R&S[®]FSV3-K96 OFDM Vector Signal Analysis Application User Manual

122			Contract CP1	ength 64 Confi	in			OFD
N. 1.	20, dom 1	1 Cirw	5 Signal Flow	Time C	-9 8(2	-11ac, 80 MHz, La 3 Power Spectrum	SqL	'besc
Ľ	40 ten	hiter -	Bursts Found	Sync 99.697% → S 93.9	anne 910%	and and a share in the	10 Bandwette	ا Fro
20	60 (Rm)		Parameter Estimation	Modulation Pla Detection Pa Est	ot-Aided rameter timetion	100 dBm/Hz		D Vaqu
1:1	ou dem ^a	999.987 5 µs	Compensate 🔶	EVM Meas		110 dBm/Hz		+ <mark>8</mark>
	EVM vs Symbol vs Carrier	•1 Chw	9 Bitstream	///	-	-40.0 MHz	40.0 MHz	
	00 carr	-40d8 -23d8	LISTE ANTI-STE LUTE Zero eta BPS ala (DES	L-502 -17-502- INTI-LTF 10_150/10_2500 to 6400	HT-6654 Pice	7 EVM vs Symbol 20 dB	1 Avg + 2 Nat + 3 Min	1 R
÷2*			+ 1 +	3 + 5 + 7	49.	-40 dB		
	动动的复数形式	2.5165	-52 23 1	J 19 38 0A 28 2) - 37 1C 25 3	1 38 01 0 33 0A	-50 dB		Tra
SCPI		0.00	-32 33 34 1/	38 2A 38 37 2	8 36 20	akallarin	no remarkan	, Re
1	50 carr		-22 2F 3A 1. -12 09 2/	J 10 30 38 01 3 A 39 28 0A 32 1	2 25 3D		M	
718	100 carr		-2 25	0C 3D 27 0	9 16 14	-100 d8 35	70 107.0 om	
	0.0 sym	107.0 sym	8 18 UF 2	J - ZO UZ 35 U		0.0 sym	107.0 Sym	
└─▶ ,	Result Summary		6 Channel Flatne	ss ●1 Avg ● 27	Max • 3 Min	LOF MAR LOP L	is <mark>hteen</mark> while <mark>hteen</mark> mus	Die
	WM All	[dB] ^	0.5 dB			5,60		1 60
~?		-48.242						
\mathbf{O}	4in	-48.126	0 dB					
÷ 1	Verage	-48.004	05/0					-
1	4ax	[00]	10.000					Over
	VM All	0.202			128 carr			. 28
Η,	lin	0.50/	-128 carr		110		eady	
*		V 201			_			-
	*							

Make ideas real

This manual applies to the following R&S[®]FSV3000 and R&S[®]FSVA3000 models with firmware version 2.20 and higher:

- R&S[®]FSV3004 (1330.5000K04) / R&S[®]FSVA3004 (1330.5000K05)
- R&S[®]FSV3007 (1330.5000K07) / R&S[®]FSVA3007 (1330.5000K08)
- R&S[®]FSV3013 (1330.5000K13) / R&S[®]FSVA3013 (1330.5000K14)
- R&S[®]FSV3030 (1330.5000K30) / R&S[®]FSVA3030 (1330.5000K31)
- R&S[®]FSV3044 (1330.5000K43) / R&S[®]FSVA3044 (1330.5000K44)
- R&S[®]FSV3050 (1330.5000K50) / R&S[®]FSVA3050 (1330.5000K51)

The following software options are described:

• R&S[®]FSV3-K96 (.02)

© 2024 Rohde & Schwarz Muehldorfstr. 15, 81671 Muenchen, Germany Phone: +49 89 41 29 - 0 Email: info@rohde-schwarz.com Internet: www.rohde-schwarz.com Subject to change – data without tolerance limits is not binding. R&S[®] is a registered trademark of Rohde & Schwarz GmbH & Co. KG. All other trademarks are the properties of their respective owners.

1179.7227.02 | Version 02 | R&S®FSV3-K96

Throughout this manual, products from Rohde & Schwarz are indicated without the [®] symbol, e.g. R&S[®]FSV3 is indicated as R&S FSV3.

Contents

1	Documentation overview7
1.1	Getting started manual7
1.2	User manuals and help7
1.3	Service manual8
1.4	Instrument security procedures8
1.5	Printed safety instructions8
1.6	Specifications and brochures8
1.7	Release notes and open-source acknowledgment (OSA)8
1.8	Application notes, application cards, white papers, etc9
1.9	Videos9
0	Welcome to the OEDM vector signal enclusis (VSA) employed and
2	welcome to the OFDM vector signal analysis (VSA) application 10
2.1	Introduction to vector signal analysis
2.2	Starting the R&S FSV3-K96 OFDM VSA application
2.3	Understanding the display information
3	OFDM VSA measurement and results14
3.1	OFDM VSA parameters14
3.2	Evaluation methods for OFDM VSA measurements16
4	Measurement basics
4.1	OFDMA
4.2	OFDM parameterization
4.3	Channel filter
4.4	OFDM measurement 42
4.5	Sample rate and maximum usable I/Q bandwidth for RF input
4.6	DFT-S precoding 50
5	Configuring OFDM VSA measurements53
5.1	Configuration overview
5.2	Signal description55
5.3	Input, output and frontend settings60
5.4	Trigger settings73
5.5	Data acquisition77

5.6	Sweep settings	81
5.7	Burst search	82
5.8	Result ranges	83
5.9	Synchronization, demodulation and tracking	83
5.10	Adjusting settings automatically	88
6	Creating a configuration file using the wizard	
6.1	Understanding the R&S FSV3-K96 Configuration File Wizard display	89
6.2	Configuration steps	96
6.3	Reference of wizard menu functions	104
6.4	Example: creating a configuration file from an input signal	109
7	Analyzing OFDM VSA vector signals	117
7.1	Result configuration	117
7.2	Table configuration	119
7.3	Units	120
7.4	Y-scaling	120
7.5	Markers	122
7.6	Trace / data export configuration	129
8	How to perform measurements in the R&S FSV3-K96 OFDM application	VSA 131
9	Remote commands for the R&S FSV3-K96 OFDM VSA appli	cation 133
9.1	Introduction	134
9.2	Common suffixes	
9.3	Activating the R&S FSV3-K96 OFDM VSA application	
9.4	Configuring the R&S FSV3-K96 OFDM VSA application	
9.5	Performing a measurement	214
9.6	Analysis	218
9.7	Configuring the result display	241
9.8	Retrieving results	2/0
		243
9.9	Status reporting system	
9.9 9.10	Status reporting system Deprecated commands	243 275 277

	Annex
Α	Formulae
A .1	Error vector magnitude (EVM)
A.2	I/Q impairments
В	Reference: IQW format specification for user-defined constellation
	285 List of commands (OFDM VSA)

1 Documentation overview

This section provides an overview of the R&S FSV/A user documentation. Unless specified otherwise, you find the documents at:

www.rohde-schwarz.com/manual/FSVA3000 www.rohde-schwarz.com/manual/FSV3000

Further documents are available at:

www.rohde-schwarz.com/product/FSVA3000

www.rohde-schwarz.com/product/FSV3000

1.1 Getting started manual

Introduces the R&S FSV/A and describes how to set up and start working with the product. Includes basic operations, typical measurement examples, and general information, e.g. safety instructions, etc.

A printed version is delivered with the instrument. A PDF version is available for download on the Internet.

1.2 User manuals and help

Separate user manuals are provided for the base unit and the firmware applications:

Base unit manual

Contains the description of all instrument modes and functions. It also provides an introduction to remote control, a complete description of the remote control commands with programming examples, and information on maintenance, instrument interfaces and error messages. Includes the contents of the getting started manual.

 Firmware application manual Contains the description of the specific functions of a firmware application, including remote control commands. Basic information on operating the R&S FSV/A is not included.

The contents of the user manuals are available as help in the R&S FSV/A. The help offers quick, context-sensitive access to the complete information for the base unit and the firmware applications.

All user manuals are also available for download or for immediate display on the Internet.

1.3 Service manual

Describes the performance test for checking the rated specifications, module replacement and repair, firmware update, troubleshooting and fault elimination, and contains mechanical drawings and spare part lists.

The service manual is available for registered users on the global Rohde & Schwarz information system (GLORIS):

R&S®FSVA3000/FSV3000 Service manual

1.4 Instrument security procedures

Deals with security issues when working with the R&S FSV/A in secure areas. It is available for download on the internet.

1.5 Printed safety instructions

Provides safety information in many languages. The printed document is delivered with the product.

1.6 Specifications and brochures

The specifications document, also known as the data sheet, contains the technical specifications of the R&S FSV/A. It also lists the firmware applications and their order numbers, and optional accessories.

The brochure provides an overview of the instrument and deals with the specific characteristics.

See www.rohde-schwarz.com/brochure-datasheet/FSV3000 /

www.rohde-schwarz.com/brochure-datasheet/FSVA3000

1.7 Release notes and open-source acknowledgment (OSA)

The release notes list new features, improvements and known issues of the current software version, and describe the software installation.

The software uses several valuable open source software packages. An open source acknowledgment document provides verbatim license texts of the used open source software.

See www.rohde-schwarz.com/firmware/FSV3000 / www.rohde-schwarz.com/firmware/FSVA3000

1.8 Application notes, application cards, white papers, etc.

These documents deal with special applications or background information on particular topics.

See www.rohde-schwarz.com/application/FSV3000 /

www.rohde-schwarz.com/application/FSVA3000

1.9 Videos

Find various videos on Rohde & Schwarz products and test and measurement topics on YouTube: https://www.youtube.com/@RohdeundSchwarz

Introduction to vector signal analysis

2 Welcome to the OFDM vector signal analysis (VSA) application

The R&S FSV3-K96 OFDM VSA application performs vector and scalar measurements on digitally modulated OFDM signals. To perform the measurements it converts RF signals into the complex baseband.

The R&S FSV3-K96 OFDM VSA application features:

- Analysis of non-standard and standard-conform OFDM systems
- I/Q-based measurement results such as EVM, constellation diagrams, power spectrum

This user manual contains a description of the functionality that the application provides, including remote control operation.

Functions that are not discussed in this manual are the same as in the Spectrum application and are described in the R&S FSV3000/ FSVA3000 base unit user manual.

Introduction	to vector signal	analysis1	0
			_

- Starting the R&S FSV3-K96 OFDM VSA application......11
- Understanding the display information......12

2.1 Introduction to vector signal analysis

The goal of vector signal analysis is to determine the quality of the signal that is transmitted by the device under test (DUT) by comparing it against an ideal signal. The DUT is usually connected with the analyzer via a cable. The key task of the analyzer is to determine the ideal signal. Hence, the analyzer aims to reconstruct the ideal signal from the measured signal that is transmitted by the DUT. This ideal signal is commonly referred to as the *reference signal*, while the signal from the DUT is called the *measurement signal*.

After extracting the reference signal, the R&S FSV3-K96 OFDM VSA application compares the measurement signal and the reference signal, and the results of this comparison are displayed.

Example:

The most common vector signal analysis measurement is the EVM ("Error Vector Magnitude") measurement. Here, the complex baseband reference signal is subtracted from the complex baseband measurement signal. The magnitude of this error vector represents the EVM value. The EVM has the advantage that it "summarizes" all potential errors and distortions in one single value. If the EVM value is low, the signal quality of the DUT is high.

Figure 2-1: Simplified schema of vector signal analysis

2.2 Starting the R&S FSV3-K96 OFDM VSA application

The R&S FSV3-K96 OFDM VSA application adds a new application to the R&S FSV/A.

To activate the R&S FSV3-K96 OFDM VSA application

1. Select [MODE].

A dialog box opens that contains all operating modes and applications currently available on your R&S FSV/A.

2. Select the "OFDM VSA" item.

The R&S FSV/A opens a new measurement channel for the R&S FSV3-K96 OFDM VSA application.

Multiple Measurement Channels and Sequencer Function

When you activate an application, a new measurement channel is created which determines the measurement settings for that application. The same application can be activated with different measurement settings by creating several channels for the same application.

The number of channels that can be configured at the same time depends on the available memory on the instrument.

Only one measurement can be performed at any time, namely the one in the currently active channel. However, in order to perform the configured measurements consecutively, a Sequencer function is provided.

If activated, the measurements configured in the currently active channels are performed one after the other in the order of the tabs. The currently active measurement is indicated by a I symbol in the tab label. The result displays of the individual channels are updated in the tabs (as well as the "MultiView") as the measurements are performed. Sequential operation itself is independent of the currently *displayed* tab.

For details on the Sequencer function see the R&S FSV/A User Manual.

2.3 Understanding the display information

The following figure shows a measurement diagram during analyzer operation. All different information areas are labeled. They are explained in more detail in the following sections.

1 = Channel bar for firmware and measurement settings

- 2+3 = Window title bar with diagram-specific (trace) information
- 4 = Diagram area
- 5 = Diagram footer with diagram-specific information, depending on measurement application
- 6 = Instrument status bar with error messages, progress bar and date/time display

Channel bar information

In the R&S FSV3-K96 OFDM VSA application, the R&S FSV/A shows the following settings:

|--|

Label	Description
Ref Level	Reference level
Att	Mechanical and electronic RF attenuation
Input	Input type of the signal source
Offset	Reference level offset
Freq	Center frequency for the RF signal
Capture Time	How long data was captured in current sweep

Label	Description
Sample Rate	Sample rate
FFT	FFT size
CP Length	Cyclic prefix length
Res Len	Result length
Config	Currently loaded configuration file

In addition, the channel bar also displays information on instrument settings that affect the measurement results even though this is not immediately apparent from the display of the measured values (e.g. transducer or trigger settings). This information is displayed only when applicable for the current measurement. For details see the R&S FSV3000/ FSVA3000 base unit user manual.

Window title bar information

For each diagram, the header provides the following information:

Figure 2-2: Window title bar information in R&S FSV3-K96 OFDM VSA application

1 = Window name

2 = Result type

3 = Trace color

4 = Trace number

5 = Trace mode

Diagram area

The diagram area displays the results according to the selected result displays (see Chapter 3.2, "Evaluation methods for OFDM VSA measurements", on page 16).

Diagram footer information

The diagram footer (beneath the diagram) contains the start and stop symbols or time of the evaluation range.

Status bar information

The software status, errors and warnings and any irregularities in the software are indicated in the status bar at the bottom of the R&S FSV/A window.

3 OFDM VSA measurement and results

Access: "Overview" > "Display Config"

Or: [MEAS] > "Display Config"

The R&S FSV3-K96 OFDM VSA application provides various different result displays for OFDM VSA measurements.

- OFDM VSA parameters......14
- Evaluation methods for OFDM VSA measurements......16

3.1 OFDM VSA parameters

Several signal parameters are determined during vector signal analysis and displayed in the Result Summary.

For details concerning the calculation of individual parameters, see Chapter A, "Formulae", on page 283.

Evaluated cells for EVM and MER results

For the numerical EVM and MER results described in Table 3-1, only the symbols in the specified result length are evaluated. The following cells and carriers are ignored:

- All "don't care" cells in all carriers
- All zero cells in all carriers
- All guard carriers, which consist of zero cells or "don't care" cells only
- DC carriers, which consist of zero cells only

Note that for the "EVM vs Carrier", "EVM vs Symbol" and "EVM vs Symbol vs Carrier" results, the traces include the zero cells and DC carriers to avoid gaps.

Table	3-1:	OFDM	VSA	parameters
-------	------	------	-----	------------

	-			
Parameter	Description	SCPI parameter *)		
EVM All [%/dB]	Error Vector Magnitude of all pilot and data cells of the ana- lyzed frames	EVM[:ALL]		
EVM Data Symbols [%/dB]	Error Vector Magnitude of all data cells of the analyzed frames. All pilot cells are ignored.	EVM:DATA		
EVM Pilot Symbols [%/dB]	Error Vector Magnitude of all pilot cells of the analyzed frames. All data cells are ignored.	EVM:PILot		
**)	Maximum EVM of each carrier (frequency domain) and in each symbol (time domain) for each analyzed signal frame. The results are provided in dB or percent.	EVMPeak[:ALL]		
	Corresponds to the maximum of the peaks for each frame in the EVM vs Symbol vs Carrier display.			
*) Required to retrieve the parameter result, see Chapter 9.8.1, "Retrieving numerical results", on page 249				
**) not included in Result Summary, remote query only				

OFDM VSA parameters

Parameter	Description	SCPI parameter *)
**)	Maximum EVM of each carrier (frequency domain) and in each data symbol (time domain) for each analyzed signal frame. The results are provided in dB or percent.	EVMPeak:DATA
**)	Maximum EVM of each carrier (frequency domain) and in each pilot symbol (time domain) for each analyzed signal frame. The results are provided in dB or percent.	EVMPeak:PILot
MER [dB]	Average Modulation Error Ratio (MER) for all data and all pilot cells of the analyzed frames. If more than one frame is evaluated, mean square averaging is used.	MER[:ALL]
	The MER is the ratio of the RMS power of the ideal refer- ence signal to the RMS power of the error vector.	
	For the average MER, the ratio of (power of the error vector) to (power of the ideal reference signal) is averaged.	
I/Q offset [dB]	Transmitter center frequency leakage relative to the total Tx channel power	IQOFset
Gain imbalance [dB]	Amplification of the quadrature phase component of the sig- nal relative to the amplification of the in-phase component	GIMBalance
Quadrature error [°]	Phase angle between Q-channel and I-channel deviating from the ideal 90 degrees; measure for crosstalk from the Q-branch into the I-branch	QUADerror
Frequency Error [Hz]	Frequency error between the signal and the currently defined center frequency	FERRor
	The absolute frequency error includes the frequency error of the R&S FSV/A and that of the DUT. If possible, the transmit- ter R&S FSV/A and the DUT should be synchronized (using an external reference).	
Sample Clock Error	Clock error between the signal and the sample clock of the R&S FSV/A in parts per million (ppm), i.e. the symbol timing error	SERRor
	If possible, the transmitter R&S FSV/A and the DUT should be synchronized (using an external reference).	
Frame Power	Average time domain power of the analyzed signal frame	POWer
Crest factor [dB]	The ratio of the peak power to the mean power of the ana- lyzed signal frame	CRESt
*) Required to retrieve	the parameter result, see Chapter 9.8.1, "Retrieving numerical	results", on page 249
**) not included in Res	ult Summary, remote query only	

The R&S FSV3-K96 OFDM VSA application also performs statistical evaluation over several frames and displays the following results:

Table 3-2: Calculated summary results

Result type	Description
Min	Minimum measured value
Average	Average measured value
Max	Maximum measured value

The data that was measured by the R&S FSV/A can be evaluated using various different methods without having to start a new measurement. Which results are displayed depends on the selected evaluation.

The R&S FSV3-K96 OFDM VSA application provides the following evaluation methods:

Allocation Matrix	16
Bitstream	17
CCDF	19
Channel Flatness	19
Constellation Diagram	20
Constellation vs Carrier	21
Constellation vs Symbol	22
EVM vs Carrier	23
EVM vs Symbol	23
EVM vs Symbol vs Carrier	24
Group Delay	
Impulse Response	26
Magnitude Capture	27
Marker Table	27
Notes	
Power Spectrum	28
Power vs Carrier	29
Power vs Symbol	30
Power vs Symbol vs Carrier	
Result Summary	31
Signal Flow	32
Trigger to Sync	33

Allocation Matrix

The Allocation Matrix display is a graphical representation of the OFDM cell structure defined in the currently loaded configuration file.

Use markers to get more detailed information on the individual cells.

1	1 Allocation Matrix											
\subset	BPSK		QPSK		16QAM	64Q	ам)	Zero	(lotConste	ellatio 🕞	ontCare	
30												
-20) carr-											
10) <mark>carr-</mark>											
0	eem-		_									
-1	. <mark>0</mark> car		_									
-2	0 car											
H												
- 3	0 car											
0	0.0 sym 99.0 sym											

Figure 3-1: Allocation Matrix

The legend for the color coding is displayed at the top of the matrix.

Note: Markers in the Allocation Matrix. Using markers you can detect individual allocation points for a specific symbol or carrier. When you activate a marker in the Allocation Matrix, its position is defined by the symbol and carrier number the point belongs to. The marker result indicates the I and Q values of the point.

See also "Markers in the Constellation View and Allocation Matrix" on page 123.

Remote command:

LAY:ADD? '1', RIGH, AMATrix, see LAYout:ADD[:WINDow]? on page 242 TRACe<n>[:DATA]? on page 264, see Chapter 9.8.4.1, "Allocation matrix", on page 268

TRACe<n>[:DATA]:X? on page 264 TRACe<n>[:DATA]:Y? on page 264 Symbol unit: UNIT:SAXes on page 225

Bitstream

This result display shows a demodulated data stream for the symbols in the currently analyzed result ranges. The different modulation types are indicated by color, as shown in the legend at the top of the window. Guard carriers are not included in the display, but are returned as non-data cells ("---") in trace export files.

• OF	🔹 OFDM VSA: 3 Bitstream (Hexadecimal) 🗗 🗑												Ŵ									
В	PSK			OP	SK		160	MA		640	DAM		Z	ero		Pilot	Cons	tellat	ion	Do	ntCa	re
		+	1		3		5		7		9		11		13		15		17		19	-
Symb	이	3																				
-2	6																					
-	6																					
1	4																					
Symb	ol	4																				
-2	6	0	1	0	0	0		0	0	0	0	0	0	1	1	0	1	1	0	0		
-	6	1	1	1	0	0	0		1	1	0	0	1	0		0	0	1	0	0	0	
1	4	0	1	0	0	1	1	1		0	1	1	1	1								
Symb	ol	5																				
-2	6	25	09	OB	29	10		2D	31	13	24	11	31	04	24	17	22	OB	20	04		
-	6	14	17	04	01	31	33		31	02	31	21	16	2C		02	27	1A	00	03	3D	
1	4	07	32	11	- 38	20	05	- 38		26	0D	0D	18	04								
Symb	ol	6																				
-2	6	3C	3A	0A	01	03		13	OF	OF	23	11	13	37	10	02	01	27	09	37		
-	6	16	02	31	3C	2A	3A		1A	06	25	34	16	0A		OB	0E	01	19	04	35	
1	4	23	25	01	3F	24	09	17		0A	19	22	12	2B								
Symb		7																				
-2	6	3A	2B	00	3B	20		11	13	28	04	15	2F	09	2F	3A	OB	22	2D	OB		
-	6	22	0E	1E	00	16	35		18	24	18	1F	25	11		- 38	10	1B	- 38	14	3F	
1	4	2A	30	1A	3F	- 22	- 27	15		- 27	2F	3D	18	10								-

The bitstream is derived from the order of the constellation points in the configuration file.

Example:

For QPSK, the value that is in the first position defines "00", the value that is in the second position defines "01", the value that is in the third position "10" and the last value "11".

```
<Constellation>
        <ID>1</ID>
        <Name>QPSK</Name>
        <HumanReadableName>QPSK</HumanReadableName>
<ScalingFactor>1.0</ScalingFactor>
        <AllocationType>DataConstellation</AllocationType>
        <IQSymbols>
                 <IQ>
                          <Re>0.70711</Re>
                                                  Bits "00"
                          <Im>0.70711</Im>
                 </IQ>
                 <IQ>
                          <Re>-0.70711</Re>
                                                    Bits "01"
                          <Im>0.70711</Im>
                 </IQ>
                 <IQ>
                          <Re>-0.70711</Re>
                                                   Bits "10"
                          <Im>-0.70711</Im>
                 </IQ>
                 <IQ>
                          <Re>0.70711</Re>
                                                     Bits "11"
                          <Im>-0.70711</Im>
                 </10>
        </IQSymbols>
</Constellation>
```

Figure 3-2: Extract from configuration file defining the constellation points

Remote command:

LAY:ADD? '1', RIGH, BITS, see LAYout:ADD[:WINDow]? on page 242 TRACe:DATA?, see Chapter 9.8.4.2, "Bitstream", on page 268

CCDF

The CCDF results display shows the probability of an amplitude exceeding the mean power. The x-axis displays power relative to the measured mean power.

Figure 3-3: CCDF display

Remote command:

```
LAY:ADD? '1', RIGH, CCDF, see LAYout:ADD[:WINDow]? on page 242
TRACe:DATA?, see Chapter 9.8.4.3, "CCDF", on page 268
TRACe<n>[:DATA]:X? on page 264
```

Channel Flatness

The Channel Flatness display shows the amplitude of the channel transfer function vs. carrier.

The statistic is performed over all analyzed frames.

Figure 3-4: Channel Flatness Display

Remote command:

```
LAY:ADD? '1', RIGH, CHFL, see LAYout:ADD[:WINDow]? on page 242
TRACe:DATA?, see Chapter 9.8.4.4, "Channel flatness", on page 269
TRACe<n>[:DATA]:X? on page 264
Carrier unit: UNIT:CAXes on page 224
```

Constellation Diagram

The Constellation Diagram shows the inphase and quadrature results for the analyzed input data. The ideal points for the selected cell types are displayed for reference purposes.

4 Constellation		
BPSK	(64QAM	PilotConstellation
	·⊦·⊧·⊧·	
	+ + + + + + + + +	
	+ + + + + + + + +	
	<u>+,+++</u> +++,+	
	+' + + + + + + + +	
	++++	
	++++	
	+ + + + + + + +	

Figure 3-5: Constellation diagram

The legend for the color coding is displayed at the top of the matrix. If you click on one of the codes, only the selected constellation points are displayed. Click again, and all constellation points are displayed again (according to the constellation filter).

See Chapter 7.1, "Result configuration", on page 117.

Note: Markers in the Constellation diagram. Using markers you can detect individual constellation points for a specific symbol or carrier. When you activate a marker in the Constellation diagram, its position is defined by the symbol and carrier number the point belongs to. The marker result indicates the I and Q values of the point.

Delta Marke	r 2	
0.0 sym	1 carr	×
4 Constellation		
BPSK	64QAM	PilotConstellation
		D2[1] 0.996196
		0.999092
		M1[1] 0.001467
		-0.999852
	·····································	
U		

Figure 3-6: Marker in a Constellation diagram

See also "Markers in the Constellation View and Allocation Matrix" on page 123.

Remote command:

LAY:ADD? '1', RIGH, CONS, see LAYout: ADD[:WINDow]? on page 242 TRACe:DATA?, see Chapter 9.8.4.5, "Constellation diagram", on page 269 Marker I/Q values:

CALCulate<n>:MARKer<m>:Z on page 260

Constellation vs Carrier

The Constellation vs. Carrier display shows the inphase and quadrature magnitude results of all analyzed symbols over the corresponding carriers. The inphase values are displayed as yellow dots; the quadrature-values are displayed as blue dots.

4 Constellation vs Carrier • 1 Real • 2 Imaginary													
3.8													
1.5				· · · · · · · ·									
1		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·									
0.5		· · · · · · · · · · · · · ·		· · · · · · ·									
9			·										
-0.5				· · · · · · ·									
-1	• • • • • • • • • • • • • • • • • •	· · · · · · <mark>· · · · · ·</mark> ·	····	; • ; • , ; ; ;									
-1.5	· · · · ·												
-32 carr 32 carr													

Figure 3-7: Constellation vs Carrier display

Note: This result display is only available if synchronization is successful.

Remote command:

LAY:ADD? '1', RIGH, CCAR, see LAYout:ADD[:WINDow]? on page 242 TRACe:DATA?, see Chapter 9.8.4, "Using the TRACe[:DATA] command", on page 267 Carrier unit: UNIT:CAXes on page 224

Symbol selection for marker: CALCulate<n>:MARKer<m>:Z on page 260

Constellation vs Symbol

The Constellation vs. Symbol display shows the inphase and quadrature magnitude results of all analyzed carriers over the corresponding symbols. The inphase values are displayed as yellow dots; the quadrature-values are displayed as blue dots.

Figure 3-8: Constellation vs Symbol display

Note: This result display is only available if synchronization is successful.

Remote command:

LAY: ADD? '1', RIGH, CSYM, see LAYout: ADD[:WINDow]? on page 242 TRACe: DATA?, see Chapter 9.8.4, "Using the TRACe[:DATA] command", on page 267 Symbol unit: UNIT: SAXes on page 225

Carrier selection for marker: CALCulate<n>:MARKer<m>:Z on page 260

EVM vs Carrier

The EVM vs Carrier display shows the EVM of each carrier of the analyzed signal frame in the frequency domain. The results are provided in dB. Multiple traces display statistical evaluations over carriers.

Figure 3-9: EVM vs Carrier display

Note: This result display is only available if synchronization is successful. Guard carriers to the left and right of the spectrum are not included in the EVM calculation. However, zero cells and the DC carrier are included.

Remote command:

LAY:ADD? '1', RIGH, EVC, see LAYout:ADD[:WINDow]? on page 242 TRACe:DATA?, see Chapter 9.8.4.8, "EVM vs carrier", on page 272 TRACe<n>[:DATA]:X? on page 264 Carrier unit: UNIT:CAXes on page 224 EVM unit: UNIT:EVM on page 224

EVM vs Symbol

The EVM vs. Symbol display shows the EVM of each symbol of the analyzed signal frame in the time domain. The results are provided in dB. Multiple traces display statistical evaluations over symbols.

Blue lines indicate the border between different OFDM frames if more than one frame is analyzed.

Figure 3-10: EVM vs Symbol display

Note: This result display is only available if synchronization is successful. Guard carriers to the left and right of the spectrum are not included in the EVM calculation. However, zero cells and the DC carrier are included.

Remote command:

LAY:ADD? '1', RIGH, EVSY, see LAYout:ADD[:WINDow]? on page 242 TRACe:DATA?, see Chapter 9.8.4.9, "EVM vs symbol", on page 272 TRACe<n>[:DATA]:X? on page 264 Symbol unit: UNIT:SAXes on page 225 EVM unit: UNIT:EVM on page 224

EVM vs Symbol vs Carrier

The EVM vs Symbol vs Carrier display shows the EVM of each carrier (frequency domain) and in each symbol (time domain) of the analyzed signal frame.

The results are provided in dB or percent, depending on the unit settings.

Figure 3-11: EVM vs Symbol vs Carrier display

The EVM values are represented by colors. The corresponding color map is displayed at the top of the result display.

Note: This result display is only available if synchronization is successful.

Remote command:

LAY:ADD? '1', RIGH, EVSC, see LAYout:ADD[:WINDow]? on page 242 TRACe:DATA?, see Chapter 9.8.4.10, "EVM vs symbol vs carrier", on page 272 TRACe<n>[:DATA]:X? on page 264 TRACe<n>[:DATA]:Y? on page 264 Carrier unit: UNIT:CAXes on page 224 Symbol unit: UNIT:SAXes on page 225 EVM unit: UNIT:EVM on page 224 Carrier selection for marker: CALCulate<n>:MARKer<m>:Z on page 260

Group Delay

The Group Delay display shows the relative group delay of the transmission channel per carrier.

Multiple traces display statistical evaluations over all analyzed frames.

Remote command:

LAY:ADD? '1', RIGH, GDEL, see LAYout:ADD[:WINDow]? on page 242 TRACe:DATA?, see Chapter 9.8.4.11, "Group delay", on page 273 TRACe<n>[:DATA]:X? on page 264 Carrier unit: UNIT:CAXes on page 224

Impulse Response

The "Channel Impulse Response" display shows the impulse response of the channel and its position within the guard interval. The start and the end of the cyclic prefix are marked with blue lines.

Multiple traces display statistical evaluations over all analyzed frames.

Figure 3-12: Channel Impulse Response Display

Remote command:

LAY:ADD? '1', RIGH, IRES, see LAYout:ADD[:WINDow]? on page 242 TRACe:DATA?, see Chapter 9.8.4.12, "Impulse response", on page 273 TRACe<n>[:DATA]:X? on page 264 Linear/logarithmic scaling: UNIT:IRESponse on page 225

Magnitude Capture

The capture buffer contains the complete range of captured data for the last sweep. The "Magnitude Capture" display shows the power of the captured I/Q data in dBm versus time. The analyzed frames are identified with a green bar at the bottom of the "Magnitude Capture" display.

Figure 3-13: Magnitude Capture display

Remote command:

```
LAY:ADD? '1', RIGH, MCAP, see LAYout:ADD[:WINDow]? on page 242
TRACe:DATA?, see Chapter 9.8.4.13, "Magnitude capture", on page 273
TRACe<n>[:DATA]:X? on page 264
Time unit: UNIT:TAXES on page 226
```

Marker Table

Displays a table with the current marker values for the active markers.

This table is displayed automatically if configured accordingly.

1 Mark∉	Marker Table										
Wnd	Туре	Ref	Trc	X-Value	Y-Value	Function	Function Result				
	M1		1	2.1725 ms	-6.80 dBm						
	D2	M1		13.859 ms	-0.00 dB						
	D3	M1	1	4.6259 ms	-0.00 dB						
2	DИ	MH	1	9 2331 mc	-0 00 dB						

Tip: To navigate within long marker tables, simply scroll through the entries with your finger on the touchscreen.

Remote command:

```
LAY:ADD? '1', RIGH, MTAB, see LAYout:ADD[:WINDow]? on page 242
Results:
```

CALCulate<n>:MARKer<m>:X on page 228 CALCulate<n>:MARKer<m>:Y? on page 260

Notes

Allows you to add comments or explanations to the current measurement. The content of the Notes display can also be included in test reports.

For details, see the R&S FSV3000/ FSVA3000 base unit user manual.

Remote command:

LAY: ADD? '1', RIGH, NOT, see LAYout: ADD[:WINDow]? on page 242

Power Spectrum

The Power Spectrum display shows the power in dBm/Hz vs frequency results of the complete capture buffer. This display is always available.

Figure 3-14: Power Spectrum display

The usable I/Q bandwidth is indicated for reference. If a channel filter is active, the 6-dB-bandwidth of the filter is indicated instead.

See Chapter 5.5, "Data acquisition", on page 77.

Figure 3-15: Power spectrum with active channel filter

Remote command:

LAY: ADD? '1', RIGH, PSP, see LAYout: ADD[:WINDow]? on page 242 TRACe: DATA?, see Chapter 9.8.4.17, "Power spectrum", on page 275 Frequency unit: UNIT: FAXes on page 225

Power vs Carrier

The Power vs. Carrier display shows the power of all OFDM symbols in the analyzed signal frames for each carrier. The power is measured with a resolution bandwidth equal to the carrier spacing.

Multiple traces display statistical evaluations over all analyzed frames.

Figure 3-16: Power vs Carrier display

Note: This result display is only available if synchronization is successful.

Remote command:

LAY:ADD? '1', RIGH, PCAR, see LAYout:ADD[:WINDow]? on page 242 TRACe:DATA?, see Chapter 9.8.4.14, "Power vs carrier", on page 274

TRACe<n>[:DATA]:X? on page 264

Carrier unit: UNIT: CAXes on page 224

Power vs Symbol

The Power vs Symbol display shows the power of all OFDM carriers in the analyzed signal frames for each symbol. The power is measured with a resolution bandwidth equal to the carrier spacing. Carriers which contain 'Zero'-cells over the complete symbol range (e.g. guard carriers or DC carrier) are excluded.

Multiple traces display statistical evaluations over all analyzed frames.

 3 Power vs Symbol
 • 1 Avg • 2 Max • 3 Min

 -20 dBm
 -40 dBm

 -40 dBm
 -40 dBm

 60 dBm
 -40 dBm

 -50 dBm
 -900 sym

Vertical blue lines indicate the borders between frames.

Figure 3-17: Power vs Symbol display

Note: This result display is only available if synchronization is successful.

Remote command:

LAY:ADD? '1', RIGH, PSYM, see LAYout:ADD[:WINDow]? on page 242 TRACe:DATA?, see Chapter 9.8.4.15, "Power vs symbol", on page 274 TRACe<n>[:DATA]:X? on page 264 Symbol unit: UNIT:SAXes on page 225

Power vs Symbol vs Carrier

The Power vs Carrier vs Symbol display shows the power of each carrier (= frequency domain) in each symbol (= time domain) of the analyzed signal frames in dBm. The power is measured with a resolution bandwidth that equals the carrier spacing.

Figure 3-18: Power vs Symbol vs Carrier display

The power levels are represented by colors. The corresponding color map is displayed at the top of the result display.

Note: This result display is only available if synchronization is successful.

Remote command:

LAY:ADD? '1', RIGH, PSC, see LAYout:ADD[:WINDow]? on page 242 TRACe:DATA?, see Chapter 9.8.4.16, "Power vs symbol vs carrier", on page 274 TRACe<n>[:DATA]:X? on page 264 TRACe<n>[:DATA]:Y? on page 264 Carrier unit: UNIT:CAXes on page 224 Symbol unit: UNIT:SAXes on page 225 Carrier selection for marker: CALCulate<n>:MARKer<m>:Z on page 260

Result Summary

The Result Summary table provides numerical measurement results.

Statistical evaluation is performed over all analyzed frames within the capture buffer.

2 Result Summary				
	Min	Average	Мах	Unit
EVM All				dB
				%
EVM Data Symbols				dB
				%
EVM Pilot Symbols				dB
				%
MER				dB
I/Q Offset				dB
Gain Imbalance				dB
Quadrature Error				o
Frequency Error		0.000		Hz
Sample Clock Error				ppm
Frame Power		-6.990		dBm
Crest Factor		0.000		dB

Figure 3-19: Result Summary display

Note: If only one frame is available for analysis, the minimum and maximum values are not displayed, as they are identical to the average value.

For details on the individual results, see Chapter 3.1, "OFDM VSA parameters", on page 14.

Remote command:

LAY: ADD? '1', RIGH, RSUM, see LAYout: ADD[:WINDow]? on page 242 Results:

FETCh:SUMMary[:ALL]? on page 251

Signal Flow

The Signal Flow display shows a detailed description of the current measurement status. If demodulation is not successful, it provides useful hints on possible reasons. Unused blocks are shown in gray.

Figure 3-20: Signal Flow display

For the synchronization blocks, a colored bar provides information about the reliability of the synchronization result. If the level in the bar falls below the thresholds indicated by the horizontal line, the color of the bar changes from green to yellow and finally to red. If the synchronization of the block fails, all succeeding arrows change their color, too.

For detailed information about the complete synchronization process, refer to Chapter 4.4.1, "Synchronization block", on page 43.

Remote command:

LAY: ADD? '1', RIGH, SFL, see LAYout: ADD[:WINDow]? on page 242 Retrieving results: Chapter 9.8.2, "Retrieving signal flow results", on page 254

Trigger to Sync

Indicates the time offset between the trigger event and the start of the first OFDM frame. One value per capture is displayed.

5 Trigger to Syn	с	
	Current	Unit
Trigger to Sync	0.750	μs

Figure 3-21: Trigger to Sync display

Remote command:

```
LAY: ADD? '1', RIGH, TRIG, see LAYout: ADD[:WINDow]? on page 242
Retrieving results:
```

FETCh: TTFRame? on page 253

4 Measurement basics

Some background knowledge on basic terms and principles used in OFDM vector signal analysis is provided here for a better understanding of the required configuration settings.

OFDMA	. 34
OFDM parameterization	.35
Channel filter	.41
OFDM measurement.	42
Sample rate and maximum usable I/Q bandwidth for RF input	45
DFT-S precoding	.50

4.1 OFDMA

In an OFDM system, the available spectrum is divided into multiple carriers, called subcarriers, which are orthogonal to each other. Each of these subcarriers is independently modulated by a low rate data stream.

OFDM is used as well in WLAN, WiMAX and broadcast technologies like DVB. OFDM has several benefits including its robustness against multipath fading and its efficient receiver architecture.

Figure 4-1 shows a representation of an OFDM signal taken from 3GPP TR 25.892. Data symbols are independently modulated and transmitted over a high number of closely spaced orthogonal subcarriers. In the OFDM-VSA common modulation schemes as QPSK, 16QAM, and 64QAM can be defined as well as arbitrarily distributed constellation points.

In the time domain, a guard interval can be added to each symbol to combat inter-OFDM-symbol-interference due to channel delay spread. In EUTRA, the guard interval is a cyclic prefix which is inserted before each OFDM symbol.

Figure 4-1: Frequency-time representation of an OFDM signal

In practice, the OFDM signal can be generated using the inverse fast Fourier transform (IFFT) digital signal processing. The IFFT converts a number N of complex data symbols used as frequency domain bins into the time domain signal. Such an N-point IFFT is illustrated in Figure 4-2, where a(mN+n) refers to the nth subchannel modulated data symbol, during the time period $mT_u < t \le (m+1)T_u$.

Figure 4-2: OFDM useful symbol generation using an IFFT

The vector s_m is defined as the useful OFDM symbol. It is the time superposition of the N narrowband modulated subcarriers. Therefore, from a parallel stream of N sources of data, each one independently modulated, a waveform composed of N orthogonal subcarriers is obtained. Each subcarrier has the shape of a frequency sinc function (see Figure 4-1).

Figure 4-3 illustrates the mapping from a serial stream of QAM symbols to N parallel streams, used as frequency domain bins for the IFFT. The N-point time domain blocks obtained from the IFFT are then serialized to create a time domain signal. Not shown in Figure 4-3 is the process of cyclic prefix insertion.

Figure 4-3: OFDM signal generation chain

4.2 **OFDM** parameterization

A generic OFDM analyzer supports various OFDM standards. Therefore a common parameterization of OFDM systems has to be defined.

4.2.1 Time domain description

The fundamental unit of an OFDM signal in the time domain is a *sample*.

An OFDM symbol with a length of N_S samples consists of:

- A guard interval of length N_G
- An FFT interval of length N_{FFT}

Figure 4-4: OFDM symbol in time domain

Cyclic suffix

In addition to the guard interval at the beginning of an OFDM symbol, some symbols also contain a cyclic suffix. See "Cyclic Suffix Length" on page 58.

4.2.2 Frequency domain description

The FFT intervals of the OFDM symbols are transformed into the frequency domain using a discrete Fourier transformation. The successive symbols of the OFDM signal are displayed in time-frequency matrices. The fundamental unit of an OFDM signal in the frequency domain is a *cell*.

The total area of a time-frequency matrix is called *frame*. A frame is the highest level unit used in OFDM VSA.

Figure 4-5: Time-Frequency matrix
Carriers

A column of cells at the same frequency is called *carrier*.

The carrier number is the column index of a time-frequency matrix. The number '0' is assigned to the *DC-carrier*, which lies at the transmitter center frequency. The total number of subcarriers is N_{FFT} . The *DC-carrier offset* determines the position of the DC carrier relative to the lowermost subcarrier. The offset is an inherent attribute of the FFT algorithm.

FFT length N _{FFT}	DC-Carrier offset	Range
even	$\frac{N_{FFT}}{2}$	$\left[-\frac{N_{FFT}}{2},\frac{N_{FFT}}{2}-1\right]$
odd	$\frac{N_{FFT}-1}{2}$	$\left[-\frac{N_{FFT}-1}{2},\frac{N_{FFT}-1}{2}\right]$

Table 4-1: Relationship between FFT length and subcarrier range

OFDM system sample rate

In an OFDM system, an FFT (with the length N_{FFT}) is performed for each symbol. Each FFT bin corresponds to one subcarrier. For each FFT bin, one sample must be captured in the time domain for each OFDM symbol. The minimum number of samples required for the measurement is thus the number of subcarriers (or the number of FFT bins), multiplied by the number of symbols to measure. To avoid intersymbol interference, the cyclic prefix is added as the guard interval.

No_samples_{min} = (<FFT_size> + <CyclicPrefixLength> + <CyclicSuffixLength>) * <No_symbols_to_measure>

Generally, the number of samples acquired per second is referred to as the sample rate. The sample rate required by a specific OFDM system is referred to as the *OFDM system sample rate*. It depends on parameters that characterize the OFDM system and is defined by the following equation:

For the R&S FSV3-K96 OFDM VSA application to demodulate OFDM symbols, it is important that the number of acquired samples in the application corresponds to the OFDM system sample rate.

Symbols

A row of cells at the same time is called symbol.

The symbol number is the row index of a time frequency matrix. The first symbol gets the number '0'.

4.2.2.1 Allocation matrix

The allocation matrix defines the complete frame and subdivides the OFDM system into the following cell types:

- **Pilot cells**: Contain known values and are used for various synchronization and parameter estimation purposes.
- **Data cells**: Contain the user data or *payload* of the transmission. The modulation format of the data cells must be known or can be estimated in a modulation estimation block.
- "Don't Care" cells: Cells that are not evaluated for EVM measurement, but contain signal power.
- **Zero cells**: Contain no signal power at all; Typically, guard carriers around DC or at the edges of the carrier axis.

Figure 4-6: Allocation matrix

4.2.2.2 Pilot matrix

A pilot matrix contains known complex numbers in the matrix cells, which are defined as pilot cells in the allocation matrix. Within the analyzer, the pilot matrix is correlated with the received time frequency matrix. Thus, it obtains the frame start and the frequency offset of the received signal relative to the given allocation matrix.

Figure 4-7: Pilot matrix

4.2.2.3 Constellation vector

A constellation vector contains all possible numbers in the complex plane that belong to a specific modulation format. Constellation vectors must be defined for each possible data modulation format. The magnitude within the constellation vectors must be scaled according to the pilot matrix. One entry in the constellation vector is called *constellation point*'.

Differential modulation is not supported. The respective absolute modulation scheme must be used instead (e.g. QPSK instead of DQPSK). Periodically rotated constellations are not supported. The set union of all constellations must be used instead (e.g. 8PSK instead of PI/4-DQPSK).

Constellation point

Figure 4-8: QPSK constellation vector

4.2.2.4 Modulation matrix

A modulation matrix contains numbers to the underlying constellation vector for each cell, which is defined as data cell in the allocation matrix. Clusters of data cells with the same modulation therefore share the same number. A data cell can also contain an unused number, that is a number for which no constellation vector is defined. In this

case, all data cells sharing that number are assumed to use only one of the valid constellation vectors. This method can be used within the R&S FSV3-K96 OFDM VSA application to allow for automatic modulation detection.

Figure 4-9: Modulation matrix

4.2.3 Preamble description

The OFDM demodulator must support synchronization on repetitive preamble symbols. A repetitive preamble contains several repetitions of one time domain block. The Figure 4-10 shows exemplarily the parameterization of a repetitive preamble symbol, which contains a five times repetition of block T. The allocation matrix can have an arbitrary offset to the beginning of the preamble symbol. If the offset is zero or negative, the preamble is also contained within the frame and is used for further estimation processes.

Figure 4-10: Description of a repetitive preamble symbol

4.3 Channel filter

The R&S FSV3-K96 OFDM VSA application can use the internal channel filter of the instrument or apply an adjustable channel filter. The filter bandwidth of the internal channel filter is fully equalized within the digital hardware.

Alternatively to the internal filters, you can apply a channel filter with adjustable bandwidth and slope characteristics to the input signal. The R&S FSV3-K96 OFDM VSA application then designs a window-based finite impulse response filter. The bandwidth is defined as two times the 6-dB cutoff frequency. The 50-dB cutoff frequency determines the slope characteristics.

Choosing the correct filter settings is a trade-off between selectivity and filter impulse response length. A steep filter leads to superior selectivity between adjacent channels. On the other hand, such a filter has a long channel impulse response, which can produce intersymbol interference if used in systems with small guard intervals. Flat filters require a higher distance between channels and possibly attenuate the outer carriers of the signal. In contrast, the channel impulse response is short and suited for systems with short guard intervals.

Figure 4-11: Slope characteristics for different channel filters (with low, normal, high steepness)

The adjustable channel filter performs a decimation at its output. Thus, the user-definable maximum output sample rate is reduced compared to the internal filter setting. Therefore, data is captured by the R&S FSV/A with an oversampling factor before the adjustable channel filter is applied.

Example:

Assume you want to analyze a 20-MHz WLAN-A signal. The specified (demodulation) sample rate is 20 MHz.

If the adjustable channel filter is disabled, the R&S FSV/A captures I/Q data and resamples it to 20 MHz. The instrument's hardware defines the flat bandwidth, filter slope and stopband frequency of the used filter. The R&S FSV3-K96 OFDM VSA application receives the data with the required sample rate of 20 MHz.

If the adjustable channel filter is enabled, the R&S FSV/A captures I/Q data using a doubled sample rate of 40 MHz, that is: an oversampling factor of 2 is applied. The R&S FSV3-K96 OFDM VSA application then applies the adjustable channel filter. The user-defined 6-dB bandwidth defines the overall bandwidth of the filter. The distance between the 6-dB bandwidth and the user-defined 50-dB bandwidth defines the filter slope (see Figure 4-11). The 20-MHz region of interest in the middle of the signal is not affected by the filter. Finally, the R&S FSV3-K96 OFDM VSA application decimates the filtered data from 40 MHz to the required sample rate of 20 MHz.

4.4 OFDM measurement

Figure 4-12: Block diagram of the R&S FSV3-K96 OFDM VSA application

The block diagram in Figure 4-12 shows the R&S FSV3-K96 OFDM VSA application process from the capture buffer containing the I/Q data to the actual analysis block. The signal processing chain can be divided in four major blocks:

•	Synchronization block	43
•	Pilot-aided block	43
•	Data aided block	44
•	Measurement block	44

4.4.1 Synchronization block

The synchronization starts with a burst detection that extracts transmission areas within a burst signal by a power threshold. For seamless transmission, as is the case in most broadcast systems, it is possible to bypass this block. The following time synchronization uses either the preamble or the cyclic prefix of each OFDM symbol to find the optimum starting point for the FFT by a correlation metric. If preamble synchronization is selected, the correlation is done between successive blocks of a repetitive preamble structure. Alternatively, the cyclic prefix synchronization correlates the guard interval of each symbol with the end of the FFT part. In addition, both methods return an estimation of the fractional frequency offset by evaluating the phase of the correlation maximum. This frequency offset has to be compensated before the FFT to avoid intercarrier interference.

By default, the FFT starting point is put in the center of the guard interval assuming a symmetric impulse response, but it can optionally be shifted within the guard interval. After performing the FFT for each available OFDM symbol, a time-frequency matrix $R_{I,k}$ with symbol index I and subcarrier index k is available.

The subsequent frame synchronization determines the frame start within this matrix and the integer carrier frequency offset. It is determined by a two-dimensional correlation of $R_{l,k}$ with the known pilot matrix from the configuration file. To avoid unnecessary computing time for signals with low frequency offset, the search length in the frequency direction can be limited by a control parameter.

Furthermore, a threshold for the reliability of time and frame synchronization can be defined to ensure that only correct frames are evaluated. A threshold is particularly useful for 5G signals, for example. In this case, the pilot structure in the second half of the frame is similar, but not identical to the first half. Thus, frame synchronization can be off by half a frame, but since the pilots do not match completely, the reliability is poor. The EVM results are also poor. By defining a threshold, only the correctly synchronized frames are evaluated.

4.4.2 Pilot-aided block

The pilot-aided block within the signal processing chain uses the predefined pilot cells for parameter estimation and subsequent compensation of the signal impairments. It starts with maximum likelihood estimation of the remaining frequency error and sample clock offset. While a frequency error leads to a phase offset linearly increasing with time, the clock offset introduces an additional phase error linearly increasing with frequency. The estimator determines the most probable parameters that lead to the phase offsets observed on the pilot cells. The resulting offset values are compensated in the frequency domain by rerotating the phase of the R_{I,k} matrix. However, for severe clock offsets it can be necessary to resample the received signal in the time domain and repeat the FFT stage.

The subsequent channel estimator determines the channel transfer function at the known pilot positions and uses interpolation to get a complete frequency response vector for all subcarriers. It does not extrapolate the channel transfer function for the guard carriers (which are defined by zero or "don't care" cell types). Since the presented measurement system is intended for stationary channels, the interpolation is performed

along the frequency direction only. The node values on the frequency axis are determined by averaging all available pilots of each subcarrier over time. Depending on the layout of the pilots on the frequency axis, an interpolation filter bank with optimum Wiener filter coefficients is calculated in advance. The Wiener filter is designed under the assumption that the maximum impulse response length does not exceed the cyclic prefix length.

Although the channel is assumed to be stationary, common phase error and power level variations are estimated symbol by symbol over the complete frame. The estimation takes settling effects of oscillators and power amplifiers into account. All estimated impairments are fully compensated to get an optimum signal for the subsequent modulation-detection and data decision stage.

The modulation-detection block determines the modulation type of the data cells. Either each carrier or each symbol can be assigned to one specific constellation. Alternatively, the modulation information provided in the configuration file is evaluated to extract clusters of data cells with consistent modulation. The estimator uses a maximum likelihood approach. Each cluster of data cells is compared with all possible modulation hypotheses and the most probable constellation for each cluster is used for the subsequent data decision. The data decision block finally outputs a reference signal matrix A_{Lk} which is an optimum estimate of the actual transmitted OFDM frame.

4.4.3 Data aided block

The data aided block can be activated optionally to refine the parameter estimations with the help of the reference signal. Whereas the previous stages could only include pilot cells for the estimation algorithms, the data aided part can treat data cells as additional pilots. Thus, the accuracy of the estimates increases in good signal to noise environments without data decision errors. However, if the reference signal matrix $A_{I,k}$ contains falsely decided data cells, the data aided estimation part can corrupt the results and should be omitted.

4.4.4 Measurement block

The last part of the signal processing chain comprises the user-defined compensation and the measurement of modulation quality. The measurement block takes the received OFDM symbols $R_{I,k}$ and the previously determined reference OFDM symbols $A_{I,k}$ to calculate the error vector magnitude (EVM). The received OFDM symbols can optionally be compensated using phase, timing and level deviations and the channel transfer function.

4.5 Sample rate and maximum usable I/Q bandwidth for RF input

Definitions

- Input sample rate (ISR): the sample rate of the useful data provided by the device connected to the input of the R&S FSV/A
- (User, Output) Sample rate (SR): the user-defined sample rate (e.g. in the "Data Acquisition" dialog box in the "I/Q Analyzer" application) which is used as the basis for analysis or output
- Usable I/Q (Analysis) bandwidth: the bandwidth range in which the signal remains undistorted in regard to amplitude characteristic and group delay; this range can be used for accurate analysis by the R&S FSV/A
- **Record length**: Number of I/Q samples to capture during the specified measurement time; calculated as the measurement time multiplied by the sample rate

For the I/Q data acquisition, digital decimation filters are used internally in the R&S FSV/A. The passband of these digital filters determines the *maximum usable I/Q bandwidth*. In consequence, signals within the usable I/Q bandwidth (passband) remain unchanged, while signals outside the usable I/Q bandwidth (passband) are suppressed. Usually, the suppressed signals are noise, artifacts, and the second IF side band. If frequencies of interest to you are also suppressed, try to increase the output sample rate, which increases the maximum usable I/Q bandwidth.

