R&S[®]VSE-K18 **Power Amplifier and Envelope Tracking Measurements User Manual**

ROHDE&SCHWARZ

Make ideas real

This manual applies to the following software, version 2.31 and later:

- R&S[®]VSE Enterprise Edition base software (1345.1105.06)
- R&S[®]VSE Basic Edition base software (1345.1011.06)

The following firmware options are described:

- R&S[®]VSE-K18 (1345.1434.02)
- R&S[®]VSE-K18D (1345.1440.02)
- R&S[®]VSE-K18F (1345.1457.02)
- R&S[®]VSE-K18M (1345.1492.02)
- R&S[®]VSE-KT18 (1345.2060.02)
- R&S[®]VSE-KT18D (1345.2053.02)
- R&S[®]VSE-KT18F (1345.2047.02)
- R&S[®]VSE-KT18M (1345.2030.02)
- R&S[®]VSE-KP18 (1345.2418.xx)
- R&S[®]VSE-KP18D (1345.2424.xx)
- R&S[®]VSE-KP18F (1345.2430.xx)
- R&S[®]VSE-KP18M (1345.2447.xx)

© 2023 Rohde & Schwarz Muehldorfstr. 15, 81671 Muenchen, Germany Phone: +49 89 41 29 - 0 Email: info@rohde-schwarz.com Internet: www.rohde-schwarz.com Subject to change – data without tolerance limits is not binding. R&S[®] is a registered trademark of Rohde & Schwarz GmbH & Co. KG. All other trademarks are the properties of their respective owners.

1179.3273.02 | Version 05 | R&S®VSE-K18

Throughout this manual, products from Rohde & Schwarz are indicated without the [®] symbol , e.g. R&S[®]VSE is indicated as R&S VSE.

Contents

1	Welcome to the amplifier measurement application	9
1.1	Starting the application	9
1.2	Understanding the display information	10
2	Measurements and result displays	12
2.1	Evaluation methods for amplifier measurements	12
2.2	Amplifier parameters	
2.2.1	Modulation accuracy parameters	
2.2.2	Power characteristics	
3	Configuration	38
3.1	Configuration overview	
3.2	Reference signals	40
3.2.1	Reference signal information	40
3.2.2	Using multi-segment waveform files	41
3.2.3	Transferring the reference signal	41
3.2.4	Current Generator Waveform	42
3.2.5	Custom Waveform File	43
3.2.6	Generate Own Signal	45
3.2.7	CFR (Crest Factor Reduction)	48
3.3	Inputs and outputs	51
3.3.1	Input source settings	51
3.3.1.1	Radio frequency input	51
3.3.1.2	I/Q file input	
3.3.2	Configuring the frequency	57
3.3.3	Defining level characteristics	59
3.3.4	Power sensors	62
3.3.5	Configuring outputs	67
3.3.6	Controlling a signal generator	67
3.3.7	Reference: I/Q file input	72
3.3.7.1	Basics on input from I/Q data files	72
3.3.7.2	I/Q data file format (iq-tar)	73
	I/Q parameter XML file specification	75

	I/Q data binary file	84
3.4	Triggering	86
3.5	Data acquisition	87
3.6	Sweep configuration	90
3.7	Synchronization	92
3.8	Evaluation range	95
3.9	Signal error estimation and compensation	96
3.10	Equalizer	98
3.11	System models	99
3.12	Digital predistortion	
3.12.1	Polynomial DPD	103
3.12.2	Direct DPD (R&S VSE-K18D)	106
3.12.3	Memory polynomial DPD (R&S VSE-K18M)	110
3.12.4	Hammerstein model (R&S VSE-K18M)	112
3.13	Detailed MSE	115
3.14	Power measurements	116
3.15	Adjacent channel leakage error (ACLR) measurements	117
3.16	Parameter sweeps	120
3.17	Power servoing	124
3.18	Frequency domain	125
4	Analysis	127
4.1	Traces	
4.1.1	Trace information	127
4.1.2	Trace export	130
4.1.3	Trace detector	131
4.2	Markers	132
4.2.1	General marker settings	
4.2.2	Individual marker settings	133
4.2.3		
	Marker positioning	135
4.3	Marker positioning	135 136
4.3 4.4	Marker positioning Numerical result tables Result display settings	135 136 138
4.3 4.4 4.5	Marker positioning Numerical result tables Result display settings X-axis scaling	135 136 138 14 1
4.3 4.4 4.5 4.6	Marker positioning Numerical result tables Result display settings X-axis scaling Y-axis scaling	135 136 138 141 142

5	Remote control commands for amplifier measurements	145
5.1	Introduction	145
5.1.1	Conventions used in descriptions	146
5.1.2	Long and short form	
5.1.3	Numeric suffixes	147
5.1.4	Optional keywords	147
5.1.5	Alternative keywords	
5.1.6	SCPI parameters	148
5.1.6.1	Numeric values	148
5.1.6.2	Boolean	149
5.1.6.3	Character data	149
5.1.6.4	Character strings	150
5.1.6.5	Block data	150
5.2	Common suffixes	150
5.3	Selecting the application	150
5.4	Configuring the result display	151
5.4.1	Global layout commands	151
5.4.2	Working with windows in the display	
5.4.3	General window commands	159
5.5	Performing amplifier measurements	160
5.5.1	Activating Amplifier measurements	
5.6	Configuring amplifier measurements	160
5.6.1	Designing a reference signal	160
5.6.2	Power sensor measurements	175
5.6.2.1	Configuring power sensor measurements	176
5.6.2.2	Triggering with power sensors	185
5.6.3	Configuring data input	
5.6.3.1	RF input	187
5.6.3.2	Remote commands for external frontend control	
	Commands for initial configuration	
5.6.4	Configuring the frequency	
5.6.5	Defining level characteristics	206
5.6.6	Controlling a signal generator	212

5.6.7	Configuring the data capture	221
5.6.8	Sweep configuration	225
5.6.9	Synchronizing measurement data	228
5.6.10	Defining the evaluation range	232
5.6.11	Estimating and compensating signal errors	233
5.6.11.1	Error estimation and compensation	233
5.6.11.2	Equalizer	237
5.6.12	Applying a system model	239
5.6.13	Applying digital predistortion	242
5.6.14	Detailed MSE	260
5.6.15	Configuring envelope tracking	261
5.6.16	Configuring ACLR measurements	262
5.6.17	Configuring power measurements	268
5.6.18	Configuring parameter sweeps	268
5.6.19	Configuring power servoing	272
5.6.20	Frequency domain measurements	275
5.7	Analyzing results	277
5.7.1	Configuring traces	277
5.7.2	Using markers	282
5.7.2.1	General marker settings	282
5.7.2.2	Configuring individual markers	283
5.7.2.3	Positioning markers	289
5.7.3	Configuring numerical result displays	293
5.7.4	Configuring the statistics table	296
5.7.5	Configuring result display characteristics	297
5.7.6	Scaling the diagram axes	302
5.8	Retrieving results	308
5.8.1	Retrieving graphical measurement results	308
5.8.2	Retrieving numeric results	311
5.8.2.1	Retrieving general numeric results	311
5.8.2.2	Retrieving results of the result summary	312
	Retrieving all results	312
	Retrieving the modulation accuracy	313

	Retrieving power results	318
	Retrieving baseband characteristics	325
5.8.2.3	Retrieving results of the parameter sweep table	328
5.8.2.4	Retrieving results of the statistics table	
5.8.3	Retrieving I/Q data	355
5.9	Managing measurement data	356
5.10	Deprecated remote commands for amplifier measurements	358
5.11	Programming example R&S VSE-K18M	358
	List of Commands (Amplifier)	361
	Index	379

1 Welcome to the amplifier measurement application

The R&S VSE-K18 is a firmware application that adds functionality to measure the efficiency of amplifiers with the R&S VSE signal analyzer. You extend the amplifier application with the R&S VSE-K18D, which adds direct digital predistortion (DPD) functionality.

This user manual contains a description of the functionality that the application provides, including remote control operation.

Functions that are not discussed in this manual are the same as in the base unit and are described in the R&S VSE user manual. The latest versions of the manuals are available for download at the product homepage.

Find various videos on Rohde & Schwarz products and test and measurement topics on YouTube: https://www.youtube.com/@RohdeundSchwarz

Installation

Find detailed installing instructions in the getting started or the release notes of the R&S VSE.

•	Starting the application	9
•	Understanding the display information	.10

1.1 Starting the application

The amplifier measurement application adds a new type of measurement to the R&S VSE.

To activate the amplifier application

1. O Channel

Select the "Add Channel" function in the Sequence tool window.

A dialog box opens that contains all operating modes and applications currently available in your R&S VSE.

2. Select the "Amplifier" item.

The R&S VSE opens a new measurement channel for the Amplifier measurement application.

Understanding the display information

1.2 Understanding the display information

The following figure shows the display as it looks for amplifier measurements. All different information areas are labeled. They are explained in more detail in the following sections.

Figure 1-1: Screen layout of the amplifier measurement application

- 1 = Toolbar
- 2 = Channel bar
- 3 = Diagram header
- 4 = Result display
- 5 = Status bar
- 6 = Softkey bar

For a description of the elements not described below, refer to the getting started of the R&S VSE.

Channel bar information

The channel bar contains information about the current measurement setup, progress and results.

Understanding the display information

Amplifier 2		🔤 🖂 🗙
Ref Level 0.00 dBm	Capture Time 1 ms TTS	SGL
Att 10 dB Freq 13.25 GHz	Meas BW 49.015 MHz SRate 61.269 MHz	
PARAMETER SWEEP ENABLED: X Axis	s: 0 Hz Y Axis: 0.0 dBm PARAMETER SWEEP COUNT: 1/3131	

Figure 1-2: Channel bar of the amplifier application

"Ref Level"	Current reference level of the analyzer.
"Att"	Current attenuation of the analyzer.
"Freq"	Frequency the signal is transmitted on.
"Meas Time"	Length of the signal capture.
"Meas BW"	Bandwidth with which the signal is recorded.
"TTF"	Time difference between the trigger event and the first sample of the reference signal (= beginning of a frame).
"SRate"	Sample rate with which the signal is recorded.
"SGL"	Indicates that single sweep mode is active.
"Count"	The current signal count for measurement tasks that involve a specific number of subsequent sweeps (for example the parameter sweep).
"X Axis"	X-axis value that is currently measured.
"Y Axis"	Y-axis value that is currently measured.

Window title bar information

For each diagram, the header provides the following information:

Figure 1-3: Window title bar information of the amplifier application

1= Window number2= Window type3= Trace color and number4= Trace modeBlue color = Window is selected

Status bar information

Global instrument settings, the instrument status and any irregularities are indicated in the status bar beneath the diagram. Furthermore, the progress of the current operation is displayed in the status bar.

2 Measurements and result displays

During an amplifier measurement, I/Q data from the input signal is captured for a specified time or for a specified record length. In addition, a reference signal is provided that describes the characteristics of the input signal. The Amplifier measurement application synchronizes the measured signal and compares it with the ideal reference signal, and determines deviations in characteristic parameters. These parameters can either be displayed as traces, in a table, or be evaluated statistically over a series of measurements.

• E	Evaluation	methods	for am	plifier	measurements1	12)
-----	------------	---------	--------	---------	---------------	----	---

2.1 Evaluation methods for amplifier measurements

The data that was measured by the Amplifier measurement application can be evaluated using various different methods.

By default, the amplifier measurement results are displayed in the following windows:

- "Magnitude Capture" on page 20
- "Numeric Result Summary" on page 24
- "Spectrum FFT" on page 25
- "AM/AM" on page 14
- "Time Domain" on page 25
- "Phase deviation vs Input power"

The following evaluation methods are available for amplifier measurements:

Adjacent Channel Leakage Error (ACLR)	13
AM/AM	14
AM/PM	15
DDPD Results (R&S VSE-K18D)	16
EVM vs Power	17
Error Vector Spectrum	17
Gain Compression	18
Gain Deviation vs Time	19
Magnitude Capture	20
Memory DPD Coefficients	20
Parameter Sweep Table	21
Parameter Sweep: Diagram	22
Phase Deviation vs Time	22
Raw EVM	23
Numeric Result Summary	24
Spectrum FFT	25
Time Domain	25

L Scale of the x-axis (display settings for the time domain)	
L Scale of the y-axis (display settings for the time domain)	26
Statistics Table	

Adjacent Channel Leakage Error (ACLR)

The "ACLR" result display shows the power characteristics of the transmission (Tx) channel and its neighboring channel(s).

The ACLR measurement in the R&S VSE-K18 is a measurement based on I/Q data. Thus, its results are calculated by the same I/Q data as the rest of the results (like the EVM). Note that the supported channel bandwidth is limited by the I/Q bandwidth of the analyzer you are using.

The results are provided in numerical form in a table. The table is made up out of two parts, one part containing the characteristics of the Tx channel, the other containing those of the neighboring channels.

2 ACLR							
Channel	Bandw	Offset	Power				
Tx1 (Re	9.015 M		10.902				
Tx Total			10.902				
Channel	Bandw	Offset	Lower	Upper	Balanced		
Adj	9.015 M	10.000	-2.628	-3.306	0.677 dB		
Alt 1	9.015 M	20.000	-36.034	-35.311	-0.723 dB		

The table contains the following information.

Channel

Shows the type of channel.

Bandwidth

Shows the channel's bandwidth.

Offset (neighboring channels only) Shows the frequency offset between the center frequency of the adjacent (or alternate) channel and the center frequency of the transmission channel.

• Power

Shows the power of the transmission channel, or the power of the upper / lower neighboring channel.

The result is calculated over the complete capture buffer, not just the evaluation range.

Balanced

Shows the difference between the lower and upper adjacent channel power ("Lower Channel" - "Upper Channel").

For more information on configuring the ACP measurement, see Chapter 3.15, "Adjacent channel leakage error (ACLR) measurements", on page 117.

Remote command:

```
Selection: LAY:ADD? '1', LEFT, ACP
Result query: CALCulate<n>:MARKer<m>:FUNCtion:POWer:RESult?
on page 263
```

AM/AM

The "AM/AM" result display shows nonlinear effects of the DUT. It shows the amplitude at the DUT input against the amplitude at the DUT output.

The ideal "AM/AM" curve would be a straight line at 45°. However, nonlinear effects result in a measurement curve that does not follow the ideal curve. When you drive the amplifier into saturation, the curve typically flattens at high input levels.

The width of the "AM/AM" trace is an indicator of memory effects: the larger the width of the trace, the more memory effects occur. The "AM/AM" Curve Width is shown in the numerical Result Summary.

Both axes show the power of the signal in dBm.

You can analyze the "AM/AM" characteristics of the measured signal and the modeled signal.

Measured signal

Shows the "AM/AM" characteristics of the DUT.

The software uses the reference signal in combination with the synchronized measurement signal to calculate a software model that describes the characteristics of the device under test.

The measured signal is represented by a colored cloud of values. The cloud is based on the recorded samples. If samples have the same values (and would thus be superimposed), colors represent the statistical frequency with which a certain input / output level combination occurs. Blue pixels represent low statistical frequencies, red pixels high statistical frequencies. A color map is provided within the result display.

Modeled signal

Shows the "AM/AM" characteristics of the model that has been calculated. The modeled signal is calculated by applying the DUT model to the reference signal. When the model matches the characteristics of the DUT, the characteristics of the model signal are the same as those of the measured signal (minus noise). The modeled signal is represented by a line trace.

When system modeling has been turned off, this trace is not displayed.

All traces include the digital predistortion, when you have turned on that feature.

Remote command: Selection: LAY:ADD? '1', LEFT, AMAM Result query: TRACe<n>[:DATA]? on page 309

AM/PM

The "AM/PM" result disyplay shows nonlinear effects of the DUT. It shows the phase difference between DUT input and output for each sample of the synchronized measurement signal.

The ideal "AM/PM" curve is a straight line at 0°. However, nonlinear effects result in a measurement curve that does not follow the ideal curve. Typically, the curve drifts from a zero phase shift, especially at high power levels when you drive the amplifier into saturation.

The width of the "AM/PM" trace is an indicator of memory effects: the larger the width of the trace, the more memory effects occur. The "AM/PM" curve width is shown in the numerical "Result Summary".

The x-axis shows the levels of all samples of the reference signal (input power) or the measurement signal (output power) in dBm. You can select the reference of the x-axis (input or output power) in the "Result Configuration" dialog box.

The y-axis shows the phase of the (unwrapped) signal for the corresponding power level. The unit is either rad or degree, depending on your phase unit selection in the "Result Configuration" dialog box.

You can analyze the "AM/PM" characteristics of the real DUT or of the modeled DUT.

Measured signal

Shows the "AM/PM" characteristics of the DUT.

The software uses the reference signal together with the synchronized measurement signal to calculate a software model that describes the characteristics of the device under test.

The measured signal is represented by a colored cloud of values. The cloud is based on the recorded samples. If samples have the same values (and would thus be superimposed), colors represent the statistical frequency with which a certain input / output level combination occurs. A color map is provided within the result display.

Modeled signal

Shows the "AM/PM" characteristics of the model that has been calculated. The modeled signal is calculated by applying the DUT model to the reference signal. When the model matches the characteristics of the DUT, the characteristics of the modeled signal are the same as those of the measured signal (minus noise). The modeled signal is represented by a line trace.

When system modeling has been turned off, this trace is not displayed.

All traces include the digital predistortion, when you have turned on that feature.

4 Phase Deviation vs In			low	high	1 C	lrw 🔍 2 I	Mod 🖲 Ide	ealLine	
16 0			te ta grada	and the second	•				
10 -	1.1	1.1.1	1924	all light of					
o o		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			Same.	5.1			
ο.					構成性の	19 A		in an eine	. Alexandre
0.0							· · · · · · · · · · · · · · · · · · ·		
	<u> </u>		1			Sec. 2	See See de la	and the second second	
0 0			1.1.2.2.2			1. 10.			
-0									
16 0		$M_{\rm eff} = 1.00$				•			
-10 .	- 1 C	$= 2 m_{\rm eff} / 2 m_{\rm eff}$							
-40.0 c	lBm			5.2 c	lBm/			12	.0 dBm

Remote command:

Selection: LAY: ADD? '1', LEFT, AMPM Result query: TRACe<n>[:DATA]? on page 309

DDPD Results (R&S VSE-K18D)

The "DDPD Results" result display shows a selectable result over all iterations of the direct DPD. This allows you to verify the direct DPD convergence, and to select the ideal iteration step for further processing (e.g. in R&S VSE-K18M). It is only available with application R&S VSE-K18D installed.

Select the result display before starting the direct DPD. Configure the result type in the Chapter 4.4, "Result display settings", on page 138.

The following result types are available:

"EVM"	Error vector magnitude
	Remote command:
	CONFigure:DDPD:WINDow <n>:RESult EVM</n>
"ACLR Adj	Power of the upper adjacent channel
Upper"	Remote command:
	CONFigure:DDPD:WINDow <n>:RESult ACU1/</n>
"ACLR Adj	Power of the lower adjacent channel
Lower"	Remote command:
	CONFigure:DDPD:WINDow <n>:RESult ACL1</n>
"Bal ACLR	Difference between the lower and upper adjacent channel power
Magnitude"	Remote command:
	CONFigure:DDPD:WINDow <n>:RESult ACB1</n>

Remote command:

Selection: LAY: ADD? '1', LEFT, DDPD

Result query: TRACe<n>[:DATA]? on page 309

EVM vs Power

The "EVM vs Power" result display shows the EVM against the measured power values.

The ideal EVM vs power curve would be a straight line at 0 %. However, among other effects such as noise, nonlinear effects of the DUT cause an increase of the EVM. Nonlinear effects usually occur on high power levels that drive the power amplifier into saturation.

The x-axis shows the levels of all samples of the reference signal (input power) or the measurement signal (output power) in dBm. You can select the reference of the x-axis (input or output power) in the "Result Configuration" dialog box.

The y-axis shows the EVM of the signal for the corresponding power level in %.

All traces include the digital predistortion, when you have turned on that feature.

5 EVM	ut Pow	low	high	1 Clr	wolde	alLine			
9n %									
00 70									1
60 %									_/
									4
40 %—									1
20 %									1
-20 70					· · ·			S. Brich	
n`96	- 19 AN 19 AN	CALL CALL	Sector Sector		alter standig gerige a				
-40.0	dBm			5.2 d	Bm/			12.0	D dBm

Remote command:

Selection: LAY:ADD? '1', LEFT, AMEV Result query: TRACe<n>[:DATA]? on page 309

Error Vector Spectrum

The "Error Vector Spectrum" result display shows the error vector (EV) signal in the spectrum around the center frequency.

The EV is a measure of the modulation accuracy. It compares two signals and shows the distance of the measured constellation points and the ideal constellation points.

The unit is dB.

You can compare the measured signal against the reference signal and against the modeled signal.

• Measured signal against reference signal

Trace 1 compares measured signal and the reference signal.

To get useful results, the calculated linear gain is compensated to match both signals.

Depending on the DUT, noise and nonlinear effects may have been added to the measurement signal. These effects are visualized by this trace.

Measured signal against modeled signal

Trace 2 compares measured signal and the modeled signal. The EVM between the measured and modeled signal indicates the quality of the DUT modeling. If the model matches the DUT behavior, the modeling error is zero (or is merely influenced by noise).

This result display shows changes in the model and its parameters and thus allows you to optimize the modeling.

When system modeling has been turned off, this trace is not displayed.

Remote command:

Selection: LAY:ADD? '1', LEFT, SEVM Result query: TRACe<n>[:DATA]? on page 309

Gain Compression

The "Gain Compression" result display shows the gain and error effects of the DUT against the DUT input or output power.

The gain is the ratio of the input and output power of the DUT.

The x-axis shows the levels of all samples of the reference signal (input power) or the measurement signal (output power) in dBm. You can select the reference of the x-axis (input or output power) in the "Result Configuration" dialog box.

The y-axis shows the gain in dB.

The ideal gain compression curve would be a straight horizontal line. However, nonlinear effects result in a measurement curve that does not follow the ideal curve. In addition, the curve widens at very low input levels due to noise influence.

The width of the gain compression trace is an indicator of memory effects: the larger the width of the trace, the more memory effects occur.

You can analyze the gain characteristics of the measured signal and the modeled signal.

Measured signal

Shows the gain characteristics of the DUT.

The software uses the reference signal in combination with the synchronized measurement signal to calculate a software model that describes the characteristics of the device under test.

The measured gain is represented by a colored cloud of values. The cloud is based on the recorded samples. If samples have the same values (and would thus be superimposed), colors represent the statistical frequency with which a certain input / output level combination occurs. Blue pixels represent low statistical frequencies, red pixels high statistical frequencies. A color map is provided within the result display.

Modeled signal

Shows the gain characteristics of the model that has been calculated. The modeled signal is calculated by applying the DUT model to the reference signal.

When the model matches the characteristics of the DUT, the characteristics of the model signal are the same as those of the measured signal (minus noise). The modeled signal is represented by a line trace.

When system modeling has been turned off, this trace is not displayed.

In addition, one or more horizontal lines can appear in the result display.

- One line to indicate each compression point (1 dB, 2 dB and 3 dB).
- One line to indicate the reference point (0 dB compression) that the compression points refer to.

5 Gain	Comp	ression	⊧vs Inp	out Pov	Vi low	1	<mark>high</mark> 1	Cln	w 🔍 2 N	/lod
25.0 dB										
	· · .									
20.0 dB										
· · · ·			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	en e	ten 120					
15.8 dB	 A. A. A		1.000 CON 100 CON			- table to be a series			and the second se	
· · ·	· · · · ·		<u></u>		COLO DE SEGUE	Sector Sector Sector				_
10.0 dB-	• •		a far far far					-RÉ	F	
		. · ·	1000 - 1000 1000 - 1000						P1dB	
5.0 dB-									P2	ue
-40.0	dBm			5.2 d	Bm/	1	I		12.0 c	Bm

Remote command:

Selection: LAY:ADD? '1', LEFT, GC Result query: TRACe<n>[:DATA]? on page 309

Gain Deviation vs Time

The "Gain Deviation vs Time" result display shows the deviation of each measured signal sample from the average gain of the measured signal.

The x-axis shows the time in seconds. The y-axis shows the gain deviation in dB.

The displayed results are based on the synchronized measurement data (represented by the green bar in the capture buffer).

Note that the result query and trace export only work for unencrypted reference signal waveform files.

5 Gain	5 Gain Deviation vs Time • 1 Clrw								
16 dB—									
- I-					. 1				
							ht		
Press Private	gen i pagina sepanang Paka at Kanadat Katika	la de la constante de la const Este de la constante de la const	n genter nig digter viel I older for die digter viele	n in an ann an Anna an Anna. Ta dh' an an Anna an Anna an Anna	Y PATRANA ANA ANA Ny Faritr'o Gina amin'	n ann ann ann an ann. Tarta ann an a	in the statistic state		ayan ay ay an an in a la a
			114-11-11						
o ub									
-16 dB-									
0.0 s				50.0	μs/			50	0.0 µs

Remote command:

Selection: LAY:ADD? '1', LEFT, GDVT Result query: TRACe<n>[:DATA]? on page 309

Magnitude Capture

The "Magnitude Capture" result display contains the raw data that has been recorded and thus represents the characteristics of the DUT.

The raw data is source for all further evaluations. You can also use the data in the capture buffer to identify the causes for possible unexpected results.

When you synchronize the reference signal and the measured signal, the synchronized area is indicated by a horizontal green bar on the bottom of the diagram.

The current reference level is indicated by a red horizontal line.

The green bar at the bottom shows the current frame. In I/Q averaging mode, the average value is shown. In trace statistics mode, multiple values are possible. The currently selected value is symbolized by a blue bar.

Remote command:

Selection (RF): LAY:ADD? '1', LEFT, RFM Result query: TRACe<n>[:DATA]? on page 309

Memory DPD Coefficients

The "Memory DPD Coefficients" result table shows basically complex filter coefficients for each polynomial degree. The two lines "1(Real)" and "1(Imag)" describe the complex impulse response for polynomial degree 1 (linear) of a filter from left to right. It is only available with application R&S VSE-K18M installed.

8 Memory DPD Coefficients									
Dahmanaial Oudau	Memory Order								
Polynomial or der	0	1	2	3	4	5			
1 (Real)	1.60787	-8.17859	18.4234	-19.2749	11.1634	-2.71031			
1 (Imag)	0.360876	-1.83454	3.68814	-3.7469	1.8992	-0.345397			
2 (Real)	0.0355388	-0.1169	-0.494853	-0.145286	0.138638	-0.0629907			
2 (Imag)	0.0050489	0.000310979	-0.0457932	0.01782	-0.00895232	0.0174621			
3 (Real)	-0.128389	0.47902	2.59296	0.453788	-0.556218	0.250055			
3 (Imag)	-0.0142906	-0.0080389	0.224799	-0.017381	0.0013791	-0.062957			
4 (Real)	0.155902	-0.681237	-5.47602	-0.356508	0.775582	-0.360015			
4 (Imag)	-0.0101379	0.113657	-0.88731	0.0592651	-0.0296721	0.109657			
5 (Real)	-0.0531163	0.317786	4.07806	-0.0292011	-0.389324	0.182799			
5 (Imag)	0.021386	-0.118354	0.868153	-0.041535	0.0369386	-0.0794943			

Remote command: Selection: LAY:ADD? '1', LEFT, MDPD Result query: FETCh:MDPD:COEfficients? on page 258

Parameter Sweep Table

The "Parameter Sweep" result display shows a result parameter of the DUT (for example the EVM) against two (custom) measurement parameters.

The parameter sweep is a good way, for example, to find the location of the ideal delay time of the RF signal and the envelope signal if you are measuring an amplifier that supports envelope tracking. You can also use the parameter sweep to determine the characteristics and behavior of an amplifier over different frequencies and levels.

The parameter sweep table shows the minimum and maximum results for all available result types in numerical form. For each result type, the position at which the minimum and maximum result occurred is displayed.

5 Parameter Sweep Table									
Result		Value	Frequency	Power	•				
EVM	Min	0.878 %	1.23 GHz	-30.0 dBm					
	Мах	2.095 %	1.3 GHz	-30.0 dBm					
ACLR TX	Min	-20.460 d	1.28 GHz	-30.0 dBm	-				
	Мах	-18.983 d	1.01 GHz	-30.0 dBm					
ACLR Adj 1 Lower	Min	-3.289 dBc	1.3 GHz	-30.0 dBm	Ŧ				

Example:

A minimum EVM of 0.244 % and a maximum EVM of 0.246 % were measured (first and second row). The minimum EVM was measured at a frequency of 30 MHz and an output power of 0 dBm. The maximum EVM was measured at a frequency of 10 MHz and an output power of 0 dBm.

The following result types are evaluated in the parameter sweep.

- "ACLR Adj 1 Lower"
- "ACLR Adj 1 Upper"
- "ACLR Adj 1 Balanced"
- "ACLR Alt 1 Balanced"
- "ACLR Alt 2 Balanced"
- "AM/AM Curve Width"
- "AM/PM Curve Width"
- "Balanced ACLR Magnitude"
- Compression Point "P (1 dB / 2 dB / 3 dB)"
- "Crest Factor Out"
- "Current OBW"
- "EVM"
- "Gain"
- "Power Out"
- "RMS Power"
- "Voltage (V_cc)"
- "Current (I_cc)"
- "Power (V_cc * I_cc)"

For details on the parameters, see Chapter 2.2, "Amplifier parameters", on page 28.

For more information about how to select the parameters, see "Selecting the data to be evaluated during the parameter sweep" on page 122.

Remote command:

Selection: LAY: ADD? '1', LEFT, PTAB Result query: Chapter 5.8.2.3, "Retrieving results of the parameter sweep table", on page 328

Parameter Sweep: Diagram

The parameter sweep diagram is a graphical representation of the parameter sweep results. The results are either represented as a two-dimensional trace or as a three-dimensional trace, depending on whether you are performing a parameter sweep with one or two parameters.

In a two-dimensional diagram, the y-axis always shows the result. The displayed result depends on the result type you have selected. The information displayed on the x-axis depends on the parameter you have selected for evaluation (for example the EVM over a given frequency range). Values between measurement point are interpolated. Basically, you can interpret the two-dimensional diagram as follows (example): "at a frequency of x Hz, the EVM has a value of y."

In a three-dimensional diagram, the z-axis always shows the result. The information on the other two axes is arbitrary and depends on the parameters you have selected for evaluation. For a better readability, the result values in the three-dimensional diagram are represented by a colored trace: low values have a blue color, while high values have a red color. Values between measurement point are interpolated. Basically, you can interpret the three-dimensional diagram as follows (example): "at a frequency of x Hz and a level of y, the EVM has a value of z."

Remote command: Selection: LAY: ADD? '1', LEFT, PSW Result query: TRACe<n>[:DATA]? on page 309

Phase Deviation vs Time

The "Phase Deviation vs Time" result display shows the (unwrapped) phase deviation of the measured signal compared to the reference signal over time.

The x-axis shows the time in seconds. The y-axis shows the phase deviation in degree.

The displayed results are based on the synchronized measurement data (represented by the green bar in the capture buffer).

Note that the result query and trace export only work for unencrypted reference signal waveform files.

Remote command: Selection: LAY:ADD? '1', LEFT, PDVT Result query: TRACe<n>[:DATA]? on page 309

Raw EVM

•

The "Raw EVM" result display shows the error vector magnitude of the signal over time.

The EVM is a measure of the modulation accuracy. It compares two signals and shows the distance of the measured constellation points and the ideal constellation points.

You can compare the measured signal against the reference signal and against the modeled signal.

Measured signal against reference signal

Trace 1 compares the measured signal and the reference signal. To get useful results, the calculated linear gain is compensated to match both signals.

Depending on the DUT, noise and nonlinear effects may have been added to the measurement signal. These effects are visualized by this trace.

Measured signal against modeled signal Trace 2 compares the measured signal and the modeled signal. The EVM between the measured and modeled signal indicates the quality of the DUT modeling. If the model matches the DUT behavior, the modeling error is zero (or is merely influenced by noise).

This result display shows changes in the model and its parameters and thus allows you to optimize the modeling.

When system modeling has been turned off, this trace is not displayed.

Note that the raw EVM is calculated for each sample that has been recorded. Thus, the raw EVM can differ from EVM values that are calculated according to a specific mobile communication standard that apply special rules to calculate the EVM, for example LTE.

Remote command:

Selection: LAY: ADD? '1', LEFT, REVM Result query: TRACe<n>[:DATA]? on page 309

Numeric Result Summary

The "Result Summary" shows various measurement results in numerical form, combined in one table.

The table contains several areas.

- The modulation accuracy
- The power characteristics of the RF signal

2 Result Summary					
Modulation Accuracy	Min	Current	Мах	Unit	•
Raw EVM	0.011	5.064	89.746	%	
Raw Model EVM	0.009	3.127	15.763	%	
Frequency Error		10.599		Hz	
Power	Min	Current	Max	Unit	
Power In	-46.00	0.00	10.02	dBm	
Power Out	-30.27	14.44	21.59	dBm	
Gain		14.43		dB	
Crest Factor Out		7.16		dB	
AM/AM Curve Width		0.026		Volt	•

For each result type, several values are displayed.

Current

Value measured during the last sweep.

For measurements that evaluate each captured sample, this value represents the average value over all samples captured in the last sweep.

• Min

For measurements that evaluate each captured sample, this value represents the sample with lowest value captured in the last sweep.

Max

For measurements that evaluate each captured sample, this value represents the sample with the highest value captured in the last sweep.

Unit

Unit of the result.

Results that evaluate each captured sample

- "Raw EVM" and "Raw Model EVM"
- "Power In" and "Power Out"

Note: When synchronization fails or is disabled, some results can be unavailable.

For details on the parameters, see Chapter 2.2, "Amplifier parameters", on page 28.

Remote command:

Selecting the result display: LAY: ADD? '1', LEFT, RTAB

Querying results: see Chapter 5.8.2, "Retrieving numeric results", on page 311

Spectrum FFT

The "Spectrum FFT" result display shows the frequency spectrum of the signal.

The spectrum FFT result shows the signal level in the spectrum around the center frequency. The unit is dBm.

You can display the spectrum of the measured signal and the reference signal. In the best case, the measured signal has the same shape as the reference signal.

Remote command:

Selection (RF): LAY:ADD? '1', LEFT, RFS Result query: TRACe<n>[:DATA]? on page 309

Time Domain

The "Time Domain" result display shows the signal characteristics over time.

It is similar to the "Power vs Time" and "Magnitude Capture" result displays in that it shows the signal characteristics over time. However, it deliberately shows only a very short period of the signal. You can thus use it to compare various aspects of the signal, especially the timing of the displayed signals, in a single result display.

Measured signal

Trace 1 shows the characteristics of the measured signal over time. The data should be the same as the results shown in the "Magnitude Capture" RF result display.

In the best case, the measured signal is the same as the reference signal. Modeled signal

Trace 2 shows the characteristics of the modeled signal. When system modeling has been turned off, this trace is not displayed.

If the model matches the behavior of the DUT, the characteristics of the signal are the same as those of the measured signal (minus the noise).

Reference signal

Trace 3 shows the characteristics of the reference signal. The reference signal present at the DUT input represents the ideal signal.

Remote command:

Selection: LAY:ADD? '1', LEFT, TDOM Result query: TRACe<n>[:DATA]? on page 309

Scale of the x-axis (display settings for the time domain) \leftarrow Time Domain

The scale of the x-axis depends on your configuration in the "Display Settings" dialog box.

The logic is as follows:

- When you select automatic scaling (→ "Position: Auto") and synchronization has failed, the application searches for the peak level in the capture buffer and shows the signal around the peak for the "Duration" that has been defined.
- When you select automatic scaling (→ "Position: Auto") and synchronization is OK, the application searches for the peak level in the synchronized area of the capture buffer and shows the signal around the peak for the "Duration" that has been defined.
- When you select manual scaling (→ "Position: Manual") and synchronization has failed, the x-axis starts at an "Offset" relative to the first sample in the capture buffer. The end of the x-axis depends on the "Duration" you have defined.
- When you select manual scaling (→ "Position: Manual") and synchronization is OK, the x-axis starts at an "Offset" relative to the first sample in the synchronized area of the capture buffer. The end of the x-axis depends on the "Duration" you have defined.

Note: The "Display Settings" for the time domain are only available after you have selected the "Specifics for: Time Domain" item from the corresponding dropdown menu at the bottom of the dialog box.

Specifics for 5: Time Domain

Scale of the y-axis (display settings for the time domain) \leftarrow Time Domain The scale of the y-axis also depends on your configuration. The signal characteristics displayed in the time domain result display all have a different unit. Therefore, the application provides a feature that normalizes all results to 1 (see "Time domain result display" on page 139). Normalization makes it easier to compare the timing between the traces. By default, normalization is on. Note that you can normalize each "Time Domain" window individually.

Unnormalized results are displayed in their respective unit.

Statistics Table

The results for the statistics table are available only after the statistics mode has been activated using [SENSe:]SWEep:STATistics[:STATe] on page 227. If statistics mode is switched off, the statistics table stays empty.

All statistics are usually evaluated with the corresponding linear power unit before the unit conversion is done and the final unit is displayed. To illustrate, in the case of EVM, this means that the mean EVM is equal to the square root of the mean error power. The same principle applies accordingly to all other values.

5 Result Statistics								
Statistic	Raw EVM (%)	Raw Model EVM (%)	Frequency Error (Hz)	Power In (dBm)	Power Out (dBm)	Gain (dB)	Crest Factor Out (dB)	•
Selected	71.059	18.325	18.478	-4386.970	-104.930	-10.794	-10.825	
Average	25.647	25.465	25.837	-3378.807	-41.393	-10.905	-10.962	
Std. Dev.	24.250983	11.311995	11.987617	7154.384886	61.337266	0.158605	0.155308	_
Maximum	71.059	47.448	47.621	2575.087	50.115	-10.661	-10.825	
Minimum	6.623	11.947	12.149	-22792.930	-112.493	-11.157	-11.221	
Average	25.647	25.465	25.837	-3378.807	-41.393	-10.905	-10.962	
Std. Dev.	24.250983	11.311995	11.987617	7154.384886	61.337266	0.158605	0.155308	
Maximum	71.059	47.448	47.621	2575.087	50.115	-10.661	-10.825	
Minimum	6.623	11.947	12.149	-22792.930	-112.493	-11.157	-11.221	
•							Þ	

Each value in the statistics table has different rows describing a single frame: Average, Std. Dev, Maximum and Minimum. This is similar to the Numeric Result Summary.

The different color codes represent different result values:

Blue

Result of the current result range. The selected values are updated when the user sweeps through the result range selection.

Green

In I/Q averaging mode, the values in the green area are identical to the ones in the black background area.

In trace statistics mode, the green area refers to all frames of the current capture buffer, whereas the black area refers to all measured frames (including previous capture buffers). Statistics is always done over sweep "Count" frames and then is being reset, unless the "Continuous Statistics" switch is activated. In this case, infinite statistics is executed.

Black / No selection

Statistical results that can also be based on result ranges that were captured in previous measurement sweeps.

For details on the parameters, see Chapter 2.2, "Amplifier parameters", on page 28.

Remote command:

Adding statistics table: LAY: ADD? '1', LEFT, STAB Querying results: Chapter 5.8.2.4, "Retrieving results of the statistics table", on page 335 Configuring statistics table: Chapter 5.7.4, "Configuring the statistics table", on page 296 Navigating through results ranges found in a capture: CONFigure:RESult:RANGe[: SELected] on page 227

2.2 Amplifier parameters

The following parameters characterize the amplifier and are determined during an amplifier measurement.

•	Modulation accuracy parameters	.28
•	Power characteristics	32

2.2.1 Modulation accuracy parameters

Amplitude Droop	
Gain Imbalance	
Frequency Error	
I/Q Imbalance	
I/Q Offset	
Magnitude Error	30
Phase Error	
Quadrature Error	
Raw EVM	
Raw Model EVM	32
Sample Rate Error	32

Amplitude Droop

Amplitude droop is a measure of the change in magnitude of the signal over the frame (reference signal) being measured in dB.

Note that amplitude droop is not available if the amplitude droop estimation is switched off. See also Chapter 3.9, "Signal error estimation and compensation", on page 96.

Remote command:

FETCh:MACCuracy:ADRoop:CURRent[:RESult]? on page 313
FETCh:STABle:ADRoop:STDeviation? on page 339

Gain Imbalance

Gain difference between the real (I) and imaginary (Q) part of the signal.

This effect is typically generated by two separate amplifiers with a different gain in the I and Q path of the analog baseband signal generation.

Note that gain imbalance is not available if the I/Q Imbalance estimation is switched off. See also Chapter 3.9, "Signal error estimation and compensation", on page 96.

Remote command:

FETCh:MACCuracy:GIMBalance:CURRent[:RESult]? on page 314
FETCh:STABle:GIMBalance:STDeviation? on page 342

Frequency Error

Difference of the RF frequency of the reference signal compared to the measured signal.

Note that a frequency error is not available if the frequency error estimation is switched off. See also Chapter 3.9, "Signal error estimation and compensation", on page 96.

Remote command:

FETCh:MACCuracy:FERRor:CURRent[:RESult]? on page 314
FETCh:STABle:FERRor:STDeviation? on page 341

I/Q Imbalance

Combination of Quadrature error and Gain imbalance.

The I/Q imbalance parameter is a representation of the combination of Quadrature error and gain imbalance.

Note that I/Q imbalance is not available if the I/Q imbalance estimation is switched off. See also Chapter 3.9, "Signal error estimation and compensation", on page 96.

Remote command:

```
FETCh:MACCuracy:IQIMbalance:CURRent[:RESult]? on page 314
FETCh:STABle:IQIMbalance:STDeviation? on page 343
```

I/Q Offset

Shift of the measured signal compared to the ideal I/Q constellation in the I/Q plane.

Note that I/Q offset is not available if the I/Q Offset estimation is switched off. See also Chapter 3.9, "Signal error estimation and compensation", on page 96.

Remote command:

FETCh:MACCuracy:IQOFfset:CURRent[:RESult]? on page 315
FETCh:STABle:IQOFfset:STDeviation? on page 343

Magnitude Error

Difference in magnitude between the reference signal and the measured signal.

Remote command:

FETCh:MACCuracy:MERRor:CURRent[:RESult]? on page 315
FETCh:STABle:MERRor:STDeviation? on page 344

Phase Error

Phase difference between the reference and the (unwrapped) measured signal.

Remote command:

FETCh:MACCuracy:PERRor:CURRent[:RESult]? on page 315
FETCh:STABle:PERRor:STDeviation? on page 348

Quadrature Error

Phase deviation of the 90° phase difference between the real (I) and imaginary (Q) part of the signal.

Within an ideal transmitter, the I and Q signal parts are mixed with an angle of 90° by the I/Q output mixer. Due to hardware imperfections, the signal delay of I and Q can be different and thus lead to an angle non-equal to 90°.

Note that quadrature rate error is not available if the I/Q Imbalance estimation is switched off. See also Chapter 3.9, "Signal error estimation and compensation", on page 96.

Remote command:

FETCh:MACCuracy:QERRor:CURRent[:RESult]? on page 316
FETCh:STABle:QERRor:STDeviation? on page 352

Raw EVM

Error vector magnitude between synchronized reference and measured signal.

Remote command:

FETCh:MACCuracy:REVM:CURRent[:RESult]? on page 317
FETCh:STABle:REVM:AVG:STDeviation? on page 352

FETCh:STABle:REVM:MAX:STDeviation? on page 353
FETCh:STABle:REVM:MIN:STDeviation? on page 353
FETCh:PTABle:EVM..., see Chapter 5.8.2.3, "Retrieving results of the parameter
sweep table", on page 328.

Raw Model EVM

Error vector magnitude between synchronized measured and model signal.

Remote command:

```
FETCh:MACCuracy:RMEV:CURRent[:RESult]? on page 317
FETCh:STABle:RMEV:AVG:STDeviation? on page 354
FETCh:STABle:RMEV:MAX:STDeviation? on page 354
FETCh:STABle:RMEV:MIN:STDeviation? on page 355
```

Sample Rate Error

Sample rate difference between reference and measured signal.

Note that a sample rate error is not available if the sample rate error estimation is switched off. See also Chapter 3.9, "Signal error estimation and compensation", on page 96.

Remote command:

FETCh:MACCuracy:SRERror:CURRent[:RESult]? on page 317
FETCh:STABle:SRERor:STDeviation? on page 355

2.2.2 Power characteristics

ACLR Tx	32
ACLR Adj Upper	33
ACLR Adj Lower	33
Balanced ACLR Magnitude	
AM/AM Curve Width	33
AM/AM Curve Width (Pk-Pk)	34
AM/PM Curve Width	34
AM/PM Curve Width (Pk-Pk)	34
Compression Point (1 dB / 2 dB / 3 dB)	34
Crest Factor In	35
Crest Factor Out	35
Gain	35
Output Compression Point (1 dB / 2 dB / 3 dB)	36
Occupied Bandwidth	36
Power In	
Power Out	36
Power Out (Sensor)	37
RMS Power	

ACLR Tx

Power of the transmission channel.

Remote command:

FETCh: PTABle: ACP..., see Chapter 5.8.2.3, "Retrieving results of the parameter sweep table", on page 328.

ACLR Adj Upper

Power of the adjacent upper channels.

Remote command:

FETCh: PTABle: ACP: ACHannel<ch>: UPP..., see Chapter 5.8.2.3, "Retrieving results of the parameter sweep table", on page 328.

ACLR Adj Lower

Power of the lower adjacent channels.

Remote command:

FETCh: PTABle: ACP: ACHannel<ch>: LOW..., see Chapter 5.8.2.3, "Retrieving results of the parameter sweep table", on page 328.

Balanced ACLR Magnitude

Difference between the lower and upper adjacent channel power.

Remote command:

FETCh: PTABle: ACP: BALanced..., see Chapter 5.8.2.3, "Retrieving results of the parameter sweep table", on page 328.

AM/AM Curve Width

Vertical spread of the samples in the "AM/AM" result display.

The "AM/AM" curve width shows the standard deviation of the output voltage or the output phase deviation within a +/- 1% range around the mean amplitude in volt.

Remote command:

FETCh:AMAM:CWIDth:CURRent[:RESult]? on page 319
FETCh:STABle:AMAM:CWIDth:STDeviation? on page 339
FETCh:PTABle:AMAM:CWIDth..., see Chapter 5.8.2.3, "Retrieving results of the
parameter sweep table", on page 328.

AM/AM Curve Width (Pk-Pk)

The "AM/AM" display shows the peak curve width around the specified reference value.

The values are Pk-Pk values, and represent max(output power/dBm) - min(output power/dBm).

Remote command:

FETCh:AMAM:PEAK:CWIDth:CURRent[:RESult]? on page 320

AM/PM Curve Width

Vertical spread of the samples in the "Phase Deviation vs Input Power" ("AM/PM") result display.

The "Phase Deviation vs Input Power" curve width shows the standard deviation of the output voltage or the output phase deviation within a +/- 1% range around the mean amplitude in volt.

Remote command:

FETCh:AMPM:CWIDth:CURRent[:RESult]? on page 319
FETCh:STABle:AMPM:CWIDth:STDeviation? on page 340
FETCh:PTABle:AMPM:CWIDth..., see Chapter 5.8.2.3, "Retrieving results of the
parameter sweep table", on page 328.

AM/PM Curve Width (Pk-Pk)

The "AM/PM Curve Width (Pk-Pk)" display shows the peak curve width around the specified reference value.

The values are Pk-Pk values, and represent max(phase deviation/°) - min(phase deviation/°).

Remote command:

FETCh:AMPM:PEAK:CWIDth:CURRent[:RESult]? on page 320

Compression Point (1 dB / 2 dB / 3 dB)

Input power where the gain deviates by 1 dB, 2 dB or 3 dB from a reference gain (see "Configuring compression point calculation" on page 117).

In the graphical results, the compression points are indicated by horizontal red lines.

Remote command:

FETCh:POWer:P1DB:CURRent[:RESult]? on page 323
FETCh:STABle:P1DB:IN:STDeviation? on page 344
FETCh:PTABle:P1DB..., see Chapter 5.8.2.3, "Retrieving results of the parameter
sweep table", on page 328.
FETCh:POWer:P2DB:CURRent[:RESult]? on page 323
FETCh:STABle:P2DB:IN:STDeviation? on page 345
FETCh:PTABle:P2DB..., see Chapter 5.8.2.3, "Retrieving results of the parameter
sweep table", on page 328.
FETCh:POWer:P3DB:CURRent[:RESult]? on page 323
FETCh:PTABle:P3DB:CURRent[:RESult]? on page 323
FETCh:PTABle:P3DB:CURRent[:RESult]? on page 323
FETCh:PTABle:P3DB:IN:STDeviation? on page 346
FETCh:PTABle:P3DB..., see Chapter 5.8.2.3, "Retrieving results of the parameter
sweep table", on page 328.

Crest Factor In

Crest factor of the signal at the DUT input. The crest factor is the ratio of the RMS and peak power.

Remote command:

FETCh:POWer:CFACtor:IN:CURRent[:RESult]? on page 321
FETCh:STABle:CFACtor:IN:STDeviation? on page 340

Crest Factor Out

Crest factor of the signal at the DUT output. The crest factor is the ratio of the RMS and peak power.

Remote command:

FETCh:POWer:CFACtor:OUT:CURRent[:RESult]? on page 321
FETCh:STABle:CFACtor:OUT:STDeviation? on page 341
FETCh:PTABle:CFACtor..., see Chapter 5.8.2.3, "Retrieving results of the parameter sweep table", on page 328.

Gain

Average gain calculated over all samples of the "Gain Compression" trace.

Note that gain is not necessarily equal to the ratio "Power Out" / "Power In". Gain only describes the ratio of the correlated signal in "Power Out" to "Power In".

Gain is always referenced to the reference signal power, i.e. when DPD changes the generator level, the gain is still referenced to the input power of the reference signal - not the DPD signal.

Example: If the output signal contains the same amount of noise as the correlated signal (e.g. signal is 0 dBm and noise power is also 0 dBm), "Power Out" will show the sum (3 dBm). However, assuming an input signal power of -10 dBm, gain will only show 10 dB, not 13 dB.

Remote command:

FETCh:POWer:GAIN:CURRent[:RESult]? on page 321
FETCh:STABle:GAIN:STDeviation? on page 342
FETCh:PTABle:GAIN..., see Chapter 5.8.2.3, "Retrieving results of the parameter
sweep table", on page 328.

Output Compression Point (1 dB / 2 dB / 3 dB)

Output power where the gain deviates by 1 dB, 2 dB or 3 dB from a reference gain.

Uses identical operating points as "Compression Point (1 dB / 2 dB / 3 dB)", but is identified by output power at compression point rather than input power.

Remote command:

FETCh:POWer:P1DB:OUT:CURRent[:RESult]? on page 324
FETCh:STABle:P1DB:OUT:STDeviation? on page 345
FETCh:POWer:P2DB:OUT:CURRent[:RESult]? on page 324
FETCh:STABle:P2DB:OUT:STDeviation? on page 346
FETCh:POWer:P3DB:OUT:CURRent[:RESult]? on page 324
FETCh:STABle:P3DB:OUT:STDeviation? on page 347

Occupied Bandwidth

Occupied bandwidth calculated for the defined evaluation range.

Remote command:
FETCh:POWer:OBW:CURRent[:RESult]? on page 322

Power In

Signal power at the DUT input when reference signal is active. The signal generator level may change during direct DPD, but this result summary value will always refer to the reference signal – not the DPD signal.

Remote command:

```
FETCh:POWer:INPut:CURRent[:RESult]? on page 322
FETCh:STABle:POWer:INPut:AVG:STDeviation? on page 349
FETCh:STABle:POWer:INPut:MAX:STDeviation? on page 349
FETCh:STABle:POWer:INPut:MIN:STDeviation? on page 350
```

Power Out

Signal power at the DUT output.

It is the RMS power of:

- The currently selected frame, if R&S VSE-K18 has successfully synchronized.
- The current capture buffer, if R&S VSE-K18 has not synchronized.
Amplifier parameters

Remote command:

```
FETCh:POWer:OUTPut:CURRent[:RESult]? on page 322
FETCh:STABle:POWer:OUTPut:AVG:STDeviation? on page 350
FETCh:STABle:POWer:OUTPut:MAX:STDeviation? on page 351
FETCh:STABle:POWer:OUTPut:MIN:STDeviation? on page 351
FETCh:PTABle:POUT..., see Chapter 5.8.2.3, "Retrieving results of the parameter
sweep table", on page 328.
```

Power Out (Sensor)

Signal power at the output power sensor.

Remote command:

FETCh:POWer:SENSor:OUT:CURRent[:RESult]? on page 325

RMS Power

RMS signal power at the DUT output.

Remote command:

FETCh: PTABle: RMS..., see Chapter 5.8.2.3, "Retrieving results of the parameter sweep table", on page 328.

3 Configuration

•	Configuration overview	38
•	Reference signals	40
•	Inputs and outputs	51
•	Triggering	
•	Data acquisition	87
•	Sweep configuration	90
•	Synchronization	92
•	Evaluation range	
•	Signal error estimation and compensation	96
•	Equalizer	
•	System models	99
•	Digital predistortion	102
•	Detailed MSE	115
•	Power measurements	116
•	Adjacent channel leakage error (ACLR) measurements	117
•	Parameter sweeps	120
•	Power servoing.	124
•	Frequency domain	125

3.1 Configuration overview

Throughout the measurement channel configuration, an overview of the most important currently defined settings is provided in the "Overview". The "Overview" is displayed when you select the "Overview" icon, which is available at the bottom of all softkey menus.

In addition to the main measurement settings, the "Overview" provides quick access to the main settings dialog boxes. The individual configuration steps are displayed in the order of the data flow. Thus, you can easily configure an entire measurement channel from input over processing to output and analysis by stepping through the dialog boxes as indicated in the "Overview".

In particular, the "Overview" provides quick access to the following configuration dialog boxes (listed in the recommended order of processing):

- Reference Signal See Chapter 3.2, "Reference signals", on page 40.
- Input and output See Chapter 3.3, "Inputs and outputs", on page 51.
- Trigger See Chapter 3.4, "Triggering", on page 86.
- Data Acquisition See Chapter 3.5, "Data acquisition", on page 87.
- Synchronization, error estimation and compensation See Chapter 3.7, "Synchronization", on page 92.
 See Chapter 3.9, "Signal error estimation and compensation", on page 96.
- Measurement Modeling: see Chapter 3.11, "System models", on page 99. DPD: see Chapter 3.12, "Digital predistortion", on page 102.
- 7. Result configuration See Chapter 4, "Analysis", on page 127.
- Display configuration See Chapter 2, "Measurements and result displays", on page 12.

To configure settings

Select any button in the "Overview" to open the corresponding dialog box. Select a setting in the channel bar (at the top of the measurement channel tab) to change a specific setting.

Preset Channel

Select "Preset Channel" in the lower left-hand corner of the "Overview" to restore all measurement settings *in the current channel* to their default values.

Remote command: SYSTem:PRESet:CHANnel[:EXEC] on page 150

Specifics for

The channel can contain several windows for different results. Thus, the settings indicated in the "Overview" and configured in the dialog boxes vary depending on the selected window.

Select an active window from the "Specifics for" selection list that is displayed in the "Overview" and in all window-specific configuration dialog boxes.

The "Overview" and dialog boxes are updated to indicate the settings for the selected window.

3.2 Reference signals

Many of the results available in the application require a reference signal that describes the characteristics of the signal you feed into the amplifier.

The reference signal describes the characteristics of the signal that you feed into the amplifier and whose amplified version is measured by the application. You can define any signal you want as a reference signal.

The application provides several methods to design a reference signal:

- Designing the signal on a generator (Requires a Rohde & Schwarz generator.)
- Designing the signal in a waveform file
- Designing the signal in the amplifier application (Requires a Rohde & Schwarz generator.)
- Designing the signal with a Crest Factor Reduction (Generator Option K548)

For a list of supported signal generators, refer to the datasheet of the amplifier application.

The remote commands required to configure the reference signal are described in Chapter 5.6.1, "Designing a reference signal", on page 160.

•	Reference signal information	. 40
•	Using multi-segment waveform files	. 41
•	Transferring the reference signal	. 41
•	Current Generator Waveform	.42
•	Custom Waveform File	.43
•	Generate Own Signal	.45
•	CFR (Crest Factor Reduction)	. 48

3.2.1 Reference signal information

Reference signal information

Each tab of the "Reference Signal" dialog box contains some basic information about the reference signal currently in use.

The information is only displayed when a reference signal has been successfully loaded. When you load a different waveform, the reference signal information is updated accordingly.

Curr	Currently Active Reference Signal					
	Waveform File:					
	Sample Rate:		Number of Samples:			
	Crest Factor (File):	-100.0 dB	Bandwidth (OBW):			

Waveform file

Name and path of the waveform file currently in use.

Sample rate

The sample rate in the header of the currently used reference signal waveform file in Hz.

- Number of samples Length of the currently used reference signal waveform file in samples.
- Crest Factor (File)
 Crest factor of the whole file currently in use. The crest factor of waveform files is read from their header. The crest factor of iq.tar files is calculated.
- Bandwidth (OBW)
 The occupied bandwidth of the reference signal currently in use. A calculated bandwidth that contains 99% of signal power is displayed.

Remote command:

File path: CONFigure:REFSignal:SINFo:FPATh? on page 168 Sample rate: CONFigure:REFSignal:SINFo:SRATe? on page 169 Sample length: CONFigure:REFSignal:SINFo:SLENgth? on page 168 Crest Factor: CONFigure:REFSignal:SINFo:CFACtor? on page 169 OBW: CONFigure:REFSignal:SINFo:OBW? on page 169 reference trace I/Q data: TRACe:IQ:REF[:DATA]? on page 356

3.2.2 Using multi-segment waveform files

Using multi-segment waveform files

Modern chip technologies implement several communication standards within one chip and thus increase the requirements in spatial design and test systems. To fulfill the requirements in the test systems, and to enable a rapid change between different waveforms containing different test signals, the R&S SMW provides the functionality to generate multi-segment waveform files. Multi-segment waveform files are files that contain several different waveforms.

(For more information about creating and using multi-segment waveform files (including examples) refer to the documentation of the R&S SMW.)

When you are testing amplifiers with the amplifier measurement application, you can use a multi-segment waveform file to create the reference signal. If you use one of these files, you have to select the segment that you want to use as a reference signal in the corresponding input field.

Note that the content of the segment you are using for the reference signal must match the content of the segment used by the ARB of the signal generator. You can select the segment for the used by the generator in the generator setup.

Remote command:

CONFigure:REFSignal:SEGMent on page 168

3.2.3 Transferring the reference signal

Transferring the reference signal

Both the signal generator and analyzer used in the test setup need to know the characteristics of the reference signal.

- The signal generator needs that information to generate the signal.
- The analyzer needs that information for the evaluation of the results.

This is why you have to transfer the signal information to both instruments. The transmission is done through a LAN connection that you have to establish when setting up the measurement. For more information on that see Chapter 3.3.6, "Controlling a signal generator", on page 67.

 When you design the reference signal on the signal generator, transfer the signal information from the generator to the analyzer with the →"Read and Load Current Signal from R&S SMW" button.

You can either design a reference signal with one of the available firmware options (for example an LTE signal with the R&S SMW-K55) or design a signal in a custom waveform file. Note that the R&S VSE-K18 does not support all firmware options of the signal generator.

 When you load the reference signal from a waveform file or design the signal within the R&S VSE-K18, transfer the signal information from the analyzer to the generator. Depending on the signal source, you can do this either with the "Load and Export Selected Waveform File to Generator" or the "Generate and Load Signal and Export it to Generator" buttons.

When you send the signal information to the generator, the application automatically configures the generator accordingly.

Transmission state

The LED displayed with the transmission button shows the state of the reference signal transmission.

The LED is either gray, green or red:

- Grey LED Transmission state unknown (for example when you have not yet started the transmission).
- Green LED

Transmission has been successful.

Red LED

Transmission has not been successful.

Check if the generator IP address / computer name are correct and if the connection has been established.

3.2.4 Current Generator Waveform

Access (source: generator): "Overview" > "Reference Signal" > "Current Generator Waveform"

Designing a reference signal on a signal generator

One way to design a reference signal is to design the signal on the signal generator itself.

You can design any signal you like, as long as it is storable as an arbitrary waveform (ARB) file. When you are done, you have to transfer the signal information from the signal generator to the signal analyzer with the "Read from Generator, Load" button.

The "Force ARB Mode" switch forces the signal generator to use its ARB mode (arbitrary waveform) rather than its real-time mode, whenever possible. As a result, switching between DPD on and off state is significantly faster. When the "Force ARB Mode" function is used, the peak power of the generator is read out and used within the process but as a result of this function the RMS power of the generator is modified. Also the waveform header of the file is recalculated to make sure that the peak input level stays constant or lower than the gain expansion during DPD calculation.

The parameters of the currently active reference signal are described in "Reference signal information" on page 40.

The "Open Generator Control" button provides functionality to change the generator settings as described in Chapter 3.3.6, "Controlling a signal generator", on page 67.

Most of the options available for the connected generator are supported by the automatic signal import functionality of the R&S VSE-K18. If the signal import was not successful (indicated by a red LED), you have to transfer the reference signal in another way (for example with a memory stick).

For a comprehensive description of all features available on the signal generator and information on how to generate signals, refer to the documentation of the signal generator.

Remote command:

```
See signal generator documentation.

CONFigure:REFSignal:CGW:AMODe[:STATe] on page 161

CONFigure:REFSignal:CGW:READ on page 162

CONFigure:REFSignal:CGW:LEDState? on page 162
```

3.2.5 Custom Waveform File

Access (source: waveform file): "Overview" > "Reference Signal" > "Custom Waveform File"

Designing a reference signal in a waveform file

One way to design a reference signal is to define its characteristics in a waveform file (*.wv or *.iq.tar).

You can create a waveform file, for example:

- With the R&S[®]WinIQSIM2 software package
- By exporting a signal designed on the signal generator

Basically, this file contains the characteristics of the reference signal. The generator then generates the reference signal based on the information in the file.

There are two ways to generate the reference signal through a custom waveform file.

- The generator is connected to the R&S VSE in a LAN, and can be recognized by the R&S VSE-K18 (Rohde & Schwarz generators only, for example the R&S SMW) In that case, you can simply transfer the reference signal information to the generator with the features integrated into the R&S VSE-K18. The generator then generates the corresponding signal with the appropriate signal level, and the R&S VSE-K18 is able to compare the measured signal to the ideal reference signal.
- The generator is not connected to the R&S VSE In that case, you have to load the reference signal information onto the generator manually and turn off the "Export to Generator" function. Because no exchange of information is possible between generator and analyzer, it is required to specify the input level of the signal in the "DUT Peak Input Power" input field.

The parameters of the currently active reference signal are described in "Reference signal information" on page 40.

The "Open Generator Control" button provides functionality to change the generator settings as described in Chapter 3.3.6, "Controlling a signal generator", on page 67.

For a comprehensive description of all features available on the signal generator and information on how to generate and export signals to a file, refer to the documentation of the signal generator.

To transfer a waveform file from the analyzer to the generator and process it with the ARB generator of the R&S SMW, for example, proceed as follows:

▶ In the "Custom Waveform" tab, select a file via "Load, Play on Generator".

Transfer the file to the generator with the "Select" button.

If a waveform is only used as a reference without transferring it to the signal generator, make sure that the generator control state "Off" is selected in the generator setup dialog.

Remote command:

Select file: CONFigure:REFSignal:CWF:FPATh on page 163 Transfer file: CONFigure:REFSignal:CWF:WRITe on page 164 Transmission state: CONFigure:REFSignal:CWF:LEDState? on page 163 DUT input power: CONFigure:REFSignal:CWF:DPIPower on page 162

3.2.6 Generate Own Signal

Access (source: Amplifier application): "Overview" > "Reference Signal" > "Generate Own Signal"

Designing a reference signal within the R&S VSE-K18

One way to design a reference signal is to design the signal within the R&S VSE-K18.

The application provides functionality to design a basic reference signal and saves the signal characteristics in a waveform file which you have to transfer to the signal generator with the "Generate and Load Signal and Export it to Generator" button.

When the data has been transferred, the signal generator (for example the R&S SMW) generates the corresponding signal.

The generated signal is a pseudo-noise signal, whose basic properties, like crest factor and bandwidth, you can specify as required.

The parameters of the currently active reference signal are described in "Reference signal information" on page 40.

The "Open Generator Control" button provides functionality to change the generator settings as described in Chapter 3.3.6, "Controlling a signal generator", on page 67.

Parameter	Min Value	Max Value
Target Crest Factor	2	13
Signal Length	((N+2*RampLength)*100)/Pulse- DutyCycle	
	N=1000 for Target Crest Factor < 12.5 dB	
	N=25000 for Target Crest Factor ≥ 12.5 dB	
Notch Width	Signal Bandwidth/100	Signal Bandwidth
Ramp Length		0 if Pulse Duty Cycle is 100 % Otherwise (Signal Length*Pulse- DutyCycle/100-N)/2

Table 3-1: Parameter dependencies

Refe	rence Signal			×
Refe	Currently Active Reference S Waveform File: Sample Rate: Crest Factor (File): Generator Control	ignal 	Number of Samples: Bandwidth (OBW): dBm T	 Open Generator Control
Amplifier	Generate Own Reference Signal BW Signal Length	form Custom Waveform File e Signal 20.0 MHz 30000 10.0 cP	Generate Own Signal CFR Pulse Duty Cycle Ramp Length	100.0 % 0
	Notch Width	0 Hz Generate File	Notch Position	0 Hz
	Setup Diagram			

To generate a reference signal within the application, proceed as follows:

▶ In the "Generate Own Signal" tab, design the reference signal as required.

The application stores the current signal properties as an ARB signal in a waveform file.

► Upload the data to the generator with the "Generate, Play on Generator" button.

You can define the following signal characteristics.

- "Signal Bandwidth" on page 46
- "Pulse Duty Cycle" on page 46
- "Signal Length" on page 47
- "Ramp Length" on page 47
- "Target Crest Factor" on page 47
- "Waveform File Name" on page 47
- "Notch Width" on page 47
- "Notch Position" on page 48

Remote command:

CONFigure:REFSignal:GOS:WRITe on page 167 CONFigure:REFSignal:GOS:LEDState? on page 165

Signal Bandwidth \leftarrow Designing a reference signal within the R&S VSE-K18

Defines the bandwidth of the reference signal.

The bandwidth should not be larger than maximum I/Q bandwidth supported by your signal analyzer (which depends on the analyzer configuration).

Remote command: CONFigure:REFSignal:GOS:BWIDth on page 164

Pulse Duty Cycle ← Designing a reference signal within the R&S VSE-K18 Defines the duty cycle of a pulsed reference signal.

The duty cycle of a pulse is the ratio of the pulse duration and the actual length of the pulse. A duty cycle of 100 % corresponds to a continuous signal.

Example:

The pulse duration is 2 μ s. The actual length of the pulse is 1 μ s. The duty cycle is 1 μ s : 2 μ s = 0.5 or 50 %.

Remote command: CONFigure:REFSignal:GOS:DCYCle on page 164

Signal Length \leftarrow Designing a reference signal within the R&S VSE-K18

Defines the number of samples that the reference signal consists of.

A number that is a power of 2 speeds up the internal signal processing. Thus, such a number should be specified if no other requirements limit the choice of the sample count.

For more information, see "Pulse Duty Cycle" on page 46.

Remote command: CONFigure:REFSignal:GOS:SLENgth on page 167

Ramp Length ← Designing a reference signal within the R&S VSE-K18

Defines the number of samples used to ramp up the pulse to its full power and vice versa.

Remote command: CONFigure:REFSignal:GOS:RLENgth on page 166

Target Crest Factor \leftarrow Designing a reference signal within the R&S VSE-K18 Defines the crest factor of the reference signal.

The crest factor shows the RMS power in relation to the peak power.

The crest factor is defined for a signal with 100 % pulse duty cycle and 0 Hz notch. Changes to the pulse duty cycle and notch parameters will change the crest factor.

Remote command:

CONFigure:REFSignal:GOS:CRESt on page 164

Waveform File Name \leftarrow Designing a reference signal within the R&S VSE-K18

Defines the name of the waveform file that the reference ARB signal configuration is stored in.

Remote command: CONFigure:REFSignal:GOS:WNAMe on page 167

Notch Width \leftarrow Designing a reference signal within the R&S VSE-K18

Defines the width of a notch that you can add to the reference signal.

Within the notch, all carriers of the reference signal have zero amplitude. You can use the noise notch to, for example, determine the noise power ratio (NPR) before and after the DPD.

Remote command: CONFigure:REFSignal:GOS:NWIDth on page 166

Notch Position ← Designing a reference signal within the R&S VSE-K18 Defines an offset for the noise notch relative to the center frequency.

The offset moves the notch to a position outside the center of the signal. You can use the offset to, for example, generate a one-sided noise signal or to examine asymmetric distortion effects.

Remote command: CONFigure:REFSignal:GOS:NPOSition on page 166

3.2.7 CFR (Crest Factor Reduction)

Access (source: K548 control): "Overview" > "Reference Signal" > "CFR"

Crest Factor Reduction (Generator Option K548)

The Crest Factor Reduction dialog provides functionality to control the main parameters of a Rohde & Schwarz signal generator equipped with option K548.

- CFR decreases the peak-to-average power ratio (PAPR) of the reference file, consequently leading to an increase in the EVM when compared to the reference signal.
- CFR often yields significantly improved DPD results due to reduced compression of the amplifier caused by less intense driving.
- As a result, the CFR provides a way to trade EVM for ACLR, balancing the two factors.

Note: During DPD, the CRF file needs to be selected as the reference.

For more detailed information, refer to the "Advanced Digital Pre-Distortion" video, which is part of the R&S amplifier masterclass playlist on the R&S youtube channel (Chapter 1, "Welcome to the amplifier measurement application", on page 9).

	Manufaur Film		C à Dua au	- Detail Deltate Cale			
	vvavetorm File:		C:\Progra	imData\Ronde-Sch	warz Usłuser/ET/Files/AmpTools.w	1639.4	
	Sample Rate:		20 MITZ		Panduidth (OPM)	10004	
	cresc ractor (rile):		3,30 UD		Bandwiddi (OBW):	15.0 MHZ	
Ge	enerator Control						
ϵ	RMS Power		-10.0 dB	m		Open Generator Control	
	Peak Power:		-2.01 dBm	I			
С	urrent Generator Wavef	orm Ci	ustom Wavefr	orm File Gene	rate Own Signal CFR		
	Crest Factor Reduction (K Crest Factor Reduction State	548 Control) On	Off	EVM Ref Signal	Original	CFR
	Crest Factor Delta			dB	Resulting Crest Factor	9.98 dB	
	Max Iterations	5					
	Max Iterations Filter Mode		Simple	Enhanced			
	Max Iterations Filter Mode Signal Bandwidth		Simple Auto	Enhanced Manual	20.0 MHz		
	Max Iterations Filter Mode Signal Bandwidth Channel Spacing		Simple Auto Auto	Enhanced Manual Manual	20.0 MHz 25.0 MHz		

Crest Factor Reduction State \leftarrow Crest Factor Reduction (Generator Option K548) Enables the crest factor reduction calculation.

If "On" is selected and all input fields are editable, crest factor reduction is active on the generator but the R&S VSE-K18 application has no CFR reference yet.

If "On" is selected and "Read CFR from Generator, Load" is selected, all input fields are grayed out. The CFR reference can now be used by the R&S VSE-K18 application.

If the state is changed to "Off", a potentially active DPD is also turned off. The DPD results will be invalid and new measurements will be needed.

Remote command:

CONFigure:CFReduction[:STATe] on page 170 CONFigure:CFReduction[:STATe]:LEDState? on page 170

EVM Ref. Signal ← Crest Factor Reduction (Generator Option K548)

Loads a new ARB file as reference if "CFR" is selected. The original ARB file is stored.

Remote command: CONFigure:CFReduction:RSORignal on page 171

Crest Factor Delta ← Crest Factor Reduction (Generator Option K548)

Sets the value difference by which you want to change your crest factor.

Remote command:

CONFigure:CFReduction:CFDelta on page 172 CONFigure:CFReduction:CFDelta:LEDState? on page 173

Current Crest Factor ← Crest Factor Reduction (Generator Option K548)

Displays the current crest factor of the waveform after the calculation of the resulting crest factor is completed.

Remote command: CONFigure:CFReduction:CCFactor? on page 173

Max Iterations ← Crest Factor Reduction (Generator Option K548)

Sets the number of iterations that are used for calculating the resulting crest factor. The iteration process is stopped when the desired crest factor delta is achieved by 0.1 dB.

Remote command:

CONFigure:CFReduction:ITERations on page 171 CONFigure:CFReduction:ITERations:LEDState? on page 171

Filter Mode ← Crest Factor Reduction (Generator Option K548)

Selects which filter mode is used for the filtering. In "Simple" mode, you can specify the RF bandwidth and channel spacing of the signal. The lowpass filter is designed to pass through frequency components inside the signal bandwidth and suppress components in the adjacent channel. In "Enhanced" mode, you can specify the passband and stopband frequencies of the lowpass filter.

Remote command:

CONFigure:CFReduction:FILTer on page 171 CONFigure:CFReduction:FILTer:LEDState? on page 171

Signal Bandwidth ← Crest Factor Reduction (Generator Option K548)

Sets the signal bandwidth. The value of the "Signal Bandwidth" should not be higher than the "Channel Spacing".

When in automatic mode, "Signal Bandwidth" shall be set to the OBW value of the reference file (shown in reference signal overview).

"Channel Spacing" shall be set to 1.15 times this value.

Remote command:

CONFigure:CFReduction:SBANdwidth on page 170 CONFigure:CFReduction:SBANdwidth:AUTO on page 170 CONFigure:CFReduction:SBANdwidth:LEDState? on page 170

Channel Spacing ← Crest Factor Reduction (Generator Option K548) Sets the channel spacing.

Remote command:

CONFigure:CFReduction:CSPacing on page 172 CONFigure:CFReduction:CSPacing:AUTO on page 172 CONFigure:CFReduction:CSPacing:LEDState? on page 172

Read CFR from Generator, Load ← Crest Factor Reduction (Generator Option K548)

Applies crest factor reduction on the connected signal generator.

Remote command:

CONFigure:CFReduction:READ on page 174 CONFigure:CFReduction:READ:LEDState? on page 174

Passband Frequency ← Crest Factor Reduction (Generator Option K548) Sets the passband frequency. Only available for "Enhanced" filter mode.

Remote command:

CONFigure:CFReduction:PFRequency on page 174 CONFigure:CFReduction:PFRequency:LEDState? on page 175

Stopband Frequency - Crest Factor Reduction (Generator Option K548)

Sets the stopband frequency. Only available for "Enhanced" filter mode.

Remote command:

CONFigure:CFReduction:SFRequency on page 175 CONFigure:CFReduction:SFRequency:LEDState? on page 175

Maximum Filter Order \leftarrow **Crest Factor Reduction (Generator Option K548)** Sets the maximum filter order. Only available for "Enhanced" filter mode.

Remote command:

CONFigure:CFReduction:MFORder on page 174 CONFigure:CFReduction:MFORder:LEDState? on page 174

3.3 Inputs and outputs

•	Input source settings	.51
•	Configuring the frequency	.57
•	Defining level characteristics	59
•	Power sensors	. 62
•	Configuring outputs	.67
•	Controlling a signal generator	. 67
•	Reference: I/Q file input	. 72

3.3.1 Input source settings

Access: "Overview" > "Input/Frontend" > "Input Source"

Or: "Input & Output" > "Input Source"

The R&S VSE can control the input sources of the connected instruments.

3.3.1.1 Radio frequency input

Or: "Input & Output" > "Input Source" > "Radio Frequency"

The default input source for the connected instrument is "Radio Frequency". Depending on the connected instrument, different input parameters are available.

