**

Defines the decimal separator for floating-point numerals for the data export/import files. Evaluation programs require different separators in different languages.

#### Remote command: FORMat:DEXPort:DSEParator on page 148

. .

#### Export Trace to ASCII File

Opens a file selection dialog box and saves the selected trace in ASCII format (.dat) to the specified file and directory.

The results are output in the same order as they are displayed on the screen: window by window, trace by trace, and table row by table row.

Note: Traces resulting from encrypted file input cannot be exported.

Remote command: MMEMory:STORe<n>:TRACe on page 150

# 6 How to Perform Measurements in the R&S ETL CDR software

The following step-by-step instructions demonstrate how to perform measurements with the R&S ETL CDR software.

#### To perform a CDR measurement

- By default, a CDR channel is active when you start the R&S ETL CDR software. If no channel is active, open a new channel or replace an existing one and select the "OFDM VSA" application.
- Select the "Meas Setup > Overview" menu item to display the "Overview" for a CDR measurement.
- 3. Select the "CDR Configuration" button and configure the expected signal characteristics.
- 4. Select the "Input/Frontend" button to define the input signal's center frequency, amplitude and other basic settings.
- 5. Optionally, select the "Trigger" button and define a trigger for data acquisition, for example an external trigger to start capturing data only when a useful signal is transmitted.
- Select the T Add Window" icon from the toolbar to add further result displays for the CDR.
- In the "Control" toolbar, or in the "Sequence" tool window, select → "Single" capture mode, then select the > "Capture" function to stop the continuous measurement mode and start a defined number of measurements.

The measured data is stored in the capture buffer and can be analyzed.
Introduction

# 7 Remote Commands for CDR Measurements

The following commands are required to perform CDR measurements in a remote environment.

It is assumed that the R&S ETL CDR software has already been set up for remote control in a network as described in the R&S VSE base software user manual.

# **General R&S VSE Remote Commands**

The application-independent remote commands for general tasks in the R&S VSE software are also available for the R&S ETL CDR software and are described in the R&S VSE base software user manual. In particular, this comprises the following functionality:

- Controlling instruments and capturing data
- Managing Settings and Results
- Setting Up the Instrument
- Using the Status Register

#### **Channel-specific commands**

Apart from a few general commands in the R&S VSE software, most commands refer to the currently active channel. Thus, always remember to activate a CDR channel before starting a remote program for a CDR measurement.

The following tasks specific to the R&S ETL CDR software are described here:

| Introduction                                 |                                       | 73 |
|----------------------------------------------|---------------------------------------|----|
| Common Suffixes                              |                                       |    |
| Activating CDR Measureme                     | nts                                   | 79 |
| Configuring CDR Measurem                     | ents                                  | 79 |
| Analysis                                     |                                       |    |
| Configuring the Result Displ                 | av                                    |    |
| Retrieving Results                           | · · · · · · · · · · · · · · · · · · · |    |
| Status Reporting System                      |                                       |    |
| <ul> <li>Programming Examples: OF</li> </ul> | DM Vector Signal Analysis             |    |
| 0 0 1                                        | 5                                     |    |

# 7.1 Introduction

Commands are program messages that a controller (e.g. a PC) sends to the instrument or software. They operate its functions ('setting commands' or 'events') and request information ('query commands'). Some commands can only be used in one way, others work in two ways (setting and query). If not indicated otherwise, the commands can be used for settings and queries. The syntax of a SCPI command consists of a header and, in most cases, one or more parameters. To use a command as a query, you have to append a question mark after the last header element, even if the command contains a parameter.

A header contains one or more keywords, separated by a colon. Header and parameters are separated by a "white space" (ASCII code 0 to 9, 11 to 32 decimal, e.g. blank). If there is more than one parameter for a command, these are separated by a comma from one another.

Only the most important characteristics that you need to know when working with SCPI commands are described here. For a more complete description, refer to the User Manual of the R&S ETL CDR software.



#### Remote command examples

Note that some remote command examples mentioned in this general introduction may not be supported by this particular application.

# 7.1.1 Conventions used in Descriptions

Note the following conventions used in the remote command descriptions:

#### • Command usage

If not specified otherwise, commands can be used both for setting and for querying parameters.

If a command can be used for setting or querying only, or if it initiates an event, the usage is stated explicitly.

#### Parameter usage

If not specified otherwise, a parameter can be used to set a value and it is the result of a query.

Parameters required only for setting are indicated as **Setting parameters**. Parameters required only to refine a query are indicated as **Query parameters**. Parameters that are only returned as the result of a query are indicated as **Return values**.

#### Conformity

Commands that are taken from the SCPI standard are indicated as **SCPI confirmed**. All commands used by the R&S ETL CDR software follow the SCPI syntax rules.

#### • Asynchronous commands

A command which does not automatically finish executing before the next command starts executing (overlapping command) is indicated as an **Asynchronous command**.

#### Reset values (\*RST)

Default parameter values that are used directly after resetting the instrument (\*RST command) are indicated as **\*RST** values, if available.

- **Default unit** The default unit is used for numeric values if no other unit is provided with the parameter.
- Manual operation

Introduction

If the result of a remote command can also be achieved in manual operation, a link to the description is inserted.

# 7.1.2 Long and Short Form

The keywords have a long and a short form. You can use either the long or the short form, but no other abbreviations of the keywords.

The short form is emphasized in upper case letters. Note however, that this emphasis only serves the purpose to distinguish the short from the long form in the manual. For the instrument, the case does not matter.

#### Example:

SENSe: FREQuency: CENTer is the same as SENS: FREQ: CENT.

# 7.1.3 Numeric Suffixes

Some keywords have a numeric suffix if the command can be applied to multiple instances of an object. In that case, the suffix selects a particular instance (e.g. a measurement window).

Numeric suffixes are indicated by angular brackets (<n>) next to the keyword.

If you don't quote a suffix for keywords that support one, a 1 is assumed.

#### Example:

DISPlay[:WINDow<1...4>]:ZOOM:STATE enables the zoom in a particular measurement window, selected by the suffix at WINDow.

DISPlay:WINDow4:ZOOM:STATe ON refers to window 4.

# 7.1.4 Optional Keywords

Some keywords are optional and are only part of the syntax because of SCPI compliance. You can include them in the header or not.

Note that if an optional keyword has a numeric suffix and you need to use the suffix, you have to include the optional keyword. Otherwise, the suffix of the missing keyword is assumed to be the value 1.

Optional keywords are emphasized with square brackets.

Introduction

## Example:

Without a numeric suffix in the optional keyword: [SENSe:]FREQuency:CENTer is the same as FREQuency:CENTer With a numeric suffix in the optional keyword: DISPlay[:WINDow<1...4>]:ZOOM:STATE DISPlay:ZOOM:STATE ON enables the zoom in window 1 (no suffix). DISPlay:WINDow4:ZOOM:STATE ON enables the zoom in window 4.

# 7.1.5 Alternative Keywords

A vertical stroke indicates alternatives for a specific keyword. You can use both keywords to the same effect.

#### Example:

[SENSe:]BANDwidth|BWIDth[:RESolution]

In the short form without optional keywords, BAND 1MHZ would have the same effect as BWID 1MHZ.

# 7.1.6 SCPI Parameters

Many commands feature one or more parameters.

If a command supports more than one parameter, these are separated by a comma.

#### Example:

LAYout: ADD: WINDow Spectrum, LEFT, MTABle

Parameters may have different forms of values.

| • | Numeric Values    | 76  |
|---|-------------------|-----|
| • | Boolean           | 77  |
| • | Character Data    | .78 |
| • | Character Strings | 78  |
| • | Block Data        | .78 |
|   |                   |     |

### 7.1.6.1 Numeric Values

Numeric values can be entered in any form, i.e. with sign, decimal point or exponent. In case of physical quantities, you can also add the unit. If the unit is missing, the command uses the basic unit.

### Example:

With unit: SENSe: FREQuency: CENTer 1GHZ Without unit: SENSe: FREQuency: CENTer 1E9 would also set a frequency of 1 GHz. Values exceeding the resolution of the instrument are rounded up or down.

If the number you have entered is not supported (e.g. in case of discrete steps), the command returns an error.

Instead of a number, you can also set numeric values with a text parameter in special cases.

- MIN/MAX Defines the minimum or maximum numeric value that is supported.
- DEF

Defines the default value.

UP/DOWN Increases or decreases the numeric value by one step. The step size depends on the setting. In some cases you can customize the step size with a corresponding command.

#### Querying numeric values

When you query numeric values, the system returns a number. In case of physical quantities, it applies the basic unit (e.g. Hz in case of frequencies). The number of digits after the decimal point depends on the type of numeric value.

#### Example:

Setting: SENSe: FREQuency: CENTer 1GHZ Query: SENSe: FREQuency: CENTer? would return 1E9

In some cases, numeric values may be returned as text.

- INF/NINF Infinity or negative infinity. Represents the numeric values 9.9E37 or -9.9E37.
- NAN

Not a number. Represents the numeric value 9.91E37. NAN is returned in case of errors.

# 7.1.6.2 Boolean

Boolean parameters represent two states. The "ON" state (logically true) is represented by "ON" or a numeric value 1. The "OFF" state (logically untrue) is represented by "OFF" or the numeric value 0.

#### **Querying Boolean parameters**

When you query Boolean parameters, the system returns either the value 1 ("ON") or the value 0 ("OFF").

#### Example:

```
Setting: DISPlay:WINDow:ZOOM:STATE ON
Query: DISPlay:WINDow:ZOOM:STATe? would return 1
```

#### 7.1.6.3 Character Data

Character data follows the syntactic rules of keywords. You can enter text using a short or a long form. For more information see Chapter 7.1.2, "Long and Short Form", on page 75.

#### **Querying text parameters**

When you query text parameters, the system returns its short form.

#### Example:

Setting: SENSe: BANDwidth: RESolution: TYPE NORMal Query: SENSe: BANDwidth: RESolution: TYPE? would return NORM

#### 7.1.6.4 Character Strings

Strings are alphanumeric characters. They have to be in straight quotation marks. You can use a single quotation mark (') or a double quotation mark (").

#### Example:

INSTRument: DELete 'Spectrum'

#### 7.1.6.5 Block Data

Block data is a format which is suitable for the transmission of large amounts of data.

The ASCII character # introduces the data block. The next number indicates how many of the following digits describe the length of the data block. In the example the 4 following digits indicate the length to be 5168 bytes. The data bytes follow. During the transmission of these data bytes all end or other control signs are ignored until all bytes are transmitted. #0 specifies a data block of indefinite length. The use of the indefinite format requires an NL^END message to terminate the data block. This format is useful when the length of the transmission is not known or if speed or other considerations prevent segmentation of the data into blocks of definite length.

# 7.2 Common Suffixes

In the R&S ETL CDR software, the following common suffixes are used in remote commands:

| Suffix  | Value range | Description                                |
|---------|-------------|--------------------------------------------|
| <m></m> | 1 to 4      | Marker                                     |
| <n></n> | 1 to x      | Window (in the currently selected channel) |

| Suffix  | Value range | Description |
|---------|-------------|-------------|
| <t></t> | 1 to 3      | Trace       |
| < i>    | 1 to 8      | Limit line  |

# 7.3 Activating CDR Measurements

CDR measurements require a special application in the R&S ETL CDR software. The common commands for configuring and controlling measurement channels, as well as blocks and sequences, are also used in the R&S ETL CDR software.

They are described in the R&S VSE base software user manual.

# 7.4 Configuring CDR Measurements

| • | Restoring the Default Configuration (Preset) |    |
|---|----------------------------------------------|----|
| • | CDR Configuration                            | 80 |
| • | RF Input.                                    |    |
| • | Frontend Settings                            | 86 |
| • | Triggering Measurements                      |    |
| • | Configuring Data Acquisition                 |    |
| • | Defining the Result Range                    |    |
| • | Synchronization, Tracking and Demodulation   |    |
| • | Adjusting Settings Automatically             |    |
|   |                                              |    |

# 7.4.1 Restoring the Default Configuration (Preset)

| SYSTem:PRESet:CHANnel[:EXEC] |
|------------------------------|
|------------------------------|

#### SYSTem:PRESet:CHANnel[:EXEC]

This command restores the default software settings in the current channel.

Use INST: SEL to select the channel.

| Example:          | INST:SEL 'Spectrum2'                                              |
|-------------------|-------------------------------------------------------------------|
|                   | Selects the channel for "Spectrum2".                              |
|                   | SYST:PRES:CHAN:EXEC                                               |
|                   | Restores the factory default settings to the "Spectrum2" channel. |
| Usage:            | Event                                                             |
| Manual operation: | See "Preset Channel" on page 35                                   |

# 7.4.2 CDR Configuration

| CONFigure:CDR:DMODulation   | 80 |
|-----------------------------|----|
| CONFigure:CDR:HCODing       | 80 |
| CONFigure:CDR:HCODing:STATe | 80 |
| CONFigure:CDR:IMODulation   | 81 |
| CONFigure:CDR:SMODe         | 81 |
| CONFigure:CDR:TMODe         | 81 |

### CONFigure:CDR:DMODulation <DataModulation> CONFigure:CDR:DMODulation? <DataModulation>

Defines the modulation type used for the service data.

| Parameters for setting            | ng and query:        |
|-----------------------------------|----------------------|
| <datamodulation></datamodulation> | QPSK   QAM16   QAM64 |

Example: CONF:CDR:DMOD 16QAM

Manual operation: See "Service Data Modulation" on page 37

#### CONFigure:CDR:HCODing <HierarchicalCoding> CONFigure:CDR:HCODing? <HierarchicalCoding>

Determines the alpha parameter for hierarchical coding of service data (not for QPSK service data modulation).

# Parameters for setting and query:

<HierarchicalCoding> A1 | A2 | A4
 \*RST: A1
Example: CONF:CDR:HCOD:STAT ON
 CONF:CDR:HCOD 2
Manual operation: See "Service Data Hierarchical Coding" on page 38

#### CONFigure:CDR:HCODing:STATe <State>

If enabled, hierarchical coding for the service data is allowed (not for QPSK service data modulation). You can define the alpha parameter for coding using CONFigure: CDR:HCODing on page 80.

If disabled, the coding parameter  $\alpha$  = 1 is used.

#### Parameters:

<State>

ON | OFF | 0 | 1 **OFF | 0** Hierarchical coding for the service data is not allowed. **ON | 1** Hierarchical coding for the service data is allowed. \*RST: 0

Example: CONF:CDR:HCOD:STAT ON CONF:CDR:HCOD 2

Manual operation: See "Enable Service Data Hierarchical Coding" on page 37

#### CONFigure:CDR:IMODulation <InfoModulation> CONFigure:CDR:IMODulation? <InfoModulation>

Defines the modulation type used for the service description information.

Parameters for setting and query: <InfoModulation> QPSK | QAM16 | QAM64

Example: CONF:CDR:IMOD 16QAM

Manual operation: See "Service Description Information Modulation" on page 37

CONFigure:CDR:SMODe <SpectrumMode> CONFigure:CDR:SMODe? <SpectrumMode>

Defines the used spectrum mode according to the CDR standard.

| Parameters for setting and query: |                                      |  |
|-----------------------------------|--------------------------------------|--|
| <spectrummode></spectrummode>     | S1   S2   S9   S10   S22   S23       |  |
| Example:                          | CONF:CDR:SMOD S9                     |  |
| Manual operation:                 | See "Spectrum Mode Index" on page 37 |  |

CONFigure:CDR:TMODe <TransmissionMode> CONFigure:CDR:TMODe? <TransmissionMode>

Defines the used transmission mode according to the CDR standard.

Parameters for setting and query: <TransmissionMode> T1 | T2 | T3

Example: CONF:CDR:TMOD T2

Manual operation: See "Transmission Mode" on page 37

# 7.4.3 RF Input

The following commands are required to configure data input.

| INPut <ip>:ATTenuation:PROTection[:STATe]</ip> | 82 |
|------------------------------------------------|----|
| INPut <ip>:ATTenuation:PROTection:RESet.</ip>  | 82 |
| INPut <ip>:FILE:ZPADing</ip>                   | 83 |
| INPut <ip>:IMPedance</ip>                      | 83 |
| INPut <ip>:PRESelection:SET</ip>               | 83 |
| INPut <ip>:PRESelection[:STATe]</ip>           |    |
| INPut <ip>:SELect</ip>                         | 84 |

| INPut <ip>:TYPE</ip>                                      | 84        |
|-----------------------------------------------------------|-----------|
| INSTrument:BLOCk:CHANnel[:SETTings]:SOURce <si></si>      | .85       |
| INSTrument:BLOCk:CHANnel[:SETTings]:SOURce <si>:TYPE</si> | 85        |
| INSTrument:BLOCk:CHANnel[:SETTings]:SOURce <si>:TYPE</si> | .85<br>85 |

## INPut<ip>:ATTenuation:PROTection[:STATe] <State>

This command turns the availability of attenuation levels of 10 dB or less on and off.

| Suffix:         |                                                                                                                                                                             |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ip></ip>       | 1   2                                                                                                                                                                       |
|                 | irrelevant                                                                                                                                                                  |
| Parameters:     |                                                                                                                                                                             |
| <state></state> | ON   OFF   1   0                                                                                                                                                            |
|                 | ON   1                                                                                                                                                                      |
|                 | Attenuation levels of 10 dB or less are not allowed to protect the RF input connector of the connected R&S ETL.                                                             |
|                 | <b>OFF   0</b><br>Attenuation levels of 10 dB or less are not blocked. You must provide appopriate protection for the RF input connector of the connected R&S ETL yourself. |
|                 |                                                                                                                                                                             |
| Example:        | INP:ATT:PROT ON                                                                                                                                                             |
|                 | Turns on the input protection.                                                                                                                                              |

# INPut<ip>:ATTenuation:PROTection:RESet [<DeviceName>]

This command resets the attenuator and reconnects the RF input with the input mixer for the connected R&S ETL after an overload condition occurred and the protection mechanism intervened. The error status bit (bit 3 in the STAT:QUES:POW status register) and the INPUT OVLD message in the status bar are cleared.

The command works only if the overload condition has been eliminated first.

For details on the protection mechanism see the instrument's documentation.

# Suffix: <ip>

| 1 2        |
|------------|
| irrelevant |

#### Setting parameters:

| <devicename></devicename> | string<br>Name of the instrument for which the RF input protection is to be<br>reset. |  |  |
|---------------------------|---------------------------------------------------------------------------------------|--|--|
| Example:                  | INP:ATT:PROT:RES 'MyDevice'                                                           |  |  |

#### INPut<ip>:FILE:ZPADing <ZeroPadding>

Enables or disables zeropadding for input from an I/Q data file that requires resampling. For resampling, a number of samples are required due to filter settling. These samples can either be taken from the provided I/Q data, or the software can add the required number of samples (zeros) at the beginning and end of the file.

#### Suffix:

| <ip></ip>                   | irrelevant                                  |
|-----------------------------|---------------------------------------------|
| Parameters:                 |                                             |
| <zeropadding></zeropadding> | ON   OFF   0   1                            |
|                             | <b>OFF   0</b><br>Switches the function off |
|                             | <b>ON   1</b><br>Switches the function on   |
|                             | *RST: 0                                     |
| Example:                    | INP:FILE:ZPAD ON                            |
| Manual operation:           | See "Zero Padding" on page 41               |

#### INPut<ip>:IMPedance <Impedance>

This command selects the nominal input impedance of the RF input. In some applications, only 50  $\Omega$  are supported.

#### Suffix:

| <ip></ip>               | 1   2<br>irrelevant          |
|-------------------------|------------------------------|
| Parameters:             |                              |
| <impedance></impedance> | 50   75                      |
|                         | *RST: 50 Ω                   |
|                         | Default unit: OHM            |
| Example:                | INP:IMP 75                   |
| Manual operation:       | See " Impedance " on page 40 |

#### INPut<ip>:PRESelection:SET <Mode>

This command selects the preselector mode.

The command is available with the optional preselector.

| Suffix:       |                                                                                                                                                                         |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ip></ip>     | 1   2                                                                                                                                                                   |
|               | irrelevant                                                                                                                                                              |
| Parameters:   |                                                                                                                                                                         |
| <mode></mode> | NARRow                                                                                                                                                                  |
|               | Performs a measurement by automatically applying all available combinations of low and high pass filters consecutively. These combinations all have a narrow bandwidth. |
|               | WIDE                                                                                                                                                                    |
|               | Performs a measurement by automatically applying all available bandpass filters consecutively. The bandpass filters have a wide                                         |

#### INPut<ip>:PRESelection[:STATe] <State>

This command turns the preselector on and off.

1 | 2

| Suffix:           |                                    |
|-------------------|------------------------------------|
| <ip></ip>         | 1   2<br>irrelevant                |
| Manual operation: | See "Preselector State" on page 40 |

bandwidth.

#### INPut<ip>:SELect <Source>

This command selects the signal source for measurements, i.e. it defines which connector is used to input data to the R&S ETL CDR software.

#### Suffix:

<ip>

|             | irrelevant                             |
|-------------|----------------------------------------|
| Parameters: |                                        |
| <source/>   | RF                                     |
|             | Radio Frequency ("RF INPUT" connector) |
|             | FIQ                                    |
|             | I/Q data file                          |
|             | *RST: RF                               |

Manual operation: See "Input Type (Instrument / File)" on page 39

#### INPut<ip>:TYPE <Input>

The command selects the input path.

| Suffix:<br><ip></ip> | 1   2<br>irrelevant |  |
|----------------------|---------------------|--|
| Parameters:          |                     |  |
| <input/>             | INPUT1              |  |
|                      | Selects RF input 1. |  |
|                      | INPUT2              |  |
|                      | Selects RF input 2. |  |
|                      | *RST: INPUT1        |  |
| Example:             | //Select input path |  |
| -                    | INP:TYPE INPUT1     |  |
|                      |                     |  |

# INSTrument:BLOCk:CHANnel[:SETTings]:SOURce<si> <Type>

Selects an instrument or a file as the source of input provided to the channel.

| Suffix:           |                                                        |
|-------------------|--------------------------------------------------------|
| <si></si>         | 1 to 99                                                |
|                   | LTE-MIMO only: input source number                     |
| Parameters:       |                                                        |
| <type></type>     | FILE   DEVice   NONE                                   |
|                   | FILE                                                   |
|                   | A loaded file is used for input.                       |
|                   | DEVice                                                 |
|                   | A configured device provides input for the measurement |
|                   | NONE                                                   |
|                   | No input source defined.                               |
| Manual operation: | See "Input Type (Instrument / File)" on page 39        |

#### INSTrument:BLOCk:CHANnel[:SETTings]:SOURce<si>:TYPE <Source>

Configures the source of input to be used from the selected instrument.

# Suffix:

<si>

1 to 99 LTE-MIMO only: input source number

# Parameters: <Source>

RF

Radio Frequency ("RF INPUT" connector) **'Channel 1' | 'Channel 2' | 'Channel 3' | 'Channel 4'** Oscilloscope input channel 1, 2, 3, or 4

'Channel 1,2 (I+Q)'

I/Q data provided by oscilloscope input channels 1 and 2 (for oscilloscopes with 2 channels only)

# 'Channel 1,3 (I+Q)' | 'Channel 2,4 (I+Q)'

I/Q data provided by oscilloscope input channels 1 and 3, or 2 and 4 (for oscilloscopes with 4 channels only)

'Channels 1-4 (diff. l+Q)'
Differential I/Q data provided by oscilloscope input channels (for oscilloscopes with 4 channels only):
Channel 1: I (pos.)
Channel 2: Ī (neg.)
Channel 3: Q (pos.)
Channel 4: Q
 (neg.)
\*RST: RF
INST:BLOC:CHAN:SOUR:TYPE 'Channel 2,4 (I+Q)'

I/Q data is provided by oscilloscope input channels 2 and 4

# 7.4.4 Frontend Settings

Example:

The frequency and amplitude settings represent the "frontend" of the measurement setup.

| • | Frequency                  | . 86 |
|---|----------------------------|------|
| • | Amplitude Settings         | . 88 |
| • | Attenuation                | .88  |
| • | Configuring a Preamplifier | 91   |

#### 7.4.4.1 Frequency

| [SENSe:]FREQuency:CENTer           | 86 |
|------------------------------------|----|
| [SENSe:]FREQuency:CENTer:STEP      | 87 |
| [SENSe:]FREQuency:CENTer:STEP:AUTO | 87 |
| [SENSe:]FREQuency:OFFSet           | 87 |

# [SENSe:]FREQuency:CENTer <Frequency>

This command defines the center frequency.

#### **Parameters:**

| <frequency></frequency> | The allowed                                         | range and $f_{\text{max}}$ is specified in the data sheet. |
|-------------------------|-----------------------------------------------------|------------------------------------------------------------|
|                         | *RST:<br>Default unit:                              | fmax/2<br>Hz                                               |
| Example:                | FREQ:CENT<br>FREQ:CENT<br>FREQ:CENT<br>Sets the cer | 100 MHz<br>STEP 10 MHz<br>UP<br>tter frequency to 110 MHz. |
| Manual operation:       | See " Cente                                         | r Frequency " on page 42                                   |

#### [SENSe:]FREQuency:CENTer:STEP <StepSize>

This command defines the center frequency step size.

#### Parameters:

| <stepsize></stepsize> | f <sub>max</sub> is specified in the data sheet.                                                     |  |  |
|-----------------------|------------------------------------------------------------------------------------------------------|--|--|
|                       | Range: 1 to fMAX<br>*RST: 0.1 x span<br>Default unit: Hz                                             |  |  |
| Example:              | //Set the center frequency to 110 MHz.<br>FREQ:CENT 100 MHz<br>FREQ:CENT:STEP 10 MHz<br>FREQ:CENT UP |  |  |
| Manual operation:     | See "Center Frequency Stepsize" on page                                                              |  |  |

Manual operation: See "Center Frequency Stepsize" on page 43

#### [SENSe:]FREQuency:CENTer:STEP:AUTO <LinkMode>

Defines the step width of the center frequency.

| Setting parameters:   |                                                                                                                                              |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| <linkmode></linkmode> | ON   OFF                                                                                                                                     |
|                       | <b>ON   1</b><br>Links the step width to the current standard (currently 1 MHz for all standards)                                            |
|                       | OFF   0<br>Sets the step width as defined using the FREQ:CENT:STEP<br>command (see [SENSe:]FREQuency:CENTer:STEP<br>on page 87).<br>*RST: ON |
| Manual operation:     | See "Center Frequency Stepsize" on page 43                                                                                                   |

# [SENSe:]FREQuency:OFFSet <Offset>

This command defines a frequency offset.

If this value is not 0 Hz, the application assumes that the input signal was frequency shifted outside the application. All results of type "frequency" will be corrected for this shift numerically by the application.

#### Parameters:

| <offset></offset> | Range:<br>*RST:<br>Default unit | -100 GHz to 100 GHz<br>0 Hz<br>: HZ |
|-------------------|---------------------------------|-------------------------------------|
| Example:          | FREQ:OFFS                       | 5 1GHZ                              |
| Manual operation: | See " Frequ                     | ency Offset " on page 43            |

## 7.4.4.2 Amplitude Settings

Amplitude and scaling settings allow you to configure the vertical (y-)axis display and for some result displays also the horizontal (x-)axis.