Bandwidth extension options

You can extend the maximum usable I/Q bandwidth provided by the R&S FSV/A in the basic installation by adding options. These options can either be included in the initial installation (B-options) or updated later (U-options). The maximum bandwidth provided by the individual option is indicated by its number, for example, B40 extends the bandwidth to 40 MHz.

Note that the U-options as of U40 always require all lower-bandwidth options as a prerequisite, while the B-options already include them.

As a rule, the usable I/Q bandwidth is proportional to the output sample rate. Yet, when the I/Q bandwidth reaches the bandwidth of the analog IF filter (at very high output sample rates), the curve breaks.

•	Bandwidth extension options	46
•	Relationship between sample rate, record length and usable I/Q bandwidth	46
•	R&S FSV/A without additional bandwidth extension options	47
•	R&S FSV/A with I/Q bandwidth extension option B40 or U40	48
•	R&S FSV/A with I/Q bandwidth extension option B200	48
•	R&S FSVA with I/Q bandwidth extension option B400	49
•	R&S FSVA with I/Q bandwidth extension option B600	49
•	R&S FSVA with I/Q bandwidth extension option B601	49
•	R&S FSVA with I/Q bandwidth extension option B1000	49
•	R&S FSVA with I/Q bandwidth extension option B1001	50
	•	

4.5.1 Bandwidth extension options

Max. usable I/Q BW	Required B-option	Required U-options
40 MHz	B40	
200 MHz	B200	
400 MHz	B400	B200+U400
600 MHz	B600	
600 MHz	B601	
1000 MHz	B1000	B600+U1006
1000 MHz	B1001	

4.5.2 Relationship between sample rate, record length and usable I/Q bandwidth

Up to the maximum bandwidth, the following rule applies:

Usable I/Q bandwidth = 0.8 * Output sample rate

Regarding the record length, the following rule applies:

Record length = Measurement time * sample rate

Maximum record length for RF input

The absolute maximum record length (AbsMaxRecordLength), that is, the maximum number of samples that can be captured, is 100 Msamples (with option B114: 800 Msamples).

When using bandwidth extension options R&S FSV3-B600/B601/B1000/B1001, the maximum record length depends on the analysis bandwidth.

Sample rate and maximum usable I/Q bandwidth for RF input

Analysis band- width *)	Max. meas time	Maximum record length
80 Hz to 400 MHz	<capture- Length> / <samplerate></samplerate></capture- 	AbsMaxRecordLength
400 MHz to 800 MHz (B600/B601: 400 MHz to 600 MHz)	<capture- Length> / <samplerate> with B114: 819.2 ms</samplerate></capture- 	AbsMaxRecordLength * <samplerate> / (1024*10⁶) For sample rates ≥2048 MHz: AbsMaxRecordLength</samplerate>
>800 MHz to 1000 MHz	<capture- Length> / <samplerate> with B114: 409.6 ms</samplerate></capture- 	AbsMaxRecordLength * <samplerate> / (2048*10⁶) For sample rates ≥2048 MHz: AbsMaxRecordLength</samplerate>

Table 4-2: Maximum record length with I/Q bandwidth extension option B600/B601/B1000/B1001

4.5.3 R&S FSV/A without additional bandwidth extension options

Sample rate: 100 Hz - 10 GHz

Maximum I/Q bandwidth: 28 MHz

Table 4-3: Maximum I/Q bandwidth

Sample rate	Maximum I/Q bandwidth	
100 Hz to 35 MHz	Proportional up to maximum 28 MHz	
35 MHz to 10 GHz	28 MHz	

Figure 4-13: Relationship between maximum usable I/Q bandwidth and output sample rate without bandwidth extensions

Sample rate and maximum usable I/Q bandwidth for RF input

I/Q bandwidths for RF input

Figure 4-14: Relationship between maximum usable I/Q bandwidth and output sample rate with optional bandwidth extensions

4.5.4 R&S FSV/A with I/Q bandwidth extension option B40 or U40

Sample rate: 100 Hz - 10 GHz

Maximum bandwidth: 40 MHz

Sample rate	Maximum I/Q bandwidth	
100 Hz to 50 MHz	Proportional up to maximum 40 MHz	
50 MHz to 10 GHz	40 MHz	

4.5.5 R&S FSV/A with I/Q bandwidth extension option B200

Sample rate: 100 Hz - 10 GHz

Maximum bandwidth: 200 MHz

Sample rate	Maximum I/Q bandwidth	
100 Hz to 250 MHz	Proportional up to maximum 200 MHz	
250 MHz to 10 GHz	200 MHz	

4.5.6 R&S FSVA with I/Q bandwidth extension option B400

Sample rate: 100 Hz - 10 GHz

Maximum bandwidth: 400 MHz

Sample rate	Maximum I/Q bandwidth	
100 Hz to 500 MHz	Proportional up to maximum 400 MHz	
500 MHz to 10 GHz	400 MHz	

4.5.7 R&S FSVA with I/Q bandwidth extension option B600

Sample rate: 100 Hz - 10 GHz

Maximum bandwidth: 600 MHz

Note that using the bandwidth extension option R&S FSV3-B600, an I/Q bandwidth larger than 400 MHz is only available for frequency ranges above 7.5 GHz.

Center frequency	Sample rate	Maximum I/Q bandwidth
≤7.5 GHz	100 Hz to 500 MHz	Proportional up to maximum 400 MHz
	500 MHz to 10 GHz	400 MHz
>7.5 GHz 100 Hz to 750 MHz		Proportional up to maximum 600 MHz
	750 MHz to 10 GHz	600 MHz

4.5.8 R&S FSVA with I/Q bandwidth extension option B601

Sample rate: 100 Hz - 10 GHz

Maximum bandwidth: 600 MHz

Sample rate	Maximum I/Q bandwidth	
100 Hz to 750 MHz	Proportional up to maximum 600 MHz	
750 MHz to 10 GHz	600 MHz	

4.5.9 R&S FSVA with I/Q bandwidth extension option B1000

Sample rate: 100 Hz - 10 GHz

Maximum bandwidth: 1000 MHz

Note that using the bandwidth extension option R&S FSV3-B1000, an I/Q bandwidth larger than 400 MHz is only available for frequency ranges above 7.5 GHz.

Center frequency	Sample rate	Maximum I/Q bandwidth
≤7.5 GHz	100 Hz to 500 MHz	Proportional up to maximum 400 MHz
	500 MHz to 10 GHz	400 MHz
>7.5 GHz 100 Hz to 1250 MHz		Proportional up to maximum 1000 MHz
	1250 MHz to 10 GHz	1000 MHz

4.5.10 R&S FSVA with I/Q bandwidth extension option B1001

Sample rate: 100 Hz - 10 GHz

Maximum bandwidth: 1000 MHz

Using the bandwidth extension option R&S FSV3-B1001, an I/Q bandwidth up to 1 GHz is available for all supported input frequencies.

Sample rate	Maximum I/Q bandwidth
100 Hz to 1250 MHz	Proportional up to maximum 1000 MHz
1250 MHz to 10 GHz	1000 MHz

4.6 DFT-S precoding

DFT-s-OFDM and SC-FDMA are different names for a method that can be applied to lower the crest factor of the RF signal.

For DFT-s-OFDM, an additional digital Fourier transformation (DFT) is included in the transmitter's signal processing stage, referred to as *precoding*. If this method is used by the input signal, enable the "Transform Precoding" option to decode the precoding transformation using an iDFT. The R&S FSV3-K96 OFDM VSA application tries to detect contiguous groups of data cells for each OFDM symbol and decode them using an inverse DFT. Zero cells are ignored.

If "Transform Precoding" is enabled, you can define how to process OFDM symbols that contain "Don't Care" and pilot cells:

- OFDM symbols that contain pilot or "Don't Care" cells are decoded, but these cells are ignored.
- OFDM symbols that contain a pilot or a "Don't Care" cell are skipped and not decoded.

The "Ignore pilot/don't care" setting has no effect if the signal generator does not use interspersed pilots in any OFDM symbol that uses DFT-S precoding on DATA cells. In this case, either there are DATA-only symbols with DFT-S, or PILOT-only symbols without DFT-s.

Configuration files for precoded signals

If precoding is enabled, take special care when editing the configuration file. Make sure that all cells are allocated correctly, that is:

- No cell is falsely allocated as a data cell.
- All data cells are allocated as data cells.

Otherwise, the iDFT parameters (length, start, stop) are not correct and *all* data cells in that OFDM symbol are demodulated inaccurately.

Example: Processing a precoded DFT-S signal

The following example demonstrates how a precoded DFT-S signal is processed for analysis.

On the signal generator:

Assume that the signal generator uses DFT-S precoding and interspersed pilots in a certain OFDM symbol. Before encoding, this OFDM symbol consists of the following cells:

D1 D2 P1 D3 D4 P2 D5 D6

with D = Data cells, P = Pilots cells

Encoding is performed on data cells only, omitting the pilots:

[D1' D2' D3' D4' D5' D6'] = FFT([D1 D2 D3 D4 D5 D6])

Then the encoded data cells are sorted back into correct positions:

D1' D2' P1 D3' D4' P2 D5' D6'

These encoded I/Q symbols are used for further OFDM modulation and then transmitted.

In the R&S FSV3-K96 OFDM VSA application:

For this OFDM symbol, the received I/Q symbols are in an early stage:

D1' D2' P1 D3' D4' P2 D5' D6'

Since we know that DFT-S was used, we select "Signal description" > "Transform precoding" : "on". The R&S FSV3-K96 OFDM VSA application tries to revert the DFT-S precoding, but it detects the disturbing pilots. Now there are two ways to deal with this OFDM symbol:

- "Ignore pilot/don't care" enabled: The R&S FSV3-K96 OFDM VSA application is told to ignore the disturbing pilots. The resulting IFFT ignores the pilot cells in the input buffer: [D1 D2 D3 D4 D5 D6] = IFFT ([D1' D2' D3' D4' D5' D6']) The cells are sorted back into their correct position: D1 D2 P1 D3 D4 P2 D5 D6 The result is identical to what was sent, so the EVM in this OFDM symbol is OK.
- "Ignore pilot/don't care" disabled: The R&S FSV3-K96 OFDM VSA application is not told to just ignore those disturbing pilots. The R&S FSV3-K96 OFDM VSA application only performs the IFFT for

data-only OFDM symbols. Since the planned IFFT cannot be performed, it is skipped entirely for this OFDM symbol.

The received I/Q symbols remain unchanged:

D1' D2' P1 D3' D4' P2 D5' D6'

This result is not identical to the sent I/Q symbols D1 D2 P1 D3 D4 P2 D5 D6. The EVM in this symbol is high.

5 Configuring OFDM VSA measurements

When you activate a measurement channel for the R&S FSV3-K96 OFDM VSA application, a OFDM VSA measurement for the input signal is started automatically with the default configuration. The "OFDM VSA" menu is displayed and provides access to the most important configuration functions.

General R&S FSV/A functions

The application-independent functions for general tasks on the R&S FSV/A are also available for the R&S FSV3-K96 OFDM VSA application and are described in the R&S FSV/A user manual. In particular, the application supports the following functionality:

- Data management
- Test report functionality
- General software preferences and information
- Fast access panel

Importing and exporting I/Q data

The I/Q data to be evaluated in the R&S FSV3-K96 OFDM VSA application cannot only be measured by the R&S FSV3-K96 OFDM VSA application itself, it can also be imported to the application, provided it has the correct format. Furthermore, the evaluated I/Q data from the R&S FSV3-K96 OFDM VSA application can be exported for further analysis in external applications.

The import and export functions are available in the "Save/Recall" menu which is displayed when you select the ■ "Save" or ■ "Open" icon in the toolbar.

For details on importing and exporting I/Q data, see the R&S FSV3000/ FSVA3000 base unit user manual.

•	Configuration overview	54
•	Signal description	55
•	Input, output and frontend settings	60
•	Trigger settings	73
•	Data acquisition	77
•	Sweep settings	81
•	Burst search	
•	Result ranges	
•	Synchronization, demodulation and tracking	83
•	Adjusting settings automatically	

5.1 Configuration overview

Access: [Meas Config] > "Overview"

Throughout the measurement configuration, an overview of the most important currently defined settings is provided in the "Overview".

Over	view						X
OFDM	l Vector Signal Analysis						
	FFT Size	64	Input	I/Q File			
	CP Length	16	Frequency	0 Hz	Source	Free Run	
	Block Length	16	Ref Level	0.0 dBm	Level		
	Frame Offset	0	Att	10.0 dB	Offset	0 s	
	👗 🗐 Signal Descriptio	on 🚽	-X- Input/From	ntend	Trigger		
	Max No of Frames to Analyze	1			Capture Length	40 000	
	Result Length (Symbols)	100	Burst Search	On	Sample Rate	20.0 MHz	
	- Result Range		, Burst Sear	ch 🧧	A/D Data Acqui	isition	
						_	
	Time Conta Contia Da	-6.					
	Param Est Pilot-Ai	ded	Tracking	Phase			
	Mod Detection Configuration	File	Channel Comp	On			
			· · · · · · · · · · · · · · · · · · ·				
	∫01 Sync / Demod		C Tracking		Display Co	nfig	
Pre	set Channel			Specific Settings f	for 1: Magnitude Capt	ture	

Figure 5-1: Configuration "Overview" for the R&S FSV3-K96 OFDM VSA application

In addition to the main measurement settings, the "Overview" provides quick access to the main settings dialog boxes. Thus, you can easily configure an entire measurement channel from input over processing to evaluation by stepping through the dialog boxes as indicated in the "Overview".

In particular, the "Overview" provides quick access to the following configuration dialog boxes (listed in the recommended order of processing):

- Signal description See Chapter 5.2, "Signal description", on page 55
- Input/Frontend See Chapter 5.3, "Input, output and frontend settings", on page 60
- 3. Trigger See Chapter 5.4, "Trigger settings", on page 73
- 4. Data acquisition See Chapter 5.5, "Data acquisition", on page 77
- 5. Burst search See Chapter 5.7, "Burst search", on page 82
- 6. Result range

See Chapter 5.8, "Result ranges", on page 83

- Synchronization and demodulation settings See Chapter 5.9, "Synchronization, demodulation and tracking", on page 83
- Tracking See Chapter 5.9, "Synchronization, demodulation and tracking", on page 83
- Result configuration
 See Chapter 7.1, "Result configuration", on page 117

To configure settings

Select any button in the "Overview" to open the corresponding dialog box. Select a setting in the channel bar (at the top of the measurement channel tab) to change a specific setting.

Preset Channel	55
Specific Settings for	55

Preset Channel

Select "Preset Channel" in the lower left-hand corner of the "Overview" to restore all measurement settings *in the current channel* to their default values.

Note: Do not confuse "Preset Channel" with the [Preset] *key*, which restores the entire instrument to its default values and thus closes *all channels* on the R&S FSV/A (except for the default channel)!

Remote command:

SYSTem:PRESet:CHANnel[:EXEC] on page 142

Specific Settings for

The channel can contain several windows for different results. Thus, the settings indicated in the "Overview" and configured in the dialog boxes vary depending on the selected window.

Select an active window from the "Specific Settings for" selection list that is displayed in the "Overview" and in all window-specific configuration dialog boxes.

The "Overview" and dialog boxes are updated to indicate the settings for the selected window.

5.2 Signal description

Access: "Overview" > "Signal Description"

You must describe the expected input signal so that the R&S FSV3-K96 OFDM VSA application can compare the measured signal to the expected reference signal. You can load an existing configuration file, or create one interactively using a wizard for the current input signal (see Chapter 6, "Creating a configuration file using the wizard", on page 89).

Signal description

Q

Signal Description						×
OFDM Configuration			Symbol Characteristics			
Use Configuration File			FFT Size	64		Samples
			Cyclic Prefix Le	ength 16		Samples
Load Config File	Create (Config File	Cyclic Suffix Le	ength 0		Samples
Export Data (to Create	Config File on	Other PC)	Preamble Sym	bol Charact	eristics	
		ould toy	Block Length	0		Samples
			Frame Start O	ffset 0		Samples
DFT-s-OFDM / SC-FDMA			Advanced Cyclic Prefix Configuration			
Transform Precoding	On	Off	O Conventi (All symb	ional Mode ools have th	e same cyclic prefi	c length)
	Ignore PILO	/DONTCARE	🔵 Two Diff	erent Cyclic	Prefix Lengths	
RF Upconversion						
Dhase Componentian	0.5	01	Periodic	: Repeat Ra	ange 1 and Range	2
			Non-Pe Extend	riodic: Range 2 to	the End of Frame	
t_0 =		Manual	Symt	ools	Samples	
	0 Hz		Range 1 100			
			Range 2 100			

Use Configuration File	56
Load Configuration File	57
Create Configuration File	57
Export Data (to Create Config File on Other PC)	57
DFT-s-OFDM / SC-FDMA:Transform Precoding	57
L Ignore PILOT/DONTCARE	
RF Upconversion: Phase Compensation	57
FFT Size	
Cyclic Prefix Length	58
Cyclic Suffix Length	58
Preamble Symbol Characteristics: Block Length	59
Frame Start Offset	59
Advanced Cyclic Prefix Configuration	
Different cyclic prefix lengths	59
L Cyclic prefix definition per range (Symbols / Samples)	60

Use Configuration File

Determines whether the configuration from the currently loaded file is used for the measurement. Alternatively, you can configure the OFDM signal manually.

The currently loaded configuration file is indicated for reference.

Remote command:

CONFigure:SYSTem:CFILe on page 147

Load Configuration File

Opens a file selection dialog box to select the configuration (. XML) file for the measurement.

Note: Configuration files with more than 100 different modulation types cannot be loaded.

Remote command: MMEMory:LOAD:CFGFile on page 148

Create Configuration File

Opens a wizard that helps you create a new configuration file interactively. See Chapter 6, "Creating a configuration file using the wizard", on page 89.

Export Data (to Create Config File on Other PC)

Exports the current settings to a .K96_wizv file. Use this input file to create a configuration file using the wizard on another PC.

DFT-s-OFDM / SC-FDMA:Transform Precoding

DFT-s-OFDM and SC-FDMA are different names for a method that can be applied to lower the crest factor of the RF signal.

For DFT-s-OFDM, an additional digital Fourier transformation (DFT) is included in the transmitter's signal processing stage, referred to as *precoding*. If this method is used by the input signal, enable the "Transform Precoding" option to decode the precoding transformation using an iDFT. The R&S FSV3-K96 OFDM VSA application tries to detect contiguous groups of data cells for each OFDM symbol and decode them using an inverse DFT. Zero cells are ignored.

For details, see Chapter 4.6, "DFT-S precoding", on page 50.

Remote command: CONFigure: TPRecoding on page 148

If "Transform Precoding" is enabled, define how to process OFDM symbols that contain "Don't Care" and pilot cells:

"Ignore pilot/don't care" enabled:

OFDM symbols that contain pilot or "Don't Care" cells are decoded, but these cells are ignored.

"Ignore pilot/don't care" disabled:

OFDM symbols that contain a pilot or a "Don't Care" cell are skipped and not decoded.

Remote command:

CONFigure: TPRecoding: IGNore on page 148

RF Upconversion: Phase Compensation

For example, in 5G uplink signals, the phase shifts from one OFDM symbol to the next. In this case, the R&S FSV3-K96 OFDM VSA application must revert the phase compensation that is applied to the signal during RF upconversion. The phase compensation is based on a fixed frequency, which can either be the center frequency, or you can define the frequency for the shift manually.

Remote command:

CONFigure:RFUC:STATe on page 144 CONFigure:RFUC:FZERo:MODE on page 144 CONFigure:RFUC:FZERo:FREQuency on page 143

FFT Size

Defines the useful length of an OFDM symbol in the time domain as the number of samples. This setting determines the number of samples used as input for each FFT calculation.

This setting is not available if a configuration file is active (see "Use Configuration File" on page 56). In this case, the FFT length defined in the file is displayed for reference only.

Remote command: CONFigure [:SYMBol]:NFFT on page 146

Cyclic Prefix Length

Defines the length of the cyclic prefix (CP) area between two OFDM symbols in samples. The cyclic prefix area defines the guard interval and is expected to contain a copy of the samples at the end of the OFDM symbol.

The cyclic prefix length must be smaller than or equal to the "FFT Size" on page 58.

Remote command:

CONFigure [:SYMBol]:NGUard<cp> on page 146

Cyclic Suffix Length

Defines the length of the cyclic suffix between two OFDM symbols in samples. The cyclic suffix is expected to contain a copy of the first N samples at the beginning of the OFDM symbol.

Figure 5-2 shows how the complete OFDM symbol is retrieved for an FFT length of 8 and a cyclic prefix and suffix length of 2.

Figure 5-2: OFDM symbol with cyclic prefix and suffix

The cyclic suffix length must be smaller than or equal to the "FFT Size" on page 58.

Remote command: CONFigure [:SYMBol]:NSUFfix on page 147

Preamble Symbol Characteristics: Block Length

Instead of using the cyclic prefix for the time synchronization, the R&S FSV3-K96 OFDM VSA application can also use a preamble that contains repetitive blocks of samples (if available in the signal). This setting specifies the length of one data block within the repetitive preamble as a number of samples.

Remote command:

CONFigure: PREamble: BLENgth on page 143

Frame Start Offset

Specifies the time offset from the preamble start to the actual frame start as a number of samples.

Remote command: CONFigure:PREamble:FOFFset on page 143

Advanced Cyclic Prefix Configuration

Additional settings for non-conventional cyclic prefixes are displayed when you select "Advanced", and hidden when you select "Basic".

By default, "Conventional Mode" is assumed, that is: each OFDM symbol has the same cyclic prefix length. Thus, only the basic cyclic prefix settings are shown.

Remote command:

CONFigure [:SYMBol]:GUARd:MODE on page 145

Different cyclic prefix lengths

Some OFDM signals change their cyclic prefix over time (e.g. 802.11ac). This setting defines the behavior in such a case.

"Periodic" One "slot" that consists of the two defined ranges is repeated over and over until the number of symbols specified by the result range parameter is reached. The ranges are repeated periodically, first range 1, then range 2, then range 1, etc.

Figure 5-3: Non-Conventional cyclic prefix case: Periodic mode

"Non-Periodic" A fixed preamble has a different cyclic prefix length than the rest of the frame (e.g. WLAN 802.11ac signals). In this case, the length of the second range is extended until the end of the demodulated frame. Therefore, the length of the second range cannot be specified in this case.

Figure 5-4: Non-Conventional cyclic prefix case: Non-Periodic mode

Remote command: CONFigure [:SYMBol]:GUARd: PERiodic on page 146

Cyclic prefix definition per range (Symbols / Samples) \leftarrow Different cyclic prefix lengths

For each range, configure the number of symbols the cyclic prefix length is applied to, and the length of the cyclic prefix as a number of samples.

For non-periodic cyclic prefixes, the length of the second range cannot be specified. It is extended to the end of the demodulated frame.

Remote command:

```
CONFigure[:SYMBol]:GUARd:NSYMbols<cp> on page 145
CONFigure[:SYMBol]:NGUard<cp> on page 146
```

5.3 Input, output and frontend settings

Access: "Overview" > "Input/Frontend"

Or: [INPUT/OUTPUT]

The R&S FSV/A can evaluate signals from different input sources.

The frequency and amplitude settings represent the frontend of the measurement setup.

•	Input settings	60
•	Output settings	.64
•	Frequency settings	67

Amplitude settings......69

5.3.1 Input settings

Access: "Overview" > "Input/Frontend" > "Input"

Or: [INPUT/OUTPUT]

Some settings are also available in the "Amplitude" tab of the "Amplitude" dialog box, see "Input Settings" on page 70.

Input from other sources

The R&S FSV3-K96 OFDM VSA application can also process input from the following optional sources:

- I/Q input files
- External frontend
- Probes

For details, see the R&S FSV/A I/Q Analyzer and I/Q Input user manual.

- Radio frequency input......61
- Settings for input from I/Q data files.....63

5.3.1.1 Radio frequency input

Access: "Overview" > "Input/Frontend" > "Input" > "Radio Frequency"

Or: [INPUT/OUTPUT] > "Input Source Config" > "Input" > "Radio Frequency"

The default input source for the R&S FSV/A is the radio frequency.

RF input protection

The RF input connector of the R&S FSV/A must be protected against signal levels that exceed the ranges specified in the specifications document. Therefore, the R&S FSV/A is equipped with an overload protection mechanism for DC and signal frequencies up to 30 MHz. This mechanism becomes active as soon as the power at the input mixer exceeds the specified limit. It ensures that the connection between RF input and input mixer is cut off.

When the overload protection is activated, an error message is displayed in the status bar ("INPUT OVLD"), and a message box informs you that the RF input was disconnected. Furthermore, a status bit (bit 3) in the STAT:QUES:POW status register is set. In this case, you must decrease the level at the RF input connector and then close the message box. Then measurement is possible again. Reactivating the RF input is also possible via the remote command INPut:ATTenuation:PROTection:RESet.

Input, output and frontend settings

Radio Frequency State	62
Input Coupling	62
Impedance	62
Direct Path	63
Input Connector	63

Radio Frequency State

Activates input from the "RF Input" connector.

Remote command:

INPut: SELect on page 153

Input Coupling

The RF input of the R&S FSV/A can be coupled by alternating current (AC) or direct current (DC).

For an active external frontend, input coupling is always AC.

AC coupling blocks any DC voltage from the input signal. AC coupling is activated by default to prevent damage to the instrument. Very low frequencies in the input signal can be distorted.

However, some specifications require DC coupling. In this case, you must protect the instrument from damaging DC input voltages manually. For details, refer to the specifications document.

Remote command:

INPut:COUPling on page 150

Impedance

The R&S FSV/A has an internal impedance of 50 Ω . However, some applications use other impedance values. To match the impedance of an external application to the impedance of the R&S FSV/A, an *impedance matching pad* can be inserted at the input. If the type and impedance value of the used matching pad is known to the R&S FSV/A, it can convert the measured units accordingly so that the results are calculated correctly.

For an active external frontend, impedance is always 50 Ω .

The impedance conversion does not affect the level of the output signals (such as IF, video, demod).

- "50Ω" (Default:) no conversion takes place
- "75Ω" The 50 Ω input impedance is transformed to a higher impedance using a 75 Ω adapter of the selected "Pad Type": "Series-R" (default) or "MLP" (Minimum Loss Pad)
- "User" The 50 Ω input impedance is transformed to a user-defined impedance value according to the selected "Pad Type": "Series-R" (default) or "MLP" (Minimum Loss Pad)

Remote command:

INPut: IMPedance on page 152 INPut: IMPedance: PTYPe on page 152

Direct Path

Enables or disables the use of the direct path for small frequencies.

In spectrum analyzers, passive analog mixers are used for the first conversion of the input signal. In such mixers, the LO signal is coupled into the IF path due to its limited isolation. The coupled LO signal becomes visible at the RF frequency 0 Hz. This effect is referred to as LO feedthrough.

To avoid the LO feedthrough the spectrum analyzer provides an alternative signal path to the A/D converter, referred to as the *direct path*. By default, the direct path is selected automatically for RF frequencies close to zero. However, this behavior can be disabled. If "Direct Path" is set to "Off", the spectrum analyzer always uses the analog mixer path.

For an active external frontend, the direct path is always used automatically for frequencies close to zero.

"Auto" (Default) The direct path is used automatically for frequencies close to zero.

"Off" The analog mixer path is always used.

Remote command:

INPut:DPATh on page 150

Input Connector

Determines which connector the input data for the measurement is taken from.

"RF" (Default:) The "RF Input" connector

"RF Probe" The "RF Input" connector with an adapter for a modular probe This setting is only available if a probe is connected to the "RF Input" connector. It is not available for an active external frontend.

Remote command:

INPut: CONNector on page 149

5.3.1.2 Settings for input from I/Q data files

Access: "Overview" > "Input/Frontend" > "Input Source" > "I/Q File"

Or: [INPUT/OUTPUT] > "Input Source Config" > "Input Source" > "I/Q File"

Input File C:\nd-e.iq.tar		Select File
Saved by: Comment: Date & Time: Sample Rate: Number of Samples: Duration of Signal: Number of Channels:	RsIqTar DLL Write Class 2019-03-04 09:43:40 122.88 MHz 2469888 20.1 ms 1	
I/Q Input File State. Select I/Q data file.		

I/Q Input File State

Enables input from the selected I/Q input file.

If enabled, the application performs measurements on the data from this file. Thus, most measurement settings related to data acquisition (attenuation, center frequency, measurement bandwidth, sample rate) cannot be changed. The measurement time can only be decreased to perform measurements on an extract of the available data only.

Note: Even when the file input is disabled, the input file remains selected and can be enabled again quickly by changing the state.

Remote command: INPut:SELect on page 153

Select I/Q data file

Opens a file selection dialog box to select an input file that contains I/Q data.

The I/Q data file must be in one of the following supported formats:

- .iq.tar
- .iqw
- .csv
- .mat
- .WV
- .aid

For details on formats, see the R&S FSV/A I/Q Analyzer and I/Q Input user manual.

The file type is determined by the file extension. If no file extension is provided, the file type is assumed to be .iq.tar. For .mat files, Matlab® v4 is assumed.

Note: Only a single data stream or channel can be used as input, even if multiple streams or channels are stored in the file.

Note: For some file formats that do not provide the sample rate and measurement time or record length, you must define these parameters manually. Otherwise the traces are not visible in the result displays.

The default storage location for I/Q data files is C:\R S\INSTR\USER.

Remote command: INPut:FILE:PATH on page 153

5.3.2 Output settings

Access: [INPUT/OUTPUT] > "OUTPUT Config"

The R&S FSV3-K96 OFDM VSA application can provide output to special connectors for other devices.

For details on connectors, refer to the R&S FSV/A Getting Started manual, "Front / Rear Panel View" chapters.

Output settings can be configured via the [Input/Output] key or in the "Output" dialog box.

Input, output and frontend settings

Noise Source Control	
Trigger 1/2	
L Output Type	
Level	67
L Pulse Length	67
L Send Trigger	67

Noise Source Control

Enables or disables the 28 V voltage supply for an external noise source connected to the "Noise source control / Power sensor") connector. By switching the supply voltage for an external noise source on or off in the firmware, you can enable or disable the device as required.

External noise sources are useful when you are measuring power levels that fall below the noise floor of the R&S FSV/A itself, for example when measuring the noise level of an amplifier.

In this case, you can first connect an external noise source (whose noise power level is known in advance) to the R&S FSV/A and measure the total noise power. From this value, you can determine the noise power of the R&S FSV/A. Then when you measure the power level of the actual DUT, you can deduct the known noise level from the total power to obtain the power level of the DUT.

Remote command:

DIAGnostic:SERVice:NSOurce on page 211

Input, output and frontend settings

Trigger 1/2

The trigger input and output functionality depends on how the variable "Trigger Input/ Output" connectors are used.

"Trigger 1" "Trigger 1" is input only.

- "Trigger 2" Defines the usage of the variable "Trigger Input/Output" connector on the front panel
- "Trigger 3" Defines the usage of the variable "Trigger 3 Input/Output" connector on the rear panel
- "Input" The signal at the connector is used as an external trigger source by the R&S FSV/A. Trigger input parameters are available in the "Trigger" dialog box.
- "Output" The R&S FSV/A sends a trigger signal to the output connector to be used by connected devices.

Further trigger parameters are available for the connector.

Remote command:

OUTPut:TRIGger<tp>:DIRection on page 212

Output Type ← Trigger 1/2

Type of signal to be sent to the output

"Output Off"	Deactivates the output. (Only for "Trigger 3", for which only output is supported.)
"Device Trig- gered"	(Default) Sends a trigger when the R&S FSV/A triggers.
"Trigger Armed"	Sends a (high level) trigger when the R&S FSV/A is in "Ready for trig- ger" state. This state is indicated by a status bit in the STATUS: OPERation reg- ister (bit 5) as well as by a low-level signal at the "AUX" port (bin 9)

"User Defined" Sends a trigger when you select "Send Trigger". In this case, further parameters are available for the output signal.

Remote command:

OUTPut:TRIGger<tp>:OTYPe on page 213

Level ← Output Type ← Trigger 1/2

Defines whether a high (1) or low (0) constant signal is sent to the trigger output connector (for "Output Type": "User Defined".

The trigger pulse level is always opposite to the constant signal level defined here. For example, for "Level" = "High", a constant high signal is output to the connector until you select the Send Trigger function. Then, a low pulse is provided.

low-level constant, high-level trigger high-level constant, low-level trigger

Remote command:

OUTPut:TRIGger<tp>:LEVel on page 213

Pulse Length \leftarrow Output Type \leftarrow Trigger 1/2

Defines the duration of the pulse (pulse width) sent as a trigger to the output connector.

Remote command:

OUTPut:TRIGger<tp>:PULSe:LENGth on page 214

Send Trigger \leftarrow Output Type \leftarrow Trigger 1/2

Sends a user-defined trigger to the output connector immediately.

Note that the trigger pulse level is always opposite to the constant signal level defined by the output Level setting. For example, for "Level" = "High", a constant high signal is output to the connector until you select the "Send Trigger" function. Then, a low pulse is sent.

Which pulse level is sent is indicated by a graphic on the button.

Remote command:

OUTPut:TRIGger<tp>:PULSe:IMMediate on page 214

5.3.3 Frequency settings

Access: [FREQ] > "Frequency Config"

Input, output and frontend settings

Frequency	y			×		
Frequency						
Center	4.0 GHz					
Center Frequ	uency Stepsize					
Stepsize	Manual	Value	1.0 MHz			
Frequency Offset						
Value	0 Hz					

Center Frequency	68
Center Frequency Stepsize	68
Frequency Offset	68

Center Frequency

Defines the center frequency of the signal in Hertz.

 f_{max} and span_{min} depend on the instrument and are specified in the specifications document.

Remote command:

[SENSe:]FREQuency:CENTer on page 189

Center Frequency Stepsize

Defines the step size when scrolling through center frequency values. The step size can be set to a predefined value, or it can be manually set to a user-defined value.

"Auto"

The step size is set to the default value:

- using the rotary knob: 100 kHz
- using the arrow keys: 1 MHz
- "Manual" Defines a user-defined step size for the center frequency. Enter the step size in the "Value" field.

Remote command:

```
[SENSe:]FREQuency:CENTer:STEP:AUTO on page 190
[SENSe:]FREQuency:CENTer:STEP on page 189
```

Frequency Offset

Shifts the displayed frequency range along the x-axis by the defined offset.

This parameter has no effect on the instrument's hardware, on the captured data, or on data processing. It is simply a manipulation of the final results in which absolute frequency values are displayed. Thus, the x-axis of a spectrum display is shifted by a constant offset if it shows absolute frequencies. However, if it shows frequencies relative to the signal's center frequency, it is not shifted.

A frequency offset can be used to correct the display of a signal that is slightly distorted by the measurement setup, for example.

The allowed values range from -1 THz to 1 THz. The default setting is 0 Hz. Remote command:

[SENSe:]FREQuency:OFFSet on page 190

5.3.4 Amplitude settings

Access: [AMPT] > "Amplitude Config"

Amplitude settings affect the signal power or error levels.

Input/Frontend						
Frequency	Amplitude	Probes				
ture	Inpu	ıt Settings				
0.0 dBm	Inp	ut Coupling	AC	DC		
0.0 dB						
Auto Leve	Imp 21	edance	50Ω	75Ω		
	Elec	tronic Attenu	ation			
Auto Ma	anual Stat	te	On	Off		
10.0 dB	Мос	le		Manual		
Low Distortion	▼ Valı	ue	20.0 0 dB			
	nd Frequency 0.0 dBm 0.0 dB Auto Leve Auto Ma 10.0 dB	Frequency Amplitude Frequency Amplitude 0.0 dBm Input 0.0 dB Imput Auto Manual Auto Manual 10.0 dB Value Low Distortion Value	Frequency Amplitude Probes Input Settings 0.0 dBm 0.0 dB Auto Level Auto Manual State 10.0 dB Manual State Mode	hd Frequency Amplitude Probes Input Settings 10.0 dBm Auto Level Auto Manual 10.0 dB Auto Manual Low Distortion Value Odd	Frequency Amplitute Probes Input Settings Probes 0.0 dBm Input Coupling 0.0 dB Input Coupling Auto Level Imput Coupling Auto Manual Auto Manual State On Input Settings Imput Coupling Auto Manual Manual State Input Settings Imput Coupling Auto Manual Manual Imput Settings Input Settings Imput Coupling Auto Manual	

Note that amplitude settings are not window-specific, as opposed to the scaling and unit settings.

Reference Level	69
L Shifting the Display (Offset)	70
L Setting the Reference Level Automatically (Auto Level)	70
Input Settings	70
L Preamplifier	71
L Input Coupling	71
L Impedance	71
RF Attenuation	72
L Attenuation Mode / Value	72
Using Electronic Attenuation	72

Reference Level

Defines the expected maximum reference level. Signal levels above this value are possibly not measured correctly. Signals above the reference level are indicated by an "IF Overload" or "OVLD" status display.

The reference level can also be used to scale power diagrams; the reference level is then used for the calculation of the maximum on the y-axis.

Since the hardware of the R&S FSV/A is adapted according to this value, it is recommended that you set the reference level close above the expected maximum signal level. Thus you ensure an optimal measurement (no compression, good signal-tonoise ratio).

Note that for input from the External Mixer (R&S FSV3-B21) the maximum reference level also depends on the conversion loss; see the R&S FSV3000/ FSVA3000 base unit user manual for details.

For an active external frontend, the reference level refers to the RF input at the external frontend, not the levels at the RF input of the R&S FSV/A. The hardware is adjusted to the defined reference level optimally for input signals with a crest factor of 10 dB. Thus, the required reference level for an optimal measurement can differ depending on the crest factor of the input signal.

Remote command:

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:RLEVel
on page 190

Shifting the Display (Offset) ← Reference Level

Defines an arithmetic level offset. This offset is added to the measured level. In some result displays, the scaling of the y-axis is changed accordingly.

Define an offset if the signal is attenuated or amplified before it is fed into the R&S FSV/A so the application shows correct power results. All displayed power level results are shifted by this value.

The setting range is ±200 dB in 0.01 dB steps.

Note, however, that the *internal* reference level (used to adjust the hardware settings to the expected signal) ignores any "Reference Level Offset". Thus, it is important to keep in mind the actual power level the R&S FSV/A must handle. Do not rely on the displayed reference level (internal reference level = displayed reference level - offset).

Remote command:

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:RLEVel: OFFSet on page 191

Setting the Reference Level Automatically (Auto Level) ← Reference Level

To determine the required reference level, a level measurement is performed on the R&S FSV/A.

If necessary, you can optimize the reference level further. Decrease the attenuation level manually to the lowest possible value before an overload occurs, then decrease the reference level in the same way.

Remote command: [SENSe:]ADJust:LEVel on page 191

Input Settings

Some input settings affect the measured amplitude of the signal, as well. For information on other input settings, see Chapter 5.3.1, "Input settings", on page 60.

Preamplifier — Input Settings

If the (optional) internal preamplifier hardware is installed on the R&S FSV/A, a preamplifier can be activated for the RF input signal.

You can use a preamplifier to analyze signals from DUTs with low output power.

For an active external frontend, a preamplifier is not available.

For R&S FSV/A, the following settings are available:

"Off"	Deactivates the preamplifier.
"15 dB"	The RF input signal is amplified by about 15 dB.
"30 dB"	The RF input signal is amplified by about 30 dB.
"On"	Using the preamplifier with the option number 1330.3465.02: the input signal is amplified by 30 dB if the preamplifier is activated.

For R&S FSV/A3044 models, the preamplifier is only available under the following conditions:

- In zero span, the maximum center frequency is 43.5 GHz
- For frequency spans, the maximum stop frequency is 43.5 GHz
- For I/Q measurements, the maximum center frequency depends on the analysis bandwidth:

 $f_{center} \leq 43.5 \text{ GHz} - (< \text{Analysis}_bw > / 2)$

If any of the conditions no longer apply after you change a setting, the preamplifier is automatically deactivated.

Remote command:

INPut:GAIN:STATe on page 151
INPut:GAIN[:VALue] on page 151

The RF input of the R&S FSV/A can be coupled by alternating current (AC) or direct current (DC).

For an active external frontend, input coupling is always AC.

AC coupling blocks any DC voltage from the input signal. AC coupling is activated by default to prevent damage to the instrument. Very low frequencies in the input signal can be distorted.

However, some specifications require DC coupling. In this case, you must protect the instrument from damaging DC input voltages manually. For details, refer to the specifications document.

Remote command: INPut:COUPling on page 150

The R&S FSV/A has an internal impedance of 50 Ω . However, some applications use other impedance values. To match the impedance of an external application to the impedance of the R&S FSV/A, an *impedance matching pad* can be inserted at the input. If the type and impedance value of the used matching pad is known to the R&S FSV/A, it can convert the measured units accordingly so that the results are calculated correctly.

For an active external frontend, impedance is always 50 Ω .

The impedance conversion does not affect the level of the output signals (such as IF, video, demod).

- "50Ω" (Default:) no conversion takes place
- "75Ω" The 50 Ω input impedance is transformed to a higher impedance using a 75 Ω adapter of the selected "Pad Type": "Series-R" (default) or "MLP" (Minimum Loss Pad)
- "User" The 50 Ω input impedance is transformed to a user-defined impedance value according to the selected "Pad Type": "Series-R" (default) or "MLP" (Minimum Loss Pad)

Remote command:

INPut:IMPedance on page 152
INPut:IMPedance:PTYPe on page 152

RF Attenuation

Defines the mechanical attenuation for RF input.

Attenuation Mode / Value ← RF Attenuation

Defines the attenuation applied to the RF input of the R&S FSV/A.

The RF attenuation can be set automatically as a function of the selected reference level (Auto mode). Automatic attenuation ensures that no overload occurs at the RF Input connector for the current reference level. It is the default setting.

Note: Using an external frontend. If an external frontend is active, you can configure the attenuation for the external frontend and the analyzer separately. When using an external frontend, only mechanical attenuation is available. For more information, see the R&S FSV/A User Manual.

By default and when no (optional) electronic attenuation is available, mechanical

attenuation is applied.

In "Manual" mode, you can set the RF attenuation in 1 dB steps (down to 0 dB). Other entries are rounded to the next integer value. The range is specified in the specifications document. If the defined reference level cannot be set for the defined RF attenuation, the reference level is adjusted accordingly and the warning "limit reached" is displayed.

NOTICE! Risk of hardware damage due to high power levels. When decreasing the attenuation manually, ensure that the power level does not exceed the maximum level allowed at the RF input, as an overload can lead to hardware damage.

Remote command:

INPut:ATTenuation on page 192
INPut:ATTenuation:AUTO on page 192
Defining attenuation for the analyzer when using an external frontend:
INPut:SANalyzer:ATTenuation:AUTO on page 194
INPut:SANalyzer:ATTenuation on page 194

Using Electronic Attenuation

If the (optional) Electronic Attenuation hardware is installed on the R&S FSV/A, you can also activate an electronic attenuator.
In "Auto" mode, the settings are defined automatically; in "Manual" mode, you can define the mechanical and electronic attenuation separately.

For an active external frontend, electronic attenuation is not available.

Note: Electronic attenuation is not available for stop frequencies (or center frequencies in zero span) above 7 GHz.

In "Auto" mode, RF attenuation is provided by the electronic attenuator as much as possible to reduce the amount of mechanical switching required. Mechanical attenuation can provide a better signal-to-noise ratio, however.

When you switch off electronic attenuation, the RF attenuation is automatically set to the same mode (auto/manual) as the electronic attenuation was set to. Thus, the RF attenuation can be set to automatic mode, and the full attenuation is provided by the mechanical attenuator, if possible.

The electronic attenuation can be varied in 1 dB steps. If the electronic attenuation is on, the mechanical attenuation can be varied in 5 dB steps. Other entries are rounded to the next lower integer value.

If the defined reference level cannot be set for the given attenuation, the reference level is adjusted accordingly and the warning "limit reached" is displayed in the status bar.

Remote command:

INPut: EATT: STATe on page 194 INPut: EATT: AUTO on page 193 INPut: EATT on page 193

5.4 Trigger settings

Access: "Overview" > "Signal Capture" > "Trigger"

Or: [TRIG] > "Trigger Config"

The trigger settings define the beginning of a measurement.

Trigger				×
Trigger Source	Trigger In/Out]		
Source	Ext Trigger 1	•		
Level	1.4 V	Drop-Out Time	0 s	
Offset	0 s	Slope	Rising	Falling
Hysteresis	3.0 dB	Holdoff	0 s	

For step-by-step instructions on configuring triggered measurements, see the R&S FSV/A user manual.

74
74
74
75
75
75
76
76
76
77
77
77

Trigger Source

Defines the trigger source. If a trigger source other than "Free Run" is set, "TRG" is displayed in the channel bar and the trigger source is indicated.

Remote command:

TRIGger[:SEQuence]:SOURce on page 198

Free Run ← Trigger Source

No trigger source is considered. Data acquisition is started manually or automatically and continues until stopped explicitly.

Remote command: TRIG:SOUR IMM, see TRIGger[:SEQuence]:SOURce on page 198

Data acquisition starts when the TTL signal fed into the specified input connector meets or exceeds the specified trigger level.

(See "Trigger Level" on page 76).

Note: "External Trigger 1" automatically selects the trigger signal from the "Trigger 1 Input / Output" connector on the front panel.

For details, see the "Instrument Tour" chapter in the R&S FSV/A Getting Started manual.

"External Trigger 1"

Trigger signal from the "Trigger 1 Input / Output" connector.

"External Trigger 2"

Trigger signal from the "Trigger 2 Input / Output" connector.

Remote command:

TRIG:SOUR EXT, TRIG:SOUR EXT2

See TRIGger[:SEQuence]:SOURce on page 198

IF Power - Trigger Source

The R&S FSV/A starts capturing data as soon as the trigger level is exceeded around the third intermediate frequency.

For frequency sweeps, the third IF represents the start frequency. The trigger threshold depends on the defined trigger level, as well as on the RF attenuation and preamplification. A reference level offset, if defined, is also considered. The trigger bandwidth at the intermediate frequency depends on the RBW and sweep type. For details on available trigger levels and trigger bandwidths, see the instrument specifications document.

For measurements on a fixed frequency (e.g. zero span or I/Q measurements), the third IF represents the center frequency.

This trigger source is only available for RF input.

The available trigger levels depend on the RF attenuation and preamplification. A reference level offset, if defined, is also considered.

For details on available trigger levels and trigger bandwidths, see the specifications document.

Remote command: TRIG:SOUR IFP, see TRIGger[:SEQuence]:SOURce on page 198

If the R&S FSV3-B600/B601/B1000/B1001 bandwidth extension option is active, this trigger is not available for bandwidths ≥400 MHz.

Triggers the measurement when the magnitude of the sampled I/Q data exceeds the trigger threshold.

Remote command: TRIG:SOUR IQP, see TRIGger[:SEQuence]:SOURce on page 198

RF Power — Trigger Source

Defines triggering of the measurement via signals which are outside the displayed measurement range.

For this purpose, the instrument uses a level detector at the first intermediate frequency.

The "RF Power" trigger is available for input signals above 500 MHz. The trigger (6 dB-) bandwidth is ±250 MHz. For the R&S FSV3000 and input signals between 500 MHz and 7.5 GHz, the trigger bandwidth depends on the instrument's serial number, see specifications document.

When using the Direct Path, the RF power trigger is not available.

The resulting trigger level at the RF input depends on the RF attenuation and preamplification. For details on available trigger levels, see the instrument's specifications document.

Note: If the input signal contains frequencies outside of this range (e.g. for fullspan measurements), the measurement can be aborted. A message indicating the allowed input frequencies is displayed in the status bar.

A "Trigger Offset", "Trigger Polarity" and "Trigger Holdoff" (to improve the trigger stability) can be defined for the RF trigger, but no "Hysteresis". If the bandwidth extension option R&S FSV3-B600/B601/B1000/B1001 is active, this trigger is not available for bandwidths ≥400 MHz.

Remote command:

TRIG: SOUR RFP, see TRIGger [: SEQuence]: SOURce on page 198

Time ← Trigger Source

Triggers in a specified repetition interval.

See "Repetition Interval" on page 76.

Remote command: TRIG:SOUR TIME, see TRIGger[:SEQuence]:SOURce on page 198

Trigger Level

Defines the trigger level for the specified trigger source.

For details on supported trigger levels, see the instrument specifications document.

Remote command:

TRIGger[:SEQuence]:LEVel[:EXTernal<port>] on page 196

Repetition Interval

Defines the repetition interval for a time trigger.

The shortest interval is 1 μ s. The granularity of the repetition interval is 1/256 MHz.

Set the repetition interval to the exact pulse period, burst length, frame length or other repetitive signal characteristic. If the required interval cannot be set with the available granularity, configure a multiple of the interval that can be set. Thus, the trigger remains synchronized to the signal.

Remote command:

TRIGger[:SEQuence]:TIME:RINTerval on page 199

Trigger Offset

Defines the time offset between the trigger event and the start of the measurement.

Offset > 0:	Start of the measurement is delayed
Offset < 0:	Measurement starts earlier (pretrigger)

Remote command:

TRIGger[:SEQuence]:HOLDoff[:TIME] on page 196

Hysteresis

Defines the distance in dB to the trigger level that the trigger source must exceed before a trigger event occurs. Setting a hysteresis avoids unwanted trigger events caused by noise oscillation around the trigger level.

This setting is only available for "IF Power" trigger sources. The range of the value is between 3 dB and 50 dB with a step width of 1 dB.

Remote command:

TRIGger[:SEQuence]:IFPower:HYSTeresis on page 196

Drop-Out Time

Defines the time that the input signal must stay below the trigger level before triggering again.

Remote command: TRIGger[:SEQuence]:DTIMe on page 195

Slope

For all trigger sources except time, you can define whether triggering occurs when the signal rises to the trigger level or falls down to it.

Remote command: TRIGger[:SEQuence]:SLOPe on page 198

Trigger Holdoff

Defines the minimum time (in seconds) that must pass between two trigger events. Trigger events that occur during the holdoff time are ignored.

Remote command:

TRIGger[:SEQuence]:IFPower:HOLDoff on page 196

5.5 Data acquisition

Data Acquisition					×
Data Acquisition					
I/Q Capture			Filter Settings		
Capture Time	20.0 ms		Filter State	On	Off
Capture Length	400 001		Channel Filter		
Sample Rate	20.0 MHz		6dB Bandwidth	20.0 MHz	
Oversampling	x2	Off	50dB Bandwidth	25.0 MHz	
Capture Sample Rate	=	= 20.0 MHz	Highpass Filter		
Maximum Bandwidth	Auto	80 MHz	Highpass Filter State	On	
Swap I/Q	On	Off	6dB Bandwidth	15.0 MHz	
	_		50dB Bandwidth	10.0 MHz	

Configure how data is to be acquired in the "Data Acquisition" dialog box.

Capture Time	78
Capture Length	
Sample Rate	
Oversampling / Capture Sample Rate	
Maximum Bandwidth	79
Swap I/Q	79

Data acquisition

Filter State	80
6-dB Bandwidth	80
50-dB Bandwidth	80
Highpass Filter State	80
6-dB Bandwidth	80
50-dB Bandwidth	

Capture Time

Specifies the duration (and therefore the amount of data) to be captured in the capture buffer. If the capture time is too short, demodulation will fail. In particular, if the result length does not fit in the capture buffer, demodulation will fail.

Remote command: [SENSe:]SWEep:TIME on page 202

Capture Length

Defines the number of samples to be captured during each measurement. The required Capture Time is adapted accordingly.

A maximum of 8 000 000 samples can be captured.

Remote command: [SENSe:]SWEep:LENGth on page 202

Sample Rate

Defines the I/Q data sample rate of the R&S FSV3-K96 OFDM VSA application used for demodulation.

Note that the sample rate in the R&S FSV3-K96 OFDM VSA application must correspond to the OFDM system sample rate, otherwise demodulation can fail.

Remote command: TRACe:IQ:SRATe on page 203

Oversampling / Capture Sample Rate

By default, the R&S FSV3-K96 OFDM VSA application captures data with a usable I/Q bandwidth that is 0.8 * sample rate.

However, for some signals and measurements, a higher bandwidth is required. In this case, you can force the R&S FSV3-K96 OFDM VSA application to capture with twice the sample rate, which is referred to as *capture oversampling*.

Oversampling is not available in the following cases:

- A channel filter is enabled (see "Filter State" on page 80).
 In this case, an oversampling factor of 2 is applied automatically.
- The defined Sample Rate is higher than half the maximum sample rate the R&S FSV/A supports.

The actual "Capture Sample Rate", that is: the rate with which the R&S FSV3-K96 OFDM VSA application samples data, is calculated as:

Sample Rate * Oversampling factor

If you are analyzing data from an input file, the "Capture Sample Rate" indicates the rate with which the R&S FSV3-K96 OFDM VSA application initially processes the data in the file.

- "2x" An oversampling of 2 is applied. The sample rate with which the R&S FSV3-K96 OFDM VSA application captures data is twice the system sample rate.
- "Off" No oversampling is applied, the capture sample rate of the R&S FSV3-K96 OFDM VSA application and the system sample rate are identical.

Remote command:

[SENSe:]CAPTure:OVERsampling on page 201

Maximum Bandwidth

Defines the maximum bandwidth to be used by the R&S FSV/A for I/Q data acquisition. Which options are available depends on which bandwidth extension options are installed.

This setting is only available if a bandwidth extension option larger than 40 MHz is installed on the R&S FSV/A. Otherwise, the maximum bandwidth is determined automatically.