Inpu	t		Х
	Input Source		
	Instrument	File Instrument: 🕞 FSW-85* 🔹 Input Source: RF *	
	Radio Frequency	Input 1 Input 2	
	External Mixer	Input Coupling AC DC	
	I/Q File	Impedance 500 750	
yzer		High Pass Filter 1 to 3 GHz On Off	
(Anal)		YIG-Preselector On Off	
g		B2000	
		B2000 State On Off	
		Oscilloscope IP Address	

Figure 3-1: RF input source settings for an R&S FSW with B2000 option

If the Frequency Response Correction option (R&S VSE-K544) is installed, the Amplifier measurement application also supports frequency response correction using Touchstone (.snp) files or .fres files.

Input Type (Instrument / File)	52
Instrument	52
Input 1 / Input 2	52
Input Coupling	53
Impedance	53
Direct Path	53
High Pass Filter 1 to 3 GHz	53
YIG-Preselector	54
B2000 State	54
Oscilloscope Splitter Mode	54
Oscilloscope IP Address	55
Preselector State	55
Preselector Mode	55
10 dB Minimum Attenuation	55

Input Type (Instrument / File)

Selects an instrument or a file as the type of input provided to the channel.

Note: External mixers are only available for input from a connected instrument.

Note: If the R&S VSE software is installed directly on an instrument, or integrated in Cadence[®]AWR[®]VSS, some restrictions apply on the available input type.

Remote command:

INSTrument:BLOCk:CHANnel[:SETTings]:SOURce<si> on page 194
INPut:SELect on page 193

Instrument

Specifies a configured instrument to be used for input.

Input 1 / Input 2

For instruments with two input connectors, you must define which input source is used for each measurement channel.

If an external frontend is active, select the connector the external frontend is connected to. You cannot use the other RF input connector simultaneously for the same channel. However, you can configure the use of the other RF input connector for another active channel at the same time.

"Input 1"	R&S FSW85: 1.00 mm RF input connector for frequencies up to
	85 GHz (90 GHz with option R&S FSW-B90G)
"Input2"	R&S FSW85: 1.85 mm RF input connector for frequencies up to 67 GHz
_ /	

Remote command: INPut:TYPE on page 194

Input Coupling

The RF input of the R&S VSE can be coupled by alternating current (AC) or direct current (DC).

The RF input of the connected instrument can be coupled by alternating current (AC) or direct current (DC).

AC coupling blocks any DC voltage from the input signal. AC coupling is activated by default to prevent damage to the instrument. Very low frequencies in the input signal can be distorted.

However, some specifications require DC coupling. In this case, you must protect the instrument from damaging DC input voltages manually. For details, refer to the data sheet.

Remote command:

INPut<ip>:COUPling<ant> on page 189

Impedance

For some measurements, the reference impedance for the measured levels of the connected instrument can be set to 50 Ω or 75 Ω .

Select 75 Ω if the 50 Ω input impedance is transformed to a higher impedance using a 75 Ω adapter of the RAZ type. (That corresponds to 25 Ω in series to the input impedance of the instrument.) The correction value in this case is 1.76 dB = 10 log (75 Ω / 50 Ω).

Remote command:

INPut<ip>:IMPedance<ant> on page 191

Direct Path

Enables or disables the use of the direct path for small frequencies.

In spectrum analyzers, passive analog mixers are used for the first conversion of the input signal. In such mixers, the LO signal is coupled into the IF path due to its limited isolation. The coupled LO signal becomes visible at the RF frequency 0 Hz. This effect is referred to as LO feedthrough.

To avoid the LO feedthrough the spectrum analyzer provides an alternative signal path to the A/D converter, referred to as the *direct path*. By default, the direct path is selected automatically for RF frequencies close to zero. However, this behavior can be disabled. If "Direct Path" is set to "Off", the spectrum analyzer always uses the analog mixer path.

"Auto" (Default) The direct path is used automatically for frequencies close to zero.

"Off" The analog mixer path is always used.

Remote command:

INPut<ip>:DPATh on page 189

High Pass Filter 1 to 3 GHz

Activates an additional internal highpass filter for RF input signals from 1 GHz to 3 GHz. This filter is used to remove the harmonics of the analyzer to measure the harmonics for a DUT, for example.

For some connected instruments, this function requires an additional hardware option on the instrument.

Note: For RF input signals outside the specified range, the high-pass filter has no effect. For signals with a frequency of approximately 4 GHz upwards, the harmonics are suppressed sufficiently by the YIG-preselector, if available.)

Remote command:

INPut<ip>:FILTer:HPASs[:STATe] on page 190

YIG-Preselector

Enables or disables the YIG-preselector.

This setting requires an additional option on the connected instrument.

An internal YIG-preselector at the input of the connected instrument ensures that image frequencies are rejected. However, image rejection is only possible for a restricted bandwidth. To use the maximum bandwidth for signal analysis you can disable the YIG-preselector at the input of the connected instrument, which can lead to image-frequency display.

Note: Note that the YIG-preselector is active only higher frequencies, depending on the connected instrument. Therefore, switching the YIG-preselector on or off has no effect if the frequency is below that value.

To use the optional 90 GHz frequency extension (R&S FSW-B90G), the YIG-preselector must be disabled.

To use the optional 54 GHz frequency extension (R&S FSV3-B54G), the YIG-preselector must be disabled.

Remote command:

INPut<ip>:FILTer:YIG[:STATe] on page 190

B2000 State

Activates the optional 2 GHz bandwidth extension (R&S FSW-B2000).

Note: The R&S VSE software supports input from a connected R&S FSW with a B2000 option installed. However, the R&S FSW interface to the oscilloscope must be set up and aligned directly on the instrument before the R&S VSE software can start analyzing the input.

The analysis bandwidth is defined in the data acquisition settings of the application as usual. Note that the maximum bandwidth cannot be restricted manually as for other bandwidth extension options.

Manual operation on the connected oscilloscope, or remote operation other than by the R&S VSE, is not possible while the B2000 option is active.

Remote command: SYSTem:COMMunicate:RDEVice:OSCilloscope[:STATe] on page 195

Oscilloscope Splitter Mode

Activates the use of the power splitter inserted between the "IF 2 GHZ OUT" connector of the R&S FSW and the "CH1" and "CH3" input connectors of the oscilloscope. Note that this mode requires an additional alignment with the power splitter.

For details see the R&S FSW I/Q Analyzer and I/Q Input user manual.

Remote command:

SYSTem:COMMunicate:RDEVice:OSCilloscope:PSMode[:STATe] on page 196

Oscilloscope IP Address

When using the optional 2 GHz bandwidth extension (R&S FSW-B2000) with an R&S FSW as the connected instrument, the entire measurement, as well as both instruments, are controlled by the R&S VSE software. Thus, the instruments must be connected via LAN, and the TCPIP address of the oscilloscope must be defined in the R&S VSE software.

For tips on how to determine the computer name or TCPIP address, see the oscilloscope's user documentation.

Remote command:

SYSTem:COMMunicate:RDEVice:OSCilloscope:TCPip on page 196

Preselector State

Turns the preselector on and off.

When you turn on the preselector, you can configure the characteristics of the preselector and add the preamplifier into the signal path.

When you turn off the preselector, the signal bypasses the preselector and the preamplifier, and is fed into the input mixer directly.

Remote command:

INPut<ip>:PRESelection[:STATe] on page 191

Preselector Mode

Selects the preselection filters to be applied to the measurement.

"Auto"	Automatically applies all available bandpass filters in a measurement.
	Available with the optional preamplifier.

"Auto Wide" Automatically applies the wideband filters consecutively:

- Lowpass 40 MHz
- Bandpass 30 MHz to 2250 MHz
- Bandpass 2 GHz to 8 GHz
- Bandpass 8 GHz to 26.5 GHz

Available with the optional preselector.

"Auto Narrow" Automatically applies the most suitable narrowband preselection filters in a measurement, depending on the bandwidth you have selected. For measurement frequencies up to 30 MHz, the connected instru-

ment uses combinations of lowpass and highpass filters. For higher frequencies, the connected instrument uses bandpass filters. Available with the optional preselector.

"Manual" Applies the filter settings you have defined manually.

Remote command:

INPut<ip>:PRESelection:SET on page 191

10 dB Minimum Attenuation

Turns the availability of attenuation levels of less than 10 dB on and off.

When you turn on this feature, the attenuation is always at least 10 dB. This minimum attenuation protects the input mixer and avoids accidental setting of 0 dB, especially if you measure EUTs with high RFI voltage.

When you turn it off, you can also select attenuation levels of less than 10 dB.

The setting applies to a manual selection of the attenuation as well as the automatic selection of the attenuation.

Remote command: INPut:ATTenuation:PROTection:RESet on page 188

3.3.1.2 I/Q file input

Or: "Input & Output" > "Input Source" > "I/Q File"

Loading a file via drag&drop

You can load a file simply by selecting it in a file explorer and dragging it to the R&S VSE software. Drop it into the "Measurement Group Setup" window or the channel bar for any channel. The channel is automatically configured for file input, if necessary. If the file contains all essential information, the file input is immediately displayed in the channel. Otherwise, the "Recall I/Q Recording" dialog box is opened for the selected file so you can enter the missing information.

If the file contains data from multiple channels (e.g. from LTE measurements), it can be loaded to individual input sources, if the application supports them.

The "Input Source" settings defined in the "Input" dialog box are identical to those configured for a specific channel in the "Measurement Group Setup" window.

Inpu	t	
	Input Source	
	Instrument	File Instrument: NONE TINput Source: T
IQ Analyzer	Radio Frequency I/Q File	Input File Select File V:\input\K96\wizard\WLANac_64QAM_20MHz_LongCP.iq.tar Select File Saved by: Rohde and Schwarz IQ File Converter/Version 1.2 Beta 10 Comment: File generated by the RS IQ File Converter, see http://www.rohde-schwarz.com/appnote/1EF85 Date & Time: 2015-07-28 17:48:52 Sample Rate: 20 MHz Number of Samples: 48000 Duration of Signal: 2.4 ms Number of Channels: 1
		Settings ZeroPadding On Off

If the Frequency Response Correction option (R&S VSE-K544) is installed, the Amplifier measurement application also supports frequency response correction using Touchstone (.snp) files or .fres files.

Encrypted .wv files can also be imported. Note, however, that traces resulting from encrypted file input cannot be exported or stored in a saveset.

Input Type (Instrument / File)	. 57
Input File	. 57
Zero Padding	57

Input Type (Instrument / File)

Selects an instrument or a file as the type of input provided to the channel.

Note: External mixers are only available for input from a connected instrument.

Note: If the R&S VSE software is installed directly on an instrument, or integrated in Cadence[®]AWR[®]VSS, some restrictions apply on the available input type.

Remote command:

INSTrument:BLOCk:CHANnel[:SETTings]:SOURce<si> on page 194
INPut:SELect on page 193

Input File

Specifies the I/Q data file to be used for input.

Select "Select File" to open the "Load I/Q File" dialog box.

Zero Padding

Enables or disables zero padding for input from an I/Q data file that requires resampling. For resampling, a number of samples are required due to filter settling. These samples can either be taken from the provided I/Q data, or the software can add the required number of samples (zeros) at the beginning and end of the file.

If enabled, the required number of samples are inserted as zeros at the beginning and end of the file. The entire input data is analyzed. However, the additional zeros can effect the determined spectrum of the I/Q data. If zero padding is enabled, a status message is displayed.

If disabled (default), no zeros are added. The required samples for filter settling are taken from the provided I/Q data in the file. The start time in the R&S VSE Player is adapted to the actual start (after filter settling).

Note: You can activate zero padding directly when you load the file, or afterwards in the "Input Source" settings.

Remote command: INPut<ip>:FILE:ZPADing on page 189

3.3.2 Configuring the frequency

Access: "Overview" > "Input / Output" > "Frequency"

The "Frequency" tab of the "Input / Output" dialog box contains settings to configure frequency characteristics.

The frequency settings are similar to those available in the spectrum application. For a comprehensive description of these settings, refer to the R&S VSE user manual.

Input Source	Frequency	Amplitude	Output	Probes	Generator Setup					
Frequency										
Center	13.25 GHz									
Center Frequen	Center Frequency Stepsize									
Stepsize	Mar	nual	Value		1.0 MHz					
Frequency Offs	et									
Value	0 H;	2								

The remote commands required to configure the frequency are described in Chapter 5.6.4, "Configuring the frequency", on page 205.

Center Frequency	58
Center Frequency Stepsize	58
Frequency Offset	58

Center Frequency

Defines the frequency of the measured signal.

The possible value range depends on the R&S VSE model you have. See the data sheet for more information about the supported frequency range.

Remote command:

[SENSe<ip>:] FREQuency:CENTer on page 205

Center Frequency Stepsize

Defines the step size by which the center frequency is increased or decreased when the arrow keys are pressed.

When you use the rotary knob the center frequency changes in steps of only 1/10 of the "Center Frequency Stepsize".

"= Center"	Sets the step size to the value of the center frequency and removes								
	the coupling of the step size to span or resolution bandwidth. The								
	used value is indicated in the "Value" field.								

"Manual" Defines a fixed step size for the center frequency. Enter the step size in the "Value" field.

Remote command:

[SENSe:]FREQuency:CENTer:STEP on page 205

Frequency Offset

Shifts the displayed frequency range along the x-axis by the defined offset.

This parameter has no effect on the instrument's hardware, on the captured data, or on data processing. It is simply a manipulation of the final results in which absolute frequency values are displayed. Thus, the x-axis of a spectrum display is shifted by a constant offset if it shows absolute frequencies. However, if it shows frequencies relative to the signal's center frequency, it is not shifted.

A frequency offset can be used to correct the display of a signal that is slightly distorted by the measurement setup, for example.

The allowed values range from -1 THz to 1 THz. The default setting is 0 Hz.

Remote command:

[SENSe<ip>:]FREQuency:OFFSet on page 206

3.3.3 Defining level characteristics

Access: "Overview" > "Input / Output" > "Amplitude"

The "Amplitude" tab of the "Input / Output" dialog box contains settings to configure the signal level characteristics.

The level settings are the same as those available in the spectrum application. For a comprehensive description of these settings, refer to the R&S VSE user manual.

Input Source	Frequency	Amplitude	Output	Probes	Genera	ator Setup		
Reference Le	el				Input Settin	igs		
Value 0.0	1Bm				Preamplifie	r	On	Off
					Input Coup	ling	AC	DC
Offset 0.0	IB				Impedance		50Ω	75Ω
Attenuation			Electronic A	ttenuation -				
Mode	Auto		Manual		State	On		Off
					Mode	Aut	D	Manual
Value 10.0	dB				Value 0 d	IB		

The remote commands required to configure the amplitude are described in Chapter 5.6.5, "Defining level characteristics", on page 206.

Functions available in the "Amplitude" dialog box described elsewhere:

- Input Coupling " on page 53
- "Impedance " on page 53

Reference Level	60
L Shifting the Display (Offset)	60
L BSetting the Reference Level Automatically (Auto Level)	60
Input Coupling	61
Impedance	61
Attenuation Mode / Value	61
Using Electronic Attenuation	61

Reference Level

Defines the expected maximum input signal level. Signal levels above this value are possibly not measured correctly, which is indicated by the "IF Overload" status display.

Defines the expected maximum reference level. Signal levels above this value are possibly not measured correctly. Signals above the reference level are indicated by an "IF Overload" status display.

The reference level can also be used to scale power diagrams; the reference level is then used for the calculation of the maximum on the y-axis.

Since the hardware of the connected instrument is adapted according to this value, it is recommended that you set the reference level close above the expected maximum signal level. Thus you ensure an optimal measurement (no compression, good signal-to-noise ratio).

Remote command:

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:
RLEVel<ant> on page 206

Shifting the Display (Offset) ← Reference Level

Defines an arithmetic level offset. This offset is added to the measured level. In some result displays, the scaling of the y-axis is changed accordingly.

Define an offset if the signal is attenuated or amplified before it is fed into the R&S VSE so the application shows correct power results. All displayed power level results are shifted by this value.

The reference level offset takes level offsets into account that occur after the signal has passed through the DUT (usually an amplifier). For level offsets occurring before the DUT, you can define a level offset on the signal generator from within the R&S VSE-K18 user interface.

The setting range is ±200 dB in 0.01 dB steps.

Note, however, that the *internal* reference level (used to adjust the hardware settings to the expected signal) ignores any "Reference Level Offset". Thus, it is important to keep in mind the actual power level the R&S VSE must handle. Do not rely on the displayed reference level (internal reference level = displayed reference level - offset).

Remote command:

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:
RLEVel<ant>:OFFSet on page 207

■Setting the Reference Level Automatically (Auto Level) ← Reference Level

The connected instrument automatically determines the optimal reference level for the current input data. At the same time, the internal attenuators and the preamplifier are adjusted so the signal-to-noise ratio is optimized, while signal compression, clipping and overload conditions are minimized. This function is not available on all supported instruments.

Remote command: [SENSe<ip>:]ADJust:LEVel on page 212

Input Coupling

The RF input of the R&S VSE can be coupled by alternating current (AC) or direct current (DC).

The RF input of the connected instrument can be coupled by alternating current (AC) or direct current (DC).

AC coupling blocks any DC voltage from the input signal. AC coupling is activated by default to prevent damage to the instrument. Very low frequencies in the input signal can be distorted.

However, some specifications require DC coupling. In this case, you must protect the instrument from damaging DC input voltages manually. For details, refer to the data sheet.

Remote command:

INPut<ip>:COUPling<ant> on page 189

Impedance

For some measurements, the reference impedance for the measured levels of the connected instrument can be set to 50 Ω or 75 Ω .

Select 75 Ω if the 50 Ω input impedance is transformed to a higher impedance using a 75 Ω adapter of the RAZ type. (That corresponds to 25 Ω in series to the input impedance of the instrument.) The correction value in this case is 1.76 dB = 10 log (75 Ω / 50 Ω).

Remote command:

INPut<ip>: IMPedance<ant> on page 191

Attenuation Mode / Value

Defines the attenuation applied to the RF input of the R&S VSE.

The RF attenuation can be set automatically as a function of the selected reference level (Auto mode). Automatic attenuation ensures that no overload occurs at the RF Input connector for the current reference level. It is the default setting.

In "Manual" mode, you can set the RF attenuation in 1 dB steps (down to 0 dB). Other entries are rounded to the next integer value. The range is specified in the data sheet. If the defined reference level cannot be set for the defined RF attenuation, the reference level is adjusted accordingly and the warning "limit reached" is displayed.

NOTICE! Risk of hardware damage due to high power levels. When decreasing the attenuation manually, ensure that the power level does not exceed the maximum level allowed at the RF input, as an overload can lead to hardware damage.

Remote command:

INPut<ip>:ATTenuation on page 207
INPut<ip>:ATTenuation:AUTO on page 208

Using Electronic Attenuation

If the (optional) Electronic Attenuation hardware is installed on the connected instrument, you can also activate an electronic attenuator.

In "Auto" mode, the settings are defined automatically; in "Manual" mode, you can define the mechanical and electronic attenuation separately.

Note: Note that restrictions can apply concerning which frequencies electronic attenuation is available for, depending on which instrument is connected to the R&S VSE software. Check your instrument documentation for details.

In "Auto" mode, RF attenuation is provided by the electronic attenuator as much as possible to reduce the amount of mechanical switching required. Mechanical attenuation can provide a better signal-to-noise ratio, however.

When you switch off electronic attenuation, the RF attenuation is automatically set to the same mode (auto/manual) as the electronic attenuation was set to. Thus, the RF attenuation can be set to automatic mode, and the full attenuation is provided by the mechanical attenuator, if possible.

If the defined reference level cannot be set for the given attenuation, the reference level is adjusted accordingly and the warning "limit reached" is displayed in the status bar.

Remote command:

INPut: EATT: STATe on page 209 INPut: EATT: AUTO on page 209 INPut: EATT on page 208

3.3.4 Power sensors

Access: "Overview" > "Input" > "Power Sensor" tab

A typical measurement using power sensors in the R&S VSE-K18 application is set up as shown below:

For details on working with power sensors, see the R&S VSE User Manual.

Input and output sensors are configured individually on a separate tab.

Inputs and outputs

Inpu	t/Output							
	Input Source F	requency	Amplitude	Power Sensor	Output	Probes	Generator Setup	
	State	On Off		Apply Auto Level Con	rection	On Off	Auto Set Level Correction	
	Input Sensor Output Sensor	Select			12345	6 NRP-Z81	→ V Auto	
			Zeroing Po	wer Sensor		Meas -> Ref		
		O Freque	ncy Manual	13.25 GHz	Refere	nce Value	0.0 dBm	
		Freque	ncy Coupling	Center	🔹 🗹 Use	e Ref Level Off	set	
		Unit/Scale		dBm	•			
ъ					🗌 Nu	mber of Readi	ngs 1	
Amplifi		Meas Time,	/Average	Normal	• Dut	ty Cycle	99.999 %	

State	63
Apply Auto Level Correction	63
Select	64
Zeroing Power Sensor	64
Frequency Manual	64
Frequency Coupling	64
Unit/Scale	65
Meas Time/Average	65
Setting the Reference Level from the Measurement Meas -> Ref	65
Reference Value	65
Use Ref Level Offset	65
Sensor Level Offset	65
Average Count (Number of Readings)	66
Duty Cycle	66
Using the power sensor as an external trigger	66
L External Trigger Level	66
L Hysteresis	66
L Trigger Holdoff	66
L Drop-Out Time	67
L Slope	67

State

Switches the power measurement for all power sensors on or off. Note that in addition to this general setting, each power sensor can be activated or deactivated individually by the Select setting on each tab. However, the general setting overrides the individual settings.

Apply Auto Level Correction

This function can be activated after "Auto Set Level Correction" has been used.

If the input sensor is selected, the input power used to calculate the measurement results is corrected so that it corresponds to the value measured by the input power sensor.

If the output sensor is selected, the power measured on the analyzer is corrected so that it corresponds to the value measured by the output power sensor.

Remote command:

CALCulate:PMETer:LEVel:CORRection on page 183 [SENSe:]PMETer:LEVel:CORRection:APPLy on page 183

Select

Selects the individual power sensor for usage if power measurement is generally activated (State function).

The detected **serial numbers** of the power sensors connected to the instrument are provided in a selection list. For each of the four available power sensor indexes ("Power Sensor 1" ..."Power Sensor 4"), which correspond to the tabs in the configuration dialog, one of the detected serial numbers can be assigned. The physical sensor is thus assigned to the configuration setting for the selected power sensor index.

By default, serial numbers not yet assigned are automatically assigned to the next free power sensor index for which "Auto Assignment" is selected.

Alternatively, you can assign the sensors manually by deactivating the "Auto" option and selecting a serial number from the list.

Remote command:

[SENSe:]PMETer[:STATe] on page 182 SYSTem:COMMunicate:RDEVice:PMETer:DEFine on page 177 SYSTem:COMMunicate:RDEVice:PMETer:CONFigure:AUTO[:STATe] on page 176

SYSTem:COMMunicate:RDEVice:PMETer:COUNt? on page 176

Zeroing Power Sensor

Starts zeroing of the power sensor.

For details on the zeroing process refer to the R&S VSE User Manual.

Remote command:

CALibration:PMETer:ZERO:AUTO ONCE on page 177

Frequency Manual

Defines the frequency of the signal to be measured. The power sensor has a memory with frequency-dependent correction factors. This allows extreme accuracy for signals of a known frequency.

Remote command: [SENSe:]PMETer:FREQuency on page 180

Frequency Coupling

Selects the coupling option. The frequency can be coupled automatically to the center frequency of the instrument or to the frequency of marker 1.

Remote command:

[SENSe:]PMETer:FREQuency:LINK on page 180

Unit/Scale

Selects the unit with which the measured power is to be displayed. Available units are dBm, dB, W and %.

If dB or % is selected, the display is relative to the reference value that is defined with either the "Meas -> Ref" setting or the "Reference Value" setting.

Remote command:

UNIT<n>:PMETer:POWer on page 184 UNIT<n>:PMETer:POWer:RATio on page 184

Meas Time/Average

Selects the measurement time or switches to manual averaging mode. In general, results are more precise with longer measurement times. The following settings are recommended for different signal types to obtain stable and precise results:

"Short"	Stationary signals with high power (> -40dBm), because they require only a short measurement time and short measurement time provides the highest repetition rates.
"Normal"	Signals with lower power or modulated signals
"Long"	Signals at the lower end of the measurement range (<-50 dBm) or Signals with lower power to minimize the influence of noise
"Manual"	Manual averaging mode. The average count is set with the Average Count (Number of Readings) setting.

Remote command:

[SENSe:]PMETer:MTIMe on page 181
[SENSe:]PMETer:MTIMe:AVERage[:STATe] on page 181

Setting the Reference Level from the Measurement Meas -> Ref

Sets the currently measured power as a reference value for the relative display. The reference value can also be set manually via the Reference Value setting.

Remote command: CALCulate<n>:PMETer:RELative[:MAGNitude]:AUTO ONCE on page 178

Reference Value

Defines the reference value in dBm used for relative power meter measurements.

Remote command:

CALCulate<n>:PMETer:RELative[:MAGNitude] on page 178

Use Ref Level Offset

If deactivated, takes the Sensor Level Offset into account.

Remote command:

[SENSe:]PMETer:ROFFset[:STATe] on page 182

Sensor Level Offset

Takes the specified offset into account for the measured power. Only available if Use Ref Level Offset is disabled.

Remote command: [SENSe:]PMETer:SOFFset on page 182

Average Count (Number of Readings)

Defines the number of readings (averages) to be performed after a single sweep has been started. This setting is only available if manual averaging is selected (Meas Time/ Average setting).

The values for the average count range from 0 to 256 in binary steps (1, 2, 4, 8, ...). For average count = 0 or 1, one reading is performed. The general averaging and sweep count for the trace are independent from this setting.

Results become more stable with extended average, particularly if signals with low power are measured. This setting can be used to minimize the influence of noise in the power sensor measurement.

Remote command: [SENSe:]PMETer:MTIMe:AVERage:COUNt on page 181

Duty Cycle

Sets the duty cycle to a percent value for the correction of pulse-modulated signals and activates the duty cycle correction. With the correction activated, the sensor calculates the signal pulse power from this value and the mean power.

Remote command:

[SENSe:]PMETer:DCYCle[:STATe] on page 179
[SENSe:]PMETer:DCYCle:VALue on page 179

Using the power sensor as an external trigger

If activated, the power sensor creates a trigger signal when a power higher than the defined "External Trigger Level" is measured. This trigger signal can be used as an external power trigger by the connected instrument.

This setting is only available in conjunction with a compatible power sensor.

Remote command:

[SENSe:]PMETer:TRIGger[:STATe] on page 187 TRIG:SOUR PSE, see TRIGger[:SEQuence]:SOURce on page 183

External Trigger Level ← Using the power sensor as an external trigger

Defines the trigger level for the power sensor trigger.

For details on supported trigger levels, see the data sheet.

Remote command: [SENSe:]PMETer:TRIGger:LEVel on page 186

Hysteresis ← Using the power sensor as an external trigger

Defines the distance in dB to the trigger level that the trigger source must exceed before a trigger event occurs. Setting a hysteresis avoids unwanted trigger events caused by noise oscillation around the trigger level.

Remote command: [SENSe:]PMETer:TRIGger:HYSTeresis on page 186

Trigger Holdoff ← Using the power sensor as an external trigger

Defines the minimum time (in seconds) that must pass between two trigger events. Trigger events that occur during the holdoff time are ignored. Remote command:

[SENSe:]PMETer:TRIGger:HOLDoff on page 185

$\textbf{Drop-Out Time} \gets \textbf{Using the power sensor as an external trigger}$

Defines the time the input signal must stay below the trigger level before triggering again.

Slope \leftarrow Using the power sensor as an external trigger

Defines whether triggering occurs when the signal rises to the trigger level or falls down to it.

Remote command: [SENSe:]PMETer:TRIGger:SLOPe on page 186

3.3.5 Configuring outputs

Access: "Overview" > "Input / Output" > "Output"

The "Output" tab of the "Input / Output" dialog box contains settings to configure the various signal outputs available on the R&S VSE.

The functionality is the same as in the spectrum application. For more information about the output functions, refer to the R&S VSE user manual.

3.3.6 Controlling a signal generator

Access: "Overview" > "Input / Output" > "Generator Setup"

The "Generator Setup" tab of the "Input / Output" dialog box contains settings to control the signal generator from within the R&S VSE-K18. A remote control connection between the R&S VSE and the signal generator has to be established to be able to do so.

Because a signal generator is (mostly) mandatory in the test setup, these features make measurement configuration as easy as possible. This way, you can control both analyzer and generator from within the application without having to operate the two instruments to configure the measurement.

While generator control is active, you cannot change the connection information.

When you switch on generator control while it is still active in another channel, the control is disabled in the other channel. Only one channel can control a generator at any time.

Inputs and outputs

Input Source	Frequency	Amplitude	Output	Probes	Ge	nerator Setup			
Generator Con	figuration ——								
Level(RMS)		\bigcirc	-4.92 d	Bm		Path RF			A ·
Level Offset		\bigcirc	0.0 dBn	n		Path BB			A
Max DUT Inp	ut Level	\bigcirc	30.0 dB	im		Segment			0
Attach to An	alyzer Freq.		On	Off		Digital Attenuatio	n		0.0 dB
Center Frequ	ency	\bigcirc	2.0 GHz	z		DE Outruit			07 04
Reference Fr	equency	\bigcirc	Internal		•	RF Output			On Off
	Query all	Settings from Ger	nerator						
Generator Deta	ils —						DUT Specific Sett	ings —	
Name							Calling Dates		
Firmware Versi	on						Settling Delay	U S	

The remote commands required to configure the generator are described in Chapter 5.6.6, "Controlling a signal generator", on page 212.

State of operation

Most settings have an LED that shows the state of the corresponding setting on the signal generator.

The LED is either gray, green or red:

- Grey LED Configuration state unknown (for example when you have not yet started the transmission).
- Green LED Configuration has been successful. Generator has been configured correctly.
- Red LED

Configuration has not been successful.

Check if the connection between analyzer and generator has been established or if the IP address has been stated correctly.

The "Generator Control" functions are activated, when a signal generator is selected in the RF generator selection box:

► II O ■ 🗵
/ > 11 - • • ×
•
•
•

If no signal generator is selected ("NONE"), the "Generator Control" functions are turned off.

Generator details

The "Generator Details" contain information about the connected signal generator, like the software version or the serial number of the generator.

Updating generator settings

When you change the generator level or frequency in this dialog, the application automatically updates those settings on the generator.

When you use the "Upload All Settings To Generator" button, you can force an update of all generator settings available in this dialog box. Useful when you change the level or frequency on the generator itself. In that case, those settings remain the same in the R&S VSE-K18. To restore the original settings defined within the R&S VSE-K18, use that button to restore the generator settings.

Remote command:

CONFigure:GENerator:SETTings:UPDate on page 219

Querying generator settings

Similarly, you can transfer the current generator configuration into the amplifier application with the "Query All Settings From Generator" button.

Note that the center frequency is not updated when you attach the generator frequency to that of the R&S VSE.

Remote command:

CONFigure: SETTings on page 220

IP Address	70
RMS Level	70
Maximum DUT Input Level	71
Attach to Analyzer Frequency	71

Inputs and outputs

Center Frequency	71
Reference Frequency	71
Path RF / BB.	71
Segment	71
Digital Attenuation	72
RF Output	
Settling Delay	72

IP Address

Opens a dialog box to configure the network properties of the signal generator.

You can connect to the generator either by entering its IP address ("123" button), or its computer name ("ABC" button).

If you are not sure about the IP address or computer name of your generator, check its user interface or kindly ask your IT administrator to provide them.

After you have entered IP address or computer name, use "Connect" to establish the connection. The R&S VSE shows if the connection state, and, if the connection was successful, the connected generator type.

Remote command: CONFigure:GENerator:CONNection:CSTate? on page 216

RMS Level

Defines the RMS level of the signal that is generated.

When you define the RMS level here, the signal generator is automatically configured to that level.

In addition, you can define a level offset (for example to take external attenuation into account). Note that the level offset is a purely mathematical value and does not change the actual level of the signal at the RF output.

The level offset takes level offsets into account that occur before the signal has passed through the DUT (usually an amplifier). For level offsets occurring after the DUT, define a level offset in the "Amplitude" menu of the signal analyzer.

You can also define a Digital Attenuation that you can use for fast output level changes.

NOTICE! Risk of damage to the DUT.

RMS levels that are too high can damage or destroy the DUT.

Make sure to keep an eye on the RMS level, especially when defining a level offset. A level offset changes the displayed value of the RMS level, but not the real RMS level.

Displayed RMS level = real RMS level + level offset

Thus, the actual RMS level can be higher than the displayed level.

Note: Always change the generator level from within the R&S VSE-K18 user interface and thus synchronize the levels of both instruments.

If you change the generator level on the signal generator, the R&S VSE-K18 does not synchronize the levels and measurement results are going to be invalid.

Remote command:

RMS level: CONFigure:GENerator:POWer:LEVel on page 216
CONFigure:GENerator:POWer:LEVel:LEDState? on page 217
Level offset: CONFigure:GENerator:POWer:LEVel:OFFSet on page 217
CONFigure:GENerator:POWer:LEVel:OFFSet:LEDState? on page 218

Maximum DUT Input Level

Defines the maximum level that the generated signal can have. Selecting a higher level is not possible.

Defining a maximum output level is useful if you are measuring sensitive DUTs.

Remote command:

CONFigure:GENerator:DUT:INPut:MAXimum:POWer on page 213 CONFigure:GENerator:DUT:INPut:MAXimum:POWer:LEDState? on page 213

Attach to Analyzer Frequency

Turns synchronization of the analyzer and generator frequency on and off.

When you turn on this feature, changing the frequency on the analyzer automatically adjusts the frequency on the generator.

Remote command: CONFigure:GENerator:FREQuency:CENTer:SYNC[:STATe] on page 215

Center Frequency

Defines the frequency of the signal that the generator transmits.

When you turn on Attach to Analyzer Frequency, any changes you make to the generator frequency are also adjusted on the analyzer.

Remote command:

CONFigure:GENerator:FREQuency:CENTer on page 214 CONFigure:GENerator:FREQuency:CENTer:LEDState? on page 215

Reference Frequency

Selects the source of the generator reference frequency.

The internal reference is that of the signal generator itself. When you select an external reference, you can use another frequency reference, for example that of the R&S VSE.

Remote command:

CONFigure:GENerator:EXTernal:ROSCillator on page 214 CONFigure:GENerator:EXTernal:ROSCillator:LEDState? on page 214

Path RF / BB

Selects the RF signal path of the generator that is used for signal generation.

Remote command: RF path: CONFigure:GENerator:TARGet:PATH:RF on page 220 BB path: CONFigure:GENerator:TARGet:PATH:BB? on page 220

Segment

If you are using a waveform file that contains several different waveforms, you have to select the segment to transfer to the signal generator.

Note that the segment that you have selected in the "Generator Setup" has to match the segment selected for the reference signal, regarding the signal characteristics.

Remote command:

```
CONFigure:GENerator:SEGMent on page 219
CONFigure:GENerator:SEGMent:LEDState? on page 219
```

Digital Attenuation

Attenuates or amplifies the internal, digitally modulated I/Q signal on the signal generator. The level of the RF signal is thus adjusted accordingly.

Digital attenuation allows very fast level changes of the internal I/Q signals.

Note that digital attenuation only has an effect on the RF output level if the internal I/Q modulator of the generator is active.

Remote command:

CONFigure:GENerator:POWer:LEVel:ATTenuation on page 216

RF Output

Turns the RF output on the connected signal generator on and off.

When you turn off the RF output, the generator does not feed a signal into the connected DUT.

Remote command:

CONFigure:GENerator:RFOutput[:STATe] on page 218 CONFigure:GENerator:RFOutput:LEDState? on page 218

Settling Delay

The "Settling Delay" defines a time period between the time a parameter changes on the generator and the start of the next measurement. The R&S VSE automatically waits for the defined time period whenever one of the relevant generator settings has been changed.

Defining a delay time is especially useful for measurements that automatically change generator settings (for example the parameter sweep). The delay time considers the settling time of the generator's hardware components between individual measurements.

Remote command: CONFigure:DUT:STIMe on page 213

3.3.7 Reference: I/Q file input

3.3.7.1 Basics on input from I/Q data files

The I/Q data to be evaluated in a particular R&S VSE application cannot only be captured by the application itself, it can also be loaded from a file, provided it has the correct format. The file is then used as the input source for the application.
For example, you can capture I/Q data using the I/Q Analyzer application, store it to a file, and then analyze the signal parameters for that data later using the AM/FM/PM Modulation Analysis application.

An application note on converting Rohde & Schwarz I/Q data files is available from the Rohde & Schwarz website:

1EF85: Converting R&S I/Q data files

When importing data from an I/Q data file using the import functions provided by some R&S VSE applications, the data is only stored temporarily in the capture buffer. It overwrites the current measurement data and is in turn overwritten by a new measurement. If you use an I/Q data file as input, the stored I/Q data remains available for any number of subsequent measurements. Furthermore, the (temporary) data import requires the current measurement settings in the current application to match the settings that were applied when the measurement results were stored (possibly in a different application). When the data is used as an input source, however, the data acquisition settings in the current application (attenuation, center frequency, measurement bandwidth, sample rate) can be ignored. As a result, these settings cannot be changed in the current application. Only the measurement time can be decreased, to perform measurements on an extract of the available data (from the beginning of the file) only.

For input files that contain multiple data streams from different channels, you can define which data stream to be used for the currently selected channel in the input settings. You can define whether the data stream is used only once, or repeatedly, to create a larger amount of input data.

When using input from an I/Q data file, the [RUN SINGLE] function starts a single measurement (i.e. analysis) of the stored I/Q data, while the [RUN CONT] function repeatedly analyzes the same data from the file.

Pre-trigger and post-trigger samples

In applications that use pre-triggers or post-triggers, if no pre-trigger or post-trigger samples are specified in the I/Q data file, or too few trigger samples are provided to satisfy the requirements of the application, the missing pre- or post-trigger values are filled up with zeros. Superfluous samples in the file are dropped, if necessary. For pre-trigger samples, values are filled up or omitted at the beginning of the capture buffer. For post-trigger samples, values are filled up or omitted at the end of the capture buffer.

3.3.7.2 I/Q data file format (iq-tar)

I/Q data is packed in a file with the extension .iq.tar. An iq-tar file contains I/Q data in binary format together with meta information that describes the nature and the source of data, e.g. the sample rate. The objective of the iq-tar file format is to separate I/Q data from the meta information while still having both inside one file. In addition, the file format allows you to include user-specific data and to preview the I/Q data in a web browser (not supported by all web browsers).

The iq-tar container packs several files into a single .tar archive file. Files in .tar format can be unpacked using standard archive tools (see http://en.wikipedia.org/wiki/Comparison_of_file_archivers) available for most operating systems. The advantage of .tar files is that the archived files inside the .tar file are not changed (not compressed) and thus it is possible to read the I/Q data directly within the archive without the need to unpack (untar) the .tar file first.

) १

Sample iq-tar files Some sample iq-tar files are provided in the

C:\ProgramData\Rohde-Schwarz\VSE\<version_no>\user\Demo\ directory on the R&S VSE.

These files are also available in the demo mode of the R&S VSE software.

An application note on converting Rohde & Schwarz I/Q data files is available from the Rohde & Schwarz website:

1EF85: Converting R&S I/Q data files

Contained files

An iq-tar file must contain the following files:

- I/Q parameter XML file, e.g. xyz.xml
 Contains meta information about the I/Q data (e.g. sample rate). The filename can be defined freely, but there must be only one single I/Q parameter XML file inside an iq-tar file.
- I/Q data binary file, e.g. xyz.complex.float32
 Contains the binary I/Q data of all channels. There must be only one single I/Q data binary file inside an iq-tar file.

Optionally, an iq-tar file can contain the following file:

 I/Q preview XSLT file, e.g. open_IqTar_xml_file_in_web_browser.xslt Contains a stylesheet to display the I/Q parameter XML file and a preview of the I/Q data in a web browser (not supported by all web browsers). A sample stylesheet is available at http://www.rohde-schwarz.com/file/ open_IqTar_xml_file_in_web_browser.xslt.

•	I/Q parameter XML file specification	75
•	I/Q data binary file	84

I/Q parameter XML file specification

The content of the I/Q parameter XML file must comply with the XML schema RsIqTar.xsd available at: http://www.rohde-schwarz.com/file/RsIqTar.xsd.

In particular, the order of the XML elements must be respected, i.e. iq-tar uses an "ordered XML schema". For your own implementation of the iq-tar file format make sure to validate your XML file against the given schema.

The following example shows an I/Q parameter XML file. The XML elements and attributes are explained in the following sections.

Sample I/Q parameter XML file: xyz.xml

```
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl"
href="open IqTar xml file in web browser.xslt"?>
<RS IQ TAR FileFormat fileFormatVersion="1"
xsi:noNamespaceSchemaLocation="RsIqTar.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <Name>R&S VSE</Name>
 <Comment>Here is a comment</Comment>
 <DateTime>2011-01-24T14:02:49</DateTime>
 <Samples>68751</Samples>
 <Clock unit="Hz">6.5e+006</Clock>
 <Format>complex</Format>
 <DataType>float32</DataType>
  <ScalingFactor unit="V">1</ScalingFactor>
  <NumberOfChannels>1</NumberOfChannels>
<DataFilename>xyz.complex.float32</DataFilename>
<UserData>
 <UserDefinedElement>Example</UserDefinedElement>
</UserData>
 <PreviewData>...</PreviewData>
</RS IQ TAR FileFormat>
```

Minimum data elements

The following data elements are the minimum required for a valid iq-tar file. They are always provided by an iq-tar file export from a Rohde & Schwarz product. If not specified otherwise, it must be available in all iq-tar files used to import data to a Rohde & Schwarz product.

Element	Possible Values	Description
<rs_iq_tar_fileformat></rs_iq_tar_fileformat>	-	The root element of the XML file. It must contain the attribute fileFormatVersion that contains the number of the file format definition.
<name></name>	string	Optional: describes the device or application that created the file.
<comment></comment>	string	Optional: contains text that further describes the contents of the file.

Inputs and outputs

Element	Possible Values	Description			
<datetime></datetime>	yyyy-mm-ddThh:mm:ss	Contains the date and time of the creation of the file. Its type is xs:dateTime (see RsIqTar.xsd).			
<samples></samples>	integer	 Contains the number of samples of the I/Q data. For multi-channel signals all channels have the same number of samples. One sample can be: A complex number represented as a pair of I and Q values A complex number represented as a pair of magnitude and phase values A real number represented as a single real value See also <format> element.</format> 			
<clock></clock>	double	Contains the clock frequency in Hz, i.e. the sample rate of the I/Q data. A signal generator typically outputs the I/Q data at a rate that equals the clock frequency. If the I/Q data was captured with a signal analyzer, the signal analyzer used the clock frequency as the sample rate. The attribute unit must be set to "Hz".			
<format></format>	complex real polar	<pre>Specifies how the binary data is saved in the I/Q data binary file (see <datafilename> element). Every sample must be in the same format. The format can be one of the following: complex: Complex number in cartesian format, i.e. I and Q values interleaved. I and Q are unitless real: Real number (unitless) polar: Complex number in polar format, i.e. magnitude (unitless) and phase (rad) values interleaved. Requires DataType = float32 or float64</datafilename></pre>			
<datatype></datatype>	int8 int16 int32 float32 float64	Specifies the binary format used for samples in the I/Q data binary file (see <datafilename> element and "I/Q data binary file" on page 84). The following data types are allowed: int8: 8 bit signed integer data int16: 16 bit signed integer data int32: 32 bit signed integer data float32: 32 bit floating point data (IEEE 754) float64: 64 bit floating point data (IEEE 754)</datafilename>			
<scalingfactor></scalingfactor>	double	Optional: describes how the binary data can be transformed into values in the unit Volt. The binary I/Q data itself has no unit. To get an I/Q sample in the unit Volt the saved samples have to be multiplied by the value of the <scalingfactor>. For polar data only the magnitude value has to be multiplied. For multi-channel signals the <scalingfactor> must be applied to all channels. The attribute unit must be set to "v". The <scalingfactor> must be > 0. If the <scalingfactor> element is not defined, a value of 1 V is assumed.</scalingfactor></scalingfactor></scalingfactor></scalingfactor>			
<numberofchannels></numberofchannels>	integer	Optional: specifies the number of channels, e.g. of a MIMO sig- nal, contained in the I/Q data binary file. For multi-channels, the I/Q samples of the channels are expected to be interleaved within the I/Q data file (see "I/Q data binary file" on page 84). If the <numberofchannels> element is not defined, one channel is assumed.</numberofchannels>			

Inputs and outputs

Element	Possible Values	Description
<datafilename></datafilename>		Contains the filename of the I/Q data binary file that is part of the ${\tt iq-tar}$ file.
		<pre>It is recommended that the filename uses the following conven- tion: <xyz>.<format>.<channels>ch.<type> • <xyz> = a valid Windows file name • <format> = complex, polar or real (see Format element) • <channels> = Number of channels (see NumberOfChannels element) • <type> = float32, float64, int8, int16, int32 or int64 (see DataType element) Examples: • xyz.complex.1ch.float32 • xyz.polar.1ch.float64 • xyz.real.1ch.int16 • xyz.complex.16ch.int8</type></channels></format></xyz></type></channels></format></xyz></pre>
<userdata></userdata>	xml	Optional: contains user, application or device-specific XML data which is not part of the iq-tar specification. This element can be used to store additional information, e.g. the hardware configu- ration. User data must be valid XML content.
<previewdata></previewdata>	xml	Optional: contains further XML elements that provide a preview of the I/Q data. The preview data is determined by the routine that saves an iq-tar file (e.g. R&S VSE). For the definition of this element refer to the RsIqTar.xsd schema. Note that the pre- view can be only displayed by current web browsers that have JavaScript enabled and if the XSLT stylesheet open_IqTar_xml_file_in_web_browser.xslt is available.

User-defined data elements

You can insert additional user, application or device-specific XML data that is not part of the iq-tar specification in the <UserData> element. User data must be valid XML content.

Rohde & Schwarz products use this element to import and export application-specific data. While some elements are mandatory in order to import the iq-tar file to the product, others are optional.

The subelements within the <UserData> element provided by the Rohde & Schwarz products are <DataImportExport MandatoryData> and

<DataImportExport_OptionalData>. To import an iq-tar file to the R&S VSE
software, either both of these elements or none of them must be provided.

Mandatory data elements

The following information is always provided by an iq-tar file export from Rohde & Schwarz products. It is contained in the

<DataImportExport_MandatoryData> element. It must be available in all iq-tar files used to import data to the R&S VSE software if optional data is included (see "Optional data elements" on page 78).

Element Name	Possible Values	Description		
<channelnames> <channelname></channelname></channelnames>		Mapping of channels in iq-tar file to channel names in R&S VSE software.		
		CH_1 = first <channelname></channelname>		
		CH_2 = second <channelname></channelname>		
		CH_n = last <channelname></channelname>		
<channelname></channelname>	String	Channel name in R&S VSE software		
<centerfrequency></centerfrequency>	Double	Center frequency of captured I/Q data		

Table 3-2: Subelements of	<pre>f <dataimportexport_< pre=""></dataimportexport_<></pre>	MandatoryData>
---------------------------	---	----------------

Optional data elements

Optionally, the following information can be provided in iq-tar files used to import data to Rohde & Schwarz products. This information can also be provided by an iq-tar file export from the R&S VSE software, if selected. Note that the available information during data export depends on the connected instrument.

Optional information is contained in the <DataImportExport_OptionalData> element. If this element is included in the <UserData> element, the <DataImportExport_MandatoryData> element must also be included (see "Mandatory data elements" on page 77).

Optional data is included in <Key> subelements with a specific name attribute. Keys for an individual channel are provided together, i.e. first all keys for CH_1, then all keys for CH_2 etc. The channel index is provided as a prefix for the key name attribute and corresponds to the mapping defined in the <ChannelNames> in

<DataImportExport_MandatoryData> (see "Mandatory data elements"
on page 77).

<key> element name attribute</key>	Possible Values
Ch <n>_RefLevel[dBm]</n>	Double
Ch <n>_RefLevelOffset[dB]</n>	Double
Ch <n>_AttenuMech[dB]</n>	Integer
Ch <n>_AttenuElecState</n>	ON OFF
Ch <n>_AttenuElecValue[dB]</n>	Integer
Ch <n>_PreampState</n>	ON OFF
Ch <n>_PreampGain[dB]</n>	Integer
Ch <n>_PreSelectorState</n>	ON OFF (R&S FSWT only)
Ch <n>_PreSelectorType</n>	NARROW WIDE (R&S FSWT only)
Ch <n>_Impedance[Ohm]</n>	50 75

Table 3-3: Possible information in <DataImportExport_OptionalData>

Inputs and outputs

<key> element name attribute</key>	Possible Values
Ch <n>_InputCoupling</n>	AC DC
Ch <n>_DeviceId</n>	String
Ch <n>_DeviceOptions</n>	String
Ch <n>_DeviceHwInfo</n>	String
Ch <n>_DeviceVersions</n>	String
Ch <n>_CalibrationState</n>	ON OFF
Ch <n>_RefOscillatorInput</n>	OFF ON
Ch <n>_RefOscillatorFreq[Hz]</n>	Double
Ch <n>_InputPath</n>	RF
Ch <n>_InputSelection</n>	INPUT1 INPUT2
	(R&S FSWT only)
Ch <n>_HighPassFilterState</n>	ON OFF
Ch <n>_YigPreSelectorState</n>	ON OFF
Ch <n>_ExtMixerState</n>	ON OFF
Ch <n>_MeasBandwidth[Hz]</n>	Double
Ch <n>_FilterSettings</n>	FLAT GAUSS OFF
Ch <n>_TrgSource</n>	Extern <14> I/Q Power IF Power RF Power Power Sensor Time
Ch <n>_TrgLevel[dB]</n>	Double
Ch <n>_TrgHysteresis[dB]</n>	Double
Ch <n>_TrgTpis[s]</n>	Double
Ch <n>_TrgOffset[s]</n>	Double
Ch <n>_TrgSlope</n>	Rising Falling Rising/Falling
Ch <n>_TrgHoldoff[s]</n>	Double
Ch <n>_TrgDropOut[s]</n>	Double
Ch <n>_NumberOfPostSamples</n>	Integer
Ch <n>_NumberOfPreSamples</n>	Integer

Example: Example for <DataImportExport_OptionalData>

```
<DataImportExport OptionalData>
<Key name="Ch1 AttenElecState">OFF</Key>
<Key name="Ch1 AttenElecValue[dB]">0</Key>
<Key name="Ch1 AttenMech[dB]">0</Key>
<Key name="Ch1 CalibrationState">ON</Key>
<Key name="Ch1 DeviceHwInfo"></Key>
<Key name="Ch1 DeviceId">Rohde-Schwarz,RTP,1320.5007k08/101011,4.15.1.0</Key>
<Key name="Ch1 DeviceOptions">B4,B10,B110</Key>
<Key name="Ch1 FilterSettings">FLAT</Key>
<Key name="Ch1 HighPassFilterState">OFF</Key>
<Key name="Ch1 Impedance[Ohm]">50</Key>
<Key name="Ch1 InputCoupling">AC</Key>
<Key name="Ch1 InputPath">RF</Key>
<Key name="Ch1 MeasBandwidth[Hz]">100000000</Key>
<Key name="Ch1 NumberOfPostSamples">0</Key>
<Key name="Ch1 NumberOfPreSamples">0</Key>
<Key name="Ch1 PreampGain[dB]">0</Key>
<Key name="Ch1 PreampState">OFF</Key>
<Key name="Ch1 RefLevelOffset[dB]">0</Key>
<Key name="Ch1 RefLevel[dBm]">-15.0362</Key>
<Key name="Ch1 RefOscillatorInput">OFF</Key>
<Key name="Ch1 SelectedIqInputSource">CHAN1 CHAN3 WV</Key>
<Key name="Ch1 TrgSource">FREE RUN</Key>
<Key name="Ch1 YigPreSelectorState">OFF</Key>
<Key name="Ch2 AttenElecState">OFF</Key>
<Key name="Ch2 AttenElecValue[dB]">0</Key>
<Key name="Ch2 AttenMech[dB]">0</Key>
<Key name="Ch2 CalibrationState">ON</Key>
<Key name="Ch2 DeviceHwInfo"></Key>
<Key name="Ch2 DeviceId">Rohde-Schwarz,RTP,1320.5007k08/101011,4.15.1.0</Key>
<Key name="Ch2 DeviceOptions">B4,B10,B110</Key>
<Key name="Ch2 FilterSettings">FLAT</Key>
<Key name="Ch2 HighPassFilterState">OFF</Key>
<Key name="Ch2 Impedance[Ohm]">50</Key>
<Key name="Ch2 InputCoupling">AC</Key>
<Key name="Ch2 InputPath">RF</Key>
<Key name="Ch2 MeasBandwidth[Hz]">100000000</Key>
<Key name="Ch2 NumberOfPostSamples">0</Key>
<Key name="Ch2 NumberOfPreSamples">0</Key>
<Key name="Ch2 PreampGain[dB]">0</Key>
<Key name="Ch2 PreampState">OFF</Key>
<Key name="Ch2 RefLevelOffset[dB]">0</Key>
<Key name="Ch2 RefLevel[dBm]">-15.0362</Key>
<Key name="Ch2 RefOscillatorInput">OFF</Key>
<Key name="Ch2 SelectedIqInputSource">CHAN1 CHAN3 WV</Key>
<Key name="Ch2 TrgSource">FREE RUN</Key>
<Key name="Ch2 YigPreSelectorState">OFF</Key>
```

```
<Key name="FirmwareVersion">1.80-20.5.16.0 Beta</Key></DataImportExport_OptionalData>
```

Example: userdata for I/Q recordings by R&S VSE software

```
<UserData>
      <RohdeSchwarz>
         <DataImportExport MandatoryData>
            <CenterFrequency unit="Hz">1e+09</CenterFrequency>
         </DataImportExport MandatoryData>
         <DataImportExport OptionalData>
            <Key name="Ch1 RefLevel[dBm]">11.3</Key>
            <Key name="Ch1_RefLevelOffset[dB]">15.375</Key>
            <Key name="Ch1 AttenuMech[dB]">20</Key>
            <Key name="Ch1 AttenuElecState">ON | OFF</Key>
            <Key name="Ch1 AttenuElecValue[dB]">3</Key>
            <Key name="Ch1 PreampState">ON</Key>
            <Key name="Ch1 PreampGain[dB]">15</Key>
            <Key name="Ch1 PreampGain[dB]">15</Key>
            <Key name="Ch1 Impedance[Ohm]">50</Key>
            <Key name="Ch1 InputCoupling">AC</Key>
            <Key name="Ch1 PreampGain[dB]">15</Key>
            <Key name="Ch1 PreampGain[dB]">15</Key>
            <Key name="Ch1 DeviceId">string</Key>
            <Key name="Ch1 DeviceOptions">string</Key>
            <Key name="Ch1 DeviceHwInfo">string</Key>
            <Key name="Ch1 DeviceVersions">string</Key>
            <Key name="Ch1 DeviceHwInfo">string</Key>
            <Key name="Ch1 CalibrationState">ON | OFF</Key>
            <Key name="Ch1 RefOscillatorInput">enum</Key>
            <Key name="Ch1 RefOscillatorFreq[Hz]">15</Key>
            <Key name="Ch1 InputPath">RF | AIQ | FIQ | DIQ</Key>
            <Key name="Ch1 HighPassFilterState">ON | OFF</Key>
            <Key name="Ch1_YigPreSelectorState">ON | OFF</Key>
            <Key name="Ch1 ExtMixerState">ON | OFF</Key>
            <Key name="Ch1 MeasBandwidth[Hz]">8e+06</Key>
            <Key name="Ch1 FilterSettings">FLAT | GAUSS | OFF</Key>
            <Key name="Ch1_TrgSource">enum</Key>
            <Key name="Ch1 TrgLevel[dB]">15</Key>
            <Key name="Ch1 TrgHysteresis[dB]">15</Key>
            <Key name="Ch1 TrgTpis[s]">15</Key>
            <Key name="Ch1 TrgOffset[s]">15</Key>
```

```
<Key name="Ch1_TrgSlope">Rising | Falling</Key>
<Key name="Ch1_TrgHoldoff[s]">15</Key>
<Key name="Ch1_TrgDropOut[s]">15</Key>
<Key name="Ch1_NumberOfPreSamples">300</Key>
<Key name="Ch1_NumberOfPreSamples">300</Key>
</DataImportExport_OptionalData>
</RohdeSchwarz>
</UserData>
```

Example

The following example demonstrates the XML description inside the iq-tar file. Note that this preview is not supported by all web browsers.

PowerArchiver 2012 Professional - max.iq.tar													
 File	Edit	View	Actions	Tools	Options	Help							
 Nev		pen -	Favorites	Add	Extract	- O	Encrypt	CheckOut					
E Fo	olders	•	-										
Nam	e 📥						Туре		Modified	Size	Ratio	Packed	Path
🗋 Fil	e.com	olex.1ch	float32				FLOAT32 File	1	19.02.2015 17:24	10.408	00%	10.752	
🗋 m	ax.xml						XML Docum	ent	19.02.2015 17:24	38.541	00%	38.912	
🛃 op	en_IqT	ar_xml_t	file_in_web	_browser	r.xslt		XSLT Stylesh	eet	19.02.2015 17:24	121.956	00%	122.368	
Nam Nam Fil mi gr op	olders e A e.comj ax.xml en_IqT	• III• plex.1ch ar_xml_f	float32	_browser	r.xslt		Type FLOAT32 File XML Docum XSLT Stylesh	ent eet	Modified 19.02.2015 17:24 19.02.2015 17:24 19.02.2015 17:24	Size 10.408 38.541 121.956	Ratio 00% 00% 00%	Packed 10.752 38.912 122.368	Path

Open the xml file in a web browser. If the stylesheet

<code>open_IqTar_xml_file_in_web_browser.xslt</code> is in the same directory, the web browser displays the xml file in a readable format.

Inputs and outputs

max.xml (c	of .iq.tar file)		
Description			
Saved by	VSE 1.10		
Date & Time	2014-11-24 14:34:06		
Sample rate	32 MHz		
Number of samples	3200300		
Duration of signal	100.009 ms		
Data format	complex, float32		
Data filename	File.complex.1ch.float32		
Scaling factor	1 V		
Power vs time			
Power vs time y-axis: 10 dB /div x-axis: 10 ms /div			
Spectrum			
y-axis: 10 dB /div x-axis: 5 MHz /div		ini segerte jezho si ^{la} nge	
VQ			

```
<?xml-stylesheet type="text/xsl" href="open_IqTar_xml_file_in_web_browser.xslt"?>
<RS IQ TAR FileFormat fileFormatVersion="1" xsi:noNamespaceSchemaLocation=
"http://www.rohde-schwarz.com/file/RsIqTar.xsd" xmlns:xsi=
```

"http://www.w3.org/2001/XMLSchema-instance">

- <Name>VSE_1.10a 29 Beta</Name>
- <Comment></Comment>
- <DateTime>2015-02-19T15:24:58</DateTime>
- <Samples>1301</Samples>
- <Clock unit="Hz">32000000</Clock>
- <Format>complex</Format>
- <DataType>float32</DataType>

```
<ScalingFactor unit="V">1</ScalingFactor>
  <NumberOfChannels>1</NumberOfChannels>
 <DataFilename>File.complex.1ch.float32</DataFilename>
<UserData>
   <RohdeSchwarz>
     <DataImportExport MandatoryData>
       <ChannelNames>
          <ChannelName>IQ Analyzer</ChannelName>
       </ChannelNames>
       <CenterFrequency unit="Hz">0</CenterFrequency>
     </DataImportExport_MandatoryData>
     <DataImportExport OptionalData>
       <Key name="Ch1 NumberOfPostSamples">150</Key>
       <Key name="Ch1 NumberOfPreSamples">150</Key>
      </DataImportExport OptionalData>
   </RohdeSchwarz>
  </UserData>
```

</RS_IQ_TAR_FileFormat>

Example: ScalingFactor

Data stored as int16 and a desired full scale voltage of 1 V

ScalingFactor = 1 V / maximum int16 value = 1 V / 2¹⁵ = 3.0517578125e-5 V

Scaling Factor	Numerical value	Numerical value x ScalingFac- tor
Minimum (negative) int16 value	- 2 ¹⁵ = - 32768	-1 V
Maximum (positive) int16 value	2 ¹⁵ -1= 32767	0.999969482421875 V

I/Q data binary file

The I/Q data is saved in binary format according to the format and data type specified in the XML file (see <Format> element and <DataType> element). To allow reading and writing of streamed I/Q data, all data is interleaved, i.e. complex values are interleaved pairs of I and Q values and multi-channel signals contain interleaved (complex) samples for channel 0, channel 1, channel 2 etc. If the <NumberOfChannels> element is not defined, one channel is presumed.

Example: Element order for real data (1 channel)

I[0],	//	Real	sample	0
I[1],	//	Real	sample	1
I[2],	//	Real	sample	2

Example: Element order for complex cartesian data (1 channel)

I[0], Q[0],	//	Real	and	imaginary	part	of	complex	sample	0
I[1], Q[1],	//	Real	and	imaginary	part	of	complex	sample	1

I[2], Q[2], // Real and imaginary part of complex sample 2

```
. . .
```

Example: Element order for complex polar data (1 channel)

```
Mag[0], Phi[0], // Magnitude and phase part of complex sample 0
Mag[1], Phi[1], // Magnitude and phase part of complex sample 1
Mag[2], Phi[2], // Magnitude and phase part of complex sample 2
...
```

Example: Element order for complex cartesian data (3 channels) Complex data: I[channel no][time index], Q[channel no][time index]

```
I[0][0], Q[0][0],
                            // Channel 0, Complex sample 0
                           // Channel 1, Complex sample 0
I[1][0], Q[1][0],
                            // Channel 2, Complex sample 0
I[2][0], Q[2][0],
I[0][1], Q[0][1],
                          // Channel 0, Complex sample 1
I[1][1], Q[1][1],
                           // Channel 1, Complex sample 1
I[2][1], Q[2][1],
                            // Channel 2, Complex sample 1
                           // Channel 0, Complex sample 2
I[0][2], Q[0][2],
                          // Channel 1, Complex sample 2
I[1][2], Q[1][2],
                            // Channel 2, Complex sample 2
I[2][2], Q[2][2],
. . .
```

Example: Element order for complex cartesian data (1 channel)

This example demonstrates how to store complex cartesian data in float32 format using MATLAB[®].

```
% Save vector of complex cartesian I/Q data, i.e. iqiqiq...
N = 100
iq = randn(1,N)+1j*randn(1,N)
fid = fopen('xyz.complex.float32','w');
for k=1:length(iq)
  fwrite(fid,single(real(iq(k))),'float32');
  fwrite(fid,single(imag(iq(k))),'float32');
end
fclose(fid)
```

Example: PreviewData in XML

```
<PreviewData>

<ArrayOfChannel length="1">

<Channel>

<PowerVsTime>

<Min>

<ArrayOfFloat length="256">

<float>-134</float>

<float>-142</float>
```

Triggering

```
<float>-140</float>
          </ArrayOfFloat>
        </Min>
        <Max>
         <ArrayOfFloat length="256">
           <float>-70</float>
           <float>-71</float>
            . . .
           <float>-69</float>
         </ArrayOfFloat>
        </Max>
      </PowerVsTime>
     <Spectrum>
        <Min>
         <ArrayOfFloat length="256">
           <float>-133</float>
           <float>-111</float>
            . . .
            <float>-111</float>
         </ArrayOfFloat>
        </Min>
        <Max>
         <ArrayOfFloat length="256">
           <float>-67</float>
           <float>-69</float>
            . . .
           <float>-70</float>
           <float>-69</float>
         </ArrayOfFloat>
        </Max>
     </Spectrum>
     <IQ>
        <Histogram width="64" height="64">0123456789...0</Histogram>
     </IQ>
   </Channel>
 </ArrayOfChannel>
</PreviewData>
```

3.4 Triggering

Access: "Overview" > "Trigger"

. . .

The R&S VSE-K18 provides functionality to trigger measurements.

The "Trigger" dialog box contains settings to configure triggered measurements.

The following trigger sources are supported:

• Free Run

- External
- I/Q Power
- IF Power
- RF Power
- Time

If the time trigger is used, the R&S VSE automatically sets the repetition interval to match the length of the reference file. "Auto Time Trigger" sets the trigger offset to the current trigger to sync (TTS) value.

The time trigger is not supported in the R&S VSE Amplifier measurement application.

The trigger settings are similar to those in the spectrum application. For a comprehensive description of the trigger functionality, refer to the R&S VSE user manual.

3.5 Data acquisition

Access: "Overview" > "Data Acquisition"

The "Data Acquisition" dialog box contains settings to configure the process of how the application records the signal.

Data Acquisition Sweep	
Data Acquisition]
Sample Rate	Auto Manual 32.0 MHz
Meas Bandwidth	25.6 MHz
Max Bandwidth	Auto 80 MHz
Capture Time	Auto Manual 1.0 ms
Capture Length	32001
Ref. Signal Duration	0 s
Swap I/Q	On Off
Frequency Resolution for Spectral Reso	ults
RBW Mode	Auto Manual
RBW	30.0 kHz

The remote commands required to configure the data capture are described in Chapter 5.6.7, "Configuring the data capture", on page 221.

Configuring the measurement bandwidth	88
L Automatic adjustment	88
L Manual definition	
L Maximum bandwidth	
Configuring the measurement time	
L Automatic adjustment	89
L Manual definition	
Inverting the I/Q branches	
Defining the resolution bandwidth for spectrum measurements	

Configuring the measurement bandwidth

The sample rate defined for data acquisition is the sample rate with which the analyzer samples the amplified signal.

The measurement bandwidth defines the flat, usable bandwidth of the final I/Q data.

The application allows you to adjust both values automatically or manually.

Automatic adjustment Configuring the measurement bandwidth

When you select automatic adjustment of sample rate and measurement bandwidth, the application selects a bandwidth that is appropriate for the characteristics of the reference signal and adjusts the sample rate accordingly.

For more information about the reference signal, see Chapter 3.2, "Reference signals", on page 40.

Remote command: Mode: TRACe: IQ: SRATe: AUTO on page 224

Manual definition ← Configuring the measurement bandwidth

When you define the sample rate and measurement bandwidth manually, you can select values that you are comfortable with. Because the bandwidth is a function of the sample rate (and vice versa), the application adjusts the values when you change either setting.

The following dependencies apply:

- When you change the sample rate, the application updates the bandwidth accordingly (and vice versa). It also adjusts the capture length to the new values. The capture time remains the same.
- When you change the capture time or capture length, the sample rate and bandwidth remain the same.

Note that when you upload a new input file, the Amplifier measurement application maintains the manual sample rate definition.

Remote command:

Sample Rate: TRACe: IQ: SRATe on page 224 Bandwidth: TRACe: IQ: BWIDth on page 223

Maximum bandwidth \leftarrow Configuring the measurement bandwidth

The maximum bandwidth you can use depends on your hardware configuration.

For an overview of available bandwidth extensions, refer to the datasheet.

By default, the application automatically determines the maximum bandwidth. When you select a maximum bandwidth other than "Auto", the bandwidth is restricted to that value. When you select the maximum bandwidth manually, make sure that this bandwidth is suited for the signal you are testing. Otherwise, the signal can be distorted and results are no longer valid.

If you have no bandwidth extension this setting is not available.

For more information about the maximum bandwidth, refer to the user manual of the R&S VSE I/Q Analyzer.

Remote command:

TRACe:IQ:WBANd[:STATe] on page 225
TRACe:IQ:WBANd:MBWidth on page 225

Configuring the measurement time

The measurement time (or capture time) defines the duration of a measurement in which the required number of samples is collected.

The capture length is the number of samples that are captured during the selected measurement time. The capture length is a function of the sample rate and the capture time.

Automatic adjustment Configuring the measurement time

When you select automatic adjustment of capture time, the application selects a capture time that is appropriate for the characteristics of the reference signal.

As orientation, the application shows the length of the reference signal in the corresponding field in the dialog box (\rightarrow "Ref Signal Duration").

For more information about the reference signal, see Chapter 3.2, "Reference signals", on page 40.

Remote command: Mode: [SENSe:]SWEep:TIME:AUTO on page 223 Reference signal: [SENSe:]REFSig:TIME? on page 222

Manual definition Configuring the measurement time

When you define the capture length and time manually, you can select values that you are comfortable with.

However, make sure to define a capture time that is greater than the length of the reference signal - otherwise the application is not able to analyze the signal correctly.

The following dependencies apply:

- When you change the capture time, the application updates the capture length accordingly (and vice versa). Sample rate and bandwidth remain the same.
- When you change the sample rate or bandwidth, the application updates the capture length accordingly. The capture time remains the same.

Note that the maximum capture time depends on the current measurement bandwidth.

When you upload a new input file, the Amplifier measurement application maintains the manual capture time definition.

Remote command:

Time: [SENSe:]SWEep:TIME on page 223 Capture length: [SENSe:]SWEep:LENGth on page 222

Inverting the I/Q branches

The application allows you to swap the I and Q branches of the signal.

Swapping the branches is useful, for example, when the DUT inverts the real (I) and imaginary (Q) parts of the signal and transfers the signal that way.

Note that the sideband is also inverted when you turn on this feature.

Remote command: [SENSe:]SWAPiq on page 222

Defining the resolution bandwidth for spectrum measurements

The resolution bandwidth (RBW) defines the bandwidth of the resolution filter applied to spectrum measurements (like the "Spectrum FFT" result).

The "RBW Mode" selects whether the application automatically selects a suitable resolution bandwidth based on the signal you are measuring, or if you define the resolution bandwidth manually. When you select manual definition of the RBW (for example when you want to do a measurement according to a certain telecommunications standard), you can enter the bandwidth in the "RBW" field.

The amplifier measurement application supports any bandwidth between 1 Hz and 10 MHz.

Remote command:

```
[SENSe:]BANDwidth[:RESolution]:AUTO on page 222
[SENSe:]BANDwidth[:RESolution] on page 221
```

3.6 Sweep configuration

Access: "Overview" > "Data Acquisition" > "Sweep"

The "Sweep" dialog box contains settings to configure the characteristics of a single data recording (a sweep).

Data Acquisition	Sweep						
MultiFrame Statistics Settings							
State	On	Off					
Statistics Mode	I/Q Avg	Trace Statistics					
Continuous Statisti	on On	Off					
Count	1						

The remote commands required to configure the sweep are described in Chapter 5.6.8, "Sweep configuration", on page 225.

Sweep configuration

Statistics State	. 91
Statistics Mode	91
Continuous Statistics	91
Statistics Count	91
Select Result Rna.	. 91

Statistics State

Turns the sweep statistics calculation on and off.

Remote command: [SENSe:]SWEep:STATistics[:STATe] on page 227

Statistics Mode

Sets the statistics mode.

If I/Q averaging is selected, the IQ data is averaged over several data captures after synchronization to the reference file. This leads to a significant noise reduction. Be aware that I/Q averaging is only possible for synchronized parts of the captured signal, because it only makes sense if the same samples in the I/Q data stream are averaged. Therefore, make sure that the measurement is synchronized. Otherwise, the results would be invalid.

If trace statistics is selected, multiple frames are measured to create a graphical or scalar statistics result.

Remote command: [SENSe:]SWEep:STATistics:MODE on page 227

Continuous Statistics

If continuous statistics is enabled, it does not reset the results when the average count is through. Instead, it continues to average the data. The continuous statistics setting only has an effect in continuous sweep mode.

If continuous statistics is turned off, averaging starts again from "0" after the defined statistics count is reached.

Remote command:

[SENSe:]SWEep:STATistics:CONTinuous[:STATe] on page 227

Statistics Count

Defines the number of single data captures the application uses to average the data.

Remote command: [SENSe:]SWEep:STATistics:COUNt on page 227

Select Result Rng

Sets the result range.

Remote command:

CONFigure:RESult:RANGe[:SELected] on page 227

3.7 Synchronization

Access: "Overview" > "Sync / Error Est / Comp" > "Sync and Eval Range" > "Synchronization"

The application allows you to synchronize the measured signal with the reference signal and provides various features to control synchronization.

Synchronization consists of signal estimation and compensation. After the application has detected the position of the reference signal in the capture buffer, it estimates possible errors in the measured signal (for example the sample error rate or the amplitude droop) by comparing it to the reference signal. The estimated errors can optionally be compensated for.

Sync and Eval Range	Error Est/Compensation	Equalizer			
-70 dBm -70 dBm -70 dBm -70 dBm -90 dBm 0.0 s	The second secon		Litter in the state	nation Stop	1.25 ms
Synchronization E	valuation Range				
Signal Synchronization	n		7		
Synchronization		On Off			
Stop on Synchronizati	on Fail	On Off			
Synchronization Mode	e I/Q F	hase Difference 📩			
Synchronization Confi	idence 95.0)%			
Use Full Ref Signal		On Off			
Estimation Start (rel. to	o Ref Signal Start) 350.	.0 μs			
Estimation Stop (rel. to	o Ref Signal Start) 899	.0 μs			

The remote commands required to configure signal synchronization are described in Chapter 5.6.9, "Synchronizing measurement data", on page 228.

Turning synchronization of reference and measured signal on and off	92
Selecting the synchronization method	. 93
Defining a synchronization confidence level	. 93
2nd Stage Synchronization	. 94
Defining the estimation range	. 94

Turning synchronization of reference and measured signal on and off

During measurements, the application tries to synchronize the measured signal with the reference signal. When no significant correlation between the measured and reference signal can be found, synchronization fails.

However, you can turn off synchronization if you would like to run unsynchronized measurements. Note however, that the calculation of some results in the result summary requires synchronization. These results cannot be calculated when you turn off synchronization.

When you turn off synchronization, the results are always calculated over the complete capture buffer. When synchronization is on, the results are always calculated over the synchronized data range of the capture buffer. Therefore, the result values can be different for unsynchronized measurements, even if you measure the same signal (the result is still valid and correct, though).

Failed synchronization

When you turn on "Stop on Sync Failed", the application automatically aborts the measurement, in case synchronization fails.

Remote command:

CONFigure:SYNC:STAT on page 231 CONFigure:SYNC:SOFail on page 230

Selecting the synchronization method

The application allows you to select the method with which the application synchronizes the signals with the "Synchronization Mode" parameter. The following methods are available.

I/Q Direct

The I/Q data for the reference signal is directly correlated with the reference and measured signal. The performance of this method degrades in the presence of a frequency offset between the measured and reference signals.

• I/Q Phase Difference

Correlation on the phase differentiated I/Q data. This method retains phase change information and can handle a frequency offset , but is more sensitive to noise than the "I/Q Direct" method.

I/Q Magnitude

Correlation on the magnitude of the I/Q data with no regard for phase information. This method can handle a frequency offset and is less sensitive to noise that the "I/Q Phase Difference" method, but is only useful with amplitude modulated signals.

Trigger

It is assumed that the capture is triggered at the start of the reference waveform. Only minimal correlation is performed to account for trigger jitter. This method is the fastest synchronization method.

Remote command: CONFigure:SYNC:DOMain on page 230

Defining a synchronization confidence level

The synchronization confidence level ("Sync Confidence") is a percentage that describes how similar (or correlated) reference and measured signal need to be in order for synchronization to be successful.

A value of 0 % means that synchronization is always successful even if the signals are not correlated at all. However, results that rely on a good synchronization (like the EVM) do contain reasonable values in that case. A value of 100 % means that the signals are identical (in that they are linearly dependent).

The cross-correlation is calculated over all samples in the capture buffer (or the estimation range, if you have defined one).

When the cross-correlation coefficient falls below the confidence level you have defined, synchronization is no longer successful.

Remote command: CONFigure:SYNC:CONFidence on page 229

2nd Stage Synchronization

The second stage synchronization activates an additional synchronization algorithm (operating in frequency domain).

The activation is recommended especially for e.g. two carrier signals with a large spacing between the carriers, when the standard synchronization delivers unstable results.

As it is an additional synchronization step, it increases the measurement time.

Remote command:

CONFigure:SYNC:SECond:STAT on page 230

Defining the estimation range

The estimation range has several effects on the synchronization process.