Useful commands for amplitude settings described elsewhere:

• [SENSe:]ADJust:LEVel on page 106

#### Remote commands exclusive to amplitude settings:

| DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:RLEVel</t></n>        |    |
|---------------------------------------------------------------|----|
| DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:RLEVel:OFFSet</t></n> | 88 |

#### DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RLEVel <ReferenceLevel>

This command defines the reference level (for all traces in all windows).

| <b>Suffix:</b><br><n>, <t></t></n> | irrelevant                        |
|------------------------------------|-----------------------------------|
| Example:                           | DISP:TRAC:Y:RLEV -60dBm           |
| Manual operation:                  | See "Reference Level " on page 44 |

#### DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RLEVel:OFFSet <Offset>

This command defines a reference level offset (for all traces in all windows).

| <b>Suffix:</b><br><n>, <t></t></n> | irrelevant                                        |                          |  |
|------------------------------------|---------------------------------------------------|--------------------------|--|
| Parameters:<br><offset></offset>   | Range:<br>*RST:                                   | -200 dB to 200 dB<br>0dB |  |
| Example:                           | DISP:TRAC:Y:RLEV:OFFS -10dB                       |                          |  |
| Manual operation:                  | See " Shifting the Display ( Offset )" on page 44 |                          |  |

#### 7.4.4.3 Attenuation

| INPut <ip>:ATTenuation</ip>      |  |
|----------------------------------|--|
| INPut <ip>:ATTenuation:AUTO</ip> |  |
| INPut <ip>:EATT</ip>             |  |
| INPut <ip>:EATT:AUTO</ip>        |  |
| INPut <ip>:EATT:STATe</ip>       |  |
|                                  |  |

#### INPut<ip>:ATTenuation < Attenuation>

This command defines the total attenuation for RF input.

If you set the attenuation manually, it is no longer coupled to the reference level, but the reference level is coupled to the attenuation. Thus, if the current reference level is not compatible with an attenuation that has been set manually, the command also adjusts the reference level.

| Suffix:<br><ip></ip>        | 1   2<br>irrelevant                            |                                                                                                    |
|-----------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Parameters:                 |                                                |                                                                                                    |
| <attenuation></attenuation> | Range:<br>Increment:<br>*RST:<br>Default unit: | see data sheet<br>5 dB (with optional electr. attenuator: 1 dB)<br>10 dB (AUTO is set to ON)<br>DB |
| Example:                    | INP:ATT 3<br>Defines a 30<br>the reference     | OdB<br>) dB attenuation and decouples the attenuation from<br>e level.                             |
| Manual operation:           | See " Attenu                                   | ation Mode / Value " on page 45                                                                    |

#### INPut<ip>:ATTenuation:AUTO <State>

This command couples or decouples the attenuation to the reference level. Thus, when the reference level is changed, the R&S ETL CDR software determines the signal level for optimal internal data processing and sets the required attenuation accordingly.

| Suffix:<br><ip></ip> | 1   2<br>irrelevant                             |
|----------------------|-------------------------------------------------|
| Parameters:          |                                                 |
| <state></state>      | ON   OFF   0   1                                |
|                      | *RST: 1                                         |
| Example:             | INP:ATT:AUTO ON                                 |
|                      | Couples the attenuation to the reference level. |
| Manual operation:    | See " Attenuation Mode / Value " on page 45     |

#### INPut<ip>:EATT <Attenuation>

This command defines an electronic attenuation manually. Automatic mode must be switched off (INP:EATT:AUTO OFF, see INPut<ip>:EATT:AUTO on page 90).

If the current reference level is not compatible with an attenuation that has been set manually, the command also adjusts the reference level.

Suffix:

<ip>

1 | 2 irrelevant

| Parameters: <a>Attenuation&gt;</a> | attenuation                                   | attenuation in dB                            |  |  |
|------------------------------------|-----------------------------------------------|----------------------------------------------|--|--|
|                                    | Range:<br>Increment:<br>*RST:<br>Default unit | see data sheet<br>1 dB<br>0 dB (OFF)<br>: DB |  |  |
| Example:                           | INP:EATT:<br>INP:EATT                         | INP:EATT:AUTO OFF<br>INP:EATT 10 dB          |  |  |

# INPut<ip>:EATT:AUTO <State>

This command turns automatic selection of the electronic attenuation on and off.

If on, electronic attenuation reduces the mechanical attenuation whenever possible.

| Suffix:         |                           |
|-----------------|---------------------------|
| <ip></ip>       | 1   2                     |
|                 | irrelevant                |
| Parameters:     |                           |
| <state></state> | ON   OFF   0   1          |
|                 | OFF   0                   |
|                 | Switches the function off |
|                 | ON   1                    |
|                 | Switches the function on  |
|                 | *RST: 1                   |
| Example:        | INP:EATT:AUTO OFF         |

# INPut<ip>:EATT:STATe <State>

This command turns the electronic attenuator on and off.

| Suffix:<br><ip></ip> | 1   2<br>irrelevant                                                          |  |  |
|----------------------|------------------------------------------------------------------------------|--|--|
| Parameters:          |                                                                              |  |  |
| <state></state>      | ON   OFF   0   1                                                             |  |  |
|                      | OFF   0                                                                      |  |  |
|                      | Switches the function off                                                    |  |  |
|                      | ON   1                                                                       |  |  |
|                      | Switches the function on                                                     |  |  |
|                      | *RST: 0                                                                      |  |  |
| Example:             | INP:EATT:STAT ON<br>Switches the electronic attenuator into the signal path. |  |  |

# 7.4.4.4 Configuring a Preamplifier

INPut<ip>:GAIN:STATe......91

#### INPut<ip>:GAIN:STATe <State>

This command turns the preamplifier on and off.

If activated, the input signal is amplified by 20 dB.

| Suffix:<br><ip></ip> | 1   2<br>irrelevant                                  |  |
|----------------------|------------------------------------------------------|--|
| Parameters:          |                                                      |  |
| <state></state>      | ON   OFF   0   1                                     |  |
|                      | <b>OFF   0</b><br>Switches the function off          |  |
|                      | <b>ON   1</b><br>Switches the function on            |  |
|                      | *RST: 0                                              |  |
| Example:             | INP:GAIN:STAT ON Switches on 20 dB preamplification. |  |
| Manual operation:    | See " Preamplifier " on page 45                      |  |

# 7.4.5 Triggering Measurements

The trigger commands define the beginning of a measurement.

| TRIGger[:SEQuence]:DTIMe                          | 91 |
|---------------------------------------------------|----|
| TRIGger[:SEQuence]:HOLDoff[:TIME]                 |    |
| TRIGger[:SEQuence]:IFPower:HOLDoff                | 92 |
| TRIGger[:SEQuence]:IFPower:HYSTeresis             |    |
| TRIGger[:SEQuence]:LEVel[:EXTernal <port>]</port> | 93 |
| TRIGger[:SEQuence]:LEVel:IFPower                  | 93 |
| TRIGger[:SEQuence]:LEVel:MAPower                  | 93 |
| TRIGger[:SEQuence]:MAPower:HOLDoff                | 93 |
| TRIGger[:SEQuence]:MAPower:HYSTeresis             |    |
| TRIGger[:SEQuence]:SLOPe                          | 94 |
| TRIGger[:SEQuence]:SOURce                         | 94 |

# TRIGger[:SEQuence]:DTIMe <DropoutTime>

Defines the time the input signal must stay below the trigger level before a trigger is detected again.

# Parameters:

<DropoutTime>

Dropout time of the trigger.Range:0 s to 10.0 s\*RST:0 s

# TRIGger[:SEQuence]:HOLDoff[:TIME] <Offset>

Defines the time offset between the trigger event and the start of the measurement.

| Parameters:       |              |                        |
|-------------------|--------------|------------------------|
| <offset></offset> | *RST:        | 0 s                    |
| Example:          | TRIG:HOLD    | 0 500us                |
| Manual operation: | See " Trigge | er Offset " on page 47 |

# TRIGger[:SEQuence]:IFPower:HOLDoff <Period>

This command defines the holding time before the next trigger event.

Note that this command can be used for **any trigger source**, not just IF Power (despite the legacy keyword).

#### Parameters:

| <period></period> | Range:      | 0 s to 10 s             |
|-------------------|-------------|-------------------------|
|                   | *RST:       | 0 s                     |
| Example:          | TRIG:SOU    | R EXT                   |
|                   | Sets an ext | ernal trigger source.   |
|                   | TRIG: IFP   | :HOLD 200 ns            |
|                   | Sets the ho | lding time to 200 ns.   |
| Manual operation: | See " Trigg | er Holdoff " on page 48 |

# TRIGger[:SEQuence]:IFPower:HYSTeresis <Hysteresis>

This command defines the trigger hysteresis, which is only available for "IF Power" trigger sources.

#### **Parameters:**

| <hysteresis></hysteresis> | Range:<br>*RST:                                           | 3 dB to 50 dB<br>3 dB                                              |
|---------------------------|-----------------------------------------------------------|--------------------------------------------------------------------|
| Example:                  | TRIG: SOUR<br>Sets the IF I<br>TRIG: IFP:<br>Sets the hys | TFP<br>power trigger source.<br>HYST 10DB<br>steresis limit value. |

Manual operation: See "Hysteresis " on page 47

#### TRIGger[:SEQuence]:LEVel[:EXTernal<port>] <TriggerLevel>

This command defines the level the external signal must exceed to cause a trigger event.

In the R&S ETL CDR software, only EXTernal1 is supported.

Suffix:

| <port></port>                                | Selects the trigger port.<br>1 = trigger port 1 (TRIGGER INPUT connector on front panel)<br>2 = trigger port 2 (TRIGGER INPUT/OUTPUT connector on front<br>panel)<br>3 = trigger port 3 (TRIGGER3 INPUT/OUTPUT connector on<br>rear panel) |                         |  |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|
| Parameters:<br><triggerlevel></triggerlevel> | Range:<br>*RST:                                                                                                                                                                                                                            | 0.5 V to 3.5 V<br>1.4 V |  |
| Example:                                     | TRIG:LEV 2V                                                                                                                                                                                                                                |                         |  |
| Manual operation:                            | See " Trigger Level " on page 47                                                                                                                                                                                                           |                         |  |

#### TRIGger[:SEQuence]:LEVel:IFPower <TriggerLevel>

This command defines the power level at the third intermediate frequency that must be exceeded to cause a trigger event.

Note that any RF attenuation or preamplification is considered when the trigger level is analyzed. If defined, a reference level offset is also considered.

#### **Parameters:**

| <triggerlevel></triggerlevel> | For details on available trigger levels and trigger bandwidths see the data sheet. |            |
|-------------------------------|------------------------------------------------------------------------------------|------------|
|                               | *RST:                                                                              | -10 dBm    |
| Example:                      | TRIG:LEV:                                                                          | IFP -30DBM |

#### TRIGger[:SEQuence]:LEVel:MAPower <TriggerLevel>

This command defines the power level that must be exceeded to cause a trigger event for (offline) input from a file.

#### Parameters:

| <triggerlevel></triggerlevel> | For details on available trigger levels and trigger bandwidths see |
|-------------------------------|--------------------------------------------------------------------|
|                               | the data sheet.                                                    |

**Example:** TRIG:LEV:MAP -30DBM

#### TRIGger[:SEQuence]:MAPower:HOLDoff <Period>

This command defines the holding time before the next trigger event for (offline) input from a file.

| Parameters:<br><period></period> | Range:<br>*RST:                                                                                                         | 0 s to 10 s<br>0 s      |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Example:                         | TRIG:SOUR MAGN<br>Sets an offline magnitude trigger source.<br>TRIG:MAP:HOLD 200 ns<br>Sets the holding time to 200 ns. |                         |
| Manual operation:                | See " Trigge                                                                                                            | er Holdoff " on page 48 |

# TRIGger[:SEQuence]:MAPower:HYSTeresis <Hysteresis>

This command defines the trigger hysteresis for the (offline) magnitude trigger source (used for input from a file).

#### Parameters:

| <hysteresis></hysteresis> | Range:<br>*RST:                                                                                                         | 3 dB to 50 dB<br>3 dB |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Example:                  | TRIG:SOUR MAP<br>Sets the (offline) magnitude trigger source.<br>TRIG:MAP:HYST 10DB<br>Sets the hysteresis limit value. |                       |
| Manual operation:         | See " Hysteresis " on page 47                                                                                           |                       |

#### TRIGger[:SEQuence]:SLOPe <Type>

| Parameters:       |                                                                    |                                                          |
|-------------------|--------------------------------------------------------------------|----------------------------------------------------------|
| <type></type>     | POSitive   NEGative POSitive                                       |                                                          |
|                   |                                                                    |                                                          |
|                   | Triggers when the signal rises to the trigger level (rising edge). |                                                          |
|                   | NEGative                                                           |                                                          |
|                   | Triggers wh                                                        | en the signal drops to the trigger level (falling edge). |
|                   | *RST:                                                              | POSitive                                                 |
| Example:          | TRIG:SLO                                                           | P NEG                                                    |
| Manual operation: | See " Slope                                                        | e " on page 48                                           |

## TRIGger[:SEQuence]:SOURce <Source>

This command selects the trigger source.

Note that the availability of trigger sources depends on the connected R&S ETL.

Note on external triggers:

If a measurement is configured to wait for an external trigger signal in a remote control program, remote control is blocked until the trigger is received and the program can continue. Make sure this situation is avoided in your remote control programs.

#### **Parameters:**

<Source>

# IMMediate

Free Run

# EXTernal

Trigger signal from the "Trigger Input" connector.

# EXT

Trigger signal from the corresponding "EXT TRIG" connector on the connected R&S ETL.

For details on the connectors see the instrument's Getting Started manual.

#### IFPower

Second intermediate frequency

#### MAGNitude

For (offline) input from a file, rather than an instrument. The trigger level is specified by TRIGger[:SEQuence]: LEVel:MAPower.

\*RST: IMMediate

 Example:
 TRIG: SOUR EXT

 Selects the external trigger input as source of the trigger signal

Manual operation: See " Trigger Source " on page 46

See " Free Run " on page 46

See "External Trigger 1 " on page 46

See " IF Power " on page 46

See "Magnitude (Offline) " on page 47

# 7.4.6 Configuring Data Acquisition

| INITiate:REFResh                               |    |
|------------------------------------------------|----|
| INPut <ip>:FILTer:CHANnel:HPASs:FDBBw?</ip>    | 96 |
| INPut <ip>:FILTer:CHANnel:HPASs:SDBBw</ip>     | 96 |
| INPut <ip>:FILTer:CHANnel[:LPASs]:AUTO</ip>    | 96 |
| INPut <ip>:FILTer:CHANnel:HPASs[:STATe]</ip>   | 97 |
| INPut <ip>:FILTer:CHANnel[:LPASs]:FDBBw</ip>   | 97 |
| INPut <ip>:FILTer:CHANnel[:LPASs]:SDBBw</ip>   |    |
| INPut <ip>:FILTer:CHANnel[:LPASs][:STATe]</ip> |    |
| [SENSe:]SWAPiq                                 |    |
| [SENSe:]SWEep:COUNt                            | 98 |
| [SENSe:]SWEep:LENGth                           | 99 |
| [SENSe:]SWEep:TIME                             |    |
| TRACe:IQ:SRATe                                 | 99 |
| TRACe:IQ:WBANd[:STATe]                         |    |
| TRACe:IQ:WBANd:MBWidth                         |    |
|                                                |    |

#### INITiate:REFResh

This command updates the current measurement results to reflect the current measurement settings.

No new I/Q data is captured. Thus, measurement settings apply to the I/Q data currently in the capture buffer.

The command applies exclusively to I/Q measurements. It requires I/Q data.

| Example:          | INIT:REFR                           |
|-------------------|-------------------------------------|
|                   | Updates the IQ measurement results. |
| Usage:            | Event                               |
| Manual operation: | See "Refresh" on page 52            |

#### INPut<ip>:FILTer:CHANnel:HPASs:FDBBw?

| Suffix:<br><ip></ip>                             | 1n                               |
|--------------------------------------------------|----------------------------------|
| <b>Return values:</b><br><frequency></frequency> | Default unit: HZ                 |
| Usage:                                           | Query only                       |
| Manual operation:                                | See "50-dB Bandwidth" on page 51 |

#### INPut<ip>:FILTer:CHANnel:HPASs:SDBBw <Frequency>

Configures the bandwidth of the high pass filter at which an attenuation of 6 dB is reached. The filter bandwidth cannot be higher than the current sample rate. If necessary, the filter bandwidth is adapted to the current sample rate.

| <b>Suffix:</b><br><ip></ip>                   | 1n                              |     |
|-----------------------------------------------|---------------------------------|-----|
| <b>Parameters:</b><br><frequency></frequency> | Default unit: HZ                |     |
| Example:                                      | INPU:FILT:CHAN:HPAS:SDBB 30 N   | MHZ |
| Manual operation:                             | See "6-dB Bandwidth" on page 51 |     |

#### INPut<ip>:FILTer:CHANnel[:LPASs]:AUTO <State>

Defines whether the filters are configured automatically according to the loaded configuration file.

Suffix: <ip>

1 | 2 irrelevant

# Parameters:

<State> AUTO | MANual

# Manual operation: See "Filter Settings" on page 50

# INPut<ip>:FILTer:CHANnel:HPASs[:STATe] <State>

Activates an additional internal highpass filter.

| Suffix:<br><ip></ip>           | 1n                                         |
|--------------------------------|--------------------------------------------|
| Parameters:<br><state></state> | ON   OFF   0   1                           |
|                                | <b>OFF   0</b><br>Switches the filter off. |
|                                | <b>ON   1</b><br>Switches the filter on    |
|                                | *RST: 0                                    |
| Example:                       | INP:FILT:CHAN:HPAS ON                      |
| Manual operation:              | See "Highpass Filter State" on page 51     |

# INPut<ip>:FILTer:CHANnel[:LPASs]:FDBBw <Frequency>

Configures the 50-dB frequency of the channel filter. The 50-dB frequency is the distance from the center of the filter to the point at which the filter reaches an attenuation of 50 dB. This frequency must always be larger than the 6-dB passband (see INPut<ip>:FILTer:CHANnel[:LPASs]:SDBBw on page 97).

#### Suffix:

| <ip></ip>                                     | 1   2<br>irrelevant                                     |
|-----------------------------------------------|---------------------------------------------------------|
| <b>Parameters:</b><br><frequency></frequency> | Default unit: HZ                                        |
| Example:                                      | INP:FILT:CHAN:FDBB 40MHZ                                |
| Example:                                      | See Chapter 7.9.1, "Example: CDR Analysis", on page 164 |
| Manual operation:                             | See "50-dB Bandwidth" on page 51                        |

#### INPut<ip>:FILTer:CHANnel[:LPASs]:SDBBw <Frequency>

Configures the 6-dB bandwidth of the channel filter. The filter bandwidth cannot be higher than the current 50-dB frequency (see INPut<ip>:FILTer:CHANnel[: LPASs]:FDBBw on page 97).

#### Suffix:

<ip>

1 | 2 irrelevant

#### Parameters:

<Frequency> Default unit: HZ

| Example:          | INP:FILT:CHAN:SDBB 30MHZ                                |
|-------------------|---------------------------------------------------------|
| Example:          | See Chapter 7.9.1, "Example: CDR Analysis", on page 164 |
| Manual operation: | See "6-dB Bandwidth" on page 50                         |

# INPut<ip>:FILTer:CHANnel[:LPASs][:STATe] <State>

1|2

This command turns an adjustable (lowpass) channel filter in the signal path on and off.

You can define its characteristics with

- INPut<ip>:FILTer:CHANnel[:LPASs]:SDBBw on page 97
- INPut<ip>:FILTer:CHANnel[:LPASs]:FDBBw on page 97

Suffix: <ip>

|                                | irrelevant                                                  |
|--------------------------------|-------------------------------------------------------------|
| Parameters:<br><state></state> | ON   OFF<br>*RST: OFF                                       |
| Example:                       | INP:FILT:CHAN ON<br>Turns on the adjustable channel filter. |
| Example:                       | See Chapter 7.9.1, "Example: CDR Analysis", on page 164     |
| Manual operation:              | See "Filter State" on page 50                               |
|                                |                                                             |

#### [SENSe:]SWAPiq <State>

This command defines whether or not the recorded I/Q pairs should be swapped (I<->Q) before being processed. Swapping I and Q inverts the sideband.

This is useful if the DUT interchanged the I and Q parts of the signal; then the R&S ETL CDR software can do the same to compensate for it.

#### Parameters:

| <state></state>    | ON   1                               |
|--------------------|--------------------------------------|
|                    | I and Q signals are interchanged     |
|                    | Inverted sideband, Q+j*I             |
|                    | OFF   0                              |
|                    | I and Q signals are not interchanged |
|                    | Normal sideband, I+j*Q               |
|                    | *RST: 0                              |
| Manual an anation. |                                      |

Manual operation: See " Swap I/Q " on page 49

# [SENSe:]SWEep:COUNt <SweepCount>

This command defines the number of measurements that the application uses to average traces.

In case of continuous measurement mode, the application calculates the moving average over the average count.

In case of single measurement mode, the application stops the measurement and calculates the average after the average count has been reached.

Suffix:

| <n></n>  | Window                                                                                                                                                                     |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Example: | SWE:COUN 64<br>Sets the number of measurements to 64.<br>INIT:CONT OFF<br>Switches to single measurement mode.<br>INIT;*WAI<br>Starts a measurement and waits for its end. |

#### [SENSe:]SWEep:LENGth <Length>

Defines the number of samples to be captured during each measurement.

| Parameters:<br><length></length> | integer                                                 |
|----------------------------------|---------------------------------------------------------|
|                                  | Range: 1 to 8 000 000                                   |
| Example:                         | SENSe:SWEep:LENGth 1001                                 |
| Example:                         | See Chapter 7.9.1, "Example: CDR Analysis", on page 164 |
| Manual operation:                | See "Capture Length" on page 49                         |

#### [SENSe:]SWEep:TIME <Time>

This command defines the measurement time. It automatically decouples the time from any other settings.

| Parameters:       |               |                                                             |  |  |
|-------------------|---------------|-------------------------------------------------------------|--|--|
| <time></time>     | refer to data | refer to data sheet                                         |  |  |
|                   | *RST:         | depends on current settings (determined automati-<br>cally) |  |  |
|                   | Default unit  | S                                                           |  |  |
| Example:          | SWE:TIME      | 10s                                                         |  |  |
| Manual operation: | See "Captu    | re Time" on page 49                                         |  |  |
|                   |               |                                                             |  |  |

#### TRACe:IQ:SRATe <SampleRate>

This command sets the final user sample rate for the acquired I/Q data. Thus, the user sample rate can be modified without affecting the actual data capturing settings on the R&S ETL CDR software.

| Parameters:<br><samplerate></samplerate> | The valid sample rates depend on the connected R&S ETL Refer to the instrument's documentation. |        |
|------------------------------------------|-------------------------------------------------------------------------------------------------|--------|
|                                          | *RST:                                                                                           | 32 MHz |
| Manual operation:                        | See "Sample Rate" on page 49                                                                    |        |

#### TRACe:IQ:WBANd[:STATe] <State>

This command determines whether the wideband provided by bandwidth extension options is used or not (if installed).

#### **Parameters:**

| <state></state>   | ON   OFF   1   0                                                                                                                                                                                 |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | <b>ON   1</b><br>If enabled, bandwidth extension options installed on the connected R&S ETL can be used.                                                                                         |
|                   | <b>OFF   0</b><br>No bandwidth extension options installed on the connected<br>R&S ETL are used. The maximum analysis bandwidth is restric-<br>ted, depending on the used instrument.<br>*RST: 1 |
| Manual operation: | See "Maximum Bandwidth" on page 50                                                                                                                                                               |

#### TRACe:IQ:WBANd:MBWidth <Limit>

Defines the maximum analysis bandwidth. Any value can be specified; the next higher fixed bandwidth is used.

The available fixed values depend on the connected R&S ETL and the installed bandwidth extension options.

Manual operation: See "Maximum Bandwidth" on page 50

# 7.4.7 Defining the Result Range

The result range determines which part of the capture buffer or burst is displayed.

[SENSe:]DEMod:FORMat:NOFSymbols......100

# [SENSe:]DEMod:FORMat:NOFSymbols <NSymbols>

This command defines the number of symbols in a frame.

Note that frames with fewer symbols are not analyzed.

Parameters:

<NSymbols> Range: 4 to 2000 \*RST: 10

| Example:          | DEM: FORM: NOFS 44<br>Defines 44 symbols per frame.     |
|-------------------|---------------------------------------------------------|
| Example:          | See Chapter 7.9.1, "Example: CDR Analysis", on page 164 |
| Manual operation: | See "Result Length" on page 52                          |

# 7.4.8 Synchronization, Tracking and Demodulation

| [SENSe:]COMPensate:CHANnel | 101 |
|----------------------------|-----|
| [SENSe:]DEMod:CDD          | 101 |
| [SENSe:]DEMod:COFFset      | 102 |
| [SENSe:]DEMod:FFTShift     | 102 |
| [SENSe:]DEMod:FSYNc        | 102 |
| [SENSe:]DEMod:MDETect      | 103 |
| [SENSe:]DEMod:TSYNc        | 103 |
| SENSe:TRACking:LEVel       | 103 |
| SENSe:TRACking:PHASe       | 104 |
| SENSe:TRACking:TIME        | 104 |

# [SENSe:]COMPensate:CHANnel <State>

This command turns compensation for the estimated channel transfer function on and off.

# Parameters:

| <state></state>   | ON   OFF                 |                                               |
|-------------------|--------------------------|-----------------------------------------------|
|                   | *RST:                    | ON                                            |
| Example:          | COMP:CHAN<br>Turns on ch | I ON<br>annel compensation.                   |
| Example:          | See Chapte               | r 7.9.1, "Example: CDR Analysis", on page 164 |
| Manual operation: | See " Chan               | nel Compensation" on page 55                  |

# [SENSe:]DEMod:CDD <IQSamplingRate>

This command defines the cyclic delay.

# Parameters:

| <iqsamplingrate></iqsamplingrate> | Cyclic delay in samples.        |                                                                   |  |
|-----------------------------------|---------------------------------|-------------------------------------------------------------------|--|
|                                   | Range:<br>*RST:<br>Default unit | - <fft_size> to +<fft_size><br/>0<br/>:: HZ</fft_size></fft_size> |  |
| Example:                          | DEM:CDD<br>Defines a c          | <sup>5</sup><br>yclic delay of 5 samples.                         |  |
| Manual operation:                 | See "Cyclic                     | Delay" on page 56                                                 |  |

# [SENSe:]DEMod:COFFset <IQSamplingRate>

This command defines the maximum allowed carrier offset for frame synchronization.

| Parameters:                       |                                                                     |
|-----------------------------------|---------------------------------------------------------------------|
| <iqsamplingrate></iqsamplingrate> | Frequency offset in terms of (sub)carriers.                         |
|                                   | *RST: 0                                                             |
|                                   | Default unit: HZ                                                    |
| Example:                          | SENS: DEM: COFF 2<br>Defines a frequency offset of two subcarriers. |
|                                   |                                                                     |
| Manual operation:                 | See "Maximum Carrier Offset" on page 56                             |

# [SENSe:]DEMod:FFTShift <IQSamplingRate>

This command defines an offset for the FFT start sample in the guard interval.

#### Parameters:

| <iqsamplingrate></iqsamplingrate> | Numeric value that defines the FFT shift.<br>The value is normalized to the length of the guard interval.<br>*RST: 0.5<br>Default unit: HZ |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Example:                          | DEM:FFTS 0.6<br>Defines an FFT shift of 0.6.                                                                                               |
| Example:                          | See Chapter 7.9.1, "Example: CDR Analysis", on page 164                                                                                    |
| Manual operation:                 | See " FFT Shift relative to Cyclic Prefix Length" on page 55                                                                               |

# [SENSe:]DEMod:FSYNc <Mode>

This command selects the parameter estimation mode.

| Parameters:       |                                                                          |  |  |
|-------------------|--------------------------------------------------------------------------|--|--|
| <mode></mode>     | DATA                                                                     |  |  |
|                   | Demodulator uses pilot and data cells for synchronization.               |  |  |
|                   | PIL                                                                      |  |  |
|                   | Demodulator uses only pilot cells for synchronization.                   |  |  |
|                   | NONE                                                                     |  |  |
|                   | Return value only.                                                       |  |  |
|                   | The software returns NONE if no configuration file has been loa-<br>ded. |  |  |
|                   | *RST: PIL                                                                |  |  |
| Example:          | DEM: FSYN PIL<br>Selects synchronization based on the pilot cells.       |  |  |
| Manual operation: | See "Parameter Estimation" on page 54                                    |  |  |

# [SENSe:]DEMod:MDETect <Mode>

This command selects the auto demodulation mode.