"Auto"	(Default:) All installed bandwidth extension options are enabled. The currently available maximum bandwidth is allowed. (See Chapter 4.5, "Sample rate and maximum usable I/Q bandwidth for RF input", on page 45).
"40 MHz"	Restricts the analysis bandwidth to a maximum of 40 MHz. Larger bandwidth extension options are disabled.
"200 MHz"	Restricts the analysis bandwidth to a maximum of 200 MHz. Larger bandwidth extension options are disabled.
"400 MHz"	Restricts the analysis bandwidth to a maximum of 400 MHz. Larger bandwidth extension options are disabled.
"600 MHz"	Restricts the analysis bandwidth to a maximum of 600 MHz. Larger bandwidth extension options are disabled.
Remote comman	nd.

Remote command:

TRACe:IQ:WBANd[:STATe] on page 203
TRACe:IQ:WBANd:MBWidth on page 203

Swap I/Q

Activates or deactivates the inverted I/Q modulation. If the I and Q parts of the signal from the DUT are interchanged, the R&S FSV/A can do the same to compensate for it.

On	I and Q signals are interchanged Inverted sideband, Q+j*I
Off	I and Q signals are not interchanged Normal sideband, I+j*Q

Remote command:

[SENSe:]SWAPiq on page 201

Filter State

Defines whether a channel filter - and a highpass filter, if active - is applied to the I/Q data before OFDM demodulation.

Remote command:

INPut:FILTer:CHANnel[:LPASs][:STATe] on page 200

6-dB Bandwidth

Configures the bandwidth of the channel filter at which an attenuation of 6 dB is reached (see Figure 5-5). The filter bandwidth cannot be higher than the current Sample Rate. If necessary, the filter bandwidth is adapted to the current sample rate.

Figure 5-5: Definition of filter bandwidths

Remote command: INPut:FILTer:CHANnel[:LPASs]:SDBBw on page 200

50-dB Bandwidth

Configures the 50-dB bandwidth of the channel filter. The 50-dB bandwidth is the bandwidth at which the filter reaches an attenuation of 50 dB (see Figure 5-5). This bandwidth must always be larger than the "6-dB Bandwidth" on page 80. If necessary, the 50-dB bandwidth is adapted to the current 6-dB bandwidth.

Remote command:

INPut:FILTer:CHANnel[:LPASs]:FDBBw on page 200

Highpass Filter State

Activates or deactivates an additional internal highpass filter.

Remote command: INPut:FILTer:CHANnel:HPASs[:STATe] on page 200

6-dB Bandwidth

Configures the bandwidth of the high pass filter at which an attenuation of 6 dB is reached (see Figure 5-5). The filter bandwidth cannot be higher than the current 6-dB Bandwidth of the channel filter. If necessary, the filter bandwidth is adapted to the same value.

Remote command: INPut:FILTer:CHANnel:HPASs:SDBBw on page 199

50-dB Bandwidth

Indicates the 50-dB bandwidth of the high pass filter. The 50-dB bandwidth is the bandwidth at which the filter reaches an attenuation of 50 dB (see Figure 5-5). This bandwidth must always be smaller than the 6-dB Bandwidth of the high pass filter.

The 50-dB bandwidth cannot be defined manually. It is automatically determined according to the relation between the 6-dB bandwidth and the 50-dB bandwidth of the channel filter (see 6-dB Bandwidth and 50-dB Bandwidth).

Remote command:

INPut:FILTer:CHANnel:HPASs:FDBBw? on page 199

5.6 Sweep settings

Access: [Sweep]

The sweep settings define how often data from the input signal is acquired and then evaluated.

Continuous Sweep / Run Cont	81
Single Sweep / Run Single	81
Refresh	82
Statistic Config / Max No of Frames to Analyze	82

Continuous Sweep / Run Cont

After triggering, starts the measurement and repeats it continuously until stopped. This is the default setting.

While the measurement is running, "Continuous Sweep" and [RUN CONT] are highlighted. The running measurement can be aborted by selecting the highlighted softkey or key again. The results are not deleted until a new measurement is started.

Note: Sequencer. If the Sequencer is active, "Continuous Sweep" only controls the sweep mode for the currently selected channel. However, the sweep mode only takes effect the next time the Sequencer activates that channel, and only for a channel-defined sequence. In this case, a channel in continuous sweep mode is swept repeatedly.

Furthermore, [RUN CONT] controls the Sequencer, not individual sweeps. [RUN CONT] starts the Sequencer in continuous mode.

For details on the Sequencer, see the R&S FSV/A User Manual.

Remote command:

INITiate<n>:CONTinuous on page 216

Single Sweep / Run Single

While the measurement is running, "Single Sweep" and [RUN SINGLE] are highlighted. The running measurement can be aborted by selecting the highlighted softkey or key again. **Note:** Sequencer. If the Sequencer is active, "Single Sweep" only controls the sweep mode for the currently selected channel. However, the sweep mode only takes effect the next time the Sequencer activates that channel, and only for a channel-defined sequence. In this case, the Sequencer sweeps a channel in single sweep mode only once.

Furthermore, [RUN SINGLE] controls the Sequencer, not individual sweeps. [RUN SINGLE] starts the Sequencer in single mode.

If the Sequencer is off, only the evaluation for the currently displayed channel is updated.

For details on the Sequencer, see the R&S FSV/A User Manual.

Remote command: INITiate<n>[:IMMediate] on page 216

Refresh

Repeats the evaluation of the data currently in the capture buffer without capturing new data.

Remote command: INITiate<n>:REFResh on page 216

Statistic Config / Max No of Frames to Analyze

Defines the maximum number of OFDM frames from the current capture buffer to be included in analysis.

If a configuration file is available, the contents of the file determine the frame. If no file is available, a single result range is considered a frame.

Remote command:

[SENSe:]DEMod:FORMat:MAXFrames on page 204

5.7 Burst search

Access: "Overview" > "Burst Search"

Or: "Meas Setup" > "Burst Search"

During a burst search, the capture buffer is searched for bursts that comply with the signal description. If no bursts are detected, the entire capture buffer is considered to be a single burst. A list of the detected bursts is passed on to the next processing stage.

See also Chapter 4.4, "OFDM measurement", on page 42.

Synchronization, demodulation and tracking

Burst Search State

Activates or deactivates a burst search.

```
Remote command:
```

[SENSe:]DEMod:FORMat:BURSt on page 204

5.8 Result ranges

The result range is an extract from the capture buffer and defines the data basis used for further analysis.

Result Range		×
Max No of Frames to Analyze	0	
Result Length	10	Symbols

Statistic Config / Max No of Frames to Analyze

Defines the maximum number of OFDM frames from the current capture buffer to be included in analysis.

If a configuration file is available, the contents of the file determine the frame. If no file is available, a single result range is considered a frame.

Remote command:

[SENSe:]DEMod:FORMat:MAXFrames on page 204

Result Length

Configures the number of OFDM symbols per frame to be analyzed. Note that this is not the maximum, but a precise number. If this number is higher than the actual number of symbols found in the signal, the result is not considered a frame, and not analyzed.

Note: If a loaded configuration file contains a <DefaultResultLength> entry, the specified value is used as the default result length for the current measurement setup.

Remote command:

[SENSe:]DEMod:FORMat:NOFSymbols on page 204

5.9 Synchronization, demodulation and tracking

Access: "Overview" > "Sync / Demod"/"Tracking"

Or: "Meas Setup" > "Sync / Demod"/"Tracking"

Synchronization, demodulation and tracking

The following settings determine how the input signal is synchronized, demodulated, and tracked.

Sync / Demod / Tracking				X
Synchronization		Tracking		
Time Synchronization	Cyclic Prefix -	Phase Tracking		
Parameter Estimation				
Modulation Detection		Timing Tracking		
Thresholds		Level Tracking	On	
Minimum Time Sync Metric	0.5			
Minimum Frame Sync Metric	0.5	Channel Compensation		
Demodulation				
FFT Shift relative to Cyclic Prefix Length	0.5			
Maximum Carrier Offset				
Cyclic Delay	0			

Time Synchronization	
Parameter Estimation	
Modulation Detection	
Synchronization Thresholds	
L Minimum Time Sync Metric	
L Minimum Frame Sync Metric	
Phase Tracking	
Timing Tracking	86
Level Tracking	
Channel Compensation	
FFT Shift relative to Cyclic Prefix Length	
Maximum Carrier Offset	
Cyclic Delay	

Time Synchronization

Specifies the synchronization method in the time domain.

"Cyclic Prefix" The cyclic prefix method performs a correlation of the cyclic prefix with the end of the FFT interval.

"Preamble" The preamble method searches for the repetitive preamble blocks.

Remote command:

[SENSe:]DEMod:TSYNc on page 208

Parameter Estimation

Defines which parts of the OFDM signal are used for the parameter estimation.

This setting is only available if a configuration file is loaded and active (see "Use Configuration File" on page 56). In manual configuration mode without a configuration file, no parameter estimation is performed.

"Pilot-Aided" Uses only the predefined pilot cells for parameter estimation.

"Pilot And Data-Aided"

Uses both pilots and detected data cells for an additional synchronization step.

Remote command: [SENSe:]DEMod:FSYNc on page 206

Modulation Detection

Specifies how the modulation of the data cells is detected.

The R&S FSV3-K96 OFDM VSA application can use the modulation configured in the configuration file for each cell.

Alternatively, the R&S FSV3-K96 OFDM VSA application tries to detect the used modulation automatically based on the available modulation types (which are also defined in the configuration file). For automatic detection, the R&S FSV3-K96 OFDM VSA application analyzes the modulation type per carrier or per symbol.

This setting is only available if a configuration file is loaded and active (see "Use Configuration File" on page 56).

"Configuration	The modulation format configured for the cell is used.
File"	Note that if the actual modulation of a constellation point differs from the configured modulation for the cell, the EVM is increased.
"Symbolwise"	A common modulation format for all data cells within one OFDM sym- bol is determined.
"Carrierwise"	A common modulation format for all data cells within one OFDM carrier is determined.

Remote command:

[SENSe:]DEMod:MDETect on page 207

Synchronization Thresholds

If you require particular reliability in synchronization results, define thresholds for the success of synchronization required to calculate results. The current reliability is indicated in the Signal Flow.

High thresholds are useful if several similar, but not identical frames, must be distinguished. In this case, it is important that the application synchronizes only to the correct frame to obtain correct results.

On the other hand, if the signal quality is poor, only a low level of reliability in synchronization can be achieved. In this case, high thresholds can prevent the application from evaluating any frames at all.

For details, see Chapter 4.4.1, "Synchronization block", on page 43.

Minimum Time Sync Metric - Synchronization Thresholds

Defines the minimum reliability required for time synchronization.

Values between 0 and 1 are allowed, where:

- 0: low threshold, very poor reliability is sufficient to synchronize successfully (always fulfilled)
- 1: high threshold, time synchronization must be absolutely reliable to be successful (only possible for ideal signal).

The default value is 0.5, that means: for reliability of 50 %, time synchronization is successful.

Remote command:

[SENSe:]DEMod:THReshold:TIME on page 207

Minimum Frame Sync Metric - Synchronization Thresholds

Defines the minimum correlation rate of the CP or preamble for frame synchronization to be successful.

Values between 0 and 1 are allowed, where:

- 0: low threshold, a very poor correlation is sufficient to synchronize successfully (always fulfilled)
- 1: high threshold, correlation must be very precise for frame synchronization to be successful (only possible for ideal signal).

The default value is 0.5, that means: for a correlation of 50 %, frame synchronization is successful.

Remote command:

[SENSe:]DEMod:THReshold:FRAMe on page 207

Phase Tracking

Defines whether phase tracking is used to improve the signal quality. The compensation is done on a per-symbol basis.

This setting is only available if a configuration file is loaded and active (see "Use Configuration File" on page 56).

Remote command:

SENSe: TRACking: PHASe on page 208

Timing Tracking

Defines whether timing tracking is used to improve the signal quality (for sample clock deviations). The compensation is done on a per-symbol basis.

This setting is only available if a configuration file is loaded and active (see "Use Configuration File" on page 56).

Remote command:

SENSe: TRACking: TIME on page 209

Level Tracking

Defines whether level tracking is used to improve the signal quality (for power level deviations). The compensation is done on a per-symbol basis.

This setting is only available if a configuration file is loaded and active (see "Use Configuration File" on page 56).

Remote command: SENSe:TRACking:LEVel on page 208

Channel Compensation

Defines whether channel tracking is used to improve the signal quality (for the channel transfer function). The compensation is done on a per-carrier basis.

This setting is only available if a configuration file is loaded and active (see "Use Configuration File" on page 56).

Remote command:

[SENSe:]COMPensate:CHANnel on page 205

FFT Shift relative to Cyclic Prefix Length

Defines the starting point of the FFT relative to the cyclic prefix length. Thus, you can shift the FFT start sample within the guard interval. Shifting is useful if relevant parts of the channel impulse response fall outside the cyclic prefix interval.

A value of 1 is the first sample of the cyclic prefix; a value of 0 is after the last sample of the prefix. A negative value includes part of the cyclic suffix in the FFT.

Note: If a cyclic suffix is used, the FFT shift can be a negative value, down to -1* (cyclic suffix length / cyclic prefix length)

(See "Cyclic Suffix Length" on page 58)

Remote command:

[SENSe:]DEMod:FFTShift on page 206

Maximum Carrier Offset

The R&S FSV3-K96 OFDM VSA application can compensate for possible carrier offsets. However, searching for offsets slows down the measurement. This setting defines the range of carriers in which the R&S FSV3-K96 OFDM VSA application searches for an offset.

To eliminate the search for carrier offset altogether, set the number of carriers to 0. In this case, the center frequency offset must be less than half the carrier distance to obtain useful results.

This setting is only available if a configuration file is loaded and active (see "Use Configuration File" on page 56).

Remote command:

[SENSe:]DEMod:COFFset on page 206

Cyclic Delay

Defines a cyclic shift of the FFT values for each OFDM symbol on the transmitter end before adding the cyclic prefix. This known shift should be compensated in the receiver to get a correct channel phase response.

Remote command:

[SENSe:]DEMod:CDD on page 205

5.10 Adjusting settings automatically

Access: "Auto Set"

Depending on the R&S FSV/A, some settings can be adjusted by the instrument automatically according to the current measurement settings. To do so, a measurement is performed.

To activate the automatic adjustment of a setting from the R&S FSV/A, select the corresponding function in the "Auto Set" menu or in the configuration dialog box for the setting, where available.

Adjusting settings automatically during triggered measurements

When you select an auto adjust function, a measurement is performed to determine the optimal settings. If you select an auto adjust function for a triggered measurement, you are asked how the R&S FSV/A should behave:

- (Default:) The measurement for adjustment waits for the next trigger
- The measurement for adjustment is performed without waiting for a trigger. The trigger source is temporarily set to "Free Run". After the measurement is completed, the original trigger source is restored. The trigger level is adjusted as follows for "IF Power" and "RF Power" triggers: Trigger level = Reference level - 15 dB

Remote command:

[SENSe:]ADJust:CONFigure:TRIGger on page 211

Setting the Reference Level Automatically (Auto Level)

To determine the required reference level, a level measurement is performed on the R&S FSV/A.

If necessary, you can optimize the reference level further. Decrease the attenuation level manually to the lowest possible value before an overload occurs, then decrease the reference level in the same way.

Remote command: [SENSe:]ADJust:LEVel on page 191

6 Creating a configuration file using the wizard

The R&S FSV3-K96 Configuration File Wizard (referred to as *wizard* here) is a tool that supports you in defining the configuration of your OFDM signal directly in the R&S FSV3-K96 OFDM VSA application.

The R&S FSV3-K96 OFDM VSA application has to know the configuration of the OFDM system to be able to demodulate an OFDM signal correctly. By *configuration*, we refer to the complete description of the OFDM system:

- The number of subcarriers (i.e. the FFT size)
- The number of symbols
- The number of samples in the cyclic prefix (also referred to as guard length)
- The position (carrier number, symbol number) of the:
 - Pilot symbols
 - Data symbols
 - Zero symbols
 - "Do not care" symbols
- The modulation format of the data symbols (e.g. QPSK, 16QAM etc.)
- The I/Q values of the pilot symbols
- Optional: the definition of the preamble

This section describes how to generate the OFDM system configuration file in the R&S FSV3-K96 OFDM VSA application for the current input signal.

The R&S FSV3-K96 OFDM VSA application provides some sample files for I/Q input data and configuration files in the C:\R_S\INSTR\USER\demo\OFDM-VSA directory. The R&S FSV3-K96 Configuration File Wizard is provided with the R&S FSV3-K96 OFDM VSA application firmware and stored on the instrument. It is available from the Windows "Start" menu.

•	Understanding the R&S FSV3-K96 Configuration File Wizard display	. 89
•	Configuration steps	. 96
•	Reference of wizard menu functions	104

6.1 Understanding the R&S FSV3-K96 Configuration File Wizard display

The following figure shows the R&S FSV3-K96 Configuration File Wizard user interface. All different areas are labeled. They are explained in more detail in the following sections.

Figure 6-1: Elements of the wizard user interface

- 1 = Menu functions (see Chapter 6.3, "Reference of wizard menu functions", on page 104)
- 2 = Progress indicator (see Chapter 6.2, "Configuration steps", on page 96)
- 3 = Constellation view
- 4 = Access to wizard help (see Chapter 6.3.4, "Help", on page 109)
- 5 = General signal information
- 6 = Matrix view

•	General signal information	. 90
•	Constellation view	. 91
•	Matrix view	. 93

6.1.1 General signal information

General information on the configured signal is provided here for reference. Some values are derived from the configuration settings in the R&S FSV3-K96 OFDM VSA application, others are generated by the wizard. The values displayed here are also included in the generated configuration file. If specified in the description, some values are shown in the "Signal Description" dialog box when you load the file in the R&S FSV3-K96 OFDM VSA FSV3-K96 OFDM VSA application.

General Information			
Number of Carriers	64	Cyclic Prefix	16
Number of Symbols	10	System Name	C:/Users/SIE
		Description	Number Of

Number of Carriers	91
Number of Symbols	91
Cyclic Prefix Length	
System Name	91
System Description	91

Number of Carriers

Indicates the number of subcarriers used by the signal. This value corresponds to the "FFT Size" on page 58.

Number of Symbols

The number of OFDM symbols corresponds to the result length configured in the "Result Range" settings in the R&S FSV3-K96 OFDM VSA application (see "Result Length" on page 83).

Cyclic Prefix Length

Defines the length of the cyclic prefix (CP) area between two OFDM symbols in samples. The cyclic prefix area defines the guard interval and is expected to contain a copy of the samples at the end of the OFDM symbol.

The cyclic prefix length must be smaller than or equal to the "FFT Size" on page 58.

Remote command: CONFigure[:SYMBol]:NGUard<cp> on page 146

System Name

Defines the name of the stored configuration file. The default name is MyData. You can change the name in the "Settings" (see Chapter 6.3.3, "Settings", on page 105).

System Description

Provides a description of the signal configured in the file.

By default, the following main characteristics are included:

- Number of Carriers
- Number of Symbols
- Cyclic Prefix Length

If you deactivate the "Default" setting, you can overwrite the text with any other.

6.1.2 Constellation view

The "Constellation View" shows the constellation points (= I/Q values) for the OFDM cells in the defined result range. Using this view, you can assign the measured constellation points to specific cell types for the allocation matrix in the configuration file.

Figure 6-2: Constellation View

Selection tool

Sets the cursor action to selection mode. All cells in the selection area are highlighted in color. The Selection Mode / Zoom Mode indicator shows which color is used. Any subsequent functions are applied to the selected cells.

Click in the diagram and move the cursor, holding the mouse button, to display a dotted rectangle and define the selection area.

Press [Shift] and click in the diagram to extend the selection to neighboring symbols.

Press [CTRL] and click in the diagram to add further (non-neighboring) points to the existing selection. Click the same points again to deselect them.

Zoom

2

Sets the cursor action to zoom mode. Click in the diagram and move the cursor, holding the mouse button, to display a rectangle and define the zoom area. The zoomed area is enlarged in the display. Repeat the action to zoom in further.

The Selection Mode / Zoom Mode indicator above the diagram shows that zoom mode is active.

To change the cursor function and stop zooming, select Selection tool.

Zoom Off

Displays the diagram in its original size.

Note that this function does not change the cursor function. To change the cursor function and stop zooming, select <u>Selection tool</u>.

The Selection Mode / Zoom Mode indicator above the diagram shows that zoom mode is active.

Selection Mode

Selection Mode / Zoom Mode indicator

Indicates whether the current cursor action is to select cells (selection mode), or to define the zoom area. In selection mode, the color used to highlight selected cells is indicated.

Show non-allocated constellation points

Displays or hides the constellation points not yet allocated to a cell type in the "Constellation View".

Show allocated constellation points

Displays or hides the constellation points already allocated to a cell type in the "Constellation View".

6.1.3 Matrix view

The "Matrix View" displays two different diagrams of the measured symbols (y-axis) vs carriers (x-axis).

Power vs Symbol x Carrier" diagram Shows a colored rectangle (= OFDM cell) for each symbol and carrier, with a different color for each measured power range. Thus, you can easily identify symbols with a similar power value, which therefore most likely belong to the same cell type.

Figure 6-3: Matrix View with Power vs Symbol x Carrier diagram

Either a colored or a black-and-white (gray shades) power indication is available (see Black and white color map / Colored color map). The darker the color, the lower the power of the corresponding OFDM cell.

• "Allocation Matrix"

Shows a colored point for each allocated symbol and carrier, with a different color for each cell type.

Figure 6-4: Matrix View with Allocation Matrix

Optionally, the selected symbols can be highlighted in the matrix.

Similarly to the "Constellation View", you can also select cells in the "Matrix View" to assign them to specific cell types.

Further zoom and selection functions are provided in the context menu for the diagram (right-click in the diagram).

Black and white color map	
Colored color map	95
Highlight selected cells	95
Selection Mode / Zoom Mode indicator	95
Selection tool	95
Deselect All (context-menu)	95
Zoom	95
Zoom Off	
Select Symbol / Select Carrier (context-menu)	
Select Specific Symbol / Select Specific Carrier (context-menu)	96
Select Symbol/Carrier Range (context-menu)	
L Start	
L Step	96

L Stop	96
 Deselect All (context-menu)	
Extract Symbols (context-menu)	

	-	-	-	-	•
n					
ш					
ы					

Black and white color map

The different modulation types in the "Power vs Symbol x Carrier" diagram are displayed in different shades of black, white, and gray. The lighter the shade of gray, the higher the power level in the OFDM cell.

	_	_	ъ
- 84			

Colored color map

The different modulation types in the "Power vs Symbol x Carrier" diagram are displayed in different colors. The used colors are indicated in the legend above the diagram.

	_	_
I		
I		
I	×.,	

Highlight selected cells

The cells in the area selected by the <u>Selection tool</u> are highlighted in the "Allocation Matrix".

Selection Mode

Selection Mode / Zoom Mode indicator

Indicates whether the current cursor action is to select cells (selection mode), or to define the zoom area. In selection mode, the color used to highlight selected cells is indicated.

Selection tool

Sets the cursor action to selection mode. All cells in the selection area are highlighted in color. The Selection Mode / Zoom Mode indicator shows which color is used. Any subsequent functions are applied to the selected cells.

Click in the diagram and move the cursor, holding the mouse button, to display a dotted rectangle and define the selection area.

Press [Shift] and click in the diagram to extend the selection to neighboring symbols.

Press [CTRL] and click in the diagram to add further (non-neighboring) points to the existing selection. Click the same points again to deselect them.

Deselect All (context-menu)

Deselects all currently selected symbols or carriers.

Zoom

Sets the cursor action to zoom mode. Click in the diagram and move the cursor, holding the mouse button, to display a rectangle and define the zoom area. The zoomed area is enlarged in the display. Repeat the action to zoom in further.

The Selection Mode / Zoom Mode indicator above the diagram shows that zoom mode is active.

To change the cursor function and stop zooming, select Selection tool.

Zoom Off

Displays the diagram in its original size.

Note that this function does not change the cursor function. To change the cursor function and stop zooming, select <u>Selection tool</u>. The Selection Mode / Zoom Mode indicator above the diagram shows that zoom mode is active.

Select Symbol / Select Carrier (context-menu)

Selects the symbol or carrier at the current cursor position.

Select Specific Symbol / Select Specific Carrier (context-menu)

Opens an input field to enter a specific symbol or carrier number for selection.

Select Symbol/Carrier Range (context-menu)

Opens a dialog box to define a range of symbols or carriers for selection.

Note that when you accept a range using "OK", it is added to the current selection, instead of replacing it. Thus, you can add a sequence of symbols or carriers before allocating the entire selection in one step. If necessary, use the Deselect All (context-menu) function to empty the selection first.

🚸 Select C	arrier/Symbol Range							\times
Carrier Start	-32	Step	1	÷	Stop	31	÷	
Symbol Start	0	Step	1	•	Stop	19	-	
			Cancel (ок				

Start ← Select Symbol/Carrier Range (context-menu)

Selects the first carrier or symbol of a range.

Selects the steps between individual carriers or symbols of a range, for example to select every second one.

Stop ← Select Symbol/Carrier Range (context-menu)

Selects the last carrier or symbol of a range.

Deselect All (context-menu)

Deselects all currently selected symbols or carriers.

Extract Symbols (context-menu)

Extracts a range of symbols from the imported signal for further analysis.

Note: To restore discarded symbols for analysis, you must re-import the signal.

This function is identical to Chapter 6.2.3, "Step 2: (Optional:) Adjusting the analysis region", on page 99.

6.2 Configuration steps

The wizard guides you through the process of creating a configuration file. The progress bar (see Figure 6-1) indicates which step you are currently working on. After you complete all required steps, you have created a configuration file that you can import to the R&S FSV3-K96 OFDM VSA application for signal analysis.

97
98
99
100
100
101
103

6.2.1 Starting the R&S FSV3-K96 Configuration File Wizard

To start the R&S FSV3-K96 Configuration File Wizard within the R&S FSV/A

- 1. Configure the required input signal in the R&S FSV3-K96 OFDM VSA application, either from a connected instrument or from an input file.
- 2. Configure the basic OFDM settings:
 - a) In the "Signal Description" settings:
 - "FFT size", that is: the number of subcarriers
 - "Cyclic prefix length"
 - "Cyclic suffix length"
 - If a preamble exists and is used for synchronization: "Preamble Symbol Characteristics":
 - "Block Length"
 - "Frame Start Offset"
 - b) "Burst search", if the signal is bursted
 - c) In the "Sync/Demod/Tracking" settings:
 - "FFT Shift relative to Cyclic Prefix Length"
 - "Cyclic delay"
 - If a preamble is configured: "Time Synchronization": "Preamble"
- 3. Open a "Signal Flow" and a "Constellation" result display.
- 4. Select [RUN SINGLE].
- 5. The initial coarse time synchronization must be sufficiently reliable to ensure that demodulation is successful before you can start the R&S FSV3-K96 Configuration File Wizard. Note that the signal need not be perfectly synchronized in this step. The wizard provides means to compensate for remaining small frequency, phase or timing errors.

Check the "Signal Flow" result display to ensure the time synchronization meets the Minimum Time Sync Metric. Define the threshold in the "Sync/Demod/Tracking" settings (see "Minimum Time Sync Metric" on page 85).

Note: Without a configuration file, only the timing synchronization metric, which is based on cyclic prefix or preamble, is relevant. The frame synchronization metric,

which is based on pilots, is only useful in the next analysis stage that uses the configuration file.

6. Check the "Constellation" result display to ensure that the signal is as expected, e.g. the constellation points do not show a severe rotation.

Note: If the data cells use DFT-S precoding, the R&S FSV3-K96 OFDM VSA application cannot demodulate the transformed data cells correctly without a configuration file (see also "DFT-s-OFDM / SC-FDMA:Transform Precoding" on page 57). Since the R&S FSV3-K96 OFDM VSA application does not know which cells are data cells, the I/Q symbols of the data cells look like noise. Nevertheless, synchronization using the cyclic prefix is still successful. The pilot cells are not affected, and are demodulated correctly.

7. Select "Overview" > "Signal Description" > "Create New Configuration File".

The R&S FSV3-K96 Configuration File Wizard starts.

To start the R&S FSV3-K96 Configuration File Wizard on a separate PC

For very large frames, using the R&S FSV3-K96 Configuration File Wizard on a separate PC with a higher display resolution and a mouse can be more convenient.

- Configure the signal input and characteristics as described in "To start the R&S FSV3-K96 Configuration File Wizard within the R&S FSV/A" on page 97.
- Instead of creating a new configuration file directly on the instrument, save the demodulated data to a file.
 Select "Overview" > "Signal Description" > "Export data".
- 3. Save the data to a *.k96_wizv file on a USB storage device connected to the instrument.
- Copy the K96_ConfigurationFileWizard.exe and the ZedGraph.dll files from the instrument to a folder on the PC.
- 5. Start the K96_ConfigurationFileWizard.exe file on the PC.

The R&S FSV3-K96 Configuration File Wizard starts. Continue with Chapter 6.2.2, "Step 1: (Optional:) Importing existing files", on page 98 and select the *.k96_wizv file from the USB storage device.

6.2.2 Step 1: (Optional:) Importing existing files

The wizard requires demodulated data as input. When you open the wizard directly from the R&S FSV3-K96 OFDM VSA application, the demodulated data from the input signal is stored in a .K96_wizv file internally. The wizard automatically loads this file when it is started and you start with step 2.

If a configuration file already exists, you can load it to the wizard and use it to create a new one.

To import an existing configuration file

- 1. Select "Step 1" in the progress bar ("Step-by-Step").
- 2. Select the .K96 wizv file to load.

The constellation diagram and "Allocation Matrix" are updated according to the stored data.

6.2.3 Step 2: (Optional:) Adjusting the analysis region

By default, the result range configured in the R&S FSV3-K96 OFDM VSA application defines the number of symbols displayed in the "Constellation View". If the result range was correctly configured to comprise exactly one frame, you do not need to adjust the analysis region.

If necessary, you can restrict the analysis region.

🚸 (Optional) Extract	Sy 🗖 🗖	×
Valid Range:	0 - 99	
First Symbol:	0	-
Last Symbol:	99	* *
	Ж	

Example:

The result range in Figure 6-5 contains 4 bursts, indicated by green bars. To configure the configuration file using the wizard, only one burst is required. Thus, you can extract the symbols for one burst to be used as the analysis region.

Figure 6-5: Sample result range with multiple bursts

To restrict the analysis region

- 1. Select "Step 2" in the progress bar ("Step-by-Step").
- 2. Define the first and last symbols of the result range to analyze.

6.2.4 Step 3: Synchronizing the measured data

The wizard can synchronize the measured data in terms of time, frequency, and phase, automatically. If necessary, improve the synchronization manually.

🚸 Manual Sy	nchronization		_		\times
Manual Sync	hronization				
Timing	<	>	0.040690		
Frequency	<	>	0,000314		Auto
Phase	<	>	10,260deg		
			0.0000 dB		014
				(JK

To synchronize the measured data

- 1. Select "Step 3" in the progress bar ("Step-by-Step").
- 2. Select "Auto" to perform automatic synchronization.
- If necessary, move the sliders for timing, frequency, or phase until the constellation diagram shows an optimal display.

Tip: Click directly on the "Phase" slider to rotate the constellation in 45° steps. Click the arrows of the slider or move the slider handle to rotate the constellation by smaller degrees.

The currently selected values are indicated for reference. You can also enter a value directly.

6.2.5 Step 4: Adjusting the gain

The power gain for individual OFDM cells is determined in reference to the power measured for a specific constellation. It is recommended that you define a reference constellation that comprises many cells with similar power. Usually, the data cells of the OFDM signal are a good selection to be used as a reference.

The reference can be defined automatically or manually.

Configuration steps

Coloction of Dofo				
Canatallation	PRCK			
Constellation	brok			~
Radius	<			>
Gain Adjustment				
Gain	<			>
	0.0000 dB	7	Auto	
			_	

To select the reference for the gain

- 1. Select "Step 4" in the progress bar ("Step-by-Step").
- 2. Select the constellation type to use as a reference.
- The "Radius" defines the area around the constellation point used to detect the symbol and calculate the power of the symbol. As a rule, define the radius such that neighboring constellation markers do not overlap.

The currently used radius is indicated by a circle around the ideal constellation points in the "Constellation View".

To adjust the gain

- 1. Select "Auto" to perform a gain estimation based on the power measured in the selected constellation type.
- To increase the reference gain, move the slider to the right.
 To reduce the reference gain, move the slider to the left.
 The currently selected value is indicated for reference. You can also enter a value directly.
- 3. Select "OK" to define the measured power of the selected cells as the reference power for gain settings of other cells.

6.2.6 Steps 5 + 6: Allocating signal components

In this step, you configure the main characteristics of each OFDM cell. To do so, you select the OFDM cells that belong to a specific cell type, configure their characteristics, and then allocate them. The result is an "Allocation Matrix" that contains information for each OFDM cell of the current OFDM frame.

Constellation View Constellation Markers		Allocation	
BPSK	•	> Allocate as:	Pilot 🔹 🗸
Boosting 1.000 < 📄	Auto		Pilot_BPSK
Radius 🔹 📄	Þ	Undo last alloca	tion 🎦

How to allocate the individual signal components

The characteristics that cells of the same type have in common are referred to as "Constellation Markers".

Select constellation markers that match your demodulated constellation, or a subset of your demodulated constellation. If you cannot see a clear constellation, improve the synchronization as described in Chapter 6.2.4, "Step 3: Synchronizing the measured data", on page 100.

1. Select "Step 5" in the progress bar ("Step-by-Step").

Note: Steps 5 and 6 use the same display, therefore it is not necessary to switch from step 5 to 6.

- 2. The selection from Step 4: Adjusting the gain is maintained, so you can allocate the cell type used for gain adjustment first.
 - a) Optionally, edit the name of the cell type, which is used for the legend of the "Allocation Matrix". By default, the name consists of the cell type and modulation.
 - b) Select the *C* checkmark and confirm the message to allocate the selected cells to the selected cell type.
- 3. For all other cell types, in the "Constellation View", select the modulation type.
 - a) For pilot cells, you can select:
 - "Pilot as received": the received (demodulated and synchronized) I/Q symbol is stored. Thus, you do not require the ideal constellation value. However, during demodulation, the application cannot correct minor symbol errors. Use this setting only if the signal and synchronization are of high quality, e.g. from a file import.
 - Any other modulation type: the received I/Q symbol is demodulated and synchronized, and if necessary, mapped to the closest ideal I/Q constellation point. The ideal value is stored.
 - b) For a user-specific, unusual constellation of a signal component, you can configure the constellation in an IQW file in advance. Then load the file to the wizard instead of selecting a predefined modulation for a specific signal component. For details see Chapter B, "Reference: IQW format specification for userdefined constellation points", on page 285.

The symbols with the selected modulation are highlighted.

- 4. For "Don't care" cells, for which no characteristic modulation applies, define or edit the selection manually using the Selection tool.
- 5. Another characteristic stored for each cell is the gain value. By default, the reference power defined in Step 4: Adjusting the gain is assumed. Thus, a "Boosting" factor of 1.000 relative to the reference power is defined. For cells with different gain values, define a different boosting factor to apply to the reference power.
 - To determine the required boosting automatically from the constellation points, select "Auto".

 If you know the required factor, click the boosting value and enter the value directly.

Note: The more accurate the boosting is defined, the more accurate the EVM results in the R&S FSV3-K96 OFDM VSA application.

6. The "Radius" defines the area around the ideal constellation point used to detect the measured constellation points that correspond to the currently selected constellation type. As a rule, select the radius such that the circles around the ideal constellation points do not overlap.

If necessary, adapt the radius around the ideal constellation points to include all and only constellation points that belong to the selected constellation type.

- 7. In the "Constellation View", in the "Allocation" area, select the cell type of the selected OFDM cells, for example "Pilot" or "Data".
- 8. Optionally, edit the name of the cell type, which is used for the legend of the "Allocation Matrix". By default, the name consists of the cell type and modulation.
- Select the checkmark and confirm the message to allocate the selected cells to the selected cell type.

The cells are indicated in the color shown in the legend above the "Allocation Matrix". The cells are no longer displayed if you selected only Show non-allocated constellation points in the "Constellation View".

- 10. If necessary, you can revert the last allocation.

The allocated OFDM cells are indicated as non-allocated (but still selected).

11. Repeat these steps until all OFDM cells are allocated. When the last cell type is allocated, a message prompts you to store the results.

Tip: In the "Constellation View", select Show non-allocated constellation points and deselect Show allocated constellation points" on page 93 to see which cells are still missing in the "Allocation Matrix".

6.2.7 Step 7: Storing results

When you have allocated all constellation points in the "Constellation View" to a cell type and configured all other settings as required, store the results to a file. The resulting configuration file can then be used for analysis in the R&S FSV3-K96 OFDM VSA application.

To store a configuration file

- At the end of Steps 5 + 6: Allocating signal components, when all OFDM cells are allocated, the wizard prompts you to store the configuration file. At any other point in the configuration process, select "Step 7" in the progress bar ("Step-by-Step"), or select the "File" > "Save Configuration File" menu item.
- 2. Select a filename and storage location for the configuration file.

3. Select "Save".

6.3 Reference of wizard menu functions

The following functions are provided in the menus of the configuration file wizard.

•	File functions	.104
•	Edit functions	105
•	Settings	. 105
•	Help	.109

6.3.1 File functions

New	104
Import Data from R&S OFDM VSA	104
Load Configuration File	104
Save Configuration File	104
Exit	104

New

Creates a new, empty configuration file. This function is similar to a preset function. Any information from the input signal in the R&S FSV3-K96 OFDM VSA application is no longer available in the wizard. Load existing signal or configuration data to continue.

See "Import Data from R&S OFDM VSA" on page 104 and "Load Configuration File" on page 104.

Import Data from R&S OFDM VSA

Opens a file selection dialog box to import I/Q data from an existing .K96_wizv file (created by the R&S FSV3-K96 OFDM VSA application).

Load Configuration File

Opens a file selection dialog box to load an existing .xml configuration file, for example as the basis for a similar configuration.

Save Configuration File

Opens a file selection dialog box to save the current configuration to an .xml file.

This function is identical to Chapter 6.2.7, "Step 7: Storing results", on page 103.

Note: At the end of Steps 5 + 6: Allocating signal components, when all symbols have been allocated, you are automatically asked if you want to store the configuration file.

Exit

Closes the wizard without a confirmation. Use Save Configuration File to store your current configuration before exiting.

Reference of wizard menu functions

6.3.2 Edit functions

Reset All Allocations	105
Jndo Last Allocation	105
Extract Symbols (context-menu)	105
Shift Left by 1 Carrier / Shift Right by 1 Carrier1	105

Reset All Allocations

Removes all applied allocations. All cells are indicated as non-allocated.

Undo Last Allocation

Reverts the most recently applied allocation. The allocated cells are indicated as nonallocated (but still selected).

This function is identical to using the icon in the "Constellation View".

Extract Symbols (context-menu)

Extracts a range of symbols from the imported signal for further analysis.

Note: To restore discarded symbols for analysis, you must re-import the signal. This function is identical to Chapter 6.2.3, "Step 2: (Optional:) Adjusting the analysis

region", on page 99.

Shift Left by 1 Carrier / Shift Right by 1 Carrier

Shifts the carrier information for all symbols by one carrier. Shifting is useful to compensate for a frequency offset that could not be corrected by the automatic synchronization function.

6.3.3 Settings

System Name	105
System Description	105
Cyclic Prefix / Suffix	106
^L Cyclic Prefix Length	106
L Cyclic prefix mode	106
L Different cyclic prefix lengths	107
L Cyclic prefix definition per range (Symbols / Samples)	107
L Cyclic Suffix Length	107
Preamble	
L Set Preamble	108
L Block Length	108
L Frame Start Offset	108
Cyclic Delay Diversity	108

System Name

Defines the name of the stored configuration file. The default name is MyData. You can change the name in the "Settings" (see Chapter 6.3.3, "Settings", on page 105).

System Description

Provides a description of the signal configured in the file.

By default, the following main characteristics are included:

- Number of Carriers
- Number of Symbols
- Cyclic Prefix Length

If you deactivate the "Default" setting, you can overwrite the text with any other.

Cyclic Prefix / Suffix

Configures the cyclic prefix and suffix, if applicable.

😵 Cyclic Pro	efix Configuration		\times			
CP Conv (Every O Two Diffe	 CP Conventional Mode (Every OFDM Symbol has the same cyclic prefix length) Two Different Cyclic Prefix Lengths 					
Period	lic: Repeat Range 1	and Range 2				
• Non-P	Symbols	Samples				
Range 1	10	64				
Range 2	90	32				
Cyclic Suf	fix	Samples 0				
	ОК	Cancel				

Cyclic Prefix Length ← Cyclic Prefix / Suffix

Defines the length of the cyclic prefix (CP) area between two OFDM symbols in samples. The cyclic prefix area defines the guard interval and is expected to contain a copy of the samples at the end of the OFDM symbol.

The cyclic prefix length must be smaller than or equal to the "FFT Size" on page 58.

Remote command:

CONFigure[:SYMBol]:NGUard<cp> on page 146

Cyclic prefix mode ← Cyclic Prefix / Suffix

Determines how the cyclic prefix is configured.

By default, "Conventional Mode" is assumed, that is: each OFDM symbol has the same cyclic prefix length.

Remote command:

CONFigure [:SYMBol]:GUARd:MODE on page 145

Different cyclic prefix lengths ← Cyclic Prefix / Suffix

Some OFDM signals change their cyclic prefix over time (e.g. 802.11ac). This setting defines the behavior in such a case.

"Periodic" One "slot" that consists of the two defined ranges is repeated over and over until the number of symbols specified by the result range parameter is reached. The ranges are repeated periodically, first range 1, then range 2, then range 1, etc.

Slot							
		-					
	Range 1	Range 2	Range 1	Range 2	Range 1	Range 2	

Figure 6-6: Non-Conventional cyclic prefix case: Periodic mode

"Non-Periodic" A fixed preamble has a different cyclic prefix length than the rest of the frame (e.g. WLAN 802.11ac signals). In this case, the length of the second range is extended until the end of the demodulated frame. Therefore, the length of the second range cannot be specified in this case.

Figure 6-7: Non-Conventional cyclic prefix case: Non-Periodic mode

Remote command:

CONFigure [:SYMBol]:GUARd: PERiodic on page 146

Cyclic prefix definition per range (Symbols / Samples) \leftarrow Different cyclic prefix lengths \leftarrow Cyclic Prefix / Suffix

For each range, configure the number of symbols the cyclic prefix length is applied to, and the length of the cyclic prefix as a number of samples.

For non-periodic cyclic prefixes, the length of the second range cannot be specified. It is extended to the end of the demodulated frame.

Remote command:

```
CONFigure[:SYMBol]:GUARd:NSYMbols<cp> on page 145
CONFigure[:SYMBol]:NGUard<cp> on page 146
```

Cyclic Suffix Length ← Cyclic Prefix / Suffix

Defines the length of the cyclic suffix between two OFDM symbols in samples. The cyclic suffix is expected to contain a copy of the first N samples at the beginning of the OFDM symbol.

Figure 5-2 shows how the complete OFDM symbol is retrieved for an FFT length of 8 and a cyclic prefix and suffix length of 2.

Reference of wizard menu functions

Figure 6-8: OFDM symbol with cyclic prefix and suffix

The cyclic suffix length must be smaller than or equal to the "FFT Size" on page 58.

Remote command:

CONFigure[:SYMBol]:NSUFfix on page 147

Preamble

Preamble symbol characteristics can be stored in the configuration file. These settings correspond to the settings in the "Signal Description" dialog in the R&S FSV3-K96 OFDM VSA application (see Chapter 5.2, "Signal description", on page 55). The information can be used by the R&S FSV3-K96 OFDM VSA application, for example for synchronization.

🚸 Preamble (Optional)	
🔽 Set Preamble	
Block Length: 0	
Frame Offset: 0	×
ОК]

Set Preamble - Preamble

If activated, the defined preamble symbol characteristics are stored in the configuration file.

Block Length - Preamble

Specifies the length of one data block within the repetitive preamble as a number of samples.

Frame Start Offset - Preamble

Specifies the time offset from the preamble start to the actual frame start as a number of samples.

Cyclic Delay Diversity

Defines a cyclic shift of the FFT values for each OFDM symbol before adding the cyclic prefix.
6.3.4 Help

Provides context-sensitive help on the configuration process, according to the currently selected process step.

6.4 Example: creating a configuration file from an input signal

The wizard requires demodulated data as input for the configuration file. You can configure a basic measurement for the input signal in the R&S FSV3-K96 OFDM VSA application as described in Chapter 8, "How to perform measurements in the R&S FSV3-K96 OFDM VSA application", on page 131, or load existing I/Q data to the application.

For this example, we use the I/Q data in the demo file C:\R_S\INSTR\USER\demo\OFDM-VSA\WlanA_64QAM.iq.tar provided with the R&S FSV/A software.

The following signal parameters are already known:

- FFT size (= number of subcarriers): 64 samples
- Cyclic prefix length: 16 samples
- OFDM system sample rate: 20 MHz
- Pilot modulation: QPSK + 45°QPSK
- Data modulation: 64QAM + BPSK
- 1. Define the basic signal parameters so the R&S FSV3-K96 OFDM VSA application can demodulate the data.
 - a) Select the "Meas Setup > Signal Description" menu item.
 - Set "FFT Size" = 64.
 - Set "Cyclic Prefix Length" = 16.
 - b) Select the "Meas Setup > Data Acquisition" menu item.
 - Set "Sample Rate" = 20 MHz.
- 2. Select the I/Q data file to use as input:
 - a) Select "Input/Frontend" > "Input Source" > "I/Q file" > "Select file".
 - b) Select C:\R S\INSTR\USER\demo\OFDM-VSA\WlanA 64QAM.iq.tar.
 - c) Set the state of the I/Q file input to "On".

The Magnitude Capture display shows the bursted signal.

- 3. The green bar in the Magnitude Capture diagram does not cover an entire frame. Increase the result range to include all symbols of a frame.
 - a) Select the "Meas Setup > Result Range" menu item.
 - Set "Result Length" = 100.

The data is now demodulated correctly and can be used as input for a new configuration file.

- 4. In the "Signal Description" dialog box, select "Create New Configuration File".
- 5. Since it is a bursted signal and the result range is large enough, the analysis range corresponds to exactly one frame. We can start directly with step 3, synchronization.

Our constellation diagram is slightly rotated and generally does not show an ideal constellation, so we must improve the synchronization settings.

Figure 6-9: Constellation diagram for loaded WLAN signal data

Select "Step 3" in the progress bar.

a) Select "Auto" to perform automatic synchronization.

b) If necessary, move the sliders for timing, frequency, or phase until the constellation diagram shows an optimal display.

Figure 6-10: Constellation diagram after automatic synchronization

- The reference constellation for the gain calculation is best defined by the data cells in this signal, which use a 64QAM modulation. Select "Step 4" in the progress bar.
 - a) In the "Gain Adjustment" dialog box, select "Constellation" = "64QAM".

b) Select "Gain Adjustment" > "Auto".

Constellation Selection (#456D) Non-allocated Points #6400h Constellation Markers 2,0 1,5 •). (•). (•) . 🔹 . (1,0 (•): (•) (•) 0,5 (\bullet) <u>-</u> ----mag dat • 0,0 -0,5 • -1,0 -1,5 -2,0 -1,5 -1,0 -2,0 -0,5 0,0 0,5 1,0 2,0 1,5

The data cells which use this modulation are highlighted both in the "Constellation View" and the "Matrix View".

Figure 6-11: Highlighted data points in 64QAM constellation

The power for the highlighted constellation points is stored as the reference power, that is: as the boosting factor "1.0".

- 7. Since the data cells are already selected, we allocate those cells in the matrix first.
 - a) Select "Step 5" in the progress bar.
 - b) In the "Constellation View", "Allocation" area, select "Allocate as:" "Data"
 - c) Select the Green checkmark icon.

The data cells in the "Allocation Matrix" are indicated in the specified color for data symbols.

- 8. Next we allocate the symbols with a power level of 0 V the "Zero" cells.
 - a) In the "Constellation View", select the modulation type "Zero" as a constellation marker.
 - b) In the "Constellation View", "Allocation" area, select "Allocate as:" = "Zero".
 - c) Select the *I* green checkmark icon.

The zero cells in the "Allocation Matrix" are indicated in the specified color for "Zero" symbols.

9. Allocate the "Pilot" cells.

a) In the "Constellation View", select the modulation type "QPSK" as a constellation marker.

Figure 6-12: Symbols with QPSK constellation

Although we know some of the pilots use QPSK modulation, none of the symbols are highlighted. Possibly a boosting factor was applied.

Creating a configuration file using the wizard

Example: creating a configuration file from an input signal

b) Select the "Boosting" - "Auto" function.

A boosting of 2.079 is detected and applied to the symbols. Now some of the symbols are highlighted.

- Co - I	onstellatio Constellat	n View- tion Mark	kers			Alloca	tion			
[QPSK				•	> Allo	cate as:	Pilot		- 🗸
	Boosting	2.079	•	P.	Auto			Pilot_QF	PSK	1_
	Radius		•		÷.	Undo	last alloc	ation		5
[] 🔍	1:1	Selection	n Mode					80	2
Γ		Only	4. 475		Conste	ellation	- 45570			
		 Select Cols 	tellation Mari	9e ns	+ NO8-2	niocaled Point	r (Acori)			
	- ^{2,0} Ŧ		:	• • • • • • :	:		· · · · · :			
	1,5 ‡			· . .	:	· · · · · · · · · · · ·	· · · · : · · · ·	· · · · · · · · · · · · · · · · · · ·]
	. ‡					-	÷	-		1
	1,0 +					•••••••••••••••••••••••••••••••••••••••				
	0,5 ‡]
data	ŧ									
Beu	0,0 +		:	:			:	:		
F	-0,5 +		: :	: <u>:</u>	: 	: ;	: ;	: ;	· · · · · · · · · ·]
	ŧ						÷	÷		-
	-1,0 +					•••		····:		
	-1,5 +	(· · · · · · · · · · · · · · · · · · ·]
	ŧ		-	-		-	÷	÷]
	-2,0 + -2,0	····	 · · · 1,5	• • • • -1,0	-0,5		••• •• 0,5			 2,0

Figure 6-13: Symbols with QPSK modulation and applied boosting

- c) In the "Constellation View", "Allocation" area, select "Allocate as:" "Pilots".
- d) Select the 🗹 green checkmark icon.

The pilot cells in the "Allocation Matrix" are indicated in the specified color for "Pilot" symbols, and the selected cells are stored with a boosting factor of 2.079.

- 10. Some of the remaining cells are data cells with a BPSK modulation.
 - a) In the "Constellation View", select the modulation type "BPSK" as a constellation marker.
 - b) In the "Constellation View", "Allocation" area, select "Allocate as:" = "Data".
 - c) Select the *✓* green checkmark icon.
- 11. The last remaining cells are pilot cells with a 45°QPSK modulation.
 - a) In the "Constellation View", select the modulation type "45°QPSK" as a constellation marker.

- b) In the "Constellation View", "Allocation" area, select "Allocate as:" = "Pilot".
- c) Select the *✓* green checkmark icon.

A message is displayed informing you that all symbols are allocated.

12. Store the configuration file.

Select "Step 7" in the progress bar.

- a) Enter the filename and storage location for the configuration file: C:\R S\INSTR\USER\demo\OFDM-VSA\MyWlanA 64QAM.xml
- 13. Close the wizard.

Now you can load the configuration file in the R&S FSV3-K96 OFDM VSA application.

See step 5

7 Analyzing OFDM VSA vector signals

Access: "Meas Config" > "Result Config"

General result analysis settings concerning the trace, markers, windows etc. can be configured. They are identical to the analysis functions in the base unit except for the special window functions.

•	Result configuration	117
•	Table configuration	119
•	Units	120
•	Y-scaling	120
•	Markers	122
•	Trace / data export configuration	129

7.1 Result configuration

Access: "Meas Config" > "Result Config" > "Result Configuration" tab

Some result displays provide further settings.

Result Configura	ition					X
Markers Marke	ers Settings	Result Configurati	on Table Config	Units	Y Scaling	
EVM Settings						
Normalize EVM to	RMS Pilots ar	nd Data 🔹 👻				
Frame Averaging	Mean Square					
Constellation Displ	ау					
Modulation Type	Pilots and Da					
Modulation						
Symbol						
Carrier	All -1					
Point Size	1x1					
			Sp	ecifics fo	r 1: Magnitude	Capture -

Normalize EVM to	118
Frame Averaging	118
Constellation Display - Modulation Type	118
Constellation Display - Modulation	118
Constellation Display - Symbol	
Constellation Display - Carrier	
Constellation Display - Point Size	119

Normalize EVM to

Specifies the OFDM cells which are averaged to get the reference magnitude for EVM normalization.

(See Chapter A.1, "Error vector magnitude (EVM)", on page 283 for details.)

"RMS Pilots & Data"	RMS value of the pilot and data cells
"RMS Data"	RMS value of the data cells
"RMS Pilots"	RMS value of the pilot cells
"Peak Pilots & Data"	Peak value of the pilot and data cells
"Peak Data"	Peak value of the data cells
"Peak Pilots"	Peak value of the pilot cells
"None"	Normalization is turned off

Remote command:

[SENSe:]DEMod:EVMCalc:NORMalize on page 219

Frame Averaging

Specifies the method of averaging over multiple OFDM frames in one capture buffer used to get the mean EVM values in the result list.

Frame averaging	Averaged EVM over N frames				
Mean square	$\sqrt{\frac{1}{N}\sum_{i=0}^{N-1}EVM_i^2}$				
RMS	$\frac{1}{N}\sum_{i=0}^{N-1} EVM_i$				

Mean square averaging is consistent with the EVM calculation within one frame. However, some standards, e.g. 802.11a, require RMS averaging.

Remote command:

[SENSe:]DEMod:EVMCalc:FAVerage on page 218

Constellation Display - Modulation Type

The constellation diagram includes only symbols for the selected modulation types. The selected modulation types are indicated in the constellation diagram for reference.

Remote command:

CONFigure:FILTer<n>:MODulation:TYPE on page 220

Constellation Display - Modulation

The constellation diagram includes only symbols with the selected modulation.

Remote command:

CONFigure:FILTer<n>:MODulation on page 220

Constellation Display - Symbol

The constellation diagram includes all or only the specified symbol number. The first symbol number is 0.