- It defines which part of the reference signal is used for cross-correlation within the capture buffer in order to align the reference and measured signals.
- It defines which part of the reference signal is used for error estimation.

By default, the application estimates over the complete reference signal. However, you can also estimate over a given range in the capture buffer only. In that case, turn off the "Use Full Ref Signal" feature. When you are not using the full reference signal, the "Eval Start" and "Eval Stop" fields become available. The allowed values are offsets relative to the beginning of the capture buffer (0 s). The highest offset possible depends on the size of the capture buffer.

Defining an estimation range is useful in the following cases.

- If you want to limit the estimation to a specific part of the signal, for example if the signal contains a preamble or midamble.
- If you want to limit the estimation to the ON part of a TDD signal.
- If you want to increase the measurement speed for relatively long signals, for example an LTE signal.

On the downside, limiting the estimation range leads to a higher empirical variance of the results.

In the preview pane displayed in the dialog box, the currently defined estimation range is represented by two red vertical lines.

Tip: You can also use the touchscreen to move the lines to a new position in the preview pane. However, this way is not as accurate as entering a number into the input field.

Remote command:

CONFigure:ESTimation:FULL on page 228 CONFigure:ESTimation:STARt on page 229 CONFigure:ESTimation:STOP on page 229

3.8 Evaluation range

Access: "Overview" > "Sync / Error Est / Comp" > "Sync and Eval Range" > "Eval Range"

The application allows you to define the time frame in the reference signal used to evaluate and calculate the measurement results.

Sync and Eval Range Error Est/Con	mpensation Equalizer	
-10, CBm the state store of the strength of the store of	n de se en la Norez en Balanan (de seu de San se Alle, à de se seu a de Universita en de San se de San se de La	المراور وحوارياته وقل
-30, dBm	. Also do a faire de activa de la composition de la dificio de la composition	16 Sectoral and the
50 dBm Fire Start		I Stop
-70 dBm Eval Start	Estimation Stop	
0.0 s		1.25 ms
Synchronization Evaluation Range	де	
Evaluation Range		
Use Full Ref Signal	On Off	
Eval Start (rel. to Ref Signal Start)	0 s	
Eval Stop (rel. to Ref Signal Start)	1.0 ms	

The remote commands required to configure signal evaluation are described in Chapter 5.6.10, "Defining the evaluation range", on page 232.

Defining the evaluation range

The evaluation range defines the data range in the capture buffer over which the application calculates the measurement results.

By default, the application calculates the results over the complete capture buffer. If synchronization has been successful, the application calculates the results over the capture buffer range in which the reference signal has been found. If you have turned off synchronization or if it has not been successful, the complete capture buffer is used to calculate the remaining results.

Example:

The capture buffer is 30 ms long, the reference signal starts at 9 ms and is 10 ms long. When synchronization is successful, the evaluation range starts at 9 ms and ends at 19 ms. If synchronization has been turned off, the evaluation range is the full capture buffer.

However, you can also select a particular data range within the reference signal. In that case, turn off the "Use Full Ref Signal" feature. When it is off, the "Eval Start" and "Eval Stop" fields become available. The allowed values are offsets relative to the beginning of the reference signal (0 s). The highest offset possible depends on the length of the reference signal.

Example:

The situation is as described above (30 ms capture buffer, 10 ms reference signal). Let's say you want to evaluate milliseconds 2 to 6 of the reference signal. In that case, you would have to define a start offset of 11 ms (the reference signal starts at 9 ms, plus the first 2 ms you are not interested in = 11 ms) and a stop offset of 15 ms (9 ms + 6 ms).

In the preview pane displayed in the dialog box, the currently defined evaluation range is represented by two blue vertical lines.

Tip: You can also use the touchscreen to move the lines to a new position in the preview pane. However, this way is not as accurate as entering a number into the input field.

Remote command:

CONFigure:EVALuation:FULL on page 232 CONFigure:EVALuation:RANGe on page 232 CONFigure:EVALuation:STARt on page 233 CONFigure:EVALuation:STOP on page 233

3.9 Signal error estimation and compensation

Access: "Overview" > "Sync / Error Est / Comp" > "Error Est / Compensation"

The application allows you to estimate possible undesired effects in the signal, and, if there are any, also compensate these effects.

Sync and Eval Range	Error Est/Compensation	Equalizer					
Signal Error Estimation/Compensation							
		Estim	ation	Compensation			
I/Q Imbalance		On	Off	On	Off		
I/Q Offset		On	Off	On	Off		
Frequency Error		On	Off	On	Off		
Sample Rate Error		On	Off	On	Off		
Amplitude Droop		On	Off	On	Off		

The remote commands required to configure error compensation and equalization are described in Chapter 5.6.11, "Estimating and compensating signal errors", on page 233.

Estimation and compensation

When you turn on error estimation only, the results are not compensated for the corresponding errors.

When you turn on error compensation, the displayed results are also corrected by the estimated errors. Note that in that case, the signal might look better than it actually is.

Compensation without estimation is not possible.

Generally, it is recommended to switch off the estimation of a certain parameter if it is not existent. E.g., if generator and analyzer are frequency locked, it is recommended to switch off the frequency error estimation. Furthermore sample rate error estimation can be switched off if the frequency locked generator is a vector signal generator, i.e. includes the DAC.

You can estimate and compensate the following effects:

I/Q Imbalance	97
I/Q Offset	97
Frequency Error	
Sample Error Rate	
Amplitude Droop	

I/Q Imbalance

Combined effect of amplitude and phase error.

Remote command:

CONFigure:SIGNal:ERRor:ESTimation:IQIMbalance[:STATe] on page 236 CONFigure:SIGNal:ERRor:COMPensation:IQIMbalance[:STATe] on page 234

I/Q Offset

Shift of the constellation points in a particular direction.

Remote command:

CONFigure:SIGNal:ERRor:ESTimation:IQOFfset[:STATe] on page 236 CONFigure:SIGNal:ERRor:COMPensation:IQOFfset[:STATe] on page 235

Frequency Error

Difference between measured and reference center frequency.

Remote command:

CONFigure:SIGNal:ERRor:ESTimation:FERRor[:STATe] on page 235 CONFigure:SIGNal:ERRor:COMPensation:FERRor[:STATe] on page 234

Sample Error Rate

Difference between the sample rate of the reference signal and the measured signal.

Remote command:

CONFigure:SIGNal:ERRor:ESTimation:SRATe[:STATe] on page 236 CONFigure:SIGNal:ERRor:COMPensation:SRATe[:STATe] on page 235

Amplitude Droop

Decrease of the signal power over time in the transmitter.

Remote command:

CONFigure:SIGNal:ERRor:ESTimation:ADRoop[:STATe] on page 235 CONFigure:SIGNal:ERRor:COMPensation:ADRoop[:STATe] on page 234

3.10 Equalizer

In addition, the amplifier application provides equalizer functionality. The equalizer corrects distortions in the frequency characteristics during the transmission of the signal. It can thus help to faithfully reproduce the input signal at the amplifier output.

Sync and Eval Range	Error Est/Compensation	Equalizer
Equalizer		
Equalizer Filter Length (Samples) for Training 100	•
Train Equ	alizer Filter on Current I/Q Dat	a
Load Equaliz	er Filter Save	Equalizer
Current Equalizer Filte	r	
Equalizer Filter Source	s < no File selected	>
Date Modified:		
Equalizer Filter Length	n:	
Apply Equalizer Filter	On	Off

Using the equalizer

Using the equalizer requires a description of the equalizer filter. You can either train (and save) such a filter automatically with the R&S VSE, or use one that you already have.

Training (or creating) the equalizer filter is a process in which the R&S VSE compares the frequency response of the input and output signal and equalizes potential distortion. The goal is to match the frequency response of the output signal and the input signal. The R&S VSE is able to train the filter based on all samples in the evaluation range.

The "Equalizer Filter Length For Training" property defines the number of FIR filter coefficients to be calculated. A larger number of samples generally yields better results, but takes longer to calculate. After you have defined the filter length (coefficients), you can start the training sequence with the "Train Equalizer Filter on Current I/Q Data" feature. To apply the filter, turn on the equalizer with the "Equalizer State" toggle.

Note that the reference and measured signal need to be synchronized for a successful filter training. Make sure to turn on signal synchronization before you train a filter.

When the filter training is done, you can save the filter in a csv or a fres file (\rightarrow "Save Equalizer").

For more information about the fres file format, refer to the R&S VSE user manual.

If you want to use an equalizer filter that you already have from a previous measurement, you can restore that filter (\rightarrow "Load Equalizer Filter") and apply it without a training sequence.

The dialog box also shows the information about the filter file that is currently in use. This information includes the file name, the date it was modified last and the length of the filter (in samples).

Note: Any equalizer filter is only valid for the sample rate it has been trained for. If you change the sample rate when an equalizer filter is active, the R&S VSE automatically turns off the equalizer filter. If you still want to use an equalizer filter with the new sample rate, you have to train and apply the equalizer filter again.

Note: An I/Q data export always exports the unequalized (raw) data. If you want to export the equalized data, you can do so with the following SCPI command.

TRACe:IQ:EQUalized? on page 355

Remote command:

Filter length: CONFigure:EQUalizer:FILTer:LENGth on page 237
Start training: CONFigure:EQUalizer:TRAin on page 238
Store filter: MMEMory:STORe<n>:EQUalizer:FILTer:COEFficient on page 239
File format: CONFigure:EQUalizer:FILTer:FILE:FORMat on page 237
Restore filter: MMEMory:LOAD:EQUalizer:FILTer:COEFficient on page 238
Equalizer state: CONFigure:EQUalizer[:STATe] on page 238
Manual filter definition: CONFigure:EQUalizer:FPARameters on page 237

3.11 System models

Access: "Overview" > "Measurement" > "Modeling"

A polynomial model describes the characteristics of the DUT based on the input signal and the output signal of the amplifier.

System models

Modeli	ing	DPD	ACL	R Settings	ettings Power Settings		Parameter Sweep	
Mode	ling			Or	ı		Off	
Mode	ling Se	quence		AM/AN	1 first	AM/	PM first	
AM/AM	M Orde	er (0 to 18	3)	1-7				
AM/PM	/ Orde	r (0 to 18	9	0-7				
Mode	ling Le	vel Rang	e	50.0 dB				
No of	Model	ing Poin	ts	100				
Mode	ling Sc	ale		Logarit	thmic	Li	near	

The remote commands required to configure system models are described in Chapter 5.6.12, "Applying a system model", on page 239.

Turning system modeling on and off	100
Selecting the degree of the polynomial	
Defining the modeling range	101
Selecting the modeling scale	102

Turning system modeling on and off

You can use the system modeling functionality to calculate a mathematical model that describes the properties of the DUT.

Using a model is useful to observe and estimate the behavior of the amplifier and, if necessary, adjust the DUT behavior. The application supports memory-free polynomial models to the 18th degree.

The following diagrams contain traces that show the model. These traces are calculated by using the model function on the reference signal.

- "AM/AM"
- "AM/PM"

Note that the model traces are also the basis for the DPD functionality available in the R&S VSE-K18.

When the characteristics of the modeled signal match those of the measured signal, the model describes the DUT behavior well. If not, you can try to get a better result by adjusting the model properties.

When you turn on modeling, the application shows an additional trace in the graphical result displays. This trace corresponds to the signal characteristics after the model has been applied to the reference signal.

Selecting the modeling sequence

The modeling sequence selects the sequence in which the models are calculated. The application then either calculates the "AM/AM" model before calculating the "AM/PM" model (default), or vice versa.

Remote command:

```
CONFigure:MODeling[:STATe] on page 241
CONFigure:MODeling:SEQuence on page 241
```

Selecting the degree of the polynomial

In addition to the type of curve, you can also select the order of the polynomial model.

The order of the model defines the degree, complexity and number of terms in the polynomial model. In general, a polynomial of the Nth degree looks like this:

```
y = a_0 + a_1 x + a_2 x^2 + \dots + a_N x^N
```

The degree of the model is defined by N (as an index or exponent). The higher the order, the more complex the calculation and the longer it takes to calculate the model. Higher models do not necessarily lead to better fitting model curves.

Note that the nonlinear effects consume an additional bandwidth proportional to 2 times the number of odd factors in the polynomial, excluding the linear one.

Example:

If the signal bandwidth is 1 MHz and the highest degree is 5, the bandwidth of the resulting signal is increased by 2 times 2 (because there are the variables a_3 and a_5) times 1 MHz which are 4 MHz. This leads to a total signal bandwidth of 5 MHz (1 MHz + 4 MHz). The configured recording bandwidth must be at least 5 MHz to record all nonlinear effects generated by the DUT.

Tip: To select a specific subset of polynomial degrees you want to apply, you can either:

- Define a range of degrees (e.g. "0 5", in that case the application applies all degrees in that range).
- Define a set of individual degrees only (e.g. "1;3;5;7", in that case the application applies those degrees only). Note that the "." key on the front panel draws the ";" character.
- Define a combination of the methods mentioned above (e.g. "1;3;5-7")

Remote command:

```
"AM/AM": CONFigure:MODeling:AMAM:ORDer on page 239
"AM/PM": CONFigure:MODeling:AMPM:ORDer on page 240
```

Defining the modeling range

The modeling range defines the part of the signal that the model is applied to.

When you limit the level range that the model is applied to, only samples with levels between peak level and "peak level minus modeling level range value" are used during the model calculation. Note that the modeling range is also the range the DPD is applied to.

You can also define a smaller or larger modeling level range. Make sure, however, that the range is large enough not to distort the model.

In addition, you can define the number of points on the curve that the application uses to calculate the model. The selected points are spaced equidistant on a logarithmic scale (an equidistant spacing on a linear scale is also possible if you prefer that). Using fewer modeling points further speeds up measurement times (but can reduce the quality of the model if set too low).

Remote command:

Range: CONFigure:MODeling:LRANge on page 240 Points: CONFigure:MODeling:NPOints on page 240

Selecting the modeling scale

The input power range is split into several equally spaced subranges (= modeling points) for the calculation of the amplifier model.

With the "Modeling Scale", you can select whether the split is done on a logarithmic or linear basis.

Remote command: CONFigure:MODeling:SCALe on page 241

3.12 Digital predistortion

Access: "Overview" > "Measurement" > "DPD"

Digital predistortion (DPD) is a method to improve the linearity of an RF power amplifier. Basically, DPD is a set of correction values that is added to the input signal to compensate the non-linearities that occur in the amplifier. The output signal measured by the R&S VSE then shows the corrected amplifier characteristics.

You can compensate non-linearities with the functionality of the amplifier application. The application provides two compensation methods: polynomial DPD and direct DPD.

Note that you can only use one of the two DPD types at any time. When you turn on the polynomial DPD, the R&S VSE automatically turns off the direct DPD and vice versa.

Using the DPD functionality requires a connection to a signal generator. For more information about configuring generators, see Chapter 3.3.6, "Controlling a signal generator", on page 67.

Note:

When you create a .wv waveform file using digital predistortion, it only applies to the specific generator level and generator attenuation that were set during creation. The values used during creation can be seen in the .wv file header comment, for example: "{COMMENT: Created by Rohde & Schwarz FS-K18 Amplifier Measurement application. Signal generated for SMx RMS level: -6.8 dBm and with SMx attenuation 0 dB.}". Create a new waveform file if you have changed the generator level or generator attenuation.

Remote command:

CONFigure:DDPD[:STATe] on page 246

•	Polynomial DPD	103
•	Direct DPD (R&S VSE-K18D)	. 106
•	Memory polynomial DPD (R&S VSE-K18M)	. 110
•	Hammerstein model (R&S VSE-K18M)	.112

3.12.1 Polynomial DPD

For polynomial DPD, the application calculates the correction values based on a polynomial function, whose characteristics you can define with the settings available for the system models. The polynomial DPD approach used by the R&S VSE compensates for "AM/AM" (amplitude-to-amplitude) distortion and "AM/PM" (amplitude-to-phase) distortion.

When you apply the DPD, the correction values are applied to the input signal to improve the linearity of the amplifier.

Modeling	DPD	ACLR Settings	Power Settings	Parameter Sweep		
Polynomial DPD Direct DPD	DI UI SH DI St	On PD Method pdate R&S SMW-K54 naping PD Power/Linearity Tr PD File Name On Ger core Predistorted War	Use Gener 1 DPD adeoff herator veform File	Off rator DPD Option K541 Update From Table 100.0 % DpdTable Save as		To Update R&S SMW-K541 DPD: 1) AM/AM and AM/PM DPD states must be off 2) A sweep with all current settings must be performed 3) Press Update
		PD Sequence M/AM M/PM		AM First PM First On Off On Off	st	

The remote commands required to configure the polynomial DPD are described in Chapter 5.6.13, "Applying digital predistortion", on page 242.

Selecting the DPD method	.103
Selecting the DPD shaping method	. 104
Polynomial DPD Power / Linearity Tradeoff	. 105
Selecting the order of model calculation	. 105

Selecting the DPD method

The amplifier application provides a couple of DPD calculation methods.

• "Use Generator DPD Option K541" The signal generator corrects the input signal in real time. This method requires a Rohde & Schwarz signal generator equipped with option R&S SMx-K541.

The source of the predistortion values is either a table or a polynomial function. After a successful measurement, you can apply the predistortion values that were calculated by the R&S VSE with the "Update" button. (The button is only available when data has been captured on the R&S VSE and synchronization was successful).

Note that you have to turn on the DPD model in order to make the DPD work. As long as you use the same amplifier, the polynomial DPD calculated with this method is valid for all signals that use a similar bandwidth and frequency as the signal it was calculated for.

"Generate Pre-Distorted Waveform File"

The R&S VSE applies the correction values taken from the table or polynomial function to each measured sample and generates a waveform file that contains the corrected input signal. For TDD and FDD signals, we recommend that you use the full reference signal to generate the DPD.

You can start the DPD calculation and transfer the resulting waveform file to the connected generator with the "Generate and Load" button. Successful calculation and transfer are indicated by a green LED. Note that you have to turn on the DPD model in order to make the DPD work.

Note:

When you use this method, the predistortion information only applies to the currently selected reference signal and generator level. When you change the reference signal or generator level, you have to create a file that applies to the new reference signal.

You can also save the predistorted waveform into a waveform file with the "Store Pre-Distorted Waveform File" feature for later reference.

Remote command:

•

CONFigure:DPD:METHod on page 250

Selecting the DPD shaping method

The application provides several ways for DPD calculation (or shaping).

"From Table" Shapes the DPD function based on a table that con

Shapes the DPD function based on a table that contains the correction values required to predistort the signal.

The calculation of the table is based on the "AM/AM" and "AM/PM" polynomial models.

For more information about the contents and usage of the shaping table, refer to the documentation of the R&S SMW-K541.

You can define a file name for the DPD table in the corresponding field.

- "From Polynomial"
 - Shapes the DPD function based on a correction polynomial that is calculated out of the model polynomial.

Compared to DPD based on a shaping table, this method does not transfer a list with correction values. Instead, the application transfers the polynomial coefficients of the correction polynomial.

For more information, see Chapter 3.11, "System models", on page 99.

You can update the DPD shaping on the signal generator comfortably with the "Update" button.

Remote command:

Mode: CONFigure:DPD:SHAPing:MODE on page 251 Table name: CONFigure:DPD:FNAMe on page 250

Polynomial DPD Power / Linearity Tradeoff

The "DPD Power / Linearity Tradeoff" describes the effects of the DPD on the amplifier characteristics.

When you define a tradeoff of 0 %, the DPD aims for the best linearity (green line in the illustration below). When you increase the tradeoff value, the DPD aims for an optimization of the output power at the expense of linearity. In the ideal case (red line), the DPD affects the amplifier characteristics in a way that the best output power is achieved.

Remote command: CONFigure:DPD:TRADeoff on page 252

Selecting the order of model calculation

The application allows you to compensate for "AM/AM" distortion, "AM/PM" distortion or both simultaneously. You can turn correction of the distortion models on and off in the corresponding fields.

If you want to predistort both the "AM/AM" distortion and the "AM/PM" distortion simultaneously, you can select the order in which the curves are calculated and applied to the I/Q signal on the R&S SMW.

- "AM/AM" First Calculates the "AM/AM" first, then calculates the "AM/PM" based on the signal that has already been corrected by its "AM/AM" distortions.
- "AM/PM" First

Calculates the "AM/PM" first, then calculates the "AM/AM" based on the signal that has already been corrected by its "AM/PM" distortions.

Note: the DPD sequence is displayed by the diagram that is part of the dialog box.

Remote command:

"AM/AM" state: CONFigure:DPD:AMAM[:STATe] on page 248 "AM/PM" state: CONFigure:DPD:AMPM[:STATe] on page 248 Both: CONFigure:DPD:AMXM[:STATe] on page 249 Calculation order: CONFigure:DPD:SEQuence on page 251

3.12.2 Direct DPD (R&S VSE-K18D)

The direct DPD is an iterative process in which the correction values are determined for each sample of the input signal. Compared to the polynomial DPD, the direct DPD is not based on a model. It rather calculates the correction values for each sample directly.

Determining the DPD directly is based on a sequence of individual measurements (iterations). When one iteration is done, the R&S VSE applies the correction values, measures the improved input signal again, applies the correction values etc. This process goes on until the number of iterations that you have defined is done. Usually, the predistortion gets better with an increasing number of iterations. On the other hand, increasing the number of iterations also increases the measurement time.

Note that if synchronization is not possible during direct DPD, R&S VSE-K18 continues with a new measurement (including capture) until synchronization was successful. Reducing the synchronization confidence level can help in that case.

The result of the direct DPD is an I/Q file that contains a predistorted waveform. When you save the I/Q file, you can later play it back on a signal generator.

For TDD and FDD signals, we recommend that you use the full reference signal to generate the DPD.

Further improvement of predistortion

In addition to increasing the number of iterations, it is recommended to apply signal averaging during each iteration. Averaging helps to remove noise from the signal, which in turn improves the quality of the predistortion values.

Without averaging, each iteration consists of a single measurement. When you apply averaging, the number of measurements during each iteration increases, depending on the number of averages you have defined.

The advantage of the direct DPD compared to the polynomial DPD is, that it takes memory effects into account. This, and the fact that it is not based on a model, but corrects each sample individually, makes the direct DPD the superior method to predistort the input signal and determine the ideal DPD effect for your DUT. Note however, that the correction values that have been determined are only applicable to the signal and amplifier you have used. If the signal characteristics change in any way, you have to predistort the signal again.

The direct DPD is especially useful for the following test cases:

- Determining the best performance of a DUT.
- Removing external effects from the measurement results, for example a preamplifier that should not be considered in the final measurement results.

Continuous statistics during direct DPD calculation

Continuous statistics is automatically disabled during the direct DPD calculation.

Generator control during direct DPD calculation

When direct DPD is activated, the generator is prevented from changing its attenuator setting automatically, i.e. it is being set into mode "Fixed" if it was in "Auto" mode so far. The attenuator mode is switched back to "Auto" when direct DPD is turned off. If the generator was in "Fixed" or "Manual" mode, the mode is not changed.

Also, the I/Q modulator of the signal generator is set to high quality table mode.

Modeling	DPD	ACLR Settings	Power S	ettings	Parameter Sweep		
Polynomial DPD		On			Off		
Direct	Di	irect DPD		Start Dire	ct DPD Sequence		
	lte	Iterations		10			
	D	DPD Power/Linearity Tradeoff			100.0 %		
	G	Gain Expansion					
	D	DPD File Name On Generator		AmpToolsDirDpd.wv			
	St	Store Predistorted Waveform File		Save as			
	A	oply Direct Dpd		On	Off		

The remote commands required to configure the direct DPD are described in Chapter 5.6.13, "Applying digital predistortion", on page 242.

Automated direct DPD sequence	107
Manual direct DPD sequence	108
Direct DPD Power / Linearity Tradeoff	109

Automated direct DPD sequence

The direct DPD method requires one or more measurements (or iterations) to determine the correction values.

When you select the "Start Direct DPD Sequence" button, the R&S VSE initiates a sequence of measurements during which the DPD is calculated. The number of measurements performed during the sequence depends on the number of "Iterations" you have defined. It is also recommended to average each iteration for further improvement of the quality of the input signal. The "Gain Expansion" defines the increase of input power relative to the peak power value of the reference signal.

You can follow the process of the DPD sequence in the channel bar. The "DPD Count" label shows the current iteration and the complete number of iterations of the DPD sequence. If you are using averaging, the "Count" label shows the process of the current iteration. The first number is the current measurement, the second number the total number of measurements.

When the DPD sequence is done, the R&S VSE stores the predistorted I/Q signal in a waveform file and transfers it to the signal generator. You can change the name of the waveform file in the "DPD File Name on Generator" property. The "#" in the file name will be replaced by the iteration number. The waveform file is transferred automatically to the generator. It is loaded into the ARB when you turn on the "Apply Direct DPD" property. (Note that when you turn off the direct DPD again, the generator restores the waveform file that was previously used.)

"Apply wrap-around smoothing on DPD waveform" smoothes start- and tail-samples down to "0" in order to avoid phase discontinuities when the file is cyclically played from a signal source.

You can also save the waveform file, for example if you want to use it again later, with the "Store Predistorted Waveform File" property.

Note that you can stop a DPD sequence anytime through the dialog box shown while the DPD sequence is running.

- "Finish": Stops the DPD sequence and keeps the predistorted I/Q data that have already been calculated.
- "Abort": Stops the DPD sequence and discards the predistorted I/Q data that have already been calculated.

Remote command:

Iterations: CONFigure:DDPD:COUNt on page 244
Start sequence: CONFigure:DDPD:STARt on page 246
Gain expansion: CONFigure:DDPD:GEXPansion on page 245
File name: CONFigure:DDPD:FNAMe on page 245
Save DPD: MMEMory:STORe<n>:DDPD on page 259
Apply DPD: CONFigure:DDPD:APPLy[:STATe] on page 243
Wrap-around smoothing: CONFigure:DDPD:APPLy:WRAP[:STATe] on page 244
Query I/Q values: TRACe:IQ:DDPD[:DATA]? on page 281

Manual direct DPD sequence

The direct DPD method requires one or more measurements (or iterations) to determine the correction values. The manual direct DPD sequence described here can be used, for example, to perform measurements on RF simulations and Digital2RF devices like fully integrated frontends containing an amplifier. When generator control is off, manual direct DPD mode is activated automatically.

When you select the "Start Direct DPD Sequence" button, the R&S VSE runs the first iteration to calculate DPD.

The number of measurements performed during the sequence depends on the number of "Iterations" you have defined. It is also recommended to average each iteration for further improvement of the quality of the input signal. The "Gain Expansion" defines the increase of input power relative to the peak power value of the reference signal.

While the calculation is running, you can "Abort" the calculation. This stops the DPD sequence and discards the predistorted I/Q data that have already been calculated.
When the calculation is finished, a path to a .wv file with the calculated DPD values for the current iteration is displayed. Upload this file to the signal source and set the level on the source to the value saved in the RMSLevel.txt in the same location.

After you have uploaded the waveform file and set the level on the signal source, press "Continue" to run another iteration based on the new waveform file. A new .wv file is created with each iteration and another level value is added to the RMSLevel.txt document.

The process ends automatically when you have reached the defined number of iterations. If you want to end the process earlier, select "Finish" to end the DPD sequence.

You can also follow the process of the DPD sequence in the channel bar. The "DPD Count" label shows the current iteration and the complete number of iterations of the DPD sequence. If you are using averaging, the "Count" label shows the process of the current iteration. The first number is the current measurement, the second number the total number of measurements.

"Apply wrap-around smoothing on DPD waveform" smoothes start- and tail-samples down to "0" in order to avoid phase discontinuities when the file is cyclically played from a signal source.

Remote command:

Iterations: CONFigure:DDPD:COUNt on page 244
Query finished iterations: CONFigure:DDPD:COUNt:CURRent? on page 244
Start sequence: CONFigure:DDPD:STARt on page 246
Gain expansion: CONFigure:DDPD:GEXPansion on page 245
Wrap-around smoothing: CONFigure:DDPD:APPLy:WRAP[:STATe] on page 244
Continue direct DPD: CONFigure:DDPD:CONTinue on page 244
Query RMS power: CONFigure:MDPD:RMS[:CURRent]? on page 256
Query RMS power (online mode): CONFigure:DDPD:RMS[:CURRent]? on page 246
Query I/Q values: TRACe:IQ:DDPD[:DATA]? on page 281
Query file name and path: FETCh:DDPD:WAVeform:PATH? on page 257

Direct DPD Power / Linearity Tradeoff

The "DPD Power / Linearity Tradeoff" describes the effects of the DPD on the amplifier characteristics.

When you define a tradeoff of 0 %, the DPD aims for the best linearity (green line in the illustration below). When you increase the tradeoff value, the DPD aims for an optimization of the output power at the expense of linearity. In the 100 % case, output power is maximized, whereas linearity is reduced compared to all other cases. The blue line shows the default tradeoff value of 50 %.

Digital predistortion

Remote command: CONFigure:DDPD:TRADeoff on page 247

3.12.3 Memory polynomial DPD (R&S VSE-K18M)

The R&S VSE-K18M application is an extension to the R&S VSE-K18D Direct DPD application. It is only available after a valid automated or manual Direct DPD sequence is run. In R&S VSE-K18M the application derives a memory polynomial equation that transfers the reference signal (ideal waveform) into the pre-distorted waveform (K18D waveform).

$$\tilde{P}(nT) = \sum_{p=1}^{P} \sum_{m=0}^{M} k_{p,m} A(nT - \tau_m) |A(nT - \tau_m)|^{p-1}$$

A is the reference signal, scaled to Volt. The coefficients $k_{p,m}$ are shown in the Memory DPD coefficients display, or directly exported into a csv file using the export coefficients function. You can also apply the coefficients to the reference signal automatically and upload the resulting waveform to the generator using the export waveform function.

The results are visible in the Memory DPD Coefficients result display.

For an example on how to apply the coefficients to the reference signal, refer to an exemplary Matlab implementation shown in Chapter 5.11, "Programming example R&S VSE-K18M", on page 358.

Digital predistortion

Mea	surement Settings				X
	Modeling DPD	ACLR Settings Po	ower Settings	Parameter Sweep	>
	Polynomial DPD	On		Off	Memory Polynomial DPD is available only after a valid Direct DPD sequence is run
		Iteration Step	10		
	Direct DPD	Polynomial Order (1-20)	1-5		
	_	Memory Order (0-20)	0-5		
Amplifier	Memory Polynomial DPD	Арріу То	Model AmpTools.wv	Export Coefficients	
	Hammerstein Model	DPD Signal (Waveform)	Export Mem Poly	Waveform Direct DPD	

The remote commands required to configure the memory polynomial DPD are described in Chapter 5.6.13, "Applying digital predistortion", on page 242.

Running a Memory Polynomial DPD sequence......111

Running a Memory Polynomial DPD sequence

The memory polynomial DPD method creates an equation with a memory polynomial, where the polynomial order and memory order can be specified on the user interface.

Per default, the "Polynomial Order" is 1-5, i.e. all orders from 1 to 5. If not all orders shall be taken into account, the same notation as in the modelling dialog may be used, e.g. 1-3;5 includes 1, 2, 3, and 5.

The "Memory Order" is configurable in the same way and describes the number of filter taps to be used per filter. It uses zero-based indexing, as it describes the "delays", so "0" corresponds to "no filter".

Keep in mind that the computational effort for the model increases with memory order, polynomial order, and length of the waveform (in samples).

Also, a specific "Iteration Step" to be used for the modeling can be selected. Per default, this is the last iteration, but any other step can be selected as well. The DDPD result window shows ACLR and / or EVM results over iterations and helps selecting the right iteration step.

After the parameters for "Polynomial Order", "Memory Order" and "Iteration Step" have been defined, selecting "Model" starts the fitting of the memory polynomial and calculates the coefficients.

Once the modeling is complete, the coefficients are visible in the Memory DPD Coefficients result display. You can either use "Export Waveform" to export the waveform with the model applied to the generator, or select "Export Coefficients" to export the coefficients to a file. "Export Waveform" and "Export Coefficients" is only available after a "Model" has been derived.

The model is applied to the file specified under "Apply to". The default value is the current reference file - however, the model may be applied to any waveform file. It is recommended to only apply the model to signals that are similar to the reference signal used for direct DPD, especially with regard to bandwidth and crest factor. "Export Waveform" with generator control off will open a "Save to" dialog allowing export of the waveform with the memory polynomial model applied.

With the memory-polynomial waveform transferred to the generator using "Export Waveform", you can switch between the "Memory Polynomial" and the "Direct DPD" waveform to compare the pre-distortion results. Selection of DPD signal (on the signal generator) is only available after "Export Waveform" in generator control mode.

Remote command:

State: CONFigure:MDPD[:STATe] on page 255
Iteration Step: CONFigure:MDPD:ITERation on page 255
Polynomial Order: CONFigure:MDPD:ORDer:POLYnomial on page 256
Memory Order: CONFigure:MDPD:ORDer:MEMory on page 256
Apply To: CONFigure:MDPD:APPLy:MODel on page 255
Model: CALCulate:MDPD:MODel on page 256
Export Waveform (only available when generator control is OFF): MMEMory:STORe:
MDPD:WAVeform on page 260
Export Coefficients: MMEMory:STORe:MDPD:COEFficient on page 259
Waveform Type: CONFigure:MDPD:WAVeform:SELect on page 257
Send Waveform to Generator: CONFigure:MDPD:WAVeform:UPDate on page 257

3.12.4 Hammerstein model (R&S VSE-K18M)

The Hammerstein model is a DPD approach that is, like the Memory Polynomial Model, available in R&S VSE-K18M. Both are based on the results of the R&S VSE-K18D Direct DPD and therefore require a valid Direct DPD result.

As the Hammerstein model is a real-time approach, i.e. the pre-distortion is applied in real time on the signal generator as it plays the undistorted signal, the signal generator must be equipped with options R&S SMx-K541 and K544. The Hammerstein model consists of a static non-linearity followed by a linear filter. The R&S VSE-K18M Hammerstein model uses an FIR filter. Due to the combination of non-linearity and filter, the Hammerstein model can model non-linear behavior and memory effects. The Hammerstein model can be seen as a simplification of the Memory Polynomial model, which leads to a lower complexity for realization.

The parameters of the Hammerstein model are calculated based on the reference waveform (ideal waveform) and the pre-distorted waveform (K18D waveform), similar to the Memory Polynomial DPD. After a valid Direct DPD sequence, the Hammerstein model parameters can be computed. The Hammerstein model parameters are then used to configure R&S SMx-K541 and K544 at a connected R&S generator.

Hammerstein Model

The advantage of the Hammerstein model is that by using R&S SMx-K541 and K544, the predistortion is applied in real time on the signal in an R&S generator. Real-time means that the pre-distortion is added to the undistorted signal by the signal generator as the undistorted signal is being created or played back. Due to its real-time applicability, a Hammerstein parameter set does not only apply to one given signal at a given level, but can be applied to a different signal or lower power levels as well.

Note that exchanging the signal while keeping the Hammerstein model parameters works only within certain boundaries, i.e. similar signal characteristics (e.g. PAPR, bandwidth). Keep in mind that a direct DPD with unlimited degrees of freedom in general results in better performance compared to any real-world model with limited degrees in freedom (e.g. polynomial degree and filter order).

For best results, it is recommended to use Direct DPD with I/Q averaging as well as an increased measurement bandwidth for better ACLR results. The I/Q averaging is not needed afterwards for the Hammerstein model. As usual for any modelling DPD - it is recommended to include all relevant out of band non-linearities into the analysis bandwidth. A well known rule of thumb is a factor of 3 to 5 times the signal bandwidth. The reason for the increased measurement bandwidth can be seen in the following figure with an increased bandwidth (factor 4).

The effect of the non-linear behavior of the DUT is not only limited to the bandwidth of the signal itself, but also affects adjacent frequencies. This leads to "shoulders" in the spectrum as can be seen for the measured signal (yellow) compared to the signal, read from file (green). These "shoulders" can be improved by the Direct DPD (blue) if

they are included in the measurement by increasing the measurement bandwidth. The same holds for the Hammerstein model as it is derived from the Direct DPD result.

Meas	surement Settings					x
	Modeling DPD	ACLR Settings	Power Settings	Parameter Swee	ep	
	Polynomial DPD	On		Off Ha	ammerstein Model is only available after a lid Direct DPD sequence is run. he Hammerstein Model requires options K541	1
	Direct DPD	Iteration Step Polynomial Order (1- Memory Order (0-20)	10 20) 1-5 0-5	an sig	id K544 to be present on the connected gnal generator.	
Amplifier	Memory Polynomial DPD	(Model and Upd	late Generator		
	Hammerstein Model	Generator Waveform Non-Linearity (R&S SMx-K541) Filter (R&S SMx-K544)	Reference On On	Off Off		

The remote commands required to configure the Hammerstein model are described in Chapter 5.6.13, "Applying digital predistortion", on page 242.

Running a Hammerstein model sequence...... 114

Running a Hammerstein model sequence

The Hammerstein model is a real-time approach, and consists of a static non-linearity followed by a linear filter.

Per default, the "Polynomial Order" is 1-5, i.e. all orders from 1 to 5. If not all orders shall be taken into account, the same notation as in the modeling dialog may be used, e.g. 1-3;5 includes 1, 2, 3, and 5.

The "Memory Order" is configurable in the same way and describes the number of filter taps to be used per filter. It uses zero-based indexing, as it describes the "delays", so "0" corresponds to "no filter".

Keep in mind that the computational effort for the model increases with memory order, polynomial order, and length of the waveform (in samples).

Also, a specific "Iteration Step" to be used for the modeling can be selected. Per default, this is the last iteration, but any other step can be selected as well. The DDPD result window shows ACLR and / or EVM results over iterations and helps selecting the right iteration step.

After the parameters for "Polynomial Order", "Memory Order" and "Iteration Step" have been defined, selecting "Model and Update Generator" starts the fitting of the model and exports the results to the signal generator.

After using "Model and Update Generator", you can compare the pre-distortion results by switching "Generator Waveform" from "Reference" to "Direct DPD". If "Reference" is selected, "Non-linearity" and "Filter" are automatically switched on and the Hammerstein Model is applied at the generator. Now the "Non-linearity" and "Filter" options can be switched on and off manually and independent from each other if needed. Remote command:

State: CONFigure:HAMMerstein[:STATe] on page 253
Iteration Step: CONFigure:HAMMerstein:ITERation on page 253
Polynomial Order: CONFigure:HAMMerstein:ORDer:POLYnomial on page 254
Memory Order: CONFigure:HAMMerstein:ORDer:MEMory on page 254
Model and Update Generator:CONFigure:HAMMerstein:MUPGenerator
on page 254
Generator Waveform: CONFigure:HAMMerstein:GENWaveform[:SELect]
on page 254
Non-Linearity: CONFigure:HAMMerstein:NONLinearity[:STATe] on page 255
Filter: CONFigure:HAMMerstein:FILTer[:STATe] on page 255

3.13 Detailed MSE

Access: "Overview" > "Measurement" > "Detailed MSE"

Detailed MSE provides functionality to estimate the fraction of the error power of the three main distributors to the EVM: Noise, non-linearities and frequency response. Since the fraction of the error power is considered, the mean squared error (MSE) is measured as the squared EVM in percent.

To measure the MSE values of the noise, non-linearities and the frequency response, IQ averaging and equalizer are used. The measurement sequence starts, when the button "Calculate Detailed MSE" is pressed.

MSE is normalized by the mean signal power and is calculated as follows, where "e_i" are elements of the complex error vector, "r_i" the complex amplitudes of the signal and "N" the length of the signal.

$$EVM_{in\%} = \sqrt{\frac{\frac{1}{N}\sum_{i=1}^{N}|e_i|^2}{\frac{1}{N}\sum_{i=1}^{N}|r_i|^2}} \cdot 100\%$$

$$MSE_{normalized} = EVM_{in\%}^{2} = \frac{\frac{1}{N}\sum_{i=1}^{N}|e_{i}|^{2}}{\frac{1}{N}\sum_{i=1}^{N}|r_{i}|^{2}} \cdot (100\%)^{2} = \frac{MSE}{Mean Signal Power} \cdot (100\%)^{2}$$

This functionality is a calculated estimation and not a precise measurement. It is only run if "Calculate Detailed MSE" on page 116 is executed and not updated automatically for every new measurement.

Power measurements

ement Settings						
Modeling DPD	Detailed MSE	ACLR	Power	Parameter Sweep	Power Servoing	
Equalizer Filter Length for Training	(Samples) 100					
I/Q Averaging Capture (Count 10					
Cart	ulate Detailed MSE]		
	MSE (Normalized)	Perce	ntage			
Frequency Response						
Noise						
Non-Linearity						
Total						

Equalizer Filter Length For Training	. 116
I/Q Averaging Sweep Count	. 116
Calculate Detailed MSE	.116

Equalizer Filter Length For Training

Defines the number of FIR filter coefficients to be calculated. A larger number of samples generally yields better results, but takes longer to calculate.

Remote command:

CONFigure:EQUalizer:FILTer:LENGth on page 237

I/Q Averaging Sweep Count

Defines the number of single data captures the application uses to average the data.

Remote command: [SENSe:]SWEep:IQAVg:COUNt on page 226

Calculate Detailed MSE

Runs the detailed MSE calculation.

Remote command: CALCulate:MSERror? on page 260

3.14 Power measurements

Access: "Overview" > "Measurement" > "Power Settings"

The Amplifier application features functionality to configure measurements that determine power characteristics of an amplifier.

Adjacent channel leakage error (ACLR) measurements

The remote commands required to configure power measurements are described in Chapter 5.6.17, "Configuring power measurements", on page 268.

```
Configuring compression point calculation......117
```

Configuring compression point calculation

The application evaluates three compression points. The compression points represent the input power where the gain of the amplifier deviates by a certain amount from a reference point on the gain curve. The amount of deviation is either 1 dB, 2 dB or 3 dB.

Because these compression points are relative values, you have to define the reference gain.

There are two ways to get the reference gain: automatically or manually.

If you define the reference gain **manually**, the reference point is the gain at a certain input power (which you can define in the "Reference Input Power" input field).

In **automatic** mode, the R&S VSE-K18 application tries to automatically find the constant gain (linear range) section using a dedicated algorithm.

In the "Gain Compression" result display, the reference point is indicated by a red line. Remote command:

Method: CONFigure: POWer: RESult: P3DB[:STATe] on page 268 Input power: CONFigure: POWer: RESult: P3DB: REFerence on page 268

3.15 Adjacent channel leakage error (ACLR) measurements

Access: "Overview" > "Measurement" > "ACLR Settings"

The application allows you to define the basic characteristics of the Tx channel and neighboring channels when you perform ACLR measurements.

Modeling DPD	ACLR Settings	Power Settings	Parameter Sweep				
Channel Count	Auto A Referer Ref Chi	djust Acquisition BW	/ On Off Max Power Tx Channel				
Bandwidths Spacing Weighting Filters							
Tx 1 9.015 MH	z	Adj 9.0	015 MHz				
Tx 2 9.015 MH	z	Alt 1 9.0	015 MHz				
Tx 3 9.015 MH	z	Alt 2 9.0	015 MHz				
Tx 4 9.015 MH	z	Alt 3 9.0	015 MHz				
Tx 5 9.015 MH	z	Alt 4 9.0	015 MHz				
		▼r					

The remote commands required to configure the ACLR measurements are described in Chapter 5.6.16, "Configuring ACLR measurements", on page 262.

Number of channels: Tx , Adj	118
Selecting the measurement bandwidth	118
Reference Channel	119
Channel Bandwidth	119
Channel Spacings	
Weighting Filters	120

Number of channels: Tx , Adj

Up to 18 carrier channels and up to 12 adjacent channels can be defined.

Results are provided for the Tx channel and the number of defined adjacent channels *above and below* the Tx channel. If more than one Tx channel is defined, the carrier channel to which the relative adjacent-channel power values should be referenced must be defined (see "Reference Channel " on page 119).

Remote command: Number of Tx channels: [SENSe:]POWer:ACHannel:TXCHannel:COUNt on page 267 Number of Adjacent channels: [SENSe:]POWer:ACHannel:ACPairs on page 263

Selecting the measurement bandwidth

When you perform an ACLR measurement, it is important to select a measurement bandwidth that is large enough to capture all channels you want to evaluate in the ACLR measurement.

The application provides automatic adjustment of the measurement bandwidth to the bandwidth occupied by all channels evaluated in the ACLR measurement. To do so, turn on the "Auto Adjust Acquisition Bandwidth" function.

Note that you also have to turn on automatic bandwidth selection in the "Data Acquisition" dialog box in order to adjust the measurement bandwidth to the ACLR configuration.

If you define the bandwidth manually, make sure to take one that is large enough to capture all channels. Otherwise, the R&S VSE does not evaluate measurement results. Also make sure that the R&S VSE you are using can actually handle the bandwidth occupied by the transmission and adjacent channels. For larger bandwidths, one of the I/Q bandwidth extensions could be necessary (refer to the datasheet for a complete list of available bandwidth extensions).

Remote command:

[SENSe:]POWer:ACHannel:AABW on page 263

Reference Channel

The measured power values in the adjacent channels can be displayed relative to the transmission channel. If more than one Tx channel is defined, define which one is used as a reference channel.

Tx Channel 1	Transmission channel 1 is used.
	(Not available for MSR ACLR)
Min Power Tx Channel	The transmission channel with the lowest power is used as a reference channel.
Max Power Tx Chan- nel	The transmission channel with the highest power is used as a reference channel (Default).
Lowest & Highest Channel	The outer left-hand transmission channel is the reference channel for the lower adjacent channels, the outer right-hand transmission channel that for the upper adjacent channels.

Remote command:

[SENSe:]POWer:ACHannel:REFerence:TXCHannel:MANual on page 266 [SENSe:]POWer:ACHannel:REFerence:TXCHannel:AUTO on page 266

Channel Bandwidth

The Tx channel bandwidth is normally defined by the transmission standard.

The value entered for any Tx channel is automatically also defined for all subsequent Tx channels. Thus, only enter one value if all Tx channels have the same bandwidth.

The value entered for any ADJ or ALT channel is automatically also defined for all alternate (ALT) channels. Thus, only enter one value if all adjacent channels have the same bandwidth.

Remote command:

```
[SENSe:]POWer:ACHannel:BANDwidth[:CHANnel<ch>] on page 264
[SENSe:]POWer:ACHannel:BANDwidth:ACHannel on page 263
[SENSe:]POWer:ACHannel:BANDwidth:ALTernate<ch> on page 264
```

Channel Spacings

Channel spacings are normally defined by the transmission standard but can be changed.

If the spacings are not equal, the channel distribution in relation to the center frequency is as follows:

Odd number of Tx channels	The middle Tx channel is centered to center frequency.
Even number of Tx channels	The two Tx channels in the middle are used to calculate the fre- quency between those two channels. This frequency is aligned to the center frequency.

The spacings between all Tx channels can be defined individually. When you change the spacing for one channel, the value is automatically also defined for all subsequent Tx channels. This allows you to set up a system with equal Tx channel spacing quickly. For different spacings, set up the channels from top to bottom.

Tx1-2 Spacing between the first and the second carrier			
Tx2-3	Spacing between the second and the third carrier		

If you change the adjacent-channel spacing (ADJ), all higher adjacent channel spacings (ALT1, ALT2, ...) are multiplied by the same factor (new spacing value/old spacing value). Again, only enter one value for equal channel spacing. For different spacing, configure the spacings from top to bottom.

Remote command:

```
[SENSe:]POWer:ACHannel:SPACing:CHANnel<ch> on page 266
[SENSe:]POWer:ACHannel:SPACing[:ACHannel] on page 267
[SENSe:]POWer:ACHannel:SPACing:ALTernate<ch> on page 267
```

Weighting Filters

Weighting filters allow you to determine the influence of individual channels on the total measurement result. For each channel you can activate or deactivate the use of the weighting filter and define an individual weighting factor ("Alpha:" value).

Remote command:

Activating/Deactivating:

```
[SENSe:]POWer:ACHannel:FILTer[:STATe]:CHANnel<ch> on page 266
[SENSe:]POWer:ACHannel:FILTer[:STATe]:ACHannel on page 265
[SENSe:]POWer:ACHannel:FILTer[:STATe]:ALTernate<ch> on page 265
Alpha value:
```

[SENSe:]POWer:ACHannel:FILTer:ALPHa:CHANnel<ch> on page 265
[SENSe:]POWer:ACHannel:FILTer:ALPHa:ACHannel on page 264
[SENSe:]POWer:ACHannel:FILTer:ALPHa:ALTernate<ch> on page 265

3.16 Parameter sweeps

Access: "Overview" > "Measurements" > "Meas Modes" > "Parameter Sweep"

The parameter sweep is a measurement that allows you to compare a result (that you can select arbitrarily) against two other parameters. The advantage of the parameter sweep is that it controls the signal generator and the analyzer, and automatically changes the signal characteristics (for example the frequency) without you having to do those changes manually. In addition, it combines the results in a single and well arranged diagram and / or numerical result display (\rightarrow Parameter Sweep Table).

Example:

In the default state, the application compares the EVM against the frequency and the generator power.

In that case, the R&S VSE first performs a measurement on the first frequency for each generator output level in the defined range. When this measurement is done, the R&S VSE continues to measure all power levels on the second frequency and so on.

Frequency range: 10 MHz to 20 MHz, stepsize 1 MHz. Output level range: -10 dBm to 0 dBm, stepsize: 1 dB.

- 1st measurement: 10 MHz with a generator output level of -10 dBm.
- (...)
- 11th measurement: 10 MHz with a generator output level of 0 dBm.
- 12th measurement: 11 MHz with a generator output level of -10 dBm.
- (...)
- 22nd measurement: 11 MHz with a generator output level of 0 dBm.
- (...)
- nth measurement: 20 MHz with a generator output level of 0 dBm.

The configuration affects the number of measurements that will be performed. The number of measurements in turn has an effect on the overall measurement time of the parameter sweep.

The parameter sweep requires a connection to a signal generator. For more information about configuring generators, see Chapter 3.3.6, "Controlling a signal generator", on page 67.

Parameter sweeps

Modeling DPD ACLR Settings Power Settings	Parameter Sweep								
Enable Parameter Sweep On Off									
3d-Plot Display/Parameter Configuration X-Axis	Y-Axis								
	Enable On Off								
Setting Center frequency Parameter Settings	Setting Generator Power								
Start 1.0 GHz	Start -30.0 dBm								
Stop 2.0 GHz	0.0 dBm								
Step 10.0 MHz	Step 1.0 dB								
Adjust Level Couple FSx and SMx Level Expected Gain 0.0 dB									

The remote commands required to configure the parameter sweep are described in Chapter 5.6.18, "Configuring parameter sweeps", on page 268.

Turning the parameter sweep on and off	. 122
Selecting the data to be evaluated during the parameter sweep	. 122
Synchronizing the levels of signal generator and analyzer	. 123

Turning the parameter sweep on and off

Before you can use the parameter sweep functionality, you have to turn it on deliberately.

When you turn it on, the R&S VSE starts the parameter sweep in single sweep mode ([Run Sgl] and [Run Cont] both start the parameter sweep in that case). When the parameter sweep is on, other measurements are not possible, and vice versa.

Turning on the parameter sweep also expands the channel bar by several labels that carry information about the progress of the parameter sweep.

Remote command: CONFigure:PSWeep[:STATe] on page 269

Selecting the data to be evaluated during the parameter sweep

When you are performing a parameter sweep, you can compare an arbitrary result against one or two arbitrary parameters.

Depending on your selection, the R&S VSE changes the values of the selected parameters on the signal generator during the measurement, and calculates the result for each combination of values.

If there is more than one instance of the parameter sweep, the R&S VSE applies the selected parameters to all instances. The displayed results on the other hand, can be different for each instance.

Center Frequency

Parameter sweeps

Controls the frequency of the signal generator.

- Generator Power Controls the output power of the signal generator.
- Envelope to RF Delay Controls the delay between the envelope and the RF signal on the signal generator.
- Envelope Bias

Controls the envelope bias on the signal generator.

You can define the scope of the measurement by adjusting the start and stop values for both parameters, and assign a certain stepsize. Based on these values, the R&S VSE changes the generator setup after each individual measurement.

The second parameter is not mandatory. You can turn it off with the "Y-Axis Enable" function. In that case, the parameter sweep is represented in a two-dimensional diagram (for example the EVM against the frequency).

Example:

When you define a level range from 0 dBm (start value) to 10 dBm (stop value) with a stepsize of 1 dB, the parameter sweep would perform 11 measurements on a single frequency.

When you also define a frequency range between 10 MHz and 20 MHz, and a stepsize of 1 MHz, the total number of measurements would be 121: 11 power level measurements on each of the 11 frequencies.

Remote command:

Chapter 5.6.18, "Configuring parameter sweeps", on page 268

Synchronizing the levels of signal generator and analyzer

When you sweep the output level of the generator, make sure to synchronize the reference level of the analyzer and the RMS level of the generator to avoid damage to the RF input of the analyzer (\rightarrow "Couple FSx and SMx Level"). When you do so, the application automatically matches the reference level of the analyzer to the output level of the generator.

For sensitive DUTs, you can define maximum output level that is not exceeded during the parameter sweep.

Note that it is mandatory to define the "Expected Gain" of the DUT. Otherwise, the synchronization between the levels can fail or lead to invalid results.

NOTICE! Risk of damage to the RF input of the analyzer.

Make sure to define the correct "Expected Gain". Otherwise, the R&S VSE does not consider the gain of the amplifier during the level changes on signal analyzer and generator, which in turn can lead to a high-level signal damaging or destroying the RF input mixer of the analyzer.

With a correct "Expected Gain" value, however, the application is able to attenuate the signal accordingly.

Remote command:

Synchronization state: CONFigure: PSWeep: ADJust: LEVel[:STATe] on page 269 Expected gain: CONFigure: PSWeep: EXPected: GAIN on page 269

3.17 Power servoing

Access: "Overview" > "Measurement" > "Power Servoing"

The power servoing measurement is an independent measurement mode that brings the output power of the DUT (amplifier) to a stable state (or level). This is done by automatically adjusting the input power or the digital attenuation until a stable state has been reached. When this state has been reached, you can proceed with measuring the actual amplifier performance.

Meas	surement Sett	ings						X
	Modeling	DPD	Detailed MSE	ACLR	Power	Parameter Sweep	Power Servoing	
	State On C	Off			Open Gen	erator Control		
Amplifier	Target P: Target P: Target V: Target T: Action Note: input Peak input	arameters arameter alue olerance <u>ut power i</u>	Power Out 0.0 dBm 0.1 dB will be increased du i limited by 'Max DU	ring powe	Gen Level	arameters tions 5 I Control RF Leve wer Step Size	Digital Atten	

The remote commands required to configure the power servoing are described in Chapter 5.6.19, "Configuring power servoing", on page 272.

Power Servoing sequence

To start a power servoing sequence, first enable the function using the "State" button. "Open Generator Control" provides a quick access to the generator setup dialog, e.g. to set the "Max DUT Input Level" to prevent damage to the DUT caused by a too high input level.

Now you can select a "Target Parameter" that is modified during the power servoing sequence until the desired "Target Value" is reached within the defined "Target Toler-ance".

The maximum number of repetitions performed during the sequence depends on the number of "Max Iterations" you have defined. Using "Gen Level Control", you can select if the R&S VSE adjusts the input power or the digital attenuation until a stable state is reached. "Input Power Step Size" defines the maximum allowed input power change for each step for all "Target Parameters" except from "Power Out".

After all settings have been made, use "Start" to run the power servoing sequence.

Remote command:

State: [SENSe:]PSERvoing:STATe on page 273

Target Parameter: [SENSe:]PSERvoing:TARGet:PARameter on page 273

Target Value: [SENSe:]PSERvoing:TARGet:VALue on page 274 Target Tolerance:[SENSe:]PSERvoing:TARGet:TOLerance on page 274 Max Iterations: [SENSe:]PSERvoing:MAX:ITERation on page 274 Gen Level Control: [SENSe:]PSERvoing[:GLC] on page 274 Input Power Step Size: [SENSe:]PSERvoing:INPut:STEP on page 274 Start: [SENSe:]PSERvoing:STARt on page 275 Status: FETCh:PSERvoing:OPERation:STATus? on page 275

3.18 Frequency domain

Access: "Overview" > "Measurement" > "Frequency Domain"

You can configure how the results in the frequency domain are calculated, e.g. the FFT behavior to transform time values to frequency results.

Mea	sure	ment Set	tings					
	ing	DPD	Detailed MSE	ACLR	Power	Parameter Sweep	Power Servoing	Frequency Domain
	ſ	ettings for	measurements in fr	equency d	omain			
		FFT Length	2	2k		-		
	1	Window Fu	nction F	Flattop (am				
	1	Window O	verlap	25.0 %				
	1	Window Length to FFT Ratio		25.0 %				
fier		Use Squelc	n for Group Delay	-150.0 dBm				
mpli								
¥								

FFT Length12	25
Window Function	25
Window Overlap	26
Window Length to FFT Ratio	26
Use Squelch for Group Delay	26

FFT Length

Defines the number of frequency points determined by each FFT calculation. The more points are used, the higher the resolution in the spectrum becomes, but the longer the calculation takes.

Values from 1k to 32k in powers of 2 are supported. The default FFT length is 2k.

Remote command: CONFigure:FDOMain:FFTLength on page 275

Window Function

You can select one of several FFT window types with different characteristics.

The following window types are available:

• Flattop (default, high amplitude accuracy)

- Gauss (high dynamic range)
- Rectangular (no window)
- 5-Term (minimal sidelobes)
- Blackman-Harris

Remote command:

CONFigure: FDOMain: WFUNction on page 276

Window Overlap

Defines the part of a single FFT window that is re-calculated by the next FFT calculation when using multiple FFT windows.

Values from 0 % to 99.9 % in 1 % steps are supported. The default value is 25 %.

Remote command:

CONFigure: FDOMain: WOVerlap on page 276

Window Length to FFT Ratio

Defines the window length as a percentage of the FFT Length.

Values from 0 % to 100 % in 1 % steps are supported. The default value is 25 %.

Remote command: CONFigure:FDOMain:WLFRatio on page 276

Use Squeich for Group Delay

For group delay results (requires R&S VSE-K18F), you can define a level threshold below which the group delay is set to 0. If the group delay does not exceed the threshold, it is ignored altogether. Squelching prevents strong fluctuation in phase vs. group delay diagrams. If enabled, squelching is also considered for "Channel Response Magnitude" and "Channel Response Phase" results.

Values from -200 dBm to +200 dBm are supported.

Remote command: CONFigure:FDOMain:SQUelch on page 276

4 Analysis

The amplifier application provides several tools to get more information about the results.

Most of these tools work similar to those available in the spectrum application. For more information about these tools, refer to the R&S VSE user manual.

• Traces	
Markers.	
Numerical result tables	
Result display settings	
X-axis scaling	
Y-axis scaling	
5	

4.1 Traces

The amplifier application provides several tools to configure and evaluate traces.

•	Trace information	127
•	Trace export	130

4.1.1 Trace information

Access: [TRACE] > "Trace Config" > "Traces"

Each result display contains one or several traces specific to the corresponding result type.

The number of traces available for each result display and the information these traces provide are described in Chapter 2, "Measurements and result displays", on page 12.

Traces Trace / Data Export Detector Settings							
	Mode	Detector	Res	ult Type			
Trace 1	Clear Write 🔻	OFF	▼ Me	as 🔻			
Trace 2	Blank	OFF	▼ Me	as 🔻			
Trace 3	Blank	OFF	▼ Me	as 🔻			
Trace 4	Blank	OFF	* Me	as 🔻			
Trace 5	Blank	OFF	* Me	as 🔻			
Trace 6	Blank	OFF	* Me	as 🔻			
Quick Config							
Preset All Traces Set Trace Mode Set Trace Mode Max Avg Min Max CIrWrite Min							

Trace Mode

Defines the update mode for subsequent traces.

Trace modes (except for "Clear Write", "View" and "Blank") are only available if detector is set to "Positive Peak", "Negative Peak" or "Average" and trace statistics are enabled.

- Clear Write Overwrite mode (default): the trace is overwritten by each measurement.
- Max Hold The maximum value is determined over several measurements and displayed. The R&S VSE saves each trace point in the trace memory only if the new value is greater than the previous one.
- Min Hold The minimum value is determined from several measurements and displayed. The R&S VSE saves each trace point in the trace memory only if the new value is lower than the previous one.
- Average The average is formed over several measurements.
- View The current contents of the trace memory are frozen and displayed.
- Blank Removes the selected trace from the display.

Remote command:

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:MODE on page 277

Detector

Defines the trace detector to be used for trace analysis.

Positive Peak	The positive detector displays the maximum level that has been detected during the measurement.
Negative Peak	The negative peak detector displays the minimum level that has been detected during the measurement.
Average	The average detector displays an RMS average (linear and quad- ratic) for most traces including EVM. Only for VCC/ICC traces (linear averaged) the average voltages and currents are displayed.
Off	No specific detector is active and all values are recorded.
Remote commar	nd: Dow <n>:]DETector<t>[:FUNCtion] on page 281</t></n>
Result Type	

Defines the result type to be used for trace analysis.

IdealLine	Displays a line that equals to a perfect linear device for "AM/AM", "AM/PM" and "Gain Compression" traces.
Meas	Displays the measured signal.
Model	Displays a modeled signal for "AM/AM" and "AM/PM" traces.
Reference	Displays the reference signal for "FFT Spectrum" traces.
Remote commar	nd:

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:RESult on page 280

Predefined Trace Settings - Quick Config

Commonly required trace settings have been predefined and can be applied very quickly by selecting the appropriate button.

Function	Trace Settings	3
Preset All Traces	Trace 1:	Clear Write
		Blank
Set Trace Mode	Trace 1:	Max Hold
Max Avg Min	Trace 2:	Average
	Trace 3:	Min Hold
		Blank
Set Trace Mode	Trace 1:	Max Hold
Max ClrWrite Min	Trace 2:	Clear Write
	Trace 3:	Min Hold
		Blank

Remote command:

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:PRESet on page 280

4.1.2 Trace export

Access: [TRACE] > "Trace Config" > "Trace / Data Export"

The functionality to export traces is similar to the Spectrum application. When you export a trace, the R&S VSE writes the trace data into an ASCII file. You can use the exported data for further evaluation in other programs like a spreadsheet.

Traces	Trace / Data Export		Detec	tor Settings					
Data To I	Data To be Exported								
Window(s)		All Visible		Current					
Trace(s)/Columns		All Visible		Ŧ					
Include Instrument & Measurement Settings									
Export Data Format									
Decimal	Separator	F	oint	Comma					
Export Trace to ASCII File									

The remote commands required to configure the trace export are described in Chapter 5.7.1, "Configuring traces", on page 277.

Selecting data to export	130
Include Instrument & Measurement Settings	130
Decimal Separator	131
Export Trace	.131

Selecting data to export

The "Window(s)" toggle button selects the data that you want to export.

"All Visible" exports all traces in all result displays that are currently visible.

"Current" exports the traces in the currently selected (highlighted blue) result display.

If you export data from the currently selected result display, you can also select if you want to export all traces in that result display, or a single trace only from the "Trace(s) / Columns" dropdown menu.

Remote command: MMEMory:STORe<n>:TRACe on page 279

Include Instrument & Measurement Settings

Includes additional instrument and measurement settings in the header of the export file for result data.

Remote command: FORMat:DEXPort:HEADer on page 278

Decimal Separator

Defines the decimal separator for floating-point numerals for the data export/import files. Evaluation programs require different separators in different languages.

Remote command: FORMat:DEXPort:DSEParator on page 278

Export Trace

The "Export Trace To ASCII File" button opens a dialog box to select a directory and file name for the ASCII file.

The results are output in the same order as they are displayed on the screen: window by window, trace by trace, and table row by table row.

Note: Secure user mode.

In secure user mode, settings that are stored on the instrument are stored to volatile memory, which is restricted to 256 MB. Thus, a "memory limit reached" error can occur although the hard disk indicates that storage space is still available.

To store data permanently, select an external storage location such as a USB memory device.

For details, see "Protecting Data Using the Secure User Mode" in the "Data Management" section of the R&S VSE base software user manual.

Remote command:

MMEMory:STORe<n>:TRACe on page 279

4.1.3 Trace detector

Traces	Trace /	Data Export	Detector Settings					
Detecto	Detector Config							
Max. Tra	ice Points	1001						
Default	Detector	Average	Off					

Max. Trace Points

Sets the maximum number of trace points to be used by detectors.

Remote command: [SENSe:]DETector<t>:TRACe[:POINt] on page 280

Default Detector

Selects the default detector for R&S VSE-K18 result displays.

Note that changing the default detector to "Average" changes all traces with "Detector Off" to "Detector Average". Setting "Off" will change all traces with "Detector Average" to "Detector Off"

Remote command:

[SENSe:]DETector<t>:DEFault[:FUNCtion] on page 279

4.2 Markers

The amplifier application provides four markers in most result displays.

•	General marker settings	132
•	Individual marker settings	133
•	Marker positioning	135

4.2.1 General marker settings

Access: "Overview" > "Result Config" > "Marker Settings"

The "Marker Settings" contain settings that apply to all markers or have a general effect on marker functionality.

Marker Table Display	
Marker Info	
Link Markers Across Windows	

Marker Table Display

Defines how the marker information is displayed.

"On"	Displays the marker information in a table in a separate area beneath the diagram.
"Off"	No separate marker table is displayed. If Marker Info is active, the marker information is displayed within the diagram area.
"Auto"	(Default) If more than two markers are active, the marker table is dis- played automatically. If Marker Info is active, the marker information for up to two markers is displayed in the diagram area.
Remote comr	nand:

DISPlay[:WINDow<n>]:MTABle on page 283

Marker Info

Turns the marker information displayed in the diagram on and off.

	• 1AP Cln	N
M1[1]	81.13 dBμV	•
	177.610 MHz	
D2[1]	-22.18 dB	
	-28.980 MHz	

Remote command:

DISPlay[:WINDow<n>]:MINFo[:STATe] on page 283

Link Markers Across Windows

Turns marker coupling across result windows on and off.

When you link markers, moving a marker in one result display moves the marker to the same sample in another window. This is useful to compare results in result displays that have different information on their x- and y-axis (for example the AM/AM and AM/PM results).

Remote command: CALCulate<n>:MARKer<m>:LINK on page 282

4.2.2 Individual marker settings

Access: "Overview" > "Result Config" > "Markers"

The functionality to position markers and query their position is similar to the marker functionality available in the Spectrum application.

Availability of markers

The "Markers" and "Marker Settings" tabs are available for result displays that support markers.

If the tabs are unavailable, make sure to select a result display that actually supports markers from the "Specifics for:" dropdown menu (for example the spectrum FFT result display).

Specifics for 3: Spectrum FFT

Note that the amplifier application does not support more than four markers in any result display.

Selected Marker	
Marker State	
Marker Position X-value	
Marker Type	
Reference Marker	
Linking to Another Marker	
Assigning the Marker to a Trace	
All Markers Off	
Marker Table Display	

Selected Marker

Marker name. The marker which is currently selected for editing is highlighted orange.

Remote command: Marker selected via suffix <m> in remote commands.

Marker State

Activates or deactivates the marker in the diagram.

Remote command:

CALCulate<n>:MARKer<m>[:STATe] on page 287 CALCulate<n>:DELTamarker<m>[:STATe] on page 285

Marker Position X-value

Defines the position (x-value) of the marker in the diagram. For normal markers, the absolute position is indicated. For delta markers, the position relative to the reference marker is provided.

Remote command:

CALCulate<n>:MARKer<m>:X on page 288 CALCulate<n>:DELTamarker<m>:X on page 286

Marker Type

Toggles the marker type.

The type for marker 1 is always "Normal", the type for delta marker 1 is always "Delta". These types cannot be changed.

Note: If normal marker 1 is the active marker, switching the "Mkr Type" activates an additional delta marker 1. For any other marker, switching the marker type does not activate an additional marker, it only switches the type of the selected marker.

"Normal" A normal marker indicates the absolute value at the defined position in the diagram.

"Delta" A delta marker defines the value of the marker relative to the specified reference marker (marker 1 by default).

Remote command:

CALCulate<n>:MARKer<m>[:STATe] on page 287 CALCulate<n>:DELTamarker<m>[:STATe] on page 285

Reference Marker

Defines a marker as the reference marker which is used to determine relative analysis results (delta marker values).

Remote command:

CALCulate<n>:DELTamarker<m>:MREFerence on page 285

Linking to Another Marker

Links the current marker to the marker selected from the list of active markers. If the xaxis value of the initial marker is changed, the linked marker follows to the same position on the x-axis. Linking is off by default.

Using this function you can set two markers on different traces to measure the difference (e.g. between a max hold trace and a min hold trace or between a measurement and a reference trace).

Remote command:

CALCulate<n>:MARKer<ms>:LINK:TO:MARKer<md> on page 287 CALCulate<n>:DELTamarker<ms>:LINK:TO:MARKer<md> on page 284 CALCulate<n>:DELTamarker<m>:LINK on page 284

Assigning the Marker to a Trace

The "Trace" setting assigns the selected marker to an active trace. The trace determines which value the marker shows at the marker position. If the marker was previously assigned to a different trace, the marker remains on the previous frequency or time, but indicates the value of the new trace.

If a trace is turned off, the assigned markers and marker functions are also deactivated.

Remote command: CALCulate<n>:MARKer<m>:TRACe on page 288

All Markers Off

Deactivates all markers in one step.

Remote command:

CALCulate<n>:MARKer<m>:AOFF on page 287

Marker Table Display

Defines how the marker information is displayed.

"On"	Displays the marker information in a table in a separate area beneath the diagram.
"Off"	No separate marker table is displayed. If Marker Info is active, the marker information is displayed within the diagram area.
"Auto"	(Default) If more than two markers are active, the marker table is dis- played automatically. If Marker Info is active, the marker information for up to two markers is displayed in the diagram area.
Remote comm	and:

DISPlay[:WINDow<n>]:MTABle on page 283

4.2.3 Marker positioning

Peak Search	135
Search Next Peak	
Search Minimum	
Search Next Minimum	136

Peak Search

 $\overline{}$

Sets the selected marker/delta marker to the maximum of the trace. If no marker is active, marker 1 is activated.

Remote command:

CALCulate<n>:MARKer<m>:MAXimum[:PEAK] on page 292 CALCulate<n>:DELTamarker<m>:MAXimum[:PEAK] on page 290

Search Next Peak

Sets the selected marker/delta marker to the next (lower) maximum of the assigned trace. If no marker is active, marker 1 is activated.

«ڴ, ڴ

Remote command:

```
CALCulate<n>:MARKer<m>:MAXimum:NEXT on page 291
CALCulate<n>:MARKer<m>:MAXimum:RIGHt on page 292
CALCulate<n>:MARKer<m>:MAXimum:LEFT on page 291
CALCulate<n>:DELTamarker<m>:MAXimum:NEXT on page 289
CALCulate<n>:DELTamarker<m>:MAXimum:RIGHt on page 290
CALCulate<n>:DELTamarker<m>:MAXimum:LEFT on page 289
```

Search Minimum

嬱

Sets the selected marker/delta marker to the minimum of the trace. If no marker is active, marker 1 is activated.

Remote command:

CALCulate<n>:MARKer<m>:MINimum[:PEAK] on page 293 CALCulate<n>:DELTamarker<m>:MINimum[:PEAK] on page 291

Search Next Minimum

Sets the selected marker/delta marker to the next (higher) minimum of the selected trace. If no marker is active, marker 1 is activated.

w, v,

Remote command:

```
CALCulate<n>:MARKer<m>:MINimum:NEXT on page 292
CALCulate<n>:MARKer<m>:MINimum:LEFT on page 292
CALCulate<n>:MARKer<m>:MINimum:RIGHt on page 293
CALCulate<n>:DELTamarker<m>:MINimum:NEXT on page 290
CALCulate<n>:DELTamarker<m>:MINimum:LEFT on page 290
CALCulate<n>:DELTamarker<m>:MINimum:RIGHt on page 291
```

4.3 Numerical result tables

Access: "Overview" > "Result Config" > "Table Config"

By default, the application shows all supported numerical results in the result tables (result summary and parameter sweep table). However, you can add or remove results as you like.

Numerical result tables

Markers	Marker Set	tings Ta	ble Config	Result Config	Scaling	
Result Su	ummary/Statis	tics Table	Paramete	r Sweep Table		
Set all -						
AI	l On	All Off				
Modul	ation Accurac	y Powe	r			
Raw EV	м	%	On Off	Phase Error	٠	On Off
Raw Mo	odel EVM	%	On Off	Quadrature Error	۰	On Off
Frequer	ncy Error	Hz	On Off	Gain Imbalance	dB	On Off
Sample	Rate Error	ppm	On Off	I/Q Imbalance	dB	On Off
Magnit	ude Error	%	On Off	I/Q Offset	dB	On Off
				Amplitude Droop	dB	On Off

Accessing the "Table Config" tab

Note that the "Table Config" tab is only available after you have selected the "Specifics for: Result Summary" or "Specifics for: Parameter Sweep Table" item from the corresponding dropdown menu at the bottom of the dialog box.

Specifics for 2: Result Summary

The dialog box for the result summary is made up out of different tabs:

- One for modulation accuracy results.
- One for power-related results.

The supported results of the parameter sweep table are part of a separate dialog box.

You can add or remove individual results by turning them "On" or "Off".

Remote command:

Individual result summary items: DISPlay [:WINDow<n>]: TABLe: ITEM on page 294

Individual parameter sweep items: DISPlay[:WINDow<n>]:PTABle:ITEM on page 293

All modulation accuracy items: DISPlay[:WINDow<n>]:TABLe:ITEM:MACCuracy: ALL on page 295

All power items: DISPlay[:WINDow<n>]:TABLe:ITEM:POWer:ALL on page 295

All parameter sweep items: DISPlay[:WINDow<n>]:PTABle:ITEM:ALL on page 294

4.4 Result display settings

Access: "Overview" > "Result Config"

The application allows you to configure the information displayed in various graphical result displays. The global settings apply to all relevant result displays, while the specific settings apply only to the selected result display ("Specifics for").

Phase Settings	Specific Settings Time Domain -			
Unit Deg Rad	Normalize to 1	On	Off	
M/PM Definition Def Mease Y	Position	Auto	Manual	
Kerweas	Offset	1.0 μs		
M/AM and AM/PM Curve Width Reference Point	Duration	2.0 μs		
Offset from Auto Manual 0.0 dB	Parameter Capt Result Type Display Min an	ure EVI	M On Off	
requency Response	Direct DPD DDPD Result T	ype EVI	M	
Span Auto Manual 1.0 Hz	Reference for A	M/PM, EVM and Gain Comp	ression	
	X-Axis	Inp	out Power	~
]			

Specifics for 1: Magnitude Capture RF 🔻

Phase Settings	138
L Unit	138
L AM/PM Definition	139
AM/AM and AM/PM Curve Width Reference Point	139
Frequency Response	139
Time domain result display	139
L Normalize to 1	139
L Position	139
L Offset	139
L Duration	140
Parameter sweep diagram	140
Direct DPD Result Type	140
Reference for AM/PM, EVM and Gain Compression	141

Phase Settings

Phase settings apply to the "AM/PM" results and the "Phase deviation vs time" result.

Unit ← Phase Settings

Determines whether phase information is provided in degrees or radians.

Remote command:

CALCulate<n>:UNIT:ANGLe on page 298

AM/PM Definition - Phase Settings

Determines the way the "AM/PM" results are calculated.

"Ref - Meas" (Default:) The measured values are subtracted from the reference values.

"Meas - Ref" The reference values are subtracted from the measured values.

Remote command:

CALCulate<n>:AMPM:DEFinition on page 297

AM/AM and AM/PM Curve Width Reference Point

Determines the reference point for the curve width as an offset from the RMS level. By default, the input power is automatically set to the RMS level. Positive values describe a value above RMS power and negative values below RMS power.

Remote command:

CONFigure:AMPM:CWIDth:REFerence:AUTO on page 302 CONFigure:AMPM:CWIDth:REFerence on page 302

Frequency Response

Selects the span that the frequency response is applied to for R&S VSE-K18F result displays.