# **Parameters:**

| <mode></mode>     | CARR                                                                                       |
|-------------------|--------------------------------------------------------------------------------------------|
|                   | Assumes one constellation for all data cells in the carriers.                              |
|                   | CFG                                                                                        |
|                   | Evaluates the modulation matrix within the configuration file.                             |
|                   | <b>SYM</b><br>Assigns the data cells of each symbol to one constellation.                  |
|                   |                                                                                            |
| Example:          | DEM: MDET CFG<br>Selects evaluation of the modulation matrix in the configuration<br>file. |
| Manual operation: | See "Modulation Detection" on page 54                                                      |
|                   |                                                                                            |

# [SENSe:]DEMod:TSYNc <Mode>

This command selects the time synchronization mode.

| Parameters:       |                                                                                     |
|-------------------|-------------------------------------------------------------------------------------|
| <mode></mode>     | CP                                                                                  |
|                   | Performs time synchronization by correlating the cyclic prefix.                     |
|                   | PREamble                                                                            |
|                   | Performs time synchronization by correlating the recurring pre-<br>amble structure. |
|                   | *RST: CP                                                                            |
| Example:          | DEM: TSYN CP<br>Selects time synchronization based on the cyclic prefix.            |
| Example:          | See Chapter 7.9.1, "Example: CDR Analysis", on page 164                             |
| Manual operation: | See "Time Synchronization" on page 53                                               |

# SENSe:TRACking:LEVel <State>

This command turns tracking of the power level on and off.

# Note

The syntax element [SENSe] is not optional for this command.

| Parameters:     |                                                         |
|-----------------|---------------------------------------------------------|
| <state></state> | ON   OFF                                                |
|                 | *RST: OFF                                               |
| Example:        | SENS:TRAC:LEV ON<br>Turns on power level tracking.      |
| Example:        | See Chapter 7.9.1, "Example: CDR Analysis", on page 164 |

#### Manual operation: See " Level Tracking" on page 55

# SENSe:TRACking:PHASe <State>

This command turns phase tracking on and off.

#### Note

The syntax element [SENSe] is not optional for this command.

| Parameters:       |                                                         |
|-------------------|---------------------------------------------------------|
| <state></state>   | ON   OFF                                                |
|                   | *RST: ON                                                |
| Example:          | SENS:TRAC:PHAS ON<br>Turns on phase tracking.           |
| Example:          | See Chapter 7.9.1, "Example: CDR Analysis", on page 164 |
| Manual operation: | See " Phase Tracking" on page 55                        |

# SENSe:TRACking:TIME <State>

This command turns tracking of the sample clock deviation on and off.

# Note

The syntax element [SENSe] is not optional for this command.

#### **Parameters:**

| <state></state>   | ON   OFF    |                                                 |
|-------------------|-------------|-------------------------------------------------|
|                   | *RST:       | OFF                                             |
| Example:          | SENS: TRAG  | C:TIME ON<br>acking of sample clock deviations. |
| Example:          | See Chapte  | er 7.9.1, "Example: CDR Analysis", on page 164  |
| Manual operation: | See " Timin | g Tracking" on page 55                          |

# 7.4.9 Adjusting Settings Automatically

Some settings can be adjusted by the R&S ETL CDR software automatically according to the current measurement settings.

| [SENSe:]ADJust:CONFigure[:LEVel]:DURation      | 105 |
|------------------------------------------------|-----|
| [SENSe:]ADJust:CONFigure[:LEVel]:DURation:MODE | 105 |
| [SENSe:]ADJust:CONFigure:HYSTeresis:LOWer      | 105 |
| [SENSe:]ADJust:CONFigure:HYSTeresis:UPPer      |     |
| [SENSe:]ADJust:CONFigure:TRIGger               |     |
| [SENSe:]ADJust:LEVel                           | 106 |

#### [SENSe:]ADJust:CONFigure[:LEVel]:DURation < Duration>

In order to determine the ideal reference level, the R&S ETL CDR software performs a measurement on the current input data. This command defines the length of the measurement if [SENSe:]ADJust:CONFigure[:LEVel]:DURation:MODE is set to MANual.

#### **Parameters:**

| <duration></duration> | Numeric value in seconds                                                                              |
|-----------------------|-------------------------------------------------------------------------------------------------------|
|                       | Range: 0.001 to 16000.0<br>*RST: 0.001<br>Default unit: s                                             |
| Example:              | ADJ:CONF:DUR:MODE MAN<br>Selects manual definition of the measurement length.<br>ADJ:CONF:LEV:DUR 5ms |
|                       | Length of the measurement is 5 ms.                                                                    |

#### [SENSe:]ADJust:CONFigure[:LEVel]:DURation:MODE <Mode>

In order to determine the ideal reference level, the R&S ETL CDR software performs a measurement on the current input data. This command selects the way the R&S ETL CDR software determines the length of the measurement .

#### Parameters:

| <mode></mode> | <b>AUTO</b><br>The R&S ETL CDR software determines the measurement<br>length automatically according to the current input data.                       |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | MANual<br>The R&S ETL CDR software uses the measurement length<br>defined by [SENSe:]ADJust:CONFigure[:LEVel]:<br>DURation on page 105.<br>*RST: AUTO |

#### [SENSe:]ADJust:CONFigure:HYSTeresis:LOWer <Threshold>

#### **Parameters:**

| <threshold></threshold> | Range:                                     | 0 dB to 200 dB                                                                                                                 |
|-------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                         | Default unit:                              | dB                                                                                                                             |
| Example:                | SENS: ADJ:<br>For an input<br>will only be | CONF:HYST:LOW 2<br>signal level of currently 20 dBm, the reference level<br>adjusted when the signal level falls below 18 dBm. |

# [SENSe:]ADJust:CONFigure:HYSTeresis:UPPer <Threshold>

| Parameters:             |             |                |
|-------------------------|-------------|----------------|
| <threshold></threshold> | Range:      | 0 dB to 200 dB |
|                         | *RST:       | +1 dB          |
|                         | Default uni | t: dB          |

Analysis

 Example:
 SENS:ADJ:CONF:HYST:UPP 2

 Example:
 For an input signal level of currently 20 dBm

ple:For an input signal level of currently 20 dBm, the reference level<br/>will only be adjusted when the signal level rises above 22 dBm.

# [SENSe:]ADJust:CONFigure:TRIGger <State>

Defines the behavior of the measurement when adjusting a setting automatically (using SENS:ADJ:LEV ON, for example).

#### Parameters:

<State>

ON | OFF | 0 | 1 OFF | 0 Switches the function off ON | 1 Switches the function on

#### [SENSe:]ADJust:LEVel

This command initiates a single (internal) measurement that evaluates and sets the ideal reference level for the current input data and measurement settings. This ensures that the settings of the RF attenuation and the reference level are optimally adjusted to the signal level without overloading the R&S ETL CDR software or limiting the dynamic range by an S/N ratio that is too small.

Example: ADJ:LEV

Usage: Event

# 7.5 Analysis

General result analysis settings concerning the trace, markers, windows etc. can be configured.

| • | Result Configuration.    |  |
|---|--------------------------|--|
| • | Scaling                  |  |
| • | Units for Results        |  |
| • | Configuring Traces       |  |
| • | Working with Markers     |  |
| • | Zooming into the Display |  |

# 7.5.1 Result Configuration

| [SENSe:]DEMod:EVMCalc:NORMalize          | 107  |
|------------------------------------------|------|
| CONFigure:FILTer <n>:CARRier</n>         | .107 |
| CONFigure:FILTer <n>:MODulation</n>      | 107  |
| CONFigure:FILTer <n>:MODulation:TYPE</n> | 108  |
| CONFigure:FILTer <n>:SYMBol</n>          | 108  |
|                                          |      |

Analysis

#### [SENSe:]DEMod:EVMCalc:NORMalize <Method>

This command selects the normalization method for MER results.

#### **Parameters:**

| <method></method> | NONE<br>Normalization is turned off.                                |  |
|-------------------|---------------------------------------------------------------------|--|
|                   | PDAT                                                                |  |
|                   | MER normalized to the peak value of the data cells.                 |  |
|                   | PPD                                                                 |  |
|                   | MER normalized to the peak value of the pilot and data cells.       |  |
|                   | PPIL                                                                |  |
|                   | MER normalized to the peak value of the pilot cells.                |  |
|                   | RMSDAT                                                              |  |
|                   | MER values normalized to the RMS value of the data cells.           |  |
|                   | RMSPD                                                               |  |
|                   | MER values normalized to the RMS value of the pilot and data cells. |  |
|                   | RMSPIL                                                              |  |
|                   | MER values normalized to the RMS value of the pilot cells.          |  |
|                   | *RST: RMSPD                                                         |  |
| Example:          | DEM:EVMC:NORM RMSDAT                                                |  |
|                   | Selects normalization to the RMS value of the data cells.           |  |
| Example:          | See Chapter 7.9.1, "Example: CDR Analysis", on page 164             |  |
| Manual operation: | See "Normalize MER to" on page 58                                   |  |
|                   |                                                                     |  |

# CONFigure:FILTer<n>:CARRier <Samples>

The constellation diagram includes symbols for all or only for the specified carrier number.

Suffix: <n>

1..n Window

#### **Parameters:**

<Samples>

Example: CONF:FILT:CARR -2

Manual operation: See "Constellation Display - Carrier" on page 58

# CONFigure:FILTer<n>:MODulation < Modulation>

The constellation diagram includes only symbols for the selected modulation.

Suffix: <n>

1..n Window

Analysis

| Parameters:               |                                                         |
|---------------------------|---------------------------------------------------------|
| <modulation></modulation> | ALL   'string'                                          |
|                           | Modulation as defined in the configuration file.        |
| Example:                  | CONF:FILT:MOD 'Zero'                                    |
| Example:                  | See Chapter 7.9.1, "Example: CDR Analysis", on page 164 |
| Manual operation:         | See "Constellation Display - Modulation" on page 58     |

# CONFigure:FILTer<n>:MODulation:TYPE <Modulation Type>

The constellation diagram includes only symbols for the selected modulation type.

| Suffix:<br><n></n>                                       | 1n<br>Window                                                |
|----------------------------------------------------------|-------------------------------------------------------------|
| Parameters: <pre><modulation type=""></modulation></pre> | PDATa   PILots   DATA                                       |
| Example:                                                 | CONF:FILT:MOD:TYPE DATA<br>Only data symbols are displayed. |
| Example:                                                 | See Chapter 7.9.1, "Example: CDR Analysis", on page 164     |
| Manual operation:                                        | See "Constellation Display - Modulation Type" on page 58    |

# CONFigure:FILTer<n>:SYMBol <Samples>

The constellation diagram includes all or only the specified symbol number. The first symbol is 0.

# Suffix: <n>

1..n Window

# Parameters:

<Samples>

| Example: | CONF:FILT:SYMB | 2 |
|----------|----------------|---|
|----------|----------------|---|

Manual operation: See "Constellation Display - Symbol" on page 58

# 7.5.2 Scaling

| DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:AUTO ONCE</t></n> | 109 |
|-----------------------------------------------------------|-----|
| DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:AUTO</t></n>      | 109 |
| DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]</t></n>           | 109 |
| DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:MAXimum</t></n>   | 109 |
| DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:MINimum</t></n>   | 110 |
| DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:PDIVision</t></n> | 110 |
| DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:RPOSition</t></n> | 111 |
| DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:RVALue</t></n>    | 111 |
#### DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:AUTO ONCE

Automatic scaling of the y-axis is performed once, then switched off again (for all traces).

#### Suffix:

<n> Window

| <t></t> | irrelevant |
|---------|------------|
| · • •   | molovant   |

## DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:AUTO <State>

If enabled, the Y-axis is scaled automatically according to the current measurement.

| Suffix:<br><n></n>                       | Window                                                                      |  |
|------------------------------------------|-----------------------------------------------------------------------------|--|
| <t></t>                                  | irrelevant                                                                  |  |
| Parameters for settin<br><state></state> | etting and query:<br>OFF<br>Switch the function off                         |  |
|                                          | ON<br>Switch the function on<br>*RST: ON                                    |  |
| Manual operation:                        | See "Automatic Grid Scaling" on page 61<br>See "Auto Scale Once" on page 61 |  |

## DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe] <Range>

This command defines the display range of the y-axis (for all traces).

| Suffix:  |             |       |
|----------|-------------|-------|
| <n></n>  | Window      |       |
| <t></t>  | irrelevant  |       |
| Example: | DISP:TRAC:Y | 110dB |

#### DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:MAXimum <\alue>

This command defines the maximum value of the y-axis for all traces in the selected result display.

| Suffix:         |                              |                                                                      |
|-----------------|------------------------------|----------------------------------------------------------------------|
| <n></n>         | Window                       |                                                                      |
| <t></t>         | irrelevant                   |                                                                      |
| Parameters:     |                              |                                                                      |
| <value></value> | <numeric value=""></numeric> |                                                                      |
|                 | *RST:<br>The unit and        | depends on the result display<br>range depend on the result display. |

| Example:          | DISP:TRAC:Y:MIN -60<br>DISP:TRAC:Y:MAX 0<br>Defines the y-axis with a minimum value of -60 and maximum value of 0. |
|-------------------|--------------------------------------------------------------------------------------------------------------------|
| Manual operation: | See "Absolute Scaling (Min/Max Values)" on page 61                                                                 |

## DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:MINimum <Value>

This command defines the minimum value of the y-axis for all traces in the selected result display.

| Manual operation:                     | See "Absolute Scaling (Min/Max Values)" on page 61                                                                        |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Example:                              | DISP:TRAC:Y:MIN -60<br>DISP:TRAC:Y:MAX 0<br>Defines the y-axis with a minimum value of -60 and maximum value of 0.        |
| <b>Parameters:</b><br><value></value> | <numeric value=""><br/>*RST: depends on the result display<br/>The unit and range depend on the result display.</numeric> |
| <t></t>                               | irrelevant                                                                                                                |
| Suffix:<br><n></n>                    | Window                                                                                                                    |

## DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:PDIVision <Value>

This remote command determines the grid spacing on the Y-axis for all diagrams, where possible.

In spectrum displays, for example, this command is not available.

| Suffix:           |                                                                                 |
|-------------------|---------------------------------------------------------------------------------|
| <n></n>           | Window                                                                          |
| <t></t>           | irrelevant                                                                      |
| Parameters:       |                                                                                 |
| <value></value>   | numeric value WITHOUT UNIT (unit according to the result display)               |
|                   | Defines the range per division (total range = 10* <value>)</value>              |
|                   | *RST: depends on the result display                                             |
| Example:          | DISP:TRAC:Y:PDIV 10<br>Sets the grid spacing to 10 units (e.g. dB) per division |
| Manual operation: | See "Per Division" on page 62                                                   |

#### DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RPOSition <Position>

This command defines the vertical position of the reference level on the display grid (for all traces).

The R&S ETL CDR software adjusts the scaling of the y-axis accordingly.

| Suffix:           |                               |
|-------------------|-------------------------------|
| <n></n>           | Window                        |
| <t></t>           | irrelevant                    |
| Example:          | DISP:TRAC:Y:RPOS 50PCT        |
| Manual operation: | See "Ref Position" on page 62 |

#### DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RVALue <Value>

The command defines the power value assigned to the reference position in the grid (for all traces).

| Suffix:                               |                     |                                                 |
|---------------------------------------|---------------------|-------------------------------------------------|
| <n></n>                               | Window              |                                                 |
| <t></t>                               | irrelevant          |                                                 |
| <b>Parameters:</b><br><value></value> | numeric va<br>*RST: | lue in dBm<br>0 dBm, coupled to reference level |
| Example:                              | DISP:TRAG           | C:Y:RVAL -20dBm                                 |
| Manual operation:                     | See "Ref Va         | alue" on page 62                                |

## 7.5.3 Units for Results

| UNIT:CAXes.    |     |
|----------------|-----|
| UNIT:FAXes     |     |
| UNIT:IRESponse | 112 |
| UNIT:SAXes     | 113 |
| UNIT: TAXes    |     |
|                |     |

#### UNIT:CAXes <Unit>

This command selects the unit for result displays that show results on carrier level, for example the EVM vs Carrier.

#### **Parameters:**

<Unit>

**CARR** Carrier axis represents the subcarriers.

|                   | HZ<br>Carrier axis represents the frequency (Hz).<br>*RST: CARR                                                                                                                                                                                                                    |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Example:          | UNIT: CAX CARR<br>Selects 'subcarriers' as the unit of the carrier axis.                                                                                                                                                                                                           |
| Manual operation: | See "Channel Flatness" on page 17<br>See "Constellation vs Carrier" on page 20<br>See "MER vs Carrier" on page 22<br>See "MER vs Symbol vs Carrier" on page 24<br>See "Group Delay" on page 25<br>See "Power vs Carrier" on page 27<br>See "Power vs Symbol vs Carrier" on page 29 |

#### UNIT:FAXes <Unit>

This command selects the unit for result displays that show results over the frequency, for example the Power Spectrum.

| Parameters:       |                                                                 |
|-------------------|-----------------------------------------------------------------|
| <unit></unit>     | HZ                                                              |
|                   | Frequency axis represents Hz.                                   |
|                   | SRAT                                                            |
|                   | Frequency axis represents the sample rate.                      |
|                   | CSP                                                             |
|                   | Frequency axis represents the carrier spacing.                  |
|                   | *RST: Hz                                                        |
| Example:          | UNIT: FAX Hz<br>Selects 'Hz' as the unit of the frequency axis. |
| Manual operation: | See "Power Spectrum" on page 30                                 |

## UNIT:IRESponse <Unit>

| This command selects the unit for impulse response results. |                                                                         |
|-------------------------------------------------------------|-------------------------------------------------------------------------|
| Parameters:                                                 |                                                                         |
| <unit></unit>                                               | DB                                                                      |
|                                                             | Returns impulse response results in dB.                                 |
|                                                             | LIN                                                                     |
|                                                             | Returns impulse response results normalized to 1.                       |
|                                                             | *RST: LIN                                                               |
| Example:                                                    | UNIT: IRES DB<br>Selects 'dB' as the unit for impulse response results. |
| Manual operation:                                           | See "Impulse Response" on page 25                                       |

#### UNIT:SAXes <Unit>

This command selects the unit for result displays that show results on symbol level, for example the EVM vs Symbol.

#### Parameters:

| <unit></unit>     | SYMBol   SECond                                                                                                                                                                                                                                  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                   | SYM                                                                                                                                                                                                                                              |  |
|                   | Symbol axis represents symbols.                                                                                                                                                                                                                  |  |
|                   | S                                                                                                                                                                                                                                                |  |
|                   | Symbol axis represents seconds.                                                                                                                                                                                                                  |  |
|                   | *RST: SYM                                                                                                                                                                                                                                        |  |
| Example:          | UNIT: SAX SYM<br>Selects 'symbols' as the unit of the symbol axis.                                                                                                                                                                               |  |
| Manual operation: | See "Allocation Matrix" on page 16<br>See "Constellation vs Symbol" on page 21<br>See "MER vs Symbol" on page 23<br>See "MER vs Symbol vs Carrier" on page 24<br>See "Power vs Symbol" on page 28<br>See "Power vs Symbol vs Carrier" on page 29 |  |

#### UNIT:TAXes <Unit>

This command selects the unit for result displays that show results over time, for example the Channel Impulse Response.

## Parameters:

| <unit></unit>     | S                                                              |  |
|-------------------|----------------------------------------------------------------|--|
|                   | Time axis represents seconds.                                  |  |
|                   | SAM                                                            |  |
|                   | Time axis represents samples.                                  |  |
|                   | SYM                                                            |  |
|                   | Time axis represents symbols.                                  |  |
|                   | *RST: S                                                        |  |
| Example:          | UNIT: TAX S<br>Selects 'seconds' as the unit of the time axis. |  |
| Manual operation: | See "Magnitude Capture" on page 26                             |  |

## 7.5.4 Configuring Traces

The trace settings determine how the measured data is analyzed and displayed on the screen. Depending on the result display, between 1 and 6 traces may be displayed.



Commands for storing trace data are described in Chapter 7.7.3, "Retrieving Trace Data and Marker Values", on page 145.

#### Useful commands for trace configuration described elsewhere:

• DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe] on page 109

#### Remote commands exclusive to trace configuration:

| CALCulate <n>:TRACe<t>[:VALue]</t></n>        |  |
|-----------------------------------------------|--|
| DISPlay[:WINDow <n>]:TRACe<t>:MODE</t></n>    |  |
| DISPlay[:WINDow <n>]:TRACe<t>[:STATe]</t></n> |  |

#### CALCulate<n>:TRACe<t>[:VALue] <TrRefType>

This commands selects the signal to be used as the data source for a trace.

Suffix: <t>

Trace

## Setting parameters:

| <trreftype></trreftype> | MEAS   R  | EF   ERRor   TCAP                   |
|-------------------------|-----------|-------------------------------------|
|                         | MEAS      |                                     |
|                         | Measurer  | nent signal                         |
|                         | REF       |                                     |
|                         | Reference | e signal                            |
|                         | ERR       |                                     |
|                         | Error     |                                     |
|                         | TCAP      |                                     |
|                         | Capture b | puffer                              |
|                         | *RST:     | Depends on the current measurement. |
| Usage:                  | SCPI con  | firmed                              |

#### DISPlay[:WINDow<n>]:TRACe<t>:MODE <Mode>

This command selects the trace mode. If necessary, the selected trace is also activated.

## Suffix: Window <n> <t> Trace Example: INIT:CONT OFF Switching to single sweep mode. SWE:COUN 16 Sets the number of measurements to 16. DISP:TRAC3:MODE WRIT Selects clear/write mode for trace 3. INIT; \*WAI Starts the measurement and waits for the end of the measurement. Manual operation: See " Trace Mode " on page 69

#### DISPlay[:WINDow<n>]:TRACe<t>[:STATe] <State>

This command turns a trace on and off.

The measurement continues in the background.

| Suffix:           |                                          |
|-------------------|------------------------------------------|
| <n></n>           | Window                                   |
| <t></t>           | Trace                                    |
| Example:          | DISP:TRAC3 ON                            |
| Manual operation: | See "Trace 1/Trace 2/Trace 3" on page 69 |

## 7.5.5 Working with Markers

Markers help you analyze your measurement results by determining particular values in the diagram. Thus you can extract numeric values from a graphical display.

| • | Individual Marker Settings | 115 |
|---|----------------------------|-----|
| • | General Marker Settings    | 120 |

#### 7.5.5.1 Individual Marker Settings

In CDR evaluations, up to 5 markers can be activated in each diagram at any time.

Useful commands for configuring markers described elsewhere:

- CALCulate<n>:MARKer<m>:Y? on page 147
- CALCulate<n>:DELTamarker<m>:Y? on page 145

#### Remote commands exclusive to individual markers

| CALCulate <n>:MARKer<m>:AOFF</m></n>                       | 115 |
|------------------------------------------------------------|-----|
| CALCulate <n>:MARKer<m>:LINK:TO:MARKer<m></m></m></n>      | 116 |
| CALCulate <n>:MARKer<m>[:STATe]</m></n>                    | 116 |
| CALCulate <n>:MARKer<m>:TRACe</m></n>                      | 117 |
| CALCulate <n>:MARKer<m>:X</m></n>                          | 117 |
| CALCulate <n>:DELTamarker<m>:AOFF</m></n>                  |     |
| CALCulate <n>:DELTamarker<m>:LINK</m></n>                  | 118 |
| CALCulate <n>:DELTamarker<m>:LINK:TO:MARKer<m></m></m></n> | 118 |
| CALCulate <n>:DELTamarker<m>:MREF</m></n>                  | 118 |
| CALCulate <n>:DELTamarker<m>[:STATe]</m></n>               | 119 |
| CALCulate <n>:DELTamarker<m>:TRACe</m></n>                 | 119 |
| CALCulate <n>:DELTamarker<m>:X</m></n>                     | 119 |
|                                                            |     |

#### CALCulate<n>:MARKer<m>:AOFF

This command turns off all markers.

| Suffix:           |                                             |
|-------------------|---------------------------------------------|
| <n></n>           | Window                                      |
| <m></m>           | Marker                                      |
| Example:          | CALC:MARK:AOFF<br>Switches off all markers. |
| Usage:            | Event                                       |
| Manual operation: | See " All Marker Off " on page 66           |

## CALCulate<n>:MARKer<m>:LINK:TO:MARKer<m> <State>

This command links normal marker <m1> to any active normal marker <m2>.

If you change the horizontal position of marker <m2>, marker <m1> changes its horizontal position to the same value.

| Suffix:<br><n></n>             | Window                                                  |
|--------------------------------|---------------------------------------------------------|
| <m></m>                        | Marker                                                  |
| Parameters:<br><state></state> | ON   OFF   1   0<br>*RST: 0                             |
| Example:                       | CALC:MARK4:LINK:TO:MARK2 ON Links marker 4 to marker 2. |
| Manual operation:              | See " Linking to Another Marker " on page 65            |

#### CALCulate<n>:MARKer<m>[:STATe] <State>

This command turns markers on and off. If the corresponding marker number is currently active as a delta marker, it is turned into a normal marker.

| Suffix:                        |                                                                                                                                                        |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| <n></n>                        | Window                                                                                                                                                 |
| <m></m>                        | Marker                                                                                                                                                 |
| Parameters:<br><state></state> | ON   OFF   1   0<br>*RST: 0                                                                                                                            |
| Example:                       | CALC:MARK3 ON<br>Switches on marker 3.                                                                                                                 |
| Manual operation:              | See "Marker 1 / Delta Marker 1 / Delta Marker 2 / Delta<br>Marker 16 " on page 64<br>See " Marker State " on page 64<br>See " Marker Type " on page 65 |

- -----

Analysis

#### CALCulate<n>:MARKer<m>:TRACe <Trace>

This command selects the trace the marker is positioned on.

Note that the corresponding trace must have a trace mode other than "Blank".

If necessary, the command activates the marker first.

| Suffix:                        |                                                    |
|--------------------------------|----------------------------------------------------|
| <n></n>                        | Window                                             |
| <m></m>                        | Marker                                             |
| Parameters:<br><trace></trace> |                                                    |
| Example:                       | //Assign marker to trace 1<br>CALC:MARK3:TRAC 2    |
| Manual operation:              | See " Assigning the Marker to a Trace " on page 66 |

#### CALCulate<n>:MARKer<m>:X <Position>

This command moves a marker to a specific coordinate on the x-axis.

If necessary, the command activates the marker.

If the marker has been used as a delta marker, the command turns it into a normal marker.

| Suffix:                              |                                                                                                                                                                                       |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <n></n>                              | Window                                                                                                                                                                                |
| <m></m>                              | Marker                                                                                                                                                                                |
| Parameters:<br><position></position> | Numeric value that defines the marker position on the x-axis.<br>The unit depends on the result display.<br>Range: The range depends on the current x-axis range.<br>Default unit: Hz |
| Example:                             | CALC:MARK2:X 1.7MHz<br>Positions marker 2 to frequency 1.7 MHz.                                                                                                                       |
| Manual operation:                    | See "Marker Table " on page 27<br>See "Merker 1 / Delta Marker 1 / Delta Marker 2 / Delta<br>Marker 16 " on page 64<br>See "X-value" on page 64                                       |
| Manual operation:                    | See "Marker Table " on page 27<br>See "Marker 1 / Delta Marker 1 / Delta Marker 2 / Delta<br>Marker 16 " on page 64<br>See "X-value" on page 64                                       |

#### CALCulate<n>:DELTamarker<m>:AOFF

This command turns off all delta markers.

Suffix: <n>

Window

<m>

irrelevant

| Example: | CALC:DELT:AOFF               |
|----------|------------------------------|
|          | Turns off all delta markers. |
| Usage:   | Event                        |

#### CALCulate<n>:DELTamarker<m>:LINK <State>

This command links delta marker <m> to marker 1.