Remote command: CONFigure:FILTer<n>:SYMBol on page 220

Constellation Display - Carrier

The constellation diagram includes symbols for all or only for the specified carrier number.

The range of valid carrier numbers is:

[- FFT Size/2, +FFT Size/2]

Remote command: CONFigure:FILTer<n>:CARRier on page 219

Constellation Display - Point Size

Defines the size of the individual points in a constellation diagram.

7.2 Table configuration

Access: "Meas Config" > "Result Config" > "Table Config"

During each measurement, many characteristic signal parameters are determined. Select the parameters to be included in the table. For a description of the individual parameters, see Chapter 3.1, "OFDM VSA parameters", on page 14.

Result Configuration									
Markers	Markers Setting	Result Configuration Table Config			Units	Y Scaling			
Table Con	fig								
EVM.	All (dB)		I/Q Offset						
EVM .	All (%)		Gain Imbalance						
EVM	Data Symbols (dB)		Quadrature Error						
EVM	Data Symbols (%)		Frequency Error						
EVM	Pilot Symbols (dB)		Sample Clock Error						
EVM	Pilot Symbols (%)		Frame Power						
			Crest Factor						
				s	Specifics for	2: Re	esult Sun	imary ·	

7.3 Units

Access: "Meas Config" > "Result Config" > "Units" tab

For some result configurations, the unit of the displayed values can be configured.

Result Co	nfigurat	ion					
Markers	Marker	s Settings	Result	Configuration	Table Co	nfig Units	Y Scaling
Result Unit	ts						
EVM		dB					
Symbol Ax	es	Symbols					
Carrier Ax	es	Carriers					
Magnitude	Capture	Seconds					
Power Spe	ectrum	Hertz					
Impulse Response		Linear					
				S	pecifics for	2: Result Sum	mary -

Remote command:

EVM: UNIT: EVM on page 224 Symbol axes: UNIT: SAXes on page 225 Carrier axes: UNIT: CAXes on page 224 Magnitude Capture: UNIT: TAXes on page 226 Power Spectrum: UNIT: FAXes on page 225 Impulse Response: UNIT: IRESponse on page 225

7.4 Y-scaling

Access: "Meas Config" > "Result Config" > "Y Scaling" tab

The scaling for the vertical axis is highly configurable, using either absolute or relative values. Note that scaling settings are window-specific and not available for all result displays.

Result Co	nfiguration					
Markers	Markers Settings	Result Co	nfiguration	Table Config	Units	Y Scaling
Automatic	grid scaling:	1				
Auto	On	Off				
	Auto Scale Once					
Max	10.0 dBm		Magnitude Capture			
Min	-90.0 dBm		10.0 dBm	Ref 10.0 dBm		
Per Divisio	n 10.0 dB		10.0 dB			
Ref Positio	on 100.0 %					
Ref Value	10.0 dBm		4 -90.0 dBm			
			5	Specifics for 1: M	agnitude	Capture 🔹

Automatic Grid Scaling	
Auto Scale Once	
Absolute Scaling (Min/Max Values)	
Relative Scaling (Reference/ per Division)	
L Per Division	
L Ref Position	
L Ref Value	122

Automatic Grid Scaling

The y-axis is scaled automatically according to the current measurement settings and results (continuously).

Tip: To update the scaling automatically *once* when this setting for continuous scaling is off, use the Auto Scale Once function.

Remote command:

DISPlay[:WINDow<n>][:SUBWindow<n>]:TRACe<t>:Y[:SCALe]:AUTO
on page 221

Auto Scale Once

If enabled, both the x-axis and y-axis are automatically adapted to the current measurement results (only once, not dynamically) in the selected window.

Remote command:

```
DISPlay[:WINDow<n>][:SUBWindow<n>]:TRACe<t>:Y[:SCALe]:AUTO
on page 221
```

Absolute Scaling (Min/Max Values)

Define the scaling using absolute minimum and maximum values.

Remote command:

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:MAXimum on page 223
DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:MINimum on page 223

Relative Scaling (Reference/ per Division)

Define the scaling relative to a reference value, with a specified value range per division.

Per Division ← Relative Scaling (Reference/ per Division)

Defines the value range to be displayed per division of the diagram (1/10 of total range).

Note: The value defined per division refers to the default display of 10 divisions on the y-axis. If fewer divisions are displayed (e.g. because the window is reduced in height), the range per division is increased to display the same result range in the smaller window. In this case, the per division value does not correspond to the actual display.

Remote command:

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:PDIVision
on page 222

Ref Position ← **Relative Scaling (Reference/ per Division)**

Defines the position of the reference value in percent of the total y-axis range.

Remote command:

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:RPOSition
on page 222

Defines the reference value to be displayed at the specified reference position.

Remote command:

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:RVALue
on page 223

7.5 Markers

Access: "Meas Config" > "Result Config" > "Markers" tab

Or: "Marker"

Markers help you analyze your measurement results by determining particular values in the diagram. Thus, you can extract numeric values from a graphical display.

(i

Markers in 3-dimensional diagrams

Some diagrams have a third dimension - in addition to the x-axis and y-axis they show a third dimension (z-dimension) of results using different colors. For such diagrams, you must define the position of the marker both in the x-dimension and in the y-dimension to obtain the results in the z-dimension.

Markers in the Constellation View and Allocation Matrix

Using markers in a Constellation View you can detect individual constellation points for a specific symbol or carrier. When you activate a marker in the Constellation View, its position is defined by the symbol and carrier number the point belongs to. However, the marker result indicates the I and Q values of the point.

Similarly, you can define markers in an Allocation Matrix by selecting the symbol and carrier number.

Using markers in the Constellation View and Allocation Matrix, you can scroll through the points for a specific carrier, for example. Activate a marker, then use the rotary knob or mouse wheel to move the marker from one symbol to the next.

•	Individual marker settings	12	2:	3
---	----------------------------	----	----	---

7.5.1 Individual marker settings

Access: "Meas Config" > "Result Config" > "Markers" tab

In OFDM VSA evaluations, up to 16 markers can be activated in each diagram at any time.

Result Configuration											
Markers	Markers	Settings	Result Configu	ration	Tabl	e Conf	ig	Units Y Sca			ling
1-5	Selected	State	X-Value	Туре		Ref Marke	L r M	ink to Iarke	r	Trace	
	Marker 1	On <mark>Off</mark>			Delta		- (OFF			
6-11	Delta 1	On <mark>Off</mark>		Norm			- (OFF			
	Delta 2	On <mark>Off</mark>		Norm			~ (OFF			
12-16	Delta 3	On <mark>Off</mark>		Norm			- (OFF			
	Delta 4	On <mark>Off</mark>		Norm			- (OFF			
	Delta 5	On <mark>Off</mark>		Norm			- (OFF			
		All Marke	ers Off								ļ
				d	pecific	s for 1	Ma	anitu	de	Cantur	-

Selected Marker	. 124
Select Marker	. 124
Marker State	125
X-Value	.125
Y-Value	. 125
Marker Type	. 125
Reference Marker	. 126
Linking to Another Marker	. 126
Assigning the Marker to a Trace	. 126
All Markers Off	126
All Markers Off	126

Selected Marker

Marker name. The marker which is currently selected for editing is highlighted orange.

Remote command: Marker selected via suffix <m> in remote commands.

Select Marker

The "Select Marker" function opens a dialog box to select and activate or deactivate one or more markers quickly.

Select Marker 💿 🗙								
Selected	State		Selected	State		Selected	State	
Marker 1	On	Off	Delta 6	On	Off	Delta 12	On	Off
Delta 1	On	Off	Delta 7	On	Off	Delta 13	On	Off
Delta 2	On	Off	Delta 8	On	Off	Delta 14	On	Off
Delta 3	On	Off	Delta 9	On	Off	Delta 15	On	Off
Delta 4	On	Off	Delta 10	On	Off	Delta 16	On	Off
Delta 5	On	Off	Delta 11	On	Off			

Remote command:

CALCulate<n>:MARKer<m>[:STATe] on page 228 CALCulate<n>:DELTamarker<m>[:STATe] on page 230

Marker State

Activates or deactivates the marker in the diagram.

Remote command: CALCulate<n>:MARKer<m>[:STATe] on page 228 CALCulate<n>:DELTamarker<m>[:STATe] on page 230

X-Value

Defines the position of the marker on the x-axis.

For the Constellation View, the position is defined by a symbol number.

Remote command:

CALCulate<n>:DELTamarker<m>:X on page 231 CALCulate<n>:MARKer<m>:X on page 228

Y-Value

Defines the position of the marker on the y-axis for 3-dimensional diagrams.

For the Constellation View, the position is defined by a carrier number.

Remote command: CALCulate<n>:DELTamarker<m>:Y? on page 258 CALCulate<n>:MARKer<m>:Y? on page 260

Marker Type

Toggles the marker type.

The type for marker 1 is always "Normal", the type for delta marker 1 is always "Delta". These types cannot be changed.

Note: If normal marker 1 is the active marker, switching the "Mkr Type" activates an additional delta marker 1. For any other marker, switching the marker type does not activate an additional marker, it only switches the type of the selected marker.

- "Normal" A normal marker indicates the absolute value at the defined position in the diagram.
- "Delta" A delta marker defines the value of the marker relative to the specified reference marker (marker 1 by default).

Remote command:

CALCulate<n>:MARKer<m>[:STATe] on page 228 CALCulate<n>:DELTamarker<m>[:STATe] on page 230

Reference Marker

Defines a marker as the reference marker which is used to determine relative analysis results (delta marker values).

Remote command: CALCulate<n>:DELTamarker<m>:MREFerence on page 230

Linking to Another Marker

Links the current marker to the marker selected from the list of active markers. If the xaxis value of the initial marker is changed, the linked marker follows to the same position on the x-axis. Linking is off by default.

Using this function you can set two markers on different traces to measure the difference (e.g. between a max hold trace and a min hold trace or between a measurement and a reference trace).

Remote command:

CALCulate<n>:MARKer<ms>:LINK:TO:MARKer<md> on page 227 CALCulate<n>:DELTamarker<ms>:LINK:TO:MARKer<md> on page 229 CALCulate<n>:DELTamarker<m>:LINK on page 229

Assigning the Marker to a Trace

The "Trace" setting assigns the selected marker to an active trace. The trace determines which value the marker shows at the marker position. If the marker was previously assigned to a different trace, the marker remains on the previous frequency or time, but indicates the value of the new trace.

If a trace is turned off, the assigned markers and marker functions are also deactivated.

Remote command: CALCulate<n>:MARKer<m>:TRACe on page 228

All Markers Off

Deactivates all markers in one step.

Remote command: CALCulate<n>:MARKer<m>:AOFF on page 227

7.5.2 General marker settings

Access: "Meas Config" > "Result Config" > "Marker Settings" tab

Or: "Marker" > "Marker Settings"

Result Configuration					
Markers	Marke	rs S	ettings	Resul	
Marker Tabl	Marker Table				
Auto	o	n	Of	f	
Marker Info					
Or	۱		Off		

Marker Table Display

Defines how the marker information is displayed.

"On"	Displays the marker information in a table in a separate area beneath the diagram.
"Off"	No separate marker table is displayed. If Marker Info is active, the marker information is displayed within the diagram area.
"Auto"	(Default) If more than two markers are active, the marker table is dis- played automatically. If Marker Info is active, the marker information for up to two markers is displayed in the diagram area.
-	

Remote command:

DISPlay[:WINDow<n>]:MTABle on page 232

Marker Info

Turns the marker information displayed in the diagram on and off.

	O 1AP Clrv	N
M1[1]	81.13 dBμV	•
	177.610 MHz	
D2[1]	-22.18 dB	
	-28.980 MHz	

Remote command:

DISPlay[:WINDow<n>]:MINFo[:STATe] on page 231

7.5.3 Marker positioning functions

The following functions set the currently selected marker to the result of a peak search.

Access: [Marker ->]

Peak Search	
Search Next Peak	128
Search Minimum	128
Search Next Minimum	

Peak Search

Sets the selected marker/delta marker to the maximum of the trace. If no marker is active, marker 1 is activated.

Remote command:

CALCulate<n>:MARKer<m>:MAXimum[:PEAK] on page 236 CALCulate<n>:DELTamarker<m>:MAXimum[:PEAK] on page 234

Search Next Peak

Sets the selected marker/delta marker to the next (lower) maximum of the assigned trace. If no marker is active, marker 1 is activated.

Remote command:

```
CALCulate<n>:MARKer<m>:MAXimum:NEXT on page 235
CALCulate<n>:MARKer<m>:MAXimum:RIGHt on page 236
CALCulate<n>:MARKer<m>:MAXimum:LEFT on page 235
CALCulate<n>:DELTamarker<m>:MAXimum:NEXT on page 233
CALCulate<n>:DELTamarker<m>:MAXimum:RIGHt on page 234
CALCulate<n>:DELTamarker<m>:MAXimum:LEFT on page 233
```

Search Minimum

Sets the selected marker/delta marker to the minimum of the trace. If no marker is active, marker 1 is activated.

Remote command:

CALCulate<n>:MARKer<m>:MINimum[:PEAK] on page 237 CALCulate<n>:DELTamarker<m>:MINimum[:PEAK] on page 234

Search Next Minimum

Sets the selected marker/delta marker to the next (higher) minimum of the selected trace. If no marker is active, marker 1 is activated.

Remote command:

CALCulate<n>:MARKer<m>:MINimum:NEXT on page 236 CALCulate<n>:MARKer<m>:MINimum:LEFT on page 236 CALCulate<n>:MARKer<m>:MINimum:RIGHt on page 237 CALCulate<n>:DELTamarker<m>:MINimum:NEXT on page 234 CALCulate<n>:DELTamarker<m>:MINimum:LEFT on page 234 CALCulate<n>:DELTamarker<m>:MINimum:LEFT on page 234

7.6 Trace / data export configuration

Access: "Save" > "Export" > "Export Configuration"

Or: [TRACE] > "Trace Config" > "Trace / Data Export"

The standard data management functions (e.g. saving or loading instrument settings) that are available for all R&S FSV/A applications are not described here. See the R&S FSV3000/ FSVA3000 base unit user manual for a description of the standard functions.

Export all Traces and all Table Results	129
Include Instrument & Measurement Settings	129
Export All Traces for Selected Graph	130
Trace to Export	130
Decimal Separator	130
Export Trace to ASCII File	130

Export all Traces and all Table Results

Selects all displayed traces and result tables (e.g. "Result Summary", marker table etc.) in the current application for export to an ASCII file.

Alternatively, you can select one specific trace only for export (see Trace to Export).

The results are output in the same order as they are displayed on the screen: window by window, trace by trace, and table row by table row.

Remote command: FORMat:DEXPort:TRACes on page 263

Include Instrument & Measurement Settings

Includes additional instrument and measurement settings in the header of the export file for result data.

Remote command:

FORMat:DEXPort:HEADer on page 262

Export All Traces for Selected Graph

Includes all traces for the currently selected graphical result display in the export file.

Remote command: FORMat:DEXPort:GRAPh on page 262

Trace to Export

Defines an individual trace to be exported to a file.

This setting is not available if Export all Traces and all Table Results is selected.

Decimal Separator

Defines the decimal separator for floating-point numerals for the data export/import files. Evaluation programs require different separators in different languages.

Remote command:

FORMat:DEXPort:DSEParator on page 262

Export Trace to ASCII File

Opens a file selection dialog box and saves the selected trace in ASCII format (.dat) to the specified file and directory.

The results are output in the same order as they are displayed on the screen: window by window, trace by trace, and table row by table row.

Note: Secure user mode.

In secure user mode, settings that are stored on the instrument are stored to volatile memory, which is restricted to 256 MB. Thus, a "memory limit reached" error can occur although the hard disk indicates that storage space is still available.

To store data permanently, select an external storage location such as a USB memory device.

For details, see "Protecting Data Using the Secure User Mode" in the "Data Management" section of the R&S FSV3000/ FSVA3000 base unit user manual.

Remote command:

MMEMory:STORe<n>:TRACe on page 263

8 How to perform measurements in the R&S FSV3-K96 OFDM VSA application

The following step-by-step instructions demonstrate how to perform measurements with the R&S FSV3-K96 OFDM VSA application.

The R&S FSV3-K96 OFDM VSA application provides sample data and sample configuration files in the C:\R S\INSTR\USER\demo\OFDM-VSA directory.

To perform an OFDM VSA measurement

- Open a new channel or replace an existing one and select the R&S FSV3-K96 OFDM VSA application.
- 2. Configure the input source to be used.
- 3. Select "Overview" to display the "Overview" for an OFDM VSA measurement.
- Select "Signal Description" and configure the expected signal characteristics either manually or using a configuration file.
- 5. To use a configuration file:
 - a) If no configuration file is available yet, create one from the input signal as described in Chapter 6, "Creating a configuration file using the wizard", on page 89.
 - b) Select "Load Config. File".
 - c) Select the configuration file to use.

The file is loaded and "Use Configuration File" is automatically set to "Yes".

- Select "Input/Frontend" to define the input signal's center frequency, amplitude and other basic settings.
- 7. Select "Data Acquisition" and define how much and which data to capture:
 - "Capture Time" or "Capture length": the duration or number of samples to be captured

For non-triggered ("Free run") measurements, be sure to capture at least twice the number of samples per frame so you are sure to capture at least one entire frame.

- "Sample rate": the rate at which I/Q data is acquired (analysis bandwidth / 0.8); must also correspond to the OFDM system sample rate (<subcarrier_spacing> * <FFT_size>, see also "OFDM system sample rate" on page 37)
- 8. Optionally, select "Trigger" and define a trigger for data acquisition, for example an external trigger to start capturing data only when a useful signal is transmitted.
- 9. For bursted signals, select "Burst Search" and activate a burst search.
- 10. Select "Result Range" and define how many OFDM symbols are to be interpreted as one frame.

- To optimize the synchronization process, if necessary, select "Sync/Demod" and configure the synchronization and demodulation parameters. Which compensation and synchronization functions are allowed depends on the standard defining the tests.
- 12. Select the I "Configure Display" icon from the toolbar to add further result displays for the R&S FSV3-K96 OFDM VSA application.

The measured data is stored in the capture buffer and can be analyzed.

9 Remote commands for the R&S FSV3-K96 OFDM VSA application

The following commands are required to perform measurements in the R&S FSV3-K96 OFDM VSA application in a remote environment.

It is assumed that the R&S FSV/A has already been set up for remote control in a network as described in the R&S FSV/A User Manual.

General R&S FSV/A Remote Commands

The application-independent remote commands for general tasks on the R&S FSV/A are also available for R&S FSV3-K96 OFDM VSA application and are described in the R&S FSV/A Base Software User Manual. In particular, this comprises the following functionality:

- Managing Settings and Results
- Setting Up the Instrument
- Using the Status Register
- Ç

SCPI Recorder - automating tasks with remote command scripts

The R&S FSV3-K96 OFDM VSA application also supports the SCPI Recorder functionality.

Using the SCPI Recorder functions, you can create a SCPI script directly on the instrument and then export the script for use on the controller. You can also edit or write a script manually, using a suitable editor on the controller. For manual creation, the instrument supports you by showing the corresponding command syntax for the current setting value.

For details see the "Network and Remote Operation" chapter in the R&S FSV/A User Manual.

38 39 42
139 42
42
214
218
241
249
275
277
279

9.1 Introduction

Commands are program messages that a controller (e.g. a PC) sends to the instrument or software. They operate its functions ('setting commands' or 'events') and request information ('query commands'). Some commands can only be used in one way, others work in two ways (setting and query). If not indicated otherwise, the commands can be used for settings and queries.

The syntax of a SCPI command consists of a header and, usually, one or more parameters. To use a command as a query, you have to append a question mark after the last header element, even if the command contains a parameter.

A header contains one or more keywords, separated by a colon. Header and parameters are separated by a "white space" (ASCII code 0 to 9, 11 to 32 decimal, e.g. blank). If there is more than one parameter for a command, they are separated by a comma from one another.

Only the most important characteristics that you need to know when working with SCPI commands are described here. For a more complete description, refer to the user manual of the R&S FSV/A.

Remote command examples

Note that some remote command examples mentioned in this general introduction are possibly not supported by this particular application.

9.1.1 Conventions used in descriptions

The following conventions are used in the remote command descriptions:

• Command usage

If not specified otherwise, commands can be used both for setting and for querying parameters.

If a command can be used for setting or querying only, or if it initiates an event, the usage is stated explicitly.

Parameter usage

If not specified otherwise, a parameter can be used to set a value, and it is the result of a query.

Parameters required only for setting are indicated as **Setting parameters**. Parameters required only to refine a query are indicated as **Query parameters**. Parameters that are only returned as the result of a query are indicated as **Return values**.

Conformity

Commands that are taken from the SCPI standard are indicated as **SCPI confirmed**. All commands used by the R&S FSV/A follow the SCPI syntax rules.

• Asynchronous commands

A command which does not automatically finish executing before the next command starts executing (overlapping command) is indicated as an **Asynchronous command**.

• Reset values (*RST)

Default parameter values that are used directly after resetting the instrument (*RST command) are indicated as ***RST** values, if available.

Default unit

The default unit is used for numeric values if no other unit is provided with the parameter.

Manual operation

If the result of a remote command can also be achieved in manual operation, a link to the description is inserted.

9.1.2 Long and short form

The keywords have a long and a short form. You can use either the long or the short form, but no other abbreviations of the keywords.

The short form is emphasized in uppercase letters. Note however, that this emphasis only serves the purpose to distinguish the short from the long form in the manual. For the instrument, the case does not matter.

Example:

SENSe: FREQuency: CENTer is the same as SENS: FREQ: CENT.

9.1.3 Numeric suffixes

Some keywords have a numeric suffix if the command can be applied to multiple instances of an object. In that case, the suffix selects a particular instance (e.g. a measurement window).

Numeric suffixes are indicated by angular brackets (<n>) next to the keyword.

If you do not quote a suffix for keywords that support one, a 1 is assumed.

Example:

DISPlay [:WINDow<1...4>]: ZOOM: STATe enables the zoom in a particular measurement window, selected by the suffix at WINDow.

DISPlay:WINDow4:ZOOM:STATe ON refers to window 4.

9.1.4 Optional keywords

Some keywords are optional and are only part of the syntax because of SCPI compliance. You can include them in the header or not.

If an optional keyword has a numeric suffix and you need to use the suffix, you have to include the optional keyword. Otherwise, the suffix of the missing keyword is assumed to be the value 1.

Optional keywords are emphasized with square brackets.

Example:

Without a numeric suffix in the optional keyword: [SENSe:]FREQuency:CENTer is the same as FREQuency:CENTer With a numeric suffix in the optional keyword:

DISPlay[:WINDow<1...4>]:ZOOM:STATe

DISPlay: ZOOM: STATE ON enables the zoom in window 1 (no suffix).

DISPlay:WINDow4:ZOOM:STATE ON enables the zoom in window 4.

9.1.5 Alternative keywords

A vertical stroke indicates alternatives for a specific keyword. You can use both keywords to the same effect.

Example:

[SENSe:]BANDwidth|BWIDth[:RESolution]

In the short form without optional keywords, BAND 1MHZ would have the same effect as BWID 1MHZ.

9.1.6 SCPI parameters

Many commands feature one or more parameters.

If a command supports more than one parameter, they are separated by a comma.

Example:

LAYout: ADD: WINDow Spectrum, LEFT, MTABle

Parameters can have different forms of values.

•	Numeric values	136
•	Boolean	137
•	Character data	138
•	Character strings	138
•	Block data	138
-		

9.1.6.1 Numeric values

Numeric values can be entered in any form, i.e. with sign, decimal point or exponent. For physical quantities, you can also add the unit. If the unit is missing, the command uses the basic unit.

Example:

With unit: SENSe: FREQuency: CENTer 1GHZ Without unit: SENSe: FREQuency: CENTer 1E9 would also set a frequency of 1 GHz. Values exceeding the resolution of the instrument are rounded up or down.

If the number you have entered is not supported (e.g. for discrete steps), the command returns an error.

Instead of a number, you can also set numeric values with a text parameter in special cases.

- MIN/MAX Defines the minimum or maximum numeric value that is supported.
- DEF
 Defines the default value.
- UP/DOWN Increases or decreases the numeric value by one step. The step size depends on the setting. Sometimes, you can customize the step size with a corresponding command.

Querying numeric values

When you query numeric values, the system returns a number. For physical quantities, it applies the basic unit (e.g. Hz for frequencies). The number of digits after the decimal point depends on the type of numeric value.

Example:

Setting: SENSe: FREQuency: CENTer 1GHZ Query: SENSe: FREQuency: CENTer? would return 1E9

Sometimes, numeric values are returned as text.

- INF/NINF Infinity or negative infinity. Represents the numeric values 9.9E37 or -9.9E37.
- NAN

Not a number. Represents the numeric value 9.91E37. NAN is returned if errors occur.

9.1.6.2 Boolean

Boolean parameters represent two states. The "on" state (logically true) is represented by "ON" or the numeric value 1. The "off" state (logically untrue) is represented by "OFF" or the numeric value 0.

Querying Boolean parameters

When you query Boolean parameters, the system returns either the value 1 ("ON") or the value 0 ("OFF").

Example:

Setting: DISPlay:WINDow:ZOOM:STATE ON Query: DISPlay:WINDow:ZOOM:STATe? would return 1

9.1.6.3 Character data

Character data follows the syntactic rules of keywords. You can enter text using a short or a long form. For more information, see Chapter 9.1.2, "Long and short form", on page 135.

Querying text parameters

When you query text parameters, the system returns its short form.

Example:

Setting: SENSe: BANDwidth: RESolution: TYPE NORMal Query: SENSe: BANDwidth: RESolution: TYPE? would return NORM

9.1.6.4 Character strings

Strings are alphanumeric characters. They have to be in straight quotation marks. You can use a single quotation mark (') or a double quotation mark (").

Example:

INSTRument: DELete 'Spectrum'

9.1.6.5 Block data

Block data is a format which is suitable for the transmission of large amounts of data.

The ASCII character # introduces the data block. The next number indicates how many of the following digits describe the length of the data block. The data bytes follow. During the transmission of these data bytes, all end or other control signs are ignored until all bytes are transmitted. #0 specifies a data block of indefinite length. The use of the indefinite format requires an NL^END message to terminate the data block. This format is useful when the length of the transmission is not known or if speed or other considerations prevent segmentation of the data into blocks of definite length.

9.2 Common suffixes

In the R&S FSV3-K96 OFDM VSA application, the following common suffixes are used in remote commands:

Table 9-1: Common	suffixes used in	remote commands	in the R&S	SESV3-K96	OFDM VSA	application
	Sumres used m		in the road	1010-1100		application

Suffix	Value range	Description
<m></m>	1 to 4	Marker
<n></n>	1 to x	Window (in the currently selected channel)

Activating the R&S FSV3-K96 OFDM VSA application

Suffix	Value range	Description
<t></t>	1 to 6	Trace
< i>	1 to 8	Limit line

9.3 Activating the R&S FSV3-K96 OFDM VSA application

INSTrument:CREate:DUPLicate	139
INSTrument:CREate[:NEW]	139
INSTrument:CREate:REPLace	140
INSTrument:DELete	140
INSTrument:LIST?	140
INSTrument:REName	141

INSTrument:CREate:DUPLicate

Duplicates the currently selected channel, i.e creates a new channel of the same type and with the identical measurement settings. The name of the new channel is the same as the copied channel, extended by a consecutive number (e.g. "IQAnalyzer" -> "IQAnalyzer 2").

The channel to be duplicated must be selected first using the INST: SEL command.

Example:	INST:SEL 'IQAnalyzer' INST:CRE:DUPL
	channel named 'IQAnalyzer2'.
Usage:	Event

INSTrument:CREate[:NEW] <ChannelType>, <ChannelName>

Adds a measurement channel. You can configure up to 10 measurement channels at the same time (depending on available memory).

Parameters:

<channeltype></channeltype>	Channel type of the new channel. For a list of available channel types, see INSTrument:LIST? on page 140.
<channelname></channelname>	String containing the name of the channel. Note that you cannot assign an existing channel name to a new channel. If you do, an error occurs.
Example:	INST:CRE SAN, 'Spectrum 2' Adds a spectrum display named "Spectrum 2".

INSTrument:CREate:REPLace <ChannelName1>, <ChannelType>, <ChannelName2>

Replaces a channel with another one.

Setting parameters:

<channelname1></channelname1>	String containing the name of the channel you want to replace.
<channeltype></channeltype>	Channel type of the new channel. For a list of available channel types, see INSTrument:LIST? on page 140.
<channelname2></channelname2>	String containing the name of the new channel. Note : If the specified name for a new channel already exists, the default name, extended by a sequential number, is used for the new channel (see INSTrument:LIST? on page 140). Channel names can have a maximum of 31 characters, and must be compatible with the Windows conventions for file names. In particular, they must not contain special characters such as ":", "*", "?".
Example:	INST:CRE:REPL 'IQAnalyzer2',IQ, 'IQAnalyzer' Replaces the channel named "IQAnalyzer2" by a new channel of type "IQ Analyzer" named "IQAnalyzer".
Usage:	Setting only

INSTrument:DELete <ChannelName>

Deletes a channel.

Setting parameters:	
<channelname></channelname>	String containing the name of the channel you want to delete. A channel must exist to delete it.
Usage:	Setting only

INSTrument:LIST?

Queries all active channels. The query is useful to obtain the names of the existing channels, which are required to replace or delete the channels.

Return values:

<channeltype>, <channelname></channelname></channeltype>	For each channel, the command returns the channel type and channel name (see tables below). Tip: to change the channel name, use the INSTrument: REName command.
Example:	INST:LIST? Result for 3 channels : 'ADEM','Analog Demod','IQ','IQ Analyzer','IQ','IQ Analyzer2'
Usage:	Query only

Activating the R&S FSV3-K96 OFDM VSA application

Application	<channeltype> Parameter</channeltype>	Default Channel Name*)
Spectrum	SANALYZER	Spectrum
5G NR (R&S FSV3-K144)	NR5G	5G NR
3GPP FDD BTS (R&S FSV3-K72)	BWCD	3G FDD BTS
3GPP FDD UE (R&S FSV3-K73)	MWCD	3G FDD UE
Amplifier Measurements (R&S FSV3-K18)	AMPLifier	Amplifier
AM/FM/PM Modulation Analysis	ADEM	Analog Demod
Bluetooth (R&S FSV3-K8)	вто	Bluetooth
GSM (R&S FSV3-K10)	GSM	GSM
I/Q Analyzer	IQ	IQ Analyzer
LTE (R&S FSV3-K10x)	LTE	LTE
NB-loT (R&S FSV3-K106)	NIOT	NB-IoT
Noise Figure Measure- ments	NOISE	Noise
OFDM VSA (R&S FSV3- K96)	OFDMVSA	OFDM VSA
Phase Noise (R&S FSV3- K40)	PNOISE	Phase Noise
Pulse (R&S FSV3-K6)	PULSE	Pulse
Vector Signal Analysis (VSA, R&S FSV3-K70)	DDEM	VSA
WLAN (R&S FSV3-K91)	WLAN	WLAN

Table 9-2: Available channel types and default channel names

Note: the default channel name is also listed in the table. If the specified name for a new channel already exists, the default name, extended by a sequential number, is used for the new channel.

INSTrument:REName <ChannelName1>, <ChannelName2>

Renames a channel.

Setting parameters: <channelname1></channelname1>	String containing the name of the channel you want to rename.
<channelname2></channelname2>	String containing the new channel name. Note that you cannot assign an existing channel name to a new channel. If you do, an error occurs. Channel names can have a maximum of 31 characters, and must be compatible with the Windows conventions for file names. In particular, they must not contain special characters such as ":", "*", "?".

Configuring the R&S FSV3-K96 OFDM VSA application

Example:	INST:REN 'IQAnalyzer2','IQAnalyzer3'		
	Renames the channel with the name 'IQAnalyzer2' to 'IQAna- lyzer3'.		
Usage:	Setting only		

9.4 Configuring the R&S FSV3-K96 OFDM VSA application

•	Restoring the default configuration (Preset)	142
•	Signal description	142
•	Input, output and frontend settings	149
•	Triggering measurements	195
•	Configuring data acquisition	
•	Enabling a burst search	204
•	Defining the result range	204
•	Synchronization, tracking and demodulation	205
•	Adjusting settings automatically	
•	Output settings	
•	Configuring the trigger output	212

9.4.1 Restoring the default configuration (Preset)

SYSTem:PRESet:CHANnel	EXEC]	 	142	2

SYSTem:PRESet:CHANnel[:EXEC]

Restores the default instrument settings in the current channel.

Use INST: SEL to select the channel.

Example:	INST:SEL 'Spectrum2'
	Selects the channel for "Spectrum2".
	SYST:PRES:CHAN:EXEC
	Restores the factory default settings to the "Spectrum2" channel.
Usage:	Event
Manual operation:	See "Preset Channel" on page 55

9.4.2 Signal description

The signal description provides information on the expected input signal, which optimizes pattern and burst detection and the calculation of the ideal reference signal.

CONFigure:PREamble:BLENgth14	43
CONFigure:PREamble:FOFFset	43
CONFigure:RFUC:FZERo:FREQuency	43

Remote commands for the R&S FSV3-K96 OFDM VSA application

Configuring the R&S FSV3-K96 OFDM VSA application

CONFigure:RFUC:FZERo:MODE1	44
CONFigure:RFUC:STATe1	44
CONFigure[:SYMBol]:GUARd:MODE1	45
CONFigure[:SYMBol]:GUARd:NSYMbols <cp>1</cp>	45
CONFigure[:SYMBol]:GUARd:PERiodic1	46
CONFigure[:SYMBol]:NFFT1	46
CONFigure[:SYMBol]:NGUard <cp>1</cp>	46
CONFigure[:SYMBol]:NSUFfix1	47
CONFigure:SYSTem:CFILe1	47
CONFigure:TPRecoding1	48
CONFigure:TPRecoding:IGNore1	48
MMEMory:LOAD:CFGFile1	48

CONFigure:PREamble:BLENgth <BlockLength>

Defines the length of a block of repeating samples within a preamble symbol.

Pa	ran	net	ers:
----	-----	-----	------

i aramotoro.		
<blocklength></blocklength>	Range: *RST: Default unit:	0 to 65536 0 : samples
Example:	CONF: PRE: Defines a bl	BLEN 32 lock length of 32 samples.
Manual operation:	See "Pream on page 59	ble Symbol Characteristics: Block Length"

CONFigure:PREamble:FOFFset <FrameOffset>

Defines the frame offset, that is the start of the actual OFDM frame relative to the start of the first detected preamble block.

Parameters:

<frameoffset></frameoffset>	Distance from the first preamble sample to the first sample of the frame.		
	Range: *RST:	- <capture_length> to +<capture_length> 0</capture_length></capture_length>	
Example:	CONF: PRE: FOFF 0 Defines a frame offset of 0 samples. Thus, the frame starts wi the first sample of the preamble.		
Manual operation:	See "Frame	Start Offset" on page 59	

CONFigure:RFUC:FZERo:FREQuency <Frequency>

If phase compensation is enabled (see CONFigure:RFUC:STATe on page 144) and the phase shift frequency is defined manually (see CONFigure:RFUC:FZERO:MODE on page 144), this command defines the frequency for phase shift.

Parameters:			
<frequency></frequency>	numeric value		
	Default unit: HZ		
Example:	CONF:RFUC:STAT ON		
	CONF:RFUC:FZER:MODE MAN		
	CONF:RFUC:FZER:FREQ 10MHz		
Manual operation:	See "RF Upconversion: Phase Compensation" on page 57		

CONFigure:RFUC:FZERo:MODE <Mode>

If phase compensation is enabled (see CONFigure:RFUC:STATe on page 144), this command defines the frequency for phase shift.

Parameters:

<mode></mode>	CF MANual		
	CF		
	The phase shift frequency corresponds to the current center fre- quency.		
	MANual The phase shift frequency is defined manually by the CONFigure:RFUC:FZERo:FREQuency command.		
Example:	CONF:RFUC:STAT ON CONF:RFUC:FZER:MODE MAN CONF:RFUC:FZER:FREQ 10MHz		
Manual operation:	See "RF Upconversion: Phase Compensation" on page 57		

CONFigure:RFUC:STATe <State>

Enables or disables phase compensation during the upconversion of the baseband signal to the radio frequency.

Parameters:

<State>

ON | OFF | 0 | 1

OFF | 0

Switches the function off. The R&S FSV3-K96 OFDM VSA application assumes that the input signal is not phase-compensated.

ON | 1

Switches the function on. The R&S FSV3-K96 OFDM VSA application assumes the input signal is phase-compensated for a specific frequency. Define the frequency using the CONFigure: RFUC:FZERO:MODE and CONFigure:RFUC:FZERO:

FREQuency commands.

	*RST:	0	
Example:	CONF:RF	UC:STAT ON	
	CONF:RF	UC:FZER:MODE	MAN
	CONF:RF	UC:FZER:FREQ	10MHz
Manual operation: See "RF Upconversion: Phase Compensation" on page 57

CONFigure[:SYMBol]:GUARd:MODE <Mode>

Selects the type of cyclic prefix.

Parameters: <mode></mode>	CONV Convention GU2 Cyclic prefi *RST:	al cyclic prefix mode. x with two different lengths. CONV
Example:	CONF: GUAI Selects a c CONF: GUAI Activates p CONF: GUAI CONF: GUAI Defines the 10).	R:MODE GU2 yclic prefix with two different lengths. R:PER ON eriodic cyclic prefix ranges. R1:NSYM 5 R2:NSYM 10 e number of symbols for both cyclic prefixes (5 and
Manual operation:	See "Advar See "Cyclic	nced Cyclic Prefix Configuration" on page 59 c prefix mode" on page 106

CONFigure[:SYMBol]:GUARd:NSYMbols<cp> <Symbols>

Defines the number of symbols for which the first and second non-conventional cyclic prefix is used.

For more information see:

- CONFigure[:SYMBol]:GUARd:MODE
- CONFigure [:SYMBol]:GUARd: PERiodic on page 146

Suffix:

<cp></cp>	1 2	
	Selects the cyclic prefix for non-conventional, periodic cyclic pre-	
	fix lengths.	
	For non-periodic non-conventional cyclic prefix lengths, the suf-	
	fix must be 1 (range 2 is variable, till the end of the frame).	
Parameters:		
<symbols></symbols>	unsigned integer	
	Number of symbols	
	Range: 1 to 1000	
	*RST: 100	
Example:	See CONFigure[:SYMBol]:GUARd:MODE on page 145.	
Manual operation:	See "Cyclic prefix definition per range (Symbols / Samples)" on page 60	

CONFigure[:SYMBol]:GUARd:PERiodic <State>

Turns periodic cyclic prefix ranges on and off.

The command is available for non-conventional cyclic prefixes.

Parameters:

<state></state>	ON OFF 0 1		
	OFF 0 The cyclic prefix changes at a certain point in time and then stays constant till the end of the OFDM frame.		
	ON 1 The cyclic prefix toggles between two different values periodically.		
	*RST: 0		
Example:	See CONFigure [:SYMBol]:GUARd:MODE on page 145.		
Manual operation:	See "Different cyclic prefix lengths" on page 59		

CONFigure[:SYMBol]:NFFT <NFFT>

Defines the FFT length of an OFDM symbol. This command is only available if no configuration file has been loaded.

Parameters:

<nfft></nfft>	FFT length in samples.		
	Range: *RST:	8 to 65535 64	
Example:	CONF:SYMB:NFFT 1024 Defines an FFT length of 1024 samples.		
Manual operation:	See "FFT Size" on page 58		

CONFigure[:SYMBol]:NGUard<cp> <NGuard>

Defines the cyclic prefix length.

Suffix:

<cp></cp>	1 2 Selects th fix lengths For non-p fix must b For conve	e cyclic prefix for non-conventional, periodic cyclic pre- s. eriodic non-conventional cyclic prefix lengths, the suf- e 1 (range 2 is variable, till the end of the frame). entional cyclic prefix lengths, the suffix is irrelevant.
Parameters:	unsigned	integer
	unsigned	lillegei
	Length of	the cyclic prefix in samples.
	Range: *RST:	4 to 65535 16

Example:	CONF:SYMB:NGU 128 Defines a guard length of 128 samples.
Manual operation:	See "Cyclic Prefix Length" on page 58 See "Cyclic prefix definition per range (Symbols / Samples)" on page 60

CONFigure[:SYMBol]:NSUFfix <NSuffix>

Defines the length of the cyclic suffix.

The cyclic suffix length must be smaller than or equal to the "FFT Size" on page 58.

Parameters:		1	
<nsuffix></nsuffix>	unsigned integer		
	Length of the cyclic suffix in samples.		
	Range:	0 to FFT size	
	*RST:	0	
Example:	CONF:NSUF 16		
Manual operation:	See "Cyclic Suffix Length" on page 58		

CONFigure:SYSTem:CFILe <State>

Determines whether the configuration from the currently loaded file is used for the measurement. Alternatively, you can configure the OFDM signal manually.

Note: when you load a configuration file using the MMEMory:LOAD:CFGFile command, the use of the file is automatically set to ON.

Para	ame	ters:
------	-----	-------

<state></state>	ON OFF 0 1		
	OFF 0		
	Switches the function off		
	ON 1		
	Switches the function on		
	*RST: 0		
Example:	MMEM:LOAD:CFGF 'C:\TEMP\K96Test.xml' Loads the configuration stored in the file K96Test.xml. CONF:SYST:MAN		
	Switches to manual configuration. CONF:SYST:CFIL ON Uses the configuration in the loaded file.		
Manual operation:	See "Use Configuration File" on page 56		

CONFigure:TPRecoding <State>

Enables or disables transform precoding. See "DFT-s-OFDM / SC-FDMA: Transform Precoding" on page 57.

Parameters:

<state></state>	ON OFF 0 1		
	OFF 0 Switches the function off		
	ON 1 Switches the function on		
	*RST: 0		
Example:	CONF:TPR ON		
Manual operation:	See "DFT-s-OFDM / SC-FDMA:Transform Precoding" on page 57		

CONFigure:TPRecoding:IGNore <State>

For CONFigure: TPRecoding ON, defines how to process OFDM symbols that contain "Don't Care" and pilot cells.

Parameters:

<state></state>	ON OFF 0 1		
	OFF 0 OFDM symbols that contain a pilot or a "Don't Care" cell are skipped and not decoded.		
	ON 1 OFDM symbols that contain pilot or "Don't Care" cells are deco- ded, but these cells are ignored. *RST: 0		
Example:	Decode precoding for all symbols, even if they contain pilot or "Don't Care" cells. CONF:TPR ON CONF:TPR:IGN 1		
Manual operation:	See "Ignore PILOT/DONTCARE" on page 57		

MMEMory:LOAD:CFGFile <Filename>

Loads an OFDM configuration file and activates its use.

Parameters: <filename></filename>	String containing the path and name of the $.xml$ file.
Example:	<pre>MMEM:LOAD:CFGF 'C:\TEMP\K96Test.xml' Loads the configuration stored in the file K96Test.xml.</pre>
Manual operation:	See "Load Configuration File" on page 57

9.4.3 Input, output and frontend settings

The R&S FSV/A can analyze signals from different input sources. The frequency and amplitude settings represent the "frontend" of the measurement setup.

Manual configuration of the input and frontend is described in Chapter 5.3, "Input, output and frontend settings", on page 60.

•	RF input	149
•	Configuring file input	153
•	Using external mixers	154
•	Remote commands for external frontend control	167
•	Setting up probes	184
•	Frontend settings	189

9.4.3.1 RF input

INPut:ATTenuation:PROTection:RESet	149
INPut:CONNector	149
INPut:COUPling	150
INPut:DPATh	150
INPut:FILTer:HPASs[:STATe]	150
INPut:FILTer:YIG[:STATe]	151
INPut:GAIN:STATe	
INPut:GAIN[:VALue]	
INPut:IMPedance	152
INPut:IMPedance:PTYPe	152
INPut:SELect	153
INPut:TYPE	153

INPut:ATTenuation:PROTection:RESet

Resets the attenuator and reconnects the RF input with the input mixer for the R&S FSV/A after an overload condition occurred and the protection mechanism intervened. The error status bit (bit 3 in the STAT:QUES:POW status register) and the INPUT OVLD message in the status bar are cleared.

The command works only if the overload condition has been eliminated first.

Example: INP:ATT:PROT:RES

INPut:CONNector <ConnType>

Determines which connector the input for the measurement is taken from.

If an external frontend is active, the connector is automatically set to RF.

Parameters:

<ConnType>

RF RF input connector

RFPRobe

	Active RF probe	
	*RST:	RF
Example:	INP:CONN Selects inp	$_{\rm RF}$ ut from the RF input connector.
Manual operation:	See "Input	Connector" on page 63

INPut:COUPling <CouplingType>

Selects the coupling type of the RF input.

If an external frontend is active, the coupling is automatically set to AC.

Parameters:

<couplingtype></couplingtype>	AC DC	
	AC	
	AC coupline	g
	DC	
	DC couplin	g
	*RST:	AC
Example:	INP:COUP	DC
Manual operation:	See "Input	Coupling" on page 62

INPut:DPATh <DirectPath>

Enables or disables the use of the direct path for frequencies close to 0 Hz.

If an external frontend is active, the direct path is always used.

Parameters:

<directpath></directpath>	AUTO OFF
	AUTO 1 (Default) the direct path is used automatically for frequencies close to 0 Hz.
	OFF 0 The analog mixer path is always used.
Example:	INP:DPAT OFF
Manual operation:	See "Direct Path" on page 63

INPut:FILTer:HPASs[:STATe] <State>

Activates an additional internal high-pass filter for RF input signals from 1 GHz to 3 GHz. This filter is used to remove the harmonics of the R&S FSV/A to measure the harmonics for a DUT, for example.

Requires an additional high-pass filter hardware option.

(Note: for RF input signals outside the specified range, the high-pass filter has no effect. For signals with a frequency of approximately 4 GHz upwards, the harmonics are suppressed sufficiently by the YIG-preselector, if available.)

Parameters:

<State> ON | OFF | 0 | 1 OFF | 0 Switches the function off **ON | 1** Switches the function on *RST: 0 INP:FILT:HPAS ON Example: Turns on the filter.

INPut:FILTer:YIG[:STATe] <State>

Enables or disables the YIG filter.

Parameters: <State> ON | OFF | 0 | 1 Example: INP:FILT:YIG OFF Deactivates the YIG-preselector.

INPut:GAIN:STATe <State>

Turns the internal preamplifier on and off. It requires the optional preamplifier hardware.

For R&S FSV/A44 models, note the restrictions described in "Preamplifier" on page 71.

Parameters:

<state></state>	ON OFF 0 1	
	OFF 0	
	Switches the function off	
	ON 1 Switches the function on	
	*RST: 0	
Example:	INP:GAIN:STAT ON INP:GAIN:VAL 15 Switches on 15 dB preamplification	
Manual operation:	See "Preamplifier" on page 71	

INPut:GAIN[:VALue] <Gain>

Selects the "gain" if the preamplifier is activated (INP:GAIN:STAT ON, see INPut: GAIN: STATe on page 151).

The command requires the additional preamplifier hardware option.

For R&S FSV/A44 or higher models, note the restrictions described in "Preamplifier" on page 71.

Parameters: <gain></gain>	The following settings are available: 15 dB and 30 dB All other values are rounded to the nearest of these two. Default unit: DB
Example:	INP:GAIN:STAT ON INP:GAIN:VAL 30 Switches on 30 dB preamplification.
Manual operation:	See "Preamplifier" on page 71

INPut:IMPedance < Impedance>

Selects the nominal input impedance of the RF input. In some applications, only 50 Ω are supported.

Parameters:

<impedance></impedance>	50 75		
	numeric value User-defined impedance from 50 Ohm to 10000000 Ohm (=100 MOhm) User-defined values are only available for the Spectrum applica- tion, the I/Q Analyzer, and some optional applications.		
	Default unit: OHM		
Example:	INP:IMP 75		
Manual operation:	See "Impedance" on page 62		

INPut:IMPedance:PTYPe <PadType>

Defines the type of matching pad used for impedance conversion for RF input.

Parameters:

<padtype></padtype>	SRESistor MLPad		
	SRESistor Series-R	SRESistor Series-R	
	MLPad Minimum L	oss Pad	
	*RST:	SRESistor	
Example:	INP:IMP 100 INP:IMP:PTYP MLP		
Manual operation: See "Impedance" on page		lance" on page 62	

INPut:SELect <Source>

Selects the signal source for measurements, i.e. it defines which connector is used to input data to the R&S FSV/A.

Parameters:

<source/>	RF Radio Frequency ("RF INPUT" connector)
	FIQ I/Q data file
	*RST: RF
Manual operation:	See "Radio Frequency State" on page 62 See "I/Q Input File State" on page 64

INPut:TYPE <Input>

The command selects the input path.

Parameters:

<input/>	INPUT1 Selects RF input 1.		
	INPUT2		
	Selects RF input 2		
	*RST:	INPUT1	
Example:	//Select in	//Select input path	
	INP:TYP:	E INPUT1	

9.4.3.2 Configuring file input

The following commands are required to define input from a file.

Useful commands for configuring file input described elsewhere:

• INPut:SELect on page 153

Remote commands exclusive to configuring input from files:

INPut:FILE:PATH <FileName>[, <AnalysisBW>]

Selects the I/Q data file to be used as input for further measurements.

The I/Q data file must be in one of the following supported formats:

- .iq.tar
- .iqw
- .csv
- .mat
- .wv

• .aid

Only a single data stream or channel can be used as input, even if multiple streams or channels are stored in the file.

For some file formats that do not provide the sample rate and measurement time or record length, you must define these parameters manually. Otherwise the traces are not visible in the result displays.

Parameters:	
<filename></filename>	String containing the path and name of the source file. The file type is determined by the file extension. If no file extension is provided, the file type is assumed to be .iq.tar. For .mat files, Matlab® v4 is assumed.
<analysisbw></analysisbw>	Optionally: The analysis bandwidth to be used by the measure- ment. The bandwidth must be smaller than or equal to the band- width of the data that was stored in the file. Default unit: HZ
Example:	INP:FILE:PATH 'C:\R_S\Instr\user\data.iq.tar' Uses I/Q data from the specified file as input.
Example:	<pre>//Load an IQW file INP:SEL:FIQ INP:FILE:PATH 'C:\R_S\Instr\user\data.iqw' //Define the sample rate TRAC:IQ:SRAT 10MHz //Define the measurement time SENSe:SWEep:TIME 0.001001 //Start the measurement INIT:IMM</pre>
Manual operation:	See "Select I/Q data file" on page 64

9.4.3.3 Using external mixers

The commands required to work with external mixers in a remote environment are described here. Note that these commands require the R&S FSV/A to have an external mixer option installed and an external mixer to be connected to the R&S FSV/A.

•	Basic settings	154
•	Mixer settings	156
•	Conversion loss table settings	161
•	Programming example: working with an external mixer	165
	5 5 1 5	

Basic settings

The basic settings concern general usage of an external mixer.

[SENSe:]MIXer <x>[:STATe]</x>	155
[SENSe:]MIXer <x>:BIAS:HIGH</x>	
[SENSe:]MIXer <x>:BIAS[:LOW]</x>	155
[SENSe:]MIXer <x>:LOPower</x>	155

[SENSe:]MIXer<x>[:STATe] <State>

Activates or deactivates the use of a connected external mixer as input for the measurement. This command is only available if the optional External Mixer is installed and an external mixer is connected.

Suffix:		
< x >	1n irrelevant	
Parameters: <state></state>	ON OFF *RST:	1 0 0
Example:	MIX ON	

[SENSe:]MIXer<x>:BIAS:HIGH <BiasSetting>

Defines the bias current for the high (last) range.

Is only available if the external mixer is active (see [SENSe:]MIXer<x>[:STATe] on page 155).

Suffix:

<χ>

1..n irrelevant

Parameters:

<BiasSetting>

*RST: 0.0 A Default unit: A

[SENSe:]MIXer<x>:BIAS[:LOW] <BiasSetting>

Defines the bias current for the low (first) range.

Is only available if the external mixer is active (see [SENSe:]MIXer<x>[:STATe] on page 155).

Suffix:

<χ>

1..n irrelevant

Parameters: <BiasSetting>

Solution control control

*RST: 0.0 A Default unit: A

[SENSe:]MIXer<x>:LOPower <Level>

Specifies the LO level of the external mixer's LO port.

Suffix: <x>

1..n irrelevant

Parameters:			
<level></level>	Range:	13.0 dBm to	o 17.0 dBm
	Increment:	0.1 dB	
	*RST:	15.5 dBm	
	Default unit	: DBM	
Example:	MIX:LOP 1	6.0dBm	

Mixer settings

The following commands are required to configure the band and specific mixer settings.

[SENSe:]MIXer <x>:FREQuency:HANDover</x>	156
[SENSe:]MIXer <x>:FREQuency:STARt</x>	157
[SENSe:]MIXer <x>:FREQuency:STOP</x>	157
[SENSe:]MIXer <x>:HARMonic:BAND:PRESet</x>	157
[SENSe:]MIXer <x>:HARMonic:BAND</x>	157
[SENSe:]MIXer <x>:HARMonic:HIGH:STATe</x>	158
[SENSe:]MIXer <x>:HARMonic:HIGH[:VALue]</x>	158
[SENSe:]MIXer <x>:HARMonic:TYPE</x>	159
[SENSe:]MIXer <x>:HARMonic[:LOW]</x>	159
[SENSe:]MIXer <x>:IF?</x>	159
[SENSe:]MIXer <x>:LOSS:HIGH</x>	159
[SENSe:]MIXer <x>:LOSS:TABLe:HIGH</x>	
[SENSe:]MIXer <x>:LOSS:TABLe[:LOW]</x>	
[SENSe:]MIXer <x>:LOSS[:LOW]</x>	160
[SENSe:]MIXer <x>:PORTs</x>	161
[SENSe:]MIXer <x>:RFOVerrange[:STATe]</x>	161

[SENSe:]MIXer<x>:FREQuency:HANDover <Frequency>

Defines the frequency at which the mixer switches from one range to the next (if two different ranges are selected). The handover frequency for each band can be selected freely within the overlapping frequency range.

Is only available if the external mixer is active (see [SENSe:]MIXer<x>[:STATe] on page 155).