- "Auto": Sets the span to the calculated OBW of the reference file.
- "Manual": Define the span manually.

Remote command:

CONFigure:FRSPan on page 298 CONFigure:FRSPan:AUTO on page 299

Time domain result display

The "Time Domain" settings configure the information displayed in the time domain result display, e.g.the displayed time range.

Normalize to 1 ← Time domain result display

Enables or disables normalization of the time domain trace to 1.

Remote command:

DISPlay[:WINDow<n>]:TDOMain:Y[:SCALe]:NORMalise[:STATe]
on page 301

Position ← Time domain result display

Defines whether the position of the time domain range is determined automatically or manually, by the Offset and Duration.

Remote command:

DISPlay[:WINDow<n>]:TDOMain:X[:SCALe]:MODE on page 301

Offset ← Time domain result display

Defines an offset to the time of the first recorded sample or the first sample of the synchronized data. The x-axis of the time domain result display starts at this value.

This setting is only available for manual positioning (see "Position" on page 139). Remote command:

DISPlay[:WINDow<n>]:TDOMain:X[:SCALe]:OFFSet on page 301

Duration ← Time domain result display

Defines the length of the x-axis in time domain results.

This setting is only available for manual positioning (see "Position" on page 139).

Remote command:

DISPlay[:WINDow<n>]:TDOMain:X[:SCALe]:DURation on page 300

Parameter sweep diagram

You can select one of several result types to evaluate in the parameter sweep diagram. If you open more than one parameter sweep window, you can select a different result for each window.

By default, the application indicates the highest and lowest values that have been measured in the diagram.

Optionally, you can disable the "Display Min and Max" feature.

The following result types are evaluated in the parameter sweep.

- "ACLR Adj 1 Lower"
- "ACLR Adj 1 Upper"
- "ACLR Adj 1 Balanced"
- "ACLR Alt 1 Balanced"
- "ACLR Alt 2 Balanced"
- "AM/AM Curve Width"
- "AM/PM Curve Width"
- "Balanced ACLR Magnitude"
- Compression Point "P (1 dB / 2 dB / 3 dB)"
- "Crest Factor Out"
- "Current OBW"
- "EVM"
- "Gain"
- "Power Out"
- "RMS Power"

For details on the parameters, see Chapter 2.2, "Amplifier parameters", on page 28.

Remote command:

CONFigure:PSWeep:Z<n>:RESult on page 299

Direct DPD Result Type

Selects the result type for direct DPD measurements.

For a description of the supported result types, see "DDPD Results (R&S VSE-K18D)" on page 16.

Remote command:

CONFigure:DDPD:WINDow<n>:RESult on page 247

Reference for AM/PM, EVM and Gain Compression

For the following power result displays, you can select the information that is used as a reference for the x-axis.

- AM/PM
- EVM vs Power
- Gain Compression

You can analyze these results either at the DUT input or at the DUT output. By default, the results show the information against the "Input Power".

To analyze the signal against the output power, select "Output Power".

Remote command:

CALCulate<n>:PREFerence:X on page 298

4.5 X-axis scaling

Access: "Overview" > "Result Config" > "Scaling" > "X Scaling"

By default, the application automatically scales the x-axis based on the current results. The scale changes when new measurement results are available. When you change the scale manually, the changes are shown in the diagram next to the settings.

Markers N	Marker Settings Table	Config Res	ult Config	Scaling				
X Scaling Y Scaling	Automatic grid scaling: - Auto Scaling according to min Max Min Scaling according to per Per Division	Auto Sca and max values 100.0 dBm -100.0 dBm div: 20.0 dBm			0#	AM/PM	200 d8m	100.0 dBm

Scope of the scaling

Scaling is applied only to the result display that you have selected from the "Specifics for:" dropdown menu at the bottom of the dialog box.

Specifics for 6: AM/PM

(In this case, the scale is applied to the "AM/PM" result display.)

Scaling the x-axis in particular is available for result displays that plot any kind of level values on both axes (for example the "AM/PM" result display).

Scaling the x-axis	automatically	142
Scaling the x-axis	manually	142

Scaling the x-axis automatically

By default, the application scales the x-axis in all diagrams automatically (\rightarrow "Auto" = ON).

Automatic scaling tries to obtain the ideal scale for the current measurement results. The application adjusts the scale each time the results change.

You can also force an automatic scaling of the x-axis at any time with the "Auto Scale Once" function. When you select this function, the application scales the x-axis even if the results have not been changed.

Remote command:

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:X[:SCALe]:AUTO
on page 303

Scaling the x-axis manually

Settings for manual scaling of the x-axis become available when you turn automatic scaling off.

The application provides two methods to scale the x-axis.

- Scaling according to minimum and maximum values
 - The scale is defined by the values at the lower and upper end of the x-axis.
- Scaling according to the distance between two grid lines
 The scale is defined by the value range within two grid lines in the diagram (→ per division). The distance between grid lines refers to diagrams that are split into 10 divisions.

Remote command:

Minimum: DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:X[:SCALe]: MINimum on page 303

Maximum: DISPlay[:WINDow<n>] [:SUBWindow<w>]:TRACe<t>:X[:SCALe]:
MAXimum on page 303

Distance: DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:X[:SCALe]:
PDIVision on page 304

4.6 Y-axis scaling

Access: "Overview" > "Result Config" > "Scaling" > "Y Scaling"

By default, the application automatically scales the y-axis based on the current results. The scale changes when new measurement results are available. When you change the scale manually, the changes are shown in the diagram next to the settings.

/larkers N	larker Settings Table	Config Result Config Scaling	
X Scaling	Automatic grid scaling:		J
Y Scaling	Auto	On Off	ам/рм
		Auto Scale Once	
	Scaling according to mir	n and max values:	· 100.0 *
	Max	100.0 *	
	Min	-100.0 °	₽ <u>200°</u> Ref 0.0 °
	Scaling according to refe	erence and per div:	
	Per Division	20.0 *	-100.0 °
	Ref Position	50.0 %	
	Value	0.0 °	

Scope of the scaling

Scaling is applied only to the result display that you have selected from the "Specifics for:" dropdown menu at the bottom of the dialog box.

Specifics for 3: Spectrum FFT *

(In this case, the scale is applied to the spectrum FFT result display.)

Scaling the y-axis automati	cally1	143
Scaling the y-axis manually	/1	143

Scaling the y-axis automatically

By default, the application scales the y-axis in all diagrams automatically (\rightarrow "Auto" = ON).

Automatic scaling tries to obtain the ideal scale for the current measurement results. The application adjusts the scale each time the results change.

You can also force an automatic scaling of the y-axis at any time with the "Auto Scale Once" function. When you select this function, the application scales the y-axis even if the results have not been changed.

Remote command:

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:AUTO
on page 305

Scaling the y-axis manually

Settings for manual scaling of the y-axis become available when you turn automatic scaling off.

The application provides two methods to scale the y-axis.

- Scaling according to minimum and maximum values The scale is defined by the values at the lower and upper end of the y-axis.
- Scaling according to reference value
 The scale is defined relative to the reference value and a constant distance
 between the grid lines (→ per division). The distance between grid lines refers to
 diagrams that are split into 10 divisions.

The position of the reference value is arbitrary. By default it is at the upper end of the y-axis (100 %).

Remote command:

Minimum: DISPlay[:WINDow<n>] [:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:
MAXimum on page 305

Maximum: DISPlay[:WINDow<n>] [:SUBWindow<w>]:TRACe<t>:Y[:SCALe]: MINimum on page 306

Reference value: DISPlay[:WINDow<n>] [:SUBWindow<w>]:TRACe<t>:Y[:
SCALe]:RVALue on page 307

Position: DISPlay[:WINDow<n>] [:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:
RPOSition on page 307

Distance: DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:
PDIVision on page 306
5 Remote control commands for amplifier measurements

The following remote control commands are required to configure and perform amplifier measurements in a remote environment. The R&S VSE must already be set up for remote operation in a network as described in the base unit manual.

Universal functionality

Note that basic tasks that are also performed in the base unit in the same way are not described here. For a description of such tasks, see the R&S VSE User Manual. In particular, this includes:

- Managing Settings and Results, i.e. storing and loading settings and result data.
- Basic instrument configuration, e.g. checking the system configuration, customizing the screen layout, or configuring networks and remote operation.
- Using the common status registers (specific status registers for Pulse measurements are not used).

•	Introduction	145
•	Common suffixes	150
•	Selecting the application	150
•	Configuring the result display	.151
•	Performing amplifier measurements	160
•	Configuring amplifier measurements	160
•	Analyzing results	277
•	Retrieving results	308
•	Managing measurement data	356
•	Deprecated remote commands for amplifier measurements	358
•	Programming example R&S VSE-K18M	.358

5.1 Introduction

Commands are program messages that a controller (e.g. a PC) sends to the instrument or software. They operate its functions ('setting commands' or 'events') and request information ('query commands'). Some commands can only be used in one way, others work in two ways (setting and query). If not indicated otherwise, the commands can be used for settings and queries.

The syntax of a SCPI command consists of a header and, usually, one or more parameters. To use a command as a query, you have to append a question mark after the last header element, even if the command contains a parameter.

A header contains one or more keywords, separated by a colon. Header and parameters are separated by a "white space" (ASCII code 0 to 9, 11 to 32 decimal, e.g. blank). If there is more than one parameter for a command, they are separated by a comma from one another. Only the most important characteristics that you need to know when working with SCPI commands are described here. For a more complete description, refer to the user manual of the R&S VSE.

Remote command examples

Note that some remote command examples mentioned in this general introduction are possibly not supported by this particular application.

5.1.1 Conventions used in descriptions

The following conventions are used in the remote command descriptions:

• Command usage

If not specified otherwise, commands can be used both for setting and for querying parameters.

If a command can be used for setting or querying only, or if it initiates an event, the usage is stated explicitly.

• Parameter usage

If not specified otherwise, a parameter can be used to set a value and it is the result of a query.

Parameters required only for setting are indicated as **Setting parameters**. Parameters required only to refine a query are indicated as **Query parameters**. Parameters that are only returned as the result of a query are indicated as **Return values**.

• Conformity

Commands that are taken from the SCPI standard are indicated as **SCPI confirmed**. All commands used by the R&S VSE follow the SCPI syntax rules.

• Asynchronous commands

A command which does not automatically finish executing before the next command starts executing (overlapping command) is indicated as an **Asynchronous command**.

• Reset values (*RST)

Default parameter values that are used directly after resetting the instrument (*RST command) are indicated as ***RST** values, if available.

• Default unit

The default unit is used for numeric values if no other unit is provided with the parameter.

Manual operation

If the result of a remote command can also be achieved in manual operation, a link to the description is inserted.

5.1.2 Long and short form

The keywords have a long and a short form. You can use either the long or the short form, but no other abbreviations of the keywords.

The short form is emphasized in uppercase letters. Note however, that this emphasis only serves the purpose to distinguish the short from the long form in the manual. For the instrument, the case does not matter.

Example:

SENSe: FREQuency: CENTer is the same as SENS: FREQ: CENT.

5.1.3 Numeric suffixes

Some keywords have a numeric suffix if the command can be applied to multiple instances of an object. In that case, the suffix selects a particular instance (e.g. a measurement window).

Numeric suffixes are indicated by angular brackets (<n>) next to the keyword.

If you do not quote a suffix for keywords that support one, a 1 is assumed.

Example:

DISPlay[:WINDow<1...4>]:ZOOM:STATe enables the zoom in a particular measurement window, selected by the suffix at WINDow.

DISPlay:WINDow4:ZOOM:STATE ON refers to window 4.

5.1.4 Optional keywords

Some keywords are optional and are only part of the syntax because of SCPI compliance. You can include them in the header or not.

If an optional keyword has a numeric suffix and you need to use the suffix, you have to include the optional keyword. Otherwise, the suffix of the missing keyword is assumed to be the value 1.

Optional keywords are emphasized with square brackets.

Example:

Without a numeric suffix in the optional keyword:

[SENSe:]FREQuency:CENTer is the same as FREQuency:CENTer

With a numeric suffix in the optional keyword:

DISPlay[:WINDow<1...4>]:ZOOM:STATe

DISPlay: ZOOM: STATE ON enables the zoom in window 1 (no suffix).

DISPlay:WINDow4:ZOOM:STATE ON enables the zoom in window 4.

5.1.5 Alternative keywords

A vertical stroke indicates alternatives for a specific keyword. You can use both keywords to the same effect.

Example:

[SENSe:]BANDwidth|BWIDth[:RESolution]

In the short form without optional keywords, BAND 1MHZ would have the same effect as BWID 1MHZ.

5.1.6 SCPI parameters

Many commands feature one or more parameters.

If a command supports more than one parameter, they are separated by a comma.

Example:

LAYout:ADD:WINDow Spectrum, LEFT, MTABle

Parameters can have different forms of values.

•	Numeric values	148
•	Boolean	149
•	Character data	149
•	Character strings.	150
•	Block data	150

5.1.6.1 Numeric values

Numeric values can be entered in any form, i.e. with sign, decimal point or exponent. For physical quantities, you can also add the unit. If the unit is missing, the command uses the basic unit.

Example:

With unit: SENSe: FREQuency: CENTer 1GHZ

Without unit: SENSe: FREquency: CENTer 1E9 would also set a frequency of 1 GHz.

Values exceeding the resolution of the instrument are rounded up or down.

If the number you have entered is not supported (e.g. for discrete steps), the command returns an error.

Instead of a number, you can also set numeric values with a text parameter in special cases.

- MIN/MAX Defines the minimum or maximum numeric value that is supported.
- DEF

Defines the default value.

UP/DOWN

Increases or decreases the numeric value by one step. The step size depends on the setting. Sometimes, you can customize the step size with a corresponding command.

Querying numeric values

When you query numeric values, the system returns a number. For physical quantities, it applies the basic unit (e.g. Hz for frequencies). The number of digits after the decimal point depends on the type of numeric value.

Example:

Setting: SENSe: FREQuency: CENTer 1GHZ

Query: SENSe: FREQuency: CENTer? would return 1E9

Sometimes, numeric values are returned as text.

- INF/NINF Infinity or negative infinity. Represents the numeric values 9.9E37 or -9.9E37.
- NAN

Not a number. Represents the numeric value 9.91E37. NAN is returned if errors occur.

5.1.6.2 Boolean

Boolean parameters represent two states. The "on" state (logically true) is represented by "ON" or the numeric value 1. The "off" state (logically untrue) is represented by "OFF" or the numeric value 0.

Querying Boolean parameters

When you query Boolean parameters, the system returns either the value 1 ("ON") or the value 0 ("OFF").

Example:

Setting: DISPlay:WINDow:ZOOM:STATE ON Query: DISPlay:WINDow:ZOOM:STATe? would return 1

5.1.6.3 Character data

Character data follows the syntactic rules of keywords. You can enter text using a short or a long form. For more information, see Chapter 5.1.2, "Long and short form", on page 146.

Querying text parameters

When you query text parameters, the system returns its short form.

Example:

Setting: SENSe: BANDwidth: RESolution: TYPE NORMal Query: SENSe: BANDwidth: RESolution: TYPE? would return NORM

5.1.6.4 Character strings

Strings are alphanumeric characters. They have to be in straight quotation marks. You can use a single quotation mark (') or a double quotation mark (").

Example:

```
INSTRument: DELete 'Spectrum'
```

5.1.6.5 Block data

Block data is a format which is suitable for the transmission of large amounts of data.

The ASCII character # introduces the data block. The next number indicates how many of the following digits describe the length of the data block. The data bytes follow. During the transmission of these data bytes, all end or other control signs are ignored until all bytes are transmitted. #0 specifies a data block of indefinite length. The use of the indefinite format requires an NL^END message to terminate the data block. This format is useful when the length of the transmission is not known or if speed or other considerations prevent segmentation of the data into blocks of definite length.

5.2 Common suffixes

In the Amplifier measurement application, the following common suffixes are used in remote commands:

Suffix	Value range	Description
<m></m>	116	Marker
<n></n>	116	Window (in the currently selected channel)
<t></t>	16	Trace
	1 to 8	Limit line

Table 5-1: Common suffixes used in remote commands in the Amplifier measurement application

5.3 Selecting the application

SYSTem:PRESet:CHANnel[:EXEC]	C
------------------------------	---

SYSTem:PRESet:CHANnel[:EXEC]

Restores the default software settings in the current channel.

Use INST: SEL to select the channel.

Example:	INST:SEL 'Spectrum2' Selects the channel for "Spectrum2". SYST:PRES:CHAN:EXEC Restores the factory default settings to the "Spectrum2" channel.
Usage:	Event
Manual operation:	See "Preset Channel" on page 39

5.4 Configuring the result display

The commands required to configure the screen display in a remote environment are described here.

•	Global layout commands	151
•	Working with windows in the display	154
•	General window commands	159

5.4.1 Global layout commands

The following commands are required to change the evaluation type and rearrange the screen layout across measurement channels as you do in manual operation.

For compatibility with other Rohde & Schwarz Signal and Spectrum Analyzers, the layout commands described in Chapter 5.4.2, "Working with windows in the display", on page 154 are also supported. Note, however, that the commands described there only allow you to configure the layout within the *active* measurement channel.

LAYout:GLOBal:ADD[:WINDow]?	151
LAYout:GLOBal:CATalog[:WINDow]?	152
LAYout:GLOBal:IDENtify[:WINDow]?	153
LAYout:GLOBal:REMove[:WINDow]	
LAYout:GLOBal:REPLace[:WINDow]	154

LAYout:GLOBal:ADD[:WINDow]?

<ExChanName>,<ExWinName>,<Direction>,<NewChanName>,<NewWinType>

Adds a window to the display next to an existing window. The new window may belong to a different channel than the existing window.

To replace an existing window, use the LAYout:GLOBal:REPLace[:WINDow] command.

Parameters:

<ExChanName>

string Name of an existing channel

<exwinname></exwinname>	string
	Name of the existing window within the <exchanname> chan- nel the new window is inserted next to. By default, the name of a window is the same as its index. To determine the name and index of all active windows use the LAYout:GLOBal:IDENtify[:WINDow]? query.</exchanname>
<direction></direction>	LEFT RIGHt ABOVe BELow TAB
	Direction the new window is added relative to the existing win- dow.
	ТАВ
	The new window is added as a new tab in the specified existing window.
<newchanname></newchanname>	string
	Name of the channel for which a new window is to be added.
<newwintype></newwintype>	string
	Type of result display (evaluation method) you want to add. See the table below for available parameter values.
Return values:	
<newwindowname></newwindowname>	When adding a new window, the command returns its name (by default the same as its number) as a result.
Example:	LAYout:GLOBal:ADD:WINDow? 'IQ Analyzer','1',RIGH,'IQ Analyzer2','FREQ' Adds a new window named 'Spectrum' with a Spectrum display to the right of window 1 in the channel 'IQ Analyzer'.
Usage:	Query only

LAYout:GLOBal:CATalog[:WINDow]?

Queries the name and index of all active windows from top left to bottom right for each active channel. The result is a comma-separated list of values for each window, with the syntax:

<ChannelName_1>: <WindowName_1>,<WindowIndex_1>..<WindowName_n>,<WindowIndex_n>

..

<ChannelName_m>: <WindowName_1>,<WindowIndex_1>..<WindowName_n>,<WindowIndex_n>

Return values:

<channelname></channelname>	String containing the name of the channel. The channel name is displayed as the tab label for the measurement channel.
<windowname></windowname>	string
	Name of the window.
	In the default state, the name of the window is its index.

<windowindex></windowindex>	numeric value Index of the window.
Example:	LAY:GLOB:CAT? Result: IQ Analyzer: '1',1,'2',2 Analog Demod: '1',1,'4',4 For the I/Q Analyzer channel, two windows are displayed, named '2' (at the top or left), and '1' (at the bottom or right). For the Analog Demodulation channel, two windows are dis- played, named '1' (at the top or left), and '4' (at the bottom or right).
Usage:	Query only

LAYout:GLOBal:IDENtify[:WINDow]? <ChannelName>,<WindowName>

Queries the **index** of a particular display window in the specified channel.

Note: to query the **name** of a particular window, use the LAYout:WINDow<n>: IDENtify? query.

Parameters:

<channelname></channelname>	String containing the name of the channel. The channel name is displayed as the tab label for the measurement channel.
Query parameters: <windowname></windowname>	String containing the name of a window.
Return values: <windowindex></windowindex>	Index number of the window.
Example:	LAYout:GLOBal:ADD:WINDow? IQ, '1', RIGH, 'Spectrum', FREQ Adds a new window named 'Spectrum' with a Spectrum display to the right of window 1.
Example:	LAYout:GLOBal:IDENtify? 'IQ Analyzer', 'Spectrum' Result: 2 Window index is: 2.
Usage:	Query only

LAYout:GLOBal:REMove[:WINDow] <ChannelName>, <WindowName>

Setting parameters:

<ChannelName>

<WindowName>

Usage: Setting only

LAYout:GLOBal:REPLace[:WINDow] <ExChannelName>, <WindowName>, <NewChannelName>, <WindowType> Setting parameters: <ExChannelName> <WindowName>

<NewChannelName>

<WindowType>

Usage: Setting only

5.4.2 Working with windows in the display

Note that the suffix <n> always refers to the window in the currently selected channel.

The following commands are required to change the evaluation type and rearrange the screen layout for a channel as you do in manual operation. Since the available evaluation types depend on the selected application, some parameters for the following commands also depend on the selected channel.

Note that the suffix <n> always refers to the window in the currently selected channel.

To configure the layout of windows across channels, use the Chapter 5.4.1, "Global layout commands", on page 151.

LAYout:ADD[:WINDow]?	154
LAYout:CATalog[:WINDow]?	155
LAYout:IDENtify[:WINDow]?	155
LAYout:MOVE[:WINDow]	156
LAYout:REMove[:WINDow]	156
LAYout:REPLace[:WINDow]	157
LAYout:WINDow <n>:ADD?</n>	157
LAYout:WINDow <n>:IDENtify?</n>	158
LAYout:WINDow <n>:REMove</n>	158
LAYout:WINDow <n>:REPLace</n>	159

LAYout:ADD[:WINDow]? <WindowName>, <Direction>, <WindowType>

Adds a window to the display in the active channel.

Is always used as a query so that you immediately obtain the name of the new window as a result.

To replace an existing window, use the LAYout:REPLace[:WINDow] command.

Query parameters:

<windowname></windowname>	String containing the name of the existing window the new win-
	dow is inserted next to.
	By default, the name of a window is the same as its index. To
	determine the name and index of all active windows, use the
	LAYout:CATalog[:WINDow]? query.

<direction></direction>	LEFT RIGHt ABOVe BELow
	Direction the new window is added relative to the existing win- dow.
<windowtype></windowtype>	text value Type of result display (evaluation method) you want to add. See the table below for available parameter values. Note that the window type must be valid for the active channel. To create a window for a different channel, use the LAYout: GLOBal:REPLace[:WINDow] command.
Return values: <newwindowname></newwindowname>	When adding a new window, the command returns its name (by default the same as its number) as a result.
Example:	LAY:ADD? '1', LEFT, MTAB Result: '2' Adds a new window named '2' with a marker table to the left of window 1.
Usage:	Query only

LAYout:CATalog[:WINDow]?

Queries the name and index of all active windows in the active channel from top left to bottom right. The result is a comma-separated list of values for each window, with the syntax:

<WindowName_1>,<WindowIndex_1>..<WindowName_n>,<WindowIndex_n>

To query the name and index of all windows in all channels, use the LAYout:GLOBal: CATalog[:WINDow]? command.

Return values:

<windowname></windowname>	string
	Name of the window. In the default state, the name of the window is its index.
<windowindex></windowindex>	numeric value Index of the window.
Example:	LAY:CAT? Result: '2',2,'1',1 Two windows are displayed, named '2' (at the top or left), and '1' (at the bottom or right).
Usage:	Query only

LAYout:IDENtify[:WINDow]? < WindowName>

Queries the **index** of a particular display window in the active channel.

Note: to query the **name** of a particular window, use the LAYout:WINDow<n>: IDENtify? query.

To query the index of a window in a different channel, use the LAYout:GLOBal: IDENtify[:WINDow]? command.

Query parameters:

<windowname></windowname>	String containing the name of a window.
Return values: <windowindex></windowindex>	Index number of the window.
Example:	LAY: IDEN: WIND? '2' Queries the index of the result display named '2'. Response: 2
Usage:	Query only

LAYout:MOVE[:WINDow] <WindowName>, <WindowName>, <Direction>

Setting parameters:	
<windowname></windowname>	String containing the name of an existing window that is to be moved.
	By default, the name of a window is the same as its index. To determine the name and index of all active windows in the active channel, use the LAYout:CATalog[:WINDow]? query.
<windowname></windowname>	String containing the name of an existing window the selected window is placed next to or replaces. By default, the name of a window is the same as its index. To determine the name and index of all active windows in the active channel, use the LAYOUT:CATAlog[:WINDow]? query.
<direction></direction>	LEFT RIGHt ABOVe BELow REPLace Destination the selected window is moved to, relative to the ref- erence window.
Example:	LAY:MOVE '4', '1', LEFT Moves the window named '4' to the left of window 1.
Example:	LAY:MOVE '1', '3', REPL Replaces the window named '3' by window 1. Window 3 is deleted.
Usage:	Setting only

LAYout:REMove[:WINDow] <WindowName>

Removes a window from the display in the active channel.

Setting parameters:

<WindowName> String containing the name of the window. In the default state, the name of the window is its index.

Example:	LAY:REM '2'
	Removes the result display in the window named '2'.
Usage:	Setting only

LAYout:REPLace[:WINDow] <WindowName>,<WindowType>

Replaces the window type (for example from "Diagram" to "Result Summary") of an already existing window in the active channel while keeping its position, index and window name.

To add a new window, use the LAYout: ADD[:WINDow]? command.

Setting parameters:	
<windowname></windowname>	String containing the name of the existing window. By default, the name of a window is the same as its index. To determine the name and index of all active windows in the active channel, use the LAYout:CATalog[:WINDow]? query.
<windowtype></windowtype>	Type of result display you want to use in the existing window. See LAYout:ADD[:WINDow]? on page 154 for a list of available window types. Note that the window type must be valid for the active channel. To create a window for a different channel, use the LAYout: GLOBal:REPLace[:WINDow] command.
Example:	LAY:REPL:WIND '1', MTAB Replaces the result display in window 1 with a marker table.
Usage:	Setting only

LAYout:WINDow<n>:ADD? <Direction>,<WindowType>

Adds a measurement window to the display. Note that with this command, the suffix <n> determines the existing window next to which the new window is added. Unlike LAYout:ADD[:WINDow]?, for which the existing window is defined by a parameter.

To replace an existing window, use the LAYout:WINDow<n>:REPLace command.

Is always used as a query so that you immediately obtain the name of the new window as a result.

Suffix: <n></n>	Window
Query parameters: <direction></direction>	LEFT RIGHt ABOVe BELow
<windowtype></windowtype>	Type of measurement window you want to add. See LAYout:ADD[:WINDow]? on page 154 for a list of available window types. Note that the window type must be valid for the active channel. To create a window for a different channel, use the LAYout: GLOBal:ADD[:WINDow]? command.

Return values: <newwindowname></newwindowname>	When adding a new window, the command returns its name (by default the same as its number) as a result.
Example:	LAY:WIND1:ADD? LEFT,MTAB Result: '2' Adds a new window named '2' with a marker table to the left of window 1.
Usage:	Query only

LAYout:WINDow<n>:IDENtify?

Queries the **name** of a particular display window (indicated by the <n> suffix) in the active channel.

Note: to query the **index** of a particular window, use the LAYout:IDENtify[: WINDow]? command.

Suffix:

<n></n>	Window
Return values: <windowname></windowname>	String containing the name of a window. In the default state, the name of the window is its index.
Example:	LAY:WIND2:IDEN? Queries the name of the result display in window 2. Response: '2'
Usage:	Query only

LAYout:WINDow<n>:REMove

Removes the window specified by the suffix <n> from the display in the active channel.

The result of this command is identical to the LAYout:REMove[:WINDow] command.

To remove a window in a different channel, use the LAYout:GLOBal:REMove[: WINDow] command.

Suffix:	
<n></n>	Window
Example:	LAY:WIND2:REM Removes the result display in window 2.
Usage:	Event

LAYout:WINDow<n>:REPLace <WindowType>

Changes the window type of an existing window (specified by the suffix <n>) in the active channel.

The effect of this command is identical to the LAYout:REPLace[:WINDow] command.

To add a new window, use the LAYout:WINDow<n>:ADD? command.

Suffix: <n></n>	Window
Setting parameters:	
<windowtype></windowtype>	Type of measurement window you want to replace another one with.
	See <code>LAYout:ADD[:WINDow]</code> ? on page 154 for a list of availa-
	ble window types.
	Note that the window type must be valid for the active channel. To create a window for a different channel, use the LAYout:
	GLOBal:REPLace[:WINDow] command.
Example:	LAY:WIND2:REPL MTAB
	Replaces the result display in window 2 with a marker table.
Usage:	Setting only

5.4.3 General window commands

The following commands are required to work with windows, independently of the application.

Note that the suffix <n> always refers to the window *in the currently selected measurement channel.*

DISPlay:FORMat <Format>

Determines which tab is displayed.

Parameters:

<Format>

Displays the MultiView tab with an overview of all active channels

SINGle

DISP:FORM SPL

SPLit

Displays the measurement channel that was previously focused. *RST: SING

Example:

5.5 Performing amplifier measurements

• Ac	tivating Amplifier	measurements	160
------	--------------------	--------------	-----

5.5.1 Activating Amplifier measurements

Amplifier measurements require a special application in the R&S VSE. The common commands for configuring and controlling measurement channels, as well as blocks and sequences, are also used in the Amplifier measurement application.

They are described in the R&S VSE base software user manual.

5.6 Configuring amplifier measurements

٠	Designing a reference signal	160
•	Power sensor measurements	175
•	Configuring data input	
•	Configuring the frequency	
•	Defining level characteristics	
•	Controlling a signal generator	
•	Configuring the data capture	221
•	Sweep configuration	
•	Synchronizing measurement data	
•	Defining the evaluation range	
•	Estimating and compensating signal errors	
•	Applying a system model	
•	Applying digital predistortion	
•	Detailed MSE	
•	Configuring envelope tracking	
•	Configuring ACLR measurements	
•	Configuring power measurements	
•	Configuring parameter sweeps	
•	Configuring power servoing.	
•	Frequency domain measurements	

5.6.1 Designing a reference signal

CONFigure:REFSignal:CGW:AMODe[:STATe]	. 161
CONFigure:REFSignal:CGW:LEDState?	. 162
CONFigure:REFSignal:CGW:READ.	.162
CONFigure:REFSignal:CWF:DPIPower	.162
CONFigure:REFSignal:CWF:FPATh	.163
CONFigure:REFSignal:CWF:LEDState?	163
CONFigure:REFSignal:CWF:WRITe	
CONFigure:REFSignal:GOS:BWIDth	. 164
CONFigure:REFSignal:GOS:CRESt	

Configuring amplifier measurements

CONFigure:REFSignal:GOS:DCYCle	164
CONFigure:REFSignal:GOS:FPATh	
CONFigure:REFSignal:GOS:LEDState?	
CONFigure:REFSignal:GOS:NPOSition	166
CONFigure:REFSignal:GOS:NWIDth	
CONFigure:REFSignal:GOS:PATH	166
CONFigure:REFSignal:GOS:RLENgth	166
CONFigure:REFSignal:GOS:SLENgth	167
CONFigure:REFSignal:GOS:SRATe	167
CONFigure:REFSignal:GOS:WNAMe	167
CONFigure:REFSignal:GOS:WRITe	167
CONFigure:REFSignal:SEGMent	168
CONFigure:REFSignal:SINFo:FPATh?	
CONFigure:REFSignal:SINFo:SLENgth?	168
CONFigure:REFSignal:SINFo:SRATe?	
CONFigure:REFSignal:SINFo:CFACtor?	169
CONFigure:REFSignal:SINFo:OBW?	
CONFigure:CFReduction[:STATe]	170
CONFigure:CFReduction[:STATe]:LEDState?	170
CONFigure:CFReduction:SBANdwidth	
CONFigure:CFReduction:SBANdwidth:AUTO	170
CONFigure:CFReduction:SBANdwidth:LEDState?	170
CONFigure:CFReduction:RSORignal	
CONFigure:CFReduction:ITERations	171
CONFigure:CFReduction:ITERations:LEDState?	171
CONFigure:CFReduction:FILTer	171
CONFigure:CFReduction:FILTer:LEDState?	171
CONFigure:CFReduction:CSPacing	172
CONFigure:CFReduction:CSPacing:AUTO	
CONFigure:CFReduction:CSPacing:LEDState?	172
CONFigure:CFReduction:CFDelta	172
CONFigure:CFReduction:CFDelta:LEDState?	173
CONFigure:CFReduction:CCFactor?	173
CONFigure:CFReduction:APPLy	173
CONFigure:CFReduction:APPLy:LEDState?	173
CONFigure:CFReduction:READ	
CONFigure:CFReduction:READ:LEDState?	174
CONFigure:CFReduction:MFORder	
CONFigure:CFReduction:MFORder:LEDState?	174
CONFigure:CFReduction:PFRequency	174
CONFigure:CFReduction:PFRequency:LEDState?	175
CONFigure:CFReduction:SFRequency	175
CONFigure:CFReduction:SFRequency:LEDState?	

CONFigure:REFSignal:CGW:AMODe[:STATe] <State>

Sets and queries the "Force ARB Mode" setting.

Parameters:

<State> ON | OFF | 1 | 0

Example:	CONFigure:REFSignal:CGW:AMODe:STAT ON
Manual operation:	See "Designing a reference signal on a signal generator"
	on page 42

CONFigure:REFSignal:CGW:LEDState?

This command queries the processing state of the reference signal generation if the reference signal was designed on a signal generator.

Prerequisites for this command

Configure reference signal on a signal generator.

Return values:	
<state></state>	GREenReference signal was successfully generated and loaded into the application.GREYUnknown processing state.REDReference signal was not successfully generated or loaded into the application.
Example:	CONF:REFS:CGW:READ CONF:REFS:CGW:LEDS? would return, e.g. GRE
Usage:	Query only
Manual operation:	See "Designing a reference signal on a signal generator" on page 42

CONFigure:REFSignal:CGW:READ

This command transfers a reference signal designed on a signal generator into the R&S VSE-K18.

Example:	//Import reference signal data from the generator CONF:REFS:CGW:READ
Usage:	Event
Manual operation:	See "Designing a reference signal on a signal generator" on page 42

CONFigure:REFSignal:CWF:DPIPower < Power>

This command defines the peak input power of the DUT.

Prerequisites for this command

Generate reference signal with a waveform file

Parameters:	
<power></power>	<numeric value=""></numeric>
	Default unit: dBm
Example:	<pre>//Define DUT input power CONF:REFS:CWF:ETG OFF CONF:REFS:CWF:DPIP 3</pre>
Manual operation:	See "Designing a reference signal in a waveform file" on page 44

CONFigure:REFSignal:CWF:FPATh <FileName>

This command selects a waveform file containing a reference signal.

Parameters: <filename></filename>	String containing the name and path to the waveform file.
Example:	//Select a waveform file CONF:REFS:CWF:FPAT 'C:\RefSignal.wv'
Manual operation:	See "Designing a reference signal in a waveform file" on page 44

CONFigure:REFSignal:CWF:LEDState?

This command queries the processing status of a reference signal generated with a waveform file.

Available when you generate the reference signal with a waveform file.

Return values: <state></state>	GREen The reference signal was successfully loaded into the applica- tion. GREY Unknown processing state. RED The reference signal could not have been loaded into the appli- cation.
Example:	CONF:REFS:CWF:FPAT 'C:\RefSignal.wv' CONF:REFS:CWF:WRITE CONF:REFS:CWF:LEDS? would return, e.g. GRE
Usage:	Query only
Manual operation:	See "Designing a reference signal in a waveform file" on page 44

CONFigure:REFSignal:CWF:WRITe

This command loads a reference signal based on a waveform file into the application.

Make sure to synchronize with ***OPC?** or ***WAI** to make sure that the command was successfully applied on the generator before sending the next command.

Example:	<pre>//Load the reference signal into the application and, if the feature has been turned on, transfer the reference signal to the genera- tor CONF:REFS:CWF:FPAT 'C:\RefSignal.wv'; CONF:REFS:CWF:WRITE;*WAI</pre>
Usage:	Event
Manual operation:	See "Designing a reference signal in a waveform file" on page 44

CONFigure:REFSignal:GOS:BWIDth <Bandwidth>

This command defines the bandwidth of the internally generated reference signal.

Parameters:	
<bandwidth></bandwidth>	<numeric value=""></numeric>
	Default unit: Hz
Example:	//Define reference signal bandwidth CONF:REFS:GOS:BWID 10MHZ
Manual operation:	See "Signal Bandwidth" on page 46

CONFigure:REFSignal:GOS:CRESt <CrestFactor>

This command defines the crest factor of the internally generated reference signal.

Parameters:	
<crestfactor></crestfactor>	<numeric value=""></numeric>
	Default unit: dB
Example:	//Define crest factor
	CONF:REFS:GOS:CRES 15
Manual operation:	See "Target Crest Factor" on page 47

CONFigure:REFSignal:GOS:DCYCle <DutyCycle>

This command defines the duty cycle of an internally generated pulsed reference signal.

Parameters:

<DutyCycle>

<numeric value> Default unit: %

Configuring amplifier measurements

Example:	//Define duty cycle
	CONF:REFS:GOS:DCYC 75

Manual operation: See "Pulse Duty Cycle" on page 46

CONFigure:REFSignal:GOS:FPATh <FilePath>

Defines the name and path of the user-defined reference waveform file when loaded to the analyzer.

Parameters:

<filepath></filepath>	String containing the path and name of the file.
Example:	<pre>//Generator control disabled //Define waveform file name and path on the analyzer CONF:REFS:GOS:FPATh 'C:\RefSignal.wv' //Create waveform file on generator and load it to analyzer in specified path CONE:REFS:COS:WDIT</pre>
	Select the waveform file containing the reference signal CONF:REFS:CWF:FPAT 'C:\RefSignal.wv' //Load waveform file to analyzer in specified path CONF:REFS:CWF:WRITE;*WAI

CONFigure:REFSignal:GOS:LEDState?

This command queries the processing status of an internally generated reference signal.

Available when you configure the reference signal within the R&S VSE-K18.

Return values:	
<state></state>	GREen Generation of the internally generated reference signal was successful. Transmission of the waveform file to the signal generator was also successful.
	GREY Unknown transmission state. RED Generation and / or transmission of the internally generated ref- erence signal was not successful.
Example:	CONF:REFS:GOS:WRITE CONF:REFS:GOS:LEDS? would return, e.g. GRE
Usage:	Query only
Manual operation:	See "Designing a reference signal within the R&S VSE-K18" on page 45

CONFigure:REFSignal:GOS:NPOSition <Frequency>

This command defines the offset of a notch relative to the center frequency in the internally generated reference signal.

Parameters:

<frequency></frequency>	<numeric value=""></numeric>	
	Default unit: Hz	
Example:	//Define a notch offset	
	CONF:REFS:GOS:NPOS	10000
Manual operation:	See "Notch Position" on	bage 48

CONFigure:REFSignal:GOS:NWIDth <Frequency>

This command defines the notch width of an internally generated reference signal.

Parameters:		
<frequency></frequency>	<numeric value=""></numeric>	
	Default unit: Hz	
Example:	//Define notch width	
	CONF:REFS:GOS:NWID	150000
Manual operation:	See "Notch Width" on page	ge 47

CONFigure:REFSignal:GOS:PATH <FileName>

Defines the path to load user-defined reference waveform files to. If you do not specify
a path, the file is loaded to
C:\ProgramData\Rohde-Schwarz\VSE\<version_no>\user\K18\
ReferenceFiles.

Parameters:

<filename></filename>	String containing the path of the file.
Example:	//Enable generator control
	CONF:GEN:CONT ON
	//Define waveform file name
	CONFigure:REFSignal:GOS:WNAMe `RefFile'
	//Define storage location for waveform file on analyzer after load-
	ing
	CONF:REFS:GOS:PATH 'c:\user\'
	//Create waveform file on generator and load it to analyzer in
	specified path
	CONFigure:REFSignal:GOS:WRIT

CONFigure:REFSignal:GOS:RLENgth <Samples>

This command defines the ramp length of an internally generated pulsed reference signal.

Parameters:	
<samples></samples>	<numeric value="">: (integer only)</numeric>
	Number of samples on each side of the pulse (= ramp length).
	Default unit: Samples
Example:	//Define ramp length CONF:REFS:GOS:RLEN 5
Manual operation:	See "Ramp Length" on page 47

CONFigure:REFSignal:GOS:SLENgth <Samples>

This command defines the length of the internally generated reference signal.

Parameters:	
<samples></samples>	<numeric value="">: (integer only)</numeric>
	Default unit: Samples
Example:	//Define reference signal size CONF:REFS:GOS:SLEN 1024
Manual operation:	See "Signal Length" on page 47

CONFigure:REFSignal:GOS:SRATe <SampleRate>

This command defines the clock (or sample) rate of the internally generated reference signal.

Da	ra	m	nt	0	re	
гα	Ia		eι	C	3	•

<samplerate></samplerate>	<numeric value=""></numeric>	
	Default unit: Hz	
Example:	//Defines sample rate	
	CONF:REFS:GOS:SRAT	20000000

CONFigure:REFSignal:GOS:WNAMe <FileName>

This command defines a file name for the waveform of the reference signal.

Parameters: <filename></filename>	String containing the name of the waveform file The file extension (.wv) is added automatically.
Example:	//Define name for the waveform file CONF:REFS:GOS:WNAM 'RefSignal'
Manual operation:	See "Waveform File Name" on page 47

CONFigure:REFSignal:GOS:WRITe

This command internally generates the reference signal based on the signal characteristics that you have defined. The waveform file that has been created is loaded into the DSP of the R&S VSE-K18 and is additionally transferred into the ARB of the signal generator.

Make sure to synchronize with *OPC? or *WAI to make sure that the command was successfully applied on the generator before sending the next command.

Example:	<pre>//Generate the reference signal and transfer it into the R&S VSE-K18. In addition, the waveform file that has been cre- ated is transferred into the signal generator. CONF:REFS:GOS:WRIT;*WAI</pre>
Usage:	Event
Manual operation:	See "Designing a reference signal within the R&S VSE-K18" on page 45

CONFigure:REFSignal:SEGMent <Segment>

This command selects the segment of the reference signal that should be used in the measurement when the reference signal is based on a multi segment waveform file.

Parameters:			
<segment></segment>	<numeric value="">: (integer only)</numeric>		
	Range:	Depends on the number of segments in the wave- form file.	
	*RST:	0	
Example:	//Select a se	egment S:SEGM 3	
Manual operation:	See "Using	multi-segment waveform files" on page 41	

CONFigure:REFSignal:SINFo:FPATh?

This command queries the file name and location of the currently used reference signal.

Return values: <filename></filename>	String containing the file name and location of the file.
Example:	CONF:REFS:SINF:FPAT? would return, e.g. C:\waveform.wv
Usage:	Query only
Manual operation:	See "Reference signal information" on page 40

CONFigure:REFSignal:SINFo:SLENgth?

This command queries the sample length of the currently used reference signal.

Return values: <samples></samples>	<numeric value="">: (integer only) Default unit: Samples</numeric>
Example:	CONF:REFS:SINF:SLEN? would return, e.g. 40000
Usage:	Query only
Manual operation:	See "Reference signal information" on page 40

CONFigure:REFSignal:SINFo:SRATe?

This command queries the sample rate of the currently used reference signal.

Return values: <samplerate></samplerate>	<numeric value=""> Default unit: Hz</numeric>
Example:	CONF:REFS:SINF:SRAT? would return, e.g. 32000000
Usage:	Query only
Manual operation:	See "Reference signal information" on page 40

CONFigure:REFSignal:SINFo:CFACtor?

Returns the crest factor of the reference signal.

Return values: <crestfactor></crestfactor>	<numeric value=""></numeric>
Example:	CONFigure:REFSignal:SINFo:CFACtor?
Usage:	Query only
Manual operation:	See "Reference signal information" on page 40

CONFigure:REFSignal:SINFo:OBW?

Returns the occupied bandwidth of the reference signal.

Return values: <bandwidth></bandwidth>	<numeric value=""></numeric>
Example:	CONFigure:REFSignal:SINFo:OBW?
Usage:	Query only
Manual operation:	See "Reference signal information" on page 40

CONFigure:CFReduction[:STATe] <State>

Enables the crest factor reduction calculation.

Parameters: <State>

- ----

Example: CONFigure:CFR ON

Manual operation: See "Crest Factor Reduction State" on page 49

CONFigure:CFReduction[:STATe]:LEDState?

Reads the LED status of the crest factor reduction calculation.

Return values: <state></state>	GREY RED GREen
Example:	CONFigure:CFReduction:STATe:LEDState
Usage:	Query only
Manual operation:	See "Crest Factor Reduction State" on page 49

CONFigure:CFReduction:SBANdwidth <Time>

Sets and queries the signal bandwidth.

Parameters:		
<time></time>	<numeric value=""></numeric>	
	Default unit: Hz	
Example:	CONF:CFR:SBAN	10MHz
Manual operation:	See "Signal Bandy	width" on page 50

CONFigure:CFReduction:SBANdwidth:AUTO <State>

Sets and queries the signal bandwidth mode.

Parameters:

<State>

Example:

CONFigure:CFReduction:SBANdwidth:AUTO ON

Manual operation: See "Signal Bandwidth" on page 50

CONFigure:CFReduction:SBANdwidth:LEDState?

Reads the LED status of the signal bandwith.

Return values:	
<state></state>	GREY RED GREen
Example:	CONFigure:CFReduction:SBANdwidth:LEDState

Configuring amplifier measurements

Usage:	Query only
Manual operation:	See "Signal Bandwidth" on page 50

CONFigure:CFReduction:RSORignal <State>

Switches the EVM reference signal.

Parameters: <State>

Example: CONFigure:CFReduction:RSORignal ON

Manual operation: See "EVM Ref. Signal" on page 49

CONFigure:CFReduction:ITERations < Iterations>

Sets and queries the crest factor reduction maximum iterations.

Manual operation:	See "Max Iterations" on page 49	
Example:	CONFigure:CFReduction:ITERations	2
<pre>Parameters: <iterations></iterations></pre>	<numeric value=""></numeric>	

CONFigure:CFReduction:ITERations:LEDState?

Reads the LED status of the crest factor reduction maximum iterations.

Return values: <state></state>	GREY RED GREen
Example:	CONFigure:CFReduction:ITERations:LEDState
Usage:	Query only
Manual operation:	See "Max Iterations" on page 49

CONFigure:CFReduction:FILTer <FilterMode>

Selects simple or enhanced filter mode for crest factor reduction.

Parameters:		
<filtermode></filtermode>	SIMPle ENHanced	
Example:	CONFigure:CFReduction:FILTer E	NH
Manual operation:	See "Filter Mode" on page 49	

CONFigure:CFReduction:FILTer:LEDState?

Reads the LED status of crest factor reduction filter mode.

Return values: <state></state>	GREY RED GREen
Example:	CONFigure:CFReduction:FILTer:LEDState
Usage:	Query only
Manual operation:	See "Filter Mode" on page 49

CONFigure:CFReduction:CSPacing <Time>

Sets and queries the crest factor reduction channel spacing.

Parameters:	
<time></time>	<numeric value=""></numeric>
	Default unit: Hz
Example:	CONF:CFR:CSP 10MHz
Manual operation:	See "Channel Spacing" on page 50

CONFigure:CFReduction:CSPacing:AUTO <State>

Sets and queries the crest factor reduction channel spacing mode.

Parameters: <State> Example: CONFigure:CFReduction:CSPacing:AUTO ON Manual operation: See "Channel Spacing" on page 50

CONFigure:CFReduction:CSPacing:LEDState?

Reads the LED status of the crest factor reduction channel spacing.

Return values: <state></state>	GREY RED GREen
Example:	CONFigure:CFReduction:CSPacing:LEDState
Usage:	Query only
Manual operation:	See "Channel Spacing" on page 50

CONFigure:CFReduction:CFDelta <CFDelta>

Sets the value difference by which you want to change the crest factor.

Parameters: <cfdelta></cfdelta>	<numeric value=""></numeric>	
	Default unit: dB	
Example:	CONFigure:CFReduction:CFDelta	10

_

Manual operation: See "Crest Factor Delta" on page 49

CONFigure:CFReduction:CFDelta:LEDState?

Reads the LED status of the crest factor delta.

Return values:	
<state></state>	GREY RED GREen
Example:	CONFigure:CFReduction:CFDelta:LEDState
Usage:	Query only
Manual operation:	See "Crest Factor Delta" on page 49

CONFigure:CFReduction:CCFactor?

Queries the crest factor of the waveform after the calculation of the resulting crest factor is completed.

Return values:
<CCF>Example:CONFigure:CFReduction:CCFactor?Usage:Query onlyManual operation:See "Current Crest Factor" on page 49

CONFigure:CFReduction:APPLy

Applies crest factor reduction on the connected signal generator.

Only available for backward compatibility, use CONFigure:CFReduction:READ on page 174 instead.

Example: CONFigure:CFReduction:APPLy

Usage: Event

CONFigure:CFReduction:APPLy:LEDState?

Reads the LED status of crest factor reduction apply on the connected signal generator.

Only available for backward compatibility, use CONFigure:CFReduction:READ: LEDState? on page 174 instead.

Return values:

<state></state>	GREY RED GREen
Example:	CONFigure:CFReduction:APPLy:LEDState
Usage:	Query only

CONFigure:CFReduction:READ

Applies crest factor reduction on the connected signal generator.

Example: CONFigure:CFReduction:READ

Usage: Event

Manual operation: See "Read CFR from Generator, Load" on page 50

CONFigure:CFReduction:READ:LEDState?

Reads the LED status of crest factor reduction apply on the connected signal generator.

Return values:

<state></state>	GREY RED GREen
Example:	CONFigure:CFReduction:READ:LEDState
Usage:	Query only
Manual operation:	See "Read CFR from Generator, Load" on page 50

CONFigure:CFReduction:MFORder < MaximumFilterOrder>

Sets and queries the maximum filter order for crest factor reduction.

Parameters:

Any Content of the second se

Example: CONF:CFR:MFOR 100

Manual operation: See "Maximum Filter Order" on page 50

CONFigure:CFReduction:MFORder:LEDState?

Reads the LED status of crest factor reduction maximum filter order.

e
t

CONFigure:CFReduction:PFRequency <Time>

Sets and queries the passband frequency for crest factor reduction.

Parameters:

<Time>

numeric value Default unit: Hz

Configuring amplifier measurements

Example:	CONF:CFR:PFR 10MHz
Manual operation:	See "Passband Frequency" on page 50

CONFigure:CFReduction:PFRequency:LEDState?

Reads the LED status of crest factor reduction passband frequency.

Return values:	
<state></state>	GREY RED GREen
Example:	CONFigure:CFReduction:PFRequency:LEDState
Usage:	Query only
Manual operation:	See "Passband Frequency" on page 50

CONFigure:CFReduction:SFRequency <Time>

Sets and queries the stopband frequency for crest factor reduction.

Parameters:	
<time></time>	numeric value
	Default unit: Hz
Example:	CONF:CFR:SFR 10MHz
Manual operation:	See "Stopband Frequency" on page 50

CONFigure:CFReduction:SFRequency:LEDState?

Reads the LED status of crest factor reduction stopband frequency.

Return values:	
<slale></slale>	GRETIREDIGREEN
Example:	CONFigure:CFReduction:SFRequency:LEDState
Usage:	Query only
Manual operation:	See "Stopband Frequency" on page 50

5.6.2 Power sensor measurements

The following commands describe how to work with power sensors.

These commands require the use of a Rohde & Schwarz power sensor. For a list of supported sensors, see the data sheet.

•	Configuring	power sensor	measurements	17	76)
---	-------------	--------------	--------------	----	----	---

Configuring amplifier measurements

5.6.2.1 Configuring power sensor measurements

SYSTem:COMMunicate:RDEVice:PMETer:CONFigure:AUTO[:STATe]	176
SYSTem:COMMunicate:RDEVice:PMETer:COUNt?	176
SYSTem:COMMunicate:RDEVice:PMETer:DEFine	177
CALibration:PMETer:ZERO:AUTO ONCE	177
CALCulate <n>:PMETer:RELative[:MAGNitude]</n>	178
CALCulate <n>:PMETer:RELative[:MAGNitude]:AUTO ONCE</n>	178
CALCulate <n>:PMETer:RELative:STATe</n>	178
FETCh:PMETer?	179
READ:PMETer?	179
[SENSe:]PMETer:DCYCle[:STATe]	179
[SENSe:]PMETer:DCYCle:VALue	179
[SENSe:]PMETer:FREQuency	180
[SENSe:]PMETer:FREQuency:LINK	180
[SENSe:]PMETer:MTIMe	181
[SENSe:]PMETer:MTIMe:AVERage:COUNt	181
[SENSe:]PMETer:MTIMe:AVERage[:STATe]	181
[SENSe:]PMETer:ROFFset[:STATe]	182
[SENSe:]PMETer:SOFFset	182
[SENSe:]PMETer[:STATe]	182
[SENSe:]PMETer:LEVel:CORRection:APPLy	183
CALCulate:PMETer:LEVel:CORRection	183
TRIGger[:SEQuence]:SOURce	183
TRIGger[:SEQuence]:LEVel:MAPower	184
UNIT <n>:PMETer:POWer</n>	184
UNIT <n>:PMETer:POWer:RATio</n>	184

SYSTem:COMMunicate:RDEVice:PMETer:CONFigure:AUTO[:STATe] <State>

Turns automatic assignment of a power sensor to the power sensor index on and off.

Power sensor index	
ON OFF 0 1 *RST: 1	
SYST:COMM:RDEV:PMET:CONF:AUTO	OFF
See "Select" on page 64	
	Power sensor index ON OFF 0 1 *RST: 1 SYST: COMM: RDEV: PMET: CONF: AUTO See "Select" on page 64

SYSTem:COMMunicate:RDEVice:PMETer:COUNt?

Queries the number of power sensors currently connected to the R&S VSE.

Suffix:

Power sensor index

Return values:

<NumberSensors> Number of connected power sensors.

Example:	SYST:COMM:RDEV:PMET:COUN?
Usage:	Query only
Manual operation:	See "Select" on page 64

SYSTem:COMMunicate:RDEVice:PMETer:DEFine <Placeholder>, <Type>, <Interface>, <SerialNo>

Assigns the power sensor with the specified serial number to the selected power sensor index (configuration).

The query returns the power sensor type and serial number of the sensor assigned to the specified index.

Suffix:	
	Power sensor index
Parameters: <placeholder></placeholder>	Currently not used
<type></type>	Detected power sensor type, e.g. "NRP-Z81".
<interface></interface>	Interface the power sensor is connected to; always "USB"
<serialno></serialno>	Serial number of the power sensor assigned to the specified index
Example:	SYST:COMM:RDEV:PMET2:DEF '', 'NRP-Z81', '', '123456' Assigns the power sensor with the serial number '123456' to the configuration "Power Sensor 2". SYST:COMM:RDEV:PMET2:DEF? Queries the sensor assigned to "Power Sensor 2". Result: '', 'NRP-Z81', 'USB', '123456' The NRP-Z81 power sensor with the serial number '123456' is assigned to the "Power Sensor 2".
Manual operation:	See "Select" on page 64

CALibration:PMETer:ZERO:AUTO ONCE

Zeroes the power sensor.

Note that you have to disconnect the signals from the power sensor input before you start to zero the power sensor. Otherwise, results are invalid.

Suffix:	Power sensor index
Example:	CAL: PMET2: ZERO: AUTO ONCE; *WAI Starts zeroing the power sensor 2 and delays the execution of further commands until zeroing is concluded.
Usage:	Event

Manual operation: See "Zeroing Power Sensor " on page 64

CALCulate<n>:PMETer:RELative[:MAGNitude] <RefValue>

Defines the reference value for relative measurements.

Suffix: <n></n>	Window	
	Power sense	or index
Parameters: <refvalue></refvalue>	Range: *RST: Default unit:	-200 dBm to 200 dBm 0 DBM
Example:	CALC: PMET2: REL -30 Sets the reference value for relative measurements to -30 dBm for power sensor 2.	
Manual operation:	See "Refere	nce Value " on page 65

CALCulate<n>:PMETer:RELative[:MAGNitude]:AUTO ONCE

Sets the current measurement result as the reference level for relative measurements.

Window
Power sensor index
CALC: PMET2: REL: AUTO ONCE Takes the current measurement value as reference value for rel- ative measurements for power sensor 2.
Event
See "Setting the Reference Level from the Measurement Meas - > Ref " on page 65

CALCulate<n>:PMETer:RELative:STATe <State>

Turns relative power sensor measurements on and off.

Suffix:	
<n></n>	Window
	Power sensor index
Parameters:	
<state></state>	ON OFF 0 1
	OFF 0
	Switches the function off

	ON 1 Switches the function on
Example:	CALC: PMET2: REL: STAT ON Activates the relative display of the measured value for power sensor 2.

FETCh:PMETer?

Queries the results of power sensor measurements.

Suffix:	
	Power sensor index
Usage:	Query only

READ:PMETer?

Initiates a power sensor measurement and queries the results.

Suffix:	
	Power sensor index
Usage:	Query only

[SENSe:]PMETer:DCYCle[:STATe] <State>

Turns the duty cycle correction on and off.

Suffix:	Power sensor index	
Parameters: <state></state>	ON OFF 0 1 OFF 0 Switches the function off ON 1	
	Switches the function on	
Example:	PMET2:DCYC:STAT ON	
Manual operation:	See "Duty Cycle " on page 66	

[SENSe:]PMETer:DCYCle:VALue <Percentage>

Defines the duty cycle for the correction of pulse signals.

The power sensor uses the duty cycle in combination with the mean power to calculate the power of the pulse.

Suffix:

Power sensor

Configuring amplifier measurements

Parameters: <percentage></percentage>	Range: *RST: Default unit:	0.001 to 99.999 99.999 : %
Example:	PMET2:DCYC:STAT ON Activates the duty cycle correction. PMET2:DCYC:VAL 0.5 Sets the correction value to 0.5%.	
Manual operation:	See "Duty C	Cycle " on page 66

[SENSe:]PMETer:FREQuency <Frequency>

Defines the frequency of the power sensor.

Suffix:	Power sensor index
Parameters:	
<frequency></frequency>	The available value range is specified in the data sheet of the power sensor in use.
	*RST: 50 MHz Default unit: HZ
Example:	PMET2:FREQ 1GHZ Sets the frequency of the power sensor to 1 GHz.
Manual operation:	See "Frequency Manual " on page 64

[SENSe:]PMETer:FREQuency:LINK <Coupling>

Selects the frequency coupling for power sensor measurements.

Suffix:	
	Power sensor index
Parameters: <coupling></coupling>	CENTer Couples the frequency to the center frequency of the analyzer
	MARKer1 Couples the frequency to the position of marker 1 OFF Switches the frequency coupling off *RST: CENTer
Example:	PMET2:FREQ:LINK CENT Couples the frequency to the center frequency of the analyzer
Manual operation:	See "Frequency Coupling " on page 64
[SENSe:]PMETer:I	MTIMe <duration></duration>
------------------	-----------------------------
------------------	-----------------------------

Selects the duration of power sensor measurements.

Suffix:	Power sensor index	
Parameters: <duration></duration>	SHORt NORMal LONG *RST: NORMal	
Example:	PMET2:MTIM SHOR Sets a short measurement duration for measurements of station ary high power signals for the selected power sensor.	
Manual operation:	See "Meas Time/Average " on page 65	

[SENSe:]PMETer:MTIMe:AVERage:COUNt <NumberReadings>

Sets the number of power readings included in the averaging process of power sensor measurements.

Extended averaging yields more stable results for power sensor measurements, especially for measurements on signals with a low power, because it minimizes the effects of noise.

	Power sensor index	
Parameters: <numberreadings></numberreadings>	An average count of 0 or 1 performs one power reading. Range: 0 to 256 Increment: binary steps (1, 2, 4, 8,)	
Example:	PMET2:MTIM:AVER ON Activates manual averaging. PMET2:MTIM:AVER:COUN 8 Sets the number of readings to 8.	
Manual operation:	See "Average Count (Number of Readings)" on page 66	

[SENSe:]PMETer:MTIMe:AVERage[:STATe] <State>

Turns averaging for power sensor measurements on and off.

Suffix:	Power sensor index
Parameters: <state></state>	ON OFF 0 1
	OFF 0 Switches the function off

Suffix:

	ON 1 Switches the function on
Example:	PMET2:MTIM:AVER ON Activates manual averaging.
Manual operation:	See "Meas Time/Average " on page 65

[SENSe:]PMETer:ROFFset[:STATe] <State>

Includes or excludes the reference level offset of the analyzer for power sensor measurements.

[SENSe:]PMETer:SOFFset <SensorOffset>

Takes the specified offset into account for the measured power. Only available if [SENSe:]PMETer:ROFFset[:STATe] is disabled.

Suffix:	Power sensor index
Parameters: <sensoroffset></sensoroffset>	Default unit: DB
Example:	PMET2:SOFF 0.001
Manual operation:	See "Sensor Level Offset" on page 65

[SENSe:]PMETer[:STATe] <State>

Turns a power sensor on and off.

Suffix:

Power sensor index

Parameters: <State>

ON | OFF | 0 | 1 **OFF | 0** Switches the function off

ON	1

	Switches the function on
Example:	PMET1 ON Switches the power sensor measurements on.
Manual operation:	See "Select" on page 64

[SENSe:]PMETer:LEVel:CORRection:APPLy <State>

Sets and queries the toggle to apply the auto level correction.

Parameters:	
<state></state>	ON OFF 0 1
	OFF 0
	ON 1
Manual operation:	See "Apply Auto Level Correction" on page 63

CALCulate:PMETer:LEVel:CORRection

Calculates the level correction for power sensors.

Example:	CALCulate:PMETer:LEVel:CORRection
Usage:	Event
Manual operation:	See "Apply Auto Level Correction" on page 63

TRIGger[:SEQuence]:SOURce <Source>

Selects the trigger source.

Note that the availability of trigger sources depends on the connected instrument.

Note on external triggers:

If a measurement is configured to wait for an external trigger signal in a remote control program, remote control is blocked until the trigger is received and the program can continue. Make sure that this situation is avoided in your remote control programs.

Parameters:

<Source>

IMMediate Free Run EXTernal Trigger signal from the "Trigger Input" connector. MAGNitude For (offline) input from a file, rather than an instrument. The trigger level is specified by TRIGger [:SEQuence]:

LEVel:MAPower.

MAIT

For trigger information stored as markers in an .iqx file.

MANual

	Only availab Any trigger settin ered. Thus, able on an F *RST:	le for a connected R&S RTP: settings in the R&S VSE software are ignored; only gs defined on the connected instrument are consid- you can use the more complex trigger settings avail- &&S RTP. IMMediate
Example:	TRIG:SOUR Selects the e	EXT external trigger input as source of the trigger signal
Manual operation:	See "Using t	the power sensor as an external trigger " on page 66

TRIGger[:SEQuence]:LEVel:MAPower <TriggerLevel>

Defines the power level that must be exceeded to cause a trigger event for (offline) input from a file.

Parameters:

<triggerlevel></triggerlevel>	For details on available trigger levels and trigger bandwidths, see the data sheet.
	Default unit: DBM
Example:	TRIG:LEV:MAP -30DBM

UNIT<n>:PMETer:POWer <Unit>

Selects the unit for absolute power sensor measurements.

Suffix:	
<n></n>	irrelevant
	Power sensor index
Parameters: <unit></unit>	DBM WATT W DB PCT *RST: DBM
Example:	UNIT:PMET:POW DBM
Manual operation:	See "Unit/Scale " on page 65

UNIT<n>:PMETer:POWer:RATio <Unit>

Selects the unit for relative power sensor measurements.

Suffix:	
<n></n>	irrelevant
	Power sensor index

Parameters:		
<unit></unit>	DB PCT	
	*RST:	DB
Example:	UNIT:PMET:POW:RAT DB	
Manual operation:	See "Unit/Scale " on page 65	

5.6.2.2 Triggering with power sensors

[SENSe:]PMETer:TRIGger:DTIMe	185
[SENSe:]PMETer:TRIGger:HOLDoff	185
[SENSe:]PMETer:TRIGger:HYSTeresis1	186
[SENSe:]PMETer:TRIGger:LEVel	186
[SENSe:]PMETer:TRIGger:SLOPe1	186
[SENSe:]PMETer:TRIGger[:STATe]1	187

[SENSe:]PMETer:TRIGger:DTIMe <Time>

Defines the time period that the input signal has to stay below the IF power trigger level before the measurement starts.

Suffix:	Power sensor index	
Parameters:		
<time></time>	Range: Increment: *RST: Default unit:	0 s to 1 s 100 ns 100 μs : S
Example:	PMET2:TRI	G:DTIMe 0.001

[SENSe:]PMETer:TRIGger:HOLDoff <Holdoff>

Defines the trigger holdoff for external power triggers.

Suffix:	Power sensor index
Parameters: <holdoff></holdoff>	Time period that has to pass between the trigger event and the start of the measurement, in case another trigger event occurs. Range: 0 s to 1 s
	Increment: 100 ns *RST: 0 s Default unit: S
Example:	PMET2:TRIG:HOLD 0.1 Sets the holdoff time of the trigger to 100 ms
Manual operation:	See "Trigger Holdoff " on page 66

[SENSe:]PMETer:TRIGger:HYSTeresis <Hysteresis>

Defines the trigger hysteresis for external power triggers.

The hysteresis in dB is the value the input signal must stay below the IF power trigger level to allow a trigger to start the measurement.

Suffix:	Power sensor index	
Parameters: <hysteresis></hysteresis>	Range:3 dB to 50 dBIncrement:1 dB*RST:0 dBDefault unit:DB	
Example:	PMET2:TRIG:HYST 10 Sets the hysteresis of the trigger to 10 dB.	
Manual operation:	See "Hysteresis " on page 66	

[SENSe:]PMETer:TRIGger:LEVel <Level>

Defines the trigger level for external power triggers.

Suffix:	Power sens	or index
Parameters: <level></level>	-20 to +20 c	IBm
	Range: *RST: Default unit:	-20 dBm to 20 dBm -10 dBm : DBM
Example:	PMET2:TRIG:LEV -10 dBm Sets the level of the trigger	
Manual operation:	See "External Trigger Level " on page 66	

[SENSe:]PMETer:TRIGger:SLOPe <Edge>

Selects the trigger condition for external power triggers.

Suffix:	Power sensor index
Parameters: <edge></edge>	POSitive The measurement starts in case the trigger signal shows a posi- tive edge.
	NEGative The measurement starts in case the trigger signal shows a neg- ative edge.
	*RST: POSitive

Example:	PMET2:TRIG:SLOP	NEG
Manual operation:	See "Slope " on page	e 67

[SENSe:]PMETer:TRIGger[:STATe] <State>

Turns the external power trigger on and off.

Suffix:	Power sensor index
Parameters: <state></state>	ON OFF 0 1
	OFF 0 Switches the function off ON 1
	Switches the function on
Example:	PMET2:TRIG ON Switches the external power trigger on
Manual operation:	See "Using the power sensor as an external trigger " on page 66

5.6.3 Configuring data input

The following commands are required to configure data input.

Data output is described in the R&S VSE Base Software User Manual.

•	RF input1	87
•	Remote commands for external frontend control1	98

5.6.3.1 RF input

Remote commands exclusive to configuring RF input:

INPut <ip>:ATTenuation:PROTection[:STATe]</ip>	
INPut:ATTenuation:PROTection:RESet	
INPut <ip>:COUPling<ant></ant></ip>	
INPut <ip>:DPATh</ip>	
INPut <ip>:FILE:ZPADing</ip>	189
INPut <ip>:FILTer:HPASs[:STATe]</ip>	
INPut <ip>:FILTer:YIG[:STATe]</ip>	190
INPut <ip>:IMPedance<ant></ant></ip>	
INPut <ip>:PRESelection:SET</ip>	
INPut <ip>:PRESelection[:STATe]</ip>	
INPut <ip>:RF:CAPMode</ip>	
INPut <ip>:RF:CAPMode:IQ:SRATe</ip>	

INPut <ip>:RF:CAPMode:WAVeform:SRATe</ip>	193
INPut:SELect	193
INPut:TYPE	194
INSTrument:BLOCk:CHANnel[:SETTings]:SOURce <si></si>	194
INSTrument:BLOCk:CHANnel[:SETTings]:SOURce <si>:CONFig</si>	194
INSTrument:BLOCk:CHANnel[:SETTings]:SOURce <si>:TYPE</si>	194
SYSTem:COMMunicate:RDEVice:OSCilloscope[:STATe]	195
SYSTem:COMMunicate:RDEVice:OSCilloscope:TCPip	196
SYSTem:COMMunicate:RDEVice:OSCilloscope:PSMode[:STATe]	196
SYSTem:COMMunicate:RDEVice:OSCilloscope:SRATe	196
SYSTem:COMMunicate:RDEVice:OSCilloscope:VDEVice?	197
SYSTem:COMMunicate:RDEVice:OSCilloscope:VFIRmware?	197

INPut<ip>:ATTenuation:PROTection[:STATe] <State>

Turns the availability of attenuation levels of 10 dB or less on and off.

<ip></ip>	1n
Parameters:	
<state></state>	ON OFF 1 0
	ON 1 Attenuation levels of 10 dB or less are not allowed to protect the RF input connector of the connected instrument.
	OFF 0Attenuation levels of 10 dB or less are not blocked. Provide appropriate protection for the RF input connector of the connec- ted instrument yourself.*RST:1
Example:	INP:ATT:PROT ON Turns on the input protection.

INPut:ATTenuation:PROTection:RESet [<DeviceName>]

Resets the attenuator and reconnects the RF input with the input mixer for the connected instrument after an overload condition occurred and the protection mechanism intervened. The error status bit (bit 3 in the STAT:QUES:POW status register) and the INPUT OVLD message in the status bar are cleared.

The command works only if the overload condition has been eliminated first.

For details on the protection mechanism, see the instrument's documentation.

Setting parameters:

<devicename></devicename>	string
	Name of the instrument for which the RF input protection is to be reset.
Example:	INP:ATT:PROT:RES 'MyDevice'

Manual operation: See "10 dB Minimum Attenuation" on page 55

Selects the coupling type of the RF input.

INPut<ip>:COUPling<ant> <CouplingType>

Suffix: <ip></ip>	1 2 irrelevant
<ant></ant>	Input source (for MIMO measurements only)
Parameters: <couplingtype></couplingtype>	AC DC AC AC coupling DC DC coupling *RST: AC
Example:	INP:COUP DC
Manual operation:	See "Input Coupling " on page 53

INPut<ip>:DPATh <DirectPath>

Enables or disables the use of the direct path for frequencies close to 0 Hz.

Suffix: <ip></ip>	1n
Parameters: <directpath></directpath>	AUTO OFF AUTO 1 (Default) the direct path is used automatically for frequencies close to 0 Hz. OFF 0 The analog mixer path is always used.
Example:	INP:DPAT OFF
Manual operation:	See "Direct Path " on page 53

INPut<ip>:FILE:ZPADing <State>

Enables or disables zeropadding for input from an I/Q data file that requires resampling. For resampling, a number of samples are required due to filter settling. These samples can either be taken from the provided I/Q data, or the software can add the required number of samples (zeros) at the beginning and end of the file.

Suffix: <ip></ip>	1n
Parameters: <state></state>	ON OFF 0 1
	OFF 0 Switches the function off
	ON 1 Switches the function on
	*RST: 0
Example:	INP:FILE:ZPAD ON
Manual operation:	See "Zero Padding" on page 57

INPut<ip>:FILTer:HPASs[:STATe] <State>

Activates an additional internal high-pass filter for RF input signals from 1 GHz to 3 GHz. This filter is used to remove the harmonics of the connected instrument to measure the harmonics for a DUT, for example.

Requires an additional high-pass filter hardware option.

(Note: for RF input signals outside the specified range, the high-pass filter has no effect. For signals with a frequency of approximately 4 GHz upwards, the harmonics are suppressed sufficiently by the YIG-preselector, if available.)

Suffix:

<ip></ip>	1n
Parameters: <state></state>	ON OFF 0 1 OFF 0 Switches the function off
	ON 1Switches the function on*RST:0
Example:	INP:FILT:HPAS ON Turns on the filter.
Manual operation:	See "High Pass Filter 1 to 3 GHz " on page 53

INPut<ip>:FILTer:YIG[:STATe] <State>

Enables or disables the YIG filter.

Suffix:

<ip>

1 | 2 irrelevant

Parameters:

<State>

ON | OFF | 0 | 1

Example:	INP:FILT:YIG OFF
	Deactivates the YIG-preselector.
Manual operation:	See "YIG-Preselector " on page 54

INPut<ip>:IMPedance<ant> <Impedance>

Selects the nominal input impedance of the RF input. In some applications, only 50 $\boldsymbol{\Omega}$ are supported.

Suffix:	
<ip></ip>	1 2 irrelevant
<ant></ant>	Input source (for MIMO measurements only)
Parameters: <impedance></impedance>	50 75 *RST: 50 Ω Default unit: OHM
Example:	INP:IMP 75
Manual operation:	See "Impedance " on page 53

INPut<ip>:PRESelection:SET <Mode>

Selects the preselector mode.

The command is available with the optional preselector.

INPut <ip>:PRESele</ip>	ction[:STATe] <state></state>
Manual operation:	See "Preselector Mode" on page 55
<pre>Parameters: <mode></mode></pre>	 NARRow Performs a measurement by automatically applying all available combinations of low and high pass filters consecutively. These combinations all have a narrow bandwidth. WIDE Performs a measurement by automatically applying all available bandpass filters consecutively. The bandpass filters have a wide bandwidth.
Suffix: <ip></ip>	1n

Turns the preselector on and off.

Suffix: <ip>

1 | 2 irrelevant

Manual operation: See "Preselector State" on page 55

INPut<ip>:RF:CAPMode <CAPMode>

Determines how data from an oscilloscope is input to the R&S VSE software.

Is only available for connected oscilloscopes.

Suffix: <ip></ip>	1n
Parameters:	
<capmode></capmode>	AUTO IQ WAVeform
	IQ The measured waveform is converted to I/Q data directly on the R&S oscilloscope (requires option K11), and input to the R&S VSE software as I/Q data.
	WAVeform The data is input in its original waveform format and converted to I/Q data in the R&S VSE software. No additional options are required on the R&S oscilloscope.
	AUTO Uses "I/Q" mode when possible, and "Waveform" only when required by the application (e.g. Pulse measurement).
	*RST: IQ
Example:	INP:RF:CAPM WAV

INPut<ip>:RF:CAPMode:IQ:SRATe <SamplingRate>

Determines the sample rate used by the connected oscilloscope for I/Q capture mode (see INPut<ip>:RF:CAPMode on page 192).

This setting is only available if an R&S oscilloscope is used to obtain the input data.

Suffix:

<ip>

1..n

Parameters:

<SamplingRate>

20 GHz | 40 GHz

No other sample rate values are allowed.

20 GHz

Achieves a higher decimation gain, but reduces the record length by half.

Only available for R&S oscilloscope models that support a sample rate of 20 GHz (see data sheet).

40 GHz

Provides a maximum sample rate. Only available for R&S RTP13/RTP16 models that support a sample rate of 40 GHz (see data sheet).

*RST: 20 GHz Default unit: HZ

Example:

INP:RF:CAPM IQ
INP:RF:CAPM:IQ:SRAT 40 GHZ

INPut<ip>:RF:CAPMode:WAVeform:SRATe <SamplingRate>

Determines the sample rate used by the connected oscilloscope for waveform capture mode (see INPut<ip>:RF:CAPMode on page 192).

This setting is only available if an R&S oscilloscope is used to obtain the input data, either directly or via the R&S FSW.

Suffix: <ip>

1..n

Parameters:

<SamplingRate>

10 GHz | 20 GHz

No other sample rate values are allowed.