If you change the horizontal position (x-value) of marker 1, delta marker <m> changes its horizontal position to the same value.

| Suffix:<br><n></n>             | Window                                       |
|--------------------------------|----------------------------------------------|
| <m></m>                        | Marker                                       |
| Parameters:<br><state></state> | ON   OFF   1   0<br>*RST: 0                  |
| Example:                       | CALC:DELT2:LINK ON                           |
| Manual operation:              | See " Linking to Another Marker " on page 65 |

#### CALCulate<n>:DELTamarker<m>:LINK:TO:MARKer<m> <State>

This command links delta marker <m1> to any active normal marker <m2>.

If you change the horizontal position of marker <m2>, delta marker <m1> changes its horizontal position to the same value.

| Suffix:                        |                                                                       |
|--------------------------------|-----------------------------------------------------------------------|
| <n></n>                        | Window                                                                |
| <m></m>                        | Marker                                                                |
| Parameters:<br><state></state> | ON   OFF   1   0<br>*RST: 0                                           |
| Example:                       | CALC:DELT4:LINK:TO:MARK2 ON Links the delta marker 4 to the marker 2. |
| Manual operation:              | See " Linking to Another Marker " on page 65                          |

#### CALCulate<n>:DELTamarker<m>:MREF <Reference>

This command selects a reference marker for a delta marker other than marker 1.

Suffix: <n>

<m>

Window Marker

| Parameters: <pre></pre> <pre< th=""><th></th></pre<> |                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Example:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CALC:DELT3:MREF 2<br>Specifies that the values of delta marker 3 are relative to marker 2. |
| Manual operation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | See " Reference Marker " on page 65                                                        |

#### CALCulate<n>:DELTamarker<m>[:STATe] <State>

This command turns delta markers on and off.

If necessary, the command activates the delta marker first.

No suffix at DELTamarker turns on delta marker 1.

| Suffix:                        |                                                                                                                                                        |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| <n></n>                        | Window                                                                                                                                                 |
| <m></m>                        | Marker                                                                                                                                                 |
| Parameters:<br><state></state> | ON   OFF   1   0<br>*RST: 0                                                                                                                            |
| Example:                       | CALC: DELT2 ON<br>Turns on delta marker 2.                                                                                                             |
| Manual operation:              | See "Marker 1 / Delta Marker 1 / Delta Marker 2 / Delta<br>Marker 16 " on page 64<br>See " Marker State " on page 64<br>See " Marker Type " on page 65 |

#### CALCulate<n>:DELTamarker<m>:TRACe <Trace>

This command selects the trace a delta marker is positioned on.

Note that the corresponding trace must have a trace mode other than "Blank".

If necessary, the command activates the marker first.

| Window                                                      |
|-------------------------------------------------------------|
| Marker                                                      |
| Trace number the marker is assigned to.                     |
| CALC: DELT2: TRAC 2<br>Positions delta marker 2 on trace 2. |
|                                                             |

#### CALCulate<n>:DELTamarker<m>:X <Position>

This command moves a delta marker to a particular coordinate on the x-axis.

If necessary, the command activates the delta marker and positions a reference marker to the peak power.

| Suffix:           |                                                                                                               |
|-------------------|---------------------------------------------------------------------------------------------------------------|
| <m></m>           | Marker                                                                                                        |
| <n></n>           | Window                                                                                                        |
| Example:          | CALC:DELT:X?<br>Outputs the absolute x-value of delta marker 1.                                               |
| Manual operation: | See "Marker 1 / Delta Marker 1 / Delta Marker 2 / Delta<br>Marker 16 " on page 64<br>See "X-value" on page 64 |

## 7.5.5.2 General Marker Settings

| DISPlay:MINFo[:STATe]           | 120 |
|---------------------------------|-----|
| DISPlay[:WINDow <n>]:MTABle</n> | 120 |

## DISPlay:MINFo[:STATe] <DisplayMode>

This command turns the marker information in all diagrams on and off.

| Parameters:                 |                                                            |
|-----------------------------|------------------------------------------------------------|
| <displaymode></displaymode> | ON   1                                                     |
|                             | Displays the marker information in the diagrams.           |
|                             | OFF   0Hides the marker information in the diagrams.*RST:1 |
| Example:                    | DISP:MINF OFF<br>Hides the marker information.             |
| Manual operation:           | See " Marker Info " on page 67                             |

#### DISPlay[:WINDow<n>]:MTABle <DisplayMode>

This command turns the marker table on and off.

| Suffix:<br><n></n>                         | irrelevant                                                  |
|--------------------------------------------|-------------------------------------------------------------|
| Parameters:<br><displaymode></displaymode> | <b>ON   1</b><br>Turns on the marker table.                 |
|                                            | <b>OFF   0</b><br>Turns off the marker table.<br>*RST: AUTO |
| Example:                                   | DISP:MTAB ON<br>Activates the marker table.                 |

Manual operation: See " Marker Table Display " on page 66

## 7.5.5.3 Marker Positioning Settings

Several functions are available to set the marker to a specific position very quickly and easily.

Useful commands for positioning markers described elsewhere:

- CALCulate<n>:MARKer<m>:TRACe on page 117
- CALCulate<n>:DELTamarker<m>:TRACe on page 119

#### Remote commands exclusive to positioning markers:

| CALCulate <n>:DELTamarker<m>:MAXimum:APEak</m></n>  | 121 |
|-----------------------------------------------------|-----|
| CALCulate <n>:DELTamarker<m>:MAXimum:LEFT</m></n>   | 121 |
| CALCulate <n>:DELTamarker<m>:MAXimum:NEXT</m></n>   | 122 |
| CALCulate <n>:DELTamarker<m>:MAXimum[:PEAK]</m></n> | 122 |
| CALCulate <n>:DELTamarker<m>:MAXimum:RIGHt</m></n>  | 122 |
| CALCulate <n>:DELTamarker<m>:MINimum:LEFT</m></n>   | 122 |
| CALCulate <n>:DELTamarker<m>:MINimum:NEXT</m></n>   | 123 |
| CALCulate <n>:DELTamarker<m>:MINimum[:PEAK]</m></n> |     |
| CALCulate <n>:DELTamarker<m>:MINimum:RIGHt</m></n>  | 123 |
| CALCulate <n>:MARKer<m>:MAXimum:APEak</m></n>       | 124 |
| CALCulate <n>:MARKer<m>:MAXimum:LEFT</m></n>        | 124 |
| CALCulate <n>:MARKer<m>:MAXimum:NEXT</m></n>        |     |
| CALCulate <n>:MARKer<m>:MAXimum:RIGHt</m></n>       | 124 |
| CALCulate <n>:MARKer<m>:MAXimum[:PEAK]</m></n>      | 125 |
| CALCulate <n>:MARKer<m>:MINimum:LEFT</m></n>        | 125 |
| CALCulate <n>:MARKer<m>:MINimum:NEXT</m></n>        |     |
| CALCulate <n>:MARKer<m>:MINimum:RIGHt</m></n>       | 125 |
| CALCulate <n>:MARKer<m>:MINimum[:PEAK]</m></n>      | 126 |
| CALCulate <n>:MARKer<m>:SEARch</m></n>              | 126 |
|                                                     |     |

#### CALCulate<n>:DELTamarker<m>:MAXimum:APEak

This command positions the active marker or delta marker on the largest absolute peak value (maximum or minimum) of the selected trace.

| Suffix: |        |
|---------|--------|
| <n></n> | Window |
| <m></m> | Marker |
| Usage:  | Event  |

- --

#### CALCulate<n>:DELTamarker<m>:MAXimum:LEFT

This command moves a delta marker to the next higher value.

The search includes only measurement values to the left of the current marker position.

| Suffix:           |                                     |
|-------------------|-------------------------------------|
| <n></n>           | Window                              |
| <m></m>           | Marker                              |
| Usage:            | Event                               |
| Manual operation: | See " Search Next Peak " on page 67 |

## CALCulate<n>:DELTamarker<m>:MAXimum:NEXT

This command moves a marker to the next higher value.

| Suffix:           |                                     |
|-------------------|-------------------------------------|
| <n></n>           | Window                              |
| <m></m>           | Marker                              |
| Usage:            | Event                               |
| Manual operation: | See " Search Next Peak " on page 67 |

#### CALCulate<n>:DELTamarker<m>:MAXimum[:PEAK]

This command moves a delta marker to the highest level.

If the marker is not yet active, the command first activates the marker.

| Suffix:           |                                |
|-------------------|--------------------------------|
| <n></n>           | Window                         |
| <m></m>           | Marker                         |
| Usage:            | Event                          |
| Manual operation: | See " Peak Search " on page 67 |

## CALCulate<n>:DELTamarker<m>:MAXimum:RIGHt

This command moves a delta marker to the next higher value.

The search includes only measurement values to the right of the current marker position.

| Suffix:           |                                     |
|-------------------|-------------------------------------|
| <n></n>           | Window                              |
| <m></m>           | Marker                              |
| Usage:            | Event                               |
| Manual operation: | See " Search Next Peak " on page 67 |

#### CALCulate<n>:DELTamarker<m>:MINimum:LEFT

This command moves a delta marker to the next higher minimum value.

The search includes only measurement values to the right of the current marker position.

#### Suffix:

| <n></n>           | Window                                 |
|-------------------|----------------------------------------|
| <m></m>           | Marker                                 |
| Usage:            | Event                                  |
| Manual operation: | See " Search Next Minimum " on page 68 |

#### CALCulate<n>:DELTamarker<m>:MINimum:NEXT

This command moves a marker to the next higher minimum value.

| Suffix:           |                                        |
|-------------------|----------------------------------------|
| <n></n>           | Window                                 |
| <m></m>           | Marker                                 |
| Usage:            | Event                                  |
| Manual operation: | See " Search Next Minimum " on page 68 |

## CALCulate<n>:DELTamarker<m>:MINimum[:PEAK]

This command moves a delta marker to the minimum level.

If the marker is not yet active, the command first activates the marker.

| Suffix:           |                                   |
|-------------------|-----------------------------------|
| <n></n>           | Window                            |
| <m></m>           | Marker                            |
| Usage:            | Event                             |
| Manual operation: | See " Search Minimum " on page 67 |

#### CALCulate<n>:DELTamarker<m>:MINimum:RIGHt

This command moves a delta marker to the next higher minimum value.

The search includes only measurement values to the right of the current marker position.

| Suffix:           |                                        |
|-------------------|----------------------------------------|
| <n></n>           | Window                                 |
| <m></m>           | Marker                                 |
| Usage:            | Event                                  |
| Manual operation: | See " Search Next Minimum " on page 68 |

#### CALCulate<n>:MARKer<m>:MAXimum:APEak

sets the marker to the largest absolute peak value (maximum or minimum) of the selected trace.

| Window |
|--------|
| Marker |
| Event  |
|        |

C. Hiv.

#### CALCulate<n>:MARKer<m>:MAXimum:LEFT

This command moves a marker to the next lower peak.

The search includes only measurement values to the left of the current marker position.

| Suffix:           |                                     |
|-------------------|-------------------------------------|
| <n></n>           | Window                              |
| <m></m>           | Marker                              |
| Usage:            | Event                               |
| Manual operation: | See " Search Next Peak " on page 67 |

#### CALCulate<n>:MARKer<m>:MAXimum:NEXT

This command moves a marker to the next lower peak.

| Suffix:           |                                     |
|-------------------|-------------------------------------|
| <n></n>           | Window                              |
| <m></m>           | Marker                              |
| Usage:            | Event                               |
| Manual operation: | See " Search Next Peak " on page 67 |

#### CALCulate<n>:MARKer<m>:MAXimum:RIGHt

This command moves a marker to the next lower peak.

The search includes only measurement values to the right of the current marker position.

| Suffix:           |                                     |
|-------------------|-------------------------------------|
| <n></n>           | Window                              |
| <m></m>           | Marker                              |
| Usage:            | Event                               |
| Manual operation: | See " Search Next Peak " on page 67 |

#### CALCulate<n>:MARKer<m>:MAXimum[:PEAK]

This command moves a marker to the highest level.

If the marker is not yet active, the command first activates the marker.

| Suffix:           |                                |
|-------------------|--------------------------------|
| <n></n>           | Window                         |
| <m></m>           | Marker                         |
| Usage:            | Event                          |
| Manual operation: | See " Peak Search " on page 67 |

#### CALCulate<n>:MARKer<m>:MINimum:LEFT

This command moves a marker to the next minimum value.

The search includes only measurement values to the right of the current marker position.

| Suffix:           |                                        |
|-------------------|----------------------------------------|
| <n></n>           | Window                                 |
| <m></m>           | Marker                                 |
| Usage:            | Event                                  |
| Manual operation: | See " Search Next Minimum " on page 68 |

## CALCulate<n>:MARKer<m>:MINimum:NEXT

This command moves a marker to the next minimum value.

| Suffix:           |                                        |
|-------------------|----------------------------------------|
| <ŋ>               | Window                                 |
| <m></m>           | Marker                                 |
| Usage:            | Event                                  |
| Manual operation: | See " Search Next Minimum " on page 68 |

## CALCulate<n>:MARKer<m>:MINimum:RIGHt

This command moves a marker to the next minimum value.

The search includes only measurement values to the right of the current marker position.

| Suffix: |        |
|---------|--------|
| <n></n> | Window |
| <m></m> | Marker |
| Usage:  | Event  |

Manual operation: See " Search Next Minimum " on page 68

#### CALCulate<n>:MARKer<m>:MINimum[:PEAK]

This command moves a marker to the minimum level.

If the marker is not yet active, the command first activates the marker.

| Suffix:           |                                   |
|-------------------|-----------------------------------|
| <n></n>           | Window                            |
| <m></m>           | Marker                            |
| Usage:            | Event                             |
| Manual operation: | See " Search Minimum " on page 67 |

## CALCulate<n>:MARKer<m>:SEARch <MarkReallmag>

This command specifies whether the marker search works on the real or the imag trace (for all markers).

| Suffix:                       |             |      |
|-------------------------------|-------------|------|
| <n></n>                       | Window      |      |
| <m></m>                       | Marker      |      |
| Setting parameters:           |             |      |
| <markreallmag></markreallmag> | REAL   IMAG | G    |
|                               | *RST:       | REAL |

## 7.5.6 Zooming into the Display

#### 7.5.6.1 Using the Single Zoom

| DISPlay[:WINDow <n>]:ZOOM:AREA</n>    | . 126 |
|---------------------------------------|-------|
| DISPlay[:WINDow <n>]:ZOOM[:STATe]</n> | . 127 |

#### DISPlay[:WINDow<n>]:ZOOM:AREA <x1>,<y1>,<x2>,<y2>

This command defines the zoom area.

To define a zoom area, you first have to turn the zoom on.



1 = origin of coordinate system (x1 = 0, y1 = 0)

2 = end point of system (x2 = 100, y2= 100)

3 = zoom area (e.g. x1 = 60, y1 = 30, x2 = 80, y2 = 75)

#### Suffix: <n>

#### Window

#### Parameters:

<x1>,<y1>, <x2>,<y2> Diagram coordinates in % of the complete diagram that define the zoom area. The lower left corner is the origin of coordinate system. The upper right corner is the end point of the system. Range: 0 to 100

Default unit: PCT

## DISPlay[:WINDow<n>]:ZOOM[:STATe] <State>

This command turns the zoom on and off.

| Suffix:<br><n></n>             | Window                                  |
|--------------------------------|-----------------------------------------|
| Parameters:<br><state></state> | ON   OFF   1   0<br>*RST: 0             |
| Example:                       | DISP:ZOOM ON<br>Activates the zoom mode |

## 7.5.6.2 Using the Multiple Zoom

| DISPlay[:WINDow <n>]:ZOOM:MULTiple<zoom></zoom></n> | AREA.    |  |
|-----------------------------------------------------|----------|--|
| DISPlay[:WINDow <n>]:ZOOM:MULTiple<zoom></zoom></n> | -[:STATe |  |

#### DISPlay[:WINDow<n>]:ZOOM:MULTiple<zoom>:AREA <x1>,<y1>,<x2>,<y2>

This command defines the zoom area for a multiple zoom.

To define a zoom area, you first have to turn the zoom on.

#### **Remote Commands for CDR Measurements**

Configuring the Result Display



1 = origin of coordinate system (x1 = 0, y1 = 0)

2 = end point of system (x2 = 100, y2= 100)

3 = zoom area (e.g. x1 = 60, y1 = 30, x2 = 80, y2 = 75)

#### Suffix:

| <n></n>                                                            | Window                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <zoom></zoom>                                                      | 14<br>Selects the zoom window.                                                                                                                                                                                                                |
| <b>Parameters:</b><br><x1>,<y1>,<br/><x2>,<y2></y2></x2></y1></x1> | Diagram coordinates in % of the complete diagram that define<br>the zoom area.<br>The lower left corner is the origin of coordinate system. The<br>upper right corner is the end point of the system.<br>Range: 0 to 100<br>Default unit: PCT |

## DISPlay[:WINDow<n>]:ZOOM:MULTiple<zoom>[:STATe] <State>

This command turns the multiple zoom on and off.

| Suffix:<br><n></n> | Window                                                                                                                                                   |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| <zoom></zoom>      | <ul><li>14</li><li>Selects the zoom window.</li><li>If you turn off one of the zoom windows, all subsequent zoom windows move up one position.</li></ul> |
| Parameters:        |                                                                                                                                                          |
| <state></state>    | ON   OFF   1   0                                                                                                                                         |
|                    | *RST: 0                                                                                                                                                  |

# 7.6 Configuring the Result Display

The commands required to configure the screen display in a remote environment are described here.

| • | Global Layout Commands              | 129 |
|---|-------------------------------------|-----|
| • | Working with Windows in the Display | 132 |

## 7.6.1 Global Layout Commands

The following commands are required to change the evaluation type and rearrange the screen layout across measurement channels as you do in manual operation.



For compatibility with other Rohde & Schwarz Signal and Spectrum Analyzers, the layout commands described in Chapter 7.6.2, "Working with Windows in the Display", on page 132 are also supported. Note, however, that the commands described there only allow you to configure the layout within the *active* measurement channel.

| LAYout:GLOBal:ADD[:WINDow]?     |     |
|---------------------------------|-----|
| LAYout:GLOBal:CATalog[:WINDow]? |     |
| AYout:GLOBal:IDENtifv[:WINDow]? | 130 |
| LAYout GLOBal REMove[ WINDow]   | 131 |
| LAYout:GLOBal:REPLace[:WINDow]  | 131 |
|                                 |     |

#### LAYout:GLOBal:ADD[:WINDow]?

<ExChanName>,<ExWinName>,<Direction>,<NewChanName>,<NewWinType>

This command adds a window to the display next to an existing window. The new window may belong to a different channel than the existing window.

To replace an existing window, use the LAYout:GLOBal:REPLace[:WINDow] command.

| Parameters | 5: |
|------------|----|
|------------|----|

| <exchanname></exchanname>   | string<br>Name of an existing channel                                                                                                                                                                                                                                                                     |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <exwinname></exwinname>     | string<br>Name of the existing window within the <exchanname> chan-<br/>nel the new window is inserted next to.<br/>By default, the name of a window is the same as its index. To<br/>determine the name and index of all active windows use the<br/>LAYout:GLOBal:IDENtify[:WINDow]? query.</exchanname> |
| <direction></direction>     | LEFT   RIGHt   ABOVe   BELow   TAB<br>Direction the new window is added relative to the existing win-<br>dow.<br><b>TAB</b><br>The new window is added as a new tab in the specified existing<br>window.                                                                                                  |
| <newchanname></newchanname> | string<br>Name of the channel for which a new window is to be added.                                                                                                                                                                                                                                      |
| <newwintype></newwintype>   | string<br>Type of result display (evaluation method) you want to add.<br>See the table below for available parameter values.                                                                                                                                                                              |

#### Return values:

| <newwindowname></newwindowname> | When adding a new window, the command returns its name (by default the same as its number) as a result.                                                                                           |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Example:                        | LAYout:GLOBal:ADD:WINDow? 'IQ<br>Analyzer','1',RIGH,'IQ Analyzer2','FREQ'<br>Adds a new window named 'Spectrum' with a Spectrum display<br>to the right of window 1 in the channel 'IQ Analyzer'. |
| Usage:                          | Query only                                                                                                                                                                                        |

## LAYout:GLOBal:CATalog[:WINDow]?

This command queries the name and index of all active windows from top left to bottom right for each active channel. The result is a comma-separated list of values for each window, with the syntax:

<ChannelName\_1>: <WindowName\_1>,<WindowIndex\_1>..<WindowName\_n>,<WindowIndex\_n>

```
<ChannelName_m>: <WindowName_1>,<WindowIndex_1>..<WindowName_n>,<WindowIndex_n>
```

# Return values:

...

| <channelname></channelname> | String containing the name of the channel. The channel name is displayed as the tab label for the measurement channel.                                                                                                                                                                                                                                            |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <windowname></windowname>   | string<br>Name of the window.<br>In the default state, the name of the window is its index.                                                                                                                                                                                                                                                                       |
| <windowindex></windowindex> | numeric value<br>Index of the window.                                                                                                                                                                                                                                                                                                                             |
| Example:                    | LAY: GLOB: CAT?<br>Result:<br>IQ Analyzer: '1',1,'2',2<br>Analog Demod: '1',1,'4',4<br>For the I/Q Analyzer channel, two windows are displayed,<br>named '2' (at the top or left), and '1' (at the bottom or right).<br>For the Analog Demodulation channel, two windows are dis-<br>played, named '1' (at the top or left), and '4' (at the bottom or<br>right). |
| Usage:                      | Query only                                                                                                                                                                                                                                                                                                                                                        |

#### LAYout:GLOBal:IDENtify[:WINDow]? <ChannelName>,<WindowName>

This command queries the **index** of a particular display window in the specified channel.

Configuring the Result Display

**Note**: to query the **name** of a particular window, use the LAYout:WINDow<n>: IDENtify? query.

## Parameters:

| <channelname></channelname>                    | String containing the name of the channel. The channel name is displayed as the tab label for the measurement channel.                                  |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Query parameters:<br><windowname></windowname> | String containing the name of a window.                                                                                                                 |
| Return values:<br><windowindex></windowindex>  | Index number of the window.                                                                                                                             |
| Example:                                       | LAYout:GLOBal:ADD:WINDow? IQ, '1', RIGH,<br>'Spectrum', FREQ<br>Adds a new window named 'Spectrum' with a Spectrum display<br>to the right of window 1. |
| Example:                                       | LAYout:GLOBal:IDENtify? 'IQ Analyzer',<br>'Spectrum'<br>Result:<br>2<br>Window index is: 2.                                                             |
| Usage:                                         | Query only                                                                                                                                              |

#### LAYout:GLOBal:REMove[:WINDow] <ChannelName>,<WindowName>

This command removes a window from the display.

| Parameters:                 |                                            |
|-----------------------------|--------------------------------------------|
| <channelname></channelname> | String containing the name of the channel. |
| <windowname></windowname>   | String containing the name of the window.  |
| Usage:                      | Event                                      |

## LAYout:GLOBal:REPLace[:WINDow]

<ExChannelName>,<WindowName>,<NewChannelName>,<WindowType>

This command replaces the window type (for example from "Diagram" to "Result Summary") of an already existing window while keeping its position, index and window name.

To add a new window, use the LAYout:GLOBal:ADD[:WINDow]? command.

#### **Parameters:**

| <exchannelname></exchannelname> | String containing the name of the channel in which a window is<br>to be replaced. The channel name is displayed as the tab label<br>for the measurement channel. |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <windowname></windowname>       | String containing the name of the existing window.<br>To determine the name and index of all active windows, use the<br>LAYout: GLOBal: CATalog[:WINDow]? guery. |

<NewChannelName> String containing the name of the channel for which a new window will be created.

 <WindowType>
 Type of result display you want to use in the existing window. Note that the window type must be valid for the specified channel (<NewChannelName>). See LAYout:ADD[:WINDow]? on page 132 for a list of available window types.

Example: LAY:GLOB:REPL:WIND 'IQ Analyzer','1', 'AnalogDemod',MTAB Replaces the I/Q Analyzer result display in window 1 by a marker table for the AnalogDemod channel.

## 7.6.2 Working with Windows in the Display

The following commands are required to change the evaluation type and rearrange the screen layout for a channel as you do in manual operation. Since the available evaluation types depend on the selected application, some parameters for the following commands also depend on the selected channel.

Note that the suffix <n> always refers to the window in the currently selected channel.

To configure the layout of windows across channels, use the Chapter 7.6.1, "Global Layout Commands", on page 129.

| AYout:ADD[:WINDow]?13          | 32 |
|--------------------------------|----|
| AYout:CATalog[:WINDow]?        | 34 |
| AYout:IDENtify[:WINDow]?       | 34 |
| AYout:MOVE[:WINDow]            | 35 |
| AYout:REMove[:WINDow]          | 35 |
| AYout:REPLace[:WINDow]         | 36 |
| AYout:WINDow <n>:ADD?</n>      | 36 |
| AYout:WINDow <n>:IDENtify?</n> | 37 |
| AYout:WINDow <n>:REMove</n>    | 37 |
| AYout:WINDow <n>:REPLace</n>   | 38 |

LAYout:ADD[:WINDow]? <WindowName>,<Direction>,<WindowType>

This command adds a window to the display in the active channel.

This command is always used as a query so that you immediately obtain the name of the new window as a result.

To replace an existing window, use the LAYout:REPLace[:WINDow] command.

#### Query parameters:

| <windowname></windowname> | String containing the name of the existing window the new win- |
|---------------------------|----------------------------------------------------------------|
|                           | dow is inserted next to.                                       |
|                           | By default, the name of a window is the same as its index. To  |
|                           | determine the name and index of all active windows, use the    |
|                           | LAYout:CATalog[:WINDow]? query.                                |

| <direction></direction>         | LEFT   RIGHt   ABOVe   BELow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 | Direction the new window is added relative to the existing win-<br>dow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <windowtype></windowtype>       | text value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                 | Type of result display (evaluation method) you want to add.<br>See the table below for available parameter values.<br>Note that the window type must be valid for the active channel.<br>To create a window for a different channel use the LAYout:<br>GLOBal:REPLace[:WINDow] command.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Return values:                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <newwindowname></newwindowname> | When adding a new window, the command returns its name (by default the same as its number) as a result.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Usage:                          | Query only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Manual operation:               | See "Allocation Matrix" on page 16<br>See "CCDF" on page 17<br>See "Channel Flatness" on page 17<br>See "Constellation Diagram" on page 18<br>See "Constellation vs Carrier" on page 20<br>See "Constellation vs Symbol" on page 21<br>See "MER vs Carrier" on page 22<br>See "MER vs Symbol" on page 23<br>See "MER vs Symbol vs Carrier" on page 24<br>See "Group Delay" on page 25<br>See "Impulse Response" on page 25<br>See "Magnitude Capture" on page 26<br>See "Marker Table " on page 27<br>See "Power vs Carrier" on page 27<br>See "Power vs Symbol" on page 28<br>See "Power vs Symbol vs Carrier" on page 29<br>See "Power vs Symbol vs Carrier" on page 30<br>See "Result Summary" on page 31 |

## Table 7-2: <WindowType> parameter values for OFDM VSA application

| Parameter value | Window type              |
|-----------------|--------------------------|
| AMATrix         | Allocation Matrix        |
| CCARrier        | Constellation vs Carrier |
| CCDF            | CCDF                     |
| CHFLatness      | Channel Flatness         |
| CONStell        | Constellation Diagram    |
| CSYMbol         | Constellation vs Symbol  |
| GDELay          | Group Delay              |
| IRESponse       | Impulse Response         |

Configuring the Result Display

| Parameter value | Window type                |
|-----------------|----------------------------|
| MCAPture        | Magnitude Capture          |
| MTABle          | Marker Table               |
| MVCarrier       | MER vs Carrier             |
| MVSCarrier      | MER vs Symbol vs Carrier   |
| MVSYmbol        | MER vs Symbol              |
| PCARrier        | Power vs Carrier           |
| PSC             | Power vs Symbol vs Carrier |
| PSPectrum       | Power Spectrum             |
| PSYMbol         | Power vs Symbol            |
| RSUMmary        | Result Summary             |
| SFLow           | Signal Flow                |

#### LAYout:CATalog[:WINDow]?

This command queries the name and index of all active windows in the active channel from top left to bottom right. The result is a comma-separated list of values for each window, with the syntax:

<WindowName\_1>,<WindowIndex\_1>..<WindowName\_n>,<WindowIndex\_n>

To query the name and index of all windows in all channels use the LAYout:GLOBal: CATalog[:WINDow]? command.