Suffix:

<x></x>	1n irrelevant
Parameters: <frequency></frequency>	Default unit: HZ
Example:	MIX ON Activates the external mixer. MIX:FREQ:HAND 78.0299GHz Sets the handover frequency to 78.0299 GHz.

[SENSe:]MIXer<x>:FREQuency:STARt

Sets or queries the frequency at which the external mixer band starts.

Suffix:	
<χ>	1n
	irrelevant
Example:	MIX:FREQ:STAR?
	Queries the start frequency of the band.

[SENSe:]MIXer<x>:FREQuency:STOP

Sets or queries the frequency at which the external mixer band stops.

Suffix:	
<x></x>	1n irrelevant
Example:	MIX: FREQ: STOP? Queries the stop frequency of the band.

[SENSe:]MIXer<x>:HARMonic:BAND:PRESet

Restores the preset frequency ranges for the selected standard waveguide band.

Note: Changes to the band and mixer settings are maintained even after using the [PRESET] function. Use this command to restore the predefined band ranges.

Suffix:

<x> 1..n
irrelevant
Example: MIX:HARM:BAND:PRES
Presets the selected waveguide band.

[SENSe:]MIXer<x>:HARMonic:BAND <Band>

Selects the external mixer band. The query returns the currently selected band.

Is only available if the external mixer is active (see [SENSe:]MIXer<x>[:STATe] on page 155).

Suffix:

<χ>

1..n irrelevant

Parameters:

<Band>

KA|Q|U|V|E|W|F|D|G|Y|J|USER

Standard waveguide band or user-defined band.

Band	Frequency start [GHz]	Frequency stop [GHz]
KA (A) *)	26.5	40.0
Q	33.0	50.0
U	40.0	60.0
V	50.0	75.0
E	60.0	90.0
W	75.0	110.0
F	90.0	140.0
D	110.0	170.0
G	140.0	220.0
J	220.0	325.0
Y	325.0	500.0
USER	32.18	68.22
	(default)	(default)
*) The band formerly referred to as "A" is now named "KA".		

[SENSe:]MIXer<x>:HARMonic:HIGH:STATe <State>

Specifies whether a second (high) harmonic is to be used to cover the band's frequency range.

Suffix: <x></x>	1n	
Parameters: <state></state>	ON OFF *RST: ON	
Example:	MIX:HARM:HIGH:STAT O	Ν

[SENSe:]MIXer<x>:HARMonic:HIGH[:VALue] <HarmOrder>

Specifies the harmonic order to be used for the high (second) range.

Suffix: <x></x>	1n irrelevant	
Parameters: <harmorder></harmorder>	Range:	3 to 128 (USER band); for other bands: see band definition
Example: MIX:HARM:HIGH:STAT ON MIX:HARM:HIGH 3		M:HIGH:STAT ON
		M:HIGH 3

[SENSe:]MIXer<x>:HARMonic:TYPE <OddEven>

Specifies whether the harmonic order to be used should be odd, even, or both.

Which harmonics are supported depends on the mixer type.

Suffix:		
<χ>	1n	
	irrelevant	
Parameters:		
<oddeven></oddeven>	ODD EVE	N EODD
	ODD EVE	N EODD
	*RST:	EVEN
Example:	MIX:HARM:	TYPE ODD

[SENSe:]MIXer<x>:HARMonic[:LOW] <HarmOrder>

Specifies the harmonic order to be used for the low (first) range.

Suffix:		
<x></x>	1n irrelevant	
Parameters:		
<harmorder></harmorder>	Range:	3 to 128 (USER band); for other bands: see band definition
	*RST:	4 (for band U)
Example:	MIX:HARM	3

[SENSe:]MIXer<x>:IF?

Queries the intermediate frequency currently used by the external mixer.

Suffix:	
<χ>	1n irrelevant
Example:	MIX:IF?
Example:	See "Programming example: working with an external mixer" on page 165.
Usage:	Query only

[SENSe:]MIXer<x>:LOSS:HIGH <Average>

Defines the average conversion loss to be used for the entire high (second) range.

Suffix: <x>

1..n irrelevant

Parameters:		
<average></average>	Range:	0 to 100
	*RST:	24.0 dB
	Default unit:	dB
Example:	MIX:LOSS:HIGH 20dB	

[SENSe:]MIXer<x>:LOSS:TABLe:HIGH <FileName>

Defines the conversion loss table to be used for the high (second) range.

Suffix:	1n
<x></x>	irrelevant
Parameters: <filename></filename>	String containing the path and name of the file, or the serial number of the external mixer whose file is required. The R&S FSV/A automatically selects the correct cvl file for the cur- rent IF. As an alternative, you can also select a user-defined conversion loss table (.acl file).

[SENSe:]MIXer<x>:LOSS:TABLe[:LOW] <FileName>

Defines the file name of the conversion loss table to be used for the low (first) range.

Suffix: <x></x>	1n irrelevant
Parameters:	
<filename></filename>	String containing the path and name of the file, or the serial number of the external mixer whose file is required. The R&S FSV/A automatically selects the correct cvl file for the cur- rent IF. As an alternative, you can also select a user-defined conversion loss table (.acl file).
Example:	MIX:LOSS:TABL '101567' MIX:LOSS:TABL? //Result: '101567_MAG_6_B5000_3G5.B5G'

[SENSe:]MIXer<x>:LOSS[:LOW] <Average>

Defines the average conversion loss to be used for the entire low (first) range.

Suffix: <_{x>}

1..n irrelevant

Parameters:

<average></average>	Range: 0 to 100)
	*RST: 24.0 dB	
	Default unit: dB	
Example:	MIX:LOSS 20dB	

[SENSe:]MIXer<x>:PORTs <PortType>

Selects the mixer type.

Suffix:		
<χ>	1n	
	irrelevant	
Parameters:		
<porttype></porttype>	2 3	
	2	
	Two-port mixer.	
	3	
	Three-port mixer	•
	*RST: 2	
Example:	MIX:PORT 3	

[SENSe:]MIXer<x>:RFOVerrange[:STATe] <State>

If enabled, the band limits are extended beyond "RF Start" and "RF Stop" due to the capabilities of the used harmonics.

Suffix:

<χ>

1..n irrelevant

Parameters:

<State>

ON | OFF | 1 | 0 *RST: 0

Conversion loss table settings

The following settings are required to configure and manage conversion loss tables.

[SENSe:]CORRection:CVL:BAND	162
[SENSe:]CORRection:CVL:BIAS	162
[SENSe:]CORRection:CVL:CATalog?	
[SENSe:]CORRection:CVL:CLEar.	163
[SENSe:]CORRection:CVL:COMMent	
[SENSe:]CORRection:CVL:DATA	163
ISENSe: ICORRection: CVL: HARMonic	
[SENSe:]CORRection:CVL:MIXer	
L and the second s	

[SENSe:]CORRection:CVL:PORTs	164
[SENSe:]CORRection:CVL:SELect	165
SENSe:]CORRection:CVL:SNUMber	165

[SENSe:]CORRection:CVL:BAND <Band>

Defines the waveguide band for which the conversion loss table is to be used. This setting is checked against the current mixer setting before the table can be assigned to the range.

Before this command can be performed, the conversion loss table must be selected (see [SENSe:]CORRection:CVL:SELect on page 165).

Is only available with option B21 (External Mixer) installed.

Parameters:	
<band></band>	K KA Q U V E W F D G Y J USER
	Standard waveguide band or user-defined band. For a definition of the frequency range for the pre-defined bands, see Table 9-3).
	*RST: F (90 GHz - 140 GHz)
Example:	CORR:CVL:SEL 'LOSS_TAB_4' Selects the conversion loss table. CORR:CVL:BAND KA Sets the band to KA (26.5 GHz - 40 GHz).

[SENSe:]CORRection:CVL:BIAS <BiasSetting>

Defines the bias setting to be used with the conversion loss table.

Before this command can be performed, the conversion loss table must be selected (see [SENSe:]CORRection:CVL:SELect on page 165.

Is only available with option B21 (External Mixer) installed.

Parameters:	*RST:	0.0 A
<biassetting></biassetting>	Default unit:	A
Example:	CORR:CVL: Selects the CORR:CVL:	SEL 'LOSS_TAB_4' conversion loss table. BIAS 3A

[SENSe:]CORRection:CVL:CATalog?

Queries all available conversion loss tables saved in the C: $\R_S\INSTR\USER\cvl\$ directory on the instrument.

Is only available with option B21 (External Mixer) installed.

Return values:	
<files></files>	'string'
	Comma-separated list of strings containing the file names.
Example:	CORR:CVL:CAT?
Usage:	Query only

[SENSe:]CORRection:CVL:CLEar

Deletes the selected conversion loss table. Before this command can be performed, the conversion loss table must be selected (see [SENSe:]CORRection:CVL: SELect on page 165).

Is only available with option B21 (External Mixer) installed.

Example:

CORR:CVL:SEL 'LOSS_TAB_4' Selects the conversion loss table. CORR:CVL:CLE

[SENSe:]CORRection:CVL:COMMent <Text>

Defines a comment for the conversion loss table. Before this command can be performed, the conversion loss table must be selected (see [SENSe:]CORRection: CVL:SELect on page 165).

Is only available with option B21 (External Mixer) installed.

Parameters:

Development

<Text>

Example: CORR:CVL:SEL 'LOSS_TAB_4' Selects the conversion loss table. CORR:CVL:COMM 'Conversion loss table for FS_Z60'

[SENSe:]CORRection:CVL:DATA {<Freq>, <Level>}...

Defines the reference values of the selected conversion loss tables. The values are entered as a set of frequency/level pairs. You can define a maximum of 500 frequency/level pairs. Before this command can be performed, you must select the conversion loss table (see [SENSe:]CORRection:CVL:SELect on page 165).

Is only available with option B21 (External Mixer) installed.

Parameters:	
<freq></freq>	The frequencies have to be sent in ascending order.
	Default unit: HZ
<level></level>	Default unit: DB

Example: CORR:CVL:SEL 'LOSS_TAB_4' Selects the conversion loss table. CORR:CVL:DATA 1MHZ,-30DB,2MHZ,-40DB

[SENSe:]CORRection:CVL:HARMonic <HarmOrder>

Defines the harmonic order for which the conversion loss table is to be used. This setting is checked against the current mixer setting before the table can be assigned to the range.

Before this command can be performed, the conversion loss table must be selected (see [SENSe:]CORRection:CVL:SELect on page 165.

Is only available with option B21 (External Mixer) installed.

Parameters:					
<harmorder></harmorder>	Range:	2 to	65		
Example:	CORR:CVL:	SEL	'LOSS_	TAB	_4 '
	Selects the	conve	rsion lo	ss tab	ole.
	CORR:CVL:	HARM	3		

[SENSe:]CORRection:CVL:MIXer <Type>

Defines the mixer name in the conversion loss table. This setting is checked against the current mixer setting before the table can be assigned to the range.

Before this command can be performed, the conversion loss table must be selected (see [SENSe:]CORRection:CVL:SELect on page 165).

Is only available with option B21 (External Mixer) installed.

Parameters:

<type></type>	string
	Name of mixer with a maximum of 16 characters
Example:	CORR:CVL:SEL 'LOSS_TAB_4' Selects the conversion loss table. CORR:CVL:MIX 'FS_Z60'

[SENSe:]CORRection:CVL:PORTs <PortType>

Defines the mixer type in the conversion loss table. This setting is checked against the current mixer setting before the table can be assigned to the range.

Before this command can be performed, the conversion loss table must be selected (see [SENSe:]CORRection:CVL:SELect on page 165).

Is only available with option B21 (External Mixer) installed.

Parameters:

<porttype></porttype>	2 3	
	*RST:	2

Example: CORR:CVL:SEL 'LOSS_TAB_4' Selects the conversion loss table. CORR:CVL:PORT 3

[SENSe:]CORRection:CVL:SELect <FileName>

Selects the conversion loss table with the specified file name. If <file_name> is not available, a new conversion loss table is created.

Is only available with option B21 (External Mixer) installed.

Parameters:

<filename></filename>	String containing the path and name of the file.
Example:	CORR:CVL:SEL 'LOSS_TAB_4'

[SENSe:]CORRection:CVL:SNUMber <SerialNo>

Defines the serial number of the mixer for which the conversion loss table is to be used. This setting is checked against the current mixer setting before the table can be assigned to the range.

Before this command can be performed, the conversion loss table must be selected (see [SENSe:]CORRection:CVL:SELect on page 165).

Is only available with option B21 (External Mixer) installed.

Parameters:	
<serialno></serialno>	Serial number with a maximum of 16 characters
Example:	CORR:CVL:SEL 'LOSS_TAB_4'
	Selects the conversion loss table.
	CORR:CVL:MIX '123.4567'

Programming example: working with an external mixer

This example demonstrates how to work with an external mixer in a remote environment. It is performed in the Spectrum application in the default layout configuration. Note that without a real input signal and connected mixer, this measurement will not return useful results.

```
//-----Preparing the instrument ------
//Reset the instrument
*RST
//Activate the use of the connected external mixer.
SENS:MIX ON
//----- Configuring basic mixer behavior ------
//Set the LO level of the mixer's LO port to 15 dBm.
SENS:MIX:LOP 15dBm
//Set the bias current to -1 mA .
SENS:MIX:BIAS:LOW -1mA
//----- Configuring the mixer and band settings -------
//Use band "V" to full possible range extent for assigned harmonic (6).
```

SENS:MIX:HARM:BAND V SENS:MIX:RFOV ON //Query the possible range SENS:MIX:FREQ:STAR? //Result: 47480000000 (47.48 GHz) SENS:MIX:FREQ:STOP? //Result: 138020000000 (138.02 GHz) //Use a 3-port mixer type SENS:MIX:PORT 3 //Split the frequency range into two ranges; //range 1 covers 47.48 GHz GHz to 80 GHz; harmonic 6, average conv. loss of 20 dB //range 2 covers 80 GHz to 138.02 GHz; harmonic 8, average conv.loss of 30 dB SENS:MIX:HARM:TYPE EVEN SENS:MIX:HARM:HIGH:STAT ON SENS:MIX:FREQ:HAND 80GHz SENS:MIX:HARM:LOW 6 SENS:MIX:LOSS:LOW 20dB SENS:MIX:HARM:HIGH 8 SENS:MIX:LOSS:HIGH 30dB //----- Activating automatic signal identification functions -------//Activate both automatic signal identification functions. SENS:MIX:SIGN ALL //Use auto ID threshold of 8 dB. SENS:MIX:THR 8dB //----Performing the Measurement-----//Select single sweep mode. INIT:CONT OFF //Initiate a basic frequency sweep and wait until the sweep has finished. INIT; *WAI //-----Retrieving Results-----//Return the trace data for the input signal without distortions //(default screen configuration) TRAC:DATA? TRACE3

Configuring a conversion loss table for a user-defined band

```
//-----Preparing the instrument ------
//Reset the instrument
*RST
//Activate the use of the connected external mixer.
SENS:MIX ON
//-----Configuring a new conversion loss table ------
//Define cvl table for range 1 of band as described in previous example
// (extended V band)
SENS:CORR:CVL:SEL 'UserTable'
SENS:CORR:CVL:COMM 'User-defined conversion loss table for USER band'
SENS:CORR:CVL:BAND USER
SENS:CORR:CVL:HARM 6
```

```
SENS:CORR:CVL:BIAS -1mA
SENS:CORR:CVL:MIX 'FS Z60'
SENS:CORR:CVL:SNUM '123.4567'
SENS:CORR:CVL:PORT 3
//Conversion loss is linear from 55 GHz to 75 GHz
SENS:CORR:CVL:DATA 55GHZ,-20DB,75GHZ,-30DB
//----- Configuring the mixer and band settings ------
//Use user-defined band and assign new cvl table.
SENS:MIX:HARM:BAND USER
//Define band by two ranges;
//range 1 covers 47.48 GHz to 80 GHz; harmonic 6, cvl table 'UserTable'
//range 2 covers 80 GHz to 138.02 GHz; harmonic 8, average conv.loss of 30 dB
SENS:MIX:HARM:TYPE EVEN
SENS:MIX:HARM:HIGH:STAT ON
SENS:MIX:FREQ:HAND 80GHz
SENS:MIX:HARM:LOW 6
SENS:MIX:LOSS:TABL:LOW 'UserTable'
SENS:MIX:HARM:HIGH 8
```

```
SENS:MIX:LOSS:HIGH 30dB
//Query the possible range
SENS:MIX:FREQ:STAR?
//Result: 47480000000 (47.48 GHz)
SENS:MIX:FREQ:STOP?
//Result: 138020000000 (138.02 GHz)
```

```
//-----Performing the Measurement-----
//Select single sweep mode.
INIT:CONT OFF
//Initiate a basic frequency sweep and wait until the sweep has finished.
INIT;*WAI
//-----Retrieving Results------
//Return the trace data (default screen configuration)
TRAC:DATA? TRACe1
```

9.4.3.4 Remote commands for external frontend control

The following commands are available and required only if the external frontend control option (R&S FSV3-K553) is installed.

Further commands for external frontend control described elsewhere:

- INPut: SELect RF; see INPut: SELect on page 153
- [SENSe:]FREQuency:CENTer on page 189
- DISPlay[:WINDow<n>] [:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:RLEVel on page 190
- INPut:ATTenuation:AUTO on page 192
- INPut:ATTenuation on page 192

- INPut:SANalyzer:ATTenuation:AUTO on page 194
- Commands for initial configuration......168
 - Commands for test, alignment, and diagnosis......176

Commands for initial configuration

The following commands are required when you initially set up an external frontend.

[SENSe:]EFRontend:CONNection[:STATe]	168
[SENSe:]EFRontend:CONNection:CONFig	169
[SENSe:]EFRontend:CONNection:CSTate?	169
[SENSe:]EFRontend:FREQuency:BAND:COUNt?	170
[SENSe:]EFRontend:FREQuency:BAND :LOWer?	170
[SENSe:]EFRontend:FREQuency:BAND :UPPer?	170
[SENSe:]EFRontend:FREQuency:BCONfig:AUTO	171
[SENSe:]EFRontend:FREQuency:BCONfig:LIST?	171
[SENSe:]EFRontend:FREQuency:BCONfig:SELect	
[SENSe:]EFRontend:FREQuency:IFRequency:MAXimum?	172
[SENSe:]EFRontend:FREQuency:IFRequency:MINimum?	172
[SENSe:]EFRontend:FREQuency:IFRequency:SIDeband?	172
[SENSe:]EFRontend:FREQuency:IFRequency[:VALue]?	173
[SENSe:]EFRontend:FREQuency:LOSCillator:INPut:FREQuency?	173
[SENSe:]EFRontend:FREQuency:LOSCillator:MODE	173
[SENSe:]EFRontend:FREQuency:LOSCillator:OUTPut:FREQuency?	174
[SENSe:]EFRontend:FREQuency:LOSCillator:OUTPut:STATe	174
[SENSe:]EFRontend:FREQuency:REFerence	174
[SENSe:]EFRontend:FREQuency:REFerence:LIST?	175
[SENSe:]EFRontend:IDN?	175
[SENSe:]EFRontend:NETWork	175
[SENSe:]EFRontend[:STATe]	176

[SENSe:]EFRontend:CONNection[:STATe] <State>

Queries the external frontend connection state in the firmware.

Note: to query the physical connection state of the external frontend, use [SENSe:]EFRontend:CONNection:CSTate? on page 169.

Parameters:

<State>

ON | OFF | 0 | 1

OFF | 0

The connection to the frontend is deactivated temporarily. The frontend is thus available for use elsewhere, for example by a signal generator. The measurement settings on the R&S FSV/A remain untouched.

ON | 1

Frontend connection enabled.

The frontend is reserved for exclusive use by the R&S FSV/A.

*RST: 0

Example: //Global activation of external frontend EFR ON //Configure frontend EFR:CONN:CONF "FE44s","123.456.789" //Activate exclusive use of frontend by R&S FSV/A. EFR:CONN ON

[SENSe:]EFRontend:CONNection:CONFig <Type>, <IPAddress>[, <DeviceID>, <SymbolicName>]

Configures the connection to the external frontend.

Parameters:

<type></type>	"FE44S" "FE50DTR"
	String in double quotes containing the type of frontend to be connected.
<ipaddress></ipaddress>	string in double quotes The IP address or computer name of the frontend connected to the R&S FSV/A via LAN. The IP address and computer name are indicated on the electronic ink display on the side panel of the frontend.
<deviceid></deviceid>	string in double quotes Unique device ID consisting of <type>-<serialnumber> Not required or relevant for the R&S FSV/A.</serialnumber></type>
<symbolicname></symbolicname>	string in double quotes Symbolic name of the external frontend. Not required or relevant for the R&S FSV/A.
Example:	<pre>//Global activation of external frontend EFR ON //Configure frontend EFR:CONN:CONF "FE44S","123.456.789" //Activate exclusive use of frontend by R&S FSV/A. EFR:CONN ON</pre>

[SENSe:]EFRontend:CONNection:CSTate?

Queries the status of the physical connection to the external frontend.

Return values: <State>

ON | OFF | 0 | 1 **OFF | 0** Frontend not connected; connection error

ON | 1

Frontend connected

Usage:

Query only

[SENSe:]EFRontend:FREQuency:BAND:COUNt?

Queries the number of frequency bands provided by the selected frontend.

Return values: <nobands></nobands>	integer Number of frequency bands
Example:	<pre>//Query number of frequency bands EFR:FREQ:BAND:COUN? //Result: 2</pre>
Usage:	Query only

[SENSe:]EFRontend:FREQuency:BAND:LOWer?

Queries the start of the frequency range supported by the selected frontend frequency band.

Suffix:

	<pre>1n Band for multi-band frontends Use [SENSe:]EFRontend:FREQuency:BAND:COUNt? on page 170 to determine the number of available bands.</pre>
Return values: <startfreq></startfreq>	Start frequency of the specified band
Example:	<pre>//Query start frequency of second band EFR:FREQ:BAND2:LOW? //Result: 2400000000</pre>
Usage:	Query only

[SENSe:]EFRontend:FREQuency:BAND:UPPer?

Queries the end of the frequency range supported by the selected frontend frequency band.

Suffix:	
	1n
	Band for multi-band frontends
	Use [SENSe:]EFRontend:FREQuency:BAND:COUNt?
	on page 170 to determine the number of available bands.
Return values:	
<stopfreq></stopfreq>	End frequency of the specified band

Example:	$//\ensuremath{\text{Query}}\xspace$ end frequency of second band
	EFR:FREQ:BAND2:UPP?
	//Result: 4400000000
Usage:	Query only

[SENSe:]EFRontend:FREQuency:BCONfig:AUTO <State>

Determines whether the frequency band of the external frontend is configured automatically or manually.

Parameters:

<state></state>	ON OFF 0 1
	OFF 0
	Uses the frequency band configured by [SENSe:]EFRontend:
	<pre>FREQuency:BCONfig:SELect on page 172.</pre>
	ON 1 Configures the frequency band automatically For bandwidths ≤400 MHz, "IF Low" is used. For bandwidths larger than 400 MHz, "IF High" is used. *RST: 1
Example:	//Configures the use of the IF high band manually. EFR:FREQ:BCON:AUTO 0 EFR:FREQ:BCON:SEL "IF HIGH"

[SENSe:]EFRontend:FREQuency:BCONfig:LIST?

Returns the intermediate frequency (output) range of the external frontend.

Return values:	
<bandconfigs></bandconfigs>	string
	"IF LOW"
	A higher intermediate frequency is used on the external fron- tend, resulting in a higher input frequency at the R&S FSV/A.
	"IF HIGH"
	A lower intermediate frequency is used on the external frontend, resulting in a lower input frequency at the R&S FSV/A.
Example:	EFR:FREQ:BCON:LIST? //Result: "IF HIGH", "IF LOW" EFR:FREO:BCON:SEL "IF HIGH"
Usage:	Query only

[SENSe:]EFRontend:FREQuency:BCONfig:SELect <BandConfig>

Defines the intermediate frequency (output) range of the external frontend.

Parameters:

<bandconfig></bandconfig>	"IF HIGH" (R&S FE44S/ R&S FE50DTR) A higher intermediate frequency is used on the external fron- tend, resulting in a higher input frequency at the R&S FSV/A.	
	"IF LOW" (R&S FE44S/ R&S FE50DTR) A lower intermediate frequency is used on the external frontend, resulting in a lower input frequency at the R&S FSV/A.	
Example:	EFR:FREQ:BCON:LIST? //Result: "IF HIGH", "IF LOW" EFR:FREQ:BCON:SEL "IF HIGH"	

[SENSe:]EFRontend:FREQuency:IFRequency:MAXimum?

Queries the maximum used intermediate frequency (IF) for frequency conversion for a frequency span.

Return values: <iffrequency></iffrequency>	numeric
Example:	EFR:FREQ:IFR:MAX?
Usage:	Query only

[SENSe:]EFRontend:FREQuency:IFRequency:MINimum?

Queries the minimum used intermediate frequency (IF) for frequency conversion for a frequency span.

Return values:	
<iffrequency></iffrequency>	numeric
Example:	EFR:FREQ:IFR:MIN?
Usage:	Query only

[SENSe:]EFRontend:FREQuency:IFRequency:SIDeband?

Queries the currently used sideband for frequency conversion.

Return values: <Sideband>

"USB" | "LSB" **"USB"** Upper sideband **"LSB"** Lower sideband

Usage:	Query only
	EFR:FREQ:IFR:SID?
Example:	EFR:FREQ:IFR?

[SENSe:]EFRontend:FREQuency:IFRequency[:VALue]?

Queries the currently used intermediate frequency (IF) for frequency conversion.

To query the maximum and minimum IF for the selected frequency range, use [SENSe:]EFRontend:FREQuency:IFRequency:MAXimum? on page 172 and [SENSe:]EFRontend:FREQuency:IFRequency:MINimum? on page 172.

Return values:

<iffrequency></iffrequency>	numeric
Example:	EFR:FREQ:IFR?
Usage:	Query only

[SENSe:]EFRontend:FREQuency:LOSCillator:INPut:FREQuency?

Queries the frequency of the LO input for [SENSe:]EFRontend:FREQuency: LOSCillator:MODE EXT.

Return values:

<loinfreq></loinfreq>	Default unit: Hz
Example:	The external frontend uses the external LO provided at the "LO IN" connector. EFR:FREQ:LOSC:MODE EXT Query the frequency that the external LO must be provided at. EFR:FREQ:LOSC:INP:FREQ? //Result: 1061500000
Usage:	Query only

[SENSe:]EFRontend:FREQuency:LOSCillator:MODE <Type>

Determines whether the external frontend uses its internal LO or an external LO.

Parameters:

<Type>

EXTernal | INTernal

EXTernal

Uses the external LO provided at the LO input connector of the external frontend. Query the frequency at which the LO must be input to the external frontend using [SENSe:]EFRontend: FREQuency:LOSCillator:INPut:FREQuency?

on page 173.

INTernal

Uses the internal LO. *RST: EXTernal

Example:	EFR:FREQ:	LOSC:MODE EXT
	EFR:FREQ:	LOSC: INP: FREQ?
	//Result:	10615000000

[SENSe:]EFRontend:FREQuency:LOSCillator:OUTPut:FREQuency?

Queries the frequency of the LO output for [SENSe:]EFRontend:FREQuency: LOSCillator:OUTPut:STATE ON.

Return values: <LOOutFreq>

Default unit: Hz

Example:	The external frontend uses the internal LO and provides it as output to the "LO OUT" connector. EFR:FREQ:LOSC:MODE INT EFR:FREQ:LOSC:OUTP:STAT ON Query the frequency of the LO output. EFR:FREQ:LOSC:OUTP:FREQ? //Result: 10615000000
Usage:	Query only

[SENSe:]EFRontend:FREQuency:LOSCillator:OUTPut:STATe <State>

Enables or disables output of the LO by the external frontend. The output frequency is returned by [SENSe:]EFRontend:FREQuency:LOSCillator:OUTPut: FREQuency? on page 174.

Parameters:

<state></state>	ON OFF 0 1
	OFF 0
	Switches the function off
	ON 1
	Switches the function on
	*RST: 0
Example:	The external frontend provides the LO as output at the "LO OUT" connector.
	EFR:FREQ:LOSC:OUTP:STAT ON
	Query the frequency of the LO output.
	EFR:FREQ:LOSC:OUTP:FREQ?
	//Result: 10615000000

[SENSe:]EFRontend:FREQuency:REFerence <Frequency>

Sets the reference frequency that is used for frequency conversion on the frontend. Depending on the connected type of frontend, different values are available. To determine which reference levels are available, use [SENSe:]EFRontend:FREQuency: REFerence:LIST? on page 175.

Parameters: <frequency></frequency>	Default unit: HZ		
Example:	<pre>//Query the available reference levels EFR:FREQ:REF:LIST? //Result: 10000000,640000000,1000000000 //Use 640 MHz reference EFR:FREQ:REF 640000000</pre>		

[SENSe:]EFRontend:FREQuency:REFerence:LIST?

Queries the available reference signals for the connected frontend type.

Usage:	Query only
	EFR:FREQ:REF:LIST? //Result: 1000000,64000000,100000000 //Use 640 MHz reference EFR:FREQ:REF 640000000
Example:	//Query the available reference levels
Return values: <references></references>	10000000 640000000 1000000000

[SENSe:]EFRontend:IDN?

Queries the device identification information (*IDN?) of the frontend.

Return values: <devinfo></devinfo>	string without quotes Rohde&Schwarz, <device type="">,<part number="">/<serial num<br="">ber>,<firmware version=""></firmware></serial></part></device>	
Example:	EFR:IDN? //Result: Rohde&Schwarz,FE44S, 1234.5678K00/123456,0.8.0	
Usage:	Query only	

[SENSe:]EFRontend:NETWork <IPAddress>, <Subnet>, <DHCP State>

Sets or queries the network information for the frontend.

This information is also indicated on the electronic paper display on the side panel of the device.

Beware that if you change the network setting to DHCP = ON, the connection is aborted and you must re-establish a connection to the frontend (see [SENSe:]EFRontend:CONNection[:STATe] on page 168).

Parameters:

<IPAddress>

string in double quotes IP address of the frontend

<subnet></subnet>	string in double quotes	
	Subnet mas	k of the frontend
<dhcp state=""></dhcp>	ON OFF 0 1 Indicates whether a DHCP server is used. OFF 0 DHCP off	
	ON 1 DHCP on *RST:	0
Example:	EFR:NETW? //Result:	"123.456.78.90","255.255.255.0",ON

[SENSe:]EFRontend[:STATe] <State>

Enables or disables the general use of an external frontend for the application.

Parameters:	
<state></state>	

<state></state>	ON OFF 0 1		
	OFF 0 The frontend is disconnected. The application adapts the mea- surement settings to the common settings supported by the R&S FSV/A.		
	ON 1 The R&S FSV/A allows you to configure and connect an external frontend for the application. The application adapts the available measurement settings to the connected frontend. The channel bar indicates "Inp: ExtFe".		
	*RST: 0		
Example:	EFR ON		

Commands for test, alignment, and diagnosis

The following commands are required to test and optimize the connection after it has initially been set up.

[SENSe:]EFRontend:ALIGnment <ch>:FILE</ch>	176
[SENSe:]EFRontend:ALIGnment <ch>:STATe</ch>	
SENSe:]EFRontend:FWUPdate	
SENSe:]EFRontend <fe>:SELFtest?</fe>	177
SENSe:]EFRontend <fe>:SELFtest:RESult?</fe>	178
· ·	

[SENSe:]EFRontend:ALIGnment<ch>:FILE <File>

Selects or queries the touchstone file that contains correction data to compensate for signal losses in the cable occurring at different IF signal frequencies.

Suffix: <ch></ch>	1n
	Currently irrelevant
Parameters:	
<file></file>	string in double quotes
	Path and file name of the correction data file. The file must be in ${\tt s2p}$ format.
	If the specified file is not found or does not have the correct for-
	mat, an error message is returned (-256, "File name not
	found",-150, "String data error").
Example:	EFR:ALIG:FILE "FE44S.s2p"

[SENSe:]EFRontend:ALIGnment<ch>:STATe <State>

Activates correction of the IF signal due to cable loss from the frontend to the analyzer. Specify the file with correction data using [SENSe:]EFRontend:ALIGnment<ch>: FILE on page 176.

Suffix:	
<ch></ch>	1n
	Currently irrelevant
Parameters:	
<state></state>	ON OFF 0 1
	OFF 0
	Switches the function off
	ON 1
	Switches the function on
	*RST: 0

[SENSe:]EFRontend:FWUPdate

Updates the firmware on the external frontend. Note that this process can take some time.

Usage: Event

[SENSe:]EFRontend<fe>:SELFtest?

Performs a selftest on the frontend to compare the current performance and characteristic values with the specified values for the frontend.

As a result, the success is returned.

Suffix: <fe></fe>	1 Connected frontend
Return values: <result></result>	0 No error >0 Error *RST: 0
Example:	EFR:SELF? //Result: 0
Usage:	Query only

[SENSe:]EFRontend<fe>:SELFtest:RESult?

Queries the results of the selftest on the frontend.

Suffix:	
<fe></fe>	1
	Connected frontend
Return values:	
<result></result>	string containing xml data in double quotes
Example:	EFR:SELF:RES?
Usage:	Query only

Format of selftest result file

As a result of the selftest, an XML file with test details is created. It contains the following information in the specified order. Mandatory elements and attributes are indicated in bold font.

Element	Attributes	Description
<sequence></sequence>		Main element
	Name	="Selftest"
	Description	Optional description of the test process
	FirmwareVersion	Firmware version of the controlling instrument (R&S FSV/A)
	FrontendLibrary- Version	Version of the $\tt control.dll$ with the format $\tt x.y.z$
	FrontendServerVer- sion	Version of the RRH server with the format $x_{.Y}_{.Z}$ (FE44A only)
	Date	Date the selftest was performed, with the format ${\tt dd/mm/yyyy}$
	Time	Time the selftest was performed, with the format $\mathtt{hh}:\mathtt{mm}:\mathtt{ss}$

Remote commands for the R&S FSV3-K96 OFDM VSA application

Configuring the R&S FSV3-K96 OFDM VSA application

Element	Attributes	Description
	State	Test result state, combined result of all <sequencecate- gory>s: "PASSED"/ "FAILED"</sequencecate-
	Version	For internal use.
	Comment	Optional comment on the test process
<sequencecate- gory></sequencecate- 		Set of test steps
	Name	Name of the test sequence, e.g. "Frontend voltages"
	Description	Optional description of the test sequence
	State	Test sequence result state, combined result of all <sequence- Step>s: "PASSED"/ "FAILED"</sequence-
	Version	For internal use.
	Comment	Optional comment on the test sequence
<sequencestep></sequencestep>		Subelement of <sequencecategory></sequencecategory> for an individual test step
	Name	Name of the individual test step, e.g. FE1_3V3
	Description	Optional description of the test step
	LimitLow	Optional: lower limit to be checked
	LimitHigh	Optional: upper limit to be checked
	MeasValue	Optional: measured value
	Unit	Optional: unit of the measured value
	State	Test step result state:"PASSED"/ "FAILED"
	Version	For internal use.
	Comment	Optional comment on the test step

Example for selftest result xml file

```
<?xml version="1.0" encoding="UTF-8"?>
<Sequence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:noNamespaceSchemaLocation="SelfTest_Schema.xsd">
<Name>DeviceCheck</Name>
<FirmwareVersion>1.50-21.1.1.0 Beta</FirmwareVersion>
<FrontendLibraryVersion>0.8.0</FrontendLibraryVersion>
<Date>15/01/2021</Date>
<Time>08:51:35</Time>
<State>FAILED</State>
<Version>1.0.0</Version>
<SequenceCategory>
 <Name>Frontend Voltages</Name>
 <Description>test description</Description>
 <State>FAILED</State>
 <Version>1.0.0</Version>
 <Type>Diagnose</Type>
```

<SequenceStep> <Name>FE1 3V3</Name> <LimitLow>3.000</LimitLow> <LimitHigh>3.600</LimitHigh> <MeasValue>3.311</MeasValue> <State>PASSED</State> <Version>1.0.0</Version> </SequenceStep> <SequenceStep> <Name>FE1_5V</Name> <LimitLow>4.250</LimitLow> <LimitHigh>5.750</LimitHigh> <MeasValue>5.027</MeasValue> <State>PASSED</State> <Version>1.0.0</Version> </SequenceStep> <SequenceStep> <Name>FE1 6V5</Name> <LimitLow>6.000</LimitLow> <LimitHigh>7.000</LimitHigh> <MeasValue>5.893</MeasValue> <State>FAILED</State> <Version>1.0.0</Version> </SequenceStep> <SequenceStep> <Name>FE1 M3V3</Name> <LimitLow>-3.600</LimitLow> <LimitHigh>-3.000</LimitHigh> <MeasValue>3.347</MeasValue> <State>FAILED</State> <Version>1.0.0</Version> </SequenceStep> </SequenceCategory> <SequenceCategory> <Name>Frontend Temperature</Name> <Description>test description</Description> <State>PASSED</State> <Version>1.0.0</Version> <Type>Diagnose</Type> <SequenceStep> <Name>TEMP_FE1</Name> <LimitLow>0.000</LimitLow> <LimitHigh>60.000</LimitHigh> <MeasValue>39.300</MeasValue> <State>PASSED</State> <Version>1.0.0</Version> </SequenceStep> </SequenceCategory> <SequenceCategory>
<Description>test description</Description> <State>PASSED</State> <Version>1.0.0</Version> <Type>Diagnose</Type> <SequenceStep> <Name>SYNTH 3V4</Name> <LimitLow>3.200</LimitLow> <LimitHigh>3.910</LimitHigh> <MeasValue>3.576</MeasValue> <State>PASSED</State> <Version>1.0.0</Version> </SequenceStep> <SequenceStep> <Name>SYNTH 5V4 SYN</Name> <LimitLow>4.860</LimitLow> <LimitHigh>5.940</LimitHigh> <MeasValue>5.405</MeasValue> <State>PASSED</State> <Version>1.0.0</Version> </SequenceStep> <SequenceStep> <Name>SYNTH 5V4 YIG</Name> <LimitLow>4.860</LimitLow> <LimitHigh>5.940</LimitHigh> <MeasValue>5.438</MeasValue> <State>PASSED</State> <Version>1.0.0</Version> </SequenceStep> <SequenceStep> <Name>SYNTH M5V</Name> <LimitLow>-5.500</LimitLow> <LimitHigh>-4.500</LimitHigh> <MeasValue>-4.948</MeasValue> <State>PASSED</State> <Version>1.0.0</Version> </SequenceStep> <SequenceStep> <Name>SYNTH REF5V</Name> <LimitLow>4.500</LimitLow> <LimitHigh>5.500</LimitHigh> <MeasValue>5.031</MeasValue> <State>PASSED</State> <Version>1.0.0</Version> </SequenceStep> </SequenceCategory> <SequenceCategory> <Name>Supply Voltage</Name> <Description>test description</Description> <State>PASSED</State> <Version>1.0.0</Version>

- <Type>Diagnose</Type>
- <SequenceStep>
- <Name>SUPPLY 12V</Name>
- <LimitLow>10.800</LimitLow>
- <LimitHigh>13.200</LimitHigh> <MeasValue>11.909</MeasValue>
- <State>PASSED</State>
- <Version>1.0.0</Version>
- </SequenceStep>
- <SequenceStep> <Name>SUPPLY_3V3D</Name>
- <LimitLow>2.970</LimitLow> <LimitHigh>3.630</LimitHigh>
- <MeasValue>3.318</MeasValue> <State>PASSED</State>
- <Version>1.0.0</Version>
- </SequenceStep>
- <SequenceStep>
- <Name>SUPPLY_4V</Name> <LimitLow>3.650</LimitLow>
- <LimitHigh>4.460</LimitHigh> <MeasValue>4.053</MeasValue>
- <State>PASSED</State> <Version>1.0.0</Version>
- </SequenceStep>
- <SequenceStep>
- <Name>SUPPLY_6V</Name> <LimitLow>5.400</LimitLow>
- <LimitHigh>6.600</LimitHigh>
- <MeasValue>6.076</MeasValue>
- <State>PASSED</State>
- <Version>1.0.0</Version>
- </SequenceStep>
- <SequenceStep>
- <Name>SUPPLY_M5V</Name> <LimitLow>-6.050</LimitLow>
- <LimitHigh>-4.950</LimitHigh>
- <MeasValue>-5.507</MeasValue>
- <State>PASSED</State>
- <Version>1.0.0</Version>
- </SequenceStep>
- </SequenceCategory>
- </Sequence>

Programming example: Configuring an external frontend

The following example describes how to configure RF frontend settings in remote operation.

```
// Prepare the instrument
// Preset
```

*RST // Create new IQ-Analyzer channel :INST:SEL IQ // Enable 640MHz Reference :ROSC:0640 ON

```
//Enable general use of external frontend
SENSe:EFRontend:STATE ON
//Configure connection to ext. FE named "FE44S-1000826"
SENSe:EFRontend:CONNection:CONFig "FE44S","FE44S-1000826"
//Activate exclusive use of frontend by R&S FSV/A.
SENSe:EFRontend:CONNection:STATE ON
```

//For demonstration purposes only: assign a static IP address SENSe:EFRontend:NETWork "123.456.7.8", "255.255.255.00", OFF

```
// Query information about the connected RF frontend.
SENSe:EFRontend:CONNection:CSTAte?
// Response: 1 (connected)
SENSe:EFRontend:IDN?
///Result: Rohde&Schwarz,FE44S,1234.5678K00/123456,0.8.0
```

```
// Specify frontend settings
//Query available intermediate frequency bands
SENSe:EFRontend:FREQuency:BCONfig:LIST?
//Result: "IF HIGH", "IF LOW"
//Use high IF
SENSe:EFRontend:FREQuency:BCONfig:SELect "IF HIGH"
//Query used intermediate frequency
SENSe:EFRontend:FREQuency:IFRequency?
//Result: 8.595000000
```

```
//Query available reference frequencies
SENSe:EFRontend:FREQuency:REFerence:LIST?
//Result: 10000000,640000000,1000000000
//Use 640 MHz reference
SENSe:EFRontend:FREQuency:REFerence 640000000
```

```
// Query ranges of the operating frequency band.
SENSe:EFRontend:FREQuency:BAND1:LOWer?
// Response in Hz: "2400000000" (= 24 GHz)
SENSe:EFRontend:FREQuency:BAND1:UPPer?
// Response in Hz: "44000000000" (= 44 GHz)
```

```
// Add cable correction data by loading an *.s2p file.
SENSe:EFRontend:ALIGnment:FILE "C:\R_S\Instr\user\external_frontends\FE44S\
touchstonefiles\if_default_cable_1347_7552_00.s2p"
SENSe:EFRontend:ALIGnment:STATE ON
```

//Update FW version on frontend (only available if external frontend firmware //is incompatible to R&S FSV/A firmware)

```
SENSe:EFRontend:FWUPdate
//Perform a selftest on the frontend and query results
SENSe:EFRontend:SELFtest?
//Result: 0 (no errors)
SENSe:EFRontend:SELFtest:RESult?
//Result: "<?xml version="1.0" encoding="UTF-8"?>
//<Sequence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
//xsi:noNamespaceSchemaLocation="
//<Name>DeviceCheck</Name>
//<FirmwareVersion>1.50-21.1.1.0 Beta</FirmwareVersion>
//..."
```

9.4.3.5 Setting up probes

Modular probes can be connected to the RF input connector of the R&S FSV/A.

For details see the R&S FSV/A User Manual.

[SENSe:]PROBe <pb>:ID:PARTnumber?</pb>	184
[SENSe:]PROBe <pb>:ID:SRNumber?</pb>	
[SENSe:]PROBe <pb>:SETup:ATTRatio</pb>	
[SENSe:]PROBe <pb>:SETup:CMOFfset</pb>	185
[SENSe:]PROBe <pb>:SETup:DMOFfset</pb>	186
[SENSe:]PROBe <pb>:SETup:MODE</pb>	186
[SENSe:]PROBe <pb>:SETup:NAME?</pb>	
[SENSe:]PROBe <pb>:SETup:NMOFfset</pb>	187
[SENSe:]PROBe <pb>:SETup:PMODe</pb>	187
[SENSe:]PROBe <pb>:SETup:PMOFfset</pb>	188
[SENSe:]PROBe <pb>:SETup:STATe?</pb>	
[SENSe:]PROBe <pb>:SETup:TYPE?</pb>	

[SENSe:]PROBe<pb>:ID:PARTnumber?

Queries the R&S part number of the probe.

Suffix: <pb></pb>	1n Selects the connector: 3 = RF
Return values: <partnumber></partnumber>	
Example:	//Query part number PROB3:ID:PART?

Usage: Query only

[SENSe:]PROBe<pb>:ID:SRNumber?

Queries the serial number of the probe.

Suffix: <pb></pb>	1n Selects the connector: 3 = RF
Return values: <serialno></serialno>	
Example:	//Query serial number PROB3:ID:SRN?
Usage:	Query only

[SENSe:]PROBe<pb>:SETup:ATTRatio < AttenuationRatio>

Defines the attenuation applied to the input at the probe. This setting is only available for modular probes.

Suffix:	
<pb></pb>	1n
	Selects the connector:
	3 = RF
Parameters:	
<attenuationratio></attenuationratio>	10
	Attenuation by 20 dB (ratio= 10:1)
	2
	Attenuation by 6 dB (ratio= 2:1)
	*RST: 10
	Default unit: DB

[SENSe:]PROBe<pb>:SETup:CMOFfset <CMOffset>

Sets the common mode offset. The setting is only available if a differential probe in CM-mode is connected to the R&S FSV/A.

If the probe is disconnected, the common mode offset of the probe is reset to 0.0 V.

Note that if the offset for DM-mode or CM-mode is changed, the offsets for the P-mode and N-mode are adapted accordingly, and vice versa.

For details see the R&S FSV/A User Manual.

Suffix: <pb></pb>	1n Selects the connector: 3 = RF
Parameters: <cmoffset></cmoffset>	Offset of the mean voltage between the positive and negative input terminal vs. ground Range: -16 V to +16 V Default unit: V

[SENSe:]PROBe<pb>:SETup:DMOFfset <DMOffset>

Sets the DM-mode offset. The setting is only available if a modular probe in DM-mode is connected to the R&S FSV/A.

If the probe is disconnected, the DM-mode offset of the probe is reset to 0.0 V.

Note that if the offset for DM-mode or CM-mode is changed, the offsets for the P-mode and N-mode are adapted accordingly, and vice versa.

For details see the R&S FSV/A User Manual.

Suffix:

> 1..n Selects the connector: 3 = RF

Parameters:

<dmoffset></dmoffset>	Voltage offset between the positive and negative input terminal
	Default unit: V

[SENSe:]PROBe<pb>:SETup:MODE <Mode>

Suffix:	
<pb></pb>	1n
	Selects the connector:
	3 = RF
Parameters:	
<mode></mode>	RSINgle NOACtion
	RSINgle
	Run single: starts one data acquisition.
	NOACtion
	Nothing is started on pressing the micro button.

[SENSe:]PROBe<pb>:SETup:NAME?

Queries the name of the probe.

Suffix: <pb></pb>	1n Selects the connector: 3 = RF
Return values: <name></name>	String containing the name of the probe.
Example:	<pre>//Query name of the probe PROB3:SET:NAME?</pre>
Usage:	Query only

[SENSe:]PROBe<pb>:SETup:NMOFfset <NMOffset>

Sets the N-mode offset. The setting is only available if a modular probe in N-mode is connected to the R&S FSV/A. The maximum voltage difference between the positive and negative input terminals is 16 V.

If the probe is disconnected, the N-mode offset of the probe is reset to 0.0 V.

Note that if the offset for DM-mode or CM-mode is changed, the offsets for the P-mode and N-mode are adapted accordingly, and vice versa.

For details see the R&S FSV/A User Manual.

Suffix:

<pb>

- ---

1..n Selects the connector: 3 = RF

Parameters:

<NMOffset>

The voltage offset between the negative input terminal and ground. Default unit: V

[SENSe:]PROBe<pb>:SETup:PMODe <Mode>

Determines the mode of a multi-mode modular probe.

For details see the R&S FSV/A User Manual.

Suffix:	
<pb></pb>	1n
	Selects the connector:
	3 = RF
Parameters:	
<mode></mode>	CM DM PM NM
	DM
	Voltage between the positive and negative input terminal
	СМ
	Mean voltage between the positive and negative input terminal vs. ground
	PM
	Voltage between the positive input terminal and ground
	NM
	Voltage between the negative input terminal and ground
Example:	SENS:PROB:SETU:PMOD PM
-	Sets the probe to P-mode.

[SENSe:]PROBe<pb>:SETup:PMOFfset <PMOffset>

Sets the P-mode offset. The setting is only available if a modular probe in P-mode is connected to the R&S FSV/A. The maximum voltage difference between the positive and negative input terminals is 16 V.

If the probe is disconnected, the P-mode offset of the probe is reset to 0.0 V.

Note that if the offset for DM-mode or CM-mode is changed, the offsets for the P-mode and N-mode are adapted accordingly, and vice versa.

For details see the R&S FSV/A User Manual.

Suffix:

<pb>

1..n Selects the connector: 3 = RF

Parameters:

<PMOffset>

The voltage offset between the positive input terminal and ground. Default unit: V

[SENSe:]PROBe<pb>:SETup:STATe?

Queries if the probe at the specified connector is active (detected) or not active (not detected).

Suffix:	
<pb></pb>	1n Selects the connector: 3 = RF
Return values:	
<state></state>	DETected NDETected
Example:	//Query connector state PROB3:SET:STAT?
Usage:	Query only

[SENSe:]PROBe<pb>:SETup:TYPE?

Queries the type of the probe.

Suffix: <pb>

1..n Selects the connector: 3 = RF

Return values:

<Type>

String containing one of the following values: -"None" (no probe detected)

-"active differential"

Example:	–"active modular" //Query probe type
	PROB3:SET:TYPE?
Usaye.	Query only

9.4.3.6 Frontend settings

The frequency and amplitude settings represent the "frontend" of the measurement setup.

•	Frequency	189
•	Reference level	190
•	Attenuation	192

Frequency

[SENSe:]FREQuency:CENTer	. 189
[SENSe:]FREQuency:CENTer:STEP	189
[SENSe:]FREQuency:CENTer:STEP:AUTO	190
[SENSe ⁻]EREQuency:OEESet	190

[SENSe:]FREQuency:CENTer <Frequency>

Defines the center frequency.

Parameters:

<frequency></frequency>	For the allowed range and f _{max} , refer to the specifications docu- ment. *RST: fmax/2 Default unit: Hz		
Example:	FREQ:CENT 100 MHz FREQ:CENT:STEP 10 MHz FREQ:CENT UP Sets the center frequency to 110 MHz.		
Manual operation:	See "Center Frequency" on page 68		

[SENSe:]FREQuency:CENTer:STEP <StepSize>

Defines the center frequency step size.

Parameters:

<StepSize> For f_{max}, refer to the specifications document. Range: 1 to fMAX *RST: 0.1 x span Default unit: Hz

Example: //Set the center frequency to 110 MHz. FREQ:CENT 100 MHz FREQ:CENT:STEP 10 MHz FREQ:CENT UP

Manual operation: See "Center Frequency Stepsize" on page 68

[SENSe:]FREQuency:CENTer:STEP:AUTO <State>

Defines the step width of the center frequency.

Parameters:

<state></state>	ON 1 Links the step width to the current standard (currently 1 MHz for all standards)		
	OFF 0 Sets the step width as defined using the FREQ:CENT:STEP command (see [SENSe:]FREQuency:CENTer:STEP on page 189).		
Manual operation:	See "Center Frequency Stepsize" on page 68		

[SENSe:]FREQuency:OFFSet <Offset>

Defines a frequency offset.

If this value is not 0 Hz, the application assumes that the input signal was frequency shifted outside the application. All results of type "frequency" will be corrected for this shift numerically by the application.

Parameters:

<offset></offset>	Range: *RST: Default unit	-1 THz to 1 THz 0 Hz : HZ
Example:	FREQ:OFFS	5 1GHZ
Manual operation:	See "Frequ	ency Offset" on page 68

Reference level

DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:RLEVel</t></w></n>	.190
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:RLEVel:OFFSet</t></w></n>	191
[SENSe:]ADJust:LEVel	191

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:RLEVel <ReferenceLevel>

Defines the reference level (for all traces in all windows).

With a reference level offset \neq 0, the value range of the reference level is modified by the offset.

Suffix:			
<n></n>	irrelevant		
<w></w>	subwindow Not supported by all applications		
<t></t>	irrelevant		
Parameters:			
<referencelevel></referencelevel>	The unit is variable.		
	Range: *RST: Default unit:	see specifications document 0 dBm DBM	
Example:	DISP:TRAC:Y:RLEV -60dBm		
Manual operation:	See "Reference Level" on page 69		

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:RLEVel:OFFSet <0ffset>

Defines a reference level offset (for all traces in all windows).

Suffix: <n></n>	irrelevant	
<w></w>	subwindow Not supported by all applications	
<t></t>	irrelevant	
Parameters: <offset></offset>	Range: *RST: Default unit:	-200 dB to 200 dB 0dB DB
Example:	DISP:TRAC:Y:RLEV:OFFS -10dB	
Manual operation:	See "Shifting the Display (Offset)" on page 70	

[SENSe:]ADJust:LEVel

Initiates a single (internal) measurement that evaluates and sets the ideal reference level for the current input data and measurement settings. Thus, the settings of the RF attenuation and the reference level are optimized for the signal level. The R&S FSV/A is not overloaded and the dynamic range is not limited by an S/N ratio that is too small.

Example: ADJ:LEV

Manual operation: See "Setting the Reference Level Automatically (Auto Level)" on page 70

Attenuation

INPut:ATTenuation	192
INPut:ATTenuation:AUTO	192
INPut:ATTenuation:AUTO:MODE	193
INPut:EATT	193
INPut:EATT:AUTO	.193
INPut:EATT:STATe	194
INPut:SANalyzer:ATTenuation	194
INPut:SANalyzer:ATTenuation:AUTO	194

INPut: ATTenuation < Attenuation>

Defines the total attenuation for RF input.