10 GHz

Default ; provides maximum record length

20 GHz

Achieves a higher decimation gain, but reduces the record length by half. Only available for R&S oscilloscope models that support a sample rate of 20 GHz (see data sheet). For R&S oscilloscopes with an analysis bandwidth of 4 GHz or

larger, a sample rate of 20 GHZ is always used.

*RST: 10 GHz

Default unit: HZ INP:RF:CAPM WAV

Example:

INP:RF:CAPM:WAVE:SRAT 1000000

INPut:SELect <Source>

Selects the signal source for measurements, i.e. it defines which connector is used to input data to the R&S VSE.

If no additional input options are installed, only RF input or file input is supported.

Parameters:		
<source/>	RF	
	Radio Frequ	ency ("RF INPUT" connector)
	FIQ	
	I/Q data file	
	*RST:	RF

Manual operation: See "Input Type (Instrument / File)" on page 52

INPut:TYPE <Input>

The command selects the input path for R&S FSW85 models.

Parameters:

INPUT1 Selects RF	input 1.
INPUT2 Selects RF	input 2.
*RST:	INPUT1
//Select input INP:TYPE	it path INPUT1
	INPUT1 Selects RF INPUT2 Selects RF *RST: //Select inpu INP:TYPE

Manual operation: See "Input 1 / Input 2" on page 52

INSTrument:BLOCk:CHANnel[:SETTings]:SOURce<si> <Type>

Selects an instrument or a file as the source of input provided to the channel.

Suffix:	
<si></si>	1 to 99
	LTE-MIMO only: input source number
Parameters:	
<type></type>	FILE DEVice NONE
	FILE
	A loaded file is used for input.
	DEVice
	A configured device provides input for the measurement
	NONE
	No input source defined.
Manual operation:	See "Input Type (Instrument / File)" on page 52

INSTrument:BLOCk:CHANnel[:SETTings]:SOURce<si>:CONFig <Port>

Configures the port to be used for input on the selected instrument.

Is only available if an oscilloscope is connected.

Suffix:

<si>

1 to 99 LTE-MIMO only: input source number

Parameters:

<Port>

INSTrument:BLOCk:CHANnel[:SETTings]:SOURce<si>:TYPE <Source>

Configures the source of input to be used from the selected instrument.

Not all input sources are supported by all R&S VSE applications.

Suffix:

<si>

1 to 99 LTE-MIMO only: input source number

Parameters:

<Source>

RF

Radio Frequency ("RF INPUT" connector)

'Channel 1' | 'Channel 2' | 'Channel 3' | 'Channel 4' Oscilloscope input channel 1, 2, 3, or 4

'Channel 1,2 (I+Q)'

I/Q data provided by oscilloscope input channels 1 and 2 (for oscilloscopes with 2 channels only)

'Channel 1,3 (I+Q)' | 'Channel 2,4 (I+Q)'

I/Q data provided by oscilloscope input channels 1 and 3, or 2 and 4 (for oscilloscopes with 4 channels only)

'Channels 1-4 (diff. I+Q)'

Differential I/Q data provided by oscilloscope input channels (for oscilloscopes with 4 channels only):

Channel 1: I (pos.)

Channel 2: Ī (neg.)

Channel 3: Q (pos.)

Channel 4: Q (neg.)

'Channels 1,3 (Waveform)'

Waveform data provided by oscilloscope input channels 1 and 3 (for oscilloscopes with 2 channels only)

'Channels 2,4 (Waveform)' Waveform data provided by oscilloscope input channels 2 and 4 (for oscilloscopes with 2 channels only)

'Channels 1-4 (Waveform)'

Waveform data provided by oscilloscope input channels 1 to 4 (for oscilloscopes with 4 channels only) RF

*RST:

INST:BLOC:CHAN:SOUR:TYPE 'Channel 2,4 (I+Q)' Example: I/Q data is provided by oscilloscope input channels 2 and 4

SYSTem:COMMunicate:RDEVice:OSCilloscope[:STATe] <State>

Activates the optional 2 GHz bandwidth extension (R&S FSW-B2000).

Note: Manual operation on the connected oscilloscope, or remote operation other than by the R&S VSE, is not possible while the B2000 option is active.

Parameters:

<State>

ON | OFF | 0 | 1 OFF | 0 Switches the function off

	ON 1 Switches the function on
Example:	SYST:COMM:RDEV:OSC ON
Manual operation:	See "B2000 State" on page 54

SYSTem:COMMunicate:RDEVice:OSCilloscope:TCPip <Address>

Defines the TCPIP address or computer name of the oscilloscope connected to the R&S VSE via LAN.

Note: The IP address is maintained after a [PRESET], and is transferred between applications.

Parameters: <address></address>	computer name or IP address	
Example:	SYST:COMM:RDEV:OSC:TCP	'192.0.2.0'
Example:	SYST:COMM:RDEV:OSC:TCP	'FSW43-12345'
Manual operation:	See "Oscilloscope IP Address"	on page 55

SYSTem:COMMunicate:RDEVice:OSCilloscope:PSMode[:STATe] <State>

Activates the use of the power splitter inserted between the "IF 2 GHZ OUT" connector of the R&S VSE and the "CH1" and "CH3" input connectors of the oscilloscope. Note that this mode requires an additional alignment with the power splitter.

For details see the R&S FSW I/Q Analyzer and I/Q Input User Manual

Parameters:

<state></state>	ON OFF 0 1
	OFF 0 Switches the function off
	ON 1 Switches the function on
Example:	SYST:COMM:RDEV:OSC:PSM ON
Manual operation:	See "Oscilloscope Splitter Mode" on page 54

SYSTem:COMMunicate:RDEVice:OSCilloscope:SRATe <Rate>

Determines whether the 10 GHz mode (default) or 20 GHz mode of the connected oscilloscope is used. The 20 GHZ mode achieves a higher decimation gain, but reduces the record length by half.

Parameters:		
<rate></rate>	10 GHz 20	GHz
	No other sar	nple rate values are allowed.
	*RST:	10 GHz
	Default unit:	HZ
Example:	TRAC:IQ:S	RAT?
-	//Result:	10000000
	TRAC:IQ:R	LEN?
	//Result:	3128
	SYST:COMM	:RDEV:OSC:SRAT 20GHZ
	TRAC: IQ:S	RAT?
	//Result:	20000000
	TRAC:IQ:R	LEN?
	//Result:	1564

SYSTem:COMMunicate:RDEVice:OSCilloscope:VDEVice?

Queries whether the connected instrument is supported by the 2 GHz bandwidth extension option(B2000).

Return values:	
<state></state>	ON OFF 0 1
	OFF 0
	Switches the function off
	ON 1 Switches the function on
Example:	SYST:COMM:RDEV:OSC:VDEV?
Usage:	Query only

SYSTem:COMMunicate:RDEVice:OSCilloscope:VFIRmware?

Queries whether the firmware on the connected oscilloscope is supported by the 2 GHz bandwidth extension (B2000) option.

Return values:

<state></state>	ON OFF 0 1
	OFF 0 Switches the function off
	ON 1 Switches the function on
Example:	SYST:COMM:RDEV:OSC:VFIR?
Usage:	Query only

5.6.3.2 Remote commands for external frontend control

The following commands are available and required only if the optional external frontend control is installed on the connected instrument.

Further commands for external frontend control described elsewhere:

- INPut: SELect RF; see INPut: SELect on page 193
- [SENSe<ip>:]FREQuency:CENTer on page 205
- DISPlay[:WINDow<n>] [:SUBWindow<w>]:TRACe<t>:Y[:SCALe]: RLEVel<ant> on page 206
- INPut<ip>:ATTenuation:AUTO on page 208
- INPut<ip>:ATTenuation on page 207
- Commands for initial configuration.....198

Commands for initial configuration

The following commands are required when you initially set up a measurement with an external frontend on the connected instrument. Note that some commands are not available for all connected instruments, or only as queries.

[SENSe:]EFRontend:ALIGnment <ch>:FILE</ch>	198
[SENSe:]EFRontend:ALIGnment <ch>:STATe</ch>	
[SENSe:]EFRontend:CONNection[:STATe]	
[SENSe:]EFRontend:CONNection:CONFig	200
[SENSe:]EFRontend:CONNection:CSTate?	
[SENSe:]EFRontend:FREQuency:BAND:COUNt?	201
[SENSe:]EFRontend:FREQuency:BAND :LOWer?	201
[SENSe:]EFRontend:FREQuency:BAND :UPPer?	
[SENSe:]EFRontend:FREQuency:BCONfig:AUTO	202
[SENSe:]EFRontend:FREQuency:BCONfig:LIST?	202
[SENSe:]EFRontend:FREQuency:BCONfig:SELect	
[SENSe:]EFRontend:FREQuency:IFRequency:SIDeband?	
[SENSe:]EFRontend:FREQuency:IFRequency[:VALue]?	
[SENSe:]EFRontend:FREQuency:REFerence	204
[SENSe:]EFRontend:FREQuency:REFerence:LIST?	
[SENSe:]EFRontend:IDN?	
[SENSe:]EFRontend[:STATe]	204

[SENSe:]EFRontend:ALIGnment<ch>:FILE <File>

Selects or queries the touchstone file that contains correction data to compensate for signal losses in the cable occurring at different IF signal frequencies.

Suffix:

<ch>

1..n Currently irrelevant

Parameters: <file></file>	string in double quotes
	Path and file name of the correction data file. The file must be in s2p format.
	mat, an error message is returned (-256, "File name not
	found",-150, "String data error").
Example:	EFR:ALIG:FILE "FE44S.s2p"

[SENSe:]EFRontend:ALIGnment<ch>:STATe <State>

Activates correction of the IF signal due to cable loss from the frontend to the analyzer. Specify the file with correction data using [SENSe:]EFRontend:ALIGnment<ch>: FILE on page 198.

Suffix:

<ch>

 <ch>
 1..n Currently irrelevant

 Parameters:

 <State>

 ON | OFF | 0 | 1

 OFF | 0

 Switches the function off

 ON | 1

 Switches the function on

 *RST:
 0

[SENSe:]EFRontend:CONNection[:STATe] <State>

Queries the external frontend connection state in the firmware.

Note: to query the physical connection state of the external frontend, use [SENSe:]EFRontend:CONNection:CSTate? on page 200.

Parameters:

<State>

ON | OFF | 0 | 1

OFF | 0

The connection to the frontend is deactivated temporarily. The frontend is thus available for use elsewhere, for example by a signal generator. The measurement settings on the R&S VSE remain untouched.

ON | 1

Frontend connection enabled.

The frontend is reserved for exclusive use by the R&S VSE.

*RST: 0

Example:	//Global activation of external frontend
	EFR ON
	//Configure frontend
	EFR:CONN:CONF "FE44S","123.456.789"
	//Activate exclusive use of frontend by
	R&S VSE.
	EFR:CONN ON

[SENSe:]EFRontend:CONNection:CONFig <Type>, <IPAddress>[, <DeviceID>, <SymbolicName>]

Configures the connection to the external frontend.

Parameters:

<type></type>	String in double quotes containing the type of frontend to be connected.
<ipaddress></ipaddress>	string in double quotes
	The IP address or computer name of the frontend connected to the R&S VSE via LAN. The IP address and computer name are indicated on the electronic ink display on the side panel of the frontend.
<deviceid></deviceid>	string in double quotes
	Unique device ID consisting of <type>-<serialnumber> Not required or relevant for the R&S VSE.</serialnumber></type>
<symbolicname></symbolicname>	string in double quotes
	Symbolic name of the external frontend. Not required or relevant for the R&S VSE.
Example:	<pre>//Global activation of external frontend EFR ON //Configure frontend EFR:CONN:CONF "FE44S","123.456.789" //Activate exclusive use of frontend by R&S VSE.</pre>
	EFR:CONN ON

[SENSe:]EFRontend:CONNection:CSTate?

Queries the status of the physical connection to the external frontend.

Return values:	
<state></state>	ON OFF 0 1
	OFF 0
	Frontend not connected; connection error
	ON 1
	Frontend connected
Usage:	Query only

[SENSe:]EFRontend:FREQuency:BAND:COUNt?

Queries the number of frequency bands provided by the selected frontend.

Return values: <nobands></nobands>	integer Number of frequency bands
Example:	//Query number of frequency bands EFR:FREQ:BAND:COUN? //Result: 2
Usage:	Query only

[SENSe:]EFRontend:FREQuency:BAND:LOWer?

Queries the start of the frequency range supported by the selected frontend frequency band.

Suffix: 	1n Band for multi-band frontends Use [SENSe:]EFRontend:FREQuency:BAND:COUNt? on page 201 to determine the number of available bands.
Return values: <startfreq></startfreq>	Start frequency of the specified band
Example:	//Query start frequency of second band EFR:FREQ:BAND2:LOW? //Result: 2400000000
Usage:	Query only

[SENSe:]EFRontend:FREQuency:BAND:UPPer?

Queries the end of the frequency range supported by the selected frontend frequency band.

Suffix:	
	 1n Band for multi-band frontends Use [SENSe:]EFRontend:FREQuency:BAND:COUNt? on page 201 to determine the number of available bands.
Return values: <stopfreq></stopfreq>	End frequency of the specified band
Example:	<pre>//Query end frequency of second band EFR:FREQ:BAND2:UPP? //Result: 4400000000</pre>
Usage:	Query only

[SENSe:]EFRontend:FREQuency:BCONfig:AUTO <State>

Determines whether the frequency band of the external frontend is configured automatically or manually.

Parameters:

<state></state>	ON OFF 0 1 OFF 0 Uses the frequency band configured by [SENSe:]EFRontend: EREQUENCY: BCONfig: SELect on page 202
	ON 1 Configures the frequency band automatically *RST: 1
Example:	//Configures the use of the IF high band manually. EFR:FREQ:BCON:AUTO 0 EFR:FREQ:BCON:SEL "IF HIGH"

[SENSe:]EFRontend:FREQuency:BCONfig:LIST?

Returns the intermediate frequency (output) range of the external frontend.

Return values:	
<bandconfigs></bandconfigs>	string
	 "IF LOW" A higher intermediate frequency is used on the external frontend, resulting in a higher input frequency at the R&S VSE. "IF HIGH" A lower intermediate frequency is used on the external frontend, resulting in a lower input frequency at the R&S VSE.
Example:	EFR:FREQ:BCON:LIST? //Result: "IF HIGH", "IF LOW" EFR:FREQ:BCON:SEL "IF HIGH"
Usage:	Query only

[SENSe:]EFRontend:FREQuency:BCONfig:SELect <BandConfig>

Defines the intermediate frequency (output) range of the external frontend.

Parameters:

<bandconfig></bandconfig>	"IF HIGH"
	(R&S FE44S/ R&S FE50DTR)
	A higher intermediate frequency is used on the external fron-
	tend, resulting in a higher input frequency at the connected
	instrument.

"IF LOW" (R&S FE44S/ R&S FE50DTR) A lower intermediate frequency is used on the external frontend, resulting in a lower input frequency at the connected instrument. "Spur Optimized" (R&S FE170SR/R&S FE110SR only) The selected IF range avoids unwanted spurious effects. "EVM Optimized" (R&S FE170SR/R&S FE110SR only) The selected IF range provides an optimal EVM result. "Shared LO" (R&S FE170SR/R&S FE110SR only) Ensures that multiple external frontends (R&S FE170SR/ R&S FE170ST or R&S FE110SR/R&S FE110ST) use the same LO frequencies for upconversion and downconversion. Example: EFR:FREQ:BCON:LIST? //Result: "IF HIGH", "IF LOW" EFR:FREQ:BCON:SEL "IF HIGH"

[SENSe:]EFRontend:FREQuency:IFRequency:SIDeband?

Queries the currently used sideband for frequency conversion.

Return values: <sideband></sideband>	"USB" "LSB" "USB" Upper sideband "LSB" Lower sideband
Example:	EFR:FREQ:IFR? EFR:FREQ:IFR:SID?
Usage:	Query only

[SENSe:]EFRontend:FREQuency:IFRequency[:VALue]?

Queries the currently used intermediate frequency (IF) for frequency conversion.

Return values:	
<iffrequency></iffrequency>	numeric
Example:	EFR:FREQ:IFR?

Usage: Query only

[SENSe:]EFRontend:FREQuency:REFerence <Frequency>

Sets the reference frequency that is used for frequency conversion on the frontend. Depending on the connected type of frontend, different values are available. To determine which reference levels are available, use [SENSe:]EFRontend:FREQuency: REFerence:LIST? on page 204.

Parameters: <Frequency>

Default unit: HZ

Example: //Query the available reference levels EFR:FREQ:REF:LIST? //Result: 10000000,640000000,100000000 //Use 640 MHz reference EFR:FREQ:REF 64000000

[SENSe:]EFRontend:FREQuency:REFerence:LIST?

Queries the available reference signals for the connected frontend type.

Return values: <references></references>	10000000 640000000 1000000000
Example:	<pre>//Query the available reference levels EFR:FREQ:REF:LIST? //Result: 10000000,640000000,1000000000 //Use 640 MHz reference EFR:FREQ:REF 640000000</pre>
Usage:	Query only

[SENSe:]EFRontend:IDN?

Queries the device identifcation information (*IDN?) of the frontend.

<devinfo></devinfo>	string without quotes Rohde&Schwarz, <device type="">,<part number="">/<serial num-<br="">ber>,<firmware version=""></firmware></serial></part></device>
Example:	EFR:IDN? //Result: Rohde&Schwarz,FE44S, 1234.5678K00/123456,0.8.0
Usage:	Query only

[SENSe:]EFRontend[:STATe] <State>

Enables or disables the general use of an external frontend for the application.

Parameters:

<State> ON | OFF | 0 | 1

OFF | 0

The frontend is disconnected. The application adapts the measurement settings to the common settings supported by the R&S VSE.

ON | 1

The R&S VSE allows you to configure and connect an external frontend for the application. The application adapts the available measurement settings to the connected frontend. The channel bar indicates "Inp: ExtFe".

*RST: 0

EFR ON

Example:

5.6.4 Configuring the frequency

205
205
206
20 20

[SENSe<ip>:]FREQuency:CENTer <Frequency>

Defines the center frequency.

Suffix: <ip></ip>	1n		
Parameters: <frequency></frequency>	The allowed range and f _{max} is specified in the data sheet. *RST: fmax/2 Default unit: Hz		
Example:	FREQ:CENT 100 MHz FREQ:CENT:STEP 10 MHz FREQ:CENT UP Sets the center frequency to 110 MHz.		
Manual operation:	See "Center Frequency" on page 58		

[SENSe:]FREQuency:CENTer:STEP <StepSize>

Defines the center frequency step size.

Parameters:

<StepSize>

f_{max} is specified in the data sheet. Range: 1 to fMAX *RST: 0.1 x span Default unit: Hz Example: //Set the center frequency to 110 MHz. FREQ:CENT 100 MHz FREQ:CENT:STEP 10 MHz FREQ:CENT UP

Manual operation: See "Center Frequency Stepsize" on page 58

[SENSe<ip>:]FREQuency:OFFSet <Offset>

Defines a frequency offset.

If this value is not 0 Hz, the application assumes that the input signal was frequency shifted outside the application. All results of type "frequency" will be corrected for this shift numerically by the application.

Suffix: <ip></ip>	1n	
Parameters: <offset></offset>	Range: *RST: Default unit	-1 THz to 1 THz 0 Hz : HZ
Example:	FREQ:OFFS 1GHZ	
Manual operation:	See "Frequency Offset " on page 58	

5.6.5 Defining level characteristics

DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:RLEVel<ant></ant></t></w></n>	206
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:RLEVel<ant>:OFFSet</ant></t></w></n>	207
INPut <ip>:ATTenuation</ip>	207
INPut <ip>:ATTenuation:AUTO</ip>	208
INPut <ip>:ATTenuation:AUTO:MODE</ip>	208
INPut:EATT	208
INPut:EATT:AUTO	209
INPut:EATT:STATe	209
INPut <ip>:EGAin[:STATe]</ip>	210
INPut:IQ:FULLscale:AUTO	210
INPut:IQ:FULLscale[:LEVel]	210
INPut <ip>:GAIN<ant>:STATe</ant></ip>	211
INPut <ip>:GAIN<ant>[:VALue]</ant></ip>	211
[SENSe <ip>:]ADJust:LEVel</ip>	212

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:RLEVel<ant> <ReferenceLevel>

Defines the reference level (for all traces in all windows).

With a reference level offset \neq 0, the value range of the reference level is modified by the offset.

Suffix:			
<n></n>	irrelevant		
<w></w>	subwindow Not supported by all applications		
<t></t>	irrelevant		
<ant></ant>	Input source (for MIMO measurements only)		
Parameters:			
<referencelevel></referencelevel>	The unit is variable.		
	Range: *RST: Default unit:	see datasheet 0 dBm DBM	
Example:	DISP:TRAC:Y:RLEV -60dBm		
Manual operation:	See "Reference Level " on page 60		

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:RLEVel<ant>: OFFSet <Offset>

Defines a reference level offset (for all traces in all windows).

Suffix:			
<n></n>	irrelevant		
<w></w>	subwindow Not supported by all applications		
<t></t>	irrelevant		
<ant></ant>	Input source (for MIMO measurements only)		
Parameters: <offset></offset>	Range: *RST: Default unit	-200 dB to 200 dB 0dB : DB	
Example:	DISP:TRAC:Y:RLEV:OFFS -10dB		
Manual operation:	See "Shifting the Display (Offset)" on page 60		

INPut<ip>:ATTenuation < Attenuation>

Defines the total attenuation for RF input.

If you set the attenuation manually, it is no longer coupled to the reference level, but the reference level is coupled to the attenuation. Thus, if the current reference level is not compatible with an attenuation that has been set manually, the command also adjusts the reference level.

Suffix:

<ip>

1..n

Parameters: <attenuation></attenuation>	Range: see data sheet Increment: 5 dB (with optional electr. attenuator: 1 dB) *RST: 10 dB (AUTO is set to ON) Default unit: DB	
Example:	INP:ATT 30dB Defines a 30 dB attenuation and decouples the attenuation from the reference level.	
Manual operation:	See "Attenuation Mode / Value " on page 61	

INPut<ip>:ATTenuation:AUTO <State>

Couples or decouples the attenuation to the reference level. Thus, when the reference level is changed, the R&S VSE determines the signal level for optimal internal data processing and sets the required attenuation accordingly.

Suffix: <ip></ip>	1n	
Parameters: <state></state>	ON OFF 0 1 *RST: 1	
Example:	INP:ATT:AUTO ON Couples the attenuation to the reference level.	
Manual operation:	See "Attenuation Mode / Value " on page 61	

INPut<ip>:ATTenuation:AUTO:MODE <OptMode>

Selects the priority for signal processing after the RF attenuation has been applied.

Suffix: <ip></ip>	1n		
Parameters: <optmode></optmode>	LNOise	LDIStortion	
	LNOise Optimized for high sensitivity and low noise levels		
	LDIStorti Optimized *RST [.]	on I for low distortion by avoiding intermodulation	
Example:	INP:ATT	INP:ATT:AUTO:MODE LNO	

INPut:EATT <Attenuation>

Defines an electronic attenuation manually. Automatic mode must be switched off (INP:EATT:AUTO OFF, see INPut:EATT:AUTO on page 209).

If the current reference level is not compatible with an attenuation that has been set manually, the command also adjusts the reference level.

Parameters:

<attenuation></attenuation>	attenuation in dB		
	Range: Increment: *RST: Default unit	see data sheet 1 dB 0 dB (OFF) : DB	
Example:	INP:EATT: INP:EATT	AUTO OFF 10 dB	
Manual operation:	See "Using	Electronic Attenuation " on page 61	

INPut:EATT:AUTO <State>

Turns automatic selection of the electronic attenuation on and off.

If on, electronic attenuation reduces the mechanical attenuation whenever possible.

Parameters:		
<state></state>	ON OFF 0 1	
	OFF 0 Switches the function off	
	ON 1	
	Switches the function on	
	*RST: 1	
Example:	INP:EATT:AUTO OFF	
Manual operation:	See "Using Electronic Attenuation " on page 61	

INPut:EATT:STATe <State>

Turns the electronic attenuator on and off.

Parameters:	
<state></state>	ON OFF 0 1
	OFF 0 Switches the function off
	ON 1 Switches the function on *RST: 0
Example:	INP:EATT:STAT ON Switches the electronic attenuator into the signal path.
Manual operation:	See "Using Electronic Attenuation " on page 61

INPut<ip>:EGAin[:STATe] <State>

Before this command can be used, the external preamplifier must be connected to the R&S VSE. See the preamplifier's documentation for details.

When activated, the R&S VSE automatically compensates the magnitude and phase characteristics of the external preamplifier in the measurement results.

Note that when an optional external preamplifier is activated, the internal preamplifier is automatically disabled, and vice versa.

When deactivated, no compensation is performed even if an external preamplifier remains connected.

Suffix:

<ip></ip>	1n
Parameters: <state></state>	ON OFF 0 1 OFF 0 No data correction is performed based on the external preampli fier
	ON 1 Performs data corrections based on the external preamplifier *RST: 0
Example:	INP:EGA ON

INPut:IQ:FULLscale:AUTO <State>

Defines whether the full scale level (i.e. the maximum input power on the Baseband Input connector) is defined automatically according to the reference level, or manually.

Parameters:

<state></state>	ON 1 Automatic definition
	OFF 0 Manual definition according to INPut:IQ:FULLscale[: LEVel] on page 210 *RST: 1
Example:	INP:IQ:FULL:AUTO OFF

INPut:IQ:FULLscale[:LEVel] <PeakVoltage>

Defines the peak voltage at the Baseband Input connector if the full scale level is set to manual mode (see INPut:IQ:FULLscale:AUTO on page 210).

Parameters:	
<peakvoltage></peakvoltage>	0.25 V 0.5 V 1 V 2 V
	Peak voltage level at the connector.
	For probes, the possible full scale values are adapted according to the probe's attenuation and maximum allowed power.
	*RST: 1V
	Default unit: V
Example:	INP:IQ:FULL 0.5V

INPut<ip>:GAIN<ant>:STATe <State>

Turns the internal preamplifier on the connected instrument on and off. It requires the additional preamplifier hardware option on the connected instrument.

Suffix:	
<ip></ip>	1 2 irrelevant
<ant></ant>	Input source (for MIMO measurements only)
Parameters:	
<state></state>	ON OFF 0 1
	OFF 0
	Switches the function off
	ON 1
	Switches the function on
	*RST: 0
Example:	INP:GAIN:STAT ON INP:GAIN:VAL 15 Switches of 45 dB and court if cotion
	Switches on 15 up preamplification.

INPut<ip>:GAIN<ant>[:VALue] <Gain>

Selects the "gain" if the preamplifier is activated (INP:GAIN:STAT ON, see INPut<ip>:GAIN<ant>:STATe on page 211).

The command requires the additional preamplifier hardware option.

Suffix:	
<ip></ip>	1 2 irrelevant
<ant></ant>	Input source (for MIMO measurements only)
Parameters:	
<gain></gain>	15 dB and 30 dB All other values are rounded to the nearest of these two. 30 dB
	Default unit: DB

Example: INP:GAIN:STAT ON INP:GAIN:VAL 30 Switches on 30 dB preamplification.

[SENSe<ip>:]ADJust:LEVel

Initiates a single (internal) measurement that evaluates and sets the ideal reference level for the current input data and measurement settings. Thus, the settings of the RF attenuation and the reference level are optimized for the signal level. The R&S VSE is not overloaded and the dynamic range is not limited by an S/N ratio that is too small.

Suffix: <ip></ip>	1n
Example:	ADJ:LEV
Manual operation:	See "Setting the Reference Level Automatically (Auto Level)" on page 60

5.6.6 Controlling a signal generator

When you configure the signal generator, make sure to synchronize with ***OPC?** or ***WAI** to make sure that the command was successfully applied on the generator before sending the next command.

CONFigure:DUT:STIMe	
CONFigure:GENerator:DUT:INPut:MAXimum:POWer	
CONFigure:GENerator:LEVel:DUTLimit	213
CONFigure:GENerator:DUT:INPut:MAXimum:POWer:LEDState?	213
CONFigure:GENerator:EXTernal:ROSCillator	214
CONFigure:GENerator:EXTernal:ROSCillator:LEDState?	214
CONFigure:GENerator:FREQuency:CENTer	214
CONFigure:GENerator:FREQuency:CENTer:LEDState?	
CONFigure:GENerator:FREQuency:CENTer:SYNC[:STATe]	215
CONFigure:GENerator:CONNection:CSTate?	
CONFigure:GENerator:POWer:LEVel	216
CONFigure:GENerator:POWer:LEVel:ATTenuation	216
CONFigure:GENerator:POWer:LEVel:ATTenuation:LEDState?	217
CONFigure:GENerator:POWer:LEVel:LEDState?	
CONFigure:GENerator:POWer:LEVel:OFFSet	217
CONFigure:GENerator:POWer:LEVel:OFFSet:LEDState?	218
CONFigure:GENerator:RFOutput:LEDState?	218
CONFigure:GENerator:RFOutput[:STATe]	218
CONFigure:GENerator:SEGMent	219
CONFigure:GENerator:SEGMent:LEDState?	219
CONFigure:GENerator:SETTings:UPDate	219
CONFigure:GENerator:TARGet:PATH:BB?	
CONFigure:GENerator:TARGet:PATH:RF	

CONFigure:SETTings	
CONFigure:GENerator:RELay:READ?	220
CONFigure:GENerator:RELay:WRITe	221
с , , , , , , , , , , , , , , , , , , ,	

CONFigure:DUT:STIMe <Time>

This command defines the settling time between generator setting changes and the start of the next measurement.

Parameters:	
<time></time>	<numeric value=""></numeric>
	*RST: 0
	Default unit: s
Example:	//Define settling delay
	CONF:DUT:STIM 0.5
Manual operation:	See "Settling Delay" on page 72

CONFigure:GENerator:DUT:INPut:MAXimum:POWer <Level>

This command defines the maximum generator output power.

Parameters:	
<level></level>	Default unit: dBm
Example:	<pre>//Define maximum output power CONF:GEN:DUT:INP:MAX:POW 0DBM</pre>
Manual operation:	See "Maximum DUT Input Level" on page 71

CONFigure:GENerator:LEVel:DUTLimit <Value>

This command defines the output power RMS level of the generator.

Parameters:

<Value> <numeric value> Default unit: dB

CONFigure:GENerator:DUT:INPut:MAXimum:POWer:LEDState?

This command queries the maximum output level configuration state on the generator.

Return values:

<State>

GREen
Configuration was successful.
GREY
Unknown configuration state.
RED
Configuration to the reference was not successful.

Example:	CONF:GEN:DUT:INP:MAX:POW:LEDS? would return, e.g.: GRE
Usage:	Query only
Manual operation:	See "Maximum DUT Input Level" on page 71

CONFigure:GENerator:EXTernal:ROSCillator <Source>

This command selects the source of the generator reference frequency.

Make sure to synchronize with *OPC? or *WAI to make sure that the command was successfully applied on the generator before sending the next command.

Parameters:	
<source/>	EXT The generator uses an external reference frequency (for example that of the R&S VSE).
	INT The generator uses its own (internal) reference frequency.
Example:	//Select the reference frequency of the generator CONF:GEN:EXT:ROSC INT; *WAI
Manual operation:	See "Reference Frequency" on page 71

CONFigure:GENerator:EXTernal:ROSCillator:LEDState?

This command queries the connection status of the generator to its frequency reference.

Return	va	lues:
--------	----	-------

<state></state>	GREen Connection to the reference was successful.
	GREY Unknown connection state.
	RED Connection to the reference was not successful.
Example:	CONF:GEN:EXT:ROSC:LEDS? would return, e.g.: RED
Usage:	Query only
Manual operation:	See "Reference Frequency" on page 71

CONFigure:GENerator:FREQuency:CENTer <Frequency>

This command defines the frequency of the generator.

Make sure to synchronize with *OPC? or *WAI to make sure that the command was successfully applied on the generator before sending the next command.

Parameters:

<frequency></frequency>	<numeric value=""></numeric>	
	Default unit: Hz	
Example:	//Define a generator frequency	
	CONF:GEN:FREQ:CENT 100000000;*WAI	

Manual operation: See "Center Frequency" on page 71

CONFigure:GENerator:FREQuency:CENTer:LEDState?

This command queries the status of frequency synchronization.

Return values: <state></state>	GREen Frequency synchronization was successful. GREY Unknown frequency synchronization state. RED Frequency synchronization was not successful.
Example:	CONF:GEN:FREQ:CENT:LEDS? would return, e.g.: GRE
Usage:	Query only
Manual operation:	See "Center Frequency" on page 71

CONFigure:GENerator:FREQuency:CENTer:SYNC[:STATe] <State>

This command turns synchronization of the analyzer and generator frequency on and off.

Make sure to synchronize with ***OPC?** or ***WAI** to make sure that the command was successfully applied on the generator before sending the next command.

Parameters:

Manual operation:	See "Attach to Analyzer Frequency" on page 71
Example:	//Match the generator frequency to the analyzer frequency when frequency on the R&S VSE is changed CONF:GEN:FREQ:CENT:SYNC ON;*WAI
<state></state>	ON OFF 1 0

CONFigure:GENerator:CONNection:CSTate?

Queries the state of the connected signal generator.

Return values:	
<connectionstate></connectionstate>	UNKNown
	no signal generator connected
	CONNected
	connection established
	NCONnected connection could not be established, possibly due to an incom- patible instrument or invalid IP address
Example:	CONFigure:GENerator:CONNection:CSTate?
Usage:	Query only
Manual operation:	See "IP Address" on page 70

CONFigure:GENerator:POWer:LEVel <Level>

This command defines the signal generator level.

Make sure to synchronize with *OPC? or *WAI to make sure that the command was successfully applied on the generator before sending the next command.

Parameters:

Manual operation:	See "RMS Level" on page 70
Example:	<pre>//Define generator output level CONF:GEN:POW:LEV 0;*WAI</pre>
	Default unit: dBm
<level></level>	<numeric value=""></numeric>

CONFigure:GENerator:POWer:LEVel:ATTenuation <Level>

This command defines digital attenuation that is applied to digitally modulated I/Q signals.

Make sure to synchronize with *OPC? or *WAI to make sure that the command was successfully applied on the generator before sending the next command.

Parameters:	
<level></level>	<numeric value=""></numeric>
	*RST: 0 Default unit: dB
Example:	<pre>//Attenuate the signal CONF:GEN:POW:LEV:ATT 10;*WAI</pre>
Manual operation:	See "Digital Attenuation" on page 72
CONFigure:GENerator:POWer:LEVel:ATTenuation:LEDState?

This command queries the configuration state of digital attenuation on the generator.

Return values:		
<state></state>	GREen	
	Digital attenuation configuration was successful.	
	GREY	
	Unknown digital attenuation configuration state.	
	RED	
	Digital attenuation configuration was not successful.	
Example:	CONF:GEN:POW:LEV:ATT:LEDS?	
-	would return, e.g.:	
	RED	
Usage:	Query only	
-		

CONFigure:GENerator:POWer:LEVel:LEDState?

This command queries the level configuration state on the generator.

Return values: <state></state>	GREen Level configuration was successful. GREY Unknown level configuration state. RED Level configuration was not successful.
Example:	CONF:GEN:POW:LEV:LEDS? would return, e.g.: GRE
Usage:	Query only
Manual operation:	See "RMS Level" on page 70

CONFigure:GENerator:POWer:LEVel:OFFSet <Level>

This command defines a mathematical level offset for the signal generator (for example to take external attenuation into account).

Make sure to synchronize with *OPC? or *WAI to make sure that the command was successfully applied on the generator before sending the next command.

Parameters:

<level></level>	<numeric value=""></numeric>
	Default unit: dBm
Example:	//Define a level offset
	CONF:GEN:POW:LEV:OFFS 10;*WAI

Manual operation: See "RMS Level" on page 70

CONFigure:GENerator:POWer:LEVel:OFFSet:LEDState?

This command queries the level offset configuration state on the generator.

Return values: <state></state>	GREen Level offset configuration was successful. GREY Unknown level offset configuration state. RED Level offset configuration was not successful
Example:	CONF:GEN:POW:LEV:LEDS? would return, e.g.: GRE
Usage:	Query only
Manual operation:	See "RMS Level" on page 70

CONFigure:GENerator:RFOutput:LEDState?

This command queries the RF output state on the generator.

Return values:	
<state></state>	GREen
	Output configuration was successful.
	GREY
	Unknown output configuration state.
	RED
	Output configuration was not successful.
Example:	CONF:GEN:RFO:LEDS?
	would return, e.g.:
	GRE
Usage:	Query only
Manual operation:	See "RF Output" on page 72

CONFigure:GENerator:RFOutput[:STATe] <State>

This command turns the RF output on the connected signal generator on and off.

Make sure to synchronize with *OPC? or *WAI to make sure that the command was successfully applied on the generator before sending the next command.

Parameters:

<State>

ON | OFF | 1 | 0 *RST: 1

Example:	<pre>//Turn off the RF output</pre>
	CONF:GEN:RFO OFF;*WAI
Manual operation:	See "RF Output" on page 72

CONFigure:GENerator:SEGMent <Segment>

This command selects the segment in a multi-waveform file that should be selected on the signal generator.

Make sure to synchronize with *OPC? or *WAI to make sure that the command was successfully applied on the generator before sending the next command.

Parameters:

<segment></segment>	<numeric value="">: (integer only)</numeric>		
	Range:	Depends on the number of segments in the wave- form file.	
	*RST:	0	
Example:	<pre>//Select the 3rd segment of a waveform file CONF:GEN:SEGM 3;*WAI</pre>		
Manual operation:	See "Segm	ent" on page 71	

CONFigure:GENerator:SEGMent:LEDState?

This command queries if the proper segment of a multi waveform has been selected.

Return values: <state></state>	GREen The desired segment has been selected. GREY Unknown segment selection state. RED The desired segment has not been selected.
Example:	CONF:GEN:SEGM:LEDS? would return, e.g. RED
Usage:	Query only
Manual operation:	See "Segment" on page 71

CONFigure:GENerator:SETTings:UPDate

This command updates the generator settings as defined within the R&S VSE-K18.

Make sure to synchronize with ***OPC?** or ***WAI** to make sure that the command was successfully applied on the generator before sending the next command.

Example: //Update generator settings CONF:GEN:SETT:UPD;*WAI Usage:

CONFigure:GENerator:TARGet:PATH:BB?

Event

This command queries the signal path of the R&S SMW used for baseband signal generation.

Note that the baseband path is always the same as the RF path selected with CONFigure:GENerator:TARGet:PATH:RF.

Return values: <path></path>	A B
Example:	CONF:GEN:TARG:PATH:BB? would return, e.g. A
Usage:	Query only
Manual operation:	See "Path RF / BB" on page 71

CONFigure:GENerator:TARGet:PATH:RF <Path>

This command selects the signal path of the generator used for RF signal generation.

Make sure to synchronize with *OPC? or *WAI to make sure that the command was successfully applied on the generator before sending the next command.

Parameters:

Manual operation:	See "Path RF / BB" on page 71
Example:	//Select RF path A to generate the signal CONF:GEN:TARG:PATH:RF A; *WAI
<path></path>	A B

CONFigure:SETTings

This command transfers the current generator configuration into the amplifier application.

Make sure to synchronize with *OPC? or *WAI to make sure that the command was successfully applied on the generator before sending the next command.

Example: //Synchronize the generator configuration CONF:SETT; *WAI

Usage: Event

CONFigure:GENerator:RELay:READ?

Provides functionality to read the answer if the command that was sent to the signal generator using CONFigure: GENerator: RELay: WRITE on page 221 contained a "?".

Return values: <response></response>	
Example:	CONF:GEN:REL:READ?
Usage:	Query only Asynchronous command

CONFigure:GENerator:RELay:WRITe <Command>

Provides functionality to configure the signal generator directly through the R&S VSE-K18 application. It resends the string parameter as a SCPI command to the connected signal generator.

If the command contains a "?",	USE CONFigure:GENerator:RELay:READ?
on page 220 to read the answe	r.

Setting parameters:

<Command>

Example:	CONF:GEN:REL:WRIT	"generator	command"
Usage:	Setting only		
	Asynchronous comman	d	

5.6.7 Configuring the data capture

[SENSe:]BANDwidth[:RESolution]	221
[SENSe:]BANDwidth[:RESolution]:AUTO	
[SENSe:]REFSig:TIME?	
[SENSe:]SWAPiq	
[SENSe:]SWEep:LENGth	
[SENSe:]SWEep:TIME	223
[SENSe:]SWEep:TIME:AUTO	223
TRACe:IQ:BWIDth	223
TRACe:IQ:SRATe	
TRACe:IQ:SRATe:AUTO	224
TRACe:IQ:WBANd:MBWidth	
TRACe:IQ:WBANd[:STATe]	

[SENSe:]BANDwidth[:RESolution] <Bandwidth>

Example:	//Select resolution bandwidth BAND:AUTO OFF BAND 100KHZ
Manual operation:	See "Defining the resolution bandwidth for spectrum measure- ments" on page 90

[SENSe:]BANDwidth[:RESolution]:AUTO <State>

This command turns automatic selection of the resolution bandwidth (RBW) for spectrum measurements on and off.

Parameters:

Manual operation:	See "Defining the resolution bandwidth for spectrum measure-		
	BAND 100KHZ		
Example	BAND:AUTO OFF		
Example:	//Select manual resolution bandwidth		
	*RST: 1		
<state></state>	ON OFF 1 0		

ments" on page 90

[SENSe:]REFSig:TIME?

This command queries the length of the reference signal as shown in the "Acquisition" dialog box.

Return values: <duration></duration>	<numeric value=""> Default unit: s</numeric>
Example:	REFS:TIME? would return, e.g.: 0.00125
Usage:	Query only
Manual operation:	See "Automatic adjustment" on page 89

[SENSe:]SWAPiq <State>

This command inverts the I and Q branches of the signal.

Parameters: <state></state>	ON OFF 1 0
Example:	//Inverts the I and Q channels
Manual operation:	See "Inverting the I/Q branches" on page 90

[SENSe:]SWEep:LENGth <Samples>

This command defines the capture length.

Prerequisites for this command

• Turn off automatic selection of the capture time ([SENSe:]SWEep:TIME:AUTO).

Effects of this command

• Changing the capture length automatically adjusts the capture time.

Parameters:

<samples></samples>	<numeric value="">: (integer only)</numeric>		
	Default unit: Samples		
Example:	<pre>//Define a capture length SWE:TIME:AUTO OFF SWE:LENG 1000000</pre>		
Manual operation:	See "Manual definition" on page 89		

[SENSe:]SWEep:TIME <Time>

This command defines the capture time.

Prerequisites for this command

• Turn off automatic selection of the capture time ([SENSe:]SWEep:TIME:AUTO).

Effects of this command

Changing the capture time automatically adjusts the capture length.

Parameters:

<time></time>	<numeric value=""></numeric>
	Default unit: s
Example:	//Defines a sweep time SWE:TIME:AUTO OFF SWE:TIME 10MS
Manual operation:	See "Manual definition" on page 89

[SENSe:]SWEep:TIME:AUTO <State>

This command turns automatic selection of an appropriate capture time on and off.

When you turn on this feature, the application calculates an appropriate capture time based on the reference signal and adjusts the other acquisition settings accordingly.

Parameters:

<state></state>	ON OFF 1 0		
	*RST: 1		
Example:	//Select automatic adjustment of the capture time SWE:TIME:AUTO ON		
Manual operation:	See "Automatic adjustment" on page 89		

TRACe:IQ:BWIDth <Bandwidth>

This command defines the analysis bandwidth with which the amplified signal is captured. This command is available when TRACe: IQ: SRATe: AUTO has been turned off.

Note that when you change the analysis bandwidth, the sample rate and capture length are adjusted automatically to the new bandwidth.

P	ar	a	m	le	t	e	rs	5	

<bandwidth></bandwidth>	<numeric value=""></numeric>
	Note that the application automatically adjusts the sample rate when you change the bandwidth manually.
	Default unit: Hz
Example:	TRAC:IQ:SRAT:AUTO OFF TRAC:IQ:BWID 50MHZ Defines a bandwidth of 50 MHz. The sample rate is adjusted accordingly.
Manual operation:	See "Manual definition" on page 88

TRACe:IQ:SRATe <SampleRate>

This command defines the sample rate with which the amplified signal is captured.

This command is available when TRACe: IQ: SRATe: AUTO has been turned off.

Note that when you change the sample rate, the analysis bandwidth and capture length are adjusted automatically to the new sample rate.

Parameters:

<samplerate></samplerate>	<numeric value=""></numeric>
	Note that the application automatically adjusts the analysis bandwidth when you change the sample rate manually.
	Default unit: Hz
Example:	TRAC:IQ:SRAT:AUTO OFF TRAC:IQ:SRAT 20MHZ Defines a sample rate of 20 MHz. The analysis bandwidth is adjusted accordingly.
Manual operation:	See "Manual definition" on page 88

TRACe:IQ:SRATe:AUTO <State>

This command turns automatic selection of an appropriate (capture) sample rate on and off.

When you turn on this feature, the application calculates an appropriate sample rate based on the reference signal and adjusts the other data acquisition settings accordingly.

Parameters:

<State>

ON | OFF | 1 | 0 *RST: 1

Example:	TRAC:IQ:SRAT:AUTO ON
	Selects automatic adjustment of the sample rate.
Manual operation:	See "Automatic adjustment" on page 88

TRACe:IQ:WBANd:MBWidth < Bandwidth>

This command selects the largest possible bandwidth that can be applied for the wideband signal path.

The wideband signal path is available with the corresponding bandwidth extensions available for the R&S VSE.

The command is available when you turn on TRACe: IQ: WBANd[:STATe].

Manual operation: See "Maximum bandwidth" on page 88

TRACe:IQ:WBANd[:STATe] <State>

This command turns the wideband signal path on and off.

The wideband signal path is available with the corresponding bandwidth extensions available for the R&S VSE.

Parameters:

<state></state>	ON 1	
	Turns on the wideband signal path.	
	By default, the application allows you to use the maximum avail- able bandwidth ("Auto" mode in manual operation). You have to turn on the wideband signal path when you want to use bandwidths greater than 80 MHz.	
	OFF 0 Turns off the wideband signal path. The largest available band- width is 80 MHz.	
Example:	//Turn off the wideband signal path TRAC:IQ:WBAN OFF	
Manual operation:	See "Maximum bandwidth" on page 88	

5.6.8 Sweep configuration

[SENSe:]SWEep:IQAVg:COUNt	226
[SENSe:]SWEep:IQAVg:COUNt:CURRent?	
[SENSe:]SWEep:IQAVg:MAVerage[:STATe]	
[SENSe:]SWEep:IQAVg[:STATe]	
[SENSe:]SWEep:STATistics[:STATe]	227
[SENSe:]SWEep:STATistics:COUNt	
[SENSe:]SWEep:STATistics:CONTinuous[:STATe]	
[SENSe:]SWEep:STATistics:MODE	
CONFigure:RESult:RANGe[:SELected]	

[SENSe:]SWEep:IQAVg:COUNt <Count>

Only available for backward compatibility.

Switches statistics state to "ON", sets trace mode to "IQ/Averaging" and counts to specified value.

Parameters:

<count></count>	<numeric value=""> (integer only)</numeric>		
	Range: *RST:	1 to 10000 1	
Example:	//Average of SWE:IQAV:	ver 10 data captures	
Manual operation:	See "I/Q Av	eraging Sweep Count" on page 116	

[SENSe:]SWEep:IQAVg:COUNt:CURRent?

Only available for backward compatibility.

Queries the current measurement out of a sequence of measurements that averages I/Q data.

Return values:

<measurement></measurement>	numeric value
Example:	<pre>//Define number of measurements SWE:IQAV:COUN 10 //Query process of measurement SWE:IQAV:COUN:CURR? would return, e.g. 7 (out of 10)</pre>
Usage:	Query only

[SENSe:]SWEep:IQAVg:MAVerage[:STATe] <State>

Only available for backward compatibility.

Switches statistics state to "ON", sets trace mode to "IQ/Averaging" and switches continuous statistics "ON" or "OFF".

Parameters:

<state> ON OFF 1</state>		1 0	
	*RST:	0	
Example:	SWE:IQAV	/:MAV	ON

[SENSe:]SWEep:IQAVg[:STATe] <State>

Only available for backward compatibility.

Switches statistics state to "ON" and sets trace mode to "IQ/Averaging".

Parameters:

<State>

ON | OFF | 1 | 0 *RST: OFF

[SENSe:]SWEep:STATistics[:STATe] <State>

Sets and queries the sweep statistics setting.

Parameters: <state></state>	ON OFF	
Example:	[SENSe]:SWEep:STATistics:STATe	ON
Manual operation:	See "Statistics State" on page 91	

[SENSe:]SWEep:STATistics:COUNt <Count>

Sets and queries the sweep statistics count.

Parameters:	
<count></count>	numeric value
Example:	SENS:SWE:STAT:COUNt 10
Manual operation:	See "Statistics Count" on page 91

[SENSe:]SWEep:STATistics:CONTinuous[:STATe] <State>

Sets and queries the continuous statistics setting.

Parameters:		
<state></state>	ON OFF	
Example:	[SENSe]:SWEep:STATistics:CONT	ON
Manual operation:	See "Continuous Statistics" on page 91	

[SENSe:]SWEep:STATistics:MODE <State>

Sets and queries the statistics mode.

Parameters: <state></state>	IQAVeraging TRACe	
Example:	[SENSe]:SWEep:STATistics:MODE	TRACe
Manual operation:	See "Statistics Mode" on page 91	

CONFigure:RESult:RANGe[:SELected] <ResultRange>

Sets and querys the selected result range.

Parameters: <ResultRange>

<numeric value>

Example:	CONFigure:RESult:RANGe
Manual operation:	See "Statistics Table" on page 27
	See "Select Result Rng" on page 91

5.6.9 Synchronizing measurement data

CONFigure:ESTimation:FULL	
CONFigure:ESTimation:RANGe	
CONFigure:ESTimation:STARt	
CONFigure:ESTimation:STOP	
CONFigure:SYNC:CONFidence	
CONFigure:SYNC:SECond:STAT	
CONFigure:SYNC:DOMain	
CONFigure:SYNC:SOFail	
CONFigure:SYNC:STAT	
FETCh[:SYNC]?	
FETCh:SYNC:FAIL?	231

CONFigure:ESTimation:FULL <State>

This command turns estimation over the complete reference signal on and off.

Parameters:

<state></state>	ON OFF 1 0
	When you turn estimation over the full reference signal off, you can define an estimation range with: •CONFigure:ESTimation:STARt •CONFigure:ESTimation:STOP
	*RST: 1
Example:	//Define a synchronization range over the first 20 μs of the capture buffer
	CONF:EST:FULL OFF
	CONF:EST:STAR 0s
	CONF:EST:STOP 20us

Manual operation: See "Defining the estimation range" on page 94

CONFigure:ESTimation:RANGe <Start>, <Stop>

This command defines start and stop values of the estimation range.

Alternatively, you can do that with

- CONFigure:ESTimation:STARt on page 229
- CONFigure:ESTimation:STOP on page 229

Setting parameters:	
<start></start>	<numeric value=""></numeric>
	Start time of the estimation range (relative to the beginning of the reference signal).
	Default unit: s
<stop></stop>	<numeric value=""></numeric>
	Stop time of the estimation range (relative to the beginning of the reference signal).
	Default unit: s
Example:	//Define an estimation range over the first 20 μs of the reference signal
	CONF:EST:FULL OFF
	CONF:EST:RANG 0,20e-6
Usage:	Setting only

CONFigure:ESTimation:STARt <Start>

This command defines the start value of the estimation range.

Parameters:	
<start></start>	<numeric value=""></numeric>
	Default unit: s
Example:	See CONFigure:ESTimation:FULL.
Manual operation:	See "Defining the estimation range" on page 94

CONFigure:ESTimation:STOP <Stop>

This command defines the end value of the estimation range.

Parameters:	
<stop></stop>	<numeric value=""></numeric>
	Default unit: s
Example:	See CONFigure:ESTimation:FULL.
Manual operation:	See "Defining the estimation range" on page 94

CONFigure:SYNC:CONFidence <Confidence>

This command defines the synchronization confidence level.

Parameters:

<Confidence>

<numeric value> Range: 0 to 100 Default unit: PCT

Example:	//Define confidence	level
	CONF:SYNC:CONF	99

Manual operation: See "Defining a synchronization confidence level" on page 93

CONFigure:SYNC:SECond:STAT <State>

This command activates an additional synchronization algorithm (operating in frequency domain).

Parameters:	
<state></state>	ON OFF 1 0 *RST: 0
Example:	//Turn on additional synchronization algorithm. :CONF:SYNC:SEC:STAT ON
Manual operation:	See "2nd Stage Synchronization" on page 94

CONFigure:SYNC:DOMain < Domain>

This command selects the synchronization method.

Parameters:		
<domain></domain>	IQDirect I/Q data for the reference signal is directly correlated with the reference and measured signal. IQPDiff	
	Correlation on the phase differentiated I/Q data.	
	MAGNitude Correlation on the magnitude of the I/Q data with no regard for phase information.	
	TRIGger It is assumed that the capture is triggered at the start of the reference waveform.	
	^RST: IQPDiff	
Example:	//Try to find a correlation in the raw I/Q data CONF:SYNC:DOM IQD	
Manual operation:	See "Selecting the synchronization method" on page 93	
imanual operation:	See Selecting the synchronization method on page 93	

CONFigure:SYNC:SOFail <State>

This command turns a measurement stop on and off, when synchronization of measured and reference signal fails.

This mostly has an effect on continuous measurements. Single measurements are not affected.

Parameters: <state></state>	ON OFF 1 0 *RST: 0
Example:	//Stop the measurement when synchronization fails CONF:SYNC:SOF ON
Manual operation:	See "Turning synchronization of reference and measured signal on and off" on page 92

CONFigure:SYNC:STAT <State>

This command turns synchronization between reference and measured signal on and off.

<pre>Parameters: <state></state></pre>	ON OFF 1 0 *RST: 1
Example:	<pre>//Turn on synchronization between reference and measured sig- nal CONF:SYNC:STAT ON</pre>
Manual operation:	See "Turning synchronization of reference and measured signal on and off" on page 92

FETCh[:SYNC]?

This command queries if synchronisation between reference and measured signal has been successful.

The command is available when you have turned on CONFigure:SYNC:STAT.

Return values: <state></state>	ON 1 Synchronisation has been successful.
	OFF 0 Synchronisation has not been successful.
Example:	FETC? would return, e.g. 0
Usage:	Query only

FETCh:SYNC:FAIL?

This command queries the synchronization status.

Return values: <State>

1 Synchronization was not successful.

	0 Synchronization was successful.
Example:	FETC:SYNC:FAIL? would return, e.g. 0
Usage:	Query only

5.6.10 Defining the evaluation range

CONFigure:EVALuation:FULL	232
CONFigure:EVALuation:RANGe	232
CONFigure:EVALuation:STARt	233
CONFigure:EVALuation:STOP	233

CONFigure:EVALuation:FULL <State>

This command turns result evaluation over the complete capture buffer on and off.

Parameters:		
<state></state>	ON OFF 1 0	
	When you turn calculation over the full capture buffer off, you can define an evaluation range with:	
	•CONFigure:EVALuation:STARt	
	•CONFigure:EVALuation:STOP	
	*RST: 1	
Example:	<pre>//Define an evaluation range over 45 µs of the capture buffer CONF:EVAL:FULL OFF CONF:EVAL:STAR 5us CONF:EVAL:STOP 50us</pre>	
Manual operation:	See "Defining the evaluation range" on page 95	

CONFigure:EVALuation:RANGe <Start>, <Stop>

This command defines start and stop values of the evaluation range.

Alternatively, you can do that with

- CONFigure:EVALuation:STARt on page 233 •
- CONFigure:EVALuation:STOP on page 233 ۲

Setting parameters:

<Start>

-

<numeric value>

Start time of the evaluation range (relative to the beginning of the reference signal). Default unit: s

<stop></stop>	<numeric value=""></numeric>	
	Stop time of the evaluation range (relative to the beginning of the reference signal).	
	Default unit: s	
Example:	<pre>//Define an evaluation range over 45 µs of the reference signal, beginning at 5 µs into the signal CONF:EVAL:FULL OFF CONF:EVAL:RANG 5e-6,50e-6</pre>	
Usage:	Setting only	
Manual operation:	See "Defining the evaluation range" on page 95	

CONFigure:EVALuation:STARt <Start>

This command defines the start value of the evaluation range.

Parameters:	
<start></start>	<numeric value=""></numeric>
	Default unit: s
Example:	See CONFigure:EVALuation:FULL.
Manual operation:	See "Defining the evaluation range" on page 95

CONFigure:EVALuation:STOP <Stop>

This command defines the end value of the evaluation range.

Parameters:	
<stop></stop>	<numeric value=""></numeric>
	Default unit: s
Example:	See CONFigure:EVALuation:FULL.
Manual operation:	See "Defining the evaluation range" on page 95

5.6.11 Estimating and compensating signal errors

•	Error estimation and compensation	. 233
•	Equalizer	. 237

5.6.11.1 Error estimation and compensation

CONFigure:SIGNal:ERRor:COMPensation:ADRoop[:STATe]	234
CONFigure:SIGNal:ERRor:COMPensation:FERRor[:STATe]	234
CONFigure:SIGNal:ERRor:COMPensation:IQIMbalance[:STATe]	234
CONFigure:SIGNal:ERRor:COMPensation:IQOFfset[:STATe]	
CONFigure:SIGNal:ERRor:COMPensation:SRATe[:STATe].	235
CONFigure:SIGNal:ERRor:ESTimation:ADRoop[:STATe]	235

CONFigure:SIGNal:ERRor:ESTimation:FERRor[:STATe]	235
CONFigure:SIGNal:ERRor:ESTimation:IQIMbalance[:STATe]	
CONFigure:SIGNal:ERRor:ESTimation:IQOFfset[:STATe]	236
CONFigure:SIGNal:ERRor:ESTimation:SRATe[:STATe]	
• • •	

CONFigure:SIGNal:ERRor:COMPensation:ADRoop[:STATe] <State>

This command turns compensation of the amplitude droop on and off.

Prerequisites for this command

• Turn on estimation of sample rate (CONFigure:SIGNal:ERRor:ESTimation: ADRoop[:STATe]).

Parameters:	
-------------	--

<state></state>	ON OFF 1 0 *RST: 1
Example:	//Turn on error compensation CONF:SIGN:ERR:COMP:ADR ON
Manual operation:	See "Amplitude Droop" on page 97

CONFigure:SIGNal:ERRor:COMPensation:FERRor[:STATe] <State>

This command turns compensation of the frequency error on and off.

Prerequisites for this command

• Turn on estimation of sample rate (CONFigure:SIGNal:ERRor:ESTimation: FERRor[:STATe]).

Parameters:

<state></state>	ON OFF 1 0 *RST: 1
Example:	//Turn on error compensation CONF:SIGN:ERR:COMP:FERR ON
Manual operation:	See "Frequency Error" on page 97

CONFigure:SIGNal:ERRor:COMPensation:IQIMbalance[:STATe] <State>

This command turns compensation of the I/Q imbalance on and off.

Prerequisites for this command

• Turn on estimation of sample rate (CONFigure:SIGNal:ERRor:ESTimation: IQIMbalance[:STATe]).

Parameters:

<state></state>	ON OFF 1 0
	*RST: 1
Example:	//Turn on error compensati

Manual operation: See "I/Q Imbalance" on page 97

CONFigure:SIGNal:ERRor:COMPensation:IQOFfset[:STATe] <State>

This command turns compensation of the I/Q offset on and off.

Prerequisites for this command

• Turn on estimation of sample rate (CONFigure:SIGNal:ERRor:ESTimation: IQOFfset[:STATe]).

Parameters:

<state></state>	ON OFF 1 0 *RST: 1
Example:	//Turn on error compensation CONF:SIGN:ERR:COMP:IQOF ON
Manual operation:	See "I/Q Offset" on page 97

CONFigure:SIGNal:ERRor:COMPensation:SRATe[:STATe] <State>

This command turns compensation of the sample rate error on and off.

Prerequisites for this command

• Turn on estimation of sample rate (CONFigure:SIGNal:ERRor:ESTimation: SRATe[:STATe]).

Parameters:

<state></state>	ON OFF 1 0 *RST: 1
Example:	//Turn on error compensation CONF:SIGN:ERR:COMP:SRAT ON
Manual operation:	See "Sample Error Rate" on page 97

CONFigure:SIGNal:ERRor:ESTimation:ADRoop[:STATe] <State>

This command turns estimation of the amplitude droop on and off.

Parameters: <state></state>	ON OFF 1 0 *RST: 1
Example:	//Turn on error estimation CONF:SIGN:ERR:EST:ADR ON
Manual operation:	See "Amplitude Droop" on page 97

CONFigure:SIGNal:ERRor:ESTimation:FERRor[:STATe] <State>

This command turns estimation of the frequency error on and off.

Parameters:	
<state></state>	ON OFF 1 0
	*RST: 1
Example:	//Turn on error estimation
	CONF:SIGN:ERR:EST:FERR ON
Manual operation:	See "Frequency Error" on page 97

CONFigure:SIGNal:ERRor:ESTimation:IQIMbalance[:STATe] <State>

This command turns estimation of the I/Q imbalance on and off.

Parameters: <state></state>	ON OFF 1 0 *RST: 1
Example:	//Turn on error estimation CONF:SIGN:ERR:EST:IQIM ON
Manual operation:	See "I/Q Imbalance" on page 97

CONFigure:SIGNal:ERRor:ESTimation:IQOFfset[:STATe] <State>

This command turns estimation of the I/Q offset on and off.

Parameters:	
<state></state>	ON OFF 1 0
	*RST: 1
Example:	//Turn on error estimation. CONF:SIGN:ERR:EST:IQOF ON
Manual operation:	See "I/Q Offset" on page 97

CONFigure:SIGNal:ERRor:ESTimation:SRATe[:STATe] <State>

This command turns estimation of the sample rate error on and off.

Parameters:

<state></state>	ON OFF 1 0 *RST: 1
Example:	//Turn on error estimation CONF:SIGN:ERR:EST:SRAT ON
Manual operation:	See "Sample Error Rate" on page 97

5.6.11.2 Equalizer

CONFigure:EQUalizer:FILTer:FILE:FORMat	237
CONFigure:EQUalizer:FILTer:LENGth	
CONFigure:EQUalizer:FPARameters	
CONFigure:EQUalizer[:STATe]	
CONFigure:EQUalizer:TRAin	
MMEMory:LOAD:EQUalizer:FILTer:COEFficient	
MMEMory:STORe <n>:EQUalizer:FILTer:COEFficient</n>	239

CONFigure:EQUalizer:FILTer:FILE:FORMat <Source>

This command selects the file format to which the equalizer filter is exported.

Parameters:

<source/>	CSV Filter is wri	tten to a csv file.
	FRES Filter is wri	tten to a fres file.
	*RST:	CSV
Example:	//Select file CONF:EQU	format for equalizer filter :FILT:FILE:FORM CSV
Manual operation:	See "Using	the equalizer" on page 98

CONFigure:EQUalizer:FILTer:LENGth <Length>

This command defines the length of the filter that the equalizer training is based on.

Parameters: <length></length>	<numeric value=""> (integer only)</numeric>
Example:	//Define equalizer filter length CONF:EQU:FILT:LENG 25
Manual operation:	See "Using the equalizer" on page 98 See "Equalizer Filter Length For Training" on page 116

CONFigure:EQUalizer:FPARameters <Coefficient>...

This command defines the filter coefficients.

You can use this command to define the filter coefficients manually instead of training a filter.

Parameters: <coefficient></coefficient>	<numeric value=""> (integer only)</numeric>
	List of comma separated values. Each coefficient consists of a real and an imaginary value. <coefficient_1_i>,<coefficient_2_q>, <coefficient_2_i>,<coefficient_2_q>,, <coefficient_n_i>,<coefficient_n_q></coefficient_n_q></coefficient_n_i></coefficient_2_q></coefficient_2_i></coefficient_2_q></coefficient_1_i>
Example:	<pre>//Define a filter with a length of five, number of values therefore must be 10 CONF:EQU:FPAR 5,8,5,10,10,12,5,2,2,1</pre>
Manual operation:	See "Using the equalizer" on page 98

CONFigure:EQUalizer[:STATe] <State>

This command turns the equalizer on and off.

Prerequisites for this command

- Load equalizer filter data (either by training or by restoring a file with equalizer information).
 - CONFigure:EQUalizer:TRAin
 - MMEMory:LOAD:EQUalizer:FILTer:COEFficient

Parameters:

<state></state>	ON OFF 1 0 *RST: OFF
Example:	//Turn on equalizer MMEM:LOAD:EQU:FILT:COEF 'c:\filter.csv' CONF:EQU ON
Manual operation:	See "Using the equalizer" on page 98

CONFigure:EQUalizer:TRAin

This command initiates a training sequence for the equalizer filter.

Note that you have to synchronize the measurement before you can initiate a training sequence.

Prerequisites for this command

• Define a filter length (CONFigure: EQUalizer: FILTer: LENGth).

Usage: Event

Manual operation: See "Using the equalizer" on page 98

MMEMory:LOAD:EQUalizer:FILTer:COEFficient <FileName>

This command restores an equalizer filter that you have previously saved.

Setting parameters: <filename></filename>	String containing the file name and location of the filter (csv file format).
Example:	//Restore filter file MMEM:LOAD:EQU:FILT:COEF 'C:\filter.csv'
Usage:	Setting only
Manual operation:	See "Using the equalizer" on page 98

MMEMory:STORe<n>:EQUalizer:FILTer:COEFficient <FileName>

This command stores the equalizer filter that has been calculated.

Prerequisites for this command

• Train an equalizer filter (CONFigure: EQUalizer: TRAin).

Suffix: <n>

1..n

Setting parameters: <filename></filename>	String containing the file name and location of the filter (csv file format).	
Example:	<pre>//Store filter file CONF:EQU:TRA MMEM:STOR:EQU:FILT:COEF 'C:\filter.csv'</pre>	
Usage:	Setting only	
Manual operation:	See "Using the equalizer" on page 98	

5.6.12 Applying a system model

CONFigure:MODeling:AMAM:ORDer	239
CONFigure:MODeling:AMPM:ORDer	240
CONFigure:MODeling:LRANge	240
CONFigure:MODeling:NPOints	240
CONFigure:MODeling:SCALe	241
CONFigure:MODeling:SEQuence	241
CONFigure:MODeling[:STATe]	241

CONFigure:MODeling:AMAM:ORDer <Order>

This command defines the order (or degree) of the "AM/AM" model polynomials that are calculated by the application.

Parameters: <order></order>	String containing the polynomials to be calculated. You can either select a range of polynomials (e.g. "1-7"), a selection of polynomials (e.g. "1;3;5") or a combination of both (e.g. "1;3-5").
	Range: 0 to 18 *RST: "0-7"
Example:	//Calculate the polynomials to the 1st, 2nd, 3rd, 4th and 5th degree CONF:MOD:AMAM:ORD "1-5"
Example:	//Calculate the polynomials to the 1st, 3rd and 5th degree CONF:MOD:AMAM:ORD "1;3;5"
Manual operation:	See "Selecting the degree of the polynomial" on page 101

CONFigure:MODeling:AMPM:ORDer <Order>

This command defines the order (or degree) of the "AM/PM" model polynomials that are calculated by the application.

Parameters:		
<order></order>	String containing the polynomials to be calculated. You can either select a range of polynomials (e.g. "1-7"), a selection of polynomials (e.g. "1;3;5") or a combination of both (e.g. "1;3;5").	
	Range: *RST:	0 to 18 "1-7"
Example:	//Calculate the CONF:MOD:	he polynomials to the 1st, 3rd, 4th and 5th degree AMPM:ORD "1;3-5"
Manual operation:	See "Selecti	ng the degree of the polynomial" on page 101

CONFigure:MODeling:LRANge <Level>

This command defines the modeling level range.

Parameters:	
<level></level>	<numeric value=""></numeric>
	Default unit: dB
Example:	//Define a modeling level

mpie:	//Define a modeling level range	
	CONF:MOD:LRAN 30	

Manual operation: See "Defining the modeling range" on page 101

CONFigure:MODeling:NPOints <Points>

This command defines the number of modeling points.

Parameters: <points></points>	<numeric value="">: (integer only) *RST: 50 Default unit:</numeric>	
Example:	//Calculate the model based on 50 points CONF:MOD:NPO 50	
Manual operation:	See "Defining the modeling range" on page 101	

CONFigure:MODeling:SCALe <State>

This command selects the method by which the input power range is split into smaller ranges for the calculation of the amplifier model.

Parameters: <state></state>	LINear Input power range is split on a linear basis.
	LOGarithmic Input power range is split on a logarithmic basis. *RST: LOGarithmic
Example:	//Apply a linear scale for the model calculation CONF:MOD:SCAL LIN
Manual operation:	See "Selecting the modeling scale" on page 102

CONFigure:MODeling:SEQuence <State>

This command selects the sequence in which the models are calculated.

Parameters:

<state></state>	AMFirst Calculates the "AM/AM" model before calculating the "AM/PM" model.
	PMFirst Calculates the "AM/PM" model before calculating the "AM/AM" model. *RST: AMFirst
Example:	//Calculate "AM/AM" model first CONF:MOD:SEQ AMF
Manual operation:	See "Turning system modeling on and off" on page 100

CONFigure:MODeling[:STATe] <State>

This command turns system modeling on and off.

Parameters:	
<state></state>	ON OFF 1 0
	*RST: 0
Example:	//Turn on system modeling
	CONF:MOD ON
Manual operation:	See "Turning system modeling on and off" on page 100

5.6.13 Applying digital predistortion

CONFigure:DDPD:ABORt	243
CONFigure:DDPD:APPLy[:STATe]	
CONFigure:DDPD:APPLy:WRAP[:STATe]	244
CONFigure:DDPD:CONTinue	244
CONFigure:DDPD:COUNt	244
CONFigure:DDPD:COUNt:CURRent?	244
CONFigure:DDPD:FINish	245
CONFigure:DDPD:FNAMe	245
CONFigure:DDPD:GEXPansion	
CONFigure:DDPD:STARt	246
CONFigure:DDPD[:STATe]	246
CONFigure:DDPD:RMS[:CURRent]?	
CONFigure:DDPD:TRADeoff	247
CONFigure:DDPD:WINDow <n>:RESult</n>	247
CONFigure:DPD:AMAM:LEDState?	
CONFigure:DPD:AMAM[:STATe]	248
CONFigure:DPD:AMPM:LEDState?	248
CONFigure:DPD:AMPM[:STATe]	248
CONFigure:DPD:AMXM[:STATe]	249
CONFigure:DPD:FILE:GENerate	
CONFigure:DPD:FILE:GENerate:ALL	249
CONFigure:DPD:FNAMe	250
CONFigure:DPD:METHod	250
CONFigure:DPD:SEQuence	251
CONFigure:DPD:SHAPing:MODE	251
CONFigure:DPD:TRADeoff	
CONFigure:DPD:UPDate	252
CONFigure:DPD:UPDate:ALL	
CONFigure:DPD:UPDate:LEDState?	253
CONFigure:HAMMerstein[:STATe]	253
CONFigure:HAMMerstein:ITERation	
CONFigure:HAMMerstein:ORDer:POLYnomial	254
CONFigure:HAMMerstein:ORDer:MEMory	254
CONFigure:HAMMerstein:MUPGenerator	254
CONFigure:HAMMerstein:GENWaveform[:SELect]	254
CONFigure:HAMMerstein:NONLinearity[:STATe]	
CONFigure:HAMMerstein:FILTer[:STATe]	255
CONFigure:MDPD:APPLy:MODel	255
CONFigure:MDPD[:STATe]	255

CONFigure:MDPD:ITERation	
CALCulate:MDPD:MODel	
CONFigure:MDPD:ORDer:POLYnomial	256
CONFigure:MDPD:ORDer:MEMory	256
CONFigure:MDPD:RMS[:CURRent]?	
CONFigure:MDPD:WAVeform:SELect	257
CONFigure:MDPD:WAVeform:UPDate	
FETCh:DDPD:OPERation:STATus?	
FETCh:DDPD:WAVeform:PATH?	
FETCh:DPD:POLYnomial?	258
FETCh:DPD:WAVeform:PATH?	258
FETCh:MDPD:COEFficients?	258
FETCh:MDPD:WAVeform:PATH?	258
MMEMory:STORe <n>:DDPD</n>	
MMEMory:STORe <n>:DPD</n>	259
MMEMory:STORe:MDPD:COEFficient	259
MMEMory:STORe:MDPD:WAVeform	260

CONFigure:DDPD:ABORt

This command stops a DPD sequence and discards the predistorted I/Q data that have been calculated.

Prerequisites for this command

- Turn on direct DPD (CONFigure:DDPD[:STATe] on page 246).
- Initiate a DPD sequence (CONFigure: DDPD: STARt on page 246).

Example:	//Stop a DPD sequence	
	CONF:DDPD:ABOR	
Usage:	Event	

CONFigure:DDPD:APPLy[:STATe] <State>

This command transfers the waveform file with the correction values to the signal generator and applies them to the input signal.

Prerequisites for this command

- Turn on direct DPD (CONFigure:DDPD[:STATe]).
- Run a DPD sequence (CONFigure:DDPD:STARt).

Parameters:

<state></state>	ON OFF 1 0 *RST: OFF
Example:	//Run a DPD sequence and transfer the correction value to the generator
	CONF:DDPD ON
	CONF:DDPD:STAR
	CONF:DDPD:APP ON

Manual operation: See "Automated direct DPD sequence" on page 107

CONFigure:DDPD:APPLy:WRAP[:STATe] <State>

Smoothes start- and tail-samples down to "0" in order to avoid phase discontinuities when the file is cyclically played from a signal source.

Parameters:		
<state></state>	ON OFF 1 0	
	*RST: 1	
Example:	CONFigure:DDPD:APPLy:WRAP ON	
Manual operation:	See "Automated direct DPD sequence" on page 107 See "Manual direct DPD sequence" on page 108	

CONFigure:DDPD:CONTinue

Ccontinues direct DPD in manual mode.

Example:	CONFigure:DDPD:CONTinue
Usage:	Event
Manual operation:	See "Manual direct DPD sequence" on page 108

CONFigure:DDPD:COUNt <Count>

This command defines the number of iterations in a direct DPD sequence.

Prerequisites for this command

• Turn on direct DPD (CONFigure:DDPD[:STATe]).

Parameters:

<count></count>	<numeric value=""> (integer only)</numeric>	
	Range: *RST:	1 to 1000 10
Example:	//Define nur CONF:DDPI	nber of iterations D:COUN 25
Manual operation:	See "Autom See "Manua	ated direct DPD sequence" on page 107 al direct DPD sequence" on page 108

CONFigure:DDPD:COUNt:CURRent?

This command queries the process of the direct DPD sequence (number of current iteration).

- Turn on direct DPD (CONFigure:DDPD[:STATe]).
- Start a DPD sequence (CONFigure:DDPD:STARt).

Return values: <iterations></iterations>	
Example:	<pre>//Define number of iterations CONF:DDPD:COUN 10 //Query process of measurement CONF:DDPD:COUN:CURR? would return, e.g. 7 (out of 10)</pre>
Usage:	Query only
Manual operation:	See "Manual direct DPD sequence" on page 108

CONFigure:DDPD:FINish

This command stops a DPD sequence before all iterations are done and keeps the predistorted I/Q data that have been calculated.

Prerequisites for this command

- Turn on direct DPD (CONFigure:DDPD[:STATe]).
- Initiate a DPD sequence (CONFigure:DDPD:STARt).

Example:	//Stop a DPD sequence	
	CONF:DDPD:FIN	
Usage:	Event	

CONFigure:DDPD:FNAMe <FileName>

This command defines a file name for the I/Q file that contains the predistorted I/Q data that was generated by the direct DPD.

Prerequisites for this command

• Turn on direct DPD (CONFigure:DDPD[:STATe]).