#### **Return values:**

| <windowname></windowname>   | string                                                                                                                               |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|                             | Name of the window.<br>In the default state, the name of the window is its index.                                                    |
| <windowindex></windowindex> | numeric value<br>Index of the window.                                                                                                |
| Example:                    | LAY:CAT?<br>Result:<br>'2',2,'1',1<br>Two windows are displayed, named '2' (at the top or left), and '1<br>(at the bottom or right). |
| Usage:                      | Query only                                                                                                                           |

#### LAYout:IDENtify[:WINDow]? < WindowName>

This command queries the **index** of a particular display window in the active channel.

Note: to query the name of a particular window, use the LAYout:WINDow<n>: IDENtify? query.

Configuring the Result Display

To query the index of a window in a different channel use the LAYout:GLOBal: IDENtify[:WINDow]? command.

#### Query parameters:

| <windowname></windowname>                     | String containing the name of a window.                                                    |
|-----------------------------------------------|--------------------------------------------------------------------------------------------|
| Return values:<br><windowindex></windowindex> | Index number of the window.                                                                |
| Example:                                      | LAY:WIND:IDEN? '2'<br>Queries the index of the result display named '2'.<br>Response:<br>2 |
| Usage:                                        | Query only                                                                                 |

LAYout:MOVE[:WINDow] <WindowName>, <WindowName>, <Direction>

| Setting parameters:       |                                                                                                                                                                                                                                                                                        |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <windowname></windowname> | String containing the name of an existing window that is to be moved.                                                                                                                                                                                                                  |
|                           | By default, the name of a window is the same as its index. To determine the name and index of all active windows in the active channel, use the LAYout:CATalog[:WINDow]? query.                                                                                                        |
| <windowname></windowname> | String containing the name of an existing window the selected window is placed next to or replaces.<br>By default, the name of a window is the same as its index. To determine the name and index of all active windows in the active channel, use the LAYout:CATalog[:WINDow]? query. |
| <direction></direction>   | LEFT   RIGHt   ABOVe   BELow   REPLace<br>Destination the selected window is moved to, relative to the ref-<br>erence window.                                                                                                                                                          |
| Example:                  | LAY:MOVE '4', '1', LEFT<br>Moves the window named '4' to the left of window 1.                                                                                                                                                                                                         |
| Example:                  | LAY:MOVE '1', '3', REPL<br>Replaces the window named '3' by window 1. Window 3 is<br>deleted.                                                                                                                                                                                          |
| Usage:                    | Setting only                                                                                                                                                                                                                                                                           |

## LAYout:REMove[:WINDow] <WindowName>

This command removes a window from the display in the active channel.

To remove a window for a different channel use the LAYout:GLOBal:REMove[: WINDow] command.

#### Setting parameters:

<WindowName> String containing the name of the window. In the default state, the name of the window is its index.

| Example: | LAY:REM '2'                                         |
|----------|-----------------------------------------------------|
|          | Removes the result display in the window named '2'. |
| Usage:   | Event                                               |

LAYout:REPLace[:WINDow] <WindowName>,<WindowType>

This command replaces the window type (for example from "Diagram" to "Result Summary") of an already existing window in the active channel while keeping its position, index and window name.

To add a new window, use the LAYout:ADD[:WINDow]? command.

| Setting parameters:       |                                                                                                                                                                                                                                                                                                                   |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <windowname></windowname> | String containing the name of the existing window.<br>By default, the name of a window is the same as its index. To<br>determine the name and index of all active windows in the active<br>channel, use the LAYout:CATalog[:WINDow]? query.                                                                       |
| <windowtype></windowtype> | Type of result display you want to use in the existing window.<br>See LAYout:ADD[:WINDow]? on page 132 for a list of available window types.<br>Note that the window type must be valid for the active channel.<br>To create a window for a different channel use the LAYout:<br>GLOBal:REPLace[:WINDow] command. |
| Example:                  | LAY:REPL:WIND '1', MTAB<br>Replaces the result display in window 1 with a marker table.                                                                                                                                                                                                                           |
| Usage:                    | Setting only                                                                                                                                                                                                                                                                                                      |
|                           |                                                                                                                                                                                                                                                                                                                   |

#### LAYout:WINDow<n>:ADD? <Direction>,<WindowType>

This command adds a measurement window to the display. Note that with this command, the suffix <n> determines the existing window next to which the new window is added, as opposed to LAYout:ADD[:WINDow]?, for which the existing window is defined by a parameter.

To replace an existing window, use the LAYout:WINDow<n>:REPLace command.

This command is always used as a query so that you immediately obtain the name of the new window as a result.

Suffix: <n>

Window

Parameters: <Direction>

LEFT | RIGHt | ABOVe | BELow

| <windowtype></windowtype>                         | Type of measurement window you want to add.<br>See LAYout:ADD[:WINDow]? on page 132 for a list of available window types.<br>Note that the window type must be valid for the active channel.<br>To create a window for a different channel use the LAYout:<br>GLOBal:ADD[:WINDow]? command. |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Return values:<br><newwindowname></newwindowname> | When adding a new window, the command returns its name (by default the same as its number) as a result.                                                                                                                                                                                     |
| Example:                                          | LAY:WIND1:ADD? LEFT,MTAB<br>Result:<br>'2'<br>Adds a new window named '2' with a marker table to the left of<br>window 1.                                                                                                                                                                   |
| Usage:                                            | Query only                                                                                                                                                                                                                                                                                  |

#### LAYout:WINDow<n>:IDENtify?

This command queries the **name** of a particular display window (indicated by the <n> suffix) in the active channel.

**Note**: to query the **index** of a particular window, use the LAYout:IDENtify[: WINDow]? command.

| Suffix |
|--------|
|--------|

| <n></n>                                     | Window                                                                                                |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Return values:<br><windowname></windowname> | String containing the name of a window.<br>In the default state, the name of the window is its index. |
| Example:                                    | LAY:WIND2:IDEN?<br>Queries the name of the result display in window 2.<br>Response:<br>'2'            |
| Usage:                                      | Query only                                                                                            |

#### LAYout:WINDow<n>:REMove

This command removes the window specified by the suffix <n> from the display in the active channel.

The result of this command is identical to the LAYout:REMove[:WINDow] command.

To remove a window in a different channel use the LAYout:GLOBal:REMove[: WINDow] command.

Suffix: <n>

Window

Manual 1346.8926.02 - 01

| Example: | LAY:WIND2:REM<br>Removes the result display in window 2. |
|----------|----------------------------------------------------------|
| Usage:   | Event                                                    |

#### LAYout:WINDow<n>:REPLace <WindowType>

This command changes the window type of an existing window (specified by the suffix <n>) in the active channel.

The effect of this command is identical to the LAYout:REPLace[:WINDow] command.

To add a new window, use the LAYout:WINDow<n>:ADD? command.

Suffix: <n>

Window

| Setting | parameters: |
|---------|-------------|
|---------|-------------|

| <windowtype></windowtype> | Type of measurement window you want to replace another one with.<br>See LAYout:ADD[:WINDow]? on page 132 for a list of available window types                      |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | Note that the window type must be valid for the active channel.<br>To create a window for a different channel use the LAYout :<br>GLOBal:REPLace[:WINDow] command. |
| Example:                  | LAY:WIND2:REPL MTAB<br>Replaces the result display in window 2 with a marker table.                                                                                |
| Usage:                    | Setting only                                                                                                                                                       |

## 7.7 Retrieving Results

The following commands are required to retrieve the calculated CDR parameters.

| • | Retrieving Numerical Results            | 138 |
|---|-----------------------------------------|-----|
| • | Retrieving Signal Flow Results          | 141 |
| • | Retrieving Trace Data and Marker Values | 145 |
| • | Using the TRACe[:DATA] Command          | 154 |

## 7.7.1 Retrieving Numerical Results

These commands return the average, maximum or minimum result of the specified parameter. For details and an assignment of the parameters to the keywords see

| FETCh:BURSt:COUNt?             | 139  |
|--------------------------------|------|
| FETCh:BURSt:LENGths?           | 139  |
| FETCh:BURSt:STARts?            | .139 |
| FETCh:SUMMary[:ALL]?           | 140  |
| FETCh:SUMMary:CRESt[:AVERage]? | 140  |

**Retrieving Results** 

| FETCh:SUMMary:FERRor[:AVERage]?14               | 40 |
|-------------------------------------------------|----|
| FETCh:SUMMary:GIMBalance[:AVERage]?14           | 40 |
| FETCh:SUMMary:IQOFfset[:AVERage]?14             | 40 |
| FETCh:SUMMary:MER[:ALL][:AVERage]?14            | 40 |
| FETCh:SUMMary:MER:DATA[:AVERage]?14             | 41 |
| FETCh:SUMMary:MER:PILot[:AVERage]?14            | 41 |
| FETCh:SUMMary:POWer[:AVERage]?14                | 41 |
| FETCh:SUMMary:QUADerror[:AVERage]?14            | 41 |
| FETCh:SUMMary:SERRor[:AVERage]?14               | 41 |
| FETCh:SUMM: <parameter>[:AVERage]14</parameter> | 41 |
| FETCh:TTFRame?14                                | 41 |

## FETCh:BURSt:COUNt?

This command returns the number of analyzed bursts from the current capture buffer.

Return values: </br/>

Example:See Chapter 7.9.1, "Example: CDR Analysis", on page 164Usage:Query only

## FETCh:BURSt:LENGths?

This command returns the length of the analyzed bursts from the current measurement.

The result is a comma-separated list of lengths, one for each burst.

| <b>Return values:</b><br><value></value> | Default unit: s                                         |
|------------------------------------------|---------------------------------------------------------|
| Example:                                 | See Chapter 7.9.1, "Example: CDR Analysis", on page 164 |
| Usage:                                   | Query only                                              |

## FETCh:BURSt:STARts?

This command returns the start position of each analyzed burst in the current capture buffer.

#### **Return values:**

| <value></value> | Offset of the burst start from the beginning of the capture buffer. |
|-----------------|---------------------------------------------------------------------|
|                 | Default unit: s                                                     |
|                 |                                                                     |

Example: FETC:BURS:STAR? //Result: //6.04e-05

Usage: Query only

#### FETCh:SUMMary[:ALL]?

Returns all values in the result summary, in the same order as in the display (see "Result Summary" on page 30).

For details on the individual parameters see Chapter 3.1, "CDR Parameters", on page 14.

| on page 14. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Result>     | <pre><evmaii_db_min>,<evmaii_db_avg>,<evmaii_db_max>,<br/><evmaii_pct_min>,<evmaii_pct_avg>,<evmaii_pct_max><br/>, <evmdata_db_min>,<evmdata_db_avg>,<evm-<br>Data_dB_Max&gt;, <evmdata_pct_min>,<evm-<br>Data_PCT_Avg&gt;,<evmdata_pct_max>, <evmpi-<br>lot_dB_Min&gt;,<evmpilot_db_avg>,<evmpilot_db_max>, <evm-<br>Pilot_PCT_Min&gt;,<evmpilot_pct_avg>,<evmpilot_pct_max>,<br/><mer_min>,<mer_avg>,<mer_max>, <i qoffset_min="">,<i <br="">QOffset_Avg&gt;,<i qoffset_max="">, <gainimbalance_min>,<gain-<br>Imbalance_Avg&gt;,<gainimbalance_max>, <fre-<br>qErr_Min&gt;,<freqerr_avg>,<freqerr_max>, <sampleclock-<br>Err_Min&gt;,<freqerr_avg>,<freqerr_max>, <sampleclock-<br>Err_Min&gt;,<crestfactor_avg>,<crestfactor_max>,<br/><crestfactor_min>,<crestfactor_avg>,<crestfactor_max>,<br/>Comma-separated list with 3 statistical values for each result.</crestfactor_max></crestfactor_avg></crestfactor_min></crestfactor_max></crestfactor_avg></sampleclock-<br></freqerr_max></freqerr_avg></sampleclock-<br></freqerr_max></freqerr_avg></fre-<br></gainimbalance_max></gain-<br></gainimbalance_min></i></i></i></mer_max></mer_avg></mer_min></evmpilot_pct_max></evmpilot_pct_avg></evm-<br></evmpilot_db_max></evmpilot_db_avg></evmpi-<br></evmdata_pct_max></evm-<br></evmdata_pct_min></evm-<br></evmdata_db_avg></evmdata_db_min></evmaii_pct_max></evmaii_pct_avg></evmaii_pct_min></evmaii_db_max></evmaii_db_avg></evmaii_db_min></pre> |
| Example:    | <pre>FETC:SUMM:ALL? //-34.6742,-34.6742, //1.84624,1.84624, //-34.5875,-34.5875,-34.5875, //1.86477,1.86477,1.86477, //-35.5229,-35.5229,-35.5229, //1.67439,1.67439,1.67439, //34.6742,34.6742,34.6742, //-75.106,-75.106,-75.106, //0.00573547,0.00573547,0.00573547,</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

//-0.0159425,-0.0159425,-0.0159425, //0.272241,0.272241,0.272241, //0.219516,0.219516,0.219516, //-23.1036,-23.1036,-23.1036, //9.84252,9.84252,9.84252

See "Result Summary" on page 30

FETCh:SUMMary:CRESt[:AVERage]? FETCh:SUMMary:FERRor[:AVERage]? FETCh:SUMMary:GIMBalance[:AVERage]? FETCh:SUMMary:IQOFfset[:AVERage]? FETCh:SUMMary:MER[:ALL][:AVERage]?

Query only

Usage:

Manual operation:

**Retrieving Results** 

```
FETCh:SUMMary:MER:DATA[:AVERage]?
FETCh:SUMMary:MER:PILot[:AVERage]?
FETCh:SUMMary:POWer[:AVERage]?
FETCh:SUMMary:QUADerror[:AVERage]?
FETCh:SUMMary:SERRor[:AVERage]?
FETCh:SUMM:<parameter>[:AVERage]
```

These commands return the average result of the specified parameter. For details and an assignment of the parameters to the keywords see Table 3-1.

## FETCh:TTFRame?

Retrieves the time offset between the trigger event and the start of the first OFDM frame.

#### Return values:

| <time></time> | Default unit: s |
|---------------|-----------------|
| Example:      | FETC:TTFR?      |
| Usage:        | Query only      |

## 7.7.2 Retrieving Signal Flow Results

The following commands are required to retrieve the results of the signal flow stages. See also "Signal Flow" on page 31.

| FETCh:SFLow:FSYNc?             |     |
|--------------------------------|-----|
| FETCh:SFLow:STATe:ALL?         | 142 |
| FETCh:SFLow:STATe:BDETection?  |     |
| FETCh:SFLow:STATe:COMPensate?  | 142 |
| FETCh:SFLow:STATe:DESTimation? |     |
| FETCh:SFLow:STATe:EVMMeas?     |     |
| FETCh:SFLow:STATe:FSYNc?       |     |
| FETCh:SFLow:STATe:MDETection?  | 144 |
| FETCh:SFLow:STATe:PESTimation? |     |
| FETCh:SFLow:STATe:TSYNc?       | 144 |
| FETCh:SFLow:TSYNc?             |     |
|                                |     |

## FETCh:SFLow:FSYNc?

This command returns the Frame Synchronisation value.

# Return values:<br/><Value>Example:FETC:SFL:FSYN?Usage:Query only

## FETCh:SFLow:STATe:ALL?

Returns the state of the individual stages of the signal flow. The result is a comma-separated list of states, one for each stage. The stages are in the following order:

- Burst Detection
- Time Sync
- Frame Sync
- Data-Aided Parameter estimation
- Modulation detection
- Pilot-aided parameter estimation
- Compensate
- EVM meas

#### Return values:

| <value></value> | 0                                                       |  |
|-----------------|---------------------------------------------------------|--|
|                 | Not successful                                          |  |
|                 | 1                                                       |  |
|                 | Successful                                              |  |
|                 | -1                                                      |  |
|                 | Inactive                                                |  |
| Example:        | FETC:SFL:STAT:ALL?                                      |  |
| Example:        | See Chapter 7.9.1, "Example: CDR Analysis", on page 164 |  |
| Usage:          | Query only                                              |  |

## FETCh:SFLow:STATe:BDETection?

Returns the state of the burst detection stage of the signal flow.

| Return values:  |                     |
|-----------------|---------------------|
| <value></value> | 0                   |
|                 | Not successful      |
|                 | 1                   |
|                 | Successful          |
|                 | -1                  |
|                 | Inactive            |
| Example:        | FETC:SFL:STAT:BDET? |
| Usage:          | Query only          |

#### FETCh:SFLow:STATe:COMPensate?

0

Returns the state of the compensation stage of the signal flow.

## Return values:

<Value>

Not successful

|          | 1                     |
|----------|-----------------------|
|          | Successful            |
|          | <b>-1</b><br>Inactive |
| Example: | FETC:SFL:STAT:COMP?   |
| Usage:   | Query only            |

## FETCh:SFLow:STATe:DESTimation?

Returns the state of the data-aided parameter estimation stage of the signal flow.

| Return values:  |                     |
|-----------------|---------------------|
| <value></value> | 0                   |
|                 | Not successful      |
|                 | 1                   |
|                 | Successful          |
|                 | -1                  |
|                 | Inactive            |
| Example:        | FETC:SFL:STAT:DEST? |
| Usage:          | Query only          |

#### FETCh:SFLow:STATe:EVMMeas?

Returns the state of the EVM measurement stage of the signal flow.

| Return values:  |                     |
|-----------------|---------------------|
| <value></value> | 0                   |
|                 | Not successful      |
|                 | 1                   |
|                 | Successful          |
|                 | -1                  |
|                 | Inactive            |
| Example:        | FETC:SFL:STAT:EVMM? |
| Usage:          | Query only          |

## FETCh:SFLow:STATe:FSYNc?

Returns the state of the frame synchronization stage of the signal flow.

Return values: <Value> 0 Not successful 1 Successful

|          | -1<br>Inactive                 |
|----------|--------------------------------|
| Example: | <pre>FETC:SFL:STAT:FSYN?</pre> |
| Usage:   | Query only                     |

## FETCh:SFLow:STATe:MDETection?

Returns the state of the modulation detection stage of the signal flow.

| Return values:  |                                |
|-----------------|--------------------------------|
| <value></value> | 0                              |
|                 | Not successful                 |
|                 | 1                              |
|                 | Successful                     |
|                 | -1                             |
|                 | Inactive                       |
| Example:        | <pre>FETC:SFL:STAT:MDET?</pre> |
| Usage:          | Query only                     |

## FETCh:SFLow:STATe:PESTimation?

Returns the state of the pilot-aided parameter estimation stage of the signal flow.

| Return values:  |   |
|-----------------|---|
| <value></value> | 0 |
|                 |   |

|          | Not successful      |
|----------|---------------------|
|          | 1                   |
|          | Successful          |
|          | -1                  |
|          | Inactive            |
| Example: | FETC:SFL:STAT:PEST? |
| Usage:   | Query only          |

#### FETCh:SFLow:STATe:TSYNc?

Returns the state of the time synchronization stage of the signal flow.

| Return values:  |                     |
|-----------------|---------------------|
| <value></value> | 0                   |
|                 | Not successful      |
|                 | 1                   |
|                 | Successful          |
|                 | -1                  |
|                 | Inactive            |
| Example:        | FETC:SFL:STAT:TSYN? |
Usage: Query only

#### FETCh:SFLow:TSYNc?

This command returns the Time Synchronisation value.

Return values: <Value>

Example:FETC:SFL:TSYN?Usage:Query only

### 7.7.3 Retrieving Trace Data and Marker Values

In order to retrieve the trace and marker results in a remote environment, use the following commands:

Useful commands for retrieving results described elsewhere:

• CALCulate<n>:MARKer<m>:X on page 117

#### Remote commands exclusive to retrieving trace data and marker values:

| CALCulate <n>:DELTamarker<m>:Y?</m></n>          | 145   |
|--------------------------------------------------|-------|
| CALCulate <n>:DELTamarker<m>:Y:RELative?</m></n> | 146   |
| CALCulate <n>:DELTamarker<m>:Z?</m></n>          | 146   |
| CALCulate <n>:MARKer<m>:Y?</m></n>               | .147  |
| CALCulate <n>:MARKer<m>:Z?</m></n>               | .147  |
| FORMat[:DATA]                                    | . 148 |
| FORMat:DEXPort:DSEParator                        | 148   |
| FORMat:DEXPort:GRAPh                             | .149  |
| FORMat:DEXPort:HEADer                            | .149  |
| FORMat:DEXPort:TRACes                            | 149   |
| MMEMory:STORe <n>:TRACe</n>                      | .150  |
| TRACe <n>[:DATA]?</n>                            | 150   |
| TRACe <n>[:DATA]:X?</n>                          | 151   |
| TRACe <n>[:DATA]:Y?</n>                          | 151   |
| TRACe:IQ:DATA?                                   | 152   |
| TRACe:IQ:DATA:FORMat                             | 152   |
| TRACe:IQ:DATA:MEMory?                            | 153   |
|                                                  |       |

#### CALCulate<n>:DELTamarker<m>:Y?

This command queries the relative position of a delta marker on the y-axis.

If necessary, the command activates the delta marker first.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single measurement mode.

The unit depends on the application of the command.

| Marker                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Window                                                                                                                                                                                                        |
| Result at the position of the delta marker.<br>The unit is variable and depends on the one you have currently<br>set.                                                                                         |
| <pre>INIT:CONT OFF Switches to single sweep mode. INIT; *WAI Starts a sweep and waits for its end. CALC:DELT2 ON Switches on delta marker 2. CALC:DELT2:Y? Outputs measurement value of delta marker 2.</pre> |
| Query only                                                                                                                                                                                                    |
| See "Meria Marker 1 / Delta Marker 1 / Delta Marker 2 / Delta<br>Marker 16 " on page 64<br>See "Y-value" on page 65                                                                                           |
|                                                                                                                                                                                                               |

### CALCulate<n>:DELTamarker<m>:Y:RELative?

Suffix: <n> <m>

Return values:<XValue>Default unit: HZUsage:Query only

### CALCulate<n>:DELTamarker<m>:Z?

This command queries a delta marker's current position on the z-axis in a 3-dimensional diagram.

| Suffix:                                    |                                                                                                              |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| <m></m>                                    | Marker                                                                                                       |
| <n></n>                                    | Window                                                                                                       |
| <b>Return values:</b><br><result></result> | Result at the position of the delta marker.<br>The unit depends on the type of data displayed on the z-axis. |
| Usage:                                     | Query only                                                                                                   |

#### CALCulate<n>:MARKer<m>:Y?

This command queries the position of a marker on the y-axis.

If necessary, the command activates the marker first.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single measurement mode.

| Suffix:                                    |                                                                                                                                                                                                                           |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <n></n>                                    | Window                                                                                                                                                                                                                    |
| <m></m>                                    | Marker                                                                                                                                                                                                                    |
| <b>Return values:</b><br><result></result> | Result at the marker position.                                                                                                                                                                                            |
| Example:                                   | INIT: CONT OFF<br>Switches to single measurement mode.<br>CALC: MARK2 ON<br>Switches marker 2.<br>INIT; *WAI<br>Starts a measurement and waits for the end.<br>CALC: MARK2: Y?<br>Outputs the measured value of marker 2. |
| Usage:                                     | Query only                                                                                                                                                                                                                |
| Manual operation:                          | See " Marker Table " on page 27<br>See "Mr Marker 1 / Delta Marker 1 / Delta Marker 2 / Delta<br>Marker 16 " on page 64<br>See "Y-value" on page 65                                                                       |

#### CALCulate<n>:MARKer<m>:Z?

This command queries a marker's current position on the z-axis in a 3-dimensional diagram.

For Constellation diagrams, the result is the I/Q value pair for the marker position.

| Suffix:<br><m></m>                  | Marker                                                                                                       |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------|
| <n></n>                             | Window                                                                                                       |
| Return values:<br><result></result> | Result at the position of the delta marker.<br>The unit depends on the type of data displayed on the z-axis. |
| Usage:                              | Query only                                                                                                   |
| Manual operation:                   | See "Constellation Diagram" on page 18                                                                       |

#### FORMat[:DATA] <Format>[, <BitLength>]

This command selects the data format that is used for transmission of trace data from the R&S ETL CDR software to the controlling computer.

Note that the command has no effect for data that you send to the R&S ETL CDR software. The R&S ETL CDR software automatically recognizes the data it receives, regardless of the format.

#### Parameters:

| <format></format>       | ASCii   REAL   UINT   MATLab                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | <b>ASCii</b><br>ASCii format, separated by commas.<br>This format is almost always suitable, regardless of the actual<br>data format. However, the data is not as compact as other for-<br>mats may be.                                                                                                                                                                                                                                                                          |
|                         | <b>REAL</b><br>Floating-point numbers (according to IEEE 754) in the "definite<br>length block format".                                                                                                                                                                                                                                                                                                                                                                          |
| <bitlength></bitlength> | <ul> <li>16   32   64</li> <li>Length in bits for floating-point results</li> <li>16</li> <li>16-bit floating-point numbers.</li> <li>Compared to REAL, 32 format, half as many numbers are returned.</li> <li>32</li> <li>32-bit floating-point numbers</li> <li>For I/Q data, 8 bytes per sample are returned for this format setting.</li> <li>64</li> <li>64-bit floating-point numbers</li> <li>Compared to REAL, 32 format, twice as many numbers are returned.</li> </ul> |
| Example:                | FORM REAL, 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

#### FORMat:DEXPort:DSEParator <Separator>

This command selects the decimal separator for data exported in ASCII format.

# **Parameters:** <Separator>

| POINt   CO  | MMa                                          |
|-------------|----------------------------------------------|
| COMMa       |                                              |
| Uses a com  | ıma as decimal separator, e.g. 4,05.         |
| POINt       |                                              |
| Uses a poir | it as decimal separator, e.g. 4.05.          |
| *RST:       | *RST has no effect on the decimal separator. |
|             | Default is POINt.                            |

| Example:          | FORM:DEXP:DSEP POIN                  |
|-------------------|--------------------------------------|
|                   | Sets the decimal point as separator. |
| Manual operation: | See " Decimal Separator " on page 71 |

#### FORMat:DEXPort:GRAPh <State>

If enabled, all traces for the currently selected graphical result display are included in the export file.

Trace data resulting from encrypted file input cannot be queried.

 Parameters:
 <State>
 ON | OFF | 0 | 1

 <State>
 OFF | 0

 Switches the function off
 ON | 1

 Switches the function on
 \*RST:

 \*RST:
 0

#### FORMat:DEXPort:HEADer <State>

If enabled, additional instrument and measurement settings are included in the header of the export file for result data. If disabled, only the pure result data from the selected traces and tables is exported.

Trace data resulting from encrypted file input cannot be queried.

| Parameters:     |          |                   |  |
|-----------------|----------|-------------------|--|
| <state></state> | ON   OFF | <sup>:</sup>  0 1 |  |
|                 | *RST:    | 1                 |  |
|                 |          |                   |  |

Manual operation: See "Include Instrument & Measurement Settings " on page 71

#### FORMat:DEXPort:TRACes <Selection>

This command selects the data to be included in a data export file (see MMEMory: STORe<n>: TRACe on page 150).

Trace data resulting from encrypted file input cannot be queried.

#### Parameters:

<Selection>

SINGle | ALL **SINGle** Only a single trace is selected for export, namely the one specified by the MMEMory:STORe<n>:TRACe command.