If you set the attenuation manually, it is no longer coupled to the reference level, but the reference level is coupled to the attenuation. Thus, if the current reference level is not compatible with an attenuation that has been set manually, the command also adjusts the reference level.

If an external frontend is active (see [SENSe:]EFRontend[:STATe] on page 176), you can configure the attenuation of the external frontend and the analyzer separately. See also INPut:SANalyzer:ATTenuation:AUTO on page 194 and INPut: SANalyzer:ATTenuation on page 194.

Parameters:

<attenuation></attenuation>	Range: Increment: *RST: Default unit:	see specifications document 5 dB (with optional electr. attenuator: 1 dB) 10 dB (AUTO is set to ON) DB
Example:	INP:ATT 30dB Defines a 30 dB attenuation and decouples the attenuation from the reference level.	
Manual operation:	See "Attenuation Mode / Value" on page 72	

INPut:ATTenuation:AUTO <State>

Couples or decouples the attenuation to the reference level. Thus, when the reference level is changed, the R&S FSV/A determines the signal level for optimal internal data processing and sets the required attenuation accordingly.

If an external frontend is active (see [SENSe:]EFRontend[:STATe] on page 176), you can configure the attenuation of the external frontend and the analyzer separately. See also INPut:SANalyzer:ATTenuation:AUTO on page 194 and INPut: SANalyzer:ATTenuation on page 194.

Parameters:

<State>

ON | OFF | 0 | 1 *RST: 1

Example:	INP:ATT:AUTO ON
	Couples the attenuation to the reference level.
Manual operation:	See "Attenuation Mode / Value" on page 72

INPut:ATTenuation:AUTO:MODE <OptMode>

Selects the priority for signal processing after the RF attenuation has been applied.

Parameters:				
<optmode></optmode>	LNOise I	LNOise LDIStortion		
	LNOise			
	Optimized	Optimized for high sensitivity and low noise levels		
	LDIStortion			
	Optimized	for low distortion by avoiding intermodulation		
	*RST:	LDIStortion (WLAN application: LNOise)		
Example:	INP:ATT	INP:ATT:AUTO:MODE LNO		

INPut:EATT <Attenuation>

Defines an electronic attenuation manually. Automatic mode must be switched off (INP:EATT:AUTO OFF, see INPut:EATT:AUTO on page 193).

If the current reference level is not compatible with an attenuation that has been set manually, the command also adjusts the reference level.

Parameters:

<attenuation></attenuation>	attenuation in dB		
	Range: Increment: *RST: Default unit	see specifications document 1 dB 0 dB (OFF) : DB	
Example:	INP:EATT:AUTO OFF INP:EATT 10 dB		
Manual operation:	See "Using	Electronic Attenuation" on page 72	

INPut:EATT:AUTO <State>

Turns automatic selection of the electronic attenuation on and off.

If on, electronic attenuation reduces the mechanical attenuation whenever possible.

Parameters:

<State>

ON | OFF | 0 | 1 OFF | 0 Switches the function off ON | 1 Switches the function on *RST: 1

Example: INP:EATT:AUTO OFF

Manual operation: See "Using Electronic Attenuation" on page 72

INPut:EATT:STATe <State>

Turns the electronic attenuator on and off.

Parameters:		
<state></state>	ON OFF 0 1	
	OFF 0 Switches the function off	
	ON 1 Switches the function on *RST: 0	
Example:	INP:EATT:STAT ON Switches the electronic attenuator into the signal path.	
Manual operation	See "Using Electronic Attenuation" on page 72	

INPut:SANalyzer:ATTenuation < Attenuation>

Configures attenuation at the analyzer input for an active external frontend manually.

Parameters:

<attenuation></attenuation>	Range:	see specifications document
	Increment:	1 dB
	Default unit	DB
Manual operation:	See "Attenu	ation Mode / Value" on page 72

INPut:SANalyzer:ATTenuation:AUTO <State>

Enables or disables automatic configuration of attenuation at the analyzer input for an active external frontend.

By default, the attenuation settings are applied at the input of the external frontend.

See INPut:ATTenuation:AUTO on page 192 and INPut:ATTenuation on page 192.

Parameters:

<State>

ON | OFF | 0 | 1 **OFF | 0** Auto mode for analyzer attenuation is disabled. Allows you to configure attenuation at the analyzer using INPut: SANalyzer:ATTenuation on page 194.

ON | 1

Auto mode for analyzer attenuation is enabled. No attenuation is configured at the analyzer.

*RST:

0

Example:

//Enable external frontend EFR ON //Query the currently configured RF attenuation INP:ATT? //Result: 10 dB //Disable auto mode for analyzer attenuation INP:SAN:ATT:AUTO OFF //Configure 10 dB attenuation at the analyzer INP:SAN:ATT 10 //Query the currently configured RF attenuation at the ext. FE INP:ATT? //Result: 0 dB

Manual operation: See "Attenuation Mode / Value" on page 72

9.4.4 Triggering measurements

The trigger commands define the beginning of a measurement.

TRIGger[:SEQuence]:DTIMe	
TRIGger[:SEQuence]:IFPower:HOLDoff	196
TRIGger[:SEQuence]:HOLDoff[:TIME]	196
TRIGger[:SEQuence]:IFPower:HYSTeresis	
TRIGger[:SEQuence]:LEVel[:EXTernal <port>]</port>	
TRIGger[:SEQuence]:LEVel:IFPower	197
TRIGger[:SEQuence]:LEVel:IQPower	197
TRIGger[:SEQuence]:SLOPe	198
TRIGger[:SEQuence]:SOURce	
TRIGger[:SEQuence]:TIME:RINTerval	

TRIGger[:SEQuence]:DTIMe <DropoutTime>

Defines the time the input signal must stay below the trigger level before a trigger is detected again.

Parameters:

<dropouttime></dropouttime>	Dropout time of the trigger.	
	Range:	0 s to 10.0 s
	*RST:	0 s
	Default unit	t: S
Manual operation: See "Drop-Out Time" on p		Out Time" on page 77

TRIGger[:SEQuence]:IFPower:HOLDoff <Period>

Defines the holding time before the next trigger event.

Note that this command can be used for **any trigger source**, not just IF Power (despite the legacy keyword).

Parameters:

<period></period>	Range: *RST: Default unit:	0sto10s 0s :S
Example:	TRIG:SOUF Sets an exte TRIG:IFP: Sets the hol	EXT ernal trigger source. HOLD 200 ns ding time to 200 ns.
Manual operation:	See "Trigge	r Holdoff" on page 77

TRIGger[:SEQuence]:HOLDoff[:TIME] <Offset>

Defines the time offset between the trigger event and the start of the measurement.

Parameters: <offset></offset>	*RST: Default unit:	0 s S
Example:	TRIG:HOLD	500us
Manual operation:	See "Trigger	Offset" on page 76

TRIGger[:SEQuence]:IFPower:HYSTeresis <Hysteresis>

Defines the trigger hysteresis, which is only available for "IF Power" trigger sources.

Parameters:

<hysteresis></hysteresis>	Range: 3 dB to 50 dB *RST: 3 dB Default unit: DB
Example:	TRIG:SOUR IFP Sets the IF power trigger source. TRIG:IFP:HYST 10DB Sets the hysteresis limit value.

Manual operation: See "Hysteresis" on page 76

TRIGger[:SEQuence]:LEVel[:EXTernal<port>] <TriggerLevel>

Defines the level the external signal must exceed to cause a trigger event.

Suffix:		
<port></port>	Selects the trigger port. 1 = trigger port 1 (TRIGGER INPUT connector on front panel) 2 = trigger port 2 (TRIGGER INPUT/OUTPUT connector on front panel) 3 = trigger port 3 (TRIGGER3 INPUT/OUTPUT connector on rear panel)	
<port></port>	Selects the trigger port. 1 = trigger port 1 (TRIG IN connector on rear panel) 2 = trigger port 2 (TRIG AUX connector on rear panel)	
Parameters: <triggerlevel></triggerlevel>	Range: 0.5 V to 3.5 V *RST: 1.4 V Default unit: V	
Example:	TRIG:LEV 2V	
Manual operation:	See "Trigger Level" on page 76	

TRIGger[:SEQuence]:LEVel:IFPower <TriggerLevel>

Defines the power level at the third intermediate frequency that must be exceeded to cause a trigger event.

Note that any RF attenuation or preamplification is considered when the trigger level is analyzed. If defined, a reference level offset is also considered.

Parameters:

<triggerlevel></triggerlevel>	For details on available trigger levels and trigger bandwidths, see the specifications document.		
	*RST: -20 dBm Default unit: DBM		
Example:	TRIG:LEV:IFP -30DBM		

TRIGger[:SEQuence]:LEVel:IQPower <TriggerLevel>

Defines the magnitude the I/Q data must exceed to cause a trigger event.

Note that any RF attenuation or preamplification is considered when the trigger level is analyzed. If defined, a reference level offset is also considered.

Parameters:

<TriggerLevel> Range: -130 dBm to 30 dBm *RST: -20 dBm Default unit: DBM TRIG:LEV:IQP -30DBM

TRIGger[:SEQuence]:SLOPe <Type>

Parameters:	
-------------	--

<type></type>	POSitive NEGative POSitive Triggers when the signal rises to the trigger level (rising edge).		
	Example:	TRIG:SLOP	P NEG
Manual operation:	See "Slope" on page 77		

TRIGger[:SEQuence]:SOURce <Source>

Selects the trigger source.

Note on external triggers:

If a measurement is configured to wait for an external trigger signal in a remote control program, remote control is blocked until the trigger is received and the program can continue. Make sure that this situation is avoided in your remote control programs.

Parameters:

<source/>	IMMediate Free Run	
	EXTernal Trigger signal from the "Trigger Input" connector. Trigger signal from the "Trigger In" connector. If power splitter mode is active, this parameter activates the "EXT TRIGGER INPUT" connector on the oscilloscope. Then the R&S FSV/A triggers when the signal fed into the "EXT TRIG- GER INPUT" connector on the oscilloscope meets or exceeds the specified trigger level.	
	EXT2 Trigger signal from the "Trigger Input/Output" connector. Note: Connector must be configured for "Input". Trigger signal from the "Trigger AUX" connector. *RST: IMMediate	
Example:	TRIG: SOUR EXT Selects the external trigger input as source of the trigger signal	
Manual operation:	See "Trigger Source" on page 74 See "Free Run" on page 74 See "External Trigger 1/2" on page 74 See "IF Power" on page 75 See "I/Q Power" on page 75 See "RF Power" on page 75 See "Time" on page 76	

TRIGger[:SEQuence]:TIME:RINTerval <Interval>

Defines the repetition interval for the time trigger.

Parameters:

<interval></interval>	numeric value	
	Range: *RST: Default unit	1 us to 15 s 10 ms : S
Example:	TRIG: SOUR TIME Selects the time trigger input for triggering TRIG: TIME: RINT 5 The measurement starts every 5 s.	
Manual operation:	See "Repet	ition Interval" on page 76

9.4.5 Configuring data acquisition

INPut:FILTer:CHANnel:HPASs:FDBBw?	
INPut:FILTer:CHANnel:HPASs:SDBBw	
INPut:FILTer:CHANnel:HPASs[:STATe]	
INPut:FILTer:CHANnel[:LPASs]:FDBBw	
INPut:FILTer:CHANnel[:LPASs]:SDBBw	200
INPut:FILTer:CHANnel[:LPASs][:STATe]	200
[SENSe:]CAPTure:OVERsampling	201
[SENSe:]SWAPiq	
[SENSe:]SWEep:COUNt	
[SENSe:]SWEep:LENGth	202
[SENSe:]SWEep:TIME	
TRACe:IQ:BWIDth	
TRACe:IQ:SRATe	203
TRACe:IQ:WBANd[:STATe]	
TRACe:IQ:WBANd:MBWidth	

INPut:FILTer:CHANnel:HPASs:FDBBw?

Return values:

<frequency></frequency>	Default unit: HZ
Usage:	Query only
Manual operation:	See "50-dB Bandwidth" on page 81

INPut:FILTer:CHANnel:HPASs:SDBBw <Frequency>

Configures the bandwidth of the high pass filter at which an attenuation of 6 dB is reached. The filter bandwidth cannot be higher than the current sample rate. If necessary, the filter bandwidth is adapted to the current sample rate.

Parameters: <frequency></frequency>	Default unit: HZ	
Example:	INPU:FILT:CHAN:HPAS:SDBB 30	MHZ
Manual operation:	See "6-dB Bandwidth" on page 80	

INPut:FILTer:CHANnel:HPASs[:STATe] <State>

Activates an additional internal highpass filter.

Parameters:		
<state></state>	ON OFF 0 1	
	OFF 0	
	Switches the filter off.	
	ON 1	
	Switches the filter on	
	*RST: 0	
Example:	INP:FILT:CHAN:HPAS ON	
Manual operation:	See "Highpass Filter State" on page 80	

INPut:FILTer:CHANnel[:LPASs]:FDBBw <Frequency>

Configures the 50-dB frequency of the channel filter. The 50-dB frequency is the distance from the center of the filter to the point at which the filter reaches an attenuation of 50 dB. This frequency must always be larger than the 6-dB passband (see INPut: FILTer:CHANnel[:LPASs]:SDBBw on page 200).

Parameters	::
------------	----

<frequency></frequency>	Default unit: HZ
Example:	INP:FILT:CHAN:FDBB 40MHZ
Manual operation:	See "50-dB Bandwidth" on page 80

INPut:FILTer:CHANnel[:LPASs]:SDBBw <Frequency>

Configures the 6-dB bandwidth of the channel filter. The filter bandwidth cannot be higher than the current 50-dB frequency (see INPut:FILTer:CHANnel[:LPASs]: FDBBw on page 200).

Parameters:

<frequency></frequency>	Default unit: HZ	
Example:	INP:FILT:CHAN:SDBB 30M	ΊΗZ
Manual operation:	See "6-dB Bandwidth" on page	je 80

INPut:FILTer:CHANnel[:LPASs][:STATe] <State>

Turns an adjustable (lowpass) channel filter in the signal path on and off.

You can define its characteristics with

- INPut:FILTer:CHANnel[:LPASs]:SDBBw on page 200
- INPut:FILTer:CHANnel[:LPASs]:FDBBw on page 200

Parameters:

<state></state>	ON OFF	
	*RST:	OFF
Example:	INP:FILT:CHAN ON	
	Turns on the	e adjustable channel filter.

Manual operation: See "Filter State" on page 80

[SENSe:]CAPTure:OVERsampling < Oversampling Value> [SENSe:]CAPTure:OVERsampling? < OversamplingValue>

Enables or disables a capture oversampling factor.

ramotore for cotti A

<pre>Parameters for setting and query: <oversamplingvalue>1 2</oversamplingvalue></pre>		
	1 Capture oversampling is disabled (capture sample rate = system sample rate)	
	2 Oversampling factor 2 is enabled (capture sampling rate = 2*system sample rate)	
Example:	TRACe:IQ:SRATe 2 MHz SENSe:CAPTure:OVERsampling 2 Capture sample rate = 4 MHz	
Manual operation:	See "Oversampling / Capture Sample Rate" on page 78	

[SENSe:]SWAPiq <State>

Defines whether or not the recorded I/Q pairs should be swapped (I<->Q) before being processed. Swapping I and Q inverts the sideband.

This is useful if the DUT interchanged the I and Q parts of the signal; then the R&S FSV/A can do the same to compensate for it.

Parameters:

<state></state>	ON 1 I and Q signals are interchanged Inverted sideband, Q+j*I	
	OFF 0 I and Q signals are not interchanged Normal sideband, I+j*Q	
	*RST: 0	
Manual operation:	See "Swap I/Q" on page 79	

[SENSe:]SWEep:COUNt <SweepCount>

This command defines the number of measurements that the application uses to average traces.

In case of continuous measurement mode, the application calculates the moving average over the average count.

In case of single measurement mode, the application stops the measurement and calculates the average after the average count has been reached.

Suffix: <n></n>	Window
Example:	SWE:COUN 64
	Sets the number of measurements to 64.
	INIT:CONT OFF
	Switches to single measurement mode.
	INIT;*WAI
	Starts a measurement and waits for its end.

[SENSe:]SWEep:LENGth <Length>

Defines the number of samples to be captured during each measurement.

Parameters: <length></length>	integer	
	Range:	1 to 8 000 000
Example:	SENSe:SW	Eep:LENGth 1001
Manual operation:	See "Capt	ure Length" on page 78

[SENSe:]SWEep:TIME <Time>

Defines the measurement time. It automatically decouples the time from any other settings.

Parameters:

<time></time>	refer to specifications document	
	*RST:	depends on current settings (determined automati- cally)
	Default unit	S
Manual operation:	See "Captu	re Time" on page 78

TRACe:IQ:BWIDth <Bandwidth>

Queries the bandwidth in Hz of the resampling filter ("Usable I/Q Bandwidth").

Parameters:

<Bandwidth>

Usable I/Q bandwidth Default unit: Hz **Example:** TRAC1:IQ:BWID?

TRACe:IQ:SRATe <SampleRate>

Sets the final user sample rate for the acquired I/Q data. Thus, the user sample rate can be modified without affecting the actual data capturing settings on the R&S FSV/A.

Parameters: <SampleRate>

*RST: 32 MHz Default unit: HZ

Manual operation: See "Sample Rate" on page 78

TRACe:IQ:WBANd[:STATe] <State>

Determines whether the wideband provided by bandwidth extension options is used or not (if installed).

Parameters:

<State> ON | OFF | 0 | 1 OFF | 0 Switches the function off ON | 1 Switches the function on

Manual operation: See "Maximum Bandwidth" on page 79

TRACe:IQ:WBANd:MBWidth <Limit>

Defines the maximum analysis bandwidth. Any value can be specified; the next higher fixed bandwidth is used.

Defining a value other than "MAX" is useful if you want to specify the sample rate directly and at the same time, ensure a minimum bandwidth is available.

Parameters:

<Limit>

40 MHz

Restricts the analysis bandwidth to a maximum of 40 MHz. Larger bandwidth extension options are deactivated.

200 MHz

Restricts the analysis bandwidth to a maximum of 200 MHz. Larger bandwidth extension options are deactivated.

400 MHz

Restricts the analysis bandwidth to a maximum of 400 MHz. Larger bandwidth extension options are deactivated.

600 MHz

Restricts the analysis bandwidth to a maximum of 600 MHz. The bandwidth extension option R&S FSV3-B1000/B1001 is deactivated.

*RST: maximum available

	Default unit: Hz
Example:	TRAC:IQ:WBAN:MBW 82 MHZ TRAC:IQ:WBAN:MBW?
	Result if R&S FSV3-B200 is active: 200000000
Manual operation:	See "Maximum Bandwidth" on page 79

9.4.6 Enabling a burst search

[SENSe:]DEMod:FORMat:BURSt <State>

Turns a search for bursted OFDM signals on and off.

Parameters:				
<state></state>	ON OFF	ON OFF		
	*RST:	ON		
Example:	dem:for Turns on	M:BURS ON the burst search.		
Manual operation:	See "Burs	st Search State" on pag	je 83	

9.4.7 Defining the result range

The result range determines which part of the capture buffer or burst is displayed.

[SENSe:]DEMod:FORMat:MAXFrames	
[SENSe:]DEMod:FORMat:NOFSymbols	204

[SENSe:]DEMod:FORMat:MAXFrames <NFrames>

Defines the maximum number of frames to be demodulated.

Parameters:	
<nframes></nframes>	Numeric value.
	*RST: 1
Example:	DEM: FORM: MAXF 10 Defines a maximum of 10 frames to be demodulated.
Manual operation:	See "Statistic Config / Max No of Frames to Analyze" on page 82

[SENSe:]DEMod:FORMat:NOFSymbols <NSymbols>

Defines the number of symbols in a frame.

Note that frames with fewer symbols are not analyzed.

Parameters: <nsymbols></nsymbols>	Range: *RST:	4 to 2000 10
Example:	DEM: FORM Defines 44	NOFS 44 symbols per frame.
Manual operation:	See "Resul	t Length" on page 83

9.4.8 Synchronization, tracking and demodulation

[SENSe:]COMPensate:CHANnel	
[SENSe:]DEMod:CDD	
[SENSe:]DEMod:COFFset	
[SENSe:]DEMod:FFTShift	206
[SENSe:]DEMod:FSYNc	
[SENSe:]DEMod:MDETect	
[SENSe:]DEMod:THReshold:TIME	207
[SENSe:]DEMod:THReshold:FRAMe	
[SENSe:]DEMod:TSYNc	
SENSe:TRACking:LEVel	208
SENSe:TRACking:PHASe	208
SENSe:TRACking:TIME	

[SENSe:]COMPensate:CHANnel <State>

Turns compensation for the estimated channel transfer function on and off.

Parameters:		
<state></state>	ON OFF	
	*RST:	ON
Example:	COMP:CHA Turns on c	N ON hannel compensation.
Manual operation:	See "Chan	nel Compensation" on page 86

[SENSe:]DEMod:CDD <Delay>

Defines the cyclic delay.

Parameters:

<delay></delay>	Cyclic delay in samples.	
	Range: *RST:	<pre>-<fft size=""> to +<fft size=""> 0</fft></fft></pre>
Example:	DEM:CDD S Defines a c	5 yclic delay of 5 samples.
Manual operation:	See "Cyclic	Delay" on page 87

[SENSe:]DEMod:COFFset <Offset>

Defines the maximum allowed carrier offset for frame synchronization.

Parameters: <offset></offset>	Frequenc	y offset in terms of (sub)carriers.
	Range: *RST:	0 to 16 0
Example:	SENS:DE Frame syn of up to tv	M:COFF 2 nchronization can cope with a signal frequency offset vo subcarrier spacings.
Manual operation:	See "Max	imum Carrier Offset" on page 87

[SENSe:]DEMod:FFTShift <IQSamplingRate>

Defines an offset for the FFT start sample in the guard interval.

Parameters:

<iqsamplingrate></iqsamplingrate>	Numeric value that defines the FFT shift. The value is normalized to the length of the guard interval. If a cyclic suffix is used, the FFT shift can be a negative value down to -1* (cyclic suffix length / cyclic prefix length) *RST: 0.5	
Example:	DEM: FFTS 0.6 Defines an FFT shift of 0.6.	
Manual operation:	See "FFT Shift relative to Cyclic Prefix Length" on page 87	

[SENSe:]DEMod:FSYNc <Mode>

Selects the parameter estimation mode.

Parameters:

<mode></mode>	DATA Demodulator uses pilot and data cells for synchronization.
	PIL Demodulator uses only pilot cells for synchronization.
	NONE Return value only. The software returns NONE if no configuration file has been loa- ded
	*RST: PIL
Example:	DEM: FSYN PIL Selects synchronization based on the pilot cells.
Manual operation:	See "Parameter Estimation" on page 84

[SENSe:]DEMod:MDETect <Mode>

Selects the auto demodulation mode.

Dai	ram	nta	re	
га	an	ICIC	13	

<mode></mode>	CARR		
	Assumes one constellation for all data cells in the carriers.		
	CFG		
	Evaluates the modulation matrix within the configuration file.		
	SYMBAssigns the data cells of each symbol to one constellation.*RST:CFG		
Example:	DEM:MDET CFG Selects evaluation of the modulation matrix in the configuration file.		
Manual operation:	See "Modulation Detection" on page 85		

[SENSe:]DEMod:THReshold:TIME <Reliability>

Sets and queries the reliability threshold for time synchronisation.

Values between 0 and 1 are allowed, where:

- 0: low threshold, a very poor reliability is sufficient to synchronize successfully (always fulfilled)
- 1: high threshold, time synchronization must be absolutely reliable to be successful (only possible for ideal signal).

The default value is 0.5, that means: for a reliability of 50 %, time synchronization is successful.

Parameters:

<reliability></reliability>	Range: *RST:	0 to 1 0.5
Example:	SENS:DEM	:THR:TIME 0.5
Manual operation:	See "Minim	um Time Sync Metric" on page 85

[SENSe:]DEMod:THReshold:FRAMe <Reliability>

Sets and queries the reliability threshold for frame synchronisation.

Values between 0 and 1 are allowed, where:

- 0: low threshold, a very poor correlation is sufficient to synchronize successfully (always fulfilled)
- 1: high threshold, correlation must be very precise for frame synchronization to be successful (only possible for ideal signal).

The default value is 0.5, that means: for a correlation of 50 %, frame synchronization is successful.

Parameters: <reliability></reliability>	Range: *RST:	0 to 1 0.5
Example:	SENS:DEM:THR:FRAM 0.5	
Manual operation:	See "Minimum Frame Sync Metric" on page 86	

[SENSe:]DEMod:TSYNc <Mode>

Selects the time synchronization mode.

Parameters:			
<mode></mode>	СР		
	Performs time synchronization by correlating the cyclic prefix.		
	PREamble Performs time synchronization by correlating the recurring pre- amble structure. *RST: CP		
Example:	DEM: TSYN CP Selects time synchronization based on the cyclic prefix.		
Manual operation:	See "Time Synchronization" on page 84		

SENSe:TRACking:LEVel <State>

Turns tracking of the power level on and off.

Note

The syntax element [SENSe] is not optional for this command.

Parameters:		
<state></state>	ON OFF	
	*RST:	OFF
Example:	sens:tra Turns on p	C:LEV ON ower level tracking.
Manual operation:	See "Level	Tracking" on page 86

SENSe:TRACking:PHASe <State>

Turns phase tracking on and off.

Note

The syntax element [SENSe] is not optional for this command.

Parameters:

<State>

ON | OFF *RST: ON

Example:	SENS:TRAC:PHAS ON
	Turns on phase tracking.
Manual operation:	See "Phase Tracking" on page 86

SENSe:TRACking:TIME <State>

Turns tracking of the sample clock deviation on and off.

Note

The syntax element [SENSe] is not optional for this command.

Parameters:

<state></state>	ON OFF		
	*RST:	OFF	
Example:	SENS: TRAG	C:TIME ON acking of sample clock deviations.	
Manual operation:	See "Timing Tracking" on page 86		

9.4.9 Adjusting settings automatically

Some settings can be adjusted by the R&S FSV/A automatically according to the current measurement settings.

Useful commands for adjusting settings automatically described elsewhere:

[SENSe:]ADJust:LEVel on page 191

Remote commands exclusive to adjusting settings automatically:

[SENSe:]ADJust:CONFigure:LEVel:DURation	209
[SENSe:]ADJust:CONFigure:LEVel:DURation:MODE	. 210
[SENSe:]ADJust:CONFigure:HYSTeresis:LOWer	. 210
[SENSe:]ADJust:CONFigure:HYSTeresis:UPPer	210
[SENSe:]ADJust:CONFigure:TRIGger	211

[SENSe:]ADJust:CONFigure:LEVel:DURation < Duration>

To determine the ideal reference level, the R&S FSV/A performs a measurement on the current input data. This command defines the length of the measurement if [SENSe:]ADJust:CONFigure:LEVel:DURation:MODE is set to MANual.

Parameters:

<Duration>

Numeric value in seconds Range: 0.001 to 16000.0 *RST: 0.001 Default unit: s

Example: ADJ:CONF:DUR:MODE MAN Selects manual definition of the measurement length. ADJ:CONF:LEV:DUR 5ms Length of the measurement is 5 ms.

[SENSe:]ADJust:CONFigure:LEVel:DURation:MODE <Mode>

To determine the ideal reference level, the R&S FSV/A performs a measurement on the current input data. This command selects the way the R&S FSV/A determines the length of the measurement .

Parameters:

<Mode>

AUTO The R&S FSV/A determines the measurement length automati-

cally according to the current input data.

MANual

The R&S FSV/A uses the measurement length defined by [SENSe:]ADJust:CONFigure:LEVel:DURation on page 209.

*RST: AUTO

[SENSe:]ADJust:CONFigure:HYSTeresis:LOWer <Threshold>

Parameters:	
<threshold></threshold>	Range: 0 dB to 200 dB *RST: +1 dB Default unit: dB
Example:	SENS:ADJ:CONF:HYST:LOW 2 For an input signal level of currently 20 dBm, the reference level is only adjusted when the signal level falls below 18 dBm.

[SENSe:]ADJust:CONFigure:HYSTeresis:UPPer <Threshold>

Parameters:		
<threshold></threshold>	Range: *RST: Default unit:	0 dB to 200 dB +1 dB dB
Example:	SENS:ADJ:	CONF:HYST:UPP 2
Example:	For an input is only adjus	signal level of currently 20 dBm, the reference level sted when the signal level rises above 22 dBm.

[SENSe:]ADJust:CONFigure:TRIGger <State>

Defines the behavior of a triggered measurement when adjusting a setting automatically (using SENS:ADJ:LEV ON, for example).

Parameters:

<State> ON | OFF | 0 | 1 ON | 1 (default:) The measurement for adjustment waits for the next trigger. **OFF | 0** The measurement for adjustment is performed without waiting for a trigger (corresponds to "Continue" in manual operation). *RST: 0 Example: //Use default ref level at 0.00 dBm. //Define an RF power trigger at -20 dBm :TRIG:SEQ:SOUR RFP :TRIG:SEQ:LEV:RFP -20 //Perform adjustment measurement without waiting for trigger SENS:ADJ:CONF:TRIG OFF //Perform auto level adjustment :SENS:ADJ:LEV;*WAI

9.4.10 Output settings

The following commands are required to query or provide output at the R&S FSV/A connectors.

DIAGnostic:SERVice:NSOurce <State>

Turns the 28 V supply of the BNC connector labeled [noise source control] on the R&S FSV/A on and off.

Parameters:

<state></state>	ON OFF 0 1	
	OFF 0 Switches the function off	
	ON 1 Switches the function on	
Example:	DIAG:SERV:NSO ON	
Manual operation:	See "Noise Source Control" on page 65	

OUTPut:IF:SBANd?

Queries the sideband provided at the "IF OUT 2 GHz" connector compared to the sideband of the RF signal. The sideband depends on the current center frequency.

Return values:

<sideband></sideband>	NORMalThe sideband at the output is identical to the RF signal.INVertedThe sideband at the output is the inverted RF signal sideband.
Example:	OUTP:IF IF2 Activates output at the IF OUTPUT (2 GHZ) connector. OUTP:IF:SBAN? Queries the sideband provided at the connector.
Usage:	Query only

OUTPut:IF[:SOURce] <Source>

Defines the type of signal available at one of the output connectors of the R&S FSV/A.

Parameters:	
<source/>	IF
	The measured IF value is available at the IF output connector.
	This connector is only available if the R&S FSV3-B5 option is
	installed.
	*RST: IF
Example:	OUTP:IF VID
	Selects the video signal for the IF output connector.

9.4.11 Configuring the trigger output

The following commands are required to send the trigger signal to one of the variable "TRIGGER INPUT/OUTPUT" connectors on the R&S FSV/A.

OUTPut:TRIGger <tp>:DIRection</tp>	212
OUTPut:TRIGger <tp>:LEVel</tp>	
OUTPut:TRIGger <tp>:OTYPe</tp>	
OUTPut:TRIGger <tp>:PULSe:IMMediate</tp>	214
OUTPut:TRIGger <tp>:PULSe:LENGth</tp>	214

OUTPut:TRIGger<tp>:DIRection < Direction>

Selects the trigger direction for trigger ports that serve as an input as well as an output.

Suffix: <tp>

Parameters:

<Direction>

INPut | OUTPut

INPut Port works as an input. OUTPut Port works as an output. *RST: INPut

Manual operation: See "Trigger 1/2" on page 66

OUTPut:TRIGger<tp>:LEVel <Level>

Defines the level of the (TTL compatible) signal generated at the trigger output.

Works only if you have selected a user-defined output with OUTPut:TRIGger<tp>: OTYPe.

Suffix:

<tp></tp>	 1n Selects the trigger port to which the output is sent. 2 = trigger port 2 (front) 3 = trigger port 3 (rear) 2 = Trigger 2 Input / Output 	
Parameters:		
<level></level>	HIGH	
	5 V	
	*RST: LOW	
Example:	OUTP:TRIG2:LEV HIGH	
Manual operation:	See "Level" on page 67	

OUTPut:TRIGger<tp>:OTYPe <OutputType>

Selects the type of signal generated at the trigger output.

Suffix:

<tp>

1n
Selects the trigger port to which the output is sent.
2 = trigger port 2 (front)
3 = trigger port 3 (rear)
2 = Trigger 2 Input / Output

Parameters:

<OutputType>

DEVice

Sends a trigger signal when the R&S FSV/A has triggered internally.

TARMed

Sends a trigger signal when the trigger is armed and ready for an external trigger event.

Performing a measurement

UDEFined

Sends a user-defined trigger signal. For more information, see OUTPut:TRIGger<tp>:LEVel.

*RST: DEVice

Manual operation: See "Output Type" on page 66

OUTPut:TRIGger<tp>:PULSe:IMMediate

Generates a pulse at the trigger output.

Suffix:

• • • • • • • • • • • • • • • • • • • •	
<tp></tp>	1n
	Selects the trigger port to which the output is sent.
	2 = trigger port 2 (front)
	3 = trigger port 3 (rear)
	2 = Trigger 2 Input / Output
Manual operation:	See "Send Trigger" on page 67

OUTPut:TRIGger<tp>:PULSe:LENGth <Length>

Defines the length of the pulse generated at the trigger output.

 Suffix:

 <tp>
 Selects the trigger port to which the output is sent.

 2 = trigger port 2 (front)

 3 = trigger port 3 (rear)

 2 = Trigger 2 Input / Output

 Parameters:

 <Length>

 Pulse length in seconds.

 Default unit: S

 Example:
 OUTP:TRIG2:PULS:LENG 0.02

 Manual operation:
 See "Pulse Length" on page 67

9.5 Performing a measurement

When the VSA application is activated, a continuous sweep is performed automatically. However, you can stop and start a new measurement any time.

Furthermore, you can perform a sequence of measurements using the Sequencer (see "Multiple Measurement Channels and Sequencer Function" on page 11).

ABORt	
INITiate <n>:CONMeas</n>	215
INITiate <n>:CONTinuous</n>	
INITiate <n>[:IMMediate]</n>	216
INITiate <n>:REFResh</n>	216

Performing a measurement

INITiate:SEQuencer:ABORt	217
INITiate:SEQuencer:IMMediate	217
SYSTem:SEQuencer	217

ABORt

Aborts the measurement in the current channel and resets the trigger system.

To prevent overlapping execution of the subsequent command before the measurement has been aborted successfully, use the *OPC? or *WAI command after ABOR and before the next command.

For details on overlapping execution see Remote control via SCPI.

Note on blocked remote control programs:

If a sequential command cannot be completed, for example because a triggered sweep never receives a trigger, the remote control program will never finish and the remote channel to the R&S FSV/A is blocked for further commands. In this case, you must interrupt processing on the remote channel first in order to abort the measurement.

To do so, send a "Device Clear" command from the control instrument to the R&S FSV/A on a parallel channel to clear all currently active remote channels. Depending on the used interface and protocol, send the following commands:

• **Visa**: viClear()

Now you can send the ABORt command on the remote channel performing the measurement.

Example:	ABOR; : INIT: IMM Aborts the current measurement and immediately starts a new one.
Example:	ABOR; *WAI INIT: IMM Aborts the current measurement and starts a new one once abortion has been completed.
Usage:	Event

INITiate<n>:CONMeas

Restarts a (single) measurement that has been stopped (using ABORt) or finished in single measurement mode.

The measurement is restarted at the beginning, not where the previous measurement was stopped.

Suffix: <n>

Usage: Asynchronous command

irrelevant

INITiate<n>:CONTinuous <State>

Controls the measurement mode for an individual channel.

Note that in single measurement mode, you can synchronize to the end of the measurement with *OPC, *OPC? or *WAI. In continuous measurement mode, synchronization to the end of the measurement is not possible. Thus, it is not recommended that you use continuous measurement mode in remote control, as results like trace data or markers are only valid after a single measurement end synchronization.

For details on synchronization see Remote control via SCPI.

Suffix: <n></n>	irrelevant	
Parameters: <state></state>	ON OFF 0 ON 1 Continuous r OFF 0 Single meas *RST:) 1 measurement urement 1 (some applications can differ)
Example:	INIT: CONT Switches the INIT: CONT Switches the	OFF measurement mode to single measurement. ON measurement mode to continuous measurement.
Manual operation:	See "Continu	uous Sweep / Run Cont" on page 81

INITiate<n>[:IMMediate]

Starts a (single) new measurement.

You can synchronize to the end of the measurement with *OPC, *OPC? or *WAI.

For details on synchronization see Remote control via SCPI.

Suffix:	
<n></n>	irrelevant
Usage:	Asynchronous command
Manual operation:	See "Single Sweep / Run Single" on page 81

INITiate<n>:REFResh

Updates the current measurement results to reflect the current measurement settings.

No new I/Q data is captured. Thus, measurement settings apply to the I/Q data currently in the capture buffer.

The command applies exclusively to I/Q measurements. It requires I/Q data.
Suffix: <n></n>	irrelevant
Example:	INIT:REFR Updates the IQ measurement results.
Usage:	Asynchronous command
Manual operation:	See "Refresh" on page 82

INITiate:SEQuencer:ABORt

Stops the currently active sequence of measurements.

You can start a new sequence any time using INITiate: SEQuencer: IMMediate on page 217.

Usage: Event

INITiate:SEQuencer:IMMediate

Starts a new sequence of measurements by the Sequencer.

Before this command can be executed, the Sequencer must be activated (see SYSTem: SEQuencer on page 217).

Example:

SYST: SEQ ON Activates the Sequencer. INIT: SEQ: MODE SING Sets single sequence mode so each active measurement is performed once. INIT: SEQ: IMM Starts the sequential measurements.

SYSTem:SEQuencer <State>

Turns the Sequencer on and off. The Sequencer must be active before any other Sequencer commands (INIT:SEQ...) are executed, otherwise an error occurs.

Parameters:

<State>

ON | OFF | 0 | 1 **ON | 1** The Sequencer is

The Sequencer is activated and a sequential measurement is started immediately.

OFF | 0

The Sequencer is deactivated. Any running sequential measurements are stopped. Further Sequencer commands (INIT:SEQ...) are not available.

*RST:

0

 Example:
 SYST:SEQ ON

 Activates the Sequencer.

 INIT:SEQ:MODE SING

 Sets single Sequencer mode so each active measurement is

 performed once.

 INIT:SEQ:IMM

 Starts the sequential measurements.

 SYST:SEQ OFF

9.6 Analysis

General result analysis settings concerning the trace, markers, windows etc. can be configured.

٠	Result configuration	. 218
•	Scaling	. 221
•	Units for results	. 224
•	Working with markers	226
•	Zooming into the display	. 237

9.6.1 Result configuration

[SENSe:]DEMod:EVMCalc:FAVerage	218
[SENSe:]DEMod:EVMCalc:NORMalize	
CALCulate <n>:BITStream:FORMat</n>	
CONFigure:FILTer <n>:CARRier</n>	219
CONFigure:FILTer <n>:MODulation</n>	220
CONFigure:FILTer <n>:MODulation:TYPE</n>	
CONFigure:FILTer <n>:SYMBol</n>	

[SENSe:]DEMod:EVMCalc:FAVerage <Type>

Selects the averaging method for the mean EVM over multiple frames.

Parameters:

<type></type>	MSQ Mean EVM is based on squared EVM values.
	RMSMean EVM is directly based on the EVM values.*RST:MS
Example:	DEM:EVMC:FAV MS Selects EVM averaging based on squared EVM values
Manual operation:	See "Frame Averaging" on page 118

[SENSe:]DEMod:EVMCalc:NORMalize <Method>

Selects the normalization method for EVM results.

Parameters:	
<method></method>	NONE
	Normalization is turned off.
	PDAT
	EVM normalized to the peak value of the data cells.
	PPD
	EVM normalized to the peak value of the pilot and data cells.
	PPIL
	EVM normalized to the peak value of the pilot cells.
	RMSD
	EVM values normalized to the RMS value of the data cells.
	RPD
	EVM values normalized to the RMS value of the pilot and data cells.
	RMSP
	EVM values normalized to the RMS value of the pilot cells.
	*RST: RPD
Example:	DEM:EVMC:NORM RMSD
•	Selects normalization to the RMS value of the data cells.
Manual operation:	See "Normalize EVM to" on page 118
	-

CALCulate<n>:BITStream:FORMat <Mode>

Defines the format of the symbols for the Bitstream display.

Suffix:		
<n></n>	1n	
Parameters:		
<mode></mode>	BINary OC	Tal DECimal HEXadecimal
	*RST:	HEXadecimal
Example:	CALC2:BIT	S:FORM DEC
	Sets the bits	stream display on window 2 to use decimal format.

CONFigure:FILTer<n>:CARRier <CarrierNo>

The constellation diagram includes symbols for all or only for the specified carrier number.

The range of valid carrier numbers is:

[- FFT Size/2, +FFT Size/2]

Suffix:

<n></n>	1n Window
Parameters: <carrierno></carrierno>	ALL integer
Example:	CONF:FILT:CARR -2
Manual operation:	See "Constellation Display - Carrier" on page 119

CONFigure:FILTer<n>:MODulation < Modulation>

The constellation diagram includes only symbols for the selected modulation.

Suffix:	
<n></n>	1n
	Window
Parameters:	
<modulation></modulation>	ALL 'string'
	Modulation as defined in the configuration file.
Example:	CONF:FILT:MOD 'Zero'
Manual operation:	See "Constellation Display - Modulation" on page 118

CONFigure:FILTer<n>:MODulation:TYPE <ModType>

The constellation diagram includes only cells for the selected modulation type.

Suffix:	
<n></n>	1n
	Window
Parameters:	
<modtype></modtype>	PDATa PILots DATA
	PDATa
	Pilot and data cells
	PILots
	Pilot cells only
	DATA
	Data cells only
Example:	CONF:FILT:MOD:TYPE DATA
	Only data cells are displayed.
Manual operation:	See "Constellation Display - Modulation Type" on page 118

CONFigure:FILTer<n>:SYMBol <SymbolNo>

The constellation diagram includes all or only the specified symbol number. The first symbol is 0.

Suffix:	
<n></n>	1n
	Window
Parameters:	
<symbolno></symbolno>	ALL integer
Example:	CONF:FILT:SYMB 2
Manual operation:	See "Constellation Display - Symbol" on page 119

9.6.2 Scaling

DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:AUTO ONCE</t></w></n>	
DISPlay[:WINDow <n>][:SUBWindow<n>]:TRACe<t>:Y[:SCALe]:AUTO</t></n></n>	221
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]</t></w></n>	222
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:PDIVision</t></w></n>	
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:RPOSition</t></w></n>	
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:RVALue</t></w></n>	223
DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:MAXimum</t></n>	223
DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:MINimum</t></n>	223

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:AUTO ONCE

Automatic scaling of the y-axis is performed once, then switched off again (for all traces).

Suffix:

<n></n>	Window
<t></t>	irrelevant

DISPlay[:WINDow<n>][:SUBWindow<n>]:TRACe<t>:Y[:SCALe]:AUTO <State>

If enabled, the Y-axis is scaled automatically according to the current measurement.

Suffix:		
<n></n>	Window	
<w></w>	subwindow Not supported by all applications	
<t></t>	irrelevant	
Parameters for setting and query:		
	Switch the function off	
	ON	
	Switch the function on	
	*RST: ON	
Manual operation:	See "Automatic Grid Scaling" on page 121 See "Auto Scale Once" on page 121	

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe] <Range>

Defines the display range of the y-axis (for all traces).

Suffix:	
<n></n>	Window
<w></w>	subwindow Not supported by all applications
<t></t>	irrelevant
Example:	DISP:TRAC:Y 110dB

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:PDIVision <Value>

This remote command determines the grid spacing on the Y-axis for all diagrams, where possible.

In spectrum displays, for example, this command is not available.

Suffix:		
<n></n>	Window	
<w></w>	subwindow Not supported by all applications	
<t></t>	irrelevant	
Parameters:		
<value></value>	numeric value WITHOUT UNIT (unit according to the result display)	
	Defines the range per division (total range = 10* <value>)</value>	
	*RST: depends on the result display Default unit: DBM	
Example:	DISP:TRAC:Y:PDIV 10 Sets the grid spacing to 10 units (e.g. dB) per division	
Manual operation:	See "Per Division" on page 122	

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:RPOSition <Position>

Defines the vertical position of the reference level on the display grid (for all traces).

The R&S FSV/A adjusts the scaling of the y-axis accordingly.

Suffix:	
<n></n>	Window
<w></w>	subwindow Not supported by all applications
<t></t>	irrelevant

Example: DISP:TRAC:Y:RPOS 50PCT

Manual operation: See "Ref Position" on page 122

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:RVALue <\alue>

Defines the reference value assigned to the reference position in the specified window. Separate reference values are maintained for the various displays.

Suffix:	
<n></n>	Window
<w></w>	subwindow
<t></t>	irrelevant
Parameters: <value></value>	Default unit: DB
Example:	DISP:TRAC:Y:RVAL 0 Sets the value assigned to the reference position to 0 Hz
Manual operation:	See "Ref Value" on page 122

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:MAXimum <Value>

Defines the maximum value on the y-axis in the specified window.

Suffix:	
<n></n>	Window
<t></t>	irrelevant
Parameters:	
<max></max>	numeric value
Example:	DISP:WIND2:TRAC:Y:SCAL:MAX 10
Manual operation:	See "Absolute Scaling (Min/Max Values)" on page 122

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:MINimum <Value>

Defines the minimum value on the y-axis in the specified window.

Suffix:	
<n></n>	Window
<t></t>	irrelevant
Parameters: <min></min>	numeric value
Example:	DISP:WIND2:TRAC:Y:SCAL:MIN -90
Manual operation:	See "Absolute Scaling (Min/Max Values)" on page 122

9.6.3 Units for results

UNIT:CAXes <Unit>

Selects the unit for result displays that show results on carrier level, for example the EVM vs Carrier.

Parameters:

<unit></unit>	CARR Carrier axis represents the subcarriers.		
	HZ Carrier axis represents the frequency (Hz). *RST: CARR		
Example:	UNIT: CAX CARR Selects 'subcarriers' as the unit of the carrier axis.		
Manual operation:	See "Channel Flatness" on page 19 See "Constellation vs Carrier" on page 21 See "EVM vs Carrier" on page 23 See "EVM vs Symbol vs Carrier" on page 24 See "Group Delay" on page 25 See "Power vs Carrier" on page 29 See "Power vs Symbol vs Carrier" on page 30		

UNIT:EVM <Unit>

Selects the unit for EVM results.

Parameters:	
<1 Init>	

<unit></unit>	DB Returns EVM results in dB.	
	PCT Returns EVM results in %. *RST: dB	
Example:	UNIT:EVM PCT Selects '%' as the unit of EVM results.	
Manual operation:	See "EVM vs Carrier" on page 23 See "EVM vs Symbol" on page 23 See "EVM vs Symbol vs Carrier" on page 24	

UNIT:FAXes <Unit>

Selects the unit for result displays that show results over the frequency, for example the Power Spectrum.

Parameters:

<unit></unit>	HZ	HZ	
	Frequency axis represents Hz.		
	CARRier		
	Frequency axis represents carrier number.		
	*RST:	Hz	
Example:	UNIT: FAX HZ Selects 'Hz' as the unit of the frequency axis.		
Manual operation:	See "Power Spectrum" on page 28		

UNIT:IRESponse <Unit>

Selects the unit for impulse response results.

Parameters: <unit></unit>	DB Returns in	pulse response results in dB.
	LIN Returns in *RST:	pulse response results normalized to 1. LIN
Example:	UNIT: IRE Selects 'dE	IS DB B' as the unit for impulse response results.
Manual operation:	See "Impu	Ise Response" on page 26

UNIT:SAXes <Unit>

Selects the unit for result displays that show results on symbol level, for example the EVM vs Symbol.

Parameters:

<unit></unit>	SYMBol SECond
	SYMBol Symbol axis represents symbols.
	SECond Symbol axis represents seconds.
	*RST: SYM
Example:	UNIT: SAX SYM Selects 'symbols' as the unit of the symbol axis.

Manual operation:See "Allocation Matrix" on page 16
See "Constellation vs Symbol" on page 22
See "EVM vs Symbol" on page 23
See "EVM vs Symbol vs Carrier" on page 24
See "Power vs Symbol" on page 30
See "Power vs Symbol vs Carrier" on page 30

UNIT:TAXes <Unit>

Selects the unit for result displays that show results over time, for example the Magnitude Capture display.

Parameters:

<unit></unit>	SECond
	SAMPle
	SYMBOI Time axis represents symbols. This setting is not available if 2 different cyclic prefix lengths are used (see CONFigure [:SYMBol]:GUARd:MODE on page 145)
	*RST: SEC
Example:	UNIT: TAX SEC Selects 'seconds' as the unit of the time axis.
Manual operation:	See "Magnitude Capture" on page 27

9.6.4 Working with markers

Markers help you analyze your measurement results by determining particular values in the diagram. Thus you can extract numeric values from a graphical display.

9.6.4.1 Individual marker settings

In OFDM VSA evaluations, up to 5 markers can be activated in each diagram at any time.

Useful commands for configuring markers described elsewhere:

- CALCulate<n>:MARKer<m>:Y? on page 260
- CALCulate<n>:DELTamarker<m>:Y? on page 258

Remote commands exclusive to individual markers

CALCulate <n>:MARKer<m>:AOFF</m></n>	
CALCulate <n>:MARKer<ms>:LINK:TO:MARKer<md></md></ms></n>	
CALCulate <n>:MARKer<m>[:STATe]</m></n>	228
CALCulate <n>:MARKer<m>:TRACe</m></n>	
CALCulate <n>:MARKer<m>:X</m></n>	228
CALCulate <n>:DELTamarker<m>:AOFF</m></n>	229
CALCulate <n>:DELTamarker<m>:LINK</m></n>	
CALCulate <n>:DELTamarker<ms>:LINK:TO:MARKer<md></md></ms></n>	229
CALCulate <n>:DELTamarker<m>:MREFerence</m></n>	
CALCulate <n>:DELTamarker<m>[:STATe]</m></n>	
CALCulate <n>:DELTamarker<m>:TRACe</m></n>	231
CALCulate <n>:DELTamarker<m>:X</m></n>	231

CALCulate<n>:MARKer<m>:AOFF

Turns off all markers.

Suffix:	
<n></n>	Window
<m></m>	Marker
Example:	CALC:MARK:AOFF Switches off all markers.
Manual operation:	See "All Markers Off" on page 126

CALCulate<n>:MARKer<ms>:LINK:TO:MARKer<md> <State>

Links the normal source marker <ms> to any active destination marker <md> (normal or delta marker).

If you change the horizontal position of marker <md>, marker <ms> changes its horizontal position to the same value.

Suffix:

<n></n>	Window
<ms></ms>	source marker, see Marker
<md></md>	destination marker, see Marker
Parameters: <state></state>	ON OFF 0 1 OFF 0 Switches the function off ON 1 Switches the function on
Example:	CALC:MARK4:LINK:TO:MARK2 ON Links marker 4 to marker 2.
Manual operation:	See "Linking to Another Marker" on page 126

CALCulate<n>:MARKer<m>[:STATe] <State>

Turns markers on and off. If the corresponding marker number is currently active as a delta marker, it is turned into a normal marker.

Suffix:	
<n></n>	Window
<m></m>	Marker
Parameters:	
<state></state>	ON OFF 0 1
	OFF 0 Switches the function off
	ON 1 Switches the function on
Example:	CALC:MARK3 ON Switches on marker 3.
Manual operation:	See "Select Marker" on page 124 See "Marker State" on page 125 See "Marker Type" on page 125

CALCulate<n>:MARKer<m>:TRACe <Trace>

Selects the trace the marker is positioned on.

Note that the corresponding trace must have a trace mode other than "Blank".

If necessary, the command activates the marker first.

Suffix:	
<n></n>	Window
<m></m>	Marker
Parameters: <trace></trace>	
Example:	//Assign marker to trace 1 CALC:MARK3:TRAC 2
Manual operation:	See "Assigning the Marker to a Trace" on page 126

CALCulate<n>:MARKer<m>:X <Position>

Moves a marker to a specific coordinate on the x-axis.

If necessary, the command activates the marker.

If the marker has been used as a delta marker, the command turns it into a normal marker.

Suffix:

<n>

Window

<m></m>	Marker	
Parameters: <position></position>	Numeric value that defines the marker position on the x-axis. The unit depends on the result display.	
	Range: The range depends on the current x-axis range. Default unit: Hz	
Example:	CALC:MARK2:X 1.7MHz Positions marker 2 to frequency 1.7 MHz.	
Manual operation:	See "Marker Table" on page 27 See "X-Value" on page 125	

CALCulate<n>:DELTamarker<m>:AOFF

Turns off all delta markers.

Suffix:	
<n></n>	Window
<m></m>	irrelevant
Example:	CALC:DELT:AOFF Turns off all delta markers.

CALCulate<n>:DELTamarker<m>:LINK <State>

Links delta marker <m> to marker 1.

If you change the horizontal position (x-value) of marker 1, delta marker <m> changes its horizontal position to the same value.

Suffix:	
<n></n>	Window
<m></m>	Marker
Parameters:	
<state></state>	ON OFF 0 1
	OFF 0
	Switches the function off
	ON 1
	Switches the function on
Example:	CALC:DELT2:LINK ON
Manual operation:	See "Linking to Another Marker" on page 126

CALCulate<n>:DELTamarker<ms>:LINK:TO:MARKer<md> <State>

Links the delta source marker <ms> to any active destination marker <md> (normal or delta marker).

Suffix:	
<n></n>	Window
<ms></ms>	source marker, see Marker
<md></md>	destination marker, see Marker
Parameters:	
<state></state>	ON OFF 0 1
	OFF 0
	Switches the function off
	ON 1
	Switches the function on
Example:	CALC:DELT4:LINK:TO:MARK2 ON
	Links the delta marker 4 to the marker 2.
Manual operation:	See "Linking to Another Marker" on page 126

CALCulate<n>:DELTamarker<m>:MREFerence <Reference>

Selects a reference marker for a delta marker other than marker 1.

Suffix: <n></n>	Window
<m></m>	Marker
Parameters: <reference></reference>	D1 Selects the deltamarker 1 as the reference.
Example:	CALC: DELT3:MREF 2 Specifies that the values of delta marker 3 are relative to marker 2.
Manual operation:	See "Reference Marker" on page 126

CALCulate<n>:DELTamarker<m>[:STATe] <State>

Turns delta markers on and off.