Parameters:

<filename></filename>	String containing the file name (including file type $.wv$).
Example:	//Define file name of direct DPD file CONF:DDPD:FNAM 'DirectDPD.wv'
Manual operation:	See "Automated direct DPD sequence" on page 107

CONFigure:DDPD:GEXPansion < GainExpansion>

This command sets the gain expansion for Direct DPD.

Parameters:

<GainExpansion> <numeric value> Default unit: dB

Example:	<pre>//Define gain expansion CONFigure:DDPD:GEXPansion 2</pre>
Manual operation:	See "Automated direct DPD sequence" on page 107 See "Manual direct DPD sequence" on page 108

CONFigure:DDPD:STARt

This command initiates a direct DPD sequence with the number of iterations you have defined.

You can define the number of iterations with CONFigure: DDPD:COUNt.

Prerequisites for this command

• Turn on direct DPD (CONFigure:DDPD[:STATe] on page 246).

Example:	//Initiate direct DPD sequence CONF:DDPD:STAR
Usage:	Event
Manual operation:	See "Automated direct DPD sequence" on page 107 See "Manual direct DPD sequence" on page 108

CONFigure:DDPD[:STATe] <State>

This command selects the type of DPD.

Parameters:

<state></state>	ON 1 Selects d	irect DPD.
	OFF 0 Selects p	olynomial DPD.
	*RST:	OFF
Example:	//Select c	lirect DPD
	CONF:DI	PD ON

CONFigure:DDPD:RMS[:CURRent]?

Returns the current RMS power level in manual direct DPD mode.

Return values: <level></level>	<numeric value=""></numeric>
Example:	CONFigure:DDPD:RMS:CURRent
Usage:	Query only
Manual operation:	See "Manual direct DPD sequence" on page 108

CONFigure:DDPD:TRADeoff <Power Linearity Tradeoff>

This command defines the power / linearity tradeoff for direct DPD calculation.

Prerequisites for this command

Turn on direct DPD (CONFigure:DDPD[:STATe]). ٠

Parameters:	
<power linearity<="" th=""><th><numeric value=""></numeric></th></power>	<numeric value=""></numeric>
Tradeoff>	Default unit: PCT
Example:	//Define linearity tradeoff CONF:DDPD:TRAD 75

Manual operation: See "Direct DPD Power / Linearity Tradeoff" on page 109

CONFigure:DDPD:WINDow<n>:RESult <Result>

Configures the result type of the DDPD Results result display.

Suffix:	
<ŋ>	Window
Parameters:	
<result></result>	EVM
	Error Vector Magnitude
	ACL1
	ACIrLower1
	ACU1
	ACIrUpper1
	ACB1
	ACIrBalanced1
Example:	CONFigure:DDPD:WIND1:RESult EVM
Manual operation:	See "DDPD Results (R&S VSE-K18D)" on page 16 See "Direct DPD Result Type" on page 140

CONFigure:DPD:AMAM:LEDState?

This command queries the state of the calculation of the "AM/AM" distortion curve.

Return values:	
<state></state>	GREen Calculation was successful.
	GREY Unknown calculation state.
	RED Calculation was not successful.

Example:	CONF:DPD:AMAM:LEDS?
	would return, e.g.:
	RED
Usage:	Query only

CONFigure:DPD:AMAM[:STATe] <State>

This command turns "AM/AM" predistortion on and off.

Prerequisites for this command

• Turn on polynomial DPD (CONFigure:DDPD[:STATe]).

Parameters:	
<state></state>	ON OFF 1 0
	*RST: 1
Example:	//Calculate "AM/AM" curve CONF:DPD:AMAM ON
Manual operation:	See "Selecting the order of model calculation" on page 105

CONFigure:DPD:AMPM:LEDState?

This command queries the state of the calculation of the "AM/PM" distortion curve.

Return values: <state></state>	GREen Calculation was successful. GREY Unknown calculation state. RED
Example:	CONF: DPD: AMPM: LEDS? would return, e.g.: RED
Usage:	Query only

CONFigure:DPD:AMPM[:STATe] <State>

This command turns "AM/PM" predistortion on and off.

Prerequisites for this command

• Turn on polynomial DPD (CONFigure:DDPD[:STATe]).

Parameters:

<State>

ON | OFF | 1 | 0 *RST: 1 Example: //Calculate "AM/PM" curve CONF:DPD:AMPM ON

Manual operation: See "Selecting the order of model calculation" on page 105

CONFigure:DPD:AMXM[:STATe] <State>

This command turns "AM/AM" and "AM/PM" predistortion on and off (at the same time).

Alternatively, you can do that with:

- CONFigure:DPD:AMAM[:STATe] and
- CONFigure:DPD:AMPM[:STATe]

However, using CONFigure:DPD:AMXM[:STATe] is the smoother way.

Prerequisites for this command

Turn on polynomial DPD (CONFigure:DDPD[:STATe]).

Setting parameters:

Manual operation:	See "Selecting the order of model calculation" on page 105
Usage:	Setting only
Example:	//Calculate both "AM/AM" and "AM/PM" predistortion CONF:DPD:AMXM ON
<state></state>	ON OFF 1 0

CONFigure:DPD:FILE:GENerate

This command generates the waveform files containing predistortion information within the amplifier application.

All in all, the command generates three waveform files: "AM/AM" only, "AM/PM" only and "AM/AM" plus "AM/PM".

It also transfers these waveform files to the connected signal generator.

Prerequisites for this command

• Turn on polynomial DPD (CONFigure:DDPD[:STATe]).

Example:	//Calculate DPD within the amplifier application and transfer the result to the signal generator
	CONF:DPD:METH WFIL
	CONF:DPD:FILE:GEN
Usage:	Event

CONFigure:DPD:FILE:GENerate:ALL

This command generates the waveform files containing predistortion information within the amplifier application.

All in all, the command generates three waveform files: "AM/AM" only, "AM/PM" only and "AM/AM" plus "AM/PM".

It also transfers these waveform files to the connected signal generator and turns on the "AM/AM" and "AM/PM" DPDs.

Alternatively, you can do that with:

- CONFigure:DPD:FILE:GENerate and
- CONFigure:DPD:AMXM[:STATe] on page 249

Prerequisites for this command

• Turn on polynomial DPD (CONFigure:DDPD[:STATe]).

Example:	//Calculate DPD within the amplifier application and transfer the result to the signal generator	
	CONF:DPD:METH WFIL	
	CONF:DPD:FILE:GEN	
Usage:	Event	

CONFigure:DPD:FNAMe <FileName>

This command defines a name for the DPD correction table.

Prerequisites for this command

• Turn on polynomial DPD (CONFigure:DDPD[:STATe]).

Parameters:

<filename></filename>	String containing the DPD table file name.
Example:	//Defines the DPD table name CONF:DPD:FNAM 'DPDTable'
Manual operation:	See "Selecting the DPD shaping method" on page 104

CONFigure:DPD:METHod <Method>

This command selects the method with which the application determines the DPD.

Prerequisites for this command

• Turn on polynomial DPD (CONFigure:DDPD[:STATe]).

Parameters:

<Method>

GENerator

Signal generator applies the DPD parameters calculated by the amplifier application to the generated RF signal in real-time. Option R&S SMW-K541 is required on the generator for this method.

WFILe

	Signal generator applies the DPD to the generated RF signal through a waveform file.
	No additional equipment is required on the signal generator for this method.
	Use CONFigure:DPD:FILE:GENerate to actually generate
	the DPD and transfer it to the generator.
	*RST: GENerator
Example:	//Calculates the DPD within the amplifier application CONF:DPD:METH WFIL
Manual operation:	See "Selecting the DPD method" on page 103

CONFigure:DPD:SEQuence <State>

This command selects the order in which the "AM/AM" and "AM/PM" distortion are applied.

Available when both have been turned on.

Prerequisites for this command

- Turn on polynomial DPD (CONFigure:DDPD[:STATe]).
- Turn on both "AM/AM" and "AM/PM" calculation (CONFigure:DPD:AMAM[: STATe] / CONFigure:DPD:AMPM[:STATe]).

Parameters:

<state></state>	AMFirst Calculates the "AM/AM" distortion first, then the "AM/PM" distor- tion.
	PMFirst Calculates the "AM/PM" distortion first, then the "AM/AM" distor- tion.
Example:	//Calculates the "AM/AM" curve first CONF:DPD:SEQ AMF
Manual operation:	See "Selecting the order of model calculation" on page 105

CONFigure:DPD:SHAPing:MODE <Method>

This command selects the method use to shape the DPD function.

Parameters: <Method>

POLYnomial

DPD function based on the characteristics of the polynomial system model.

TABLe

DPD function based on the correction values kept in a table calculated by the R&S SMW.

*RST: TABLe

Example:	//Select DPD shaping me	thod
	CONF:DPD:SHAP:MODE	TABL

Manual operation: See "Selecting the DPD shaping method" on page 104

CONFigure:DPD:TRADeoff < Power Linearity Tradeoff>

This command defines the power / linearity tradeoff for polynomial DPD calculation.

Prerequisites for this command

• Turn on polynomial DPD (CONFigure:DDPD[:STATe]).

Parameters: <power linearity<="" th=""><th><numeric value=""></numeric></th></power>	<numeric value=""></numeric>
Frample:	Default unit: PCT
	CONF:DPD:TRAD 75
Manual operation:	See "Polynomial DPD Power / Linearity Tradeoff" on page 105

CONFigure:DPD:UPDate

This command updates the DPD shaping tables on the R&S SMW when new measurement data is available.

Prerequisites for this command

• Turn on polynomial DPD (CONFigure:DDPD[:STATe]).

Example:	//Update the shaping table	
	CONF:DPD:UPD	
Usage:	Event	

CONFigure:DPD:UPDate:ALL

This command updates the DPD shaping tables on the R&S SMW when new measurement data is available.

In addition, this command also turns on the DPD ("AM/AM"and"AM/PM").

Using one command only to do those things has the advantage of a slightly shorter execution time.

Alternatively, you can do that with:

- CONFigure:DPD:UPDate on page 252 and
- CONFigure:DPD:AMXM[:STATe] on page 249

Prerequisites for this command

• Turn on polynomial DPD (CONFigure:DDPD[:STATe]).
Example:	//Opdate the tables and turn on "AM/AM" and "AM/PM" predis- tortion CONF:DPD:UPD:ALL
Usage:	Event

CONFigure:DPD:UPDate:LEDState?

This command queries the state of the DPD calculation.

The information of the return result depends on the DPD method:

- DPD calculated by the generator (with option K541): Query of the state of the update of the shaping table or the polynomial coefficients.
- DPD calculation by the Amplifier application: Query of the state of waveform file generation and its upload to the generator.

Prerequisites for this command

• Turn on polynomial DPD (CONFigure:DDPD[:STATe]).

Return values:

<state></state>	GREen Transmission was successful.
	GREY Unknown transmission state.
	RED Transmission was not successful.
Example:	//Query LED state CONF:DPD:UPD CONF:DPD:UPD:LEDS? would return, e.g.: GREY
Usage:	Query only

CONFigure:HAMMerstein[:STATe] <State>

Switches Hammerstein mode on and off.

Parameters:

Example:

<state></state>	ON 1
	OFF 0

CONF: HAMM ON

Manual operation: See "Running a Hammerstein model sequence" on page 114

CONFigure:HAMMerstein:ITERation <Level>

Configures the iteration step for the Hammerstein model.

Configuring amplifier measurements

Parameters: <level></level>	<numeric value=""></numeric>
Example:	CONFigure:HAMM:ITERation 4
Manual operation:	See "Running a Hammerstein model sequence" on page 114

CONFigure:HAMMerstein:ORDer:POLYnomial <Order>

Sets the polynomial order for the Hammerstein model as a string.

Parameters: <order></order>	
Example:	CONFigure:HAMM:ORDer:POLY "1-7;9;11"
Manual operation:	See "Running a Hammerstein model sequence" on page 114

CONFigure:HAMMerstein:ORDer:MEMory <Order>

Sets the memory order for the Hammerstein model as a string.

Parameters: <order></order>	
Example:	CONFigure:HAMMerstein:ORDer:MEMory "1-7;9;11"
Manual operation:	See "Running a Hammerstein model sequence" on page 114

CONFigure:HAMMerstein:MUPGenerator

Starts the DSP and updates the generator.

Example:	CONFigure:HAMMerstein:MUPGenerator
Usage:	Event
Manual operation:	See "Running a Hammerstein model sequence" on page 114

CONFigure:HAMMerstein:GENWaveform[:SELect] <GeneratorWaveform>

Switches the generator waveform between reference and direct DPD.

Parameters:

<GeneratorWaveform REFerence | DDPD

REFerence Reference waveform DDPD DDPD waveform

Example: CONFigure:Hammerstein:GENWaveform REF

Manual operation: See "Running a Hammerstein model sequence" on page 114

CONFigure:HAMMerstein:NONLinearity[:STATe] <State>

Switches the non-linearity (SMx-K541) on and off.

Parameters:	
<state></state>	ON 1
	OFF 0
Example:	CONFigure:Hammerstein:NONLinearity ON
Manual operation:	See "Running a Hammerstein model sequence" on page 114

CONFigure:HAMMerstein:FILTer[:STATe] <State>

Switches the filter (SMx-K544) on and off.

Parameters:	
<state></state>	ON 1
	OFF 0
Example:	CONFigure:Hammerstein:FILTer ON
Manual operation:	See "Running a Hammerstein model sequence" on page 114

CONFigure:MDPD:APPLy:MODel <Channel>

Selects the waveform to which the model should be applied.

Parameters:

<Channel>

Manual operation: See "Running a Memory Polynomial DPD sequence" on page 111

CONFigure:MDPD[:STATe] <State>

Switches the memory polynomial state on and off.

Parameters:		
<state></state>	ON 1	
	OFF 0	
	*RST:	OFF
Example:	CONFigure:MDPD:STATe ON	
Manual operation:	See "Running a Memory Polynomial DPD sequence" on page 111	

CONFigure:MDPD:ITERation <Level>

Configures the iteration step for memory polynomial DPD.

Parameters: <level></level>	<numeric value=""></numeric>
Example:	CONFigure:MDPD:ITERation 4
Manual operation:	See "Running a Memory Polynomial DPD sequence" on page 111

CALCulate:MDPD:MODel

Calculates the memory polynomial model.

Example:	CALCulate:MDPD:MODel
Usage:	Event
Manual operation:	See "Running a Memory Polynomial DPD sequence" on page 111

CONFigure:MDPD:ORDer:POLYnomial <Order>

Sets the polynomial order for memory polynomial DPD as a string.

Parameters: <order></order>	
Example:	CONFigure:MDPD:ORDer:POLY "1-7;9;11"
Manual operation:	See "Running a Memory Polynomial DPD sequence" on page 111

CONFigure:MDPD:ORDer:MEMory <Order>

Sets the memory order for memory polynomial DPD as a string.

Parameters: <order></order>		
Example:	CONFigure:MDPD:ORDer:MEMory "1-7;9;11"	
Manual operation:	See "Running a Memory Polynomial DPD sequence" on page 111	

CONFigure:MDPD:RMS[:CURRent]?

Returns the current RMS power level of the memory polynomial waveform.

Return values: <level></level>	<numeric value=""></numeric>
Example:	CONFigure:MDPD:RMS:CURRent
Usage:	Query only
Manual operation:	See "Manual direct DPD sequence" on page 108

CONFigure:MDPD:WAVeform:SELect <Type>

Selects the type of DPD waveform to be used.

Parameters:

<type></type>	DPD ses a direct DPD waveform. DPD ses a memory polynomial DPD waveform.	
Example:	CONFigure:MDPD:WAVeform:SELect MDPD	
Manual operation:	See "Running a Memory Polynomial DPD sequence on page 111	

CONFigure:MDPD:WAVeform:UPDate

Sends the memory polynomial waveform to the signal generator.

Example:	CONFigure:MDPD:WAVeform:UPDate	
Usage:	Event	
Manual operation:	See "Running a Memory Polynomial DPD sequence" on page 111	

FETCh:DDPD:OPERation:STATus?

This command queries the state of a direct DPD operation.

Return values:	
<state></state>	ON OFF 1 0
	ON
	Direct DPD operation was successful.
	OFF Direct DPD operation was not successful.
Example:	//Query direct DPD state FETC:DDPD:OPER:STAT?
Usage:	Query only

FETCh:DDPD:WAVeform:PATH?

Queries the path of the Direct DPD waveform.

Return values: <FileName>

Example:	FETCh:DDPD:WAVE:PATH?		
Usage:	Query only		
Manual operation:	See "Manual direct DPD sequence" on page 108		

FETCh:DPD:POLYnomial?

This command queries the polynomial factors of the correctional polynomial.

Prerequisites for this command

- Turn on polynomial DPD (CONFigure:DDPD[:STATe]).
- Run polynomial DPD (CONFigure:DPD:FILE:GENerate).

Return values:

<values></values>	List of numerical values. The number of values depends on the DPD configuration. The real and imaginary parts of the DPD coefficients are returned interleaved in the following order: real(a0), imag(a0), real(a1), imag(a1),
Example:	//Query polynomial factors FETC:DPD:POLY?
Usage:	Query only

FETCh:DPD:WAVeform:PATH?

Queries the path of the Polynomial DPD waveform.

Return values:

<FileName>

Example: FETCh:DPD:WAV:PATH?

Usage: Query only

FETCh:MDPD:COEFficients?

 Fetches the MDPD coefficient values.

 Example:
 FETCh:MDPD:COEFficients?

 Usage:
 Query only

 Manual operation:
 See "Memory DPD Coefficients" on page 20

FETCh:MDPD:WAVeform:PATH?

Queries the path of the Memory Polynomial DPD waveform.

Return values: <FileName>

Example: FETCh:MDPD:WAV:PATH?

Usage: Query only

MMEMory:STORe<n>:DDPD <FileName>

This command stores the direct DPD information in a file.

Prerequisites for this command

- Turn on direct DPD (CONFigure:DDPD[:STATe] on page 246).
- Run a DPD sequence (CONFigure:DDPD:STARt on page 246).

Suffix:

<n></n>	1n	
Setting parameters: <filename></filename>	String containing the file name and location of the file.	
Example:	//Run a DPD sequence and save the DPD CONF:DDPD ON CONF:DDPD:STAR MMEM:STOR:DDPD 'c:\directdpd.wv'	
Usage:	Setting only	
Manual operation:	See "Automated direct DPD sequence" on page 107	

MMEMory:STORe<n>:DPD <FileName>

This command generates and stores a waveform containing the DPD in a file you have specified.

Prerequisites for this command

- DPD method "Generate Predistorted Waveform File" has to be selected (CONFigure:DPD:METHod = WFILe)
- The DPD calculation has been initiated with CONFigure:DPD:FILE:GENerate.

Suffix:

<n>

1..n

Setting parameters:

<FileName> String containing the file name.

Example:	CONF:DPD:METH WFIL CONF:DPD:FILE:GEN MMEM:STOR:DPD 'DPD_WV' Calculates the DPD within the Amplifier application, transfers the result to the signal generator and saves it in a file.
Usage:	Setting only

MMEMory:STORe:MDPD:COEFficient <FileName>

Exports the memory DPD coefficients in a file in .csv format.

Setting parameters:

<FileName>

Configuring amplifier measurements

Example:	MMEMory:STORe:MDPD:COEFficient 'C: \MemoryPolyCoeff.csv'	
Usage:	Setting only	
Manual operation:	See "Running a Memory Polynomial DPD sequence" on page 111	

MMEMory:STORe:MDPD:WAVeform <FileName>

Saves the memory polynomial waveform at a user selected path.

Only available when generator control is OFF.

Setting parameters:

<FileName>

Example:	MMEMory:STORe:MDPD:WAVeform	'C:	\MemoryPoly.wv'
----------	-----------------------------	-----	-----------------

Usage: Setting only

Manual operation: See "Running a Memory Polynomial DPD sequence" on page 111

5.6.14 Detailed MSE

CALCulate:MSERror?	
CALCulate:MSERror:CONFigure:EQUalizer:FILTer:LENGth	
CALCulate:MSERror:IQAVg:COUNt	

CALCulate:MSERror?

Calculates the detailed MSE and returns the result.

Example:	CALC:MSER?
----------	------------

Usage: Query only

Manual operation: See "Calculate Detailed MSE" on page 116

CALCulate:MSERror:CONFigure:EQUalizer:FILTer:LENGth <Length>

Parameters:

<Length>

CALCulate:MSERror:IQAVg:COUNt <Count>

Parameters: <Count>

Configuring amplifier measurements

5.6.15 Configuring envelope tracking

CONFigure:PAE:ICHannel:MULTiplier	
CONFigure:PAE:ICHannel:OFFSet	
CONFigure:PAE:ICHannel:RESistor	261
CONFigure:PAE:PCONsumption[:PARameter]:A	
CONFigure:PAE:PCONsumption[:PARameter]:B	
CONFigure:PAE:QCHannel:MULTiplier	262
CONFigure:PAE:QCHannel:OFFSet	262

CONFigure:PAE:ICHannel:MULTiplier < Multiplier>

This command defines a multiplier to take into account various effects resulting from the measurement equipment connected to the I channel.

Parameters:

<multiplier></multiplier>	<numeric value=""></numeric>
Example:	//Defines a multiplier of 0.75
	CONF:PAE:ICH:MULT 0.75

CONFigure:PAE:ICHannel:OFFSet <Offset>

This command defines an offset for the I channel.

Parameters:		
<offset></offset>	<numeric value=""></numeric>	
	Default unit: No unit	
Example:	//Define an offset of 1	
	CONF:PAE:ICH:EOFF	1

CONFigure:PAE:ICHannel:RESistor <Resistance>

This command defines the characteristics of the shunt resistor used in the test setup.

<numeric value=""></numeric>
Resistance in Ohm.
//Defines a resistance of 1.5 Ω CONF:PAE:ICH:RES 1.5

CONFigure:PAE:PCONsumption[:PARameter]:A <Value>

Parameters: </br/>
</alue>

CONFigure:PAE:PCONsumption[:PARameter]:B <Value>

Parameters:

<Value>

CONFigure:PAE:QCHannel:MULTiplier < Multiplier>

This command defines a multiplier to take into account various effects resulting from the measurement equipment connected to the Q channel.

Parameters:	
<multiplier></multiplier>	<numeric value=""></numeric>
Example:	//Define a multiplier of 1.2
	CONF:PAE:QCH:MULT 1.2

CONFigure:PAE:QCHannel:OFFSet <Offset>

This command defines an offset for the Q channel.

Parameters:	
<offset></offset>	<numeric value=""></numeric>
	Default unit: No unit
Example:	<pre>//Defines an offset of 1 CONF:PAE:QCH:OFFS 1</pre>

5.6.16 Configuring ACLR measurements

CALCulate <n>:MARKer<m>:FUNCtion:POWer:RESult?</m></n>	
[SENSe:]POWer:ACHannel:ACPairs	
[SENSe:]POWer:ACHannel:AABW	
[SENSe:]POWer:ACHannel:BANDwidth:ACHannel	
[SENSe:]POWer:ACHannel:BANDwidth:ALTernate <ch></ch>	
[SENSe:]POWer:ACHannel:BANDwidth[:CHANnel <ch>]</ch>	
[SENSe:]POWer:ACHannel:FILTer:ALPHa:ACHannel	
[SENSe:]POWer:ACHannel:FILTer:ALPHa:ALTernate <ch></ch>	
[SENSe:]POWer:ACHannel:FILTer:ALPHa:CHANnel <ch></ch>	
[SENSe:]POWer:ACHannel:FILTer[:STATe]:ACHannel	
[SENSe:]POWer:ACHannel:FILTer[:STATe]:ALTernate <ch></ch>	
[SENSe:]POWer:ACHannel:FILTer[:STATe]:CHANnel <ch></ch>	
[SENSe:]POWer:ACHannel:REFerence:TXCHannel:AUTO	
[SENSe:]POWer:ACHannel:REFerence:TXCHannel:MANual	
[SENSe:]POWer:ACHannel:SPACing:CHANnel <ch></ch>	
[SENSe:]POWer:ACHannel:SPACing[:ACHannel]	
[SENSe:]POWer:ACHannel:SPACing:ALTernate <ch></ch>	
[SENSe:]POWer:ACHannel:TXCHannel:COUNt	

CALCulate<n>:MARKer<m>:FUNCtion:POWer:RESult? < Item>

This command queries the (numerical) results of the ACLR measurement.

Suffix: <n></n>	Window
<m></m>	irrelevant
Query parameters: <item></item>	ACP Queries the results of the ACLR measurement. Returns the power for every active transmission and adjacent channel. The order is: • power of the transmission channels • power of adjacent channel (lower,upper)
Example:	CALC:MARK:FUNC:POW:RES? would return, e.g. -21.76, 3.21, 2.57
Usage:	Query only
Manual operation:	See "Adjacent Channel Leakage Error (ACLR)" on page 13

[SENSe:]POWer:ACHannel:ACPairs < ChannelPairs>

Defines the number of pairs of adjacent and alternate channels.

Parameters:		
<channelpairs></channelpairs>	Range: *RST:	0 to 12 1
Manual operation:	See "Numbe	er of channels: Tx , Adj " on page 118

[SENSe:]POWer:ACHannel:AABW <State>

This command turns automatic selection of the measurement bandwidth for ACLR measurements on and off.

When you turn this on, the application selects a measurement bandwidth that is large enough to capture all channels evaluated by the ACLR measurement.

Parameters: <state></state>	ON OFF 1 0
Example:	//Turn on automatic selection of the measurement bandwidth POW:ACH:AABW ON
Manual operation:	See "Selecting the measurement bandwidth" on page 118

[SENSe:]POWer:ACHannel:BANDwidth:ACHannel <Bandwidth>

Defines the channel bandwidth of the adjacent channels.

The adjacent channels are the first channels to the left and right of the transmission channels. If you set the channel bandwidth for these channels, the R&S VSE sets the bandwidth of the alternate channels to the same value (not for MSR signals).

Range:	100 Hz to 1000 MHz
*RST:	14 kHz
Default unit	: Hz
See "Chanr	nel Bandwidth " on page 119
	Range: *RST: Default unit See "Chanr

[SENSe:]POWer:ACHannel:BANDwidth:ALTernate<ch> <Bandwidth>

Defines the channel bandwidth of the alternate channels.

Suffix: <ch></ch>	1n Alternate ch	annel number
Parameters: <bandwidth></bandwidth>	Range: *RST: Default unit:	100 Hz to 1000 MHz 14 kHz Hz
Manual operation:	See "Chann	el Bandwidth " on page 119

[SENSe:]POWer:ACHannel:BANDwidth[:CHANnel<ch>] <Bandwidth>

Defines the channel bandwidth of the transmission channels.

Suffix:		
<ch></ch>	1n Tx channel	number
Parameters: <bandwidth></bandwidth>	Range: *RST: Default uni	100 Hz to 1000 MHz 14 kHz t: Hz
Manual operation:	See "Chan	nel Bandwidth " on page 119

[SENSe:]POWer:ACHannel:FILTer:ALPHa:ACHannel <Alpha>

Defines the roll-off factor for the adjacent channel weighting filter.

Parameters:			
<alpha></alpha>	Roll-off factor		
	Range: *RST:	0 to 1 0.22	
Manual operation:	See "Weig	phting Filters " on page 120	

[SENSe:]POWer:ACHannel:FILTer:ALPHa:ALTernate<ch> <Alpha>

Defines the roll-off factor for the alternate channel weighting filter.

Suffix: <ch>

1..n Alternate channel number

Parameters:

<Alpha>

Roll-off factor Range: 0 to 1 *RST: 0.22

Manual operation: See "Weighting Filters " on page 120

[SENSe:]POWer:ACHannel:FILTer:ALPHa:CHANnel<ch> <Alpha>

Defines the roll-off factor for the transmission channel weighting filter.

Suffix: <ch></ch>	1n Tx channel	number
Parameters: <alpha></alpha>	Roll-off fac	tor
	Range: *RST:	0 to 1 0.22
Manual operation:	See "Weigl	hting Filters " on page 120

[SENSe:]POWer:ACHannel:FILTer[:STATe]:ACHannel <State>

Turns the weighting filter for the adjacent channel on and off.

Parameters:	
<state></state>	ON OFF 1 0
	*RST: 0
Manual operation:	See "Weighting Filters " on page 120

[SENSe:]POWer:ACHannel:FILTer[:STATe]:ALTernate<ch> <State>

Turns the weighting filter for an alternate channel on and off.

Suffix:	
<ch></ch>	1n
	Alternate channel number
Parameters:	
<state></state>	ON OFF 1 0
	*RST: 0
Manual operation:	See "Weighting Filters " on page 120

[SENSe:]POWer:ACHannel:FILTer[:STATe]:CHANnel<ch> <State>

Turns the weighting filter for a transmission channel on and off.

Suffix:	
<ch></ch>	1n
	Tx channel number
Parameters:	
<state></state>	ON OFF 1 0
	*RST: 0
Manual operation:	See "Weighting Filters " on page 120

[SENSe:]POWer:ACHannel:REFerence:TXCHannel:AUTO <RefChannel>

Selects the reference channel for relative measurements.

You need at least one channel for the command to work.

Parameters: <refchannel></refchannel>	MINimum MAXimum LHIGhest MINimum Transmission channel with the lowest power
	MAXimum Transmission channel with the highest power
	LHIGhest Lowest transmission channel for lower adjacent channels and highest transmission channel for upper adjacent channels
Example:	POW:ACH:REF:TXCH:AUTO MAX Selects the channel with the peak power as reference channel.
Manual operation:	See "Reference Channel " on page 119

[SENSe:]POWer:ACHannel:REFerence:TXCHannel:MANual <ChannelNumber>

Defines a reference channel for relative ACLR measurements.

You need at least one channel for the command to work.

Parameters:		
<channelnumber></channelnumber>	Range: *RST:	1 to 18 1
Manual operation:	See "Refere	ence Channel " on page 119

[SENSe:]POWer:ACHannel:SPACing:CHANnel<ch> <Spacing>

Defines the distance between transmission channels.

If you set the channel spacing for a transmission channel, the R&S VSE sets the spacing of the lower transmission channels to the same value, but not the other way round. The command works hierarchically: to set a distance between the 2nd and 3rd and 3rd and 4th channel, you have to set the spacing between the 2nd and 3rd channel first.

Suffix:

<ch>

1..n Tx channel number

Parameters:		
<spacing></spacing>	Range:	14 kHz to 2000 MHz
	*RST:	20 kHz
	Default uni	t: Hz
Manual operation:	See "Chan	nel Spacings " on page 120

[SENSe:]POWer:ACHannel:SPACing[:ACHannel] <Spacing>

Defines the distance from transmission channel to adjacent channel.

A change of the adjacent channel spacing causes a change in the spacing of all alternate channels below the adjacent channel.

Parameters:

<spacing></spacing>	Range:	100 Hz to	2000 MHz
	*RST:	14 kHz	
	Default unit:	Hz	

Manual operation: See "Channel Spacings " on page 120

[SENSe:]POWer:ACHannel:SPACing:ALTernate<ch> <Spacing>

Defines the distance from transmission channel to alternate channels.

Suffix:		
<ch></ch>	1n	
	Alternate ch	nannel number
Parameters:		
<spacing></spacing>	Range:	100 Hz to 2000 MHz
	*RST:	40 kHz (ALT1), 60 kHz (ALT2), 80 kHz (ALT3),
	Default unit	: Hz
Manual operation:	See "Chanr	nel Spacings " on page 120

[SENSe:]POWer:ACHannel:TXCHannel:COUNt <Number>

Defines the number of transmission channels.

The command works for measurements in the frequency domain.

Parameters:

<number></number>	Range:	1	to	18
	*RST:	1		

Configuring amplifier measurements

Manual operation: See "Number of channels: Tx , Adj " on page 118

5.6.17 Configuring power measurements

CONFigure:POWer:RESult:P3DB:REFerence	268
CONFigure:POWer:RESult:P3DB[:STATe]	

CONFigure:POWer:RESult:P3DB:REFerence <RefPower>

This command defines the input power corresponding to the gain reference required to calculate the compression points.

Prerequisites for this command

• Turn off automatic calculation of the reference point (CONFigure: POWer: RESult:P3DB[:STATe]).

Parameters:

<refpower></refpower>	<numeric value=""></numeric>
	Default unit: dBm
Example:	//Reference point is the gain measured at an input power of 3 dBm
	CONF:POW:RES:P3DB OFF
	CONF:POW:RES:P3DB:REF 3
Manual operation:	See "Configuring compression point calculation" on page 117

CONFigure:POWer:RESult:P3DB[:STATe] <State>

This command turns automatic calculation of the reference point required to determine the compression points (1 dB, 2 dB and 3 dB) on and off.

Manual operation:	See "Configuring compression point calculation" on page 117
Example:	//Automatically determine the reference point CONF: POW: RES: P3DB ON
<state></state>	ON OFF 1 0 *RST: 1

5.6.18 Configuring parameter sweeps

CONFigure:PSWeep:ADJust:LEVel[:STATe]	269
CONFigure:PSWeep:EXPected:GAIN	269
CONFigure:PSWeep[:STATe]	269
CONFigure:PSWeep:X:SETTing	270
CONFigure:PSWeep:X:STARt	270
CONFigure:PSWeep:X:STEP	270
CONFigure:PSWeep:X:STOP	.271

Configuring amplifier measurements

CONFigure:PSWeep:Y:SETTing	
CONFigure:PSWeep:Y:STARt.	
CONFigure:PSWeep:Y:STATe	
CONFigure:PSWeep:Y:STEP	
CONFigure:PSWeep:Y:STOP	

CONFigure:PSWeep:ADJust:LEVel[:STATe] <State>

This command turns synchronization of the generator output level and the analyzer reference level on and off.

When you synchronize the levels, it is recommended to also define the expected gain of the DUT with CONFigure: PSWeep: EXPected: GAIN.

Prerequisites for this command

• Select "Generator Power" as one of the parameters.

Parameters: <state></state>	ON OFF 1 0
Example:	<pre>//Synchronize the generator output level and the analyzer refer- ence level CONF:PSW:ADJ:LEV ON</pre>
Manual operation:	See "Synchronizing the levels of signal generator and analyzer" on page 123

CONFigure:PSWeep:EXPected:GAIN <Gain>

This command defines the expected gain of the DUT.

This is necessary when you synchronize the generator output level and the reference level of the analyzer CONFigure:PSWeep:ADJust:LEVel[:STATe] = ON.

Prerequisites for this command

Select "Generator Power" as one of the parameters.

Parameters:

Manual operation:	See "Synchronizing the levels of signal generator and analyzer" on page 123
Example:	//Define expected gain CONF:PSW:ADJ:LEV ON CONF:PSW:EXP:GAIN 5
<gain></gain>	<numeric value=""> Default unit: dB</numeric>

CONFigure:PSWeep[:STATe] <State>

This command turns the parameter sweep on and off.

Parameters: <State>

ON | OFF | 1 | 0

Example:	//Turn on parameter sweep
	CONF:PSW ON

Manual operation: See "Turning the parameter sweep on and off" on page 122

CONFigure:PSWeep:X:SETTing <Setting>

This command selects the parameter type for the first parameter controlled by the parameter sweep.

Parameters:		
<setting></setting>	BIAS	
	Controls the envelope bias.	
	DELay Controls the delay between envelope and RF signal.	
	FREQuency Controls the frequency.	
	POWer Controls the output level.	
Example:	See CONFigure:PSWeep:Y:SETTing.	

CONFigure:PSWeep:X:STARt <Start>

This command defines the start value for the first parameter controlled by the parameter sweep.

Parameters:

<start></start>	<pre><numeric value=""> whose unit depends on the parameter type you have selected with CONFigure:PSWeep:Y:SETTing: • Hz in case of the center frequency • dBm in case of the output level • s in case of the delay between envelope and RF signal • V in case of the envelope bias</numeric></pre>
Example:	See CONFigure: PSWeep: Y: SETTing.

CONFigure:PSWeep:X:STEP <Step>

This command defines the stepsize for the first parameter controlled by the parameter sweep.

Parameters:

<step></step>	<pre><numeric value=""> whose unit depends on the parameter type you have selected with CONFigure:PSWeep:Y:SETTing: • Hz in case of the center frequency • dB in case of the output level</numeric></pre>
	 s in case of the delay between envelope and RF signal V in case of the envelope bias
Example:	See CONFigure: PSWeep: Y: SETTing.

CONFigure:PSWeep:X:STOP <Stop>

This command defines the stop value for the first parameter controlled by the parameter sweep.

Parameters:

<stop></stop>	<pre><numeric value=""> whose unit depends on the parameter type you have selected with CONFigure:PSWeep:Y:SETTing: Hz in case of the center frequency dBm in case of the output level s in case of the delay between envelope and RF signal V in case of the envelope bias</numeric></pre>
Example:	See CONFigure: PSWeep: Y:SETTing.

CONFigure:PSWeep:Y:SETTing <Setting>

This command selects the parameter type for the second parameter controlled by the parameter sweep.

Parameters: <setting></setting>	BIAS Controls the envelope bias. DELay Controls the delay between envelope and RF signal.
	FREQuency Controls the frequency. POWer Controls the output level.
Example:	<pre>//Configure the second parameter with start, stop and stepsize values CONF:PSW:Y:STAT ON CONF:PSW:Y:SETT FREQ CONF:PSW:Y:STAR 10MHZ CONF:PSW:Y:STOP 100MHZ CONF:PSW:Y:STEP 1MHZ</pre>

CONFigure:PSWeep:Y:STARt <Start>

This command defines the start value for the second parameter controlled by the parameter sweep.

Parameters:

<start></start>	<numeric value=""> whose unit depends on the parameter type you</numeric>
	have selected with CONFigure:PSWeep:Y:SETTing:
	Hz in case of the center frequency
	 dBm in case of the output level
	 s in case of the delay between envelope and RF signal
	 V in case of the envelope bias

Configuring amplifier measurements

Example: See CONFigure:PSWeep:Y:SETTing.

CONFigure:PSWeep:Y:STATe <State>

This command turns the second parameter controlled by the parameter sweep on and off.

 Parameters:

 <State>

 State>

 *RST:

 1

 Example:

 See CONFigure:

 PSWeep:

 Y:

 Set

CONFigure:PSWeep:Y:STEP <Step>

This command defines the stepsize for the second parameter controlled by the parameter sweep.

Parameters:

<step></step>	<pre><numeric value=""> whose unit depends on the parameter type you have selected with CONFigure:PSWeep:Y:SETTing: • Hz in case of the center frequency • dB in case of the output level • s in case of the delay between envelope and RF signal • V in case of the envelope bias</numeric></pre>
Example:	See CONFigure: PSWeep: Y: SETTing.

CONFigure:PSWeep:Y:STOP <Stop>

This command defines the stop value for the second parameter controlled by the parameter sweep.

Parameters:

<stop></stop>	<pre><numeric value=""> whose unit depends on the parameter type you have selected with CONFigure:PSWeep:Y:SETTing: Hz in case of the center frequency dBm in case of the output level s in case of the delay between envelope and RF signal V in case of the envelope bias</numeric></pre>
Example:	See CONFigure: PSWeep:Y:SETTing.

5.6.19 Configuring power servoing

Note that as long as you have selected automatic definition of the data acquisition values in the Power Servoing measurement, the application takes the same values as those that have been defined for the basic amplifier measurement (this is also the case when the basic data acquisition parameters are selected automatically). If you want to define values specific to the Power Servoing measurement, you have to turn off automatic definition of the data acquisition value. If you turn automatic definition back on, the values are synchronized to those of the basic amplifier measurement again.

[SENSe:]PSERvoing:STATe	
[SENSe:]PSERvoing:TARGet:PARameter	
[SENSe:]PSERvoing:TARGet:VALue	274
[SENSe:]PSERvoing:TARGet:TOLerance	274
[SENSe:]PSERvoing:MAX:ITERation	
[SENSe:]PSERvoing[:GLC]	274
[SENSe:]PSERvoing:INPut:STEP	274
[SENSe:]PSERvoing:STARt	
FETCh:PSERvoing:OPERation:STATus?	275
\sim	

[SENSe:]PSERvoing:STATe <State>

Sets and queries the power servoing state.

Parameters: <state></state>	ON OFF 1 0
Example:	PSER:STAT ON
Manual operation:	See "Power Servoing sequence" on page 124

[SENSe:]PSERvoing:TARGet:PARameter <Target>

Sets the power servoing target parameter.

Parameters:

<target></target>	POUT EVM LADJ UADJ LALT UALT
	POUT Power Out
	EVM EVM
	LADJ ACLR Adjacent Lower
	UADJ ACLR Adjacent Upper
	LALT ACLR Alternate Lower
	UALT ACLR Alternate Upper
Example:	PSER:TARG:PAR POUT
Manual operation:	See "Power Servoing sequence" on page 124

[SENSe:]PSERvoing:TARGet:VALue <TargetValue>

Sets and queries the power servoing target value. The unit depends on the selected target parameter.

Parameters:

<targetvalue></targetvalue>	<numeric value=""></numeric>
Example:	PSER:TARG:VAL 3
Manual operation:	See "Power Servoing sequence" on page 124

[SENSe:]PSERvoing:TARGet:TOLerance <TargetValue>

Sets and queries the power servoing target tolerance. The unit depends on the selected target parameter.

Parameters:

<targetvalue></targetvalue>	<numeric value=""></numeric>
Example:	PSER:TARG:TOL 0.2
Manual operation:	See "Power Servoing sequence" on page 124

[SENSe:]PSERvoing:MAX:ITERation < MaxIterations>

Sets and queries the maximum number of iteratons during the power servoing sequence.

Parameters:

<maxiterations></maxiterations>	<numeric value=""></numeric>
Example:	PSER:MAX:ITER 5
Manual operation:	See "Power Servoing sequence" on page 124

[SENSe:]PSERvoing[:GLC] <GenLevelControl>

Selects if the generator level is modified using input power or digital attenuation.

Parameters:

<genlevelcontrol></genlevelcontrol>	RFL DATT
	RFL Input power
	DATT Digital attenuation
Example:	PSER:GLC RFL
Manual operation:	See "Power Servoing sequence" on page 124

[SENSe:]PSERvoing:INPut:STEP <InputPowerStep>

Defines the input power step size.

Configuring amplifier measurements

Parameters:

[SENSe:]PSERvoing:STARt

Starts the power servoing sequence.

Example:	PSER:STAR
Usage:	Event
Manual operation:	See "Power Servoing sequence" on page 124

FETCh:PSERvoing:OPERation:STATus?

Queries the status of the power servoing operation.

Return values:	
<state></state>	ON OFF 1 0
Example:	FETCh:PSERvoing:OPERation:STATus?
Usage:	Query only
Manual operation:	See "Power Servoing sequence" on page 124

5.6.20 Frequency domain measurements

CONFigure:FDOMain:FFTLength	275
CONFigure:FDOMain:SQUelch	
CONFigure:FDOMain:WFUNction	276
CONFigure:FDOMain:WLFRatio	
CONFigure:FDOMain:WOVerlap	276

CONFigure:FDOMain:FFTLength <FFT Length>

Defines the number of frequency points determined by each FFT calculation. The more points are used, the higher the resolution in the spectrum becomes, but the longer the calculation takes.

Parameters:

<fft length=""></fft>	Range: *RST: Default unit	1k to 32k 2k :-
Example:	CONF: FDOM	1:FFTL 2048
Manual operation:	See "FFT L	ength" on page 125

CONFigure:FDOMain:SQUelch <SquelchLevel>

For group delay results, defines a level threshold below which the group delay is set to 0. If the group delay does not exceed the threshold, it is ignored altogether.

Parameters: <squelchlevel></squelchlevel>	Range: -200 to +200 Increment: 0.1 *RST: -150.0 Default unit: dBm
Example:	CONF:FDOM:SQU 20

Manual operation: See "Use Squelch for Group Delay" on page 126

CONFigure:FDOMain:WFUNction <Method>

Defines the FFT window type.

Parameters:			
<method></method>	FLATtop GAUSsian RECTangular P5 BLACkharris		
	*RST:	FLATtop	
Example:	CONF:FDOM:WFUN GIAN		
Manual operation:	See "Window Function" on page 125		

CONFigure:FDOMain:WLFRatio <WLength Ratio>

Defines the window length as a percentage of the FFT length (see CONFigure: FDOMain: FFTLength on page 275).

Parameters:

<wlength ratio=""></wlength>	Range: Increment: *RST: Default unit:	0.1 to 100 0.1 25 percent
Example:	CONF: FDOM	1:WLFR 25
Manual operation:	See "Windo	w Length to FFT Ratio" on page 126

CONFigure:FDOMain:WOVerlap <Window Overlap>

Defines the part of a single FFT window that is re-calculated by the next FFT calculation when using multiple FFT windows.

<pre> Parameters: <window overlap=""> </window></pre>	Range:	0 to 99.9
	Increment: *RST:	0.1 25
	Default unit	: percent
Example:	CONF: FDOM	4:WOV 25

Manual operation: See "Window Overlap" on page 126

5.7 Analyzing results

•	Configuring traces	
•	Using markers	
•	Configuring numerical result displays	
•	Configuring the statistics table	
•	Configuring result display characteristics	
•	Scaling the diagram axes	

5.7.1 Configuring traces

DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:MODE</t></w></n>	
FORMat:DEXPort:DSEParator	
FORMat:DEXPort:HEADer	278
FORMat:DEXPort:TRACes	279
MMEMory:STORe <n>:TRACe</n>	279
[SENSe:]DETector <t>:DEFault[:FUNCtion]</t>	279
[SENSe:]DETector <t>:TRACe[:POINt]</t>	
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:RESult</t></w></n>	
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:PRESet</t></w></n>	
[SENSe:][WINDow <n>:]DETector<t>[:FUNCtion]</t></n>	
TRACe:IQ:DATA:FORMat	
TRACe:IQ:DDPD[:DATA]?	
TRACe:IQ:RLENgth?	
TRACe:IQ:SYNC:RLENgth?	
TRACe:IQ:TPIS?	

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:MODE <Trace>

This command selects the traces to be displayed in the graphical result displays.

Suffix:	
<n></n>	Window
<w></w>	irrelevant
<t></t>	Trace
Parameters:	
<trace></trace>	Available traces depend on the result display.
	AVERage
	The average is formed over several measurements.
	BLANK
	Removes the selected trace from the display.

MAXHold

The maximum value is determined over several measurements and displayed. The R&S VSE saves each trace point in the trace memory only if the new value is greater than the previous one.

MINHold

The minimum value is determined from several measurements and displayed. The R&S VSE saves each trace point in the trace memory only if the new value is lower than the previous one.

VIEW

The current contents of the trace memory are frozen and displayed.

WRITe

Overwrite mode (default): the trace is overwritten by each measurement.

Example: DISP:WIND1:TRAC1:MODE WRIT

Manual operation: See "Trace Mode" on page 128

FORMat:DEXPort:DSEParator <Separator>

Selects the decimal separator for data exported in ASCII format.

Parameters	::
------------	----

<separator></separator>	POINt COMMa	
	COMMa Uses a com	ıma as decimal separator, e.g. <i>4,05</i> .
	POINt Uses a poin	it as decimal separator, e.g. <i>4.05.</i>
	*RST:	*RST has no effect on the decimal separator. Default is POINt.
Example:	FORM: DEXE Sets the de	CIDSEP POIN
Manual operation:	See "Decim	al Separator " on page 131

FORMat:DEXPort:HEADer <State>

If enabled, additional instrument and measurement settings are included in the header of the export file for result data. If disabled, only the pure result data from the selected traces and tables is exported.

Trace data resulting from encrypted file input cannot be queried.

Parameters:	ON OFF 0 1
<state></state>	*RST: 1
Manual operation:	See "Include Instrument & Measurement Settings " on page 130

FORMat:DEXPort:TRACes <TracesToExport>

This command selects the data to be included in a data export file.

Setting parameters:

<tracestoexport></tracestoexport>	SINGle
	Exports a a single trace only.
	ALL
	Exports all traces in all windows in the current application.
	*RST: SINGle
Example:	//Export all traces
	FORM:DEXP:TRAC ALL

MMEMory:STORe<n>:TRACe <Trace>, <FileName>

This command exports trace data to a file.

Suffix:	
<n></n>	1n Window
Setting parameters: <trace></trace>	Number of the trace you want to save. Note that the available number of traces depends on the selected result display. The value "0" exports all traces in a win- dow. To export all traces in all windows, turn on the feature to export all traces and all results first (FORMat:DEXPort:TRACes). The suffix at STORe <n> and the trace id, <trace>, are ignored in that case. Range: 0 to 6</trace></n>
<filename></filename>	String containing the path and file name.
Example:	<pre>//Export all traces in all windows to the specified file. FORM:DEXP:TRAC ALL MMEM:STOR:TRAC 0, 'C:\TraceResults' //Export all traces in window 2 to the specified file. FORM:DEXP:TRAC SING MMEM:STOR2:TRAC 0, 'C:\TraceResults' //Export the second trace in window 2 to the specified file. MMEM:STOR2:TRAC 2, 'C:\TraceResults'</pre>
Usage:	Setting only
Manual operation:	See "Selecting data to export" on page 130 See "Export Trace" on page 131

[SENSe:]DETector<t>:DEFault[:FUNCtion] <State>

Selects the default detector for result displays.

Suffix:

<t></t>	Trace
Parameters:	
<state></state>	AVERage OFF
Manual operation:	See "Default Detector" on page 131

[SENSe:]DETector<t>:TRACe[:POINt] <Points>

Sets the maximum number of trace points to be used by detectors.

Suffix: <t></t>	Trace
Parameters: <points></points>	numeric value
Manual operation:	See "Max. Trace Points" on page 131

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:RESult <Trace>

Sets and queries the trace result type for the selected result display.

Suffix: <n></n>	Window
<w></w>	irrelevant
<t></t>	Trace
Parameters: <trace></trace>	BBI BBPower BBQ RF MEAS MODel REFerence
Example:	DISP:WIND:TRAC:RES MEAS
Manual operation:	See "Result Type" on page 129

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:PRESet <ResultType>

Applies predefined, commonly required trace settings to the selected window.

Suffix:	
<n></n>	1n
	Window
<w></w>	1n
	subwindow
<t></t>	1n
	Trace
Parameters:	
<resulttype></resulttype>	ALL
	Preset All Traces

MAM
Max | Avg | Min
MCM
Max | ClrWrite | MinExample:DISP:WIND3:TRAC:PRES_MCM
In window 3, the traces are set to the following modes:
Trace 1: Max Hold
Trace 2: Clear Write
Trace 3: Min HoldManual operation:See "Predefined Trace Settings - Quick Config " on page 129

[SENSe:][WINDow<n>:]DETector<t>[:FUNCtion] <Detector>

Sets and queries the detector for the selected result display.

Suffix:	
<n></n>	Window
<t></t>	Trace
Parameters: <detector></detector>	NEGative POSitive NONE AVERage
Manual operation:	See "Detector" on page 128

TRACe:IQ:DATA:FORMat <Slope>

Defines the I/Q data format.

Parameters: <slope></slope>	COMPatible IQBLock IQPa	air
Example:	TRACel:IQ:DATA:FORMat	IQP

TRACe:IQ:DDPD[:DATA]?

Queries the I/Q values of the current direct DPD iteration (only for unencrypted files).

Example:	<pre>TRACe1:IQ:DDPD[:DATA]?</pre>
Usage:	Query only
Manual operation:	See "Automated direct DPD sequence" on page 107 See "Manual direct DPD sequence" on page 108

TRACe:IQ:RLENgth?

Returns the sweep length or capture length.

Return values:

<Samples> numeric value

Analyzing results

Example: TRACe:IQ:RLENgth?

Usage: Query only

TRACe:IQ:SYNC:RLENgth?

Returns the sweep length or capture length at the current sample rate.

Return values:	
<samples></samples>	numeric value
Example:	TRACe:IQ:SYNC:RLENgth?
Usage:	Query only

TRACe:IQ:TPIS?

Return values:	
<time></time>	Default unit: HZ
Usage:	Query only

5.7.2 Using markers

•	General marker settings	282
•	Configuring individual markers	283
•	Positioning markers	289

5.7.2.1 General marker settings

CALCulate <n>:MARKer<m>:LINK</m></n>	
DISPlay[:WINDow <n>]:MINFo[:STATe]</n>	
DISPlay[:WINDow <n>]:MTABle</n>	

CALCulate<n>:MARKer<m>:LINK <State>

This command turns marker coupling across result displays on and off.

Suffix:	
<n></n>	irrelevant
<m></m>	irrelevant
Parameters: <state></state>	ON OFF 1 0 *RST: OFF
Example:	//Couple markers CALC:MARK:LINK ON
Manual operation:	See "Link Markers Across Windows" on page 133

DISPlay[:WINDow<n>]:MINFo[:STATe] <State>

Turns the marker information in all diagrams on and off.

Suffix: <n></n>	irrelevant	
Parameters:		
<state></state>	ON 1	
	Displays the marker information in the diagrams.	
	OFF 0	
	Hides the marker information in the diagrams.	
	*RST: 1	
Example:	DISP:MINF OFF	
	Hides the marker information.	
Manual anaration	See "Marker Info " on page 122	
wanual operation:	See Marker mo on page 132	

DISPlay[:WINDow<n>]:MTABle <DisplayMode>

Turns the marker table on and off.

Suffix: <n></n>	irrelevant
Parameters: <displaymode></displaymode>	ON 1 Turns on the marker table.
	OFF 0Turns off the marker table.AUTOTurns on the marker table if 3 or more markers are active.
	*RST: AUTO
Example:	DISP:MTAB ON Activates the marker table.
Manual operation:	See "Marker Table Display " on page 132

5.7.2.2 Configuring individual markers

CALCulate <n>:DELTamarker<m>:AOFF</m></n>	.284
CALCulate <n>:DELTamarker<m>:LINK</m></n>	284
CALCulate <n>:DELTamarker<ms>:LINK:TO:MARKer<md></md></ms></n>	.284
CALCulate <n>:DELTamarker<m>:MREFerence</m></n>	285
CALCulate <n>:DELTamarker<m>[:STATe]</m></n>	285
CALCulate <n>:DELTamarker<m>:TRACe</m></n>	.286
CALCulate <n>:DELTamarker<m>:X</m></n>	286
CALCulate <n>:DELTamarker<m>:Y?</m></n>	286
CALCulate <n>:MARKer<m>:AOFF</m></n>	.287
CALCulate <n>:MARKer<ms>:LINK:TO:MARKer<md></md></ms></n>	.287

Analyzing results

CALCulate <n>:MARKer<m>[:STATe]</m></n>	287
CALCulate <n>:MARKer<m>:TRACe</m></n>	288
CALCulate <n>:MARKer<m>:X</m></n>	288
CALCulate <n>:MARKer<m>:Y?</m></n>	289

CALCulate<n>:DELTamarker<m>:AOFF

Turns off *all* delta markers.

Suffix:	
<ŋ>	Window
<m></m>	irrelevant
Example:	CALC:DELT:AOFF Turns off all delta markers.

CALCulate<n>:DELTamarker<m>:LINK <State>

Links delta marker <m> to marker 1.

If you change the horizontal position (x-value) of marker 1, delta marker <m> changes its horizontal position to the same value.

Suffix:	
<n></n>	Window
<m></m>	Marker
Parameters:	
<state></state>	ON OFF 0 1
	OFF 0
	Switches the function off
	ON 1
	Switches the function on
Example:	CALC:DELT2:LINK ON
Manual operation:	See "Linking to Another Marker " on page 134

CALCulate<n>:DELTamarker<ms>:LINK:TO:MARKer<md> <State>

Links the delta source marker <ms> to any active destination marker <md> (normal or delta marker).

Suffix: <n></n>	Window
<ms></ms>	source marker, see Marker
<md></md>	destination marker, see Marker
Parameters: <state></state>	ON OFF 0 1

Analyzing results

	OFF 0 Switches the function off
	ON 1 Switches the function on
Example:	CALC:DELT4:LINK:TO:MARK2 ON Links the delta marker 4 to the marker 2.
Manual operation:	See "Linking to Another Marker " on page 134

CALCulate<n>:DELTamarker<m>:MREFerence <Reference>

Selects a reference marker for a delta marker other than marker 1.

Suffix: <n></n>	Window
<m></m>	Marker
Parameters: <reference></reference>	
Example:	CALC: DELT3:MREF 2 Specifies that the values of delta marker 3 are relative to marker 2.
Manual operation:	See "Reference Marker " on page 134

CALCulate<n>:DELTamarker<m>[:STATe] <State>

Turns delta markers on and off.

If necessary, the command activates the delta marker first.

No suffix at DELTamarker turns on delta marker 1.

Suffix:	
<n></n>	Window
<m></m>	Marker
Parameters:	
<state></state>	ON OFF 0 1
	OFF 0
	Switches the function off
	ON 1
	Switches the function on
Example:	CALC:DELT2 ON
-	Turns on delta marker 2.
Manual operation:	See "Marker State " on page 133 See "Marker Type " on page 134

- -----

CALCulate<n>:DELTamarker<m>:TRACe <Trace>

Selects the trace a delta marker is positioned on.

Note that the corresponding trace must have a trace mode other than "Blank".

If necessary, the command activates the marker first.

Suffix:	
<n></n>	Window
<m></m>	Marker
Parameters: <trace></trace>	Trace number the marker is assigned to.
Example:	CALC:DELT2:TRAC 2 Positions delta marker 2 on trace 2.

CALCulate<n>:DELTamarker<m>:X <Position>

Moves a delta marker to a particular coordinate on the x-axis.

If necessary, the command activates the delta marker and positions a reference marker to the peak power.

Suffix:		
<n></n>	Window	
<m></m>	Marker	
Parameters: <position></position>	Numeric val Range:	lue that defines the marker position on the x-axis. The value range and unit depend on the measure-
	i tango.	ment and scale of the x-axis.
Example:	CALC: DELT Outputs the	absolute x-value of delta marker 1.
Manual operation:	See "Marke	r Position X-value " on page 134

CALCulate<n>:DELTamarker<m>:Y?

Queries the result at the position of the specified delta marker.

Suffix:	
<n></n>	1n
<m></m>	1n
Return values:	
<result></result>	Result at the position of the delta marker.
	The unit is variable and depends on the one you have currently set.
	Default unit: DBM

Usage: Query only

CALCulate<n>:MARKer<m>:AOFF

Turns off all markers.

Suffix:	
<n></n>	Window
<m></m>	Marker
Example:	CALC:MARK:AOFF Switches off all markers.
Manual operation:	See "All Markers Off " on page 135

CALCulate<n>:MARKer<ms>:LINK:TO:MARKer<md> <State>

Links the normal source marker <ms> to any active destination marker <md> (normal or delta marker).

If you change the horizontal position of marker <md>, marker <ms> changes its horizontal position to the same value.

Suffix:	
<n></n>	Window
<ms></ms>	source marker, see Marker
<md></md>	destination marker, see Marker
Parameters: <state></state>	ON OFF 0 1 OFF 0 Switches the function off ON 1 Switches the function on
Example:	CALC:MARK4:LINK:TO:MARK2 ON Links marker 4 to marker 2.
Manual operation:	See "Linking to Another Marker " on page 134

CALCulate<n>:MARKer<m>[:STATe] <State>

Turns markers on and off. If the corresponding marker number is currently active as a delta marker, it is turned into a normal marker.

Suffix:	
<n></n>	Window
<m></m>	Marker
Parameters:	
<state></state>	ON OFF 0 1

	OFF 0 Switches the function off
	ON 1 Switches the function on
Example:	CALC:MARK3 ON Switches on marker 3.
Manual operation:	See "Marker State " on page 133 See "Marker Type " on page 134

CALCulate<n>:MARKer<m>:TRACe <Trace>

Selects the trace the marker is positioned on.

Note that the corresponding trace must have a trace mode other than "Blank".

If necessary, the command activates the marker first.

Suffix: <n></n>	Window
<m></m>	Marker
Parameters: <trace></trace>	1 to 4 Trace number the marker is assigned to.
Example:	//Assign marker to trace 1 CALC:MARK3:TRAC 2
Manual operation:	See "Assigning the Marker to a Trace " on page 135

CALCulate<n>:MARKer<m>:X <Position>

Moves a marker to a specific coordinate on the x-axis.

If necessary, the command activates the marker.

If the marker has been used as a delta marker, the command turns it into a normal marker.

S	uffix	

<n></n>	Window
<m></m>	Marker
Parameters: <position></position>	Numeric value that defines the marker position on the x-axis. The unit depends on the result display. Range: The range depends on the current x-axis range. Default unit: Hz
Example:	CALC:MARK2:X 1.7MHz Positions marker 2 to frequency 1.7 MHz.
Manual operation: See "Marker Position X-value " on page 134

CALCulate<n>:MARKer<m>:Y?

Queries the result at the position of the specified marker.

Suffix:	
<n></n>	1n
<m></m>	1n
Return values:	
<result></result>	Default unit: DBM
Usage:	Query only

5.7.2.3 Positioning markers

CALCulate <n>:DELTamarker<m>:MAXimum:LEFT</m></n>	. 289
CALCulate <n>:DELTamarker<m>:MAXimum:NEXT</m></n>	.289
CALCulate <n>:DELTamarker<m>:MAXimum[:PEAK]</m></n>	.290
CALCulate <n>:DELTamarker<m>:MAXimum:RIGHt</m></n>	. 290
CALCulate <n>:DELTamarker<m>:MINimum:LEFT</m></n>	290
CALCulate <n>:DELTamarker<m>:MINimum:NEXT</m></n>	.290
CALCulate <n>:DELTamarker<m>:MINimum[:PEAK]</m></n>	. 291
CALCulate <n>:DELTamarker<m>:MINimum:RIGHt</m></n>	. 291
CALCulate <n>:MARKer<m>:MAXimum:LEFT</m></n>	.291
CALCulate <n>:MARKer<m>:MAXimum:NEXT</m></n>	. 291
CALCulate <n>:MARKer<m>:MAXimum[:PEAK]</m></n>	. 292
CALCulate <n>:MARKer<m>:MAXimum:RIGHt</m></n>	.292
CALCulate <n>:MARKer<m>:MINimum:LEFT</m></n>	.292
CALCulate <n>:MARKer<m>:MINimum:NEXT</m></n>	. 292
CALCulate <n>:MARKer<m>:MINimum[:PEAK]</m></n>	. 293
CALCulate <n>:MARKer<m>:MINimum:RIGHt</m></n>	.293

CALCulate<n>:DELTamarker<m>:MAXimum:LEFT

Moves a delta marker to the next positive peak value.

The search includes only measurement values to the left of the current marker position.

Suffix:	
<n></n>	Window
<m></m>	Marker
Manual operation:	See "Search Next Peak " on page 136

CALCulate<n>:DELTamarker<m>:MAXimum:NEXT

Moves a marker to the next positive peak value.

Suffix:	
<n></n>	1n Window
<m></m>	1n Marker
Manual operation:	See "Search Next Peak " on page 136

CALCulate<n>:DELTamarker<m>:MAXimum[:PEAK]

Moves a delta marker to the highest level.

If the marker is not yet active, the command first activates the marker.

Suffix:	
<ŋ>	Window
<m></m>	Marker
Manual operation:	See "Peak Search " on page 135

CALCulate<n>:DELTamarker<m>:MAXimum:RIGHt

Moves a delta marker to the next positive peak value on the trace.

The search includes only measurement values to the right of the current marker position.

-			-		
9		++		v	
0	u			~	

Manual operation:	See "Search Next Peak " on page 136
<m></m>	Marker
<n></n>	Window

CALCulate<n>:DELTamarker<m>:MINimum:LEFT

Moves a delta marker to the next minimum peak value.

The search includes only measurement values to the right of the current marker position.

Suffix:	
<n></n>	Window
<m></m>	Marker
Manual operation:	See "Search Next Minimum " on page 136

CALCulate<n>:DELTamarker<m>:MINimum:NEXT

Moves a marker to the next minimum peak value.

-		
S	uttiv	
J	uiiia.	

<n> Window
<m> Marker
Manual operation: See "Search Next Minimum" on page 136

CALCulate<n>:DELTamarker<m>:MINimum[:PEAK]

Moves a delta marker to the minimum level.

If the marker is not yet active, the command first activates the marker.

Suffix:	
<n></n>	Window
<m></m>	Marker
Manual operation:	See "Search Minimum " on page 136

CALCulate<n>:DELTamarker<m>:MINimum:RIGHt

Moves a delta marker to the next minimum peak value.

The search includes only measurement values to the right of the current marker position.

Suffix:	
<n></n>	Window
<m></m>	Marker
Manual operation:	See "Search Next Minimum " on page 136

CALCulate<n>:MARKer<m>:MAXimum:LEFT

Moves a marker to the next positive peak.

The search includes only measurement values to the left of the current marker position.

Suffix:

<n></n>	Window
<m></m>	Marker
Manual operation:	See "Search Next Peak " on page 136

CALCulate<n>:MARKer<m>:MAXimum:NEXT

Moves a marker to the next positive peak.

Suffix: <n>

Window

<m> Marker

Manual operation: See "Search Next Peak " on page 136

CALCulate<n>:MARKer<m>:MAXimum[:PEAK]

Moves a marker to the highest level.

If the marker is not yet active, the command first activates the marker.

Suffix:	
<n></n>	Window
<m></m>	Marker
Manual operation:	See "Peak Search " on page 135

CALCulate<n>:MARKer<m>:MAXimum:RIGHt

Moves a marker to the next positive peak.

The search includes only measurement values to the right of the current marker position.

Suffix:	
<n></n>	Window
<m></m>	Marker
Manual operation:	See "Search Next Peak " on page 136

CALCulate<n>:MARKer<m>:MINimum:LEFT

Moves a marker to the next minimum peak value.

The search includes only measurement values to the right of the current marker position.

<n></n>	Window
<m></m>	Marker
Manual operation:	See "Search Next Minimum " on page 136

CALCulate<n>:MARKer<m>:MINimum:NEXT

Moves a marker to the next minimum peak value.

Suffix: <n></n>	Window
<m></m>	Marker
Manual operation:	See "Search Next Minimum " on page 136

CALCulate<n>:MARKer<m>:MINimum[:PEAK]

Moves a marker to the minimum level.

If the marker is not yet active, the command first activates the marker.

Suffix:	
<n></n>	Window
<m></m>	Marker

Manual operation: See "Search Minimum " on page 136

CALCulate<n>:MARKer<m>:MINimum:RIGHt

Moves a marker to the next minimum peak value.

The search includes only measurement values to the right of the current marker position.

<m></m>	Marker
Manual operation:	See "Search Next Minimum " on page 136

5.7.3 Configuring numerical result displays

DISPlay[:WINDow <n>]:PTABle:ITEM</n>	293
DISPlay[:WINDow <n>]:PTABle:ITEM:ALL</n>	294
DISPlay[:WINDow <n>]:TABLe:ITEM</n>	294
DISPlay[:WINDow <n>]:TABLe:ITEM:MACCuracy:ALL</n>	295
DISPlay[:WINDow <n>]:TABLe:ITEM:POWer:ALL</n>	295
21 I	

DISPlay[:WINDow<n>]:PTABle:ITEM <Item>, <State> DISPlay[:WINDow<n>]:PTABle:ITEM? <Item>

This command adds and removes results from the "Parameter Sweep" Table.

Suffix:

<n></n>	1n Window		
	Note that you have to include the WINDow syntax element if the "Parameter Sweep" Table is in a window other than window 1.		
Parameters:			
<state></state>	ON OFF 1 0		
	*RST: All results are 1.		
Parameters for	setting and query:		
<item></item>	Selects the result.		
	See the table at CONFigure:PSWeep:Z <n>:RESult for a list</n>		
	of available parameters.		

Example: DISP:PTAB:ITEM RMS,OFF Removes the RMS Power result from the "Parameter Sweep" Table.

DISPlay[:WINDow<n>]:PTABle:ITEM:ALL <State>

This command adds and removes all parameter sweep results from the parameter sweep table.

Suffix: <n></n>	Window		
Setting parameters: <state></state>	ON OFF 1 0		
Example:	//Display all parameter sweep resul DISP:PTAB:ITEM:ALL ON		
Usage:	Setting only		

DISPlay[:WINDow<n>]:TABLe:ITEM <Item>, <State> DISPlay[:WINDow<n>]:TABLe:ITEM? <Item>

This command adds and removes results from the result summary.

Suffix:			
<n></n>	Window Note that you have to include the WINDow syntax element if the		
	result summary	is in a	a window other than window 1.
Parameters:			
<state></state>	ON OFF 1 0		
	*RST: All	result	s are 1.
Parameters for setting	ng and query:		
<item></item>	Selects the resu	ult.	
	See the table below for a list of available parameters.		
Example:	//Removes the gain imbalance result from the result summary.		
	DISP:TABL:11	FEM G	JIMB, OFF
	//Query if freque	ency e	error result is calculated
	DISP:WIND2:TABL:ITEM? FERR would return, e.g.		
	1		
SCPI parameter			Result
AMWidth			AM curve width
	·		

Crest factor in

Crest factor out

Frequency error

CFIN

CFOU

FERRor

SCPI parameter	Result
GAIN	Gain
GIMBalance	Gain Imbalance
IQIMbalance	I/Q imbalance
IQOFfset	I/Q offset
MERRor	Magnitude error
OUTP1db	1 dB output compression point
OUTP2db	2 dB output compression point
OUTP3db	3 dB output compression point
P1DB	1 dB compression point
P2DB	2 dB compression point
P3DB	3 dB compression point
PC	Average power consumption
PERRor	Phase error
PINPut	Power in
PMWidth	PM curve width
POUTput	Power out
QERRor	Quadrature error
REVM	"Raw EVM"
RMEVm	Raw model EVM
SRERror	Sample rate error

DISPlay[:WINDow<n>]:TABLe:ITEM:MACCuracy:ALL <State>

This command adds and removes all modulation accuracy results from the result summary.

Suffix:

<n></n>	Window
Setting parameters: <state></state>	ON OFF 1 0
Example:	//Display all modulation accuracy results DISP:TABL:ITEM:MACC:ALL ON
Usage:	Setting only

DISPlay[:WINDow<n>]:TABLe:ITEM:POWer:ALL <State>

This command adds and removes all power results from the result summary.

Suffix: <n></n>	Window	
Setting parameters: <state></state>	ON OFF 1 0	
Example:	<pre>//Display all power result DISP:TABL:ITEM:POW:ALL</pre>	ON
Usage:	Setting only	

5.7.4 Configuring the statistics table

DISPlay[:WINDow <n>]:STABle:ITEM</n>	
DISPlay[:WINDow <n>]:STABle:ITEM:MACCuracy:ALL</n>	
DISPlay[:WINDow <n>]:STABle:ITEM:POWer:ALL</n>	

DISPlay[:WINDow<n>]:STABle:ITEM <Item>, <State> DISPlay[:WINDow<n>]:STABle:ITEM? < Item>

This command adds and removes results from the statistics table.

Suffix:	
<n></n>	Window Note that you have to include the WINDow syntax element if the statistics table is in a window other than window 1.
Parameters:	
<state></state>	ON OFF 1 0
	*RST: All results are 1.
Parameters for setti	ng and query:
<item></item>	Selects the result.
	See the table in the desription of $DISPlay[:WINDow < n >]$: TABLe:ITEM on page 294 for a list of available parameters.
Example:	//Removes the gain imbalance result from the statistics table.
	DISP:STAB:ITEM GIMB,OFF
	//Query if frequency error result is calculated
	DISP:WIND2:STAB:ITEM? FERR
	would return, e.g.
	1

DISPlay[:WINDow<n>]:STABle:ITEM:MACCuracy:ALL <State>

This command adds and removes all modulation accuracy results from the statistics table.

Suffix: <n>

Window

Setting parameters: <State>

ON | OFF | 1 | 0

Analyzing results

Example:	//Display all modulation accuracy results
	DISP:STAB:ITEM:MACC:ALL ON
Usage:	Setting only

DISPlay[:WINDow<n>]:STABle:ITEM:POWer:ALL <State>

This command adds and removes all power results from the statistics table.

Suffix: <n></n>	Window	
Setting parameters: <state></state>	ON OFF 1 0	
Example:	//Display all power result DISP:STAB:ITEM:POW:ALL	ON
Usage:	Setting only	

5.7.5 Configuring result display characteristics

CALCulate <n>:AMPM:DEFinition</n>	297
CALCulate <n>:PREFerence:X</n>	298
CALCulate <n>:UNIT:ANGLe</n>	298
CONFigure:FRSPan	298
CONFigure:FRSPan:AUTO	299
CONFigure:POWer:UNIT	299
CONFigure:PSWeep:Z <n>:RESult</n>	299
DISPlay[:WINDow <n>]:TDOMain:X[:SCALe]:DURation</n>	300
DISPlay[:WINDow <n>]:TDOMain:X[:SCALe]:MODE</n>	301
DISPlay[:WINDow <n>]:TDOMain:X[:SCALe]:OFFSet</n>	301
DISPlay[:WINDow <n>]:TDOMain:Y[:SCALe]:NORMalise[:STATe]</n>	301
CONFigure:AMPM:CWIDth:REFerence.	302
CONFigure:AMPM:CWIDth:REFerence:AUTO	302

CALCulate<n>:AMPM:DEFinition <ResultType>

This command selects the way the "AM/PM" results are calculated.

Suffix: <n></n>	irrelevant
Parameters: <resulttype></resulttype>	MREF Subtracts the reference trace from the measurement trace. This is the inverse of the default REAFMeas method.
	REFMeas Subtracts the measurement trace from the reference trace. *RST: REFMeas

Example:	CALC:AMPM:DEF?
	would return, e.g.
	REFM

Manual operation: See "AM/PM Definition" on page 139

CALCulate<n>:PREFerence:X <ResultType>

This command selects the type of information displayed on x-axis in the following result displays.

- "EVM vs Power"
- "AM/PM"
- "Gain Compression"

Suffix:

<n></n>	Window
Parameters: <resulttype></resulttype>	PINPut Shows the corresponding result against the input level. POUTput Shows the corresponding result against the output level.
Example:	//Displays the result (for example "AM/PM") against the input level. CALC:GAIN:X PINP
Manual operation:	See "Reference for AM/PM, EVM and Gain Compression" on page 141

CALCulate<n>:UNIT:ANGLe <Unit>

This command selects the unit for results that display the phase.

Suffix: <n></n>	Window
Parameters: <unit></unit>	DEG Phase displayed in degrees. RAD Phase displayed in radians.
Example:	//Show the phase results in degrees CALC:UNIT:ANGL DEG
Manual operation:	See "Unit" on page 138

CONFigure:FRSPan <Time>

Sets or queries the the frequency response span for R&S VSE-K18F result displays.

Parameters: <time></time>	Range: 1 Hz to 100 GHz Default unit: HZ
Example:	CONF:FRSP:AUTO OFF CONF:FRSP 2000
Manual operation:	See "Frequency Response" on page 139

CONFigure:FRSPan:AUTO <State>

Defines how the span is determined that the frequency response is applied to for R&S VSE-K18F result displays.

Da	ra	m	nt	0	re	
га	ıa		eι	C	э	•

State> ON | OFF | 0 | 1 OFF | 0 Defines the span manually using CONFigure: FRSPan on page 298. ON | 1 Defines the span automatically according to the calculated OBW of the reference file. *RST: 0

Manual operation: See "Frequency Response" on page 139

CONFigure:POWer:UNIT <Result>

Switches the unit for power results from dBm (default) to Watts.

Parameters: <Result>

DBM | WATT

CONFigure:PSWeep:Z<n>:RESult <Result>

This command selects the result type displayed on the z-axis of the parameter sweep diagram.

Suffix:

<n></n>	1n Window
Parameters: <result></result>	See table below for supported result types.
Example:	CONF:PSW:Z:RES EVM Displays the EVM against two parameters in the "Parameter Sweep" result display.
Manual operation:	See "Parameter sweep diagram" on page 140

ACBM	Balanced ACLR Magnitude
ACB1	ACLR Adj 1 Balanced
ACB2	ACLR Alt 1 Balanced
ACB3	ACLR Alt 2 Balanced
ACL1	ACLR Adjacent 1 Lower
ACP	Adjacent Channel Power
ACU1	ACLR Adjacent 1 Upper
AMWidth	"AM/AM" Curve Width
CFACtor	Crest Factor
EVM	EVM
GAIN	Gain
PMWidth	"AM/PM" Curve Width
POUT	Power Out
P1DB	Compression Point 1 dB
P2DB	Compression Point 2 dB
P3DB	Compression Point 3 dB
RMS	RMS Power

DISPlay[:WINDow<n>]:TDOMain:X[:SCALe]:DURation <Time>

This command defines the amount of data displayed on the x-axis of the time domain result display.