#### ALL

Selects all active traces and result tables (e.g. Result Summary, marker peak list etc.) in the current application for export to an ASCII file. The <trace> parameter for the MMEMory:STORe<n>:TRACe command is ignored. \*RST: SINGle

Manual operation: See "Export all Traces and all Table Results " on page 70

#### MMEMory:STORe<n>:TRACe <Trace>, <FileName>

This command exports trace data from the specified window to an ASCII file.

Trace data resulting from encrypted file input cannot be queried.

| Suffix:<br><n></n>                    | Window                                                                                 |
|---------------------------------------|----------------------------------------------------------------------------------------|
| <b>Parameters:</b><br><trace></trace> | Number of the trace to be stored                                                       |
| <filename></filename>                 | String containing the path and name of the target file.                                |
| Example:                              | MMEM:STOR1:TRAC 1, 'C:\TEST.ASC'<br>Stores trace 1 from window 1 in the file TEST.ASC. |
| Manual operation:                     | See " Export Trace to ASCII File " on page 71                                          |

#### TRACe<n>[:DATA]? <Trace>

This command returns the y-values of the trace data for the current measurement or result display.

For 3-dimensional displays, such as the Allocation Matrix, this command returns the data values for the third (z-) dimension.

For more information see Chapter 7.7.4, "Using the TRACe[:DATA] Command", on page 154.

Trace data resulting from encrypted file input cannot be queried.

Suffix: <n>

1..n Window

| Query parameters:<br><trace></trace> | TRACe1   TRACe2   TRACe3   TRACe4   TRACe5   TRACe6     |
|--------------------------------------|---------------------------------------------------------|
| Example:                             | See Chapter 7.9.1, "Example: CDR Analysis", on page 164 |
| Usage:                               | Query only                                              |
| Manual operation:                    | See "Allocation Matrix" on page 16                      |

#### TRACe<n>[:DATA]:X? <Trace>

This command returns the x-values for the trace data in the selected result display.

For information on how many values are returned see Chapter 7.7.4, "Using the TRACe[:DATA] Command", on page 154.

Trace data resulting from encrypted file input cannot be queried.

Suffix: <n>

1..n Window

| Query parameters: |                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <trace></trace>   | TRACe1   TRACe2   TRACe3   TRACe4   TRACe5   TRACe6                                                                                                                                                                                                                                                                                                                |
| Example:          | TRAC2:DATA:X?                                                                                                                                                                                                                                                                                                                                                      |
| Example:          | See Chapter 7.9.1, "Example: CDR Analysis", on page 164                                                                                                                                                                                                                                                                                                            |
| Usage:            | Query only                                                                                                                                                                                                                                                                                                                                                         |
| Manual operation: | See "Allocation Matrix" on page 16<br>See "CCDF" on page 17<br>See "Channel Flatness" on page 17<br>See "MER vs Carrier" on page 22<br>See "MER vs Symbol" on page 23<br>See "MER vs Symbol vs Carrier" on page 24<br>See "Group Delay" on page 25<br>See "Impulse Response" on page 25<br>See "Magnitude Capture" on page 26<br>See "Power vs Carrier" on page 27 |
|                   | See "Power vs Symbol" on page 28<br>See "Power vs Symbol vs Carrier" on page 29                                                                                                                                                                                                                                                                                    |
|                   |                                                                                                                                                                                                                                                                                                                                                                    |

#### TRACe<n>[:DATA]:Y? <Trace>

This command returns the y-values for 3-dimensional trace data in the selected result display.

For information on how many values are returned see Chapter 7.7.4, "Using the TRACe[:DATA] Command", on page 154.

Trace data resulting from encrypted file input cannot be queried.

| Suffix:           |                                                         |
|-------------------|---------------------------------------------------------|
| <n></n>           | 1n<br>Window                                            |
| Query parameters: | VIIIdow                                                 |
| <trace></trace>   | TRACe1   TRACe2   TRACe3   TRACe4   TRACe5   TRACe6     |
| Example:          | TRAC2:DATA:Y?                                           |
| Example:          | See Chapter 7.9.1, "Example: CDR Analysis", on page 164 |
| Usage:            | Query only                                              |

### Manual operation: See "Allocation Matrix" on page 16 See "MER vs Symbol vs Carrier" on page 24 See "Power vs Symbol vs Carrier" on page 29

#### TRACe: IQ: DATA?

This command initiates a measurement with the current settings and returns the captured data from I/Q measurements.

This command corresponds to:

INIT:IMM; \*WAI;: TRACe:IQ:DATA:MEMory?

However, the TRACe: IQ: DATA? command is quicker in comparison.

Trace data resulting from encrypted file input cannot be queried.

#### Return values:

| <results></results> | Measured voltage for I and Q component for each sample that has been captured during the measurement. Default unit: V                                                                                                                                                                                                                                                                             |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Example:            | TRAC: IQ: STAT ON<br>Enables acquisition of I/Q data<br>TRAC: IQ: SET NORM, 10MHz, 32MHz, EXT, POS, 0, 4096<br>Measurement configuration:<br>Sample Rate = 32 MHz<br>Trigger Source = External<br>Trigger Slope = Positive<br>Pretrigger Samples = 0<br>Number of Samples = 4096<br>FORMat REAL, 32<br>Selects format of response data<br>TRAC: IQ: DATA?<br>Starts measurement and reads results |
| Usage:              | Query only                                                                                                                                                                                                                                                                                                                                                                                        |

#### TRACe:IQ:DATA:FORMat <Format>

This command selects the order of the I/Q data.

#### Parameters:

<Format>

COMPatible | IQBLock | IQPair

#### **COMPatible**

I and Q values are separated and collected in blocks: A block (512k) of I values is followed by a block (512k) of Q values, followed by a block of I values, followed by a block of Q values etc. (I,I,I,I,Q,Q,Q,Q,I,I,I,I,Q,Q,Q,Q,...)

#### **IQBLock**

First all I-values are listed, then the Q-values (I,I,I,I,I,I,...Q,Q,Q,Q,Q,Q)

IQPair One pair of I/Q values after the other is listed (I,Q,I,Q,I,Q...). \*RST: IQBL

#### TRACe:IQ:DATA:MEMory? [<OffsetSamples>,<NoOfSamples>]

This command queries the I/Q data currently stored in the capture buffer of the R&S ETL CDR software.

By default, the command returns all I/Q data in the memory. You can, however, narrow down the amount of data that the command returns using the optional parameters.

If no parameters are specified with the command, the entire trace data is retrieved; in this case, the command returns the same results as TRACe:IQ:DATA?. (Note, how-ever, that the TRAC:IQ:DATA? command initiates a new measurement before returning the captured values, rather than returning the existing data in the memory.)

Trace data resulting from encrypted file input cannot be queried.

The command returns a comma-separated list of the measured values in floating point format (comma-separated values = CSV). The number of values returned is 2 \* the number of complex samples.

The total number of complex samples is displayed in the channel bar in manual operation and can be calculated as:

<SampleRate> \* <CaptureTime>

#### **Parameters:**

| <offsetsamples></offsetsamples> | Selects an offset at which the output of data should start in rela-<br>tion to the first data. If omitted, all captured samples are output,<br>starting with the first sample.                           |                                                                                                                                             |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|                                 | Range:<br>*RST:                                                                                                                                                                                          | 0 to <# of samples> – 1, with <# of samples> being<br>the maximum number of captured values<br>0                                            |
| <noofsamples></noofsamples>     | Number of samples you want to query, beginning at the offset you have defined. If omitted, all captured samples (starting at offset) are output.                                                         |                                                                                                                                             |
|                                 | Range:<br>*RST:                                                                                                                                                                                          | 1 to <# of samples> - <offset samples=""> with &lt;# of<br/>samples&gt; maximum number of captured values<br/>&lt;# of samples&gt;</offset> |
| Return values:                  |                                                                                                                                                                                                          |                                                                                                                                             |
| <iqdata></iqdata>               | <ul> <li>Measured value pair (I,Q) for each sample that has been recorded.</li> <li>The data format of the individual values depends on FORMat [: DATA] on page 148.</li> <li>Default unit: V</li> </ul> |                                                                                                                                             |
|                                 |                                                                                                                                                                                                          |                                                                                                                                             |
|                                 |                                                                                                                                                                                                          |                                                                                                                                             |

| Example: | <pre>// Perform a single I/Q capture.<br/>INIT; *WAI<br/>// Determine output format (binary float32)<br/>FORMat REAL, 32<br/>// Read 1024 I/Q samples starting at sample 2048.<br/>TRAC:IQ:DATA:MEM? 2048,1024</pre> |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Usage:   | Query only                                                                                                                                                                                                           |

# 7.7.4 Using the TRACe[:DATA] Command

This chapter contains information on the TRACe:DATA command and a detailed description of the characteristics of that command.

The TRACe:DATA command queries the trace data or results of the currently active measurement or result display. The type, number and structure of the return values are specific for each result display. For results that have any kind of unit, the command returns the results in the unit you have currently set for that result display.

Trace data resulting from encrypted file input cannot be queried.

For several result displays, the command also supports various SCPI parameters in combination with the query. If available, each SCPI parameter returns a different aspect of the results. If SCPI parameters are supported, you have to quote one in the query.

#### Example:

TRAC:DATA? TRACE1

The format of the return values is either in ASCII or binary characters and depends on the format you have set with FORMat [:DATA] on page 148.

Following this detailed description, you will find a short summary of the most important functions of the command (TRACe < n > [:DATA]? on page 150).

| • | Allocation Matrix                       | 155 |
|---|-----------------------------------------|-----|
| • | CCDF                                    | 155 |
| • | Channel Flatness                        | 155 |
| • | Constellation Diagram                   | 155 |
| • | Constellation vs Carrier                | 156 |
| • | Constellation vs Symbol                 | 157 |
| • | MER vs Carrier                          | 157 |
| • | MER vs Symbol.                          | 157 |
| • | MER vs Symbol vs Carrier.               | 157 |
| • | Frequency Error                         | 158 |
| • | Group Delay                             | 158 |
| • | Impulse Response                        | 158 |
| • | Magnitude Capture                       | 159 |
| • | Power vs Carrier                        | 159 |
| • | Power vs Symbol.                        | 159 |
| • | Power vs Symbol vs Carrier.             | 160 |
| • | Power Spectrum                          | 160 |
|   | · • • • • • • • • • • • • • • • • • • • |     |

#### 7.7.4.1 Allocation Matrix

The values in the allocation matrix represent the modulation type for that symbol and carrier. Depending on the parameter, the modulation is provided in different formats.

TRACe<n>:DATA? TRACe1 returns the modulation indexes used for each symbol (column-wise from the matrix).

TRACe<n>:DATA? TRACe2 returns the modulation names used for each symbol (column-wise from the matrix).



To obtain a list of the symbols (corresponding to the x-axis in the matrix), use TRACe < n > : DATA: X? TRACe1, see TRACe < n > [:DATA]: X? on page 151.

To obtain a list of the subcarriers (corresponding to the y-axis in the matrix), use TRACe<n>:DATA:Y? TRACe1, see TRACe<n>[:DATA]:Y? on page 151.

#### 7.7.4.2 CCDF

The command returns the complementary cumulative probability distribution for each sample in the capture buffer, relative to the average power.



To obtain a list of the average power per sample, use TRACe<n>:DATA:X? TRACe1, see TRACe<n>[:DATA]:X? on page 151.

#### 7.7.4.3 Channel Flatness

The command returns the spectrum flatness as a list over all subcarriers. The list consists of one value for each trace point.

<relative power>, ...

The unit is always dB.

The following parameters are supported.

- TRACE1 Returns the average power over all frames.
- TRACE2 Returns the minimum power found over all frames.
- TRACE3 Returns the maximum power found over all frames.

#### 7.7.4.4 Constellation Diagram

The command returns two values (I/Q) for each constellation point, for each carrier, in each symbol, in each frame, as defined in the Allocation matrix.

 $< I[F_0][Sym_0][Carr_1]>, < Q[F_0][Sym_0][Carr_1]>, ..., < I[F_0][Sym_0][Carr_n]>, < Q[F_0][Sym_0][Carr_n]>, < I[F_0][Sym_1][Carr_1]>, < Q[F_0][Sym_1][Carr_1]>, ..., < I[F_0][Sym_1][Carr_n]>, < Q[F_0][Sym_1][Carr_n]>, < I[F_0][Sym_n][Carr_1]>, < Q[F_0][Sym_n][Carr_1]>, ..., < I[F_0][Sym_n][Carr_n]>, < Q[F_0][Sym_n][Carr_n]>, < I[F_1][Sym_0][Carr_1]>, < Q[F_1][Sym_0][Carr_1]>, ..., < I[F_1][Sym_1][Carr_n]>, < Q[F_1][Sym_1][Carr_n]>, < I[F_1][Sym_1][Carr_1]>, ..., < I[F_1][Sym_1][Carr_n]>, < Q[F_1][Sym_1][Carr_n]>, < I[F_1][Sym_1][Carr_1]>, < Q[F_1][Sym_1][Carr_1]>, ..., < I[F_1][Sym_1][Carr_n]>, < Q[F_1][Sym_1][Carr_n]>, < I[F_1][Sym_1][Carr_n]>, < Q[F_1][Sym_1][Carr_n]>, < I[F_1][Sym_1][Carr_n]>, < Q[F_1][Sym_1][Carr_n]>, < I[F_1][Sym_1][Carr_n]>, < Q[F_1][Sym_1][Carr_n]>, < I[F_1][Sym_1][Carr_n]>, < I[F_1][Sy$ 

#### Where:

- F = frame
- Sym = symbol of that subframe
- Carr = subcarrier in that symbol

The I and Q values have no unit.

#### 7.7.4.5 Constellation vs Carrier

The command returns one value (I or Q) for each constellation point, for each symbol, for each carrier, in each frame. Whether the I or Q values are returned depends on the parameter:

TRACe1:DATA? TRACe1 returns | values

TRACe1:DATA? TRACe2 returns Q values

#### Table 7-3: Results for TRACe1:DATA? TRACe1

 $<![F_0][Carr_0][Sym_0]>, <![F_0][Carr_0][Sym_1]>, ..., <![F_0][Carr_0][Sym_n]>, <![F_0][Carr_1][Sym_0]>, <![F_0][Carr_1][Sym_1]>, ..., <![F_0][Carr_1][Sym_n]>, <![F_0][Carr_n][Sym_0]>, <![F_0][Carr_n][Sym_1]>, ..., <![F_0][Carr_n][Sym_n]>, <![F_1][Carr_0][Sym_0]>, <![F_1][Carr_0][Sym_1]>, ..., <![F_1][Carr_0][Sym_0]>, <![F_1][Carr_1][Sym_1]>, ..., <![F_1][Carr_1][Sym_0]>, <![F_1][Carr_1][Sym_1]>, ..., <![F_1][Carr_1][Sy$ 

#### Where:

- F = frame
- Carr = subcarrier in that frame
- Sym = symbol of that subcarrier

The I and Q values have no unit.



To obtain a list of the subcarriers (corresponding to the x-axis in the matrix), use TRACe<n>:DATA:X? TRACe1, see TRACe<n>[:DATA]:X? on page 151. Example for a result length of 4, FFT size = 64: -32,-32,-32,-32,-31,-31,-31,-31,-30,-30,-30,-30, ...,+30,+30,+30,+30,+31,+31,+31,+31

#### 7.7.4.6 Constellation vs Symbol

The command returns one value (I or Q) for each constellation point, for each carrier, in each symbol, in each frame, in the same order as for the common Constellation diagram. Whether the I or Q values are returned depends on the parameter:

TRACe1:DATA? TRACe1 returns | values

TRACe1:DATA? TRACe2 returns Q values

The I and Q values have no unit.



To obtain a list of the symbols (corresponding to the x-axis in the matrix), use TRACe<n>:DATA:X? TRACe1, see TRACe<n>[:DATA]:X? on page 151.

Example for a result length of 4:

 $0,0,0,0,\,\ldots\,\,,0,1,1,1,1,\,\ldots\,,\,1,2,2,2,2,\,\ldots\,,2,3,3,3,3\,\ldots\,,\,3$ 

#### 7.7.4.7 MER vs Carrier

The command returns one value for each carrier that has been analyzed.

The following parameters are supported.

- TRACE1
   Returns the average MER over all symbols.
- TRACE2 Returns the minimum MER found over all symbols.
- TRACE3 Returns the maximum MER found over all symbols.

#### 7.7.4.8 MER vs Symbol

The command returns one value for each OFDM symbol that has been analyzed.

The following parameters are supported.

- TRACE1 Returns the average MER over all carriers.
- TRACE2 Returns the minimum MER found over all carriers.
- TRACE3 Returns the maximum MER found over all carriers.

#### 7.7.4.9 MER vs Symbol vs Carrier

The command returns one value for each OFDM cell.

<[F0][Symb0][Carrier1]>, ..., <[F0][Symb0][Carrier(n)]>, <[F0][Symb1][Carrier1]>, ..., <[F0][Symb1][Carrier(n)]>,

<[F0][Symb(n)][Carrier1]>, ..., <[F0][Symb(n)][Carrier(n)]>,

<[F1][Symb0][Carrier1]>, ..., <[F1][Symb0][Carrier(n)]>,

<[F1][Symb1][Carrier1]>, ..., <[F1][Symb1][Carrier(n)]>,

<[F(n)][Symb(n)][Carrier1]>, ..., <[F(n)][Symb(n)][Carrier(n)]>

With F = frame and Symb = symbol of that subframe.

The following parameters are supported.

• TRACE1 Returns the MER over all carriers.



To obtain a list of the symbols (corresponding to the x-axis in the matrix), use TRACe<n>:DATA:X? TRACe1, see TRACe<n>[:DATA]:X? on page 151. To obtain a list of the subcarriers (corresponding to the y-axis in the matrix), use TRACe<n>:DATA:Y? TRACe1, see TRACe<n>[:DATA]:Y? on page 151.

#### 7.7.4.10 Frequency Error

The command returns one value for each OFDM symbol that has been analyzed.

<frequency error>,...

The unit is always Hz.

The following parameters are supported.

TRACE1

#### 7.7.4.11 Group Delay

The command returns one value for each trace point.

<group delay>, ...

The unit is always ns.

The following parameters are supported.

- TRACE1 Returns the average group delay over all frames.
- TRACE2
   Returns the minimum group delay found over all frames.
- TRACE3 Returns the maximum group delay found over all frames.

#### 7.7.4.12 Impulse Response

The command returns one value for each trace point.

```
<impulse response>, ...
```

The channel impulse response is the inverse FFT of the estimated channel transfer function. The time axis spans one FFT interval.

The following parameters are supported.

- TRACE1 Returns the average impulse response over all frames.
- TRACE2 Returns the minimum impulse response found over all frames.
- TRACE3 Returns the maximum impulse response found over all frames.

#### 7.7.4.13 Magnitude Capture

The command returns one value for each I/Q sample in the capture buffer.

<absolute power>, ...

The unit is always dBm.

The following parameters are supported.

TRACE1

#### 7.7.4.14 Power vs Carrier

The command returns one value for each carrier that has been analyzed.

<power>,...

The unit is always dBm.

The following parameters are supported.

- TRACE1 Returns the average power over all symbols.
- TRACE2 Returns the minimum power found over all symbols.
- TRACE3 Returns the maximum power found over all symbols.

#### 7.7.4.15 Power vs Symbol

The command returns one value for each OFDM symbol that has been analyzed.

<power>,...

The unit is always dBm.

The following parameters are supported.

 TRACE1 Returns the average power over all carriers.

- TRACE2 Returns the minimum power found over all carriers.
- TRACE3 Returns the maximum power found over all carriers.

#### 7.7.4.16 Power vs Symbol vs Carrier

The command returns one value for each OFDM cell.

<[F0][Symb0][Carrier1]>, ..., <[F0][Symb0][Carrier(n)]>, <[F0][Symb1][Carrier1]>, ..., <[F0][Symb1][Carrier(n)]>, <[F0][Symb(n)][Carrier1]>, ..., <[F0][Symb(n)][Carrier(n)]>, <[F1][Symb0][Carrier1]>, ..., <[F1][Symb0][Carrier(n)]>, <[F(n)][Symb(n)][Carrier1]>, ..., <[F(n)][Symb(n)][Carrier(n)]>,

With F = frame and Symb = symbol of that subframe.

The unit depends on is always dBm.

The following parameters are supported.

• TRACE1 Returns the power over all carriers.



To obtain a list of the symbols (corresponding to the x-axis in the matrix), use TRACe<n>:DATA:X? TRACe1, see TRACe<n>[:DATA]:X? on page 151. To obtain a list of the subcarriers (corresponding to the y-axis in the matrix), use TRACe<n>:DATA:Y? TRACe1, see TRACe<n>[:DATA]:Y? on page 151.

#### 7.7.4.17 Power Spectrum

The command returns one value for each trace point.

<power>,...

The unit is always dBm/Hz.

The following parameters are supported.

TRACE1

# 7.8 Status Reporting System

The status reporting system stores all information on the current operating state of the instrument, e.g. information on errors or limit violations which have occurred. This information is stored in the status registers and in the error queue. The status registers and the error queue can be queried via IEC bus.

In this section, only the status registers/bits specific to the R&S ETL CDR software are described.

For details on the common R&S VSE status registers refer to the description of remote control basics in the R&S VSE base software user manual.



\*RST does not influence the status registers.

#### **Description of the Status Registers**

In addition to the registers provided by the base system, the following register is used in the R&S ETL CDR software.



The STATUS:QUEStionable register "sums up" the information from all subregisters (e.g. bit 11 sums up the information for all STATUS:QUEStionable:SYNC registers). For some subregisters, there may be separate registers for each active channel. Thus, if a status bit in the STATUS:QUEStionable register indicates an error, the error may have occurred in any of the channel-specific subregisters. In this case, you must check the subregister of each channel to determine which channel caused the error. By default, querying the status of a subregister always returns the result for the currently selected channel.

This register contains application-specific information about synchronization errors or errors during burst detection for each window in each CDR channel. It can be queried with commands STATus:QUEStionable:SYNC:CONDition? on page 161 and STATus:QUEStionable:SYNC[:EVENt]? on page 162.

| Bit     | Definition                                                   |
|---------|--------------------------------------------------------------|
| 0       | Not used.                                                    |
| 1       | Sync not found<br>This bit is set if synchronization failed. |
| 2 to 14 | Not used.                                                    |
| 15      | This bit is always 0.                                        |

Table 7-4: Status error bits in STATus:QUEStionable:SYNC register for the R&S ETL CDR software

The following commands query the contents of the individual status registers.

| STATus:QUEStionable:SYNC:CONDition?  | 161 |
|--------------------------------------|-----|
| STATus:QUEStionable:SYNC[:EVENt]?    | 162 |
| STATus:QUEStionable:SYNC:ENABle      | 162 |
| STATus:QUEStionable:SYNC:NTRansition | 163 |
| STATus:QUEStionable:SYNC:PTRansition | 163 |
|                                      |     |

#### STATus:QUEStionable:SYNC:CONDition? < ChannelName>

This command reads out the CONDition section of the status register.

- -----

The command does not delete the contents of the EVENt section.

| <pre>suffix:<br/><n></n></pre>                   | Window                                                                                                                                          |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| <m></m>                                          | Marker                                                                                                                                          |
| Query parameters:<br><channelname></channelname> | String containing the name of the channel.<br>The parameter is optional. If you omit it, the command works for<br>the currently active channel. |
| Usage:                                           | Query only                                                                                                                                      |

#### STATus:QUEStionable:SYNC[:EVENt]? <ChannelName>

This command reads out the EVENt section of the status register.

The command also deletes the contents of the EVENt section.

| Suffix:                                          |                                                                                                                                                 |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| <Ŋ>                                              | Window                                                                                                                                          |
| <m></m>                                          | Marker                                                                                                                                          |
| Query parameters:<br><channelname></channelname> | String containing the name of the channel.<br>The parameter is optional. If you omit it, the command works for<br>the currently active channel. |
| Usage:                                           | Query only                                                                                                                                      |

#### STATus:QUEStionable:SYNC:ENABle <BitDefinition>, <ChannelName>

This command controls the ENABle part of a register.

The ENABle part allows true conditions in the EVENt part of the status register to be reported in the summary bit. If a bit is 1 in the enable register and its associated event bit transitions to true, a positive transition will occur in the summary bit reported to the next higher level.

# Suffix:

| <n></n>                                        | Window                                                                                                                                          |  |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <m></m>                                        | Marker                                                                                                                                          |  |
| Parameters:<br><bitdefinition></bitdefinition> | Range: 0 to 65535                                                                                                                               |  |
| <channelname></channelname>                    | String containing the name of the channel.<br>The parameter is optional. If you omit it, the command works for<br>the currently active channel. |  |

#### STATus:QUEStionable:SYNC:NTRansition <BitDefinition>,<ChannelName>

This command controls the Negative TRansition part of a register.

Setting a bit causes a 1 to 0 transition in the corresponding bit of the associated register. The transition also writes a 1 into the associated bit of the corresponding EVENt register.

| Suffix:<br><n></n>                                 | Window                                                                                                                                          |  |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <m></m>                                            | Marker                                                                                                                                          |  |
| <b>Parameters:</b> <bitdefinition></bitdefinition> | Range: 0 to 65535                                                                                                                               |  |
| <channelname></channelname>                        | String containing the name of the channel.<br>The parameter is optional. If you omit it, the command works for<br>the currently active channel. |  |

#### STATus:QUEStionable:SYNC:PTRansition <BitDefinition>,<ChannelName>

These commands control the Positive TRansition part of a register.

Setting a bit causes a 0 to 1 transition in the corresponding bit of the associated register. The transition also writes a 1 into the associated bit of the corresponding EVENt register.

| Suffix:                                        |                                                                                                                                                 |            |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| <n></n>                                        | Window                                                                                                                                          |            |
| <m></m>                                        | Marker                                                                                                                                          |            |
| Parameters:<br><bitdefinition></bitdefinition> | Range:                                                                                                                                          | 0 to 65535 |
| <channelname></channelname>                    | String containing the name of the channel.<br>The parameter is optional. If you omit it, the command works for<br>the currently active channel. |            |

# 7.9 Programming Examples: OFDM Vector Signal Analysis

The following examples demonstrate how to perform OFDM vector signal analysis in a remote environment. They use I/Q data from the demo files provided with the R&S ETL CDR software software as input.

Note that some of the used commands may not be necessary as they define default values, but are included to demonstrate their use.