If necessary, the command activates the delta marker first.

No suffix at DELTamarker turns on delta marker 1.

Suffix: <n>

<m>

Window

Marker

Parameters: <State>

ON | OFF | 0 | 1 OFF | 0 Switches the function off

	ON 1 Switches the function on
Example:	CALC: DELT2 ON Turns on delta marker 2.
Manual operation:	See "Select Marker" on page 124 See "Marker State" on page 125 See "Marker Type" on page 125

CALCulate<n>:DELTamarker<m>:TRACe <Trace>

Selects the trace a delta marker is positioned on.

Note that the corresponding trace must have a trace mode other than "Blank".

If necessary, the command activates the marker first.

Suffix:	
<n></n>	Window
<m></m>	Marker
Parameters:	Trace number the marker is assigned to
	Trace number the marker is assigned to.
Example:	CALC: DELT2: TRAC 2 Positions delta marker 2 on trace 2.

CALCulate<n>:DELTamarker<m>:X <Position>

Moves a delta marker to a particular coordinate on the x-axis.

If necessary, the command activates the delta marker and positions a reference marker to the peak power.

Suffix: <n></n>	Window
<m></m>	Marker
Example:	CALC:DELT:X? Outputs the absolute x-value of delta marker 1.
Manual operation:	See "X-Value" on page 125

9.6.4.2 General marker settings

DISPlay[:WINDow <n>]:MINFo[:STATe]</n>	231
DISPlay[:WINDow <n>]:MTABle</n>	232

DISPlay[:WINDow<n>]:MINFo[:STATe] <State>

Turns the marker information in all diagrams on and off.

Suffix: <n></n>	irrelevant
Parameters: <state></state>	ON 1Displays the marker information in the diagramsOFF 0Hides the marker information in the diagrams.*RST:1
Example:	DISP:MINF OFF Hides the marker information.
Manual operation:	See "Marker Info" on page 127

DISPlay[:WINDow<n>]:MTABle <DisplayMode>

Turns the marker table on and off.

Suffix: <n></n>	irrelevant	
Parameters:	ON I 1	
	Turns on the	e marker table.
	OFF 0	
	Turns off the	e marker table.
	*RST:	AUTO
Example:	DISP:MTAB	ON
	Activates the	e marker table.
Manual operation:	See "Marker	Table Display" on page 127

9.6.4.3 Marker positioning settings

Several functions are available to set the marker to a specific position very quickly and easily.

Useful commands for positioning markers described elsewhere:

- CALCulate<n>:MARKer<m>:TRACe on page 228
- CALCulate<n>:DELTamarker<m>:TRACe on page 231

Remote commands exclusive to positioning markers:

CALCulate <n>:DELTamarker<m>:MAXimum:APEak</m></n>	233
CALCulate <n>:DELTamarker<m>:MAXimum:LEFT</m></n>	233
CALCulate <n>:DELTamarker<m>:MAXimum:NEXT</m></n>	
CALCulate <n>:DELTamarker<m>:MAXimum[:PEAK]</m></n>	
CALCulate <n>:DELTamarker<m>:MAXimum:RIGHt.</m></n>	
CALCulate <n>:DELTamarker<m>:MINimum:LEFT</m></n>	
CALCulate <n>:DELTamarker<m>:MINimum:NEXT</m></n>	

CALCulate <n>:DELTamarker<m>:MINimum[:PEAK]</m></n>	234
CALCulate <n>:DELTamarker<m>:MINimum:RIGHt</m></n>	235
CALCulate <n>:MARKer<m>:MAXimum:APEak</m></n>	235
CALCulate <n>:MARKer<m>:MAXimum:LEFT</m></n>	235
CALCulate <n>:MARKer<m>:MAXimum:NEXT</m></n>	
CALCulate <n>:MARKer<m>:MAXimum:RIGHt</m></n>	236
CALCulate <n>:MARKer<m>:MAXimum[:PEAK]</m></n>	
CALCulate <n>:MARKer<m>:MINimum:LEFT</m></n>	236
CALCulate <n>:MARKer<m>:MINimum:NEXT</m></n>	
CALCulate <n>:MARKer<m>:MINimum:RIGHt</m></n>	237
CALCulate <n>:MARKer<m>:MINimum[:PEAK]</m></n>	
CALCulate <n>:MARKer<m>:SEARch</m></n>	

CALCulate<n>:DELTamarker<m>:MAXimum:APEak

Positions the active marker or delta marker on the largest absolute peak value (maximum or minimum) of the selected trace.

Suffix:	
<n></n>	Window
<m></m>	Marker
Usage:	Event

CALCulate<n>:DELTamarker<m>:MAXimum:LEFT

Moves a delta marker to the next positive peak value.

The search includes only measurement values to the left of the current marker position.

Suffix:	
<n></n>	Window
<m></m>	Marker
Manual operation:	See "Search Next Peak" on page 128

CALCulate<n>:DELTamarker<m>:MAXimum:NEXT

Moves a marker to the next positive peak value.

Suffix:	
<n></n>	1n Window
<m></m>	1n Marker
Manual operation:	See "Search Next Peak" on page 128

CALCulate<n>:DELTamarker<m>:MAXimum[:PEAK]

Moves a delta marker to the highest level.

If the marker is not yet active, the command first activates the marker.

Suffix:	
<n></n>	Window
<m></m>	Marker
Manual operation:	See "Peak Search" on page 128

CALCulate<n>:DELTamarker<m>:MAXimum:RIGHt

Moves a delta marker to the next positive peak value on the trace.

The search includes only measurement values to the right of the current marker position.

Suffix:	
<n></n>	Window
<m></m>	Marker
Manual operation:	See "Search Next Peak" on page 128

CALCulate<n>:DELTamarker<m>:MINimum:LEFT

Moves a delta marker to the next minimum peak value.

The search includes only measurement values to the right of the current marker position.

Suffix:	
<n></n>	Window
<m></m>	Marker
Manual operation:	See "Search Next Minimum" on page 128

CALCulate<n>:DELTamarker<m>:MINimum:NEXT

Moves a marker to the next minimum peak value.

Suffix:	
<n></n>	Window
<m></m>	Marker
Manual operation:	See "Search Next Minimum" on page 128

CALCulate<n>:DELTamarker<m>:MINimum[:PEAK]

Moves a delta marker to the minimum level.

If the marker is not yet active, the command first activates the marker.

Suffix:	
<n></n>	Window
<m></m>	Marker
Manual operation:	See "Search Minimum" on page 128

CALCulate<n>:DELTamarker<m>:MINimum:RIGHt

Moves a delta marker to the next minimum peak value.

The search includes only measurement values to the right of the current marker position.

128

Suffix:	
<n></n>	Window
<m></m>	Marker
Manual operation:	See "Search Next Minimum" on page

CALCulate<n>:MARKer<m>:MAXimum:APEak

sets the marker to the largest absolute peak value (maximum or minimum) of the selected trace.

Suffix:	
<n></n>	Window
<m></m>	Marker
Usage:	Event

CALCulate<n>:MARKer<m>:MAXimum:LEFT

Moves a marker to the next positive peak.

The search includes only measurement values to the left of the current marker position.

Suffix:

<n></n>	Window
<m></m>	Marker
Manual operation:	See "Search Next Peak" on page 128

CALCulate<n>:MARKer<m>:MAXimum:NEXT

Moves a marker to the next positive peak.

Suffix: <n>

Window

<m>

Marker

Manual operation: See "Search Next Peak" on page 128

CALCulate<n>:MARKer<m>:MAXimum:RIGHt

Moves a marker to the next positive peak.

The search includes only measurement values to the right of the current marker position.

Suffix:	
<n></n>	Window
<m></m>	Marker
Manual operation:	See "Search Next Peak" on page 128

CALCulate<n>:MARKer<m>:MAXimum[:PEAK]

Moves a marker to the highest level.

If the marker is not yet active, the command first activates the marker.

Suffix:	
<n></n>	Window
<m></m>	Marker
Manual operation:	See "Peak Search" on page 128

CALCulate<n>:MARKer<m>:MINimum:LEFT

Moves a marker to the next minimum peak value.

The search includes only measurement values to the right of the current marker position.

28

Suffix:

Manual operation:	See "Search Next Minimum" on page 1
<m></m>	Marker
<n></n>	Window

CALCulate<n>:MARKer<m>:MINimum:NEXT

Moves a marker to the next minimum peak value.

Suffix: <n>

<m>

Window

Marker

Manual operation: See "Search Next Minimum" on page 128

CALCulate<n>:MARKer<m>:MINimum:RIGHt

Moves a marker to the next minimum peak value.

The search includes only measurement values to the right of the current marker position.

Suffix:	
<n></n>	Window
<m></m>	Marker
Manual operation:	See "Search Next Minimum" on page 128

CALCulate<n>:MARKer<m>:MINimum[:PEAK]

Moves a marker to the minimum level.

If the marker is not yet active, the command first activates the marker.

Suffix:	
<n></n>	Window
<m></m>	Marker
Manual operation:	See "Search Minimum" on page 128

CALCulate<n>:MARKer<m>:SEARch <MarkRealImag>

Specifies whether the marker search works on the real or the imag trace (for all markers).

Suffix:	
<n></n>	1n
	Window
<m></m>	14
	Marker

Parameters:

<markrealimag></markrealimag>	REAL IMAG	
	*RST:	REAL

9.6.5 Zooming into the display

9.6.5.1 Using the single zoom

DISPlay[:WINDow <n>][:SUBWindow<w>]</w></n>	COOM:	AREA.	
DISPlay[:WINDow <n>][:SUBWindow<w>]</w></n>	:ZOOM	:STATe	

DISPlay[:WINDow<n>][:SUBWindow<w>]:ZOOM:AREA <x1>,<y1>,<x2>,<y2>

Defines the zoom area.

To define a zoom area, you first have to turn the zoom on.

1 = origin of coordinate system (x1 = 0, y1 = 0)

2 = end point of system ($x^2 = 100, y^2 = 100$)

3 = zoom area (e.g. x1 = 60, y1 = 30, x2 = 80, y2 = 75)

Suffix:

<n></n>	Window
<w></w>	subwindow Not supported by all applications
Parameters: <x1></x1>	Diagram coordinates in % of the complete diagram that define the zoom area. The lower left corner is the origin of coordinate system. The upper right corner is the end point of the system. Range: 0 to 100 Default unit: PCT
<y1></y1>	Diagram coordinates in % of the complete diagram that define the zoom area. The lower left corner is the origin of coordinate system. The upper right corner is the end point of the system. Range: 0 to 100 Default unit: PCT
<x2></x2>	Diagram coordinates in % of the complete diagram that define the zoom area. The lower left corner is the origin of coordinate system. The upper right corner is the end point of the system. Range: 0 to 100 Default unit: PCT
<y2></y2>	Diagram coordinates in % of the complete diagram that define the zoom area. The lower left corner is the origin of coordinate system. The upper right corner is the end point of the system. Range: 0 to 100 Default unit: PCT

DISPlay[:WINDow<n>][:SUBWindow<w>]:ZOOM[:STATe] <State>

Turns the zoom on and off.

Suffix: <n></n>	Window
<w></w>	subwindow Not supported by all applications
Parameters:	
<state></state>	ON OFF 0 1
	OFF 0
	Switches the function off
	ON 1
	Switches the function on
Example:	DISP:ZOOM ON
	Activates the zoom mode.

9.6.5.2 Using the multiple zoom

DISPlay[:WINDow <n>][:SUBWindow<w>]</w></n>]:ZOOM:MULTi	ple <zn>:</zn>	AREA.	
DISPlay[:WINDow <n>][:SUBWindow<w></w></n>	:ZOOM:MULTi	ple <zn></zn>	:STATe	

DISPlay[:WINDow<n>][:SUBWindow<w>]:ZOOM:MULTiple<zn>:AREA <x1>,<y1>,<x2>,<y2>

Defines the zoom area for a multiple zoom.

To define a zoom area, you first have to turn the zoom on.

1 = origin of coordinate system (x1 = 0, y1 = 0)

2 = end point of system (x2 = 100, y2= 100)

3 = zoom area (e.g. x1 = 60, y1 = 30, x2 = 80, y2 = 75)

<n>

Window

<w></w>	subwindow Not supported by all applications
<zn></zn>	Selects the zoom window.

Parameters:	
<x1></x1>	Diagram coordinates in % of the complete diagram that define the zoom area. The lower left corner is the origin of coordinate system. The upper right corner is the end point of the system.
	Range: 0 to 100 Default unit: PCT
<y1></y1>	Diagram coordinates in % of the complete diagram that define the zoom area. The lower left corner is the origin of coordinate system. The upper right corner is the end point of the system. Range: 0 to 100
	Default unit: PCT
<x2></x2>	 Diagram coordinates in % of the complete diagram that define the zoom area. The lower left corner is the origin of coordinate system. The upper right corner is the end point of the system. Range: 0 to 100 Default unit: PCT
<y2></y2>	Diagram coordinates in % of the complete diagram that define the zoom area. The lower left corner is the origin of coordinate system. The upper right corner is the end point of the system. Range: 0 to 100 Default unit: PCT

DISPlay[:WINDow<n>][:SUBWindow<w>]:ZOOM:MULTiple<zn>[:STATe] <State>

Turns the multiple zoom on and off.

Suffix:	
<n></n>	Window
<w></w>	subwindow Not supported by all applications
<zn></zn>	Selects the zoom window. If you turn off one of the zoom windows, all subsequent zoom windows move up one position.
Parameters:	
<state></state>	ON OFF 0 1
	OFF 0 Switches the function off
	ON 1 Switches the function on

9.7 Configuring the result display

The following commands are required to configure the result display in a remote environment.

9.7.1 General window commands

The following commands are required to configure general window layout, independent of the application.

DISPlay:FORMat	
DISPlay[:WINDow <n>]:SIZE</n>	

DISPlay:FORMat <Format>

Determines which tab is displayed.

Parameters:			
<format></format>	SPLit Displays nels	SPLit Displays the MultiView tab with an overview of all active chan- nels	
	SINGle Displays *RST:	the measurement channel that was previously focused. SING	
Example:	DISP:FC	RM SPL	

DISPlay[:WINDow<n>]:SIZE <Size>

Maximizes the size of the selected result display window *temporarily*. To change the size of several windows on the screen permanently, use the LAY: SPL command (see LAYout:SPLitter on page 246).

Suffix: <n>

Window

Parameters: <Size>

LARGe

Maximizes the selected window to full screen. Other windows are still active in the background.

SMALI

Reduces the size of the selected window to its original size. If more than one measurement window was displayed originally, these are visible again.

*RST: SMALI

Example: DISP:WIND2:SIZE LARG

9.7.2 Working with windows in the display

The following commands are required to change the evaluation type and rearrange the screen layout for a channel as you do using the SmartGrid in manual operation. Since the available evaluation types depend on the selected application, some parameters for the following commands also depend on the selected channel.

Note that the suffix <n> always refers to the window in the currently selected channel.

LAYout:ADD[:WINDow]?	
LAYout:CATalog[:WINDow]?	
LAYout:IDENtify[:WINDow]?	
LAYout:MOVE[:WINDow]	245
LAYout:REMove[:WINDow]	
LAYout:REPLace[:WINDow]	
LAYout:SPLitter	246
LAYout:WINDow <n>:ADD?</n>	
LAYout:WINDow <n>:IDENtify?</n>	
LAYout:WINDow <n>:REMove</n>	248
LAYout:WINDow <n>:REPLace</n>	
LAYout:WINDow <n>:TYPE</n>	249

LAYout:ADD[:WINDow]? <WindowName>, <Direction>, <WindowType>

Adds a window to the display in the active channel.

Is always used as a query so that you immediately obtain the name of the new window as a result.

To replace an existing window, use the LAYout:REPLace[:WINDow] command.

Query parameters:

<windowname></windowname>	String containing the name of the existing window the new win- dow is inserted next to. By default, the name of a window is the same as its index. To determine the name and index of all active windows, use the LAYout:CATalog[:WINDow]? query.
<direction></direction>	LEFT RIGHt ABOVe BELow Direction the new window is added relative to the existing win- dow.
<windowtype></windowtype>	text value Type of result display (evaluation method) you want to add. See the table below for available parameter values.
Return values: <newwindowname></newwindowname>	When adding a new window, the command returns its name (by default the same as its number) as a result.
Usage:	Query only

Configuring the result display

Manual operation:	See "Allocation Matrix" on page 16
	See "Bitstream" on page 17
	See "CCDF" on page 19
	See "Channel Flatness" on page 19
	See "Constellation Diagram" on page 20
	See "Constellation vs Carrier" on page 21
	See "Constellation vs Symbol" on page 22
	See "EVM vs Carrier" on page 23
	See "EVM vs Symbol" on page 23
	See "EVM vs Symbol vs Carrier" on page 24
	See "Group Delay" on page 25
	See "Impulse Response" on page 26
	See "Magnitude Capture" on page 27
	See "Marker Table" on page 27
	See "Notes" on page 28
	See "Power Spectrum" on page 28
	See "Power vs Carrier" on page 29
	See "Power vs Symbol" on page 30
	See "Power vs Symbol vs Carrier" on page 30
	See "Result Summary" on page 31
	See "Signal Flow" on page 32
	See "Trigger to Sync" on page 33

Table 9-4: <WindowType> parameter values for OFDM VSA application

Parameter value	Window type
AMATrix	"Allocation Matrix"
BITStream	"Bitstream"
CCARrier	"Constellation vs Carrier"
CCDF	"CCDF"
CHFLatness	"Channel Flatness"
CONStell	"Constellation Diagram"
CSYMbol	"Constellation vs Symbol"
EVCarrier	"EVM vs Carrier"
EVSYmbol	"EVM vs Symbol"
EVSC	"EVM vs Symbol vs Carrier"
GDELay	"Group Delay"
IRESponse	"Impulse Response"
MCAPture	"Magnitude Capture"
MTABle	"Marker Table"
PCARrier	"Power vs Carrier"
PSC	"Power vs Symbol vs Carrier"
PSPectrum	"Power Spectrum"

Configuring the result display

Parameter value	Window type
PSYMbol	"Power vs Symbol"
RSUMmary	"Result Summary"
SFLow	"Signal Flow"
TRIGger	"Trigger to Sync"

LAYout:CATalog[:WINDow]?

Queries the name and index of all active windows in the active channel from top left to bottom right. The result is a comma-separated list of values for each window, with the syntax:

<WindowName_1>,<WindowIndex_1>..<WindowName_n>,<WindowIndex_n>

Return values:

<windowname></windowname>	string
	Name of the window. In the default state, the name of the window is its index.
<windowindex></windowindex>	numeric value Index of the window.
Example:	LAY: CAT? Result: '2',2,'1',1 Two windows are displayed, named '2' (at the top or left), and '1' (at the bottom or right).
Usage:	Query only

LAYout:IDENtify[:WINDow]? <WindowName>

Queries the index of a particular display window in the active channel.

Note: to query the **name** of a particular window, use the LAYout:WINDow<n>: IDENtify? query.

Query parameters: <windowname></windowname>	String containing the name of a window.
Return values: <windowindex></windowindex>	Index number of the window.
Example:	LAY: IDEN: WIND? '2' Queries the index of the result display named '2'. Response: 2
Usage:	Query only

LAYout:MOVE[:WINDow] <windowname>, <windowname>, <direction></direction></windowname></windowname>		
Setting parameters: <windowname></windowname>	String containing the name of an existing window that is to be moved. By default, the name of a window is the same as its index. To determine the name and index of all active windows in the active channel, use the LAYout:CATalog[:WINDow]? query.	
<windowname></windowname>	String containing the name of an existing window the selected window is placed next to or replaces. By default, the name of a window is the same as its index. To determine the name and index of all active windows in the active channel, use the LAYout:CATalog[:WINDow]? query.	
<direction></direction>	LEFT RIGHt ABOVe BELow REPLace Destination the selected window is moved to, relative to the ref- erence window.	
Example:	LAY: MOVE '4', '1', LEFT Moves the window named '4' to the left of window 1.	
Example:	LAY: MOVE '1', '3', REPL Replaces the window named '3' by window 1. Window 3 is deleted.	
Usage:	Setting only	

LAYout:REMove[:WINDow] <WindowName>

Removes a window from the display in the active channel.

Setting parameters: <windowname></windowname>	String containing the name of the window. In the default state, the name of the window is its index.
Example:	LAY:REM '2' Removes the result display in the window named '2'.
Usage:	Setting only

LAYout:REPLace[:WINDow] <WindowName>,<WindowType>

Replaces the window type (for example from "Diagram" to "Result Summary") of an already existing window in the active channel while keeping its position, index and window name.

To add a new window, use the LAYout: ADD[:WINDow]? command.

Setting parameters:

<WindowName> String containing the name of the existing window. By default, the name of a window is the same as its index. To determine the name and index of all active windows in the active channel, use the LAYout:CATalog[:WINDow]? query.

<windowtype></windowtype>	Type of result display you want to use in the existing window. See LAYout:ADD[:WINDow]? on page 242 for a list of available window types.
Example:	LAY:REPL:WIND '1', MTAB Replaces the result display in window 1 with a marker table.
Usage:	Setting only

LAYout:SPLitter <Index1>, <Index2>, <Position>

Changes the position of a splitter and thus controls the size of the windows on each side of the splitter.

Note that windows must have a certain minimum size. If the position you define conflicts with the minimum size of any of the affected windows, the command does not work, but does not return an error.

Figure 9-1: SmartGrid coordinates for remote control of the splitters

Setting parameters:

<index1></index1>	The index of one window the splitter controls.
<index2></index2>	The index of a window on the other side of the splitter.

<position></position>	New vertical or horizontal position of the splitter as a fraction of the screen area (without channel and status bar and softkey menu). The point of origin ($x = 0$, $y = 0$) is in the lower left corner of the screen. The end point ($x = 100$, $y = 100$) is in the upper right corner of the screen. (See Figure 9-1.) The direction in which the splitter is moved depends on the screen layout. If the windows are positioned horizontally, the splitter also moves horizontally. If the windows are positioned vertically, the splitter also moves vertically. Range: 0 to 100
Example:	LAY: SPL 1, 3, 50 Moves the splitter between window 1 ('Frequency Sweep') and 3 ("'Marker Table''') to the center (50%) of the screen, i.e. in the figure above, to the left.
Example:	LAY:SPL 1,4,70 Moves the splitter between window 1 ('Frequency Sweep') and 3 ("'Marker Peak List"') towards the top (70%) of the screen. The following commands have the exact same effect, as any combination of windows above and below the splitter moves the splitter vertically. LAY:SPL 3,2,70 LAY:SPL 4,1,70 LAY:SPL 2,1,70
Usage:	Setting only

LAYout:WINDow<n>:ADD? <Direction>,<WindowType>

Adds a measurement window to the display. Note that with this command, the suffix <n> determines the existing window next to which the new window is added. Unlike LAYout:ADD[:WINDow]?, for which the existing window is defined by a parameter.

To replace an existing window, use the LAYout:WINDow<n>:REPLace command.

Is always used as a query so that you immediately obtain the name of the new window as a result.

Suffix: <n></n>	Window
Query parameters: <direction></direction>	LEFT RIGHt ABOVe BELow
<windowtype></windowtype>	Type of measurement window you want to add. See LAYout:ADD[:WINDow]? on page 242 for a list of available window types.
Return values: <newwindowname></newwindowname>	When adding a new window, the command returns its name (by default the same as its number) as a result.

Example:	LAY:WIND1:ADD? LEFT,MTAB Result: '2'
	Adds a new window named '2' with a marker table to the left of window 1.
Usage:	Query only

LAYout:WINDow<n>:IDENtify?

Queries the **name** of a particular display window (indicated by the <n> suffix) in the active channel.

Note: to query the **index** of a particular window, use the LAYout: IDENtify[: WINDow]? command.

Suffix:

<n></n>	Window
Return values: <windowname></windowname>	String containing the name of a window. In the default state, the name of the window is its index.
Example:	LAY:WIND2:IDEN? Queries the name of the result display in window 2. Response: '2'
Usage:	Query only

LAYout:WINDow<n>:REMove

Removes the window specified by the suffix <n> from the display in the active channel. The result of this command is identical to the LAYout:REMove[:WINDow] command.

Suffix: <n></n>	Window
Example:	LAY:WIND2:REM Removes the result display in window 2.
Usage:	Event

LAYout:WINDow<n>:REPLace <WindowType>

Changes the window type of an existing window (specified by the suffix <n>) in the active channel.

The effect of this command is identical to the LAYout:REPLace[:WINDow] command.

To add a new window, use the LAYout:WINDow<n>:ADD? command.

Suffix: <n></n>	Window
Setting parameters: <windowtype></windowtype>	Type of measurement window you want to replace another one with. See LAYout:ADD[:WINDow]? on page 242 for a list of available window types.
Example:	LAY:WIND2:REPL MTAB Replaces the result display in window 2 with a marker table.
Usage:	Setting only

LAYout:WINDow<n>:TYPE <WindowType>

Queries or defines the window type of the window specified by the index <n>. The window type determines which results are displayed. For a list of possible window types, see LAYout:ADD[:WINDow]? on page 242.

Note that this command is not available in all applications and measurements.

Suffix: <n></n>	1n Window
Parameters: <windowtype></windowtype>	
Example:	LAY:WIND2:TYPE?

9.8 Retrieving results

The following commands are required to retrieve the calculated OFDM VSA parameters.

•	Retrieving numerical results	249
•	Retrieving signal flow results	254
•	Retrieving trace data and marker values	258
•	Using the TRACe[:DATA] command	267
	o	

9.8.1 Retrieving numerical results

These commands return the average, maximum or minimum result of the specified parameter. For details and an assignment of the parameters to the keywords see

FETCh:BURSt:COUNt?	250
FETCh:BURSt:LENGths?	251
FETCh:BURSt:STARts?	251
FETCh:SUMMary[:ALL]?	251
FETCh:SUMMary:CRESt:MAXimum?	252

Retrieving results

FETCh:SUMMary:CRESt:MINimum?	252
FETCh:SUMMary:CRESt[:AVERage]?	252
FETCh:SUMMary:EVM:DATA:MAXimum?	252
FETCh:SUMMary:EVM:DATA:MINimum?	252
FETCh:SUMMary:EVM:DATA[:AVERage]?	252
FETCh:SUMMary:EVMPeak:DATA:MAXimum*?	252
FETCh:SUMMary:EVMPeak:DATA:PCT:MAXimum*?	252
FETCh:SUMMary:EVMPeak:PILot:MAXimum*?	
FETCh:SUMMary:EVMPeak:PILot:PCT:MAXimum*?	252
FETCh:SUMMary:EVMPeak[:ALL]:MAXimum*?	252
FETCh:SUMMary:EVMPeak[:ALL]:PCT:MAXimum*?	252
FETCh:SUMMary:EVM:PILot:MAXimum?	253
FETCh:SUMMary:EVM:PILot:MINimum?	253
FETCh:SUMMary:EVM:PILot[:AVERage]?	253
FETCh:SUMMary:EVM:PILot:PCT[:AVERage]?	253
FETCh:SUMMary:EVM[:ALL]:MAXimum?	253
FETCh:SUMMary:EVM[:ALL]:MINimum?	253
FETCh:SUMMary:EVM[:ALL][:AVERage]?	253
FETCh:SUMMary:EVM[:ALL]:PCT:MAXimum?	253
FETCh:SUMMary:EVM[:ALL]:PCT:MINimum?	253
FETCh:SUMMary:EVM[:ALL]:PCT[:AVERage]?	253
FETCh:SUMMary:FERRor:MAXimum?	253
FETCh:SUMMary:FERRor:MINimum?	253
FETCh:SUMMary:FERRor[:AVERage]?	253
FETCh:SUMMary:GIMBalance:MAXimum?	253
FETCh:SUMMary:GIMBalance:MINimum?	253
FETCh:SUMMary:GIMBalance[:AVERage]?	253
FETCh:SUMMary:IQOFfset:MAXimum?	253
FETCh:SUMMary:IQOFfset:MINimum?	253
FETCh:SUMMary:IQOFfset[:AVERage]?	253
FETCh:SUMMary:MER[:ALL]:MAXimum?	253
FETCh:SUMMary:MER[:ALL]:MINimum?	253
FETCh:SUMMary:MER[:ALL][:AVERage]?	253
FETCh:SUMMary:POWer:MAXimum?	253
FETCh:SUMMary:POWer:MINimum?	253
FETCh:SUMMary:POWer[:AVERage]?	253
FETCh:SUMMary:QUADerror:MAXimum?	253
FETCh:SUMMary:QUADerror:MINimum?	253
FETCh:SUMMary:QUADerror[:AVERage]?	253
FETCh:SUMMary:SERRor:MAXimum?	253
FETCh:SUMMary:SERRor:MINimum?	253
FETCh:SUMMary:SERRor[:AVERage]?	253
FETCh:SUMM: <parameter>:<statistic></statistic></parameter>	253
FETCh:TTFRame?	253

FETCh:BURSt:COUNt?

Returns the number of analyzed bursts from the current capture buffer.

Return values:

<Value>

Usage: Query only

FETCh:BURSt:LENGths?

Returns the length of the analyzed bursts from the current measurement.

The result is a comma-separated list of lengths, one for each burst.

Return values:
<Value>Default unit: sUsage:Query only

FETCh:BURSt:STARts?

Returns the start position of each analyzed burst in the current capture buffer.

Return values:

<value></value>	Offset of the burst start from the beginning of the capture buffer. Default unit: s
Example:	FETC:BURS:STAR? //Result: //6.04e-05
Usage:	Query only

FETCh:SUMMary[:ALL]?

Returns all values in the result summary, in the same order as in the display

(See "Result Summary" on page 31.)

Return	values:
--------	---------

<result></result>	<pre><evmaii_db_min>,<evmaii_db_avg>,<evmaii_db_max>, <evmaii_pct_min>,<evmaii_pct_avg>,<evmaii_pct_max> ,<evmdata_db_min>,<evmdata_db_avg>,<evm- Data_dB_Max>,<evmdata_pct_min>,<evm- Data_PCT_Avg>,<evmdata_pct_max>,<evmpi- lot_dB_Min>,<evmpilot_db_avg>,<evmpilot_db_max>,<evm- Pilot_PCT_Min>,<evmpilot_pct_avg>,<evmpilot_pct_max>, <mer_min>,<mer_avg>,<mer_max>,<i qoffset_min="">,<i <br="">QOffset_Avg>,<i qoffset_max="">,<gainimbalance_min>,<gain- Imbalance_Avg>,<gainimbalance_max>,<fre- qErr_Min>,<freqerr_avg>,<freqerr_max>,<sampleclock- Err_Min>,<sampleclockerr_avg>,<sampleclockerr_max>, <crestfactor_min>,<crestfactor_avg>,<crestfactor_max>, Comma-separated list with 3 statistical values for each result.</crestfactor_max></crestfactor_avg></crestfactor_min></sampleclockerr_max></sampleclockerr_avg></sampleclock- </freqerr_max></freqerr_avg></fre- </gainimbalance_max></gain- </gainimbalance_min></i></i></i></mer_max></mer_avg></mer_min></evmpilot_pct_max></evmpilot_pct_avg></evm- </evmpilot_db_max></evmpilot_db_avg></evmpi- </evmdata_pct_max></evm- </evmdata_pct_min></evm- </evmdata_db_avg></evmdata_db_min></evmaii_pct_max></evmaii_pct_avg></evmaii_pct_min></evmaii_db_max></evmaii_db_avg></evmaii_db_min></pre>
Example:	<pre>FETC:SUMM:ALL? //-34.6742,-34.6742, //1.84624,1.84624,1.84624,</pre>
	//-34.5875,-34.5875,-34.5875, //1.86477,1.86477, //-35.5229,-35.5229,-35.5229,

Usage:

Manual operation:

See "Result Summary" on page 31

//1.67439,1.67439,1.67439, //34.6742,34.6742,34.6742, //-75.106,-75.106,-75.106,

//0.00573547,0.00573547,0.00573547, //-0.0159425,-0.0159425,-0.0159425, //0.272241,0.272241,0.272241, //0.219516,0.219516,0.219516, //-23.1036,-23.1036,-23.1036, //9.84252,9.84252,9.84252

FETCh:SUMMary:CRESt:MAXimum? FETCh:SUMMary:CRESt:MINimum? FETCh:SUMMary:CRESt[:AVERage]? FETCh:SUMMary:EVM:DATA:MAXimum? FETCh:SUMMary:EVM:DATA[:AVERage]? FETCh:SUMMary:EVMPeak:DATA:MAXimum*? FETCh:SUMMary:EVMPeak:DATA:PCT:MAXimum*? FETCh:SUMMary:EVMPeak:PILot:MAXimum*? FETCh:SUMMary:EVMPeak[:ALL]:MAXimum*? FETCh:SUMMary:EVMPeak[:ALL]:PCT:MAXimum*?

Query only
Retrieving results

FETCh:SUMMary:EVM:PILot:MAXimum? FETCh:SUMMary:EVM:PILot:MINimum? FETCh:SUMMary:EVM:PILot[:AVERage]? FETCh:SUMMary:EVM:PILot:PCT[:AVERage]? FETCh:SUMMary:EVM[:ALL]:MAXimum? FETCh:SUMMary:EVM[:ALL]:MINimum? FETCh:SUMMary:EVM[:ALL][:AVERage]? FETCh:SUMMary:EVM[:ALL]:PCT:MAXimum? FETCh:SUMMary:EVM[:ALL]:PCT:MINimum? FETCh:SUMMary:EVM[:ALL]:PCT[:AVERage]? FETCh:SUMMary:FERRor:MAXimum? FETCh:SUMMary:FERRor:MINimum? FETCh:SUMMary:FERRor[:AVERage]? FETCh:SUMMary:GIMBalance:MAXimum? FETCh:SUMMary:GIMBalance:MINimum? FETCh:SUMMary:GIMBalance[:AVERage]? FETCh:SUMMary:IQOFfset:MAXimum? FETCh:SUMMary:IQOFfset:MINimum? FETCh:SUMMary:IQOFfset[:AVERage]? FETCh:SUMMary:MER[:ALL]:MAXimum? FETCh:SUMMary:MER[:ALL]:MINimum? FETCh:SUMMary:MER[:ALL][:AVERage]? FETCh:SUMMary:POWer:MAXimum? FETCh:SUMMary:POWer:MINimum? FETCh:SUMMary:POWer[:AVERage]? FETCh:SUMMary:QUADerror:MAXimum? FETCh:SUMMary:QUADerror:MINimum? FETCh:SUMMary:QUADerror[:AVERage]? FETCh:SUMMary:SERRor:MAXimum? FETCh:SUMMary:SERRor:MINimum? FETCh:SUMMary:SERRor[:AVERage]? FETCh:SUMM:<parameter>:<statistic>

These commands return the average, maximum or minimum result of the specified parameter. For details and an assignment of the parameters to the keywords see Table 3-1.

*) These results are not included in the Result Summary display, nor in the FETCh: SUMMary[:ALL]? results.

FETCh:TTFRame?

Retrieves the time offset between the trigger event and the start of the first OFDM frame.

Return values: <Time>

Example:

FETC:TTFR?

Usage:

Query only

Manual operation: See "Trigger to Sync" on page 33

9.8.2 Retrieving signal flow results

The following commands are required to retrieve the results of the signal flow stages. See also "Signal Flow" on page 32.

FETCh:SFLow:FSYNc?	254
FETCh:SFLow:STATe:ALL?	254
FETCh:SFLow:STATe:BDETection?	255
FETCh:SFLow:STATe:COMPensate?	255
FETCh:SFLow:STATe:DESTimation?	255
FETCh:SFLow:STATe:EVMMeas?	256
FETCh:SFLow:STATe:FSYNc?	256
FETCh:SFLow:STATe:MDETection?	257
FETCh:SFLow:STATe:PESTimation?	257
FETCh:SFLow:STATe:TSYNc?	257
FETCh:SFLow:TSYNc?	258

FETCh:SFLow:FSYNc?

Returns the Frame Synchronisation value.

Return values:

<Value>

Example: FETC:SFL:FSYN?

Usage: Query only

FETCh:SFLow:STATe:ALL?

Returns the state of the individual stages of the signal flow. The result is a comma-separated list of states, one for each stage. The stages are in the following order:

- Burst Detection
- Time Sync
- Frame Sync
- Data-Aided Parameter estimation
- Modulation detection
- Pilot-aided parameter estimation
- Compensate
- EVM meas

Return values:

<Value>

FAIL Not successful PASS Successful

	WARN Warning occurred
	DISabled Inactive
Example:	FETC:SFL:STAT:ALL?
Usage:	Query only

FETCh:SFLow:STATe:BDETection?

Returns the state of the burst detection stage of the signal flow.

Return values:	
<value></value>	FAIL
	Not successful
	PASS
	Successful
	WARN
	Warning occurred
	DISabled
	Inactive
Example:	FETC:SFL:STAT:BDET?
Usage:	Query only

FETCh:SFLow:STATe:COMPensate?

Returns the state of the compensation stage of the signal flow.

Return values:

FAIL
Not successful
PASS
Successful
WARN
Warning occurred
DISabled
Inactive
FETC:SFL:STAT:COMP?
Query only

FETCh:SFLow:STATe:DESTimation?

Returns the state of the data-aided parameter estimation stage of the signal flow.

Return values: <Value>

Retrieving results

	FAIL Not successful
	PASS Successful
	WARN Warning occurred DISabled Inactive
Example:	FETC:SFL:STAT:DEST?
Usage:	Query only

FETCh:SFLow:STATe:EVMMeas?

Returns the state of the EVM measurement stage of the signal flow.

Return values: <value></value>	FAIL Not successful
	PASS Successful
	WARN Warning occurred DISabled Inactive
Example:	<pre>FETC:SFL:STAT:EVMM?</pre>
Usage:	Query only

FETCh:SFLow:STATe:FSYNc?

Returns the state of the frame synchronization stage of the signal flow.

Return values:	
<value></value>	FAIL
	Not successful
	PASS
	Successful
	WARN
	Warning occurred
	DISabled
	Inactive
Example:	FETC:SFL:STAT:FSYN?
Usage:	Query only

FETCh:SFLow:STATe:MDETection?

Returns the state of the modulation detection stage of the signal flow.

Return values:

<value></value>	FAIL Not successful
	PASS Successful
	WARN Warning occurred DISabled Inactive
Example:	FETC:SFL:STAT:MDET?
Usage:	Query only

FETCh:SFLow:STATe:PESTimation?

Returns the state of the pilot-aided parameter estimation stage of the signal flow.

Return values:	
<value></value>	FAIL
	Not successful
	PASS
	Successful
	WARN
	Warning occurred
	DISabled
	Inactive
Example:	FETC:SFL:STAT:PEST?
Usage:	Query only

FETCh:SFLow:STATe:TSYNc?

Returns the state of the time synchronization stage of the signal flow.

Return values:

<Value>

FAIL Not successful PASS Successful WARN Warning occurred **DISabled** Inactive

Example:

FETC:SFL:STAT:TSYN?

Usage:

Query only

FETCh:SFLow:TSYNc?

Returns the Time Synchronisation value.

Return values: </br/>

Example: FETC:SFL:TSYN?

Usage: Query only

9.8.3 Retrieving trace data and marker values

In order to retrieve the trace and marker results in a remote environment, use the following commands:

Useful commands for retrieving results described elsewhere:

• CALCulate<n>:MARKer<m>:X on page 228

Remote commands exclusive to retrieving trace data and marker values:

CALCulate <n>:DELTamarker<m>:Y?</m></n>	258
CALCulate <n>:DELTamarker<m>:Y:RELative?</m></n>	259
CALCulate <n>:DELTamarker<m>:Z</m></n>	
CALCulate <n>:MARKer<m>:Y?</m></n>	
CALCulate <n>:MARKer<m>:Z</m></n>	
FORMat[:DATA]	
FORMat:DEXPort:DSEParator	
FORMat:DEXPort:GRAPh	
FORMat:DEXPort:HEADer	
FORMat:DEXPort:TRACes	263
MMEMory:STORe <n>:TRACe</n>	
TRACe <n>[:DATA]?</n>	
TRACe <n>[:DATA]:X?</n>	
TRACe <n>[:DATA]:Y?</n>	
TRACe:IQ:DATA?	
TRACe:IQ:DATA:FORMat	
TRACe:IQ:DATA:MEMory?	266

CALCulate<n>:DELTamarker<m>:Y?

Queries the result at the position of the specified delta marker.

Suffix:	
<n></n>	1n
<m></m>	1n

Return values:	
<result></result>	Result at the position of the delta marker. The unit is variable and depends on the one you have currently set.
	Default unit: DBM
Usage:	Query only
Manual operation:	See "Y-Value" on page 125

CALCulate<n>:DELTamarker<m>:Y:RELative?

Queries the relative position of a delta marker of a 3D trace on the y-axis. If necessary, the command activates the delta marker first.

Suffix:	
<n></n>	1n
	vvindow
<m></m>	1n Marker
Return values:	
<xvalue></xvalue>	Default unit: HZ
Example:	CALC:DELT3:Y:REL?
Usage:	Query only

CALCulate<n>:DELTamarker<m>:Z <Result>

Sets a delta marker's current position on the z-axis or queries its result in a 3-dimensional diagram.

Suffix:	
<n></n>	1n Window
<m></m>	1n Marker
Parameters:	
<result></result>	Result at the position of the delta marker. For 3-dimensional constellation diagrams (Constellation vs car- rier/symbol), this parameter defines the carrier or symbol, respectively, to place the marker at. The unit depends on the type of data displayed on the z-axis.
Example:	<pre>//Define a power vs. symbol vs. carrier display LAY:ADD? '1',RIGH,PSC //Set delta marker 2 at carrier 2 CALC2:DELT2:Y 2 //Query the delta marker result for carrier 2 CALC2:DELT2:Z?</pre>

```
Example: //Define constellation vs. symbol display
LAY:ADD? '1',RIGH,CSYM
//Set delta marker 2 at carrier 1
CALC2:DELT2:Z 1
//Query the delta marker result for carrier 1.
CAL2:DELT2:Y?
```

CALCulate<n>:MARKer<m>:Y?

Queries the result at the position of the specified marker.

Suffix:	
<n></n>	1n
<m></m>	1n
Return values:	
<result></result>	Default unit: DBM
Usage:	Query only
Manual operation:	See "Marker Table" on page 27 See "Y-Value" on page 125

CALCulate<n>:MARKer<m>:Z <Result>

Sets a marker's current position on the z-axis or queries its result in a 3-dimensional diagram.

Suffix:	
<n></n>	1n Window
<m></m>	1n Marker
Parameters:	
<result></result>	Result at the position of the marker. For 3-dimensional constellation diagrams (Constellation vs car- rier/symbol), this parameter defines the carrier or symbol, respectively, to place the marker at. The unit depends on the type of data displayed on the z-axis.
Example:	<pre>//Define a power vs. symbol vs. carrier display LAY:ADD? '1',RIGH,PSC //Set marker 2 at carrier 2 CALC2:MARK2:Y 2 //Query the marker result for carrier 2 CALC2:MARK2:Z?</pre>

Retrieving results

Example:	<pre>//Define constellation vs. carrier display LAY:ADD? '1',RIGH,CCAR //Set marker 2 at symbol 3 CALC2:MARK2:Z 3 //Query the marker result for symbol 3. CAL2:MARK2:Y?</pre>
Manual operation:	See "Constellation Diagram" on page 20 See "Constellation vs Carrier" on page 21 See "Constellation vs Symbol" on page 22 See "EVM vs Symbol vs Carrier" on page 24 See "Power vs Symbol vs Carrier" on page 30

FORMat[:DATA] <Format>[, <BitLength>]

Selects the data format that is used for transmission of trace data from the R&S FSV/A to the controlling computer.

Note that the command has no effect for data that you send to the R&S FSV/A. The R&S FSV/A automatically recognizes the data it receives, regardless of the format.

Parameter

<format></format>	ASCii ASCii format, separated by commas. This format is almost always suitable, regardless of the actual data format. However, the data is not as compact as other for- mats can be.
	REAL Floating-point numbers (according to IEEE 754) in the "definite length block format".
<bitlength></bitlength>	Length in bits for floating-point results 16 16-bit floating-point numbers. Compared to REAL, 32 format, half as many numbers are returned.
	32 32-bit floating-point numbers For I/Q data, 8 bytes per sample are returned for this format set- ting.
	64 64-bit floating-point numbers Compared to REAL, 32 format, twice as many numbers are returned.
Example:	FORM REAL, 32

FORMat:DEXPort:DSEParator <Separator>

Selects the decimal separator for data exported in ASCII format.

Parameters:

<separator></separator>	POINt COMMa	
	COMMa Uses a com	ma as decimal separator, e.g. <i>4,05</i> .
	POINt Uses a poin	t as decimal separator, e.g. <i>4.05</i> .
	*RST:	*RST has no effect on the decimal separator. Default is POINt.
Example:	FORM: DEXP: DSEP POIN Sets the decimal point as separator.	
Manual operation:	See "Decimal Separator" on page 130	

FORMat:DEXPort:GRAPh <State>

If enabled, all traces for the currently selected graphical result display are included in the export file.

Parameters:	
<state></state>	ON OFF 0 1
	OFF 0
	Switches the function off
	ON 1
	Switches the function on
	*RST: 0
Manual operation:	See "Export All Traces for Selected Graph" on page 130

FORMat:DEXPort:HEADer <State>

If enabled, additional instrument and measurement settings are included in the header of the export file for result data. If disabled, only the pure result data from the selected traces and tables is exported.

Parameters	
------------	--

<State>

ON OFF	0 1
*RST:	1

Manual operation: See "Include Instrument & Measurement Settings" on page 129

FORMat:DEXPort:TRACes <Selection>

Selects the data to be included in a data export file (see MMEMory: STORe<n>: TRACe on page 263).

Parameters:

<Selection>

SINGle | ALL

SINGle

Only a single trace is selected for export, namely the one specified by the MMEMory: STORe<n>: TRACe command.

ALL

Selects all active traces and result tables (e.g. "Result Summary", marker peak list etc.) in the current application for export to an ASCII file.

The <trace> parameter for the MMEMory:STORe<n>:TRACe command is ignored.

*RST: SINGle

Manual operation: See "Export all Traces and all Table Results" on page 129

MMEMory:STORe<n>:TRACe <Trace>, <FileName>

Exports trace data from the specified window to an ASCII file.

For details on the order of the trace results depending on the display type, see Chapter 9.8.4, "Using the TRACe[:DATA] command", on page 267.

Secure User Mode

- ---

In secure user mode, settings that are stored on the instrument are stored to volatile memory, which is restricted to 256 MB. Thus, a "memory limit reached" error can occur although the hard disk indicates that storage space is still available.

To store data permanently, select an external storage location such as a USB memory device.

For details, see "Protecting Data Using the Secure User Mode" in the "Data Management" section of the R&S FSV3000/ FSVA3000 base unit user manual.

Suffix: <n></n>	Window
Parameters: <trace></trace>	Number of the trace to be stored
<filename></filename>	String containing the path and name of the target file
Example:	MMEM:STOR1:TRAC 1, 'C:\TEST.ASC' Stores trace 1 from window 1 in the file TEST.ASC.
Manual operation:	See "Export Trace to ASCII File" on page 130

TRACe<n>[:DATA]? <Trace>

Returns the y-values of the trace data for the current measurement or result display.

For 3-dimensional displays, such as the Allocation Matrix, this command returns the data values for the third (z-) dimension.

For more information see Chapter 9.8.4, "Using the TRACe[:DATA] command", on page 267.

Suffix:	
<n></n>	1n
	Window
Query parameters:	
<trace></trace>	TRACE1 TRACE2 TRACE3 TRACE4 TRACE5 TRACE6
Usage:	Query only
Manual operation:	See "Allocation Matrix" on page 16

TRACe<n>[:DATA]:X? [<Trace>]

Returns the x-values for the trace data in the selected result display.

For information on how many values are returned see Chapter 9.8.4, "Using the TRACe[:DATA] command", on page 267.

Suffix:

<n>

1..n Window

Query parameters:

<trace></trace>	TRACE1 TRACE2 TRACE3 TRACE4 TRACE5 TRACE6
Example:	TRAC2:DATA:X?
Usage:	Query only
Manual operation:	See "Allocation Matrix" on page 16 See "CCDF" on page 19 See "Channel Flatness" on page 19 See "EVM vs Carrier" on page 23 See "EVM vs Symbol" on page 23 See "EVM vs Symbol vs Carrier" on page 24 See "Group Delay" on page 25 See "Impulse Response" on page 26 See "Magnitude Capture" on page 27 See "Power vs Carrier" on page 29 See "Power vs Symbol" on page 30 See "Power vs Symbol vs Carrier" on page 30

TRACe<n>[:DATA]:Y? [<Trace>]

Returns the y-values for 3-dimensional trace data in the selected result display.

Retrieving results

For information on how many values are returned see Chapter 9.8.4, "Using the TRACe[:DATA] command", on page 267.

Suffix:				
<n></n>	1n Window			
Query parameters: <trace></trace>				
Example:	TRAC2:DATA:Y?			
Usage:	Query only			
Manual operation:	See "Allocation Matrix" on page 16 See "EVM vs Symbol vs Carrier" on page 24 See "Power vs Symbol vs Carrier" on page 30			

TRACe:IQ:DATA?

Initiates a measurement with the current settings and returns the captured data from I/Q measurements.

Corresponds to:

INIT:IMM; *WAI;:TRACe:IQ:DATA:MEMory?

However, the TRACe: IQ: DATA? command is quicker in comparison.

Return values:

<results></results>	Measured voltage for I and Q component for each sample that has been captured during the measurement. Default unit: V
Example:	TRAC: IQ: STAT ON Enables acquisition of I/Q data TRAC: IQ: SET NORM, 10MHz, 32MHz, EXT, POS, 0, 4096 Measurement configuration: Sample Rate = 32 MHz Trigger Source = External Trigger Slope = Positive Pretrigger Samples = 0 Number of Samples = 4096 FORMat REAL, 32 Selects format of response data TRAC: IQ: DATA? Starts measurement and reads results
Usage:	Query only

TRACe:IQ:DATA:FORMat <Format>

Selects the order of the I/Q data.

Parameters:

<Format>

COMPatible | IQBLock | IQPair

COMPatible

I and Q values are separated and collected in blocks: A block (512k) of I values is followed by a block (512k) of Q values, followed by a block of I values, followed by a block of Q values etc. (I,I,I,I,Q,Q,Q,Q,I,I,I,I,Q,Q,Q,Q...)

IQBLock

First all I-values are listed, then the Q-values (I,I,I,I,I,I,...Q,Q,Q,Q,Q,Q)

IQPair

One pair of I/Q values after the other is listed (I,Q,I,Q,I,Q...). *RST: IQP

TRACe:IQ:DATA:MEMory? [<OffsetSamples>,<NoOfSamples>]

Queries the I/Q data currently stored in the capture buffer of the R&S FSV/A.

By default, the command returns all I/Q data in the memory. You can, however, narrow down the amount of data that the command returns using the optional parameters.

If no parameters are specified with the command, the entire trace data is retrieved.

In this case, the command returns the same results as TRACe: IQ: DATA?. (Note, however, that the TRAC: IQ: DATA? command initiates a new measurement before returning the captured values, rather than returning the existing data in the memory.)

The command returns a comma-separated list of the measured values in floating point format (comma-separated values = CSV). The number of values returned is 2 * the number of complex samples.

The total number of complex samples is displayed in the channel bar in manual operation and can be calculated as:

<SampleRate> * <CaptureTime>

Query parameters:

<offsetsamples></offsetsamples>	Selects an offset at which the output of data should start in rela- tion to the first data. If omitted, all captured samples are output, starting with the first sample.			
	Range:	0 to <# of samples> – 1, with <# of samples> being the maximum number of captured values		
	*RST:	0		

<noofsamples></noofsamples>	Number of samples you want to query, beginning at the offset you have defined. If omitted, all captured samples (starting at offset) are output.		
	Range: *RST	1 to <# of samples> - <offset samples=""> with <# of samples> maximum number of captured values <# of samples></offset>	
Return values:	Not.		
<iqdata></iqdata>	Measured value pair (I,Q) for each sample that has been recor- ded. The data format of the individual values depends on FORMat [: DATA] on page 261.		
Example:	// Perform INIT; *WA // Determin FORMat R // Read 10 TRAC:IQ:	a single I/Q capture. In the output format (binary float32) REAL, 32 24 I/Q samples starting at sample 2048. DATA:MEM? 2048,1024	
Usage:	Query only	/	

9.8.4 Using the TRACe[:DATA] command

This chapter contains information on the TRACe:DATA command and a detailed description of the characteristics of that command.

The TRACe < n > [:DATA]? command queries the trace data or results of the currently active measurement or result display. The type, number and structure of the return values are specific for each result display. For results that have any kind of unit, the command returns the results in the unit you have currently set for that result display.

For several result displays, the command also supports various SCPI parameters in combination with the query. If available, each SCPI parameter returns a different aspect of the results. If SCPI parameters are supported, you have to specify them in the query.

Example:

TRAC:DATA? TRACE1

The format of the return values is either in ASCII or binary characters and depends on the format you set with FORMat [:DATA] on page 261.

Following this detailed description, you find a short summary of the most important functions of the TRACe < n > [:DATA]? command.

•	Allocation matrix	268
•	Bitstream	
•	CCDF	. 268
•	Channel flatness	. 269

Retrieving results

•	Constellation diagram	. 269
•	Constellation vs carrier	271
•	Constellation vs symbol.	. 271
•	EVM vs carrier	272
•	EVM vs symbol	. 272
•	EVM vs symbol vs carrier	272
•	Group delay	273
•	Impulse response	273
•	Magnitude capture	. 273
•	Power vs carrier	274
•	Power vs symbol	274
•	Power vs symbol vs carrier	274
•	Power spectrum	275

9.8.4.1 Allocation matrix

The values in the allocation matrix represent the modulation type for that symbol and carrier. Depending on the parameter, the modulation is provided in different formats.

TRACe<n>:DATA? TRACe1 returns the modulation indexes used for each symbol (column-wise from the matrix).