Prerequisites for this command

• Turn off automatic scaling (DISPlay[:WINDow<n>]:TDOMain:X[:SCALe]: MODE).

Suffix: <n></n>	Window
Parameters: <time></time>	<numeric value=""></numeric>
	<pre>defined with DISPlay[:WINDow<n>]:TDOMain:X[:SCALe]: OFFSet. Default unit: s</n></pre>
Example:	//Scale the x-axis in the time domain result display DISP:TDOM:X:MODE OFF DISP:TDOM:X:DUR 12us
Manual operation:	See "Duration" on page 140

DISPlay[:WINDow<n>]:TDOMain:X[:SCALe]:MODE <State>

This command turns automatic scaling of the x-axis in the time domain result display on and off.

Suffix: <n></n>	Window
Parameters:	
<state></state>	ON 1
	Turns on automatic scaling of the x-axis.
	OFF 0 Turns on manual scaling of the x-axis.
Example:	//Turn on manual scaling of the x-axis DISP:TDOM:X:MODE OFF
Manual operation:	See "Position" on page 139

DISPlay[:WINDow<n>]:TDOMain:X[:SCALe]:OFFSet <Time>

This command defines the origin of the x-axis in the time domain result display.

Prerequisites for this command

• Turn off automatic scaling (DISPlay[:WINDow<n>]:TDOMain:X[:SCALe]: MODE).

Suffix
<n></n>

<Time>

Window

Parameters:

<numeric value> Time offset relative to the first recorded sample (when synchronization has failed) or the first sample of the synchronized data (when synchronization was successful). Default unit: s

Example: Defines an offset DISP:TDOM:X:MODE OFF DISP:TDOM:X:OFFS 12us

Manual operation: See "Offset" on page 139

DISPlay[:WINDow<n>]:TDOMain:Y[:SCALe]:NORMalise[:STATe] <State>

This command turns normalization of the results in the time domain result display on and off.

Suffix:

<n>

Window

Parameters:

<State> ON | OFF | 1 | 0

Example:	//Normalize the results in the time domain result display to 1
	DISP:TDOM:Y:NORM ON

Manual operation: See "Normalize to 1" on page 139

CONFigure:AMPM:CWIDth:REFerence <CurveWidthReference>

Sets and queries the curve width computation reference point

Parameters:

<CurveWidthReferencenumeric value>

Default unit: dB

Example:	CONF:AMPM:CWID:REF	3DB
	CONT .THILL. CWID. KHI	JDL

Manual operation: See "AM/AM and AM/PM Curve Width Reference Point" on page 139

CONFigure:AMPM:CWIDth:REFerence:AUTO <State>

Sets and queries the curve width computation refrence point mode.

Parameters: <state></state>	ON 1 Automatic mode OFF 0 Manual mode
Example:	CONFigure:AMPM:CWIDth:REFerence:AUTO ON
Manual operation:	See "AM/AM and AM/PM Curve Width Reference Point" on page 139

5.7.6 Scaling the diagram axes

DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:X[:SCALe]:AUTO</t></w></n>	. 303
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:X[:SCALe]:MAXimum</t></w></n>	. 303
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:X[:SCALe]:MINimum</t></w></n>	. 303
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:X[:SCALe]:PDIVision</t></w></n>	304
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:X[:SCALe]:UNIT?</t></w></n>	304
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:AUTO</t></w></n>	. 305
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:MAXimum</t></w></n>	. 305
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:MINimum</t></w></n>	. 306
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:PDIVision</t></w></n>	306
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:RPOSition</t></w></n>	. 307
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:RVALue</t></w></n>	307
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:UNIT?</t></w></n>	307

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:X[:SCALe]:AUTO <State>

This command turns automatic scaling of the x-axis in graphical result displays on and off.

Suffix:	
<n></n>	Window
<w></w>	irrelevant
<t></t>	irrelevant
Parameters: <state></state>	OFF 0 Selects manual scaling of the diagram. ON 1 Automatically scales the diagram when new results are available. ONCE Automatically scales the diagram once whenever required.
Example:	//Scale the axis each time new results are available DISP:TRAC:X:AUTO ON
Manual operation:	See "Scaling the x-axis automatically" on page 142

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:X[:SCALe]:MAXimum </alue>

This command defines the value at the top of the x-axis.

Suffix:	
<n></n>	Window
<w></w>	irrelevant
<t></t>	irrelevant
Parameters: <value></value>	<numeric value=""> Default unit: Depends on the result display.</numeric>
Example:	//Define x-axis level range DISP:TRAC:x:AUTO OFF DISP:TRAC:x:MIN -10DBM DISP:TRAC:x:MAX -110DBM
Manual operation:	See "Scaling the x-axis manually" on page 142

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:X[:SCALe]:MINimum </address of the state of the stat

This command defines the value at the bottom of the y-axis.

Suffix:	
<n></n>	Window
<w></w>	irrelevant
<t></t>	irrelevant
Parameters: <value></value>	<numeric value=""> Default unit: Depends on the result display.</numeric>
Example:	<pre>//Define x-axis level range DISP:TRAC:X:AUTO OFF DISP:TRAC:X:MIN -10DBM DISP:TRAC:X:MAX -110DBM</pre>
Manual operation:	See "Scaling the x-axis manually" on page 142

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:X[:SCALe]:PDIVision <Distance>

This command defines the distance between the horizontal grid lines in graphical result displays.

Prerequisites for this command

• Turn off automatic scaling (DISPlay[:WINDow<n>][:SUBWindow<w>]: TRACe<t>:X[:SCALe]:AUTO).

Suffix:	
<n></n>	Window
<w></w>	irrelevant
<t></t>	irrelevant
Parameters: <distance></distance>	<numeric value=""> Default unit: Depends on the result display.</numeric>
Example:	<pre>//Define a distance of 5 dBm between the grid lines DISP:TRAC:X:SCAL:AUTO OFF DISP:TRAC:X:PDIV 5DBM</pre>
Manual operation:	See "Scaling the x-axis manually" on page 142

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:X[:SCALe]:UNIT?

This command queries the unit of the x-axis

Suffix:	
<n></n>	Window
<w></w>	irrelevant
<t></t>	irrelevant

Return values: <unit></unit>	Unit of the x-axis in the selected window.
Example:	DISP:WIND4:TRAC:X:UNIT? would return, e.g. SEC
Usage:	Query only

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:AUTO <State>

This command turns automatic scaling of the y-axis in graphical result displays on and off.

Suffix:	
<n></n>	Window
<w></w>	irrelevant
<t></t>	irrelevant
Parameters: <state></state>	OFF Selects manual scaling of the diagram. ON Automatically scales the diagram when new results are available. ONCE Automatically scales the diagram once whenever required. *RST: ON
Example:	//Scale the axis each time new results are available DISP:TRAC:Y:AUTO ON
Manual operation:	See "Scaling the y-axis automatically" on page 143

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:MAXimum </alue>

This command defines the value at the top of the y-axis.

Suffix:	
<n></n>	Window
<w></w>	irrelevant
<t></t>	irrelevant
Parameters:	
<value></value>	<numeric value=""></numeric>
	Default unit: Depends on the result display.

Analyzing results

Example:	//Define y-axis level range
	DISP:TRAC:Y:AUTO OFF
	DISP:TRAC:Y:MIN -10DBM
	DISP:TRAC:Y:MAX -110DBM

Manual operation: See "Scaling the y-axis manually" on page 143

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:MINimum <Value>

This command defines the value at the bottom of the y-axis.

Suffix:	
<n></n>	Window
<w></w>	irrelevant
<t></t>	irrelevant
Parameters: <value></value>	<numeric value=""> Default unit: Depends on the result display.</numeric>
Example:	<pre>//Define y-axis level range DISP:TRAC:Y:AUTO OFF DISP:TRAC:Y:MIN -10DBM DISP:TRAC:Y:MAX -110DBM</pre>
Manual operation:	See "Scaling the y-axis manually" on page 143

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:PDIVision <Distance>

This command defines the distance between the grid lines in graphical result displays.

Prerequisites for this command

• Turn off automatic scaling (DISPlay[:WINDow<n>][:SUBWindow<w>]: TRACe<t>:Y[:SCALe]:AUTO).

Suffix:

<n></n>	Window
<w></w>	irrelevant
<t></t>	irrelevant
Parameters: <distance></distance>	<numeric value=""> Default unit: Depends on the result display.</numeric>
Example:	<pre>//Define a distance of 5 dBm between the grid lines DISP:TRAC:Y:SCAL:AUTO OFF DISP:TRAC:Y:PDIV 5DBM</pre>
Manual operation:	See "Scaling the y-axis manually" on page 143

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:RPOSition <Position>

This command defines the position of the reference value.

You can define the reference value with DISPlay[:WINDow<n>][: SUBWindow<w>]:TRACe<t>:Y[:SCALe]:RVALue.

Suffix:	
<n></n>	Window
<w></w>	irrelevant
<t></t>	irrelevant
Parameters: <position></position>	<numeric value=""></numeric>
	Default unit: %
Example:	<pre>//Position the reference value at the 80 % mark of the y-axis DISP:TRAC:Y:AUTO OFF DISP:TRAC:Y:RVAL 0DBM DISP:TRAC:Y:RPOS 80</pre>
Manual operation:	See "Scaling the y-axis manually" on page 143

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:RVALue <Reference>

This command defines the reference value of a result display.

Prerequisites for this command

• Turn off automatic scaling (DISPlay[:WINDow<n>][:SUBWindow<w>]: TRACe<t>:Y[:SCALe]:AUTO).

Suffix:	
<n></n>	Window
<w></w>	irrelevant
<t></t>	irrelevant
Parameters: <reference></reference>	<numeric value=""> Default unit: The unit depends on the result display.</numeric>
Example:	//Define a reference value of 10 dB DISP:TRAC:Y:AUTO OFF DISP:TRAC:Y:RVAL 10DB
Manual operation:	See "Scaling the y-axis manually" on page 143

DISPlay[:WINDow<n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:UNIT?

This command queries the unit of the y-axis

Suffix:	
<n></n>	Window
<w></w>	irrelevant
<t></t>	irrelevant
Return values: <unit></unit>	Unit of the y-axis in the selected window.
Example:	DISP:WIND3:TRAC:Y:UNIT? would return, e.g. DBM
Usage:	Query only

The following remote commands are required to retrieve the results from an amplifier measurement in a remote environment.

5.8.1 Retrieving graphical measurement results

FORMat[:DATA]	308
TRACe <n>[:DATA]?</n>	309
TRACe <n>[:DATA]:X?</n>	310
TRACe <n>[:DATA]:Y?</n>	310

FORMat[:DATA] <Format>[, <BitLength>]

Selects the data format that is used for transmission of trace data from the R&S VSE to the controlling computer.

Note that the command has no effect for data that you send to the R&S VSE. The R&S VSE automatically recognizes the data it receives, regardless of the format.

Parameters:

<format></format>	ASCii ASCii format, separated by commas. This format is almost always suitable, regardless of the actual data format. However, the data is not as compact as other for- mats can be.
	REAL Floating-point numbers (according to IEEE 754) in the "definite length block format".
<bitlength></bitlength>	Length in bits for floating-point results

16

16-bit floating-point numbers.
Compared to REAL, 32 format, half as many numbers are returned.
32
32-bit floating-point numbers
For I/Q data, 8 bytes per sample are returned for this format setting.
64
64-bit floating-point numbers
Compared to REAL, 32 format, twice as many numbers are returned.
FORM REAL, 32

TRACe<n>[:DATA]? <Trace>

Example:

This command queries the measurement results in the graphical result displays. Usually, the measurement results are either displayed on the y-axis (two-dimensional diagrams) or the z-axis (three-dimensional diagrams).

Suffix:	
<n></n>	1n Window
Query parameters:	
<trace></trace>	TRACE1 TRACE6
	Selects the trace to be queried.
	Note that the available number of traces depends on the result display.
	For example, the "Magnitude Capture" result display only sup-
	ports TRACE1, while the "Time Domain" result display supports TRACE1 to TRACE6.
Roturn values:	
<result></result>	<numeric value=""></numeric>
	Values of the captured samples in chronological order.
Example:	TRAC:DATA TRACE1
	Queries the results displayed on trace 1.
Usage:	Query only

```
Manual operation: See "AM/AM" on page 14
See "AM/PM" on page 15
See "DDPD Results (R&S VSE-K18D)" on page 16
See "EVM vs Power" on page 17
See "Gain Compression" on page 17
See "Gain Deviation vs Time" on page 19
See "Magnitude Capture" on page 20
See "Parameter Sweep: Diagram" on page 22
See "Phase Deviation vs Time" on page 22
See "Raw EVM" on page 23
See "Spectrum FFT" on page 25
See "Time Domain" on page 25
```

TRACe<n>[:DATA]:X? <Trace>

This command queries the measurement results as displayed on the x-axis in the graphical result displays.

1n
Window
TRACE1 TRACE6
Selects the trace to be queried.
Note that the available number of traces depends on the result display.
For example, the "Magnitude Capture" result display only sup- ports TRACE1, while the "Time Domain" result display supports TRACE1 to TRACE6.
<numeric value=""></numeric>
X-axis values of the captured samples in chronological order.
TRAC:DATA TRACE1
Queries the results displayed on trace 1.
Query only

TRACe<n>[:DATA]:Y? <Trace>

This command queries the measurement results as displayed on the y-axis in result displays with three axes.

Suffix:

<n>

1..n Window

Query parameters:	
<trace></trace>	TRACE1 TRACE6
	Selects the trace to be queried.
	Note that the available number of traces depends on the result display.
Example:	TRAC:DATA TRACE1
	Queries the results displayed on trace 1.
Usage:	Query only

5.8.2 Retrieving numeric results

The following commands are required to retrieve the calculated numeric results.

•	Retrieving general numeric results	311
•	Retrieving results of the result summary	312
•	Retrieving results of the parameter sweep table	328
•	Retrieving results of the statistics table	335

5.8.2.1 Retrieving general numeric results

FETCh:TTF:CURRent[:RESult]?	
FETCh:TTS:CURRent[:RESult]?	

FETCh:TTF:CURRent[:RESult]?

This command queries the Trigger to Frame result as displayed in the channel bar.

Return values:	
<time></time>	<numeric value=""></numeric>
	Default unit: s
Example:	FETC:TTF:CURR? would return, e.g. 0.00015700958
Usage:	Query only

FETCh:TTS:CURRent[:RESult]?

This command queries the trigger to sync result.

This is the time from start of capture (i.e. including pre-trigger samples) to the start of the sync range, which is not necessarily the beginning of the reference waveform.

Return values:	
<time></time>	<numeric value=""></numeric>
	Default unit: s
Example:	FETCh:TTS:CURRent[:RESult]?

Usage: Qu	ery	only
-----------	-----	------

5.8.2.2 Retrieving results of the result summary

•	Retrieving all results.	.312
•	Retrieving the modulation accuracy	.313
•	Retrieving power results	

Retrieving all results

FETCh:MACCuracy[:RESult]:ALL?	. 312
FETCh:POWer[:RESult]:ALL?	. 312

FETCh:MACCuracy[:RESult]:ALL?

This command queries all numerical results shown in the Result Summary.

Return values:

<results></results>	<pre><numerical value="">: Results as a comma separated list. The order of results is the same as in the result summary: <rawevmmin>, <rawevmcurrent>, <rawevmmax>, <rawmodelevmmin>, <rawmodelevmcurrent>, <rawmodelevmmax>, The unit depends on the result. If a result been seleculated, the command returns NAME.</rawmodelevmmax></rawmodelevmcurrent></rawmodelevmmin></rawevmmax></rawevmcurrent></rawevmmin></numerical></pre>
Example:	FETC:MACC:ALL? would return, e.g. 0.277,0.277,0.277,0.002,0.245,0.922,
Usage:	Query only

FETCh:POWer[:RESult]:ALL?

This command queries all power related numerical results as shown in the result summary.

Return values:

<results></results>	<pre><numerical value="">: Results as a comma separated list. The order of results is the same as in the result summary: The unit depends on the result. If a result hasn't been calculated, the command returns NAN.</numerical></pre>
Example:	FETC: POW: ALL? would return, e.g.
Usaqe:	Query only

Retrieving the modulation accuracy

FETCh:MACCuracy:ADRoop:MAXimum[:RESult]?	
FETCh:MACCuracy:ADRoop:MINimum[:RESult]?	313
FETCh:MACCuracy:ADRoop:CURRent[:RESult]?	
FETCh:MACCuracy:FERRor:MAXimum[:RESult]?	
FETCh:MACCuracy:FERRor:MINimum[:RESult]?	314
FETCh:MACCuracy:FERRor:CURRent[:RESult]?	314
FETCh:MACCuracy:GIMBalance:MAXimum[:RESult]?	314
FETCh:MACCuracy:GIMBalance:MINimum[:RESult]?	314
FETCh:MACCuracy:GIMBalance:CURRent[:RESult]?	314
FETCh:MACCuracy:IQIMbalance:MAXimum[:RESult]?	
FETCh:MACCuracy:IQIMbalance:MINimum[:RESult]?	
FETCh:MACCuracy:IQIMbalance:CURRent[:RESult]?	
FETCh:MACCuracy:IQOFfset:MAXimum[:RESult]?	315
FETCh:MACCuracy:IQOFfset:MINimum[:RESult]?	315
FETCh:MACCuracy:IQOFfset:CURRent[:RESult]?	315
FETCh:MACCuracy:MERRor:MAXimum[:RESult]?	315
FETCh:MACCuracy:MERRor:MINimum[:RESult]?	
FETCh:MACCuracy:MERRor:CURRent[:RESult]?	
FETCh:MACCuracy:PERRor:MAXimum[:RESult]?	315
FETCh:MACCuracy:PERRor:MINimum[:RESult]?	
FETCh:MACCuracy:PERRor:CURRent[:RESult]?	
FETCh:MACCuracy:POFFset[:RESult]?	316
FETCh:MACCuracy:QERRor:MAXimum[:RESult]?	
FETCh:MACCuracy:QERRor:MINimum[:RESult]?	
FETCh:MACCuracy:QERRor:CURRent[:RESult]?	
FETCh:MACCuracy:REVM:MAXimum[:RESult]?	
FETCh:MACCuracy:REVM:MINimum[:RESult]?	
FETCh:MACCuracy:REVM:CURRent[:RESult]?	
FETCh:MACCuracy:RMEV:MAXimum[:RESult]?	
FETCh:MACCuracy:RMEV:MINimum[:RESult]?	
FETCh:MACCuracy:RMEV:CURRent[:RESult]?	317
FETCh:MACCuracy:SRERror:MAXimum[:RESult]?	317
FETCh:MACCuracy:SRERror:MINimum[:RESult]?	317
FETCh:MACCuracy:SRERror:CURRent[:RESult]?	317

FETCh:MACCuracy:ADRoop:MAXimum[:RESult]? FETCh:MACCuracy:ADRoop:MINimum[:RESult]? FETCh:MACCuracy:ADRoop:CURRent[:RESult]? Return values: <ADRoop>

Usage:

Query only

Manual operation: See "Amplitude Droop" on page 28

FETCh:MACCuracy:FERRor:MAXimum[:RESult]? FETCh:MACCuracy:FERRor:MINimum[:RESult]? FETCh:MACCuracy:FERRor:CURRent[:RESult]?

This command queries the Frequency Error as shown in the Result Summary.

Return values:

<frequencyerror></frequencyerror>	<numeric value=""></numeric>
	Minimum, maximum or current Frequency Error, depending on the command syntax.
	Default unit: Hz
Example:	FETC:MACC:FERR:MAX? would return, e.g. 1.2879
Usage:	Query only
Manual operation:	See "Frequency Error" on page 29

FETCh:MACCuracy:GIMBalance:MAXimum[:RESult]? FETCh:MACCuracy:GIMBalance:MINimum[:RESult]? FETCh:MACCuracy:GIMBalance:CURRent[:RESult]?

This command queries the Gain Imbalance as shown in the Result Summary.

Return values:

<gainimbalance></gainimbalance>	<numeric value=""></numeric>
	Minimum, maximum or current Gain Imbalance, depending on the command syntax.
	Default unit: dB
Example:	FETC:MACC:GIMB:MIN? would return, e.g. 0.887
Usage:	Query only
Manual operation:	See "Gain Imbalance" on page 28

FETCh:MACCuracy:IQIMbalance:MAXimum[:RESult]? FETCh:MACCuracy:IQIMbalance:MINimum[:RESult]? FETCh:MACCuracy:IQIMbalance:CURRent[:RESult]?

This command queries the I/Q Imbalance as shown in the Result Summary.

Return values:

<IQImbalance> <numeric value> Minimum, maximum or current I/Q Imbalance, depending on the command syntax. Default unit: dB

29

Retrieving results

Example:	<pre>FETC:MACC:IQIM:CURR?</pre>
	would return, e.g.
	0.02
Usage:	Query only
Manual operation:	See "I/Q Imbalance" on page

FETCh:MACCuracy:IQOFfset:MAXimum[:RESult]? FETCh:MACCuracy:IQOFfset:MINimum[:RESult]? FETCh:MACCuracy:IQOFfset:CURRent[:RESult]?

This command queries the I/Q Offset as shown in the Result Summary.

Return values: <iqoffset></iqoffset>	<numeric value=""></numeric>
	Minimum, maximum or current I/Q Offset, depending on the command syntax.
	Default unit: dB
Example:	<pre>FETC:MACC:IQOF:MIN? would return, e.g. 0.001</pre>
Usage:	Query only
Manual operation:	See "I/Q Offset" on page 29

FETCh:MACCuracy:MERRor:MAXimum[:RESult]? FETCh:MACCuracy:MERRor:MINimum[:RESult]? FETCh:MACCuracy:MERRor:CURRent[:RESult]?

This command queries the Magnitude Error as shown in the Result Summary.

Return values: <magnitude></magnitude>	<numeric value=""> Minimum, maximum or current Magnitude Error, depending on the command syntax. Default unit: %</numeric>
Example:	FETC:MACC:MERR:MAX? would return, e.g. 1.12
Usage:	Query only
Manual operation:	See "Magnitude Error" on page 30

FETCh:MACCuracy:PERRor:MAXimum[:RESult]? FETCh:MACCuracy:PERRor:MINimum[:RESult]? FETCh:MACCuracy:PERRor:CURRent[:RESult]?

This command queries the Phase Error as shown in the Result Summary.

Return values: <phaseerror></phaseerror>	<numeric value=""></numeric>
	Minimum, maximum or current Phase Error, depending on the command syntax.
	Default unit: degree
Example:	FETC:MACC:PERR:CURR? would return, e.g. 1.84
Usage:	Query only
Manual operation:	See "Phase Error" on page 30

FETCh:MACCuracy:POFFset[:RESult]?

Queries the absolute phase value between reference signal and measured signal.

Note that the absolute phase is not relevant for R&S VSE-K18 measurements.

However, it can be used to track the absolute phase stability between generator and analyzer (including their local oscillators).

Return values: <phase offset=""></phase>	Numeric value Default unit: radian
Example:	FETC:MACC:POFF:RES? Returns the phase offset in radians.
Usage:	Query only

FETCh:MACCuracy:QERRor:MAXimum[:RESult]? FETCh:MACCuracy:QERRor:MINimum[:RESult]? FETCh:MACCuracy:QERRor:CURRent[:RESult]?

This command queries the Quadrature Error as shown in the Result Summary.

Return values: <quadratureerror></quadratureerror>	<numeric value=""></numeric>
	Minimum, maximum or current Quadrature Error, depending on the command syntax.
	Default unit: degree
Example:	FETC:MACC:QERR:MAX? would return, e.g. 2.76
Usage:	Query only
Manual operation:	See "Quadrature Error" on page 31

FETCh:MACCuracy:REVM:MAXimum[:RESult]? FETCh:MACCuracy:REVM:MINimum[:RESult]? FETCh:MACCuracy:REVM:CURRent[:RESult]?

This command queries the "Raw EVM" as shown in the Result Summary.

Return values: <evm></evm>	<numeric value=""> Minimum, maximum or current "Raw EVM", depending on the command syntax. Default unit: %</numeric>
Example:	FETC:MACC:REVM:MAX? would return, e.g. 3.606
Usage:	Query only
Manual operation:	See "Raw EVM" on page 31

FETCh:MACCuracy:RMEV:MAXimum[:RESult]? FETCh:MACCuracy:RMEV:MINimum[:RESult]? FETCh:MACCuracy:RMEV:CURRent[:RESult]?

This command queries the Raw Model EVM as shown in the Result Summary.

Return values:

<evm></evm>	<numeric value=""></numeric>	
	Minimum, maximum or current Raw Model EVM, depending on the command syntax.	
	Default unit: %	
Example:	FETC:MACC:RMEV:CURR? would return, e.g. 0.879	
Usage:	Query only	
Manual operation:	See "Raw Model EVM" on page 32	

FETCh:MACCuracy:SRERror:MAXimum[:RESult]? FETCh:MACCuracy:SRERror:MINimum[:RESult]? FETCh:MACCuracy:SRERror:CURRent[:RESult]?

This command queries the Sample Rate Error as shown in the Result Summary.

Return values: <SampleRateError> <numeric value> Minimum, maximum or current SampleRateError, depending on the command syntax. Default unit: Hz

Example:	<pre>FETC:MACC:SRER:CURR?</pre>
	would return, e.g.
	-0.023
Usage:	Query only
Manual operation:	See "Sample Rate Error" on page 32

Retrieving power results

FETCh:AMAM:CWIDth:MAXimum[:RESult]?	319
FETCh:AMAM:CWIDth:MINimum[:RESult]?	
FETCh:AMAM:CWIDth:CURRent[:RESult]?	
FETCh:AMPM:CWIDth:MAXimum[:RESult]?	319
FETCh:AMPM:CWIDth:MINimum[:RESult]?	
FETCh:AMPM:CWIDth:CURRent[:RESult]?	319
FETCh:AMPM:PEAK:CWIDth:MAXimum[:RESult]?	320
FETCh:AMPM:PEAK:CWIDth:MINimum[:RESult]?	320
FETCh:AMPM:PEAK:CWIDth:CURRent[:RESult]?	320
FETCh:AMAM:PEAK:CWIDth:MAXimum[:RESult]?	320
FETCh:AMAM:PEAK:CWIDth:MINimum[:RESult]?	320
FETCh:AMAM:PEAK:CWIDth:CURRent[:RESult]?	320
FETCh:PC:CURRent[:RESult]?	320
FETCh:PCPA:CURRent[:RESult]?	
FETCh:POWer:CFACtor:IN:MAXimum[:RESult]?	321
FETCh:POWer:CFACtor:IN:MINimum[:RESult]?	321
FETCh:POWer:CFACtor:IN:CURRent[:RESult]?	321
FETCh:POWer:CFACtor:OUT:MAXimum[:RESult]?	321
FETCh:POWer:CFACtor:OUT:MINimum[:RESult]?	321
FETCh:POWer:CFACtor:OUT:CURRent[:RESult]?	321
FETCh:POWer:GAIN:MAXimum[:RESult]?	321
FETCh:POWer:GAIN:MINimum[:RESult]?	321
FETCh:POWer:GAIN:CURRent[:RESult]?	321
FETCh:POWer:INPut:MAXimum[:RESult]?	
FETCh:POWer:INPut:MINimum[:RESult]?	
FETCh:POWer:INPut:CURRent[:RESult]?	
FETCh:POWer:OBW:MAXimum[:RESult]?	322
FETCh:POWer:OBW:MINimum[:RESult]?	322
FETCh:POWer:OBW:CURRent[:RESult]?	322
FETCh:POWer:OUTPut:MAXimum[:RESult]?	322
FETCh:POWer:OUTPut:MINimum[:RESult]?	322
FETCh:POWer:OUTPut:CURRent[:RESult]?	322
FETCh:POWer:OUTPut:P1DB:MAXimum[:RESult]?	323
FETCh:POWer:OUTPut:P1DB:MINimum[:RESult]?	323
FETCh:POWer:OUTPut:P2DB:MAXimum[:RESult]?	323
FETCh:POWer:OUTPut:P2DB:MINimum[:RESult]?	323
FETCh:POWer:OUTPut:P3DB:MAXimum[:RESult]?	323
FETCh:POWer:OUTPut:P3DB:MINimum[:RESult]?	323
FETCh:POWer:P1DB:MAXimum[:RESult]?	323
FETCh:POWer:P1DB:MINimum[:RESult]?	
FETCh:POWer:P1DB:CURRent[:RESult]?	

FETCh:POWer:P2DB:MAXimum[:RESult]?	323
FETCh:POWer:P2DB:MINimum[:RESult]?	323
FETCh:POWer:P2DB:CURRent[:RESult]?	323
FETCh:POWer:P3DB:MAXimum[:RESult]?	323
FETCh:POWer:P3DB:MINimum[:RESult]?	323
FETCh:POWer:P3DB:CURRent[:RESult]?	323
FETCh:POWer:P1DB:OUT:MAXimum[:RESult]?	324
FETCh:POWer:P1DB:OUT:MINimum[:RESult]?	324
FETCh:POWer:P1DB:OUT:CURRent[:RESult]?	324
FETCh:POWer:P2DB:OUT:MAXimum[:RESult]?	324
FETCh:POWer:P2DB:OUT:MINimum[:RESult]?	324
FETCh:POWer:P2DB:OUT:CURRent[:RESult]?	324
FETCh:POWer:P3DB:OUT:MAXimum[:RESult]?	324
FETCh:POWer:P3DB:OUT:MINimum[:RESult]?	324
FETCh:POWer:P3DB:OUT:CURRent[:RESult]?	324
FETCh:POWer:SENSor:IN:MAXimum[:RESult]?	324
FETCh:POWer:SENSor:IN:MINimum[:RESult]?	324
FETCh:POWer:SENSor:IN:CURRent[:RESult]?	324
FETCh:POWer:SENSor:OUT:MAXimum[:RESult]?	325
FETCh:POWer:SENSor:OUT:MINimum[:RESult]?	325
FETCh:POWer:SENSor:OUT:CURRent[:RESult]?	

FETCh:AMAM:CWIDth:MAXimum[:RESult]? FETCh:AMAM:CWIDth:MINimum[:RESult]? FETCh:AMAM:CWIDth:CURRent[:RESult]?

This command queries the "AM/AM" Curve Width as shown in the Result Summary.

Return values: <curvewidth></curvewidth>	<numeric value=""> Current "AM/AM" Curve Width. Default unit: V</numeric>
Example:	<pre>FETC:AMAM:CWID:CURR? would return, e.g. 0.69</pre>
Usage:	Query only
Manual operation:	See "AM/AM Curve Width" on page 33

FETCh:AMPM:CWIDth:MAXimum[:RESult]? FETCh:AMPM:CWIDth:MINimum[:RESult]? FETCh:AMPM:CWIDth:CURRent[:RESult]?

This command queries the "AM/PM" Curve Width as shown in the Result Summary.

Return values: <CurveWidth>

<numeric value> Current "AM/PM" Curve Width. Default unit: degree

Example:	FETC:AMPM:CWID:CURR?
	would return, e.g.
	1.441
Usage:	Query only
Manual operation:	See "AM/PM Curve Width" on page 34

FETCh:AMPM:PEAK:CWIDth:MAXimum[:RESult]? FETCh:AMPM:PEAK:CWIDth:MINimum[:RESult]? FETCh:AMPM:PEAK:CWIDth:CURRent[:RESult]?

This command queries the "AM/PM" peak curve width as shown in the result summary.

Return values:	
<curvewidth></curvewidth>	<numeric value=""></numeric>
	Current "AM/PM" peak curve width.
	Default unit: °
Example:	<pre>FETC:AMPM:PEAK:CWID:CURR:RES?</pre>
Usage:	Query only
Manual operation:	See "AM/PM Curve Width (Pk-Pk)" on page 34

FETCh:AMAM:PEAK:CWIDth:MAXimum[:RESult]? FETCh:AMAM:PEAK:CWIDth:MINimum[:RESult]? FETCh:AMAM:PEAK:CWIDth:CURRent[:RESult]?

This command queries the "AM/AM" peak curve width as shown in the result summary.

Return values:

<numeric value=""></numeric>	
Current "AM/AM" peak curve width.	
Default unit: dB	
<pre>FETC:AMAM:PEAK:CWID:CURR:RES?</pre>	
Query only	
See "AM/AM Curve Width (Pk-Pk)" on page 34	

FETCh:PC:CURRent[:RESult]?

Return values: <Current>

Usage:

Query only

FETCh:PCPA:CURRent[:RESult]?

Return values: <Current>

Usage:

Query only

FETCh:POWer:CFACtor:IN:MAXimum[:RESult]? FETCh:POWer:CFACtor:IN:MINimum[:RESult]? FETCh:POWer:CFACtor:IN:CURRent[:RESult]?

This command queries the Crest Factor at the DUT input as shown in the Result Summary.

Return values:

<crestfactor></crestfactor>	<numeric value=""></numeric>
	Current Crest Factor.
	Default unit: dB
Example:	FETC: POW: CFAC: IN: CURR? would return, e.g. 10.34
Usage:	Query only
Manual operation:	See "Crest Factor In" on page 35

FETCh:POWer:CFACtor:OUT:MAXimum[:RESult]? FETCh:POWer:CFACtor:OUT:MINimum[:RESult]? FETCh:POWer:CFACtor:OUT:CURRent[:RESult]?

This command queries the Crest Factor at the DUT output as shown in the Result Summary.

Return values:

<crestfactor></crestfactor>	<numeric value=""></numeric>
	Current Crest Factor.
	Default unit: dB
Example:	FETC: POW: CFAC: CURR? would return, e.g. 8.72
Usage:	Query only
Manual operation:	See "Crest Factor Out" on page 35

FETCh:POWer:GAIN:MAXimum[:RESult]? FETCh:POWer:GAIN:MINimum[:RESult]? FETCh:POWer:GAIN:CURRent[:RESult]?

This command queries the signal gain as shown in the Result Summary.

Return values: <gain></gain>	<numeric value=""></numeric>
	Minimum, maximum or current gain, depending on the command syntax.
	Default unit: dB
Example:	FETC: POW: GAIN: MAX? would return, e.g. 21.37
Usage:	Query only
Manual operation:	See "Gain" on page 35

FETCh:POWer:INPut:MAXimum[:RESult]? FETCh:POWer:INPut:MINimum[:RESult]? FETCh:POWer:INPut:CURRent[:RESult]?

This command queries the power at the DUT input as shown in the Result Summary.

Return values:	
<power></power>	<numeric value=""></numeric>
	Minimum, maximum or current power, depending on the command syntax.
	Default unit: dBm
Example:	FETC: POW: INP:MIN? would return, e.g. 9.39
Usage:	Query only
Manual operation:	See "Power In" on page 36

FETCh:POWer:OBW:MAXimum[:RESult]? FETCh:POWer:OBW:MINimum[:RESult]? FETCh:POWer:OBW:CURRent[:RESult]? Return values:

<Level>

Usage: Query only

Manual operation: See "Occupied Bandwidth" on page 36

FETCh:POWer:OUTPut:MAXimum[:RESult]? FETCh:POWer:OUTPut:MINimum[:RESult]? FETCh:POWer:OUTPut:CURRent[:RESult]?

This command queries the signal power at the DUT output as shown in the Result Summary.

Return values:	
<power></power>	<pre> Minimum maximum or current power depending on the com- </pre>
	mand syntax.
	Default unit: dBm
Example:	FETC: POW: OUTP: MIN?
	would return, e.g.
	7.198
Usage:	Query only
Manual operation:	See "Power Out" on page 36
FETCh:POWer:OUT Return values: <level></level>	'Put:P1DB:MINimum[:RESult]?
Usage:	Query only
<level></level>	
Usage:	Query only
FETCh:POWer:OUT FETCh:POWer:OUT Return values: <level></level>	[·] Put:P3DB:MAXimum[:RESult]? [·] Put:P3DB:MINimum[:RESult]?
Usage:	Query only
FETCh:POWer:P1D	B:MAXimum[:RESult]?
FETCh:POWer:P1D	B:CURRent[:RESult]?
FETCh:POWer:P2D	B:MAXimum[:RESult]?
FETCh:POWer:P2D	B:MINimum[:RESult]? B:CURRentf:RESult]2
FETCh:POWer:P3D	B:MAXimum[:RESult]?
FETCh:POWer:P3D	B:MINimum[:RESult]?
FETCh:POWer:P3D	B:CURRent[:RESult]?
This command queri	es the 3 dB Compression Point as shown in the Result Summary

Return values: <level></level>	<numeric value=""> Current 3 dB Compression Point. Default unit: dBm</numeric>
Example:	FETC: POW: P3DB: CURR? would return, e.g. 2.551
Usage:	Query only
Manual operation:	See "Compression Point (1 dB / 2 dB / 3 dB)" on page 34

FETCh:POWer:P1DB:OUT:MAXimum[:RESult]? FETCh:POWer:P1DB:OUT:MINimum[:RESult]? FETCh:POWer:P1DB:OUT:CURRent[:RESult]? FETCh:POWer:P2DB:OUT:MAXimum[:RESult]? FETCh:POWer:P2DB:OUT:MINimum[:RESult]? FETCh:POWer:P2DB:OUT:CURRent[:RESult]? FETCh:POWer:P3DB:OUT:MAXimum[:RESult]? FETCh:POWer:P3DB:OUT:MINimum[:RESult]? FETCh:POWer:P3DB:OUT:CURRent[:RESult]?

This command queries the output 3 dB Compression Point as shown in the Result Summary.

Return values:

<level></level>	<numeric value=""></numeric>
	Current output 3 dB Compression Point.
	Default unit: dBm
Example:	FETC: POW: OUTP: P3DB: CURR? would return, e.g. -5.782
Usage:	Query only
Manual operation:	See "Output Compression Point (1 dB / 2 dB / 3 dB)" on page 36

FETCh:POWer:SENSor:IN:MAXimum[:RESult]? FETCh:POWer:SENSor:IN:MINimum[:RESult]? FETCh:POWer:SENSor:IN:CURRent[:RESult]?

Fetches the signal power at the input power sensor.

Return values: <power></power>	<numeric value=""></numeric>
Example:	<pre>FETC:POW:SENS:IN:CURR:RES?</pre>
Usage:	Query only
FETCh:POWer:SENSor:OUT:MAXimum[:RESult]? FETCh:POWer:SENSor:OUT:MINimum[:RESult]? FETCh:POWer:SENSor:OUT:CURRent[:RESult]?

Fetches the signal power at the output power sensor.

Return values: <power></power>	<numeric value=""></numeric>
Example:	<pre>FETC:POW:SENS:OUT:CURR:RES?</pre>
Usage:	Query only
Manual operation:	See "Power Out (Sensor)" on page 37

Retrieving baseband characteristics

FETCh:APAE:MAXimum[:RESult]?	325
FETCh:APAE:MINimum[:RESult]?	325
FETCh:APAE:CURRent[:RESult]?	325
FETCh:BBPower:MAXimum[:RESult]?	
FETCh:BBPower:MINimum[:RESult]?	
FETCh:BBPower:CURRent[:RESult]?	
FETCh:ICC:MAXimum[:RESult]?	
FETCh:ICC:MINimum[:RESult]?	
FETCh:ICC:CURRent[:RESult]?	
FETCh:IVOLtage:PURE:MAXimum[:RESult]?	
FETCh:IVOLtage:PURE:MINimum[:RESult]?	
FETCh:IVOLtage:PURE:CURRent[:RESult]?	
FETCh:QVOLtage:PURE:MAXimum[:RESult]?	327
FETCh:QVOLtage:PURE:MINimum[:RESult]?	327
FETCh:QVOLtage:PURE:CURRent[:RESult]?	327
FETCh:VCC:MAXimum[:RESult]?	
FETCh:VCC:MINimum[:RESult]?	
FETCh:VCC:CURRent[:RESult]?	

FETCh:APAE:MAXimum[:RESult]? FETCh:APAE:MINimum[:RESult]? FETCh:APAE:CURRent[:RESult]?

This command queries the Average PAE (Power Added Efficiency) as shown in the Result Summary.

Return values:

<PAE>

<numeric value>

Minimum, maximum or current Average PAE, depending on the command syntax.

Default unit: %

Example: FETC:APAE:CURR? would return, e.g. 1.231 Usage:

Query only

FETCh:BBPower:MAXimum[:RESult]? FETCh:BBPower:MINimum[:RESult]? FETCh:BBPower:CURRent[:RESult]?

This command queries the measured baseband power (I_cc * V_cc) as shown in the Result Summary.

Return values:

<power></power>	<numeric value=""></numeric>
	Minimum, maximum or current power, depending on the com- mand syntax.
	Default unit: W
Example:	FETC:BBP:CURR? would return, e.g. 0.75
Usage:	Query only

FETCh:ICC:MAXimum[:RESult]? FETCh:ICC:MINimum[:RESult]? FETCh:ICC:CURRent[:RESult]?

This command queries the measured baseband current (I_cc) as shown in the Result Summary.

Return values:

<current></current>	Minimum, maximum or current I_cc, depending on the command syntax. Default unit: A
Example:	FETC:ICC:MAX? would return, e.g. 2.63
Usage:	Query only

FETCh:IVOLtage:PURE:MAXimum[:RESult]? FETCh:IVOLtage:PURE:MINimum[:RESult]? FETCh:IVOLtage:PURE:CURRent[:RESult]?

This command queries the voltage measured at the baseband input I as shown in the Result Summary.

The returned value is a "pure" voltage that does not contain any correction factors.

Return values: <voltage></voltage>	<numeric value=""></numeric>
	Minimum, maximum or current voltage, depending on the com- mand syntax.
	Default unit: V
Example:	FETC:IVOL:PURE:CURR? would return, e.g. 1.4
Usage:	Query only

FETCh:QVOLtage:PURE:MAXimum[:RESult]? FETCh:QVOLtage:PURE:MINimum[:RESult]? FETCh:QVOLtage:PURE:CURRent[:RESult]?

This command queries the measured at the baseband input Q as shown in the Result Summary.

The returned value is a "pure" voltage that does not contain any correction factors.

Return values: <voltage></voltage>	<numeric value=""></numeric>
	Minimum, maximum or current voltage, depending on the command syntax.
	Default unit: V
Example:	FETC:IVOL:PURE:CURR? would return, e.g. 1.42
Usage:	Query only

FETCh:VCC:MAXimum[:RESult]? FETCh:VCC:MINimum[:RESult]? FETCh:VCC:CURRent[:RESult]?

This command queries the measured baseband voltage (V_cc) as shown in the Result Summary.

Return values:

<current></current>	Minimum, maximum or current voltage, depending on the command syntax.
	Default unit: V
Example:	FETC:VCC:CURR? would return, e.g. 0.4
Usage:	Query only

5.8.2.3 Retrieving results of the parameter sweep table

Retrieving the results in the "Parameter Sweep" table requires six commands for every result type.

Example command set to query the EVM results:

- FETCh: PTABle: EVM: MAXimum[:RESult] queries the highest EVM that has been measured.
- FETCh:PTABle:EVM:MAXimum:X[:RESult] queries the location on the x-axis where the highest EVM has been measured.
- FETCh: PTABle: EVM: MAXimum: Y[:RESult] queries the location on the y-axis where the highest EVM has been measured.
- FETCh:PTABle:EVM:MINimum[:RESult] queries the lowest EVM that has been measured.
- FETCh: PTABle: EVM: MINimum: X[:RESult] queries the location on the x-axis where the lowest EVM has been measured.
- FETCh:PTABle:EVM:MINimum:Y[:RESult] queries the location on the y-axis where the lowest EVM has been measured.

The type and unit of the value queried on the x- and y-axes depends on the selected parameter.

FETCh:PTABle[:RESult]:ALL?	330
FETCh:PTABle:ACP:ACHannel <ch>:BALanced:MAXimum:X[:RESult]?</ch>	331
FETCh:PTABle:ACP:BALanced:MAXimum:X[:RESult]?	331
FETCh:PTABle:ACP:MAXimum:X[:RESult]?	331
FETCh:PTABle:ACP:ACHannel <ch>:LOWer:MAXimum:X[:RESult]?</ch>	331
FETCh:PTABle:ACP:ACHannel <ch>:UPPer:MAXimum:X[:RESult]?</ch>	331
FETCh:PTABle:AMAM:CWIDth:MAXimum:X[:RESult]?	331
FETCh:PTABle:AMPM:CWIDth:MAXimum:X[:RESult]?	331
FETCh:PTABle:BBPower:MAXimum:X[:RESult]?	331
FETCh:PTABle:CFACtor:MAXimum:X[:RESult]?	331
FETCh:PTABle:EVM:MAXimum:X[:RESult]?	331
FETCh:PTABle:ICC:MAXimum:X[:RESult]?	331
FETCh:PTABle:GAIN:MAXimum:X[:RESult]?	331
FETCh:PTABle:PAE:MAXimum:X[:RESult]?	331
FETCh:PTABle:P1DB:MAXimum:X[:RESult]?	331
FETCh:PTABle:P2DB:MAXimum:X[:RESult]?	331
FETCh:PTABle:P3DB:MAXimum:X[:RESult]?	331
FETCh:PTABle:POUT:MAXimum:X[:RESult]?	331
FETCh:PTABle:RMS:MAXimum:X[:RESult]?	331
FETCh:PTABle:VCC:MAXimum:X[:RESult]?	331
FETCh:PTABle:ACP:ACHannel <ch>:BALanced:MAXimum:Y[:RESult]?</ch>	331
FETCh:PTABle:ACP:BALanced:MAXimum:Y[:RESult]?	331
FETCh:PTABle:ACP:MAXimum:Y[:RESult]?	331
FETCh:PTABle:ACP:ACHannel <ch>:LOWer:MAXimum:Y[:RESult]?</ch>	331
FETCh:PTABle:ACP:ACHannel <ch>:UPPer:MAXimum:Y[:RESult]?</ch>	331
FETCh:PTABle:AMAM:CWIDth:MAXimum:Y[:RESult]?	331
FETCh:PTABle:AMPM:CWIDth:MAXimum:Y[:RESult]?	331
FETCh:PTABle:BBPower:MAXimum:Y[:RESult]?	331

FETCh:PTABle:CFACtor:MAXimum:Y[:RESult]?	331
FETCh:PTABle:EVM:MAXimum:Y[:RESult]?	331
FETCh:PTABle:ICC:MAXimum:Y[:RESult]?	. 332
FETCh:PTABle:GAIN:MAXimum:Y[:RESult]?	332
FETCh:PTABle:PAE:MAXimum:Y[:RESult]?	332
FETCh:PTABle:P1DB:MAXimum:Y[:RESult]?	332
FETCh:PTABle:P2DB:MAXimum:Y[:RESult]?	332
FETCh:PTABle:P3DB:MAXimum:Y[:RESult]?	332
FETCh:PTABle:POUT:MAXimum:Y[:RESult]?	332
FETCh:PTABle:RMS:MAXimum:Y[:RESult]?	332
FETCh:PTABle:VCC:MAXimum:Y[:RESult]?	332
FETCh:PTABle:ACP:ACHannel <ch>:BALanced:MAXimum[:RESult]?</ch>	332
FETCh:PTABle:ACP:BALanced:MAXimum[:RESult]?	332
FETCh:PTABle:ACP:MAXimumI:RESultI?	332
FETCh:PTABle:ACP:ACHannel <ch>:LOWer:MAXimum[:RESult]?</ch>	. 332
FETCh:PTABle:ACP:ACHannel <ch>:UPPer:MAXimum[:RESult]?</ch>	332
FETCh:PTABle:AMAM:CWIDth:MAXimum[:RESult]?	332
FETCh:PTABle:AMPM:CWIDth:MAXimum[:RESult]?	332
FETCh:PTABle:BBPower:MAXimum[:RESult]?	332
EETCh:PTABle:CEACtor:MAXimum[:RESult]?	.332
EETCh:PTABle:EVM:MAXimum[:BESult]?	
EETCh:PTABle:GAIN:MAXimum[:RESult]?	
EETCh:PTABle:ICC:MAXimum[:RESult]?	332
FETCh:PTABle:PAF:MAXimum[:RESult]?	332
FETCh:PTABle:P1DB:MAXimum[:RESult]?	332
FETCh:PTABle:P2DB:MAXimum[:RESult]?	
FETCh:PTABle:P3DB:MAXimum[:RESult]?	332
FETCh:PTABle:POUT:MAXimum[:RESult]?	332
FETCh:PTABle:RMS:MAXimum[:RESult]?	332
FETCh:PTABle:VCC:MAXimum[:RESult]?	332
FETCh:PTABle:ACP:ACHannel <ch>>BAI anced:MINimum:XI:RESult1?</ch>	333
FETCh:PTABle:ACP:ACHannel <ch>I OWer:MINimum:XI:RESult1?</ch>	333
EETCh:PTABle:ACP:ACHannel <ch>:UPPer:MINimum:XI:RESult1?</ch>	
FETCh:PTABle:ACP:BAI anced:MINimum:XI:RESult1?	333
FETCh:PTABle:ACP:MINimum:XI:RESult1?	333
EETCh:PTABle:AMAM:CWIDth:MINimum:X[:RESult]?	
FETCh:PTABle:AMPM:CWIDth:MINimum:X[:RESult]?	333
FETCh:PTABle:BBPower:MINimum:XI:RESult1?	333
EETCh:PTABle:CEACtor:MINimum:XI:RESult1?	333
FETCh:PTABle:EVM:MINimum:X[:RESult]?	
FETCh:PTABle:GAIN:MINimum:X[:RESult]?	0000
FETCh:PTABle:ICC:MINimum:XI:RESult12	
FETCh:PTABle:PAE:MINimum:X[:RESult]?	. 000
FETCh:PTABle:P1DB:MINimum:XI:RESult12	
EETCh:PTABle:P2DB:MINimum:YI:RESult12	
EFTCh:PTABle:P3DB:MINimum:XI:RESult12	
FETCh:PTARle:POLIT:MINimum:XI:RESulti?	333
EFTCh:PTABle:RMS:MINimum:XI:RESult1?	. 000
FETCh:PTABle:\/CC:MINlimum:XI:RESult12	
FETCh:PTARle: ACD: ACHannel < ch>:RAL anced: MINImum: VI: PEQuiti 2	000

FETCh:PTABle:ACP:ACHannel <ch>:LOWer:MINimum:Y[:RESult]?</ch>	333
FETCh:PTABle:ACP:ACHannel <ch>:UPPer:MINimum:Y[:RESult]?</ch>	333
FETCh:PTABle:ACP:BALanced:MINimum:Y[:RESult]?	
FETCh:PTABle:ACP:MINimum:Y[:RESult]?	333
FETCh:PTABle:AMAM:CWIDth:MINimum:Y[:RESult]?	333
FETCh:PTABle:AMPM:CWIDth:MINimum:Y[:RESult]?	333
FETCh:PTABle:BBPower:MINimum:Y[:RESult]?	333
FETCh:PTABle:CFACtor:MINimum:Y[:RESult]?	333
FETCh:PTABle:EVM:MINimum:Y[:RESult]?	
FETCh:PTABle:GAIN:MINimum:Y[:RESult]?	333
FETCh:PTABle:ICC:MINimum:Y[:RESult]?	333
FETCh:PTABle:PAE:MINimum:Y[:RESult]?	334
FETCh:PTABle:P1DB:MINimum:Y[:RESult]?	334
FETCh:PTABle:P2DB:MINimum:Y[:RESult]?	334
FETCh:PTABle:P3DB:MINimum:Y[:RESult]?	
FETCh:PTABle:POUT:MINimum:Y[:RESult]?	334
FETCh:PTABle:RMS:MINimum:Y[:RESult]?	
FETCh:PTABle:VCC:MINimum:Y[:RESult]?	334
FETCh:PTABle:ACP:ACHannel <ch>:BALanced:MINimum[:RESult]?</ch>	334
FETCh:PTABle:ACP:ACHannel <ch>:LOWer:MINimum[:RESult]?</ch>	334
FETCh:PTABle:ACP:ACHannel <ch>:UPPer:MINimum[:RESult]?</ch>	334
FETCh:PTABle:ACP:BALanced:MINimum[:RESult]?	
FETCh:PTABle:ACP:MINimum[:RESult]?	334
FETCh:PTABle:AMAM:CWIDth:MINimum[:RESult]?	334
FETCh:PTABle:AMPM:CWIDth:MINimum[:RESult]?	334
FETCh:PTABle:BBPower:MINimum[:RESult]?	
FETCh:PTABle:CFACtor:MINimum[:RESult]?	334
FETCh:PTABle:EVM:MINimum[:RESult]?	334
FETCh:PTABle:GAIN:MINimum[:RESult]?	334
FETCh:PTABle:ICC:MINimum[:RESult]?	
FETCh:PTABle:PAE:MINimum[:RESult]?	
FETCh:PTABle:P1DB:MINimum[:RESult]?	
FETCh:PTABle:P2DB:MINimum[:RESult]?	
FETCh:PTABle:P3DB:MINimum[:RESult]?	
FETCh:PTABle:POUT:MINimum[:RESult]?	334
FETCh:PTABle:RMS:MINimum[:RESult]?	
FETCh:PTABle:VCC:MINimum[:RESult]?	334

FETCh:PTABle[:RESult]:ALL?

This command queries all numerical results shown in the "Parameter Sweep" Table.

Return values:

<results></results>	<numeric value="">: Results as a comma separated list.</numeric>
	<evmminvalue>, <evmminx>, <evmminy>,</evmminy></evmminx></evmminvalue>
	<acpmincalue>, <acpminx>, <acpminy>,</acpminy></acpminx></acpmincalue>
	The unit depends on the result and parameters assigned to the
	x- and y-axis.
	If a result hasn't been calculated, the command returns NAN.

Usage:	Query only
	0.244445,1e+007,-30,0.246109,2e+007,-30, -21.9096,
	//Result:
Example:	FETC:PTAB:ALL?

```
FETCh:PTABle:ACP:ACHannel<ch>:BALanced:MAXimum:X[:RESult]?
FETCh:PTABle:ACP:BALanced:MAXimum:X[:RESult]?
FETCh:PTABle:ACP:MAXimum:X[:RESult]?
FETCh:PTABle:ACP:ACHannel<ch>:LOWer:MAXimum:X[:RESult]?
FETCh:PTABle:ACP:ACHannel<ch>:UPPer:MAXimum:X[:RESult]?
FETCh:PTABle:AMAM:CWIDth:MAXimum:X[:RESult]?
FETCh:PTABle:AMPM:CWIDth:MAXimum:X[:RESult]?
FETCh:PTABle:BBPower:MAXimum:X[:RESult]?
FETCh:PTABle:CFACtor:MAXimum:X[:RESult]?
FETCh:PTABle:EVM:MAXimum:X[:RESult]?
FETCh:PTABle:ICC:MAXimum:X[:RESult]?
FETCh:PTABle:GAIN:MAXimum:X[:RESult]?
FETCh:PTABle:PAE:MAXimum:X[:RESult]?
FETCh:PTABle:P1DB:MAXimum:X[:RESult]?
FETCh:PTABle:P2DB:MAXimum:X[:RESult]?
FETCh:PTABle:P3DB:MAXimum:X[:RESult]?
FETCh:PTABle:POUT:MAXimum:X[:RESult]?
FETCh:PTABle:RMS:MAXimum:X[:RESult]?
FETCh:PTABle:VCC:MAXimum:X[:RESult]?
```

These commands query the x-axis value at which the maximum result value for the parameter was determined, as shown in the "Parameter Sweep" table.

For details on the parameters, see Chapter 2.2, "Amplifier parameters", on page 28.

Return values:	
<results></results>	<numeric value=""></numeric>
	The value depends on the parameter selected for the x-axis (see CONFigure:PSWeep:X:SETTing on page 270).
Example:	<pre>FETC:PTAB:VCC:MAX:X:RES?</pre>
Usage:	Query only

```
FETCh:PTABle:ACP:ACHannel<ch>:BALanced:MAXimum:Y[:RESult]?
FETCh:PTABle:ACP:BALanced:MAXimum:Y[:RESult]?
FETCh:PTABle:ACP:MAXimum:Y[:RESult]?
FETCh:PTABle:ACP:ACHannel<ch>:LOWer:MAXimum:Y[:RESult]?
FETCh:PTABle:ACP:ACHannel<ch>:UPPer:MAXimum:Y[:RESult]?
FETCh:PTABle:AMAM:CWIDth:MAXimum:Y[:RESult]?
FETCh:PTABle:AMPM:CWIDth:MAXimum:Y[:RESult]?
FETCh:PTABle:BBPower:MAXimum:Y[:RESult]?
FETCh:PTABle:BBPower:MAXimum:Y[:RESult]?
FETCh:PTABle:CFACtor:MAXimum:Y[:RESult]?
FETCh:PTABle:CFACtor:MAXimum:Y[:RESult]?
```

```
FETCh:PTABle:ICC:MAXimum:Y[:RESult]?
FETCh:PTABle:GAIN:MAXimum:Y[:RESult]?
FETCh:PTABle:PAE:MAXimum:Y[:RESult]?
FETCh:PTABle:P1DB:MAXimum:Y[:RESult]?
FETCh:PTABle:P2DB:MAXimum:Y[:RESult]?
FETCh:PTABle:P3DB:MAXimum:Y[:RESult]?
FETCh:PTABle:POUT:MAXimum:Y[:RESult]?
FETCh:PTABle:RMS:MAXimum:Y[:RESult]?
FETCh:PTABle:VCC:MAXimum:Y[:RESult]?
```

These commands query the y-axis value at which the maximum result value for the parameter was determined, as shown in the "Parameter Sweep" table.

For details on the parameters, see Chapter 2.2, "Amplifier parameters", on page 28.

Return values:	
<results></results>	<numeric value=""></numeric>
	The value depends on the parameter selected for the y-axis (see CONFigure: PSWeep:Y:SETTing on page 271).
Example:	FETC:PTAB:VCC:MAX:Y:RES?
Usage:	Query only

FETCh:PTABle:ACP:ACHannel<ch>:BALanced:MAXimum[:RESult]? FETCh:PTABle:ACP:BALanced:MAXimum[:RESult]? FETCh:PTABle:ACP:MAXimum[:RESult]? FETCh:PTABle:ACP:ACHannel<ch>:LOWer:MAXimum[:RESult]? FETCh:PTABle:ACP:ACHannel<ch>:UPPer:MAXimum[:RESult]? FETCh:PTABle:AMAM:CWIDth:MAXimum[:RESult]? FETCh:PTABle:AMPM:CWIDth:MAXimum[:RESult]? FETCh:PTABle:BBPower:MAXimum[:RESult]? FETCh:PTABle:CFACtor:MAXimum[:RESult]? FETCh:PTABle:EVM:MAXimum[:RESult]? FETCh:PTABle:GAIN:MAXimum[:RESult]? FETCh:PTABle:ICC:MAXimum[:RESult]? FETCh:PTABle:PAE:MAXimum[:RESult]? FETCh:PTABle:P1DB:MAXimum[:RESult]? FETCh:PTABle:P2DB:MAXimum[:RESult]? FETCh:PTABle:P3DB:MAXimum[:RESult]? FETCh:PTABle:POUT:MAXimum[:RESult]? FETCh:PTABle:RMS:MAXimum[:RESult]? FETCh:PTABle:VCC:MAXimum[:RESult]?

These commands query the maximum result values for the parameter as shown in the "Parameter Sweep" table.

For details on the parameters, see Chapter 2.2, "Amplifier parameters", on page 28.

Return values:

<Results> <numeric value>

Usage:	Querv only
	//Result: 10000000
Example:	FETC:PTAB:VCC:MIN:X?

FETCh:PTABle:ACP:ACHannel<ch>:BALanced:MINimum:X[:RESult]? FETCh:PTABle:ACP:ACHannel<ch>:LOWer:MINimum:X[:RESult]? FETCh:PTABle:ACP:ACHannel<ch>:UPPer:MINimum:X[:RESult]? FETCh:PTABle:ACP:BALanced:MINimum:X[:RESult]? FETCh:PTABle:ACP:MINimum:X[:RESult]? FETCh:PTABle:AMAM:CWIDth:MINimum:X[:RESult]? FETCh:PTABle:AMPM:CWIDth:MINimum:X[:RESult]? FETCh:PTABle:BBPower:MINimum:X[:RESult]? FETCh:PTABle:CFACtor:MINimum:X[:RESult]? FETCh:PTABle:EVM:MINimum:X[:RESult]? FETCh:PTABle:GAIN:MINimum:X[:RESult]? FETCh:PTABle:ICC:MINimum:X[:RESult]? FETCh:PTABle:PAE:MINimum:X[:RESult]? FETCh:PTABle:P1DB:MINimum:X[:RESult]? FETCh:PTABle:P2DB:MINimum:X[:RESult]? FETCh:PTABle:P3DB:MINimum:X[:RESult]? FETCh:PTABle:POUT:MINimum:X[:RESult]? FETCh:PTABle:RMS:MINimum:X[:RESult]? FETCh:PTABle:VCC:MINimum:X[:RESult]?

These commands query the x-axis value at which the minimum result value for the parameter was determined, as shown in the "Parameter Sweep" table.

For details on the parameters, see Chapter 2.2, "Amplifier parameters", on page 28.

Return values:

<results></results>	<numeric value=""></numeric>
	The value depends on the parameter selected for the x-axis (see CONFigure: PSWeep:X:SETTing on page 270).
Example:	FETC:PTAB:VCC:MIN:X:RES?
Usage:	Query only

FETCh:PTABle:ACP:ACHannel<ch>:BALanced:MINimum:Y[:RESult]? FETCh:PTABle:ACP:ACHannel<ch>:LOWer:MINimum:Y[:RESult]? FETCh:PTABle:ACP:ACHannel<ch>:UPPer:MINimum:Y[:RESult]? FETCh:PTABle:ACP:BALanced:MINimum:Y[:RESult]? FETCh:PTABle:ACP:MINimum:Y[:RESult]? FETCh:PTABle:AMAM:CWIDth:MINimum:Y[:RESult]? FETCh:PTABle:AMPM:CWIDth:MINimum:Y[:RESult]? FETCh:PTABle:BBPower:MINimum:Y[:RESult]? FETCh:PTABle:BBPower:MINimum:Y[:RESult]? FETCh:PTABle:CFACtor:MINimum:Y[:RESult]? FETCh:PTABle:CFACtor:MINimum:Y[:RESult]? FETCh:PTABle:EVM:MINimum:Y[:RESult]? FETCh:PTABle:EVM:MINimum:Y[:RESult]? FETCh:PTABle:CFACTOR:MINIMUM:Y[:RESULT]? FETCh:PTABle:CFACTOR:MINIMUM:Y[:RESULT]? FETCh:PTABle:CFACTOR:MINIMUM:Y[:RESULT]?

```
FETCh:PTABle:PAE:MINimum:Y[:RESult]?
FETCh:PTABle:P1DB:MINimum:Y[:RESult]?
FETCh:PTABle:P2DB:MINimum:Y[:RESult]?
FETCh:PTABle:P3DB:MINimum:Y[:RESult]?
FETCh:PTABle:POUT:MINimum:Y[:RESult]?
FETCh:PTABle:RMS:MINimum:Y[:RESult]?
FETCh:PTABle:VCC:MINimum:Y[:RESult]?
```

These commands query the y-axis value at which the minimum result value for the parameter was determined, as shown in the "Parameter Sweep" table.

For details on the parameters, see Chapter 2.2, "Amplifier parameters", on page 28.

Return values:	
<results></results>	<numeric value=""></numeric>
	The value depends on the parameter selected for the y-axis (see CONFigure: PSWeep:Y:SETTing on page 271).
Example:	FETC:PTAB:VCC:MIN:Y:RES?
Usage:	Query only

FETCh:PTABle:ACP:ACHannel<ch>:BALanced:MINimum[:RESult]? FETCh:PTABle:ACP:ACHannel<ch>:LOWer:MINimum[:RESult]? FETCh:PTABle:ACP:ACHannel<ch>:UPPer:MINimum[:RESult]? FETCh:PTABle:ACP:BALanced:MINimum[:RESult]? FETCh:PTABle:ACP:MINimum[:RESult]? FETCh:PTABle:AMAM:CWIDth:MINimum[:RESult]? FETCh:PTABle:AMPM:CWIDth:MINimum[:RESult]? FETCh:PTABle:BBPower:MINimum[:RESult]? FETCh:PTABle:CFACtor:MINimum[:RESult]? FETCh:PTABle:EVM:MINimum[:RESult]? FETCh:PTABle:GAIN:MINimum[:RESult]? FETCh:PTABle:ICC:MINimum[:RESult]? FETCh:PTABle:PAE:MINimum[:RESult]? FETCh:PTABle:P1DB:MINimum[:RESult]? FETCh:PTABle:P2DB:MINimum[:RESult]? FETCh:PTABle:P3DB:MINimum[:RESult]? FETCh:PTABle:POUT:MINimum[:RESult]? FETCh:PTABle:RMS:MINimum[:RESult]? FETCh:PTABle:VCC:MINimum[:RESult]?

These commands query the minimum result values for the parameter as shown in the "Parameter Sweep" table.

For details on the parameters, see Chapter 2.2, "Amplifier parameters", on page 28.

Return values: <results></results>	<numeric value=""></numeric>
Example:	FETC:PTAB:VCC:MIN:X? //Result: 10000000
Usage:	Query only

5.8.2.4 Retrieving results of the statistics table

Retrieving the results in the statistics table requires different commands for every result type.

For each parameter, you can query either the current value (default) or the following statistical values calculated for the capture buffer or the entire measurement:

- AVER: average of the results
- MIN: minimum of the results
- MAX: maximum of the results
- SDEV: standard deviation of the results

For each result query, you can specify for which result range you require results:

- SELected: retrieve result of the currently selected result range
- CURRent: retrieve results over the current capture buffer
- ALL: retrieve the results over the entire measurement

In the following example, the SCPI commands querying the statistical results for amplitude droop are described.

- FETCh:STABle:ADRoop:SELected[:RESult?] queries the result of the currently selected result range (corresponds to the blue area of the statistics table).
- FETCh:STABle:ADRoop:AVERage? CURRent queries the average value of all result ranges found in the current capture buffer (corresponding to the green area of the statistics table).
- FETCh:STABle:ADRoop:AVERage? ALL queries the average value of all result ranges found in the entire measurement (corresponding to the black area of the statistics table).

FETCh:STABle:ADRoop:SELected[:RESult]?	339
FETCh:STABle:ADRoop:AVERage?	339
FETCh:STABle:ADRoop:MAXimum?	339
FETCh:STABle:ADRoop:MINimum?	339
FETCh:STABle:ADRoop:STDeviation?	339
FETCh:STABle:AMAM:CWIDth:SELected[:RESult]?	339
FETCh:STABle:AMAM:CWIDth:AVERage?	339
FETCh:STABle:AMAM:CWIDth:MAXimum?	339
FETCh:STABle:AMAM:CWIDth:MINimum?	339
FETCh:STABle:AMAM:CWIDth:STDeviation?	339
FETCh:STABle:AMPM:CWIDth:SELected[:RESult]?	340
FETCh:STABle:AMPM:CWIDth:AVERage?	340
FETCh:STABle:AMPM:CWIDth:MAXimum?	340
FETCh:STABle:AMPM:CWIDth:MINimum?	340
FETCh:STABle:AMPM:CWIDth:STDeviation?	340
FETCh:STABle:CFACtor:IN:SELected[:RESult]?	340
FETCh:STABle:CFACtor:IN:AVERage?	340
FETCh:STABle:CFACtor:IN:MAXimum?	340
FETCh:STABle:CFACtor:IN:MINimum?	340
FETCh:STABle:CFACtor:IN:STDeviation?	340
FETCh:STABle:CFACtor:OUT:SELected[:RESult]?	341

FETCh:STABle:CFACtor:OUT:AVERage?	341
FETCh:STABle:CFACtor:OUT:MAXimum?	341
FETCh:STABle:CFACtor:OUT:MINimum?	341
FETCh:STABle:CFACtor:OUT:STDeviation?	341
FETCh:STABle:FERRor:SELected[:RESult]?	341
FETCh:STABle:FERRor:AVERage?	341
FETCh:STABle:FERRor:MAXimum?	341
FETCh:STABle:FERRor:MINimum?	341
FETCh:STABle:FERRor:STDeviation?	341
FETCh:STABle:GAIN:SELected[:RESult]?	
FETCh:STABle:GAIN:AVERage?	
FETCh:STABle:GAIN:MAXimum?	
FETCh:STABle:GAIN:MINimum?	
FETCh:STABle:GAIN:STDeviation?	
FETCh:STABle:GIMBalance:SELected[:RESult]?	
FETCh:STABle:GIMBalance:AVERage?	
FETCh:STABle:GIMBalance:MAXimum?	
FETCh:STABle:GIMBalance:MINimum?	
FETCh:STABle:GIMBalance:STDeviation?	342
FETCh:STABle:IQIMbalance:SELected[:RESult]?	343
FETCh:STABle:IQIMbalance:AVERage?	343
FETCh:STABle:IQIMbalance:MAXimum?	343
FETCh:STABle:IQIMbalance:MINimum?	343
FETCh:STABle:IQIMbalance:STDeviation?	343
FETCh:STABle:IQOFfset:SELected[:RESult]?	
FETCh:STABle:IQOFfset:AVERage?	343
FETCh:STABle:IQOFfset:MAXimum?	
FETCh:STABle:IQOFfset:MINimum?	
FETCh:STABle:IQOFfset:STDeviation?	
FETCh:STABle:MERRor:SELected[:RESult]?	344
FETCh:STABle:MERRor:AVERage?	344
FETCh:STABle:MERRor:MAXimum?	344
FETCh:STABle:MERRor:MINimum?	344
FETCh:STABle:MERRor:STDeviation?	
FETCh:STABle:P1DB:IN:SELected[:RESult]?	344
FETCh:STABle:P1DB:IN:AVERage?	
FETCh:STABle:P1DB:IN:MAXimum?	
FETCh:STABle:P1DB:IN:MINimum?	344
FETCh:STABle:P1DB:IN:STDeviation?	344
FETCh:STABle:P1DB:OUT:SELected[:RESult]?	
FETCh:STABle:P1DB:OUT:AVERage?	
FETCh:STABle:P1DB:OUT:MAXimum?	
FETCh:STABle:P1DB:OUT:MINimum?	345
FETCh:STABle:P1DB:OUT:STDeviation?	345
FETCh:STABle:P2DB:IN:SELected[:RESult]?	345
FETCh:STABle:P2DB:IN:AVERage?	
FETCh:STABle:P2DB:IN:MAXimum?	345
FETCh:STABle:P2DB:IN:MINimum?	345
FETCh:STABle:P2DB:IN:STDeviation?	345
FETCh:STABle:P2DB:OUT:SELected[:RESult]?	

FETCh:STABle:P2DB:OUT:AVERage?	
FETCh:STABle:P2DB:OUT:MAXimum?	
FETCh:STABle:P2DB:OUT:MINimum?	346
FETCh:STABle:P2DB:OUT:STDeviation?	346
FETCh:STABle:P3DB:IN:SELected[:RESult]?	346
FETCh:STABle:P3DB:IN:AVERage?	346
FETCh:STABle:P3DB:IN:MAXimum?	346
FETCh:STABle:P3DB:IN:MINimum?	346
FETCh:STABle:P3DB:IN:STDeviation?	346
FETCh:STABle:P3DB:OUT:SELected[:RESult]?	347
FETCh:STABle:P3DB:OUT:AVERage?	
FETCh:STABle:P3DB:OUT:MAXimum?	
FETCh:STABle:P3DB:OUT:MINimum?	347
FETCh:STABle:P3DB:OUT:STDeviation?	347
FETCh:STABle:PC:SELected[:RESult]?	347
FETCh:STABle:PC:AVERage?	347
FETCh:STABle:PC:MAXimum?	347
FETCh:STABle:PC:MINimum?	347
FETCh:STABle:PC:STDeviation?	347
FETCh:STABle:PCPA:SELected[:RESult]?	347
FETCh:STABle:PCPA:AVERage?	348
FETCh:STABle:PCPA:MAXimum?	348
FETCh:STABle:PCPA:MINimum?	348
FETCh:STABle:PCPA:STDeviation?	348
FETCh:STABle:PERRor:SELected[:RESult]?	
FETCh:STABle:PERRor:AVERage?	
FETCh:STABle:PERRor:MAXimum?	
FETCh:STABle:PERRor:MINimum?	
FETCh:STABle:PERRor:STDeviation?	348
FETCh:STABle:POWer:INPut:AVG:SELected[:RESult]?	
FETCh:STABle:POWer:INPut:AVG:AVERage?	349
FETCh:STABle:POWer:INPut:AVG:MAXimum?	349
FETCh:STABle:POWer:INPut:AVG:MINimum?	
FETCh:STABle:POWer:INPut:AVG:STDeviation?	349
FETCh:STABle:POWer:INPut:MAX:SELected[:RESult]?	349
FETCh:STABle:POWer:INPut:MAX:AVERage?	349
FETCh:STABle:POWer:INPut:MAX:MAXimum?	349
FETCh:STABle:POWer:INPut:MAX:MINimum?	349
FETCh:STABle:POWer:INPut:MAX:STDeviation?	349
FETCh:STABle:POWer:INPut:MIN:SELected[:RESult]?	349
FETCh:STABle:POWer:INPut:MIN:AVERage?	349
FETCh:STABle:POWer:INPut:MIN:MAXimum?	349
FETCh:STABle:POWer:INPut:MIN:MINimum?	350
FETCh:STABle:POWer:INPut:MIN:STDeviation?	350
FETCh:STABle:POWer:OUTPut:AVG:SELected[:RESult]?	350
FETCh:STABle:POWer:OUTPut:AVG:AVERage?	350
FETCh:STABle:POWer:OUTPut:AVG:MAXimum?	350
FETCh:STABle:POWer:OUTPut:AVG:MINimum?	350
FETCh:STABle:POWer:OUTPut:AVG:STDeviation?	350
FETCh:STABle:POWer:OUTPut:MAX:SELected[:RESult]?	

FETCh:STABle:POWer:OUTPut:MAX:AVERage?	350
FETCh:STABle:POWer:OUTPut:MAX:MAXimum?	350
FETCh:STABle:POWer:OUTPut:MAX:MINimum?	351
FETCh:STABle:POWer:OUTPut:MAX:STDeviation?	351
FETCh:STABle:POWer:OUTPut:MIN:SELected[:RESult]?	351
EETCh:STABle:POWer:OUTPut:MIN:AVERage?	.351
EETCh:STABle:POWer:QUTPut:MIN:MAXimum?	.351
EETCh:STABle:POWer:QUTPut:MIN:MINimum?	
EETCh:STABle:POWer:QUTPut:MIN:STDeviation?	
EETCh:STABle:OERRor:SEI ected[:RESult]?	
FETCh:STABle:OERRor:AVERage?	351
FETCh:STABle:OERRor:MAXimum?	351
FETCh:STABle:OERRor:MINimum?	352
EETCh:STABle:OERRor:STDeviation?	
EETCh:STABle:REV/M:AV/G:SELectedI:RESult12	
FETCh:STABle:REV/M:AVG:0LEccicul;:1Ccourd;:	352
FETCh:STABle:REVM:AVG:AVERage:	352
FETCh:STABle:REVM:AVG:MAXInum?	352
FETCh:STADIe:REVM:AVG.MINIIIdil1?	252
	252
FETCH:STADIe:REVM:MAX.SELected[.RESult] ?	252
FETCH.STADIe.REVM.MAX.AVERAge?	. 30Z
FETCh:STABle:REVM:MAX:MINIMUM ?	
	303
	353
	353
FETCh:STABle:REVM:MIN:MAXimum?	353
FETCh:STABle:REVM:MIN:MINimum?	353
FETCh:STABle:REVM:MIN:STDeviation?	353
FETCh:STABle:RMEV:AVG:SELected[:RESult]?	353
FETCh:STABle:RMEV:AVG:AVERage?	353
FETCh:STABle:RMEV:AVG:MAXimum?	353
FETCh:STABle:RMEV:AVERage:MINimum?	353
FETCh:STABle:RMEV:AVG:MINimum?	354
FETCh:STABle:RMEV:AVG:STDeviation?	. 354
FETCh:STABle:RMEV:MAX:SELected[:RESult]?	354
FETCh:STABle:RMEV:MAX:AVERage?	354
FETCh:STABle:RMEV:MAX:MAXimum?	354
FETCh:STABle:RMEV:MAX:MINimum?	354
FETCh:STABle:RMEV:MAX:STDeviation?	354
FETCh:STABle:RMEV:MIN:SELected[:RESult]?	354
FETCh:STABle:RMEV:MIN:AVERage?	354
FETCh:STABle:RMEV:MIN:MAXimum?	354
FETCh:STABle:RMEV:MIN:MINimum?	355
FETCh:STABle:RMEV:MIN:STDeviation?	355
FETCh:STABle:SRERor:SELected[:RESult]?	355
FETCh:STABle:SRERor:AVERage?	355
FETCh:STABle:SRERor:MAXimum?	355
FETCh:STABle:SRERor:MINimum?	355
FETCh:STABle:SRERor:STDeviation?	. 355

FETCh:STABle:ADRoop:SELected[:RESult]?