Programming Examples: OFDM Vector Signal Analysis

## 7.9.1 Example: CDR Analysis

```
//----Preparing the measurement channel -----
//Reset the software
*RST
DEVice:DELete:ALL
//Create CDR channel as replacement for default I/Q Analyzer channel
INST:CRE:REPL 'IQ Analyzer',CDR,'MyCDR'
//-----Configuring the CDR signal -----
//-----Configuring data acquisition-----
//Capture 40000 samples with a sample rate of 20 MHz
SWE:LENG 40000
TRAC: IQ: SRAT 2000000
//Enable burst search
DEM:FORM:BURS ON
//Max 1 frame to be demodulated, result length = 100 symbols per frame
DEM:FORM:MAXF 1
DEM:FORM:NOFS 100
//-----Configuring synchronization, tracking, demodulation
//Time synchronization using cp
DEM:TSYN CP
//Enable phase tracking and channel comp., disable timing and level tracking
SENS:TRAC:TIME OFF
SENS:TRAC:PHAS ON
SENS:TRAC:LEV OFF
SENS:COMP:CHAN ON
//FFT shift relative to cp length: 0.5
DEM:FFTS 0.5
//----Configuring Results
// Default displays:
//1: Magnitude Capture 3: Power Spectrum
//2: Result Summary 4: Constellation
//Replace power spectrum by Power vs. symbol vs. carrier
LAY:REPL:WIND '3', PSC
//Normalize EVM to Peak Pilots and Data
DEM:EVMC:NORM PPD
//Filter constellation - show only data symbols with 64QAM mod.
CONF:FILT4:MOD:TYPE DATA
CONF:FILT4:MOD '64QAM'
//----Performing the Measurement-----
```

#### Programming Examples: OFDM Vector Signal Analysis

//Select single sweep mode. INIT:CONT OFF //Initiate a new measurement and wait until the sweep has finished. INIT:IMM;\*OPC? //-----Retrieving Results------//Query frame burst count and length (1 frame, 40 symbols) FETC:BURS:COUN? FETC:BURS:LENG? //Query max. MER of data symbols FETC:SUMM:MER:DATA:MAX? //Query the state of the individual signal flow stages FETC:SFL:STAT:ALL? //Retrieve trace data for power vs symbol vs carrier diagram TRAC3:DATA:X? TRACe1 TRAC3:DATA:Y? TRACe1 TRAC3:DATA? TRACe1 //Retrieve trace data for filtered constellation diagram TRAC4:DATA? TRACE1

# Annex

| Α | Menu Reference                 | 167 |
|---|--------------------------------|-----|
| В | Reference of Toolbar Functions | 172 |
| С | Formulae                       | 176 |

# A Menu Reference

Most functions in the R&S ETL CDR software are available from the menus.

| • | Common R&S ETL CDR software Menus | 167 |
|---|-----------------------------------|-----|
| • | CDR Signal Analysis Menus         | 169 |

# A.1 Common R&S ETL CDR software Menus

The following menus provide basic functions for all applications:

| • | File Menu   | 167 |
|---|-------------|-----|
| • | Window Menu | 168 |
| • | Help Menu   | 169 |

# A.1.1 File Menu

The "File" menu includes all functionality directly related to any file operations, printing or setting up general parameters.

| Menu item                                 | Correspond-<br>ing icon in<br>toolbar | Description                                                               |
|-------------------------------------------|---------------------------------------|---------------------------------------------------------------------------|
| Save                                      |                                       | Saves the current software configuration to a file                        |
| Recall                                    |                                       | Recalls a saved software configuration from a file                        |
| Save IQ Recording                         | -                                     | Saves the recorded I/Q data from a measurement channel to a file          |
| Recall IQ Recording                       | -                                     | Loads the recorded I/Q data from a file                                   |
| Measurement Group >                       | -                                     | Configures measurement channels and groups                                |
| > New Group                               | -                                     | Inserts a new group in the measurement sequence                           |
| > Rename Group                            | -                                     | Changes the name of the selected group                                    |
| > New Measurement<br>Channel              | -                                     | Inserts a new channel in the selected group                               |
| > Replace Measure-<br>ment Channel        | -                                     | Replaces the currently selected channel by the selected applica-<br>tion. |
| > Rename Measure-<br>ment Channel         | -                                     | Changes the name of the selected channel.                                 |
| > Delete Current Mea-<br>surement Channel | -                                     | Deletes the currently selected channel.                                   |
| > Measurement Group<br>Setup              | -                                     | Displays the "Measurement Group Setup" tool window.                       |

Common R&S ETL CDR software Menus

| Menu item                       | Correspond-<br>ing icon in<br>toolbar | Description                                                                                                            |
|---------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Instruments >                   | -                                     | Configures instruments to be used for input to the R&S ETL CDR software software                                       |
| > New                           | -                                     | Creates a new instrument configuration                                                                                 |
| > Search                        | -                                     | Searches for connected instruments in the network                                                                      |
| > Delete All                    | -                                     | Deletes all current instrument configurations                                                                          |
| > Setup                         | -                                     | Hides or displays the "Instrument" tool window                                                                         |
| Preset >                        | -                                     | Restores stored settings                                                                                               |
| > Selected Channel              | -                                     | Restores the default software configuration for an individual channel                                                  |
| > All                           | -                                     | Restores the default software configuration globally for the entire software                                           |
| > All & Delete Instru-<br>ments |                                       | Restores the default software configuration globally for the entire software and deletes all instrument configurations |
| > Reset VSE Layout              | -                                     | Restores the default layout of windows, toolbars etc. in the R&S ETL CDR software                                      |
| Preferences >                   | -                                     | Configures global software settings                                                                                    |
| > General                       | -                                     |                                                                                                                        |
| > Displayed Items               | -                                     | Hides or shows individual screen elements                                                                              |
| > Theme & Color                 | -                                     | Configures the style of individual screen elements                                                                     |
| > Network & Remote              | -                                     | Configures the network settings and remote access to or from other devices                                             |
| > Recording                     | -                                     | Configures general recording parameters                                                                                |
| Print                           | -                                     | Opens "Print" dialog to print selected measurement results                                                             |
| Exit                            | -                                     | Closes the R&S ETL CDR software                                                                                        |

## A.1.2 Window Menu

The "Window" menu allows you to hide or show individual windows.

| Menu item                  | Correspond-<br>ing icon in<br>toolbar | Description                                                                       |
|----------------------------|---------------------------------------|-----------------------------------------------------------------------------------|
| Player                     | -                                     | Displays the "Player" tool window to recall I/Q data recordings                   |
| Instruments                | -                                     | Displays the "Instruments" window to configure input instruments                  |
| Measurement Group<br>Setup | -                                     | Displays the "Measurement Group Setup" window to configure a measurement sequence |
| New Window >               | ₽                                     | Inserts a new result display window for the selected measure-<br>ment channel     |

| Menu item             | Correspond-<br>ing icon in<br>toolbar | Description                                                                                   |
|-----------------------|---------------------------------------|-----------------------------------------------------------------------------------------------|
| Channel Information > | -                                     | Displays the channel bar with global channel information for the selected measurement channel |
| Active Windows >      | -                                     | Selects a result display as the active window; the corresponding channel is also activated    |

# A.1.3 Help Menu

The "Help" menu provides access to help, support and licensing functions.

| Menu item      | Correspond-<br>ing icon in<br>toolbar | Description                                                                                                                       |
|----------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Help           | ?                                     | Opens the Online help window                                                                                                      |
| License        | -                                     | Licensing, version and options information                                                                                        |
| Support        | -                                     | Support functions                                                                                                                 |
| Register VSE   | -                                     | Attempts to create an email with the default mail program (if available) to the Rohde & Schwarz support address for registration. |
| Online Support | -                                     | Opens the default web browser and attempts to establish an<br>Internet connection to the Rohde & Schwarz product site.            |
| About          | -                                     | Software version information                                                                                                      |

# A.2 CDR Signal Analysis Menus

The following menus are only available if a CDR Signal Analysis channel is selected.

| Edit Menu           |  |
|---------------------|--|
| Input & Output Menu |  |
| Meas Setup Menu     |  |
| Trace Menu          |  |
| Marker Menu         |  |
| Limits Menu         |  |

# A.2.1 Edit Menu

The "Edit" menu contains functions for processing the temporarily stored current measurement results.

| Menu item         | Correspond-<br>ing icon in<br>toolbar | Description                                                                                            |
|-------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------|
| Results Export    | -                                     | Stores the currently selected results in the active window to an ASCII file.                           |
|                   |                                       | See Chapter 5.7, "Trace / Data Export Configuration", on page 70.                                      |
| Copy to Clipboard | -                                     | Copies the graphical measurement results (ASCII data) to the Windows clipboard for further processing. |

# A.2.2 Input & Output Menu

The "Input & Output" menu provides functions to configure the input source, frontend parameters and output settings for the measurement.

This menu is application-specific.

Table A-1: "Input" menu items for CDR Signal Analysis

| Menu item    | Description                                        |  |
|--------------|----------------------------------------------------|--|
| Amplitude    | Chapter 4.3.3, "Amplitude Settings", on page 43    |  |
| Scale        | Chapter 5.4, "Y-Scaling", on page 60               |  |
| Frequency    | Chapter 4.3.2, "Frequency Settings", on page 42    |  |
| Trigger      | Chapter 4.4, "Trigger Settings", on page 45        |  |
| Input Source | Chapter 4.3.1, "Input Source Settings", on page 38 |  |
| Output       | -                                                  |  |

## A.2.3 Meas Setup Menu

The "Meas Setup" menu provides access to most measurement-specific settings, as well as bandwidth, sweep and auto configuration settings, and the configuration "Overview" window.

This menu is application-specific.

Table A-2: "Meas Setup" menu items for CDR Signal Analysis

| Menu item         | Description                                                           |
|-------------------|-----------------------------------------------------------------------|
| CDR Configuration | See Chapter 4.2, "CDR Configuration", on page 35                      |
| Input/Frontend    | Chapter 4.3, "Input and Frontend Settings", on page 38                |
| Data Acquisition  | Chapter 4.5, "Data Acquisition", on page 48                           |
| Result Range      | Chapter 4.6, "Result Ranges", on page 52                              |
| Sync/Tracking     | Chapter 4.7, "Synchronization, Demodulation and Tracking", on page 52 |
| Demodulation      | Chapter 4.7, "Synchronization, Demodulation and Tracking", on page 52 |

| Menu item            | Description                                       |
|----------------------|---------------------------------------------------|
| Result Configuration | Chapter 5.1, "Result Configuration", on page 57   |
| Overview             | Chapter 4.1, "Configuration Overview", on page 33 |

# A.2.4 Trace Menu

The "Trace" menu provides access to trace-specific functions.

See Chapter 5.6, "Trace Settings", on page 68

This menu is application-specific.

#### Table A-3: "Trace" menu items for CDR Signal Analysis

| Menu item     | Description                                                                                         |
|---------------|-----------------------------------------------------------------------------------------------------|
| Trace <x></x> | Selects the corresponding trace for configuration. The currently selected trace is highlighted blue |
| Trace         | Opens the "Traces" configuration dialog box                                                         |

## A.2.5 Marker Menu

The "Marker" menu provides access to marker-specific functions.

This menu is application-specific.

Table A-4: "Marker" menu items for CDR Signal Analysis

| Menu item             | Correspond-<br>ing icon in<br>toolbar | Description                                                                  |
|-----------------------|---------------------------------------|------------------------------------------------------------------------------|
| Select marker <x></x> | •                                     | Marker 1 / Delta Marker 1 / Delta Marker 2 / Delta Marker<br>16 " on page 64 |
| Marker to Trace       | -                                     | " Assigning the Marker to a Trace " on page 66                               |
| All Markers Off       | 8                                     | " All Marker Off " on page 66                                                |
| Marker                | •                                     | Chapter 5.5.1, "Individual Marker Settings", on page 63                      |
| Search                | \$ <del>6</del>                       | Chapter 5.5.2, "General Marker Settings", on page 66                         |

# A.2.6 Limits Menu

The "Limits" menu is not used by the R&S ETL-CDR application.

# **B** Reference of Toolbar Functions

Common functions can be performed via the icons in the toolbars.



Individual toolbars can be hidden or displayed.

#### Hiding and displaying a toolbar

1. Right-click any toolbar or the menu bar.

A context menu with a list of all available toolbars is displayed.

2. Select the toolbar you want to hide or display.

A checkmark indicates that the toolbar is currently displayed.

The toolbar is toggled on or off.

Note that some icons are only available for specific applications. Those functions are described in the individual application's User Manual.

#### **General toolbars**

The following functions are generally available for all applications:

#### "Main" toolbar

Table B-1: Functions in the "Main" toolbar

| lcon | Description                                                                                                                                |
|------|--------------------------------------------------------------------------------------------------------------------------------------------|
| ŗ,   | Overview: Displays the configuration overview for the current measurement channel                                                          |
|      | Save: Saves the current software configuration to a file                                                                                   |
|      | Recall: Recalls a saved software configuration from a file                                                                                 |
|      | Save I/Q recording: Stores the recorded I/Q data to a file                                                                                 |
| Fig. | Recall I/Q recording: Loads recorded I/Q data from a file                                                                                  |
|      | Print immediately: prints the current display (screenshot) as configured                                                                   |
| ₽    | Add Window: Inserts a new result display window for the selected measurement channel                                                       |
|      | MultiView mode: displays windows for all active measurement channels (disabled: only windows for currently selected channel are displayed) |

### "Control" toolbar

#### Table B-2: Functions in the "Control" toolbar

| lcon          | Description                                                                                                                    |
|---------------|--------------------------------------------------------------------------------------------------------------------------------|
| IQ Analyzer 🔻 | Selects the currently active channel                                                                                           |
|               | Capture: performs the selected measurement                                                                                     |
| II            | Pause: temporarily stops the current measurement                                                                               |
| Ċ             | Continuous: toggles to continuous measurement mode for next capture                                                            |
| →             | Single: toggles to single measurement mode for next capture                                                                    |
| •             | Record: performs the selected measurement and records the captured data and results                                            |
| £3            | Refresh: Repeats the evaluation of the data currently in the capture buffer without capturing new data (VSA application only). |

### "Help" toolbar

#### Table B-3: Functions in the "Help" toolbar

| lcon | Description                                                                                                                                                                 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ?    | Help (+ Select): allows you to select an object for which context-specific help is displayed (not available in standard Windows dialog boxes or measurement result windows) |
| ?    | Help: displays context-sensitive help topic for currently selected element                                                                                                  |

### **Application-specific toolbars**

The following toolbars are application-specific; not all functions shown here may be available in each application:

#### "Zoom" toolbar

#### Table B-4: Functions in the "Zoom" toolbar

| lcon     | Description                                                                                        |
|----------|----------------------------------------------------------------------------------------------------|
| *        | Normal mouse mode: the cursor can be used to select (and move) markers in a zoomed display         |
| €<br>€   | Zoom mode: displays a dotted rectangle in the diagram that can be expanded to define the zoom area |
| Ð        | Multiple zoom mode: multiple zoom areas can be defined for the same diagram                        |
| Q<br>1:1 | Zoom off: displays the diagram in its original size                                                |

٦

Г

| Icon                    | Description                                                        |
|-------------------------|--------------------------------------------------------------------|
| •                       | Place new marker                                                   |
| %                       | Percent Marker (CCDF only)                                         |
| M1 -                    | Select marker                                                      |
|                         | Marker type "normal"                                               |
|                         | Marker type "delta"                                                |
| $\overline{\mathbf{X}}$ | Global peak                                                        |
|                         | Absolute peak                                                      |
| $\sim$                  | (Currently only for GSM application)                               |
| «ズ                      | Next peak to the left                                              |
| <b>*</b> *              | Next peak to the right                                             |
|                         | Next peak up (for spectrograms only: search in more recent frames) |
|                         | Next peak down (for spectrograms only: search in previous frames)  |
| V                       | Global minimum                                                     |
| ×<br>×                  | Next minimum left                                                  |
| V,                      | Next minimum right                                                 |
|                         | Next min up (for spectrograms only: search in more recent frames)  |
|                         | Next min down (for spectrograms only: search in previous frames)   |
| CF                      | Set marker value to center frequency                               |
| REF                     | Set reference level to marker value                                |
| 8                       | All markers off                                                    |
| *                       | Marker search configuration                                        |
| •                       | Marker configuration                                               |

#### Table B-5: Functions in the "Marker" toolbar

| Icon          | Description                                                                           |
|---------------|---------------------------------------------------------------------------------------|
| £3            | Refresh measurement results (R&S ETL CDR software VSA and OFDM VSA applications only) |
| AUTO<br>LEVEL | Auto level                                                                            |
| AUTO<br>FREQ  | Auto frequency                                                                        |
|               | Auto trigger (R&S ETL CDR software GSM application only)                              |
|               | Auto frame (R&S ETL CDR software GSM application only)                                |
|               | Auto search (R&S ETL CDR software 3GPP FDD application only)                          |
|               | Auto scale (R&S ETL CDR software 3GPP FDD + Pulse applications only)                  |
|               | Auto scale all (R&S ETL CDR software 3GPP FDD + Pulse applications only)              |
| AUTO<br>ALL   | Auto all                                                                              |
| ¢°            | Configure auto settings                                                               |

#### Table B-6: Functions in the "AutoSet" toolbar

# C Formulae

# C.1 I/Q Impairments

The I/Q imbalance can be written as

$$r(t) = G_I \cdot \Re \{ s(t) \} + j \cdot G_Q \cdot \Im \{ s(t) \}$$

where s(t) is the transmit signal, r(t) is the received signal, and  $G_l$  and  $G_Q$  are the weighting factors.

| Variable       | Meaning       | Definition from Transmitter Model |
|----------------|---------------|-----------------------------------|
| G              | Gain I-branch | 1                                 |
| G <sub>Q</sub> | Gain Q-branch | $1 + \Delta Q$                    |
|                |               | (complex)                         |

Gain-Imbalance = 
$$20 \log \left( \frac{|G_{\varrho}|}{|G_{l}|} \right) dB$$

Quadrature-Error = 
$$\arctan\left(\frac{\operatorname{Im}\left\{G_{\varrho}\right\}}{\operatorname{Re}\left\{G_{\varrho}\right\}}\right)$$
. 180°/ $\pi$ 

# List of Remote Commands (ETL CDR)

| [SENSe:]ADJust:CONFigure:HYSTeresis:LOWer                  | 105 |
|------------------------------------------------------------|-----|
| [SENSe:]ADJust:CONFigure:HYSTeresis:UPPer                  |     |
| [SENSe:]ADJust:CONFigure:TRIGger                           | 106 |
| [SENSe:]ADJust:CONFigure[:LEVel]:DURation                  | 105 |
| [SENSe:]ADJust:CONFigure[:LEVel]:DURation:MODE             | 105 |
| [SENSe:]ADJust:LEVel                                       | 106 |
| [SENSe:]COMPensate:CHANnel                                 | 101 |
| [SENSe:]DEMod:CDD                                          | 101 |
| [SENSe:]DEMod:COFFset                                      | 102 |
| [SENSe:]DEMod:EVMCalc:NORMalize                            | 107 |
| [SENSe:]DEMod:FFTShift                                     | 102 |
| [SENSe:]DEMod:FORMat:NOFSymbols                            | 100 |
| [SENSe:]DEMod:FSYNc                                        | 102 |
| [SENSe:]DEMod:MDETect                                      | 103 |
| [SENSe:]DEMod:TSYNc                                        | 103 |
| [SENSe:]FREQuency:CENTer                                   |     |
| [SENSe:]FREQuency:CENTer:STEP                              | 87  |
| [SENSe:]FREQuency:CENTer:STEP:AUTO                         | 87  |
| [SENSe:]FREQuency:OFFSet                                   | 87  |
| [SENSe:]SWAPiq                                             | 98  |
| [SENSe:]SWEep:COUNt                                        |     |
| [SENSe:]SWEep:LENGth                                       |     |
| [SENSe:]SWEep:TIME                                         |     |
| CALCulate <n>:DELTamarker<m>:AOFF</m></n>                  | 117 |
| CALCulate <n>:DELTamarker<m>:LINK</m></n>                  | 118 |
| CALCulate <n>:DELTamarker<m>:LINK:TO:MARKer<m></m></m></n> | 118 |
| CALCulate <n>:DELTamarker<m>:MAXimum:APEak</m></n>         | 121 |
| CALCulate <n>:DELTamarker<m>:MAXimum:LEFT</m></n>          | 121 |
| CALCulate <n>:DELTamarker<m>:MAXimum:NEXT</m></n>          | 122 |
| CALCulate <n>:DELTamarker<m>:MAXimum:RIGHt</m></n>         | 122 |
| CALCulate <n>:DELTamarker<m>:MAXimum[:PEAK]</m></n>        | 122 |
| CALCulate <n>:DELTamarker<m>:MINimum:LEFT</m></n>          | 122 |
| CALCulate <n>:DELTamarker<m>:MINimum:NEXT</m></n>          | 123 |
| CALCulate <n>:DELTamarker<m>:MINimum:RIGHt</m></n>         |     |
| CALCulate <n>:DELTamarker<m>:MINimum[:PEAK]</m></n>        | 123 |
| CALCulate <n>:DELTamarker<m>:MREF</m></n>                  | 118 |
| CALCulate <n>:DELTamarker<m>:TRACe</m></n>                 | 119 |
| CALCulate <n>:DELTamarker<m>:X</m></n>                     | 119 |
| CALCulate <n>:DELTamarker<m>:Y:RELative?</m></n>           | 146 |
| CALCulate <n>:DELTamarker<m>:Y?</m></n>                    | 145 |
| CALCulate <n>:DELTamarker<m>:Z?</m></n>                    |     |
| CALCulate <n>:DELTamarker<m>[:STATe]</m></n>               | 119 |
| CALCulate <n>:MARKer<m>:AOFF</m></n>                       | 115 |
| CALCulate <n>:MARKer<m>:LINK:TO:MARKer<m></m></m></n>      | 116 |
| CALCulate <n>:MARKer<m>:MAXimum:APEak</m></n>              |     |
| CALCulate <n>:MARKer<m>:MAXimum:LEFT</m></n>               | 124 |
| CAL Culata and MARK arama MAN and MARK                     | 124 |

| CALCulate <n>:MARKer<m>:MAXimum:RIGHt</m></n>                 |     |
|---------------------------------------------------------------|-----|
| CALCulate <n>:MARKer<m>:MAXimum[:PEAK]</m></n>                | 125 |
| CALCulate <n>:MARKer<m>:MINimum:LEFT</m></n>                  | 125 |
| CALCulate <n>:MARKer<m>:MINimum:NEXT</m></n>                  |     |
| CALCulate <n>:MARKer<m>:MINimum:RIGHt</m></n>                 |     |
| CALCulate <n>:MARKer<m>:MINimum[:PEAK]</m></n>                |     |
| CALCulate <n>:MARKer<m>:SEARch</m></n>                        |     |
| CALCulate <n>:MARKer<m>:TRACe</m></n>                         |     |
| CALCulate <n>:MARKer<m>:X</m></n>                             | 117 |
| CALCulate <n>:MARKer<m>:Y?</m></n>                            |     |
| CALCulate <n>:MARKer<m>:Z?</m></n>                            | 147 |
| CALCulate <n>:MARKer<m>[:STATe]</m></n>                       |     |
| CALCulate <n>:TRACe<t>[:VALue]</t></n>                        |     |
| CONFigure:CDR:DMODulation                                     |     |
| CONFigure:CDR:HCODing                                         |     |
| CONFigure:CDR:HCODing:STATe                                   |     |
| CONFigure:CDR:IMODulation                                     | 81  |
| CONFigure:CDR:SMODe                                           | 81  |
| CONFigure:CDR:TMODe                                           |     |
| CONFigure:FILTer <n>:CARRier</n>                              |     |
| CONFigure:FILTer <n>:MODulation</n>                           |     |
| CONFigure:FILTer <n>:MODulation:TYPE</n>                      |     |
| CONFigure:FILTer <n>:SYMBol</n>                               |     |
| DISPlay:MINFo[:STATe]                                         |     |
| DISPlay[:WINDow <n>]:MTABle</n>                               |     |
| DISPlay[:WINDow <n>]:TRACe<t>:MODE</t></n>                    |     |
| DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]</t></n>               |     |
| DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:AUTO</t></n>          |     |
| DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:AUTO ONCE</t></n>     |     |
| DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:MAXimum</t></n>       |     |
| DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:MINimum</t></n>       | 110 |
| DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:PDIVision</t></n>     | 110 |
| DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:RLEVel</t></n>        |     |
| DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:RLEVel:OFFSet</t></n> |     |
| DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:RPOSition</t></n>     | 111 |
| DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:RVALue</t></n>        | 111 |
| DISPlay[:WINDow <n>]:TRACe<t>[:STATe]</t></n>                 | 115 |
| DISPlay[:WINDow <n>]:ZOOM:AREA</n>                            |     |
| DISPlay[:WINDow <n>]:ZOOM:MULTiple<zoom>:AREA</zoom></n>      |     |
| DISPlay[:WINDow <n>]:ZOOM:MULTiple<zoom>[:STATe]</zoom></n>   | 128 |
| DISPlay[:WINDow <n>]:ZOOM[:STATe]</n>                         | 127 |
| FETCh:BURSt:COUNt?                                            |     |
| FETCh:BURSt:LENGths?                                          |     |
| FETCh:BURSt:STARts?                                           | 139 |
| FETCh:SFLow:FSYNc?                                            |     |
| FETCh:SFLow:STATe:ALL?                                        |     |
| FETCh:SFLow:STATe:BDETection?                                 |     |
| FETCh:SFLow:STATe:COMPensate?                                 | 142 |
| FETCh:SFLow:STATe:DESTimation?                                |     |
| FETCh:SFLow:STATe:EVMMeas?                                    |     |

| FETCh:SFLow:STATe:FSYNc?                                  |     |
|-----------------------------------------------------------|-----|
| FETCh:SFLow:STATe:MDETection?                             |     |
| FETCh:SFLow:STATe:PESTimation?                            | 144 |
| FETCh:SFLow:STATe:TSYNc?                                  |     |
| FETCh:SFLow:TSYNc?                                        | 145 |
| FETCh:SUMM: <parameter>[:AVERage]</parameter>             | 141 |
| FETCh:SUMMary:CRESt[:AVERage]?                            | 140 |
| FETCh:SUMMary:FERRor[:AVERage]?                           | 140 |
| FETCh:SUMMary:GIMBalance[:AVERage]?                       | 140 |
| FETCh:SUMMary:IQOFfset[:AVERage]?                         | 140 |
| FETCh:SUMMary:MER:DATA[:AVERage]?                         | 141 |
| FETCh:SUMMary:MER:PILot[:AVERage]?                        | 141 |
| FETCh:SUMMary:MER[:ALL][:AVERage]?                        |     |
| FETCh:SUMMary:POWer[:AVERage]?                            |     |
| FETCh:SUMMary:QUADerror[:AVERage]?                        | 141 |
| FETCh:SUMMary:SERRor[:AVERage]?                           | 141 |
| FETCh:SUMMary[:ALL]?                                      |     |
| FETCh:TTFRame?                                            | 141 |
| FORMat:DEXPort:DSEParator                                 |     |
| FORMat:DEXPort:GRAPh                                      | 149 |
| FORMat:DEXPort:HEADer                                     | 149 |
| FORMat:DEXPort:TRACes                                     |     |
| FORMat[:DATA]                                             |     |
| INITiate:REFResh                                          | 96  |
| INPut <ip>:ATTenuation</ip>                               |     |
| INPut <ip>:ATTenuation:AUTO</ip>                          | 89  |
| INPut <ip>:ATTenuation:PROTection:RESet</ip>              | 82  |
| INPut <ip>:ATTenuation:PROTection[:STATe]</ip>            | 82  |
| INPut <ip>:EATT</ip>                                      | 89  |
| INPut <ip>:EATT:AUTO</ip>                                 | 90  |
| INPut <ip>:EATT:STATe</ip>                                |     |
| INPut <ip>:FILE:ZPADing</ip>                              | 83  |
| INPut <ip>:FILTer:CHANnel:HPASs:FDBBw?</ip>               |     |
| INPut <ip>:FILTer:CHANnel:HPASs:SDBBw</ip>                |     |
| INPut <ip>:FILTer:CHANnel:HPASs[:STATe]</ip>              |     |
| INPut <ip>:FILTer:CHANnel[:LPASs]:AUTO</ip>               |     |
| INPut <ip>:FILTer:CHANnel[:LPASs]:FDBBw</ip>              | 97  |
| INPut <ip>:FILTer:CHANnel[:LPASs]:SDBBw</ip>              | 97  |
| INPut <ip>:FILTer:CHANnel[:LPASs][:STATe]</ip>            |     |
| INPut <ip>:GAIN:STATe</ip>                                | 91  |
| INPut <ip>:IMPedance</ip>                                 |     |
| INPut <ip>:PRESelection:SET</ip>                          |     |
| INPut <ip>:PRESelection[:STATe]</ip>                      |     |
| INPut <ip>:SELect</ip>                                    |     |
| INPut <ip>:TYPE</ip>                                      | 84  |
| INSTrument:BLOCk:CHANnel[:SETTings]:SOURce <si></si>      | 85  |
| INSTrument:BLOCk:CHANnel[:SETTings]:SOURce <si>:TYPE</si> |     |
| LAYout:ADD[:WINDow]?                                      |     |
| LAYout:CATalog[:WINDow]?                                  |     |
| LAYout:GLOBal:ADD[:WINDow]?                               |     |