TRACe<n>:DATA? TRACe2 returns the modulation names used for each symbol (column-wise from the matrix).

To obtain a list of the symbols (corresponding to the x-axis in the matrix), use TRACe<n>:DATA:X? TRACe1, see TRACe<n>[:DATA]:X? on page 264.

To obtain a list of the subcarriers (corresponding to the y-axis in the matrix), use TRACe<n>:DATA:Y? TRACe1, see TRACe<n>[:DATA]:Y? on page 264.

9.8.4.2 Bitstream

The command returns a demodulated data stream for the symbols in the currently analyzed result ranges in decimal format. Non-data cells, including the guard carriers, are indicated as "-1".

9.8.4.3 CCDF

The command returns the complementary cumulative probability distribution for each sample in the capture buffer, relative to the average power.

To obtain a list of the average power per sample, use TRACe<n>:DATA:X? TRACe1, see TRACe<n>[:DATA]:X? on page 264.

9.8.4.4 Channel flatness

The command returns the spectrum flatness as a list over all subcarriers. The list consists of one value for each trace point.

<relative power>, ...

The unit is always dB.

The following parameters are supported.

- TRACE1 Returns the average power over all frames.
- TRACE2 Returns the minimum power found over all frames.
- TRACE3 Returns the maximum power found over all frames.

9.8.4.5 Constellation diagram

The command returns two values (I/Q) for each constellation point, for each carrier, in each symbol, in each frame, as defined in the Allocation matrix.

<I[F₀][Sym₀][Carr₀]>, <Q[F₀][Sym₀][Carr₀]>, ..., <I[F₀][Sym₀][Carr_n]>, <Q[F₀][Sym₀][Carr_n]>, <I[F₀][Sym₁][Carr₀]>, <Q[F₀][Sym₁][Carr₁]>, <Q[F₀][Sym₁][Carr₁]

Where:

- F = frame
- Sym = symbol of that subframe
- Carr = subcarrier in that symbol

The I and Q values have no unit.

The TRACe<n>[:DATA]? command evaluates *all* cells in the Constellation diagram, including non-allocated cells, for example in guard carriers. Any specific selection by CONFigure:FILTer<n>:MODulation or CONFigure:FILTer<n>:MODulation: TYPE is ignored.

Results for trace export (MMEM:STOR:TRAC)

Note that for the trace export feature, the results are different to the TRACe<n>[: DATA]? results (see MMEMory:STORe<n>:TRACe on page 263):

- Only the constellation activated in the Constellation diagram is exported (see CONFigure:FILTer<n>:MODulation and CONFigure:FILTer<n>:MODulation:TYPE). Non-allocated cells are not included.
- The order of the trace data is as follows:
 - One modulation type after the next (see CONFigure:FILTer<n>: MODulation:TYPE on page 220)
 - Within one modulation type: carriers in ascending order of their number (from negative to positive)
 - For each carrier: measured symbols in ascending order, starting with 0
 - For each symbol: First Q, then I

Example: Trace export results

Assume you measure 2 frames with 4 carriers and 4 symbols each.

Frame 0				Frame 1				Carrier
Symbol								number
0	1	2	3	4	5	6	7	
U	U	U	U	U	U	U	U	+1
P1	B1	Q1	Q3	P3	B3	Q5	Q7	0
P0	B0	Q0	Q2	P2	B2	Q4	Q6	-1
U	U	U	U	U	U	U	U	-2

Where:

- P: pilots
- B: BPSK data cells
- Q: QAM data cells
- U: unallocated guard carriers

Then the trace export results for MMEM: STOR: TRAC? depending on the constellation is:

- For all modulation types: P0 P2 P1 P3 B0 B2 B1 B3 Q0 Q2 Q4 Q6 Q1 Q3 Q5 Q7
- For pilots only: P0 P2 P1 P3
- For QAM modulation only: Q0 Q2 Q4 Q6 Q1 Q3 Q5 Q7

9.8.4.6 Constellation vs carrier

The command returns one value (I or Q) for each constellation point, for each symbol, for each carrier, in each frame. Whether the I or Q values are returned depends on the parameter:

TRACe1:DATA? TRACe1 returns | values

TRACe1:DATA? TRACe2 returns Q values

Table 9-5: Results for TRACe1:DATA? TRACe1

 $< I[F_0][Carr_0][Sym_0]>, < I[F_0][Carr_0][Sym_1]>, ..., < I[F_0][Carr_0][Sym_n]>, < I[F_0][Carr_1[Sym_0]]>, < I[F_0][Carr_1[Sym_1]]>, ..., < I[F_0][Carr_1][Sym_n]>, < I[F$

 $\label{eq:2.1} < I[F_0][Carr_n][Sym_0]>, < I[F_0][Carr_n][Sym_1]>, ..., < I[F_0][Carr_n][Sym_n]>,$

 $<I[F_1][Carr_0][Sym_0]>, <I[F_1][Carr_0][Sym_1]>, ..., <I[F_1][Carr_0][Sym_n]>,$

 $<\!\!I[F_1][Carr_1][Sym_0]\!\!>,<\!\!I[F_1][Carr_1][Sym_1]\!\!>,...,<\!\!I[F_1][Carr_1][Sym_n]\!\!>,$

 $<I[F_n][Carr_n][Sym_0]>, <I[F_n][Carr_n][Sym_1]>, ..., <I[F_n][Carr_n][Sym_n]>$

Where:

- F = frame
- Carr = subcarrier in that frame
- Sym = symbol of that subcarrier

The I and Q values have no unit.

To obtain a list of the subcarriers (corresponding to the x-axis in the matrix), use TRACe<n>:DATA:X? TRACe1, see TRACe<n>[:DATA]:X? on page 264.

Example for a result length of 4, FFT size = 64:

9.8.4.7 Constellation vs symbol

The command returns one value (I or Q) for each constellation point, for each carrier, in each symbol, in each frame, in the same order as for the Constellation vs. Carrier diagram. Whether the I or Q values are returned depends on the parameter:

TRACe1:DATA? TRACe1 returns | values

TRACe1:DATA? TRACe2 returns Q values

The I and Q values have no unit.

To obtain a list of the symbols (corresponding to the x-axis in the matrix), use TRACe<n>:DATA:X? TRACe1, see TRACe<n>[:DATA]:X? on page 264. Example for a result length of 4: 0,0,0,0, ..., 0,1,1,1,1, ..., 1,2,2,2,2, ...,2,3,3,3,3..., 3

9.8.4.8 EVM vs carrier

The command returns one value for each carrier that has been analyzed.

The following parameters are supported.

- TRACE1 Returns the average EVM over all symbols.
- TRACE2 Returns the minimum EVM found over all symbols.
- TRACE3 Returns the maximum EVM found over all symbols.

9.8.4.9 EVM vs symbol

The command returns one value for each OFDM symbol that has been analyzed.

The following parameters are supported.

- TRACE1 Returns the average EVM over all carriers.
- TRACE2 Returns the minimum EVM found over all carriers.
- TRACE3 Returns the maximum EVM found over all carriers.

9.8.4.10 EVM vs symbol vs carrier

The command returns one value for each OFDM cell.

<[F0][Symb0][Carrier1]>, ..., <[F0][Symb0][Carrier(n)]>, <[F0][Symb1][Carrier1]>, ..., <[F0][Symb1][Carrier(n)]>, <[F0][Symb(n)][Carrier1]>, ..., <[F0][Symb(n)][Carrier(n)]>, <[F1][Symb0][Carrier1]>, ..., <[F1][Symb0][Carrier(n)]>, <[F1][Symb1][Carrier1]>, ..., <[F1][Symb1][Carrier(n)]>,

With F = frame and Symb = symbol of that subframe.

The following parameters are supported.

• TRACE1 Returns the EVM over all carriers. To obtain a list of the symbols (corresponding to the x-axis in the matrix), use TRACe<n>:DATA:X? TRACe1, see TRACe<n>[:DATA]:X? on page 264.

To obtain a list of the subcarriers (corresponding to the y-axis in the matrix), use TRACe<n>:DATA:Y? TRACe1, see TRACe<n>[:DATA]:Y? on page 264.

9.8.4.11 Group delay

The command returns one value for each trace point.

```
<group delay>, ...
```

The unit is always ns.

The following parameters are supported.

- TRACE1 Returns the average group delay over all frames.
- TRACE2 Returns the minimum group delay found over all frames.
- TRACE3 Returns the maximum group delay found over all frames.

9.8.4.12 Impulse response

The command returns one value for each trace point.

<impulse response>, ...

The channel impulse response is the inverse FFT of the estimated channel transfer function. The time axis spans one FFT interval.

The following parameters are supported.

- TRACE1 Returns the average impulse response over all frames.
- TRACE2
 Returns the minimum impulse response found over all frames.
- TRACE3 Returns the maximum impulse response found over all frames.

9.8.4.13 Magnitude capture

The command returns one value for each I/Q sample in the capture buffer.

<absolute power>, ...

The unit is always dBm.

The following parameters are supported.

TRACE1

9.8.4.14 Power vs carrier

The command returns one value for each carrier that has been analyzed.

<power>,...

The unit is always dBm.

The following parameters are supported.

- TRACE1 Returns the average power over all symbols.
- TRACE2 Returns the minimum power found over all symbols.
- TRACE3 Returns the maximum power found over all symbols.

9.8.4.15 Power vs symbol

The command returns one value for each OFDM symbol that has been analyzed.

<power>,...

The unit is always dBm.

The following parameters are supported.

- TRACE1 Returns the average power over all carriers.
- TRACE2 Returns the minimum power found over all carriers.
- TRACE3 Returns the maximum power found over all carriers.

9.8.4.16 Power vs symbol vs carrier

The command returns one value for each OFDM cell.

<[F0][Symb0][Carrier1]>, ..., <[F0][Symb0][Carrier(n)]>, <[F0][Symb1][Carrier1]>, ..., <[F0][Symb1][Carrier(n)]>, <[F0][Symb(n)][Carrier1]>, ..., <[F0][Symb(n)][Carrier(n)]>, <[F1][Symb0][Carrier1]>, ..., <[F1][Symb0][Carrier(n)]>, <[F1][Symb1][Carrier1]>, ..., <[F1][Symb1][Carrier(n)]>,

With F = frame and Symb = symbol of that subframe.

The unit depends on is always dBm.

The following parameters are supported.

• TRACE1 Returns the power over all carriers. To obtain a list of the symbols (corresponding to the x-axis in the matrix), use TRACe<n>:DATA:X? TRACe1, see TRACe<n>[:DATA]:X? on page 264.

To obtain a list of the subcarriers (corresponding to the y-axis in the matrix), use TRACe<n>:DATA:Y? TRACe1, see TRACe<n>[:DATA]:Y? on page 264.

9.8.4.17 Power spectrum

The command returns one value for each trace point.

<power>,...

The unit is always dBm/Hz.

The following parameters are supported.

TRACE1

9.9 Status reporting system

The status reporting system stores all information on the current operating state of the instrument, e.g. information on errors or limit violations which have occurred. This information is stored in the status registers and in the error queue. The status registers and the error queue can be queried via IEC bus.

In this section, only the status registers/bits specific to the R&S FSV3-K96 OFDM VSA application are described.

For details on the common R&S FSV/A status registers refer to the description of remote control basics in the R&S FSV/A User Manual.

*RST does not influence the status registers.

Description of the Status Registers

In addition to the registers provided by the base system, the following register is used in the R&S FSV3-K96 OFDM VSA application.

The STATus:QUEStionable register "sums up" the information from all subregisters (e.g. bit 11 sums up the information for all STATus:QUEStionable:SYNC registers). For some subregisters, there may be separate registers for each active channel. Thus, if a status bit in the STATus:QUEStionable register indicates an error, the error may have occurred in any of the channel-specific subregisters. In this case, you must check the subregister of each channel to determine which channel caused the error. By default, querying the status of a subregister always returns the result for the currently selected channel.

This register contains application-specific information about synchronization errors or errors during burst detection for each window in each OFDM VSA channel. It can be queried with commands STATus:QUEStionable:SYNC:CONDition? on page 276 and STATus:QUEStionable:SYNC[:EVENt]? on page 276.

Table 9-6: Status error bits in STATus:QUEStionable:SYNC register for the R&S FSV3-K96 OFDM VSA application

Bit	Definition
0	Not used.
1	Sync not found This bit is set if synchronization failed.
2 to 14	Not used.
15	This bit is always 0.

The following commands query the contents of the individual status registers.

STATus:QUEStionable:SYNC:CONDition?	276
STATus:QUEStionable:SYNC[:EVENt]?	276
STATus:QUEStionable:SYNC:ENABle	276
STATus:QUEStionable:SYNC:NTRansition	
STATus:QUEStionable:SYNC:PTRansition	277

STATus:QUEStionable:SYNC:CONDition? < ChannelName>

Reads out the CONDition section of the status register.

The command does not delete the contents of the EVENt section.

Query parameters:

<channelname></channelname>	String containing the name of the channel.
	The parameter is optional. If you omit it, the command works for
	the currently active channel.
Usage:	Query only

STATus:QUEStionable:SYNC[:EVENt]? < ChannelName>

Reads out the EVENt section of the status register.

The command also deletes the contents of the EVENt section.

Query parameters:

<channelname></channelname>	String containing the name of the channel.		
	The parameter is optional. If you omit it, the command works for		
	the currently active channel.		

Usage: Query only

STATus:QUEStionable:SYNC:ENABle <BitDefinition>, <ChannelName>

Controls the ENABle part of a register.

The ENABle part allows true conditions in the EVENt part of the status register to be reported in the summary bit. If a bit is 1 in the enable register and its associated event bit transitions to true, a positive transition will occur in the summary bit reported to the next higher level.

Parameters:

<BitDefinition> Range: 0 to 65535 <ChannelName> String containing the name of the channel. The parameter is optional. If you omit it, the command works for the currently active channel.

STATus:QUEStionable:SYNC:NTRansition <BitDefinition>[,<ChannelName>]

Controls the Negative TRansition part of a register.

Setting a bit causes a 1 to 0 transition in the corresponding bit of the associated register. The transition also writes a 1 into the associated bit of the corresponding EVENt register.

Parameters: <bitdefinition></bitdefinition>	Range:	0 to 65535
<channelname></channelname>	String conta The parame the currently	ining the name of the channel. ter is optional. If you omit it, the command works for active channel.

STATus:QUEStionable:SYNC:PTRansition <BitDefinition>[,<ChannelName>]

These commands control the Positive TRansition part of a register.

Setting a bit causes a 0 to 1 transition in the corresponding bit of the associated register. The transition also writes a 1 into the associated bit of the corresponding EVENt register.

Parameters:

<bitdefinition></bitdefinition>	Range:	0 to	65535
<channelname></channelname>	String conta	ining f	the name of the channel.
	The parame	ter is	optional. If you omit it, the command works for
	the currently	v activ	e channel.

9.10 Deprecated commands

Note that the following commands are maintained for compatibility reasons only. Use the specified alternative commands for new remote control programs.

CALCulate<n>:FEED <ResultDisplay>

This command selects the result display.

Note that this command is maintained for compatibility reasons only. Use the LAYout commands for new remote control programs (see Chapter 9.7.2, "Working with windows in the display", on page 242).

Suffix: <n>

Window

Parameters for setting and query:

<ResultDisplay> String containing a short form of the result display. 'POW:PVSC' (Power vs Symbol X Carrier) 'POW:PVCA' (Power vs Carrier) 'POW:PVSY' (Power vs Symbol) 'POW:CBUF' (Capture Buffer) 'POW:PSPE' (Power Spectrum) 'EVM:EVSC' (EVM vs Symbol X Carrier) 'EVM:EVCA' (EVM vs Carrier) 'EVM:EVSY' (EVM vs Symbol) 'EVM:FERR' (Frequency Error) 'EVM:PERR' (Phase Error) 'CHAN:FLAT' (Channel Flatness) 'CHAN:GDEL' (Group Delay) 'CHAN: IRES' (Impulse Response) 'CONS:CONS' (Constellation Diagram) 'CONS:CVCA' (Constellation vs Carrier) 'CONS:CVSY' (Constellation vs Symbol) 'STAT:CCDF' (CCDF) 'STAT:SFLO' (Signal Flow)

 Example:
 CALC2:FEED 'POW:CBUF'

 Selects the Capture Buffer result display for screen B.

DISPlay[:WINDow<n>]:TYPE <WindowType>

Selects the results displayed in a measurement window.

Note that this command is maintained for compatibility reasons only. Use the LAYout commands for new remote control programs (see Chapter 9.7.2, "Working with windows in the display", on page 242).

Suffix:

<n>

Window

Parameters: <WindowType>

The parameter values are the same as for LAYout:ADD[: WINDow]? on page 242.

9.11 Programming examples: OFDM vector signal analysis

The following examples demonstrate how to perform OFDM vector signal analysis in a remote environment. They use I/Q data from the demo files provided with the R&S FSV/A software as input.

Note that some of the used commands may not be necessary as they define default values, but are included to demonstrate their use.

9.11.1 Example 1: analysis using a predefined configuration file

This example uses input from the demo file WlanA_64QAM.iq.tar and the configuration file WlanA_64QAM.xml, which are both provided in the directory: C:\R S\INSTR\USER\demo\OFDM-VSA\.

Note: You must insert the correct path for your installation before executing this script.

```
//-----Preparing the measurement channel ------
//Reset the instrument
*RST
//Create OFDM VSA channel as replacement for default Receiver channel
INST:CRE:REPL 'Receiver',OFDMVSA,'MyOFDMVSA'
//Load I/Q data file for input
//Select file to load - insert correct path! Analysis bandwidth = 16 MHz
INP:FILE:PATH 'WlanA_64QAM.iq.tar', 16000000
//Assign the file as input source
INP:SEL FIQ
```

```
//-----Configuring the OFDM signal -----
//Use the provided sample file - insert correct path!
MMEM:LOAD:CFGF 'WlanA 64QAM.xml'
//-----Configuring data acquisition-----
//Capture 40000 samples with a sample rate of 20 MHz
SWE:LENG 40000
TRAC: IO: SRAT 2000000
//Enable burst search
DEM:FORM:BURS ON
//Max 1 frame to be demodulated, result length = 100 symbols per frame
DEM:FORM:MAXF 1
DEM: FORM: NOFS 100
//-----Configuring synchronization, tracking, demodulation
//{\tt Time} synchronization using cp
DEM:TSYN CP
//Enable phase tracking and channel comp., disable timing and level tracking
SENS:TRAC:TIME OFF
SENS:TRAC:PHAS ON
SENS:TRAC:LEV OFF
SENS:COMP:CHAN ON
//FFT shift relative to cp length: 0.5
DEM:FFTS 0.5
//----Configuring Results
// Default displays:
//1: Magnitude Capture 3: Power Spectrum
//2: Result Summary 4: Constellation
//Replace power spectrum by Power vs. symbol vs. carrier
LAY:REPL:WIND '3', PSC
//Normalize EVM to Peak Pilots and Data
DEM:EVMC:NORM PPD
//Filter constellation - show only data symbols with 64QAM mod.
CONF:FILT4:MOD:TYPE DATA
CONF:FILT4:MOD '64QAM'
//----Performing the Measurement-----
//Select single sweep mode.
INIT:CONT OFF
//Initiate a new measurement and wait until the sweep has finished.
INIT:IMM; *OPC?
//-----Retrieving Results------
//Query frame burst count and length (1 frame, 40 symbols)
```

```
FETC:BURS:COUN?
FETC:BURS:LENG?
//Query max. EVM of data symbols
FETC:SUMM:EVM:DATA:MAX?
//Query the state of the individual signal flow stages
FETC:SFL:STAT:ALL?
//Retrieve trace data for power vs symbol vs carrier diagram
TRAC3:DATA:X? TRACe1
TRAC3:DATA? TRACe1
//Retrieve trace data for filtered constellation diagram
```

```
//Retrieve trace data for filtered constellation diagram
TRAC4:DATA? TRACE1
```

9.11.2 Example 2: analysis with manual signal description

This signal uses input from the demo file WLANac 64QAM 20MHz ShortCP.iq.tar.

Note: You must insert the correct path for your installation before executing this script.

```
//----Preparing the measurement channel -----
//Reset the instrument
*RST
//Create a second OFDM VSA channel
INST:CRE:NEW OFDMVSA, 'ManualOFDMVSA'
//Load I/Q data file for input
//Select file to load - insert correct path! Analysis bandwidth = 16 MHz
INP:FILE:PATH 'WLANac 64QAM 20MHz ShortCP.iq.tar', 16000000
//Assign the file as input source
INP:SEL FIQ
//-----Configuring the OFDM signal -----
//Define 64 subcarriers
CONF:SYMB:NFFT 64
//Non-conventional, non-periodic cyclic prefixes;
//Range 1 (10 symbols): 16 samples
//Range 2 (all other symbols): 8 samples
CONF:GUAR:MODE GU2
CONF:GUAR:PER OFF
CONF:GUAR1:NSYM 10
CONF:SYMB:NGU1 16
CONF:SYMB:NGU2 8
//Preamble of 16 samples; frame starts at -560 samples
CONF:PRE:BLEN 16
```

```
CONF:PRE:FOFF -560
//-----Configuring data acquisition-----
//Capture 43680 samples with a sample rate of 20 MHz
SWE:LENG 43680
TRAC: IQ: SRAT 2000000
//Enable burst search
DEM:FORM:BURS ON
//Max 1 frame to be demodulated, result length = 100 symbols per frame
DEM:FORM:MAXF 1
DEM:FORM:NOFS 100
//----Configuring Results
// Default displays:
//1: Magnitude Capture 3: Power Spectrum
//2: Result Summary 4: Constellation
//----Performing the Measurement-----
//Select single sweep mode.
INIT:CONT OFF
//Initiate a new measurement and wait until the sweep has finished.
INIT:IMM; *OPC?
//-----Retrieving Results------
//Query frame burst count and length (1 frame, 40 symbols)
FETC:BURS:COUN?
FETC:BURS:LENG?
//Query the state of the individual signal flow stages
FETC:SFL:STAT:ALL?
//Retrieve trace data for capture buffer
TRAC1:DATA:X? TRACe1
TRAC1:DATA? TRACe1
```

Q

After the signal has been demodulated correctly, you can use the configuration to create a new configuration file with the interactive wizard. See Chapter 6, "Creating a configuration file using the wizard", on page 89.

Annex

A Formulae

A.1 Error vector magnitude (EVM)

The EVM of a cell (symbol number I, carrier number k) is defined as

$$EVM_{l,k} = \sqrt{\frac{\left|r_{l,k} - a_{l,k}\right|^2}{P_{norm}}}$$

where

• r_{I,k} is the received symbol point in the complex plane of symbol number I and carrier number k.

The received symbol point is compensated by phase and clock errors as well as channel transfer function according to the user settings.

• a_{I,k} is the ideal symbol point in the complex plane of symbol number I and carrier number k.

P_{norm} is a normalization value that can be set in four different ways

Normalize EVM to	P _{norm}
RMS Pilots & Data	$\frac{1}{N_{pilot} + N_{data}} \sum_{l,k \in Pilot, Data} \left a_{l,k} \right ^2$
RMS Data	$\frac{1}{N_{data}} \sum_{l,k \in Data} \left a_{l,k} \right ^2$
RMS Pilots	$\frac{1}{N_{pilot}} \sum_{l,k \in Pilot} \left a_{l,k} \right ^2$
Peak Pilots & Data	$\max_{\substack{l,k \in Pilot, Data}} \left a_{l,k} \right ^2$
Peak Data	$\max_{l,k\in Data} \left a_{l,k} \right ^2$
Peak Pilots	$\max_{l,k\in Pilot} \left a_{l,k}\right ^2$
None	1.0

N_{pilot} is the number of pilot cells

• N_{data} is the number of data cells

A.2 I/Q impairments

The I/Q imbalance can be written as

$$r(t) = G_I \cdot \Re{s(t)} + j \cdot G_Q \cdot \Im{s(t)}$$

where s(t) is the transmit signal, r(t) is the received signal, and $G_{\rm l}$ and $G_{\rm Q}$ are the weighting factors.

Variable	Meaning	Definition from Transmitter Model
G	Gain I-branch	1
G _Q	Gain Q-branch	$1 + \Delta Q$

Gain-Imbalance =
$$20 \log \left(\frac{|G_0|}{|G_1|} \right) dB$$

Quadrature-Error =
$$\arctan\left(\frac{\operatorname{Im}\left\{G_{\varrho}\right\}}{\operatorname{Re}\left\{G_{\varrho}\right\}}\right) \cdot 180^{\circ}/\pi$$

B Reference: IQW format specification for user-defined constellation points

For a user-specific, unusual constellation of a signal component, you can configure the constellation in an IQW file in advance. Then load the file to the wizard instead of selecting a predefined modulation for a specific signal component. See Step 3: Synchronizing the measured data, step 3.

Figure B-1: Example for user-defined constellation points

Create the constellation file using a python or Matlab script, for example.

Consider the following prerequisites:

- The file must contain the ideal complex values for the N constellation points.
- Define the symbols in the correct order (symbol number 0, 1, 2, 3.., N-1). Otherwise, the bitstream results are incorrect.
- The number of points must be between 2 and 64*1024.
- For each constellation point, define the real component first, than the imaginary component. One point after the next. (Re₀, Im₀, Re₁, Im₁, ..., Re_n, Im_N)
- Define each value in binary, single-precision float format.
- Do not include any header or length information, only the values themselves.

Sample script to configure 16 constellation points in Matlab

The following script can be used to configure the 16 points on the unit circle (16-PSK) as shown in Figure B-2.

```
sFilename = '16PSK.iqw';
iN = 16
vfcVector = exp(1j*2*pi/iN*[0:iN-1])
fileID = fopen(sFilename, 'w');
if -1==fileID
    error('file open failed')
end
for iK = 1:length(vfcVector)
    fwrite(fileID, real(vfcVector(iK)) ,'single', 'ieee-le');
    fwrite(fileID, imag(vfcVector(iK)) ,'single', 'ieee-le');
end
fclose(fileID);
```

As a result, the following constellation points are configured:

Figure B-2: 16-PSK ideal constellation points

1.00 +j*0.00 ,	//corresponds	to symb	ool numb	per O	
0.92 +j*0.38					
0.71 +j*0.71					
0.38 +j*0.92					
0.00 +j*1.00					
-0.38 +j*0.92					
-0.71 +j*0.71					
-0.92 +j*0.38					
-1.00 +j*0.00					
-0.92 +j*-0.38					
-0.71 +j*-0.71					
-0.38 +j*-0.92					
-0.00 +j*-1.00					
0.38 +j*-0.92					
0.71 +j*-0.71					
0.92 +j*-0.38	//correspo	onds to	symbol	number	15

List of commands (OFDM VSA)

[SENSe:]ADJust:CONFigure:HYSTeresis:LOWer	
[SENSe:]ADJust:CONFigure:HYSTeresis:UPPer	210
[SENSe:]ADJust:CONFigure:LEVel:DURation	
[SENSe:]ADJust:CONFigure:LEVel:DURation:MODE	210
[SENSe:]ADJust:CONFigure:TRIGger	211
[SENSe:]ADJust:LEVel	
[SENSe:]CAPTure:OVERsampling	
[SENSe:]COMPensate:CHANnel	
[SENSe:]CORRection:CVL:BAND	
[SENSe:]CORRection:CVL:BIAS	
[SENSe:]CORRection:CVL:CATalog?	
[SENSe:]CORRection:CVL:CLEar	
[SENSe:]CORRection:CVL:COMMent	
[SENSe:]CORRection:CVL:DATA	
[SENSe:]CORRection:CVL:HARMonic	
[SENSe:]CORRection:CVL:MIXer	
[SENSe:]CORRection:CVL:PORTs	
[SENSe:]CORRection:CVL:SELect	165
[SENSe:]CORRection:CVL:SNUMber	
[SENSe:]DEMod:CDD	
[SENSe:]DEMod:COFFset	
SENSe:]DEMod:EVMCalc:FAVerage	218
[SENSe:]DEMod:EVMCalc:NORMalize	219
[SENSe:]DEMod:FFTShift	
[SENSe:]DEMod:FORMat:BURSt	
[SENSe:]DEMod:FORMat:MAXFrames	
[SENSe:]DEMod:FORMat:NOFSymbols	
[SENSe:]DEMod:FSYNc	
[SENSe:]DEMod:MDETect	
[SENSe:]DEMod:THReshold:FRAMe	
[SENSe:]DEMod:THReshold:TIME	207
[SENSe:]DEMod:TSYNc	208
[SENSe:]EFRontend:ALIGnment <ch>:FILE</ch>	
[SENSe:]EFRontend:ALIGnment <ch>:STATe</ch>	177
[SENSe:]EFRontend:CONNection:CONFig	169
[SENSe:]EFRontend:CONNection:CSTate?	
[SENSe:]EFRontend:CONNection[:STATe]	168
[SENSe:]EFRontend:FREQuency:BAND:COUNt?	170
[SENSe:]EFRontend:FREQuency:BAND :LOWer?	170
[SENSe:]EFRontend:FREQuency:BAND :UPPer?	170
[SENSe:]EFRontend:FREQuency:BCONfig:AUTO	171
[SENSe:]EFRontend:FREQuency:BCONfig:LIST?	171
[SENSe:]EFRontend:FREQuency:BCONfig:SELect	172
[SENSe:]EFRontend:FREQuency:IFRequency:MAXimum?	172
[SENSe:]EFRontend:FREQuency:IFRequency:MINimum?	172
[SENSe:]EFRontend:FREQuency:IFRequency:SIDeband?	
[SENSe:]EFRontend:FREQuency:IFRequency[:VALue]?	173

[SENSe:]EFRontend:FREQuency:LOSCillator:INPut:FREQuency?	173
[SENSe:]EFRontend:FREQuency:LOSCillator:MODE	
[SENSe:]EFRontend:FREQuency:LOSCillator:OUTPut:FREQuency?	174
[SENSe:]EFRontend:FREQuency:LOSCillator:OUTPut:STATe	174
[SENSe:]EFRontend:FREQuency:REFerence	174
[SENSe:]EFRontend:FREQuency:REFerence:LIST?	175
[SENSe:]EFRontend:FWUPdate	177
[SENSe:]EFRontend:IDN?	175
[SENSe:]EFRontend:NETWork	175
[SENSe:]EFRontend[:STATe]	176
[SENSe:]EFRontend <fe>:SELFtest:RESult?</fe>	178
[SENSe:]EFRontend <fe>:SELFtest?</fe>	
[SENSe:]FREQuency:CENTer	
[SENSe:]FREQuency:CENTer:STEP	189
[SENSe:]FREQuency:CENTer:STEP:AUTO	190
[SENSe:]FREQuency:OFFSet	
[SENSe:]MIXer <x>:BIAS:HIGH</x>	155
[SENSe:]MIXer <x>:BIAS[:LOW]</x>	
[SENSe:]MIXer <x>:FREQuency:HANDover</x>	156
[SENSe:]MIXer <x>:FREQuency:STARt</x>	157
[SENSe:]MIXer <x>:FREQuency:STOP</x>	157
[SENSe:]MIXer <x>:HARMonic:BAND</x>	157
[SENSe:]MIXer <x>:HARMonic:BAND:PRESet</x>	157
[SENSe:]MIXer <x>:HARMonic:HIGH:STATe</x>	
[SENSe:]MIXer <x>:HARMonic:HIGH[:VALue]</x>	
[SENSe:]MIXer <x>:HARMonic:TYPE</x>	
[SENSe:]MIXer <x>:HARMonic[:LOW]</x>	
[SENSe:]MIXer <x>:IF?</x>	159
[SENSe:]MIXer <x>:LOPower</x>	155
[SENSe:]MIXer <x>:LOSS:HIGH</x>	
[SENSe:]MIXer <x>:LOSS:TABLe:HIGH</x>	
[SENSe:]MIXer <x>:LOSS:TABLe[:LOW]</x>	
[SENSe:]MIXer <x>:LOSS[:LOW]</x>	
[SENSe:]MIXer <x>:PORTs</x>	
[SENSe:]MIXer <x>:RFOVerrange[:STATe]</x>	
[SENSe:]MIXer <x>[:STATe]</x>	155
[SENSe:]PROBe <pb>:ID:PARTnumber?</pb>	
[SENSe:]PROBe <pb>:ID:SRNumber?</pb>	
[SENSe:]PROBe <pb>:SETup:ATTRatio</pb>	
[SENSe:]PROBe <pb>:SETup:CMOFfset</pb>	185
[SENSe:]PROBe <pb>:SETup:DMOFfset</pb>	186
[SENSe:]PROBe <pb>:SETup:MODE</pb>	
[SENSe:]PROBe <pb>:SETup:NAME?</pb>	186
[SENSe:]PROBe <pb>:SETup:NMOFfset</pb>	187
[SENSe:]PROBe <pb>:SETup:PMODe</pb>	
[SENSe:]PROBe <pb>:SETup:PMOFfset</pb>	
[SENSe:]PROBe <pb>:SETup:STATe?</pb>	
[SENSe:]PROBe <pb>:SETup:TYPE?</pb>	188
[SENSe:]SWAPiq	
[SENSe:]SWEep:COUNt	
[SENSe:]SWEep:LENGth	
--	-----
[SENSe:]SWEep:TIME	
ABORt	215
CALCulate <n>:BITStream:FORMat</n>	219
CALCulate <n>:DELTamarker<m>:AOFF</m></n>	229
CALCulate <n>:DELTamarker<m>:LINK</m></n>	
CALCulate <n>:DELTamarker<m>:MAXimum:APEak</m></n>	233
CALCulate <n>:DELTamarker<m>:MAXimum:LEFT</m></n>	233
CALCulate <n>:DELTamarker<m>:MAXimum:NEXT</m></n>	
CALCulate <n>:DELTamarker<m>:MAXimum:RIGHt</m></n>	234
CALCulate <n>:DELTamarker<m>:MAXimum[:PEAK]</m></n>	
CALCulate <n>:DELTamarker<m>:MINimum:LEFT</m></n>	
CALCulate <n>:DELTamarker<m>:MINimum:NEXT</m></n>	
CALCulate <n>:DELTamarker<m>:MINimum:RIGHt</m></n>	235
CALCulate <n>:DELTamarker<m>:MINimum[:PEAK]</m></n>	
CALCulate <n>:DELTamarker<m>:MREFerence</m></n>	
CALCulate <n>:DELTamarker<m>:TRACe</m></n>	231
CALCulate <n>:DELTamarker<m>:X</m></n>	231
CALCulate <n>:DELTamarker<m>:Y:RELative?</m></n>	259
CALCulate <n>:DELTamarker<m>:Y?</m></n>	
CALCulate <n>:DELTamarker<m>:Z</m></n>	
CALCulate <n>:DELTamarker<m>[:STATe]</m></n>	
CALCulate <n>:DELTamarker<ms>:LINK:TO:MARKer<md></md></ms></n>	229
CALCulate <n>:FEED</n>	277
CALCulate <n>:MARKer<m>:AOFF</m></n>	
CALCulate <n>:MARKer<m>:MAXimum:APEak</m></n>	235
CALCulate <n>:MARKer<m>:MAXimum:LEFT</m></n>	
CALCulate <n>:MARKer<m>:MAXimum:NEXT</m></n>	
CALCulate <n>:MARKer<m>:MAXimum:RIGHt</m></n>	236
CALCulate <n>:MARKer<m>:MAXimum[:PEAK]</m></n>	
CALCulate <n>:MARKer<m>:MINimum:LEFT</m></n>	
CALCulate <n>:MARKer<m>:MINimum:NEXT</m></n>	236
CALCulate <n>:MARKer<m>:MINimum:RIGHt</m></n>	
CALCulate <n>:MARKer<m>:MINimum[:PEAK]</m></n>	237
CALCulate <n>:MARKer<m>:SEARch</m></n>	237
CALCulate <n>:MARKer<m>:TRACe</m></n>	228
CALCulate <n>:MARKer<m>:X</m></n>	
CALCulate <n>:MARKer<m>:Y?</m></n>	
CALCulate <n>:MARKer<m>:Z</m></n>	
CALCulate <n>:MARKer<m>[:STATe]</m></n>	
CALCulate <n>:MARKer<ms>:LINK:TO:MARKer<md></md></ms></n>	
CONFigure:FILTer <n>:CARRier</n>	219
CONFigure:FILTer <n>:MODulation</n>	220
CONFigure:FILTer <n>:MODulation:TYPE</n>	
CONFigure:FILTer <n>:SYMBol</n>	
CONFigure:PREamble:BLENgth	
CONFigure:PREamble:FOFFset	143
CONFigure:RFUC:FZERo:FREQuency	143
CONFigure:RFUC:FZERo:MODE	

147
148
148
145
145
146
146
146
147
211
241
231
232
241
223
223
279
221
222
221
222
190
191
222
223
238
239
240
239
250
251
251
254
254
255
255
255
256
256
257
257
257
258
253
252
252
252
252
252

FETCh:SUMMary:EVM:PILot:MAXimum?	253
FETCh:SUMMary:EVM:PILot:MINimum?	253
FETCh:SUMMary:EVM:PILot:PCT[:AVERage]?	253
FETCh:SUMMary:EVM:PILot[:AVERage]?	253
FETCh:SUMMary:EVM[:ALL]:MAXimum?	253
FETCh:SUMMary:EVM[:ALL]:MINimum?	253
FETCh:SUMMary:EVM[:ALL]:PCT:MAXimum?	253
FETCh:SUMMary:EVM[:ALL]:PCT:MINimum?	253
FETCh:SUMMary:EVM[:ALL]:PCT[:AVERage]?	253
FETCh:SUMMary:EVM[:ALL][:AVERage]?	253
FETCh:SUMMary:EVMPeak:DATA:MAXimum*?	. 252
FETCh:SUMMary:EVMPeak:DATA:PCT:MAXimum*?	252
FETCh:SUMMary:EVMPeak:PILot:MAXimum*?	252
FETCh:SUMMary:EVMPeak:PILot:PCT:MAXimum*?	. 252
FETCh:SUMMary:EVMPeak[:ALL]:MAXimum*?	252
FETCh:SUMMary:EVMPeak[:ALL]:PCT:MAXimum*?	. 252
FETCh:SUMMary:FERRor:MAXimum?	253
FETCh:SUMMary:FERRor:MINimum?	253
FETCh:SUMMary:FERRor[:AVERage]?	253
FETCh:SUMMary:GIMBalance:MAXimum?	253
FETCh:SUMMary:GIMBalance:MINimum?	. 253
FETCh:SUMMary:GIMBalance[:AVERage]?	253
FETCh:SUMMary:IQOFfset:MAXimum?	. 253
FETCh:SUMMary:IQOFfset:MINimum?	253
FETCh:SUMMary:IQOFfset[:AVERage]?	. 253
FETCh:SUMMary:MER[:ALL]:MAXimum?	253
FETCh:SUMMary:MER[:ALL]:MINimum?	253
FETCh:SUMMary:MER[:ALL][:AVERage]?	253
FETCh:SUMMary:POWer:MAXimum?	. 253
FETCh:SUMMary:POWer:MINimum?	. 253
FETCh:SUMMary:POWer[:AVERage]?	. 253
FETCh:SUMMary:QUADerror:MAXimum?	253
FETCh:SUMMary:QUADerror:MINimum?	253
FETCh:SUMMary:QUADerror[:AVERage]?	253
FETCh:SUMMary:SERRor:MAXimum?	253
FETCh:SUMMary:SERRor:MINimum?	253
FETCh:SUMMary:SERRor[:AVERage]?	253
FETCh:SUMMary[:ALL]?	251
FETCh:TTFRame?	. 253
FORMat:DEXPort:DSEParator	262
FORMat:DEXPort:GRAPh	262
FORMat:DEXPort:HEADer	262
FORMat:DEXPort:TRACes	263
FORMat[:DATA]	. 261
INITiate:SEQuencer:ABORt	217
INITiate:SEQuencer:IMMediate	217
INITiate <n>:CONMeas</n>	. 215
INITiate <n>:CONTinuous</n>	216
INITiate <n>:REFResh</n>	216
INITiate <n>[:IMMediate]</n>	. 216

INPut:ATTenuation	
INPut:ATTenuation:AUTO	
INPut:ATTenuation:AUTO:MODE	
INPut:ATTenuation:PROTection:RESet	
INPut:CONNector	149
INPut:COUPling.	
INPut:DPATh.	
INPut:EATT	
INPut:EATT:AUTO	
INPut:EATT:STATe	
INPut:FILE:PATH	
INPut FII Ter CHANnel HPASs FDBBw?	199
INPut FILTer CHANnel HPASs SDBBw	199
INPut FII Ter CHANnel HPASs[:STATe]	200
INPut FII Ter CHANnelf I PASs] FDBBw	200
INPut FII Ter CHANnelf I PASs1:SDBBw	200
INPut/FII Ter/CHANnelf: I PASs1[:STATe]	200
	150
INPut-IMPodance	
INSTrument: DELete	
LAYout:ADD[:WINDow]?	
LAYout:CATalog[:WINDow]?	
LAYout:IDENtify[:WINDow]?	
LAYout:MOVE[:WINDow]	
LAYout:REMove[:WINDow]	245
LAYout:REPLace[:WINDow]	
LAYout:SPLitter	246
LAYout:WINDow <n>:ADD?</n>	247
LAYout:WINDow <n>:IDENtify?</n>	
LAYout:WINDow <n>:REMove</n>	248
LAYout:WINDow <n>:REPLace</n>	
LAYout:WINDow <n>:TYPE</n>	
MMEMory:LOAD:CFGFile	148
MMEMory:STORe <n>:TRACe</n>	
OUTPut:IF:SBANd?	212
OUTPut:IF[:SOURce]	212
OUTPut:TRIGger <tp>:DIRection</tp>	

OUTPut:TRIGger <tp>:LEVel</tp>	213
OUTPut:TRIGger <tp>:OTYPe</tp>	
OUTPut:TRIGger <tp>:PULSe:IMMediate</tp>	214
OUTPut:TRIGger <tp>:PULSe:LENGth</tp>	214
SENSe:TRACking:LEVel	
SENSe:TRACking:PHASe	
SENSe:TRACking:TIME	
STATus:QUEStionable:SYNC:CONDition?	276
STATus:QUEStionable:SYNC:ENABle	
STATus:QUEStionable:SYNC:NTRansition	
STATus:QUEStionable:SYNC:PTRansition	
STATus:QUEStionable:SYNC[:EVENt]?	
SYSTem:PRESet:CHANnel[:EXEC]	
SYSTem:SEQuencer	
TRACe:IQ:BWIDth	
TRACe:IQ:DATA:FORMat	
TRACe:IQ:DATA:MEMory?	
TRACe:IQ:DATA?	
TRACe:IQ:SRATe	
TRACe:IQ:WBANd:MBWidth	
TRACe:IQ:WBANd[:STATe]	
TRACe <n>[:DATA]:X?</n>	
TRACe <n>[:DATA]:Y?</n>	
TRACe <n>[:DATA]?</n>	
TRIGger[:SEQuence]:DTIMe	
TRIGger[:SEQuence]:HOLDoff[:TIME]	
TRIGger[:SEQuence]:IFPower:HOLDoff	196
TRIGger[:SEQuence]:IFPower:HYSTeresis	196
TRIGger[:SEQuence]:LEVel:IFPower	
TRIGger[:SEQuence]:LEVel:IQPower	197
TRIGger[:SEQuence]:LEVel[:EXTernal <port>]</port>	196
TRIGger[:SEQuence]:SLOPe	
TRIGger[:SEQuence]:SOURce	198
TRIGger[:SEQuence]:TIME:RINTerval	199
UNIT:CAXes	
UNIT:EVM	
UNIT:FAXes	225
UNIT:IRESponse	225
UNIT:SAXes	
UNIT: TAXes	

Index

Α

Aborting	
Sweep	81
AC/DC coupling	62, 71
Activating	
VSA (remote)	139
Allocation matrix	
Markers	123
Amplitude	
Configuration	69
Settings	
Analysis	
Bandwidth, definition	45
Button	
Application cards	9
Application notes	9
Attenuation	72
Auto	
Configuration (remote)	192
Electronic	72
Manual	72
Option	
Protective (remote)	149
Audio signals	
Output (remote)	212
Auto adjustment	
Triggered measurement	
Auto level	
Reference level	
Softkey	
Automatic	
Configuration (remote)	
5 ()	

В

Band	
External Mixer (remote)	157
Bandwidth	
Extension options	45, 46, 79
Maximum usable	45, 79
Relationship to sample rate	
Bias	
External Mixer (remote)	155
Brochures	8

С

Capture time	
see also Measurement time	
Carrier offset	
CDA	
Configuring	53
Center frequency	68
Softkey	
Step size	
Channel	
Creating (remote)	
Deleting (remote)	
Duplicating (remote)	139
Querying (remote)	
Renaming (remote)	
Replacing (remote)	140
,	

Closing	
Channels (remote)	140
Windows (remote)	248
Configuration	
Procedure	54
Configuration file	
Wizard	89
Constellation diagram	
Markers	123
Continuous sweep	
Softkey	81
Conventions	
SCPI commands	134
Conversion loss	
External Mixer (remote)15	9, 160
Conversion loss tables	
Conversion loss tables	
Available (remote)	162
Available (remote) Band (remote)	162 162
Available (remote) Band (remote) Bias (remote)	162 162 162
Available (remote) Band (remote) Bias (remote) Deleting (remote)	162 162 162 163
Available (remote) Band (remote) Bias (remote) Deleting (remote) External Mixer (remote)	162 162 162 163 160
Available (remote) Band (remote) Bias (remote) Deleting (remote) External Mixer (remote) Harmonic order (remote)	162 162 162 163 160 164
Available (remote)	162 162 163 163 160 164 164
Available (remote)	162 162 163 163 160 164 164 165
Available (remote)	162 162 163 163 164 164 165
Conversion loss tables Available (remote) Band (remote) Bias (remote) Deleting (remote) External Mixer (remote) Harmonic order (remote) Mixer type (remote) Selecting (remote) Copying Channel (remote)	162 162 163 163 164 164 165 139
Conversion loss tables Available (remote) Band (remote) Bias (remote) Deleting (remote) External Mixer (remote) Harmonic order (remote) Mixer type (remote) Selecting (remote) Copying Channel (remote) Cyclic delay diversity	162 162 163 163 164 164 165 139 87

D

Data format	
Remote	262, 263
Data sheets	8
Data source	
Display	
Decimal separator	
Trace export	
Delta markers	
Defining	
Diagram footer information	13
Direct path	
Input configuration	63
Display	
Information	
Drop-out time	
Trigger	77
Duplicating	
Channel (remote)	

Е

Electronic input attenuation	72
Errors	
IF OVLD	69
Evaluation	
Refreshing	82
Evaluation methods	
Remote	242
WLAN	
EVM	283

Exporting	
I/Q data	53
Measurement settings	129
Traces	129, 130
External Mixer	
Activating (remote)	
Band	157
Programming example	
RF overrange	161
Туре	161
External trigger	74
Level (remote)	

F

FFT shift	
Files	
I/Q data input	63
Filters	
High-pass (RF input)	80
YIG (remote)	151
Format	
Data (remote)	262, 263
Free Run	
Trigger	74
Frequency	
Configuration	67
Configuration (remote)	189
Offset	68
Frontend	
Configuration	60
Configuration (remote)	189

G

Getting started .	
-------------------	--

Η

Handover frequency	
External Mixer (remote)	156
Harmonics	
External Mixer (remote)	159
High-pass filter	
RF input	80
Hysteresis	
Trigger	76

I

I/Q data	
Exporting	53
Importing	
Input file	
Input files	63
Maximum bandwidth	
Sample rate	45
I/Q Power	
Trigger	75
Trigger level (remote)	
IF frequency	
Output (remote)	212
IF output	
Remote	
IF Power	
Trigger	75
Trigger level (remote)	

Index

IF WIDE OUTPUT	
Connector	79
Impedance	
Setting	62, 71
Importing	
I/Q data	53
Input	
Configuration	60
Configuration (remote)	
Coupling	62, 71
I/Q data files	64
Overload (remote)	149
RF	62
Settings	60, 70
Source configuration	60
Input sample rate (ISR)	
Definition	45
Input sources	
I/Q data file	64
I/Q data files	63
Radio frequency	61
Instrument security procedures	8

Κ

Keys	
Peak Search	128
RUN CONT	
RUN SINGLE	81

L

Linking	
Markers	126
LO feedthrough	63

Μ

Marker table	
Configuring	127
Evaluation method	27
Marker to Trace	126
Markers	
Allocation matrix	123
Assigned trace	126
Configuring	. 122, 123
Constellation diagram	123
Deactivating	126
Delta markers	125
General settings (remote)	232
Linking	126
Minimum	128
Next minimum	128
Next peak	
Peak	
Positioning	128
Retrieving values (remote)	
Settings (remote)	226
State	125
Table	127
Table (evaluation method)	27
Туре	125
X-value	
Y-value	125
Maximizing	
Windows (remote)	241

Measurement	
Allocation matrix	16
Capture Buffer	27
Channel Flatness	19
Channel Impulse Response	26
Complementary Cumulative Distribution Function	
(CCDF)	19
Constellation Diagram	20
Constellation vs Carrier	21
Constellation vs Symbol	22
EVM vs. Carrier	23
EVM vs. Symbol	23
EVM vs. Symbol vs Carrier	24
Group Delay	25
Power Spectrum	28
Power vs Carrier vs Symbol	30
Power vs. Carrier	29
Power vs. Symbol	30
Signal flow	32
Measurement time	
Remote	202
Minimum	128
Marker positioning	128
Next	128
Modulation	
Inverted (I/Q, remote)	201
Inverted (I/Q)	79
Multiple	
Measurement channels	11

Ν

Next Minimum	128
Marker positioning	128
Next Peak	120
Marker positioning	120
	120
INOISE	
Source	

0

131
70
45, 46, 79
80
71
212
60
64
212
212
65
45
64
66
212
149
54

Ρ

Parameter tables	
Configuration	
Peak search	
Key	
Peaks	
Marker positioning	128
Next	128
Softkey	128
Performing	
OFDM VSA measurement	131
Ports	
External Mixer (remote)	161
Preamplifier	
Setting	71
Softkey	71
Preset	
Bands (External Mixer, remote)	157
Presetting	
Channels	55
Pretrigger	
Programming examples	
External Mixer	165
Protection	
RF input (remote)	149

R

Record length	
Definition	
Relationship to sample rate	
Reference level	
Auto level	
Offset	
Unit	69
Value	
Reference marker	126
Refresh	
Softkey	
Release notes	
Remote commands	
Basics on svntax	
Boolean values	137
Capitalization	
Character data	
Data blocks	
Numeric values	
Optional keywords	
Parameters	
Strings	
Suffixes	
Repetition interval	
Resetting	
RF input protection	149
Restoring	
Channel settings	
Result display	
Configuration (remote)	
Result displays	
Bitstream	
Marker table	
Result Summary	
Trigger to Sync	
WLAN	
Result range	
Remote	

Result type	
Display	13
Results	
Data format (remote)	. 262, 263
Exporting	
Retrieving (remote)	
RF attenuation	
Auto	
Manual	72
RF input	61
Overload protection (remote)	149
Remote	149
RF overrange	
External Mixer	161
RF Power	
Trigger	75
RUN CONT	
Key	81
RUN SINGLE	
Key	81

S

Safety instructions8	
Sample rate	
Definition45	
I/Q data78	
Maximum	
Relationship to bandwidth46	
Remote	
Scaling	
Automatic121	
Automatically 121	
Y-axis 120, 121	
Security procedures	
Select Marker	
Sequencer 11	
Activating (remote)	
Remote	
Sequences	
Aborting (remote)	
Service manual	
Settings	
Overview	
Signal capturing	
Duration	
Duration (remote) 202	
Signal description	
Configuration (remote) 142	
Single sweep	
Softkev 81	
Slope	
Trigger 77 198	
Softkevs	
Auto Level 70.88	
Center	
Continuous Sweep 81	
External 74	
Free Run 74	
IF Power 75	
Marker to Trace 126	
Min 128	
Next Min 128	
Next Peak 120	
Norm/Delta 125	
Outputs Config 64	
Peak 128	
· ••••• ••••••••••••••••••••••••••••••	

	Preamp	71
	Ref Level	69
	Ref Level Offset	
1	RF Atten Auto	
1	RF Atten Manual	
1	RF Power	
:	Sinale Sweep	
	Time	
	Triager Offset	
	Trigger/Gate Config	
Spe	cifications	
Spe	cifics for	
· ,	Configuration	55
Star	dard WLAN measurements	14
Stati	stics	
	Configuration	119
	Results	
Stat	us registers	
	Description	
:	STAT:QUES:POW	
Stat	us reporting system	275
Suffi	xes	
	Common	138
1	Remote commands	
Swa	p I/Q	
1	, Remote	201
Swe	ер	
	Aborting	81
	Configuration (remote)	
:	Settings	
-	Time (remote)	202

т

Time trigger	
Repetition interval	76
Softkey	76
Traces	
Export format	130
Exporting	129. 130
Retrieving data (remote)	258
Trigger	
Configuration	73
Drop-out time	77
	198
Holdoff	77
Hysteresis	76
Offset	
Output	66
Remote control	195
Slope	77, 198
Trigger level	
External trigger (remote)	
I/Q Power (remote)	197
IF Power (remote)	197
Trigger source	74
External	74
Free Run	
I/Q Power	
IF Power	
RF Power	75
Time	
Troubleshooting	
Input overload	
1	

U

Units	120
Reference level	69
Usable I/Q bandwidth	
Definition	45
User sample rate	
Definition	45

V

Video output	212
Videos	9

W

White papers	
Window title bar information	
Windows	
Adding (remote)	
Closing (remote)	
Configuring	55
Layout (remote)	246
Maximizing (remote)	
Querying (remote)	244
Replacing (remote)	245
Splitting (remote)	241
Types (remote)	242

Χ

X-axis	
Scaling, auto	. 121
X-value	
Marker	. 125

Υ

Y-axis	
Scaling	121
Scaling, auto	121
Y-Scaling	120
Y-value	
Marker	
YIG-preselector	
Activating/Deactivating (remote)	151

Ζ

Zooming	
Activating (remote)	
Area (Multiple mode, remote)	239
Area (remote)	
Multiple mode (remote)	239, 240
Remote	237
Single mode (remote)	237