Returns the amplitude droop for the currently selected result range.

Return values: <Power>

Usage:

Query only

FETCh:STABle:ADRoop:AVERage? <QueryRange> FETCh:STABle:ADRoop:MAXimum? <Power> FETCh:STABle:ADRoop:MINimum? <Power> FETCh:STABle:ADRoop:STDeviation? <Power>

Returns the statistical value for the amplitude droop.

Query parameters: <Power> CL

CURRent | ALL

Return values: <Result>

Usage: Query only

Manual operation: See "Amplitude Droop" on page 28

FETCh:STABle:AMAM:CWIDth:SELected[:RESult]?

Returns the AM/AM curve width for the currently selected result range.

Return values: <CurveWidth>

Usage:

Query only

FETCh:STABle:AMAM:CWIDth:AVERage? <QueryRange> FETCh:STABle:AMAM:CWIDth:MAXimum? <QueryRange> FETCh:STABle:AMAM:CWIDth:MINimum? <QueryRange> FETCh:STABle:AMAM:CWIDth:STDeviation? <QueryRange>

Returns the statistical value for the AM/AM curve width.

 Query parameters:

 <QueryRange>
 CURRent | ALL

Return values: <Result>

Usage: Query only

Manual operation: See "AM/AM Curve Width" on page 33

FETCh:STABle:AMPM:CWIDth:SELected[:RESult]?

Returns the AM/PM curve width for the currently selected result range.

Return values:

<CurveWidth>

Usage:

Query only

FETCh:STABle:AMPM:CWIDth:AVERage? <QueryRange> FETCh:STABle:AMPM:CWIDth:MAXimum? <QueryRange> FETCh:STABle:AMPM:CWIDth:MINimum? <QueryRange> FETCh:STABle:AMPM:CWIDth:STDeviation? <QueryRange>

Returns the statistical value for the AM/PM curve width.

Query parameters:

<QueryRange> CURRent | ALL

Return values: <Result>

Usage: Query only

Manual operation: See "AM/PM Curve Width" on page 34

FETCh:STABle:CFACtor:IN:SELected[:RESult]?

Returns the crest factor in for the currently selected result range.

Return values: <Power>

Usage:

Query only

FETCh:STABle:CFACtor:IN:AVERage? <QueryRange> FETCh:STABle:CFACtor:IN:MAXimum? <QueryRange> FETCh:STABle:CFACtor:IN:MINimum? <QueryRange> FETCh:STABle:CFACtor:IN:STDeviation? <QueryRange>

Returns the statistical value for the crest factor in.

Query parameters:<QueryRange>CURRent | ALL

Return values: <Result>

Usage: Query only

Manual operation: See "Crest Factor In" on page 35

FETCh:STABle:CFACtor:OUT:SELected[:RESult]?

Returns the crest factor out for the currently selected result range.

Return values: <Power>

Usage:

Query only

FETCh:STABle:CFACtor:OUT:AVERage? <QueryRange> FETCh:STABle:CFACtor:OUT:MAXimum? <QueryRange> FETCh:STABle:CFACtor:OUT:MINimum? <QueryRange> FETCh:STABle:CFACtor:OUT:STDeviation? <QueryRange>

Returns the statistical value for the crest factor out.

Query parameters: <QueryRange> CURRent | ALL

Return values: <Result>

Usage: Query only

Manual operation: See "Crest Factor Out" on page 35

FETCh:STABle:FERRor:SELected[:RESult]?

Returns the frequency error for the currently selected result range.

Return values: <Power>

Usage:

Query only

FETCh:STABle:FERRor:AVERage? <Error> FETCh:STABle:FERRor:MAXimum? <QueryRange> FETCh:STABle:FERRor:MINimum? <QueryRange> FETCh:STABle:FERRor:STDeviation? <QueryRange>

Returns the statistical value for the frequency error.

Query parameters: <QueryRange> CURRent | ALL

Return values: <Result>

Usage: Query only

Manual operation: See "Frequency Error" on page 29

FETCh:STABle:GAIN:SELected[:RESult]?

Returns the gain for the currently selected result range.

Return values: <Power>

Usage:

Query only

FETCh:STABle:GAIN:AVERage? <QueryRange> FETCh:STABle:GAIN:MAXimum? <QueryRange> FETCh:STABle:GAIN:MINimum? <QueryRange> FETCh:STABle:GAIN:STDeviation? <QueryRange>

Returns the statistical value for the gain.

Query parameters: <QueryRange> CURRent | ALL

Return values: <Result>

Usage: Query only

Manual operation: See "Gain" on page 35

FETCh:STABle:GIMBalance:SELected[:RESult]?

Returns the gain imbalance for the currently selected result range.

Return values: <Power>

Usage:

Query only

FETCh:STABle:GIMBalance:AVERage? <QueryRange> FETCh:STABle:GIMBalance:MAXimum? <QueryRange> FETCh:STABle:GIMBalance:MINimum? <QueryRange> FETCh:STABle:GIMBalance:STDeviation? <QueryRange>

Returns the statistical value for the gain imbalance.

Query parameters: <QueryRange> CURRent | ALL Return values:

<Result>

Usage: Query only

Manual operation: See "Gain Imbalance" on page 28

FETCh:STABle:IQIMbalance:SELected[:RESult]?

Returns the I/Q imbalance for the currently selected result range.

Return values: <Power>

Usage:

Query only

FETCh:STABle:IQIMbalance:AVERage? <QueryRange> FETCh:STABle:IQIMbalance:MAXimum? <QueryRange> FETCh:STABle:IQIMbalance:MINimum? <QueryRange> FETCh:STABle:IQIMbalance:STDeviation? <QueryRange>

Returns the statistical value for the I/Q imbalance.

Query parameters: <QueryRange> CURRent | ALL

Return values: <Result>

Usage: Query only

Manual operation: See "I/Q Imbalance" on page 29

FETCh:STABle:IQOFfset:SELected[:RESult]?

Returns the I/Q offset for the currently selected result range.

Return values: <Power>

Usage:

Query only

FETCh:STABle:IQOFfset:AVERage? <QueryRange> FETCh:STABle:IQOFfset:MAXimum? <QueryRange> FETCh:STABle:IQOFfset:MINimum? <QueryRange> FETCh:STABle:IQOFfset:STDeviation? <QueryRange>

Returns the statistical value for the I/Q offset.

Query parameters: <QueryRange> CURRent | ALL

Return values: <Result>

Usage: Query only

Manual operation: See "I/Q Offset" on page 29

FETCh:STABle:MERRor:SELected[:RESult]?

Returns the magnitude error for the currently selected result range.

Return values: <Power>

Usage:

Query only

FETCh:STABle:MERRor:AVERage? <QueryRange> FETCh:STABle:MERRor:MAXimum? <QueryRange> FETCh:STABle:MERRor:MINimum? <QueryRange> FETCh:STABle:MERRor:STDeviation? <QueryRange>

Returns the statistical value for the magnitude error.

Query parameters: <QueryRange> CURRent | ALL

Return values: <Result>

Usage: Query only

Manual operation: See "Magnitude Error" on page 30

FETCh:STABle:P1DB:IN:SELected[:RESult]?

Returns the 1dB input compression point for the currently selected result range.

Return values: <Power>

Usage:

Query only

FETCh:STABle:P1DB:IN:AVERage? <QueryRange> FETCh:STABle:P1DB:IN:MAXimum? <QueryRange> FETCh:STABle:P1DB:IN:MINimum? <QueryRange> FETCh:STABle:P1DB:IN:STDeviation? <QueryRange>

Returns the statistical value for the 1dB input compression point.

Query parameters: <QueryRange> CURRent | ALL

Return values: <Result>

Usage: Query only

Manual operation: See "Compression Point (1 dB / 2 dB / 3 dB)" on page 34

FETCh:STABle:P1DB:OUT:SELected[:RESult]?

Returns the 1dB output compression point for the currently selected result range.

Return values:

<Power>

Usage:

Query only

FETCh:STABle:P1DB:OUT:AVERage? <QueryRange> FETCh:STABle:P1DB:OUT:MAXimum? <QueryRange> FETCh:STABle:P1DB:OUT:MINimum? <QueryRange> FETCh:STABle:P1DB:OUT:STDeviation? <QueryRange>

Returns the statistical value for the 1dB output compression point.

Query parameters:

<QueryRange> CURRent | ALL

Return values: <Result>

Usage: Query only

Manual operation: See "Output Compression Point (1 dB / 2 dB / 3 dB)" on page 36

FETCh:STABle:P2DB:IN:SELected[:RESult]?

Returns the 2dB input compression point for the currently selected result range.

Return values: <Power>

Usage:

Query only

FETCh:STABle:P2DB:IN:AVERage? <QueryRange> FETCh:STABle:P2DB:IN:MAXimum? <QueryRange> FETCh:STABle:P2DB:IN:MINimum? <QueryRange> FETCh:STABle:P2DB:IN:STDeviation? <QueryRange>

Returns the statistical value for the 2dB input compression point.

Query parameters: <QueryRange> CURRent | ALL

Return values: <Result>

Usage: Query only

Manual operation: See "Compression Point (1 dB / 2 dB / 3 dB)" on page 34

FETCh:STABle:P2DB:OUT:SELected[:RESult]?

Returns the 2dB output compression point for the currently selected result range.

Return values:

<Power>

Usage:

Query only

FETCh:STABle:P2DB:OUT:AVERage? <QueryRange> FETCh:STABle:P2DB:OUT:MAXimum? <QueryRange> FETCh:STABle:P2DB:OUT:MINimum? <QueryRange> FETCh:STABle:P2DB:OUT:STDeviation? <QueryRange>

Returns the statistical value for the 2dB output compression point.

Query parameters:

<QueryRange> CURRent | ALL

Return values: <Result>

Usage: Query only

Manual operation: See "Output Compression Point (1 dB / 2 dB / 3 dB)" on page 36

FETCh:STABle:P3DB:IN:SELected[:RESult]?

Returns the 3dB input compression point for the currently selected result range.

Return values: <Power>

Usage:

Query only

FETCh:STABle:P3DB:IN:AVERage? <QueryRange> FETCh:STABle:P3DB:IN:MAXimum? <QueryRange> FETCh:STABle:P3DB:IN:MINimum? <QueryRange> FETCh:STABle:P3DB:IN:STDeviation? <QueryRange>

Returns the statistical value for the 3dB input compression point.

Query parameters: <QueryRange> CURRent | ALL

Return values: <Result>

Usage: Query only

Manual operation: See "Compression Point (1 dB / 2 dB / 3 dB)" on page 34

FETCh:STABle:P3DB:OUT:SELected[:RESult]?

Returns the 3dB output compression point for the currently selected result range.

Return values:

<Power>

Usage:

Query only

FETCh:STABle:P3DB:OUT:AVERage? <QueryRange> FETCh:STABle:P3DB:OUT:MAXimum? <QueryRange> FETCh:STABle:P3DB:OUT:MINimum? <QueryRange> FETCh:STABle:P3DB:OUT:STDeviation? <QueryRange>

Returns the statistical value for the 3dB output compression point.

Query parameters:

<QueryRange> CURRent | ALL

Return values: <Result>

Usage: Query only

Manual operation: See "Output Compression Point (1 dB / 2 dB / 3 dB)" on page 36

FETCh:STABle:PC:SELected[:RESult]?

Returns the average power consumption for the currently selected result range.

Return values: <Power>

Usage:

Query only

FETCh:STABle:PC:AVERage? <QueryRange> FETCh:STABle:PC:MAXimum? <QueryRange> FETCh:STABle:PC:MINimum? <QueryRange> FETCh:STABle:PC:STDeviation? <QueryRange>

Returns the statistical value for the power consumption.

 Query parameters:

 <QueryRange>
 CURRent | ALL

Return values: <Result>

Usage: Query only

FETCh:STABle:PCPA:SELected[:RESult]?

Returns the PC based average PAE for the currently selected result range.

Return values:

<Power>

Usage:

Query only

FETCh:STABle:PCPA:AVERage? <QueryRange> FETCh:STABle:PCPA:MAXimum? <QueryRange> FETCh:STABle:PCPA:MINimum? <QueryRange> FETCh:STABle:PCPA:STDeviation? <QueryRange>

Returns the statistical value for the PC based average PAE.

Query parameters: <QueryRange> CURRent | ALL

Return values: <Result>

Usage:

Query only

FETCh:STABle:PERRor:SELected[:RESult]?

Returns the phase error for the currently selected result range.

Return values: <Power>

Usage:

Query only

FETCh:STABle:PERRor:AVERage? <QueryRange> FETCh:STABle:PERRor:MAXimum? <QueryRange> FETCh:STABle:PERRor:MINimum? <QueryRange> FETCh:STABle:PERRor:STDeviation? <QueryRange>

Returns the statistical value for the phase error.

Query parameters:

<QueryRange> CURRent | ALL

Return values:

<Result>

Usage: Query only

Manual operation: See "Phase Error" on page 30

FETCh:STABle:POWer:INPut:AVG:SELected[:RESult]?

Returns the average power in for the currently selected result range.

Return values:

<Power>

Usage:

Query only

FETCh:STABle:POWer:INPut:AVG:AVERage? <QueryRange> FETCh:STABle:POWer:INPut:AVG:MAXimum? <QueryRange> FETCh:STABle:POWer:INPut:AVG:MINimum? <QueryRange> FETCh:STABle:POWer:INPut:AVG:STDeviation? <QueryRange>

Returns the statistical value for the average power in.

Query parameters:

<QueryRange> CURRent | ALL

Return values: <Result>

Usage:

Query only

Manual operation: See "Power In" on page 36

FETCh:STABle:POWer:INPut:MAX:SELected[:RESult]?

Returns the maximum power in for the currently selected result range.

Return values: <Power>

Usage:

Query only

FETCh:STABle:POWer:INPut:MAX:AVERage? <QueryRange> FETCh:STABle:POWer:INPut:MAX:MAXimum? <QueryRange> FETCh:STABle:POWer:INPut:MAX:MINimum? <QueryRange> FETCh:STABle:POWer:INPut:MAX:STDeviation? <QueryRange>

Returns the statistical value for the maximum power in.

Query parameters: <QueryRange>

yRange> CURRent | ALL

Return values:

<Result>

Usage: Query only

Manual operation: See "Power In" on page 36

FETCh:STABle:POWer:INPut:MIN:SELected[:RESult]?

Returns the minimum power in for the currently selected result range.

Return values: <Power>

Usage:

Query only

FETCh:STABle:POWer:INPut:MIN:AVERage? <QueryRange> FETCh:STABle:POWer:INPut:MIN:MAXimum? <QueryRange>

FETCh:STABle:POWer:INPut:MIN:MINimum? <QueryRange> FETCh:STABle:POWer:INPut:MIN:STDeviation? <QueryRange>

Returns the statistical value for the minimum power in.

Query parameters: <QueryRange> CURRent | ALL

Return values: <Result>

Usage:

Query only

Manual operation: See "Power In" on page 36

FETCh:STABle:POWer:OUTPut:AVG:SELected[:RESult]?

Returns the average power out for the currently selected result range.

Return values: <Power>

Usage:

Query only

FETCh:STABle:POWer:OUTPut:AVG:AVERage? <QueryRange> FETCh:STABle:POWer:OUTPut:AVG:MAXimum? <QueryRange> FETCh:STABle:POWer:OUTPut:AVG:MINimum? <QueryRange> FETCh:STABle:POWer:OUTPut:AVG:STDeviation? <QueryRange>

Returns the statistical value for the average power out.

Query parameters: <QueryRange> CURRent | ALL Return values:

<Result>

Usage: Query only

Manual operation: See "Power Out" on page 36

FETCh:STABle:POWer:OUTPut:MAX:SELected[:RESult]?

Returns the maximum power out for the currently selected result range.

Return values: <Power>

Usage:

Query only

FETCh:STABle:POWer:OUTPut:MAX:AVERage? <QueryRange> FETCh:STABle:POWer:OUTPut:MAX:MAXimum? <QueryRange>

FETCh:STABle:POWer:OUTPut:MAX:MINimum? <QueryRange> FETCh:STABle:POWer:OUTPut:MAX:STDeviation? <QueryRange>

Returns the statistical value for the maximum power out.

Query parameters: <QueryRange> CUR

CURRent | ALL

Return values: <Result>

Usage:

Query only

Manual operation: See "Power Out" on page 36

FETCh:STABle:POWer:OUTPut:MIN:SELected[:RESult]?

Returns the minimum power out for the currently selected result range.

Return values: <Power>

Usage:

Query only

FETCh:STABle:POWer:OUTPut:MIN:AVERage? <QueryRange> FETCh:STABle:POWer:OUTPut:MIN:MAXimum? <QueryRange> FETCh:STABle:POWer:OUTPut:MIN:MINimum? <QueryRange> FETCh:STABle:POWer:OUTPut:MIN:STDeviation? <QueryRange>

Returns the statistical value for the minimum power out.

Query parameters: <QueryRange> CURRent | ALL Return values:

<Result>

Usage: Query only

Manual operation: See "Power Out" on page 36

FETCh:STABle:QERRor:SELected[:RESult]?

Returns the quadrature error for the currently selected result range.

Return values: <Power>

Usage:

Query only

FETCh:STABle:QERRor:AVERage? <QueryRange> FETCh:STABle:QERRor:MAXimum? <QueryRange>

FETCh:STABle:QERRor:MINimum? <QueryRange> FETCh:STABle:QERRor:STDeviation? <QueryRange>

Returns the statistical value for the quadrature error.

Query parameters: <QueryRange> CU

ge> CURRent | ALL

Return values: <Result>

Usage:

Query only

Manual operation: See "Quadrature Error" on page 31

FETCh:STABle:REVM:AVG:SELected[:RESult]?

Returns the average raw EVM for the currently selected result range.

Return values: <Power>

Usage: Query only

FETCh:STABle:REVM:AVG:AVERage? <QueryRange> FETCh:STABle:REVM:AVG:MAXimum? <QueryRange> FETCh:STABle:REVM:AVG:MINimum? <QueryRange> FETCh:STABle:REVM:AVG:STDeviation? <QueryRange>

Returns the statistical value for the average raw evm.

 Query parameters:

 <QueryRange>
 CURRent | ALL

Return values: <Result>

Usage: Query only

Manual operation: See "Raw EVM" on page 31

FETCh:STABle:REVM:MAX:SELected[:RESult]?

Returns the maximum raw EVM for the currently selected result range.

Return values: <Power>

Usage:

Query only

FETCh:STABle:REVM:MAX:AVERage? <QueryRange> FETCh:STABle:REVM:MAX:MAXimum? <QueryRange>

FETCh:STABle:REVM:MAX:MINimum? <QueryRange> FETCh:STABle:REVM:MAX:STDeviation? <QueryRange>

Returns the statistical value for the maximum raw evm.

Query parameters: <QueryRange> CURRent | ALL

Return values: <Result>

Usage:

Query only

Manual operation: See "Raw EVM" on page 31

FETCh:STABle:REVM:MIN:SELected[:RESult]?

Returns the minimum raw EVM for the currently selected result range.

Return values: <Power>

Usage:

Query only

FETCh:STABle:REVM:MIN:AVERage? <QueryRange> FETCh:STABle:REVM:MIN:MAXimum? <QueryRange> FETCh:STABle:REVM:MIN:MINimum? <QueryRange> FETCh:STABle:REVM:MIN:STDeviation? <QueryRange>

Returns the statistical value for the minimum raw evm.

Query parameters:<QueryRange>CURRent | ALL

Return values: <Result>

Usage: Query only

Manual operation: See "Raw EVM" on page 31

FETCh:STABle:RMEV:AVG:SELected[:RESult]?

Returns the average raw model EVM for the currently selected result range.

Return values: <Power>

Usage:

Query only

FETCh:STABle:RMEV:AVG:AVERage? <QueryRange> FETCh:STABle:RMEV:AVG:MAXimum? <QueryRange> FETCh:STABle:RMEV:AVERage:MINimum? <QueryRange>

FETCh:STABle:RMEV:AVG:MINimum? <QueryRange> FETCh:STABle:RMEV:AVG:STDeviation? <QueryRange>

Returns the statistical value for the average raw model evm.

Query parameters: <QueryRange> Cl

CURRent | ALL

Return values: <Result>

Usage:

Query only

Manual operation: See "Raw Model EVM" on page 32

FETCh:STABle:RMEV:MAX:SELected[:RESult]?

Returns the maximum raw model EVM for the currently selected result range.

Return values: <Power>

Usage:

Query only

FETCh:STABle:RMEV:MAX:AVERage? <QueryRange> FETCh:STABle:RMEV:MAX:MAXimum? <QueryRange> FETCh:STABle:RMEV:MAX:MINimum? <QueryRange> FETCh:STABle:RMEV:MAX:STDeviation? <QueryRange>

Returns the statistical value for the maximum raw model evm.

Query parameters:<QueryRange>CURRent | ALL

Return values: <Result>

Usage: Query only

Manual operation: See "Raw Model EVM" on page 32

FETCh:STABle:RMEV:MIN:SELected[:RESult]?

Returns the minimum raw model EVM for the currently selected result range.

Return values: <Power>

Usage:

Query only

FETCh:STABle:RMEV:MIN:AVERage? <QueryRange> FETCh:STABle:RMEV:MIN:MAXimum? <QueryRange>

FETCh:STABle:RMEV:MIN:MINimum? <QueryRange> FETCh:STABle:RMEV:MIN:STDeviation? <QueryRange>

Returns the statistical value for the minimum raw model evm.

Query parameters: <QueryRange> C

CURRent | ALL

Return values: <Result>

Usage:

Query only

Manual operation: See "Raw Model EVM" on page 32

FETCh:STABle:SRERor:SELected[:RESult]?

Returns the sample rate error for the currently selected result range.

Return values: <Power>

Usage:

Query only

FETCh:STABle:SRERor:AVERage? <QueryRange> FETCh:STABle:SRERor:MAXimum? <QueryRange> FETCh:STABle:SRERor:MINimum? <QueryRange> FETCh:STABle:SRERor:STDeviation? <QueryRange>

Returns the statistical value for the sample rate error.

Query parameters: <QueryRange> CURRent | ALL Return values:

<Result>

Usage: Query only

Manual operation: See "Sample Rate Error" on page 32

5.8.3 Retrieving I/Q data

TRACe:IQ:EQUalized?	
TRACe:IQ:REF[:DATA]?	356
TRACe:IQ:SYNChronized?	356

TRACe:IQ:EQUalized? <Input>

This command queries the equalized I/Q data.

Prerequisites for this command

Equalized data must be available.

Query parameters:	DE
<iiiput></iiiput>	You have to state this parameter, but it is always "RF".
Return values:	String containing the I/O data
Example:	//Query equalized I/Q data
	TRAC:IQ:EQU? RF //Query raw I/Q data
	TRAC: IQ: DATA?
Usage:	Query only

TRACe:IQ:REF[:DATA]?

This command queries the reference trace I/Q data.

Example:	<pre>//Query reference trace I/Q data TRAC:IQ:REF?</pre>	
Usage:	Query only	
Manual operation:	See "Reference signal information" on page 40	

TRACe:IQ:SYNChronized? < InpMode>

This command queries the (measured) synchronized I/Q data (which corresponds to the green bar in the "Magnitude Capture" result display).

Query parameters: <inpmode></inpmode>	RF Queries the data captured on the RF input.	
Return values: <result></result>	String containing the synchronized measurement values.	
Example:	TRAC:IQ:SYNC? RF would return, e.g. '-40.376233,-39.982912,'	
Usage:	Query only	

5.9 Managing measurement data

MMEMory:LOAD:IQ:STATe	356
MMEMory:STORe <n>:IQ:COMMent</n>	
MMEMory:STORe <n>:IQ:STATe</n>	

MMEMory:LOAD:IQ:STATe <1>, <FileName>

This command restores the currently captured I/Q data to a file.

After restoring the I/Q data, the application also analyzes the data again.

Setting parameters:

<filename></filename>	String containing the path and file name.
Example:	$\label{eq:MMEM:LOAD:IQ:STAT 1, 'C:\IQData\Amplfier.iq.tar'} Restores the specified I/Q data.$
Usage:	Setting only

MMEMory:STORe<n>:IQ:COMMent <Comment>

This command defines a comment for I/Q data you want to store.

Suffix:	
<n></n>	1n
	irrelevant
Setting parameters:	
<comment></comment>	String containing the comment.

Example: See MMEMory:STORe<n>:IQ:STATe.

MMEMory:STORe<n>:IQ:STATe <Number>, <FileName>

This command stores the currently captured I/Q data to a file.

In secure user mode, settings that are stored on the instrument are stored to volatile memory, which is restricted to 256 MB. Thus, a "memory limit reached" error can occur although the hard disk indicates that storage space is still available.

To store data permanently, select an external storage location such as a USB memory device.

For details, see "Protecting Data Using the Secure User Mode" in the "Data Management" section of the R&S VSE base software user manual.

Suffix: <n></n>	1n irrelevant
Setting parameters: <number></number>	Always '1'.
<filename></filename>	String containing the path and file name. The file type is .iq.tar.
Example:	<pre>MMEM:STOR:IQ:COMM 'A sensible comment' MMEM:STOR:IQ:STAT 1,'C:\IQData\Amplfier.iq.tar' Saves the I/Q data to the specified file and adds a sensible comment.</pre>
Usage:	Setting only

Programming example R&S VSE-K18M

5.10 Deprecated remote commands for amplifier measurements

Following is a list of deprecated remote commands. The remote commands are still supported to maintain compatibility to previous versions of amplifier measurements, but it is strongly recommended to use the command system in the way it is meant to be used in the latest version of the R&S VSE-K18.

Legacy command	Replaced by	Comment
CALCulate:GAIN:X	CALCulate:PREFerence:X	
CONFigure:DPD:MODorder		
CONFigure:MODeling:AMAM: MORDer	CONFigure:MODeling:AMAM: ORDer	
CONFigure:MODeling:AMPM: MORDer	CONFigure:MODeling:AMPM: ORDer	
CONFigure:MODeling:ORDer	CONFigure:MODeling:SEQuence	
FETCh:POWer:CURRent[:RESult]	FETCh:BBPower:CURRent[: RESult]	
FETCh:POWer:MAXimum[:RESult]	FETCh:BBPower:MAXimum[: RESult]	
FETCh:POWer:MINimum[:RESult]	FETCh:BBPower:MINimum[: RESult]	
CONFigure:GENerator: IPConnection:LEDState	CONFigure:GENerator: CONNection:CSTate	

5.11 Programming example R&S VSE-K18M

The following programming example for the R&S VSE-K18M application shows you how to apply a memory polynomial to an input vector, scaled to Volts, and return the resulting output vector, also scaled to Volts.

```
function [vfcOutput,fRMSLevelOffsetdB] = MemApply(vfcInput, viMemoryOrder,
viPolyOrder, vfcCoeffs)
```

- 8 -----
- % Copyright 2023 Rohde & Schwarz GmbH & Co. KG
- $\ensuremath{\$}$ Rohde & Schwarz products and services are supplied to customers subject
- % to certain contractual terms and conditions.
- % In addition, there are some requirements that apply especially to certain % products, customers or circumstances.
- % Detailed legal information for customers and users can be found here:
- % http://www.termsofuse.rohde-schwarz.com
- 8 _____

Programming example R&S VSE-K18M

```
% This function applies a memory polynomial to an input vector and returns
% the resulting output vector.
% Input variables:
90
  vfcInput:
                   complex input vector in Volts
8
  iMemLength:
                   Vector of all the expected time shifts
90
  iPolyDegree: Vector of all the used polynomial degrees
ŝ
   vfcCoeffs:
                  complex coefficients, where entries are sorted in the
                    following order [c(m1,p1) c(m2,p1) .vfcInputAbs..
8
2
                    c(miMemLength,pl), c(ml,p2), c(miMemLength,
                    piPolyDegree)], in Volts
Ŷ
%computation of needed constants
iPolyOrder = length(viPolyOrder);
iMemoryOrder = length(viMemoryOrder);
iNofSamples=length(vfcInput);
\ensuremath{\$} get the enevelope of the samples to model
vfcInputAbs = abs(vfcInput);
%Buffer for the computation with the Input Signal
vfcInputBuffer=vfcInput;
%Calculate output
vfcOutput=zeros(iNofSamples,1);
iCPoly = 0;
if (viPolyOrder(1) == 0) %special case for PolyOrder 0
%(for this the Output depends only on the coeffs and not the input signal)
    for iCMemory = 0: iMemoryOrder-1
        iCCoeff = iMemoryOrder - 1 - iCMemory + iCPoly * iMemoryOrder;
        fcCoeff = vfcCoeffs(iCCoeff+1); %selecting the Coeff for this iteration
        iNofOverlappingSamples = iMemoryOrder - (iMemoryOrder + 1) / 2 - iCMemory;
        %time shift for memory
        if (0 > iNofOverlappingSamples)
            iNofOverlappingSamples =iNofOverlappingSamples+ iNofSamples;
        end
        vfcOutput(1: iNofSamples - iNofOverlappingSamples)
        =vfcOutput(1: iNofSamples - iNofOverlappingSamples) + fcCoeff;
    end
   iCPoly = 1;
end
```

Programming example R&S VSE-K18M

```
iAccPoly = 1;
for iCPoly=iCPoly: iPolyOrder-1 % all cases where the PolyOrder is greater than 0
   iPoly = viPolyOrder(iCPoly+1);
   while (iAccPoly < iPoly)
        vfcInputBuffer=vfcInputBuffer.* vfcInputAbs;
        %multiply the Input Signal with the envelope to get the required
        %polynomial order
        iAccPoly=iAccPoly+1;
   end
    for iCMemory = 0: iMemoryOrder-1
        iCCoeff = iMemoryOrder - 1 - iCMemory + iCPoly * iMemoryOrder;
        fcCoeff = vfcCoeffs(iCCoeff+1); %selecting the Coeff for this iteration
        iNofOverlappingSamples = iMemoryOrder - floor((iMemoryOrder + 1) / 2)
        - iCMemory; %time shift for memory
        if (0 > iNofOverlappingSamples)
            iNofOverlappingSamples =iNofOverlappingSamples+ iNofSamples;
        end
        vfcOutput(iNofOverlappingSamples+1:iNofSamples )
        = vfcOutput(iNofOverlappingSamples +1:iNofSamples)
        + vfcInputBuffer(1: iNofSamples - iNofOverlappingSamples)
        .* fcCoeff;
        vfcOutput(1: iNofOverlappingSamples) =vfcOutput(1:iNofOverlappingSamples)
        + vfcInputBuffer(iNofSamples - iNofOverlappingSamples+1: iNofSamples)
        .* fcCoeff;
   end
end
%Compute the change of the RMS level for the new waveform in comparison to the input
fInputNorm=norm(vfcInput);
```

fOutputNorm=norm(vfcOutput);

```
fRMSLevelOffsetdB = 20*log10(fOutputNorm / fInputNorm);
disp(['RMS Level Change required at the generator:',
num2str(fRMSLevelOffsetdB),' dBm.'])
```

end
List of Commands (Amplifier)

[SENSe:][WINDow <n>:]DETector<t>[:FUNCtion]</t></n>	281
[SENSe:]BANDwidth[:RESolution]	221
[SENSe:]BANDwidth[:RESolution]:AUTO	222
[SENSe:]DETector <t>:DEFault[:FUNCtion]</t>	279
[SENSe:]DETector <t>:TRACe[:POINt]</t>	280
[SENSe:]EFRontend:ALIGnment <ch>:FILE</ch>	198
[SENSe:]EFRontend:ALIGnment <ch>:STATe</ch>	199
[SENSe:]EFRontend:CONNection:CONFig	200
[SENSe:]EFRontend:CONNection:CSTate?	200
[SENSe:]EFRontend:CONNection[:STATe]	199
[SENSe:]EFRontend:FREQuency:BAND:COUNt?	201
[SENSe:]EFRontend:FREQuency:BAND :LOWer?	201
[SENSe:]EFRontend:FREQuency:BAND :UPPer?	201
[SENSe:]EFRontend:FREQuency:BCONfig:AUTO	202
[SENSe:]EFRontend:FREQuency:BCONfig:LIST?	202
[SENSe:]EFRontend:FREQuency:BCONfig:SELect	202
[SENSe:]EFRontend:FREQuency:IFRequency:SIDeband?	203
[SENSe:]EFRontend:FREQuency:IFRequency[:VALue]?	203
[SENSe:]EFRontend:FREQuency:REFerence	204
[SENSe:]EFRontend:FREQuency:REFerence:LIST?	204
[SENSe:]EFRontend:IDN?	204
[SENSe:]EFRontend[:STATe]	204
[SENSe:]FREQuency:CENTer:STEP	205
[SENSe:]PMETer:LEVel:CORRection:APPLy	183
[SENSe:]PMETer:DCYCle:VALue	179
[SENSe:]PMETer:DCYCle[:STATe]	179
[SENSe:]PMETer:FREQuency	180
[SENSe:]PMETer:FREQuency:LINK	180
[SENSe:]PMETer:MTIMe	181
[SENSe:]PMETer:MTIMe:AVERage:COUNt	181
[SENSe:]PMETer:MTIMe:AVERage[:STATe]	181
[SENSe:]PMETer:ROFFset[:STATe]	182
[SENSe:]PMETer:SOFFset	182
[SENSe:]PMETer:TRIGger:DTIMe	185
[SENSe:]PMETer:TRIGger:HOLDoff	185
[SENSe:]PMETer:TRIGger:HYSTeresis	186
[SENSe:]PMETer:TRIGger:LEVel	186
[SENSe:]PMETer:TRIGger:SLOPe	186
[SENSe:]PMETer:TRIGger[:STATe]	187
[SENSe:]PMETer[:STATe]	182
[SENSe:]POWer:ACHannel:AABW	263
[SENSe:]POWer:ACHannel:ACPairs	263
[SENSe:]POWer:ACHannel:BANDwidth:ACHannel	263
[SENSe:]POWer:ACHannel:BANDwidth:ALTernate <ch></ch>	264
[SENSe:]POWer:ACHannel:BANDwidth[:CHANnel <ch>]</ch>	264
[SENSe:]POWer:ACHannel:FILTer:ALPHa:ACHannel	264
	005

[SENSe:]POWer:ACHannel:FILTer:ALPHa:CHANnel <ch></ch>	
[SENSe:]POWer:ACHannel:FILTer[:STATe]:ACHannel	
[SENSe:]POWer:ACHannel:FILTer[:STATe]:ALTernate <ch></ch>	
[SENSe:]POWer:ACHannel:FILTer[:STATe]:CHANnel <ch></ch>	
[SENSe:]POWer:ACHannel:REFerence:TXCHannel:AUTO	
[SENSe:]POWer:ACHannel:REFerence:TXCHannel:MANual	
[SENSe:]POWer:ACHannel:SPACing:ALTernate <ch></ch>	
[SENSe:]POWer:ACHannel:SPACing:CHANnel <ch></ch>	
[SENSe:]POWer:ACHannel:SPACing[:ACHannel]	
[SENSe:]POWer:ACHannel:TXCHannel:COUNt	
[SENSe:]PSERvoing:INPut:STEP	
[SENSe:]PSERvoing:MAX:ITERation	274
[SENSe:]PSERvoing:STARt	
[SENSe:]PSERvoing:STATe	273
[SENSe:]PSERvoing:TARGet:PARameter	273
[SENSe:]PSERvoing:TARGet:TOLerance	
[SENSe:]PSERvoing:TARGet:VALue	
[SENSe:]PSERvoing[:GLC]	
[SENSe:]REFSig:TIME?	
[SENSe:]SWAPiq	
[SENSe:]SWEep:IQAVg:COUNt	
[SENSe:]SWEep:IQAVg:COUNt:CURRent?	
[SENSe:]SWEep:IQAVg:MAVerage[:STATe]	
[SENSe:]SWEep:IQAVg[:STATe]	
[SENSe:]SWEep:LENGth	
[SENSe:]SWEep:STATistics:CONTinuous[:STATe]	
[SENSe:]SWEep:STATistics:COUNt	
[SENSe:]SWEep:STATistics:MODE	
[SENSe:]SWEep:STATistics[:STATe]	
[SENSe:]SWEep:TIME	
[SENSe:]SWEep:TIME:AUTO	
[SENSe <ip>:]ADJust:LEVel</ip>	
ISENSe <ip>:IFREQuency:CENTer</ip>	
[SENSe <ip>:]FREQuency:OFFSet</ip>	
CALCulate:MDPD:MODel	
CAI Culate:MSERror:CONFigure:EQUalizer:Ell Ter:LENGth	260
CAI Culate:MSERror:IQAVa:COUNt	260
CALCulate:MSERror?	
CAI Culate PMFTer: EVel: CORRection	183
CAI Culate <n>·AMPM·DEFinition</n>	297
CAI Culate <n>·DEI Tamarker<m>·AOEE</m></n>	284
CAI Culate <n>:DEI Tamarker<m>:I INK</m></n>	284
CAI Culate <n>·DEI Tamarker<m>·MAXimum:I EET</m></n>	289
CAI Culate <n>·DEI Tamarker<m>·MAXimum·NEXT</m></n>	289
CAI Culate <n>·DEI Tamarker<m>·MAXimum·RIGHt</m></n>	290
CAI Culate <n>·DEI Tamarker<m>·MAXimumf·PEAK1</m></n>	200
CAI Culate <n>:DEI Tamarker<m>:MINimum:I EFT</m></n>	290 200
CAI Culate <n>:DEI Tamarker<m>:MINimum:NEXT</m></n>	290 200
CAI Culate <n>:DEI Tamarker<m>:MINimum:PICHt</m></n>	
	∠ອ⊺

CALCulate <n>:DELTamarker<m>:MREFerence</m></n>	. 285
CALCulate <n>:DELTamarker<m>:TRACe</m></n>	286
CALCulate <n>:DELTamarker<m>:X</m></n>	286
CALCulate <n>:DELTamarker<m>:Y?</m></n>	286
CALCulate <n>:DELTamarker<m>[:STATe]</m></n>	. 285
CALCulate <n>:DELTamarker<ms>:LINK:TO:MARKer<md></md></ms></n>	284
CALCulate <n>:MARKer<m>:AOFF</m></n>	287
CALCulate <n>:MARKer<m>:FUNCtion:POWer:RESult?</m></n>	263
CALCulate <n>:MARKer<m>:LINK</m></n>	282
CALCulate <n>:MARKer<m>:MAXimum:LEFT</m></n>	. 291
CALCulate <n>:MARKer<m>:MAXimum:NEXT</m></n>	. 291
CALCulate <n>:MARKer<m>:MAXimum:RIGHt</m></n>	292
CALCulate <n>:MARKer<m>:MAXimum[:PEAK]</m></n>	. 292
CALCulate <n>:MARKer<m>:MINimum:LEFT</m></n>	. 292
CALCulate <n>:MARKer<m>:MINimum:NEXT</m></n>	292
CALCulate <n>:MARKer<m>:MINimum:RIGHt</m></n>	. 293
CALCulate <n>:MARKer<m>:MINimum[:PEAK]</m></n>	293
CALCulate <n>:MARKer<m>:TRACe</m></n>	288
CALCulate <n>:MARKer<m>:X</m></n>	. 288
CALCulate <n>:MARKer<m>:Y?</m></n>	. 289
CALCulate <n>:MARKer<m>[:STATe]</m></n>	. 287
CALCulate <n>:MARKer<ms>:LINK:TO:MARKer<md></md></ms></n>	287
CALCulate <n>:PMETer:RELative:STATe</n>	. 178
CALCulate <n>:PMETer:RELative[:MAGNitude]</n>	. 178
CALCulate <n>:PMETer:RELative[:MAGNitude]:AUTO ONCE</n>	178
CALCulate <n>:PREFerence:X</n>	. 298
CALCulate <n>:UNIT:ANGLe</n>	298
CALibration:PMETer:ZERO:AUTO ONCE	177
CONFigure:AMPM:CWIDth:REFerence	. 302
CONFigure:AMPM:CWIDth:REFerence:AUTO	. 302
CONFigure:CFReduction:APPLy	173
CONFigure:CFReduction:APPLy:LEDState?	. 173
CONFigure:CFReduction:CCFactor?	. 173
CONFigure:CFReduction:CFDelta	172
CONFigure:CFReduction:CFDelta:LEDState?	. 173
CONFigure:CFReduction:CSPacing	172
CONFigure:CFReduction:CSPacing:AUTO	172
CONFigure:CFReduction:CSPacing:LEDState?	. 172
CONFigure:CFReduction:FILTer	171
CONFigure:CFReduction:FILTer:LEDState?	. 171
CONFigure:CFReduction:ITERations	171
CONFigure:CFReduction:ITERations:LEDState?	171
CONFigure:CFReduction:MFORder	174
CONFigure:CFReduction:MFORder:LEDState?	174
CONFigure:CFReduction:PFRequency	174
CONFigure:CFReduction:PFRequency:LEDState?	175
CONFigure:CFReduction:READ	174
- CONFigure:CFReduction:READ:LEDState?	. 174
- CONFigure:CFReduction:RSORignal	171
CONFigure:CFReduction:SBANdwidth	170
-	

CONFigure:CFReduction:SBANdwidth:AUTO	170
CONFigure:CFReduction:SBANdwidth:LEDState?	. 170
CONFigure:CFReduction:SFRequency	175
CONFigure:CFReduction:SFRequency:LEDState?	175
CONFigure:CFReduction[:STATe]	. 170
CONFigure:CFReduction[:STATe]:LEDState?	. 170
CONFigure:DDPD:ABORt	. 243
CONFigure:DDPD:APPLy:WRAP[:STATe]	244
CONFigure:DDPD:APPLy[:STATe]	. 243
CONFigure:DDPD:CONTinue	244
CONFigure:DDPD:COUNt	244
CONFigure:DDPD:COUNt:CURRent?	244
CONFigure:DDPD:FINish	. 245
CONFigure:DDPD:FNAMe	. 245
CONFigure:DDPD:GEXPansion	245
CONFigure:DDPD:RMS[:CURRent]?	. 246
CONFigure:DDPD:STARt	. 246
CONFigure:DDPD:TRADeoff	247
CONFigure:DDPD:WINDow <n>:RESult</n>	247
CONFigure:DDPD[:STATe]	. 246
CONFigure:DPD:AMAM:LEDState?	247
CONFigure:DPD:AMAM[:STATe]	248
CONFigure:DPD:AMPM:LEDState?	248
CONFigure:DPD:AMPM[:STATe]	248
CONFigure:DPD:AMXM[:STATe]	. 249
CONFigure:DPD:FILE:GENerate	249
CONFigure:DPD:FILE:GENerate:ALL	. 249
CONFigure:DPD:FNAMe	250
CONFigure:DPD:METHod	250
CONFigure:DPD:SEQuence	251
CONFigure:DPD:SHAPing:MODE	251
CONFigure:DPD:TRADeoff	. 252
CONFigure:DPD:UPDate	252
CONFigure:DPD:UPDate:ALL	. 252
CONFigure:DPD:UPDate:LEDState?	. 253
CONFigure:DUT:STIMe	. 213
CONFigure:EQUalizer:FILTer:FILE:FORMat	. 237
CONFigure:EQUalizer:FILTer:LENGth	237
CONFigure:EQUalizer:FPARameters	. 237
CONFigure:EQUalizer:TRAin	. 238
CONFigure:EQUalizer[:STATe]	. 238
CONFigure:ESTimation:FULL	. 228
CONFigure:ESTimation:RANGe	228
CONFigure:ESTimation:STARt	229
CONFigure:ESTimation:STOP	229
CONFigure:EVALuation:FULL	. 232
CONFigure:EVALuation:RANGe	232
CONFigure:EVALuation:STARt	233
CONFigure:EVALuation:STOP	. 233
CONFigure:FDOMain:FFTLength	275

CONFigure:FDOMain:SQUelch	276
CONFigure:FDOMain:WFUNction	
CONFigure:FDOMain:WLFRatio	
CONFigure:FDOMain:WOVerlap	
CONFigure:FRSPan	
CONFigure:FRSPan:AUTO	
CONFigure:GENerator:CONNection:CSTate?	
CONFigure:GENerator:DUT:INPut:MAXimum:POWer	
CONFigure:GENerator:DUT:INPut:MAXimum:POWer:LEDState?	213
CONFigure:GENerator:EXTernal:ROSCillator	214
CONFigure:GENerator:EXTernal:ROSCillator:LEDState?	
CONFigure:GENerator:FREQuency:CENTer	
CONFigure:GENerator:FREQuency:CENTer:LEDState?	215
CONFigure:GENerator:FREQuency:CENTer:SYNC[:STATe]	
CONFigure:GENerator:LEVel:DUTLimit	
CONFigure:GENerator:POWer:LEVel	
CONFigure:GENerator:POWer:LEVel:ATTenuation	
CONFigure:GENerator:POWer:LEVel:ATTenuation:LEDState?	
CONFigure:GENerator:POWer:LEVel:LEDState?	
CONFigure:GENerator:POWer:LEVel:OFFSet	217
CONFigure:GENerator:POWer:LEVel:OFFSet:LEDState?	
CONFigure:GENerator:RELay:READ?	
CONFigure:GENerator:RELay:WRITe	221
CONFigure:GENerator:RFOutput:LEDState?	
CONFigure:GENerator:RFOutput[:STATe]	218
CONFigure:GENerator:SEGMent	219
CONFigure:GENerator:SEGMent:LEDState?	
CONFigure:GENerator:SETTings:UPDate	
CONFigure:GENerator:TARGet:PATH:BB?	
CONFigure:GENerator:TARGet:PATH:RF	
CONFigure:HAMMerstein:FILTer[:STATe]	255
CONFigure:HAMMerstein:GENWaveform[:SELect]	
CONFigure:HAMMerstein:ITERation	
CONFigure:HAMMerstein:MUPGenerator	254
CONFigure:HAMMerstein:NONLinearity[:STATe]	
CONFigure:HAMMerstein:ORDer:MEMory	
CONFigure:HAMMerstein:ORDer:POLYnomial	254
CONFigure:HAMMerstein[:STATe]	253
CONFigure:MDPD:APPLy:MODel	
CONFigure:MDPD:ITERation	
CONFigure:MDPD:ORDer:MEMory	
CONFigure:MDPD:ORDer:POLYnomial	
CONFigure:MDPD:RMS[:CURRent]?	
CONFigure:MDPD:WAVeform:SELect	
CONFigure:MDPD:WAVeform:UPDate	
CONFigure:MDPD[:STATe]	255
CONFigure:MODeling:AMAM:ORDer	239
CONFigure:MODeling:AMPM:ORDer	
CONFigure:MODeling:LRANge	
CONFigure:MODeling:NPOints	

CONFigure:MODeling:SCALe	
CONFigure:MODeling:SEQuence	
CONFigure:MODeling[:STATe]	241
CONFigure:PAE:ICHannel:MULTiplier	261
CONFigure:PAE:ICHannel:OFFSet	
CONFigure:PAE:ICHannel:RESistor	261
CONFigure:PAE:PCONsumption[:PARameter]:A	
CONFigure:PAE:PCONsumption[:PARameter]:B	
CONFigure:PAE:QCHannel:MULTiplier	
CONFigure:PAE:QCHannel:OFFSet	
CONFigure:POWer:RESult:P3DB:REFerence	
CONFigure:POWer:RESult:P3DB[:STATe]	
CONFigure:POWer:UNIT	
CONFigure:PSWeep:ADJust:LEVel[:STATe]	
CONFigure:PSWeep:EXPected:GAIN	
CONFigure:PSWeep:X:SETTing	
CONFigure:PSWeep:X:STARt	270
CONFigure:PSWeep:X:STEP	270
CONFigure:PSWeep:X:STOP	
CONFigure:PSWeep:Y:SETTing	271
CONFigure:PSWeep:Y:STARt	271
CONFigure:PSWeep:Y:STATe	
CONFigure:PSWeep:Y:STEP	272
CONFigure:PSWeep:Y:STOP	272
CONFigure:PSWeep:Z <n>:RESult</n>	
CONFigure:PSWeep[:STATe]	
CONFigure:REFSignal:CGW:AMODe[:STATe]	
CONFigure:REFSignal:CGW:LEDState?	
CONFigure:REFSignal:CGW:READ	
CONFigure:REFSignal:CWF:DPIPower	
CONFigure:REFSignal:CWF:FPATh	
CONFigure:REFSignal:CWF:LEDState?	
CONFigure:REFSignal:CWF:WRITe	
CONFigure:REFSignal:GOS:BWIDth	
CONFigure:REFSignal:GOS:CRESt	
CONFigure:REFSignal:GOS:DCYCle	
CONFigure:REFSignal:GOS:FPATh	
CONFigure:REFSignal:GOS:LEDState?	
CONFigure:REFSignal:GOS:NPOSition	
CONFigure:REFSignal:GOS:NWIDth	
CONFigure:REFSignal:GOS:PATH	166
CONFigure:REFSignal:GOS:RLENgth	
CONFigure:REFSignal:GOS:SLENgth	
CONFIgure:REFSIgnal:GOS:SRATe	
CONFigure:REFSignal:GOS:SRATe	
CONFigure:REFSignal:GOS:SRATe CONFigure:REFSignal:GOS:WNAMe CONFigure:REFSignal:GOS:WRITe	
CONFigure:REFSignal:GOS:SRATe CONFigure:REFSignal:GOS:WNAMe CONFigure:REFSignal:GOS:WRITe CONFigure:REFSignal:SEGMent	
CONFigure:REFSignal:GOS:SRATE CONFigure:REFSignal:GOS:WNAMe CONFigure:REFSignal:GOS:WRITe CONFigure:REFSignal:SEGMent CONFigure:REFSignal:SINFo:CFACtor?	
CONFigure:REFSignal:GOS:SRATE CONFigure:REFSignal:GOS:WNAMe CONFigure:REFSignal:GOS:WRITe CONFigure:REFSignal:SEGMent CONFigure:REFSignal:SINFo:CFACtor? CONFigure:REFSignal:SINFo:FPATh?	

CONFigure:REFSignal:SINFo:SLENgth?	
CONFigure:REFSignal:SINFo:SRATe?	169
CONFigure:RESult:RANGe[:SELected]	227
CONFigure:SETTings	
CONFigure:SIGNal:ERRor:COMPensation:ADRoop[:STATe]	
CONFigure:SIGNal:ERRor:COMPensation:FERRor[:STATe]	234
CONFigure:SIGNal:ERRor:COMPensation:IQIMbalance[:STATe]	
CONFigure:SIGNal:ERRor:COMPensation:IQOFfset[:STATe]	
CONFigure:SIGNal:ERRor:COMPensation:SRATe[:STATe]	235
CONFigure:SIGNal:ERRor:ESTimation:ADRoop[:STATe]	235
CONFigure:SIGNal:ERRor:ESTimation:FERRor[:STATe]	235
CONFigure:SIGNal:ERRor:ESTimation:IQIMbalance[:STATe]	
CONFigure:SIGNal:ERRor:ESTimation:IQOFfset[:STATe]	236
CONFigure:SIGNal:ERRor:ESTimation:SRATe[:STATe]	236
CONFigure:SYNC:CONFidence	
CONFigure:SYNC:DOMain	230
CONFigure:SYNC:SECond:STAT	230
CONFigure:SYNC:SOFail	230
CONFigure:SYNC:STAT	231
DISPlay:FORMat	159
DISPlay[:WINDow <n>]:MINFo[:STATe]</n>	
DISPlay[:WINDow <n>]:MTABle</n>	
DISPlay[:WINDow <n>]:PTABle:ITEM</n>	
DISPlay[:WINDow <n>]:PTABle:ITEM:ALL</n>	
DISPlay[:WINDow <n>]:STABle:ITEM</n>	
DISPlay[:WINDow <n>]:STABle:ITEM:MACCuracy:ALL</n>	
DISPlay[:WINDow <n>]:STABle:ITEM:POWer:ALL</n>	
DISPlay[:WINDow <n>]:TABLe:ITEM</n>	
DISPlay[:WINDow <n>]:TABLe:ITEM:MACCuracy:ALL</n>	
DISPlay[:WINDow <n>]:TABLe:ITEM:POWer:ALL</n>	
DISPlay[:WINDow <n>]:TDOMain:X[:SCALe]:DURation</n>	
DISPlay[:WINDow <n>]:TDOMain:X[:SCALe]:MODE</n>	
DISPlay[:WINDow <n>]:TDOMain:X[:SCALe]:OFFSet</n>	
DISPlay[:WINDow <n>]:TDOMain:Y[:SCALe]:NORMalise[:STATe]</n>	
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:MODE</t></w></n>	
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:PRESet</t></w></n>	
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:RESult</t></w></n>	
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:X[:SCALe]:AUTO</t></w></n>	
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:X[:SCALe]:MAXimum</t></w></n>	
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:X[:SCALe]:MINimum</t></w></n>	
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:X[:SCALe]:PDIVision</t></w></n>	
DISPlav[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:X[:SCALe]:UNIT?</t></w></n>	
DISPlav[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:AUTO</t></w></n>	
DISPlav[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:MAXimum</t></w></n>	
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:MINimum</t></w></n>	
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:PDIVision</t></w></n>	
DISPlav[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:RLEVel<ant></ant></t></w></n>	
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:RLEVel<ant>:OFFSet</ant></t></w></n>	
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:RPOSition</t></w></n>	
DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:RVALue</t></w></n>	
Vr	

DISPlay[:WINDow <n>][:SUBWindow<w>]:TRACe<t>:Y[:SCALe]:UNIT?</t></w></n>	307
FETCh:AMAM:CWIDth:CURRent[:RESult]?	319
FETCh:AMAM:CWIDth:MAXimum[:RESult]?	319
FETCh:AMAM:CWIDth:MINimum[:RESult]?	319
FETCh:AMAM:PEAK:CWIDth:CURRent[:RESult]?	
FETCh:AMAM:PEAK:CWIDth:MAXimum[:RESult]?	320
FETCh:AMAM:PEAK:CWIDth:MINimum[:RESult]?	
FETCh:AMPM:CWIDth:CURRent[:RESult]?	319
FETCh:AMPM:CWIDth:MAXimum[:RESult]?	319
FETCh:AMPM:CWIDth:MINimum[:RESult]?	319
FETCh:AMPM:PEAK:CWIDth:CURRent[:RESult]?	
FETCh:AMPM:PEAK:CWIDth:MAXimum[:RESult]?	320
FETCh:AMPM:PEAK:CWIDth:MINimum[:RESult]?	
FETCh:APAE:CURRent[:RESult]?	325
FETCh:APAE:MAXimum[:RESult]?	325
FETCh:APAE:MINimum[:RESult]?	325
FETCh:BBPower:CURRent[:RESult]?	
FETCh:BBPower:MAXimum[:RESult]?	326
FETCh:BBPower:MINimum[:RESult]?	
FETCh:DDPD:OPERation:STATus?	257
FETCh:DDPD:WAVeform:PATH?	257
FETCh:DPD:POLYnomial?	258
FETCh:DPD:WAVeform:PATH?	
FETCh:ICC:CURRent[:RESult]?	326
FETCh:ICC:MAXimum[:RESult]?	326
FETCh:ICC:MINimum[:RESult]?	326
FETCh:IVOLtage:PURE:CURRent[:RESult]?	326
FETCh:IVOLtage:PURE:MAXimum[:RESult]?	326
FETCh:IVOLtage:PURE:MINimum[:RESult]?	326
FETCh:MACCuracy:ADRoop:CURRent[:RESult]?	313
FETCh:MACCuracy:ADRoop:MAXimum[:RESult]?	313
FETCh:MACCuracy:ADRoop:MINimum[:RESult]?	313
FETCh:MACCuracy:FERRor:CURRent[:RESult]?	314
FETCh:MACCuracy:FERRor:MAXimum[:RESult]?	314
FETCh:MACCuracy:FERRor:MINimum[:RESult]?	314
FETCh:MACCuracy:GIMBalance:CURRent[:RESult]?	314
FETCh:MACCuracy:GIMBalance:MAXimum[:RESult]?	314
FETCh:MACCuracy:GIMBalance:MINimum[:RESult]?	314
FETCh:MACCuracy:IQIMbalance:CURRent[:RESult]?	
FETCh:MACCuracy:IQIMbalance:MAXimum[:RESult]?	314
FETCh:MACCuracy:IQIMbalance:MINimum[:RESult]?	
FETCh:MACCuracy:IQOFfset:CURRent[:RESult]?	315
FETCh:MACCuracy:IQOFfset:MAXimum[:RESult]?	315
FETCh:MACCuracy:IQOFfset:MINimum[:RESult]?	315
FETCh:MACCuracy:MERRor:CURRent[:RESult]?	315
FETCh:MACCuracy:MERRor:MAXimum[:RESult]?	315
FETCh:MACCuracy:MERRor:MINimum[:RESult]?	315
FETCh:MACCuracy:PERRor:CURRent[:RESult]?	
FETCh:MACCuracy:PERRor:MAXimum[:RESult]?	
FETCh:MACCuracy:PERRor:MINimum[:RESult]?	

FETCh:MACCuracy:POFFse	t[:RESult]؟	
FETCh:MACCuracy:QERRor	r:CURRent[:RESult]?	
FETCh:MACCuracy:QERRor	r:MAXimum[:RESult]?	
FETCh:MACCuracy:QERRor	r:MINimum[:RESult]?	
FETCh:MACCuracy:REVM:C	CURRent[:RESult]?	
FETCh:MACCuracy:REVM:M	/IAXimum[:RESult]?	
FETCh:MACCuracy:REVM:M	/INimum[:RESult]?	
FETCh:MACCuracy:RMEV:C	CURRent[:RESult]?	
FETCh:MACCuracy:RMEV:M	/AXimum[:RESult]?	
FETCh:MACCuracy:RMEV:M	/INimum[:RESult]?	
FETCh:MACCuracy:SRERro	vr:CURRent[:RESult]?	
FETCh:MACCuracy:SRERro	pr:MAXimum[:RESult]?	
FETCh:MACCuracy:SRERro	pr:MINimum[:RESult]?	
FETCh:MACCuracy[:RESult]]:ALL?	
FETCh:MDPD:COEFficients	?	
FETCh:MDPD:WAVeform:PA	\TH?	
FETCh:PC:CURRent[:RESul	lt]?	
FETCh:PCPA:CURRent[:RE	Sult]?	
FETCh:PMETer?		179
FETCh:POWer:CFACtor:IN:C	CURRent[:RESult]?	
FETCh:POWer:CFACtor:IN:N	VAXimum[:RESult]?	
FETCh:POWer:CFACtor:IN:N	VINimum[:RESult]?	
FETCh:POWer:CFACtor:OU	T:CURRent[:RESult]?	
FETCh:POWer:CFACtor:OU	T:MAXimum[:RESult]?	
FETCh:POWer:CFACtor:OU	T:MINimum[:RESult]?	
FETCh:POWer:GAIN:CURRe	ent[:RESult]?	
FETCh:POWer:GAIN:MAXim	num[:RESult]?	
FETCh:POWer:GAIN:MINimu	um[:RESult]?	
FETCh:POWer:INPut:CURR	ent[:RESult]?	
FETCh:POWer:INPut:MAXim	num[:RESult]?	
FETCh:POWer:INPut:MINim	um[:RESult]?	
FETCh:POWer:OBW:CURRe	ent[:RESult]?	
FETCh:POWer:OBW:MAXim	num[:RESult]?	
FETCh:POWer:OBW:MINimu	um[:RESult]?	
FETCh:POWer:OUTPut:CUF	Rent[:RESult]?	
FETCh:POWer:OUTPut:MAX	Kimum[:RESult]?	
FETCh:POWer:OUTPut:MIN	imum[:RESult]?	
FETCh:POWer:OUTPut:P1D)B:MAXimum[:RESult]?	
FETCh:POWer:OUTPut:P1D)B:MINimum[:RESult]?	
FETCh:POWer:OUTPut:P2D)B:MAXimum[:RESult]?	
FETCh:POWer:OUTPut:P2D)B:MINimum[:RESult]?	
FETCh:POWer:OUTPut:P3D)B:MAXimum[:RESult]?	
FETCh:POWer:OUTPut:P3D)B:MINimum[:RESult]?	
FETCh:POWer:P1DB:CURR	lent[:RESult]?	
FETCh:POWer:P1DB:MAXin	num[:RESult]?	
FETCh:POWer:P1DB:MINim	ium[:RESult]?	
FETCh:POWer:P1DB:OUT:C	CURRent[:RESult]?	
FETCh:POWer:P1DB:OUT:N	/AXimum[:RESult]?	
FETCh:POWer:P1DB:OUT:N	/INimum[:RESult]?	
FETCh:POWer:P2DB:CURR	lent[:RESult]?	

FETCh:POWer:P2DB:MAXimum[:RESult]?	
FETCh:POWer:P2DB:MINimum[:RESult]?	
FETCh:POWer:P2DB:OUT:CURRent[:RESult]?	
FETCh:POWer:P2DB:OUT:MAXimum[:RESult]?	
FETCh:POWer:P2DB:OUT:MINimum[:RESult]?	
FETCh:POWer:P3DB:CURRent[:RESult]?	
FETCh:POWer:P3DB:MAXimum[:RESult]?	
FETCh:POWer:P3DB:MINimum[:RESult]?	
FETCh:POWer:P3DB:OUT:CURRent[:RESult]?	
FETCh:POWer:P3DB:OUT:MAXimum[:RESult]?	
FETCh:POWer:P3DB:OUT:MINimum[:RESult]?	
FETCh:POWer:SENSor:IN:CURRent[:RESult]?	
FETCh:POWer:SENSor:IN:MAXimum[:RESult]?	
FETCh:POWer:SENSor:IN:MINimum[:RESult]?	
FETCh:POWer:SENSor:OUT:CURRent[:RESult]?	
FETCh:POWer:SENSor:OUT:MAXimum[:RESult]?	
FETCh:POWer:SENSor:OUT:MINimum[:RESult]?	
FETCh:POWer[:RESult]:ALL?	
FETCh:PSERvoing:OPERation:STATus?	
FETCh:PTABle:ACP:ACHannel <ch>:BALanced:MAXimum:X[:RESult]?</ch>	
FETCh:PTABle:ACP:ACHannel <ch>:BALanced:MAXimum:Y[:RESult]?</ch>	
FETCh:PTABle:ACP:ACHannel <ch>:BALanced:MAXimum[:RESult]?</ch>	
FETCh:PTABle:ACP:ACHannel <ch>:BALanced:MINimum:X[:RESult]?</ch>	
FETCh:PTABle:ACP:ACHannel <ch>:BALanced:MINimum:Y[:RESult]?</ch>	
FETCh:PTABle:ACP:ACHannel <ch>:BALanced:MINimum[:RESult]?</ch>	
FETCh:PTABle:ACP:ACHannel <ch>:LOWer:MAXimum:X[:RESult]?</ch>	
FETCh:PTABle:ACP:ACHannel <ch>:LOWer:MAXimum:Y[:RESult]?</ch>	
FETCh:PTABle:ACP:ACHannel <ch>:LOWer:MAXimum[:RESult]?</ch>	
FETCh:PTABle:ACP:ACHannel <ch>:LOWer:MINimum:X[:RESult]?</ch>	333
FETCh:PTABle:ACP:ACHannel <ch>:LOWer:MINimum:Y[:RESult]?</ch>	333
FETCh:PTABle:ACP:ACHannel <ch>:LOWer:MINimum[:RESult]?</ch>	
FETCh:PTABle:ACP:ACHannel <ch>:UPPer:MAXimum:X[:RESult]?</ch>	
FETCh:PTABle:ACP:ACHannel <ch>:UPPer:MAXimum:Y[:RESult]?</ch>	
FETCh:PTABle:ACP:ACHannel <ch>:UPPer:MAXimum[:RESult]?</ch>	
FETCh:PTABle:ACP:ACHannel <ch>:UPPer:MINimum:X[:RESult]?</ch>	
FETCh:PTABle:ACP:ACHannel <ch>:UPPer:MINimum:Y[:RESult]?</ch>	
FETCh:PTABle:ACP:ACHannel <ch>:UPPer:MINimum[:RESult]?</ch>	
FETCh:PTABle:ACP:BALanced:MAXimum:X[:RESult]?	
FETCh:PTABle:ACP:BALanced:MAXimum:Y[:RESult]?	
FETCh:PTABle:ACP:BALanced:MAXimum[:RESult]?	
FETCh:PTABle:ACP:BALanced:MINimum:X[:RESult]?	
FETCh:PTABle:ACP:BALanced:MINimum:Y[:RESult]?	
FETCh:PTABle:ACP:BALanced:MINimum[:RESult]?	
FETCh:PTABle:ACP:MAXimum:X[:RESult]?	
FETCh:PTABle:ACP:MAXimum:Y[:RESult]?	
FETCh:PTABle:ACP:MAXimum[:RESult]?	
FETCh:PTABle:ACP:MINimum:X[:RESult]?	
FETCh:PTABle:ACP:MINimum:Y[:RESult]?	
FETCh:PTABle:ACP:MINimum[:RESult]?	
FETCh:PTABle:AMAM:CWIDth:MAXimum:X[:RESult]?	

FETCh:PTABle:AMAM:CWIDth:MAXimum:Y[:RESult]?	331
FETCh:PTABle:AMAM:CWIDth:MAXimum[:RESult]?	332
FETCh:PTABle:AMAM:CWIDth:MINimum:X[:RESult]?	333
FETCh:PTABle:AMAM:CWIDth:MINimum:Y[:RESult]?	333
FETCh:PTABle:AMAM:CWIDth:MINimum[:RESult]?	
FETCh:PTABle:AMPM:CWIDth:MAXimum:X[:RESult]?	
FETCh:PTABle:AMPM:CWIDth:MAXimum:Y[:RESult]?	
FETCh:PTABle:AMPM:CWIDth:MAXimum[:RESult]?	332
FETCh:PTABle:AMPM:CWIDth:MINimum:X[:RESult]?	333
FETCh:PTABle:AMPM:CWIDth:MINimum:Y[:RESult]?	333
FETCh:PTABle:AMPM:CWIDth:MINimum[:RESult]?	
FETCh:PTABle:BBPower:MAXimum:X[:RESult]?	331
FETCh:PTABle:BBPower:MAXimum:Y[:RESult]?	331
FETCh:PTABle:BBPower:MAXimum[:RESult]?	
FETCh:PTABle:BBPower:MINimum:X[:RESult]?	
FETCh:PTABle:BBPower:MINimum:Y[:RESult]?	
FETCh:PTABle:BBPower:MINimum[:RESult]?	
FETCh:PTABle:CFACtor:MAXimum:X[:RESult]?	
FETCh:PTABle:CFACtor:MAXimum:Y[:RESult]?	
FETCh:PTABle:CFACtor:MAXimum[:RESult]?	
FETCh:PTABle:CFACtor:MINimum:X[:RESult]?	
FETCh:PTABle:CFACtor:MINimum:Y[:RESult]?	
FETCh:PTABle:CFACtor:MINimum[:RESult]?	334
FETCh:PTABle:EVM:MAXimum:X[:RESult]?	
FETCh:PTABle:EVM:MAXimum:Y[:RESult]?	
FETCh:PTABle:EVM:MAXimum[:RESult]?	
FETCh:PTABle:EVM:MINimum:X[:RESult]?	
FETCh:PTABle:EVM:MINimum:Y[:RESult]?	
FETCh:PTABle:EVM:MINimum[:RESult]?	334
FETCh:PTABle:GAIN:MAXimum:X[:RESult]?	
FETCh:PTABle:GAIN:MAXimum:Y[:RESult]?	
FETCh:PTABle:GAIN:MAXimum[:RESult]?	
FETCh:PTABle:GAIN:MINimum:X[:RESult]?	
FETCh:PTABle:GAIN:MINimum:Y[:RESult]?	
FETCh:PTABle:GAIN:MINimum[:RESult]?	334
FETCh:PTABle:ICC:MAXimum:X[:RESult]?	331
FETCh:PTABle:ICC:MAXimum:Y[:RESult]?	332
FETCh:PTABle:ICC:MAXimum[:RESult]?	
FETCh:PTABle:ICC:MINimum:X[:RESult]?	333
FETCh:PTABle:ICC:MINimum:Y[:RESult]?	333
FETCh:PTABle:ICC:MINimum[:RESult]?	
FETCh:PTABle:P1DB:MAXimum:X[:RESult]?	
FETCh:PTABle:P1DB:MAXimum:Y[:RESult]?	
FETCh:PTABle:P1DB:MAXimum[:RESult]?	332
FETCh:PTABle:P1DB:MINimum:X[:RESult]?	333
FETCh:PTABle:P1DB:MINimum:Y[:RESult]?	334
FETCh:PTABle:P1DB:MINimum[:RESult]?	
FETCh:PTABle:P2DB:MAXimum:X[:RESult]?	
FETCh:PTABle:P2DB:MAXimum:Y[:RESult]?	
FETCh:PTABle:P2DB:MAXimum[:RESult]?	332

FETCh:PTABle:P2DB:MINimum:X[:RESult]?	
FETCh:PTABle:P2DB:MINimum:Y[:RESult]?	
FETCh:PTABle:P2DB:MINimum[:RESult]?	
FETCh:PTABle:P3DB:MAXimum:X[:RESult]?	
FETCh:PTABle:P3DB:MAXimum:Y[:RESult]?	
FETCh:PTABle:P3DB:MAXimum[:RESult]?	
FETCh:PTABle:P3DB:MINimum:X[:RESult]?	
FETCh:PTABle:P3DB:MINimum:Y[:RESult]?	
FETCh:PTABle:P3DB:MINimum[:RESult]?	
FETCh:PTABle:PAE:MAXimum:X[:RESult]?	331
FETCh:PTABle:PAE:MAXimum:Y[:RESult]?	
FETCh:PTABle:PAE:MAXimum[:RESult]?	
FETCh:PTABle:PAE:MINimum:X[:RESult]?	
FETCh:PTABle:PAE:MINimum:Y[:RESult]?	
FETCh:PTABle:PAE:MINimum[:RESult]?	
FETCh:PTABle:POUT:MAXimum:X[:RESult]?	
FETCh:PTABle:POUT:MAXimum:Y[:RESult]?	
FETCh:PTABle:POUT:MAXimum[:RESult]?	
FETCh:PTABle:POUT:MINimum:X[:RESult]?	
FETCh:PTABle:POUT:MINimum:Y[:RESult]?	
FETCh:PTABle:POUT:MINimum[:RESult]?	
FETCh:PTABle:RMS:MAXimum:X[:RESult]?	
FETCh:PTABle:RMS:MAXimum:Y[:RESult]?	
FETCh:PTABle:RMS:MAXimum[:RESult]?	
FETCh:PTABle:RMS:MINimum:X[:RESult]?	
FETCh:PTABle:RMS:MINimum:Y[:RESult]?	
FETCh:PTABle:RMS:MINimum[:RESult]?	
FETCh:PTABle:VCC:MAXimum:X[:RESult]?	
FETCh:PTABle:VCC:MAXimum:Y[:RESult]?	
FETCh:PTABle:VCC:MAXimum[:RESult]?	
FETCh:PTABle:VCC:MINimum:X[:RESult]?	
FETCh:PTABle:VCC:MINimum:Y[:RESult]?	
FETCh:PTABle:VCC:MINimum[:RESult]?	
FETCh:PTABle[:RESult]:ALL?	
FETCh:QVOLtage:PURE:CURRent[:RESult]?	
FETCh:QVOLtage:PURE:MAXimum[:RESult]?	
FETCh:QVOLtage:PURE:MINimum[:RESult]?	
FETCh:STABle:ADRoop:AVERage?	
FETCh:STABle:ADRoop:MAXimum?	
FETCh:STABle:ADRoop:MINimum?	
FETCh:STABle:ADRoop:SELected[:RESult]?	
FETCh:STABle:ADRoop:STDeviation?	
FETCh:STABle:AMAM:CWIDth:AVERage?	
FETCh:STABle:AMAM:CWIDth:MAXimum?	
FETCh:STABle:AMAM:CWIDth:MINimum?	
FETCh:STABle:AMAM:CWIDth:SELected[:RESult]?	
FETCh:STABle:AMAM:CWIDth:STDeviation?	
FETCh:STABle:AMPM:CWIDth:AVERage?	
FETCh:STABle:AMPM:CWIDth:MAXimum?	
FETCh:STABle:AMPM:CWIDth:MINimum?	

FETCh:STABle:AMPM:CWIDth:SELected[:RESult]?	. 340
FETCh:STABle:AMPM:CWIDth:STDeviation?	340
FETCh:STABle:CFACtor:IN:AVERage?	340
FETCh:STABle:CFACtor:IN:MAXimum?	340
FETCh:STABle:CFACtor:IN:MINimum?	340
FETCh:STABle:CFACtor:IN:SELected[:RESult]?	. 340
FETCh:STABle:CFACtor:IN:STDeviation?	340
FETCh:STABle:CFACtor:OUT:AVERage?	341
FETCh:STABle:CFACtor:OUT:MAXimum?	341
FETCh:STABle:CFACtor:OUT:MINimum?	. 341
FETCh:STABle:CFACtor:OUT:SELected[:RESult]?	341
FETCh:STABle:CFACtor:OUT:STDeviation?	341
FETCh:STABle:FERRor:AVERage?	341
FETCh:STABle:FERRor:MAXimum?	341
FETCh:STABle:FERRor:MINimum?	341
FETCh:STABle:FERRor:SELected[:RESult]?	341
FETCh:STABle:FERRor:STDeviation?	341
FETCh:STABle:GAIN:AVERage?	. 342
FETCh:STABle:GAIN:MAXimum?	342
FETCh:STABle:GAIN:MINimum?	. 342
FETCh:STABle:GAIN:SELected[:RESult]?	342
FETCh:STABle:GAIN:STDeviation?	342
FETCh:STABle:GIMBalance:AVERage?	. 342
FETCh:STABle:GIMBalance:MAXimum?	. 342
FETCh:STABle:GIMBalance:MINimum?	. 342
FETCh:STABle:GIMBalance:SELected[:RESult]?	342
FETCh:STABle:GIMBalance:STDeviation?	342
FETCh:STABle:IQIMbalance:AVERage?	343
FETCh:STABle:IQIMbalance:MAXimum?	343
FETCh:STABle:IQIMbalance:MINimum?	343
FETCh:STABle:IQIMbalance:SELected[:RESult]?	. 343
FETCh:STABle:IQIMbalance:STDeviation?	343
FETCh:STABle:IQOFfset:AVERage?	. 343
FETCh:STABle:IQOFfset:MAXimum?	. 343
FETCh:STABle:IQOFfset:MINimum?	343
FETCh:STABle:IQOFfset:SELected[:RESult]?	. 343
FETCh:STABle:IQOFfset:STDeviation?	. 343
FETCh:STABle:MERRor:AVERage?	. 344
FETCh:STABle:MERRor:MAXimum?	. 344
FETCh:STABle:MERRor:MINimum?	. 344
FETCh:STABle:MERRor:