| LAYout:GLOBal:CATalog[:WINDow]?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 130            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| LAYout:GLOBal:IDENtify[:WINDow]?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 130            |
| LAYout:GLOBal:REMove[:WINDow]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| LAYout:GLOBal:REPLace[:WINDow]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 131            |
| LAYout:IDENtify[:WINDow]?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 134            |
| LAYout:MOVE[:WINDow]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| LAYout:REMove[:WINDow]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 135            |
| LAYout:REPLace[:WINDow]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 136            |
| LAYout:WINDow <n>:ADD?</n>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 136            |
| LAYout:WINDow <n>:IDENtify?</n>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 137            |
| LAYout:WINDow <n>:REMove</n>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 137            |
| LAYout:WINDow <n>:REPLace</n>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 138            |
| MMEMory:STORe <n>:TRACe</n>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 150            |
| SENSe:TRACking:LEVel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 103            |
| SENSe:TRACking:PHASe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 104            |
| SENSe:TRACking:TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| STATus:QUEStionable:SYNC:CONDition?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 161            |
| STATus:QUEStionable:SYNC:ENABle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 162            |
| STATus:QUEStionable:SYNC:NTRansition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| STATus:QUEStionable:SYNC:PTRansition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 163            |
| STATus:QUEStionable:SYNC[:EVENt]?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| SYSTem:PRESet:CHANnel[:EXEC]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 79             |
| TRACe:IQ:DATA:FORMat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 152            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| TRACe:IQ:DATA:MEMory?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
| TRACe:IQ:DATA:MEMory?<br>TRACe:IQ:DATA?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 153<br>152     |
| TRACe:IQ:DATA:MEMory?<br>TRACe:IQ:DATA?<br>TRACe:IQ:SRATe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| TRACe:IQ:DATA:MEMory?<br>TRACe:IQ:DATA?<br>TRACe:IQ:SRATe<br>TRACe:IQ:WBANd:MBWidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| TRACe:IQ:DATA:MEMory?<br>TRACe:IQ:DATA?<br>TRACe:IQ:SRATe<br>TRACe:IQ:WBANd:MBWidth<br>TRACe:IQ:WBANd[:STATe]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| TRACe:IQ:DATA:MEMory?<br>TRACe:IQ:DATA?<br>TRACe:IQ:SRATe<br>TRACe:IQ:WBANd:MBWidth<br>TRACe:IQ:WBANd[:STATe].<br>TRACe <n>[:DATA]:X?</n>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| TRACe:IQ:DATA:MEMory?<br>TRACe:IQ:DATA?<br>TRACe:IQ:SRATe.<br>TRACe:IQ:WBANd:MBWidth.<br>TRACe:IQ:WBANd[:STATe].<br>TRACe <n>[:DATA]:X?<br/>TRACe<n>[:DATA]:Y?</n></n>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |
| TRACe:IQ:DATA:MEMory?<br>TRACe:IQ:DATA?<br>TRACe:IQ:SRATe<br>TRACe:IQ:WBANd:MBWidth.<br>TRACe:IQ:WBANd[:STATe]<br>TRACe <n>[:DATA]:X?<br/>TRACe<n>[:DATA]:Y?<br/>TRACe<n>[:DATA]?.</n></n></n>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
| TRACe:IQ:DATA:MEMory?<br>TRACe:IQ:DATA?<br>TRACe:IQ:SRATe.<br>TRACe:IQ:WBANd:MBWidth.<br>TRACe:IQ:WBANd[:STATe].<br>TRACe <n>[:DATA]:X?.<br/>TRACe<n>[:DATA]:Y?<br/>TRACe<n>[:DATA]?.<br/>TRACe<n>[:DATA]?.</n></n></n></n>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 153<br>152<br> |
| TRACe:IQ:DATA:MEMory?<br>TRACe:IQ:DATA?<br>TRACe:IQ:SRATe.<br>TRACe:IQ:WBANd:MBWidth.<br>TRACe:IQ:WBANd[:STATe].<br>TRACe <n>[:DATA]:X?<br/>TRACe<n>[:DATA]:Y?<br/>TRACe<n>[:DATA]?<br/>TRACe<n>[:DATA]?<br/>TRACe<n>[:DATA]?<br/>TRACe<n>[:DATA]?</n></n></n></n></n></n>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 153<br>        |
| TRACe:IQ:DATA:MEMory?<br>TRACe:IQ:DATA?<br>TRACe:IQ:SRATe.<br>TRACe:IQ:WBANd:MBWidth.<br>TRACe:IQ:WBANd[:STATe].<br>TRACe <n>[:DATA]:X?<br/>TRACe<n>[:DATA]:Y?<br/>TRACe<n>[:DATA]:Y?<br/>TRACe<n>[:DATA]?<br/>TRIGger[:SEQuence]:DTIMe.<br/>TRIGger[:SEQuence]:HOLDoff[:TIME].<br/>TRIGger[:SEQuence]:IFPower:HOLDoff.</n></n></n></n>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 153<br>        |
| TRACe:IQ:DATA:MEMory?<br>TRACe:IQ:DATA?<br>TRACe:IQ:SRATe.<br>TRACe:IQ:WBANd:MBWidth.<br>TRACe:IQ:WBANd[:STATe].<br>TRACe <n>[:DATA]:X?<br/>TRACe<n>[:DATA]:Y?<br/>TRACe<n>[:DATA]?<br/>TRIGger[:SEQuence]:DTIMe.<br/>TRIGger[:SEQuence]:HOLDoff[:TIME].<br/>TRIGger[:SEQuence]:IFPower:HOLDoff.<br/>TRIGger[:SEQuence]:IFPower:HYSTeresis.</n></n></n>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 153<br>152<br> |
| TRACe:IQ:DATA:MEMory?<br>TRACe:IQ:DATA?<br>TRACe:IQ:SRATe.<br>TRACe:IQ:WBANd:MBWidth.<br>TRACe:IQ:WBANd[:STATe].<br>TRACe <n>[:DATA]:X?<br/>TRACe<n>[:DATA]:Y?<br/>TRACe<n>[:DATA]?<br/>TRIGger[:SEQuence]:DTIMe.<br/>TRIGger[:SEQuence]:HOLDoff[:TIME].<br/>TRIGger[:SEQuence]:IFPower:HOLDoff.<br/>TRIGger[:SEQuence]:IFPower:HYSTeresis.<br/>TRIGger[:SEQuence]:LEVel:IFPower.</n></n></n>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 153<br>152<br> |
| TRACe:IQ:DATA:MEMory?<br>TRACe:IQ:DATA?<br>TRACe:IQ:SRATe.<br>TRACe:IQ:WBANd:MBWidth.<br>TRACe:IQ:WBANd[:STATe].<br>TRACe <n>[:DATA]:X?<br/>TRACe<n>[:DATA]:Y?<br/>TRACe<n>[:DATA]??<br/>TRIGger[:SEQuence]:DTIMe.<br/>TRIGger[:SEQuence]:HOLDoff[:TIME].<br/>TRIGger[:SEQuence]:HOLDoff[:TIME].<br/>TRIGger[:SEQuence]:IFPower:HOLDoff.<br/>TRIGger[:SEQuence]:IFPower:HOLDoff.<br/>TRIGger[:SEQuence]:IFPower:HYSTeresis.<br/>TRIGger[:SEQuence]:LEVel:IFPower.<br/>TRIGger[:SEQuence]:LEVel:IRPower.</n></n></n>                                                                                                                                                                                                                                                                                                                                                                                    | 153<br>152<br> |
| TRACe:IQ:DATA:MEMory?<br>TRACe:IQ:DATA?<br>TRACe:IQ:SRATe.<br>TRACe:IQ:WBANd:MBWidth.<br>TRACe:IQ:WBANd[:STATe].<br>TRACe <n>[:DATA]:X?<br/>TRACe<n>[:DATA]:Y?<br/>TRACe<n>[:DATA]?<br/>TRIGger[:SEQuence]:DTIMe.<br/>TRIGger[:SEQuence]:HOLDoff[:TIME].<br/>TRIGger[:SEQuence]:IFPower:HOLDoff.<br/>TRIGger[:SEQuence]:IFPower:HOLDoff.<br/>TRIGger[:SEQuence]:IFPower:HYSTeresis.<br/>TRIGger[:SEQuence]:LEVel:IFPower.<br/>TRIGger[:SEQuence]:LEVel:MAPower.<br/>TRIGger[:SEQuence]:LEVel:EXTernal<port>].</port></n></n></n>                                                                                                                                                                                                                                                                                                                                                                       | 153<br>152<br> |
| TRACe:IQ:DATA:MEMory?<br>TRACe:IQ:DATA?<br>TRACe:IQ:SRATe.<br>TRACe:IQ:WBANd:MBWidth.<br>TRACe:IQ:WBANd[:STATe].<br>TRACe <n>[:DATA]:X?<br/>TRACe<n>[:DATA]:Y?<br/>TRACe<n>[:DATA]?<br/>TRIGger[:SEQuence]:DTIMe.<br/>TRIGger[:SEQuence]:HOLDoff[:TIME].<br/>TRIGger[:SEQuence]:IFPower:HOLDoff.<br/>TRIGger[:SEQuence]:IFPower:HYSTeresis.<br/>TRIGger[:SEQuence]:LEVel:IFPower.<br/>TRIGger[:SEQuence]:LEVel:MAPower.<br/>TRIGger[:SEQuence]:LEVel[:EXTernal<port>].<br/>TRIGger[:SEQuence]:MAPower:HOLDoff.</port></n></n></n>                                                                                                                                                                                                                                                                                                                                                                      | 153<br>152<br> |
| TRACe:IQ:DATA:MEMory?<br>TRACe:IQ:DATA?<br>TRACe:IQ:SRATe.<br>TRACe:IQ:WBANd:MBWidth.<br>TRACe:IQ:WBANd[:STATe].<br>TRACe <n>[:DATA]:X?<br/>TRACe<n>[:DATA]:Y?<br/>TRACe<n>[:DATA]?<br/>TRIGger[:SEQuence]:DTIMe.<br/>TRIGger[:SEQuence]:HOLDoff[:TIME].<br/>TRIGger[:SEQuence]:HOLDoff[.<br/>TRIGger[:SEQuence]:IFPower:HOLDoff.<br/>TRIGger[:SEQuence]:IFPower:HOLDoff.<br/>TRIGger[:SEQuence]:LEVel:IFPower.<br/>TRIGger[:SEQuence]:LEVel:IFPower.<br/>TRIGger[:SEQuence]:LEVel:IFPower.<br/>TRIGger[:SEQuence]:LEVel:IFPower.<br/>TRIGger[:SEQuence]:LEVel:IFPower.<br/>TRIGger[:SEQuence]:LEVel:MAPower.<br/>TRIGger[:SEQuence]:LEVel:EXTernal<port>].<br/>TRIGger[:SEQuence]:MAPower:HOLDoff.<br/>TRIGger[:SEQuence]:MAPower:HYSTeresis.</port></n></n></n>                                                                                                                                      | 153<br>152<br> |
| TRACe:IQ:DATA:MEMory?<br>TRACe:IQ:DATA?<br>TRACe:IQ:WBANd:MBWidth<br>TRACe:IQ:WBANd[:STATe].<br>TRACe <n>[:DATA]:X?<br/>TRACe<n>[:DATA]:Y?.<br/>TRACe<n>[:DATA]?.<br/>TRIGger[:SEQuence]:DTIMe.<br/>TRIGger[:SEQuence]:HOLDoff[:TIME].<br/>TRIGger[:SEQuence]:HPower:HOLDoff.<br/>TRIGger[:SEQuence]:IFPower:HYSTeresis.<br/>TRIGger[:SEQuence]:LEVel:IFPower.<br/>TRIGger[:SEQuence]:LEVel:IFPower.<br/>TRIGger[:SEQuence]:LEVel:IFPower.<br/>TRIGger[:SEQuence]:LEVel:IFPower.<br/>TRIGger[:SEQuence]:LEVel:IFPower.<br/>TRIGger[:SEQuence]:LEVel:IFPower.<br/>TRIGger[:SEQuence]:LEVel:MAPower.<br/>TRIGger[:SEQuence]:LEVel[:EXTernal<port>].<br/>TRIGger[:SEQuence]:MAPower:HYSTeresis.<br/>TRIGger[:SEQuence]:MAPower:HYSTeresis.<br/>TRIGger[:SEQuence]:SLOPE.</port></n></n></n>                                                                                                               | 153<br>152<br> |
| TRACe:IQ:DATA:MEMory?<br>TRACe:IQ:DATA?<br>TRACe:IQ:SRATe.<br>TRACe:IQ:WBANd:MBWidth.<br>TRACe:IQ:WBANd[:STATe].<br>TRACe <n>[:DATA]:X?<br/>TRACe<n>[:DATA]:Y?.<br/>TRACe<n>[:DATA]?<br/>TRIGger[:SEQuence]:DTIMe.<br/>TRIGger[:SEQuence]:HOLDoff[:TIME].<br/>TRIGger[:SEQuence]:HPower:HOLDoff.<br/>TRIGger[:SEQuence]:IFPower:HOLDoff.<br/>TRIGger[:SEQuence]:LEVeI:IFPower.<br/>TRIGger[:SEQuence]:LEVeI:IFPower.<br/>TRIGger[:SEQuence]:LEVeI:IFPower.<br/>TRIGger[:SEQuence]:LEVeI:IFPower.<br/>TRIGger[:SEQuence]:LEVeI:IFPower.<br/>TRIGger[:SEQuence]:LEVeI:IFPower.<br/>TRIGger[:SEQuence]:LEVeI:MAPower.<br/>TRIGger[:SEQuence]:LEVeI:EXTernal<port>].<br/>TRIGger[:SEQuence]:MAPower:HOLDoff.<br/>TRIGger[:SEQuence]:MAPower:HYSTeresis.<br/>TRIGger[:SEQuence]:MAPower:HYSTeresis.<br/>TRIGger[:SEQuence]:SLOPe.<br/>TRIGger[:SEQuence]:SOURce.</port></n></n></n>                         | 153<br>152<br> |
| TRACe:IQ:DATA:MEMory?<br>TRACe:IQ:DATA?<br>TRACe:IQ:WBANd:MBWidth.<br>TRACe:IQ:WBANd[:STATe]<br>TRACe <n>[:DATA]:X?<br/>TRACe<n>[:DATA]:X?.<br/>TRACe<n>[:DATA]?.<br/>TRACe<n>[:DATA]?.<br/>TRIGger[:SEQuence]:DTIMe.<br/>TRIGger[:SEQuence]:HOLDoff[:TIME].<br/>TRIGger[:SEQuence]:IFPower:HOLDoff.<br/>TRIGger[:SEQuence]:IFPower:HOLDoff.<br/>TRIGger[:SEQuence]:IFPower:HYSTeresis.<br/>TRIGger[:SEQuence]:LEVeI:IFPower.<br/>TRIGger[:SEQuence]:LEVeI:IFPower.<br/>TRIGger[:SEQuence]:LEVeI:IFPower.<br/>TRIGger[:SEQuence]:LEVeI:IFPower.<br/>TRIGger[:SEQuence]:LEVeI:IFPower.<br/>TRIGger[:SEQuence]:LEVeI:IFPower.<br/>TRIGger[:SEQuence]:LEVeI:MAPower.<br/>TRIGger[:SEQuence]:LEVeI:EXTernal<port>].<br/>TRIGger[:SEQuence]:MAPower:HOLDoff.<br/>TRIGger[:SEQuence]:MAPower:HYSTeresis.<br/>TRIGger[:SEQuence]:SLOPe.<br/>TRIGger[:SEQuence]:SOURce.<br/>UNIT:CAXes.</port></n></n></n></n> | 153<br>152<br> |
| TRACe:IQ:DATA:MEMory?<br>TRACe:IQ:DATA?<br>TRACe:IQ:SRATe.<br>TRACe:IQ:WBANd:MBWidth.<br>TRACe:IQ:WBANd[:STATe]<br>TRACe <n>[:DATA]:X?<br/>TRACe<n>[:DATA]:Y?.<br/>TRACe<n>[:DATA]??.<br/>TRIGger[:SEQuence]:DTIMe.<br/>TRIGger[:SEQuence]:HOLDoff[:TIME].<br/>TRIGger[:SEQuence]:HPower:HOLDoff.<br/>TRIGger[:SEQuence]:IFPower:HOLDoff.<br/>TRIGger[:SEQuence]:LEVel:IFPower.<br/>TRIGger[:SEQuence]:LEVel:IFPower.<br/>TRIGger[:SEQuence]:LEVel:IFPower.<br/>TRIGger[:SEQuence]:LEVel:MAPower.<br/>TRIGger[:SEQuence]:LEVel:MAPower.<br/>TRIGger[:SEQuence]:LEVel:MAPower.<br/>TRIGger[:SEQuence]:LEVel[:EXTernal<port>].<br/>TRIGger[:SEQuence]:MAPower:HYSTeresis.<br/>TRIGger[:SEQuence]:SLOPe.<br/>TRIGger[:SEQuence]:SOURce.<br/>UNIT:CAXes.<br/>UNIT:FAXes.</port></n></n></n>                                                                                                                | 153<br>152<br> |
| TRACe:IQ:DATA:MEMory?<br>TRACe:IQ:DATA?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 153<br>152<br> |
| TRACe:IQ:DATA:MEMory?<br>TRACe:IQ:DATA?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 153<br>        |
# Index

# A

| Activating                |     |
|---------------------------|-----|
| CDR measurements (remote) |     |
| Allocation Matrix         |     |
| Markers                   | 63  |
| Amplitude                 |     |
| Configuration             | 43  |
| Configuration (remote)    | 88  |
| Settings                  |     |
| Analysis                  |     |
| Button                    | 57  |
| Attenuation               | 45  |
| Auto                      | 45  |
| Configuration (remote)    | 88  |
| Manual                    | 45  |
| Protective (remote)       | 82  |
| Auto adjustment           |     |
| Triggered measurement     | 106 |
| Automatic                 |     |
| Configuration (remote)    | 104 |

# В

| Bandwidth      |  |
|----------------|--|
| Maximum usable |  |

# С

| Capture                |                 |
|------------------------|-----------------|
| Time (remote)          |                 |
| Capture time           | 49              |
| Carrier Offset         |                 |
| CDA                    |                 |
| Configuring            | 33              |
| CDR                    |                 |
| Performing             |                 |
| Center frequency       |                 |
| Step size              | 43              |
| Closing                |                 |
| Windows (remote)       | . 131, 135, 137 |
| Configuration          |                 |
| Procedure              | 34              |
| Constellation diagram  |                 |
| Markers                | 63              |
| Conventions            |                 |
| SCPI commands          | 74              |
| Cyclic Delay Diversity |                 |
| Cyclic Prefix          | 38              |

## D

| Data format                |     |
|----------------------------|-----|
| Remote                     | 149 |
| Data source                |     |
| Display                    |     |
| Decimal separator          |     |
| Trace export               | 71  |
| Delta markers              | 65  |
| Defining                   | 65  |
| Diagram footer information | 13  |
| Display                    |     |
| Information                |     |
| Refreshing                 | 52  |
|                            |     |

# Ε

| Electronic input attenuation |          |
|------------------------------|----------|
| IF OVLD                      |          |
| Evaluation methods           |          |
| Remote                       | 129, 132 |
| WLAN                         | 15       |
| Exporting                    |          |
| I/Q data                     | 70       |
| Measurement settings         | 71       |
| Traces                       | 70, 71   |
| External trigger             |          |
| Level (remote)               | 93       |
| F                            |          |
| FFT Shift                    | 55       |
| Filters                      |          |
| High-pass (RF input)         | 51       |
| Format                       |          |
| Data (remote)                | 149      |
| Free Run                     |          |
| Trigger                      | 46       |

#### G

Frequency

Frontend

| Gating |        |
|--------|--------|
| Source | <br>46 |

## Н

| High-pass filter |    |
|------------------|----|
| RF input         |    |
| Hysteresis       |    |
| Trigger          | 47 |

## I

| I/Q data               |        |
|------------------------|--------|
| Exporting              | 70     |
| IF Power               |        |
| Trigger                | 46     |
| Trigger level (remote) | 93     |
| Impedance              |        |
| Setting                | 40, 45 |
| Input                  |        |
| Configuration          |        |
| Configuration (remote) |        |
| Overload (remote)      | 82     |
| Settings               | 45     |
| Input sources          |        |
| Channels               |        |
| Instrument             |        |
| Radio frequency (RF)   |        |
| Instruments            |        |
| Input source           |        |
|                        |        |

#### L

| Linking |  |
|---------|--|
| Markers |  |

#### Μ

| Marker table                          |          |
|---------------------------------------|----------|
| Configuring                           | 66       |
| Evaluation method                     |          |
| Marker to Trace                       | 66       |
| Markers                               |          |
| Allocation Matrix                     | 63       |
| Assigned trace                        |          |
| Configuring                           | 62. 63   |
| Constellation diagram                 |          |
| Deactivating                          |          |
| Delta markers                         | 65       |
| General settings (remote)             | 121      |
| Linking                               | 65       |
| Minimum                               |          |
| Next minimum                          |          |
| Next peak                             |          |
| Peak                                  | 67       |
| Positioning                           |          |
| Querving position (remote)            | 147      |
| Retrieving values (remote)            |          |
| Settings (remote)                     | 115      |
| State                                 |          |
| Table                                 | 66       |
| Table (evaluation method)             | 27       |
| Type                                  | 65       |
| X-value                               | 64       |
| Y-value                               | 65       |
| Measurement                           |          |
| Allocation matrix                     | 16       |
| Capture Buffer                        | 26       |
| Channel Flatness                      | 17       |
| Channel Impulse Response              | 25       |
| Complementary Cumulative Distribution | Function |
| (CCDF)                                | 17       |
| Constellation Diagram                 | 18       |
| Constellation vs Carrier              | 20       |
| Constellation vs Symbol               | 21       |
| Group Delay                           | 25       |
| MFR vs. Carrier                       | 22       |
| MER vs. Symbol                        |          |
| MER vs. Symbol vs Carrier             | 24       |
| Power Spectrum                        |          |
| Power vs Carrier vs Symbol            |          |
| Power vs. Carrier                     |          |
| Power vs. Symbol                      |          |
| Signal flow                           | 31       |
| Measurement channels                  |          |
| Input source                          | 39 41    |
| Measurement time                      |          |
| Remote                                | 99       |
| Minimum                               |          |
| Marker positioning                    |          |
| Next                                  |          |
| Modulation                            |          |
| Inverted (I/O_romoto)                 |          |
|                                       | 98       |

# Ν

| Next Minimum       |  |
|--------------------|--|
| Marker positioning |  |
| Next Peak          |  |
| Marker positioning |  |

# 0

| Offset            |    |
|-------------------|----|
| Frequency         |    |
| Reference level   |    |
| Options           |    |
| High-pass filter  | 51 |
| Preamplifier      | 45 |
| Overload          |    |
| RF input (remote) | 82 |
| Overview          |    |
| Configuration CDR |    |

#### Ρ

| Parameter tables   |    |
|--------------------|----|
| Configuration      | 59 |
| Peaks              |    |
| Marker positioning | 67 |
| Next               | 67 |
| Performing         |    |
| CDR measurement    | 72 |
| Preamplifier       |    |
| Setting            | 45 |
| Softkey            | 45 |
| Preselector        | 40 |
| Presetting         |    |
| Channels           | 35 |
| Pretrigger         | 47 |
| Protection         |    |
| RF input (remote)  | 82 |

## Q

| Quick Config |    |
|--------------|----|
| Traces       | 69 |

#### R

| Reference level     | 44 |
|---------------------|----|
| Offset              | 44 |
| Unit                | 44 |
| Value               | 44 |
| Reference marker    | 65 |
| Refresh             |    |
| Display             | 52 |
| Remote commands     |    |
| Basics on syntax    | 73 |
| Boolean values      | 77 |
| Capitalization      | 75 |
| Character data      | 78 |
| Data blocks         | 78 |
| Numeric values      | 76 |
| Optional keywords   | 75 |
| Parameters          | 76 |
| Strings             | 78 |
| Suffixes            | 75 |
| Resetting           |    |
| RF input protection | 82 |

| Restoring                    |     |
|------------------------------|-----|
| Channel settings             | 35  |
| Result displays              |     |
| Marker table                 |     |
| Result Summary               | 30  |
| WLAN                         | 15  |
| Result range                 |     |
| Remote                       | 100 |
| Result type                  |     |
| Display                      | 13  |
| Results                      |     |
| Data format (remote)         | 149 |
| Exporting                    | 70  |
| Retrieving (remote)          | 138 |
| RF attenuation               |     |
| Auto                         | 45  |
| Manual                       | 45  |
| RF input                     |     |
| Overload protection (remote) |     |
| Remote                       | 81  |

# S

| Sample rate                |        |
|----------------------------|--------|
| I/Q data                   |        |
| Remote                     |        |
| Scaling                    |        |
| Automatic                  | 61     |
| Automatically              | 61     |
| Y-axis                     | 60, 61 |
| Settings                   |        |
| Overview                   |        |
| Signal capturing           |        |
| Duration                   | 49     |
| Slope                      |        |
| Trigger                    |        |
| Softkeys                   |        |
| External                   |        |
| IF Power                   | 46     |
| Preamp                     | 45     |
| Ref Level                  |        |
| Ref Level Offset           | 44     |
| Trigger Offset             |        |
| Specifics for              |        |
| Configuration              | 35     |
| Standard WLAN measurements | 14     |
| Statistics                 |        |
| Configuration              | 59     |
| Status registers           |        |
| Description                |        |
| STAT:QUES:POW              | 82     |
| Status reporting system    | 160    |
| Suffixes                   |        |
| Common                     |        |
| Remote commands            | 75     |
| Swap I/Q                   |        |
| Remote                     |        |
|                            |        |

# Т

| Toolbars  |     |
|-----------|-----|
| AutoSet   | 175 |
| Control   | 173 |
| Functions | 172 |
| Help      | 173 |
| Main      | 172 |
| Marker    |     |
|           |     |

| Overview                     | 172 |
|------------------------------|-----|
| Zoom                         |     |
| Traces                       |     |
| Configuration                | 68  |
| Configuring (remote control) | 113 |
| Export format                | 71  |
| Exporting                    |     |
| Mode                         |     |
| Mode (remote)                | 114 |
| Retrieving data (remote)     |     |
| Selecting                    |     |
| Settings (remote control)    |     |
| Settings, predefined         |     |
| Trigger                      |     |
| External (remote)            |     |
| Holdoff                      |     |
| Hysteresis                   |     |
| Offset                       | 47  |
| Remote control               |     |
| Slope                        |     |
| Trigger level                | 47  |
| External trigger (remote)    |     |
| IF Power (remote)            |     |
| Trigger source               | 46  |
| External                     | 46  |
| Free Run                     |     |
| IF Power                     | 46  |
| Magnitude                    |     |
| Troubleshooting              |     |
| Input overload               | 82  |
|                              |     |

# U

| Units           | . 59 |
|-----------------|------|
| Reference level | 44   |

#### W

| Window title bar information |               |
|------------------------------|---------------|
| Windows                      |               |
| Adding (remote)              | 129, 132      |
| Closing (remote)             | 131, 135, 137 |
| Configuring                  |               |
| Querying (remote)            |               |
| Replacing (remote)           | 131, 136      |
| Types (remote)               |               |

#### Χ

| X-axis        |    |
|---------------|----|
| Scaling, auto | 61 |
| X-value       |    |
| Marker        |    |

#### Υ

| Y-axis        |    |
|---------------|----|
| Scaling       | 61 |
| Scaling, auto | 61 |
| Y-Scaling     | 60 |
| Y-value       |    |
| Marker        | 65 |

Index

#### Ζ

| Zooming                      |          |
|------------------------------|----------|
| Activating (remote)          |          |
| Area (Multiple mode, remote) | 127      |
| Area (remote)                |          |
| Multiple mode (remote)       | 127, 128 |
| Remote                       | 126      |
| Single mode (remote)         | 126      |
|                              |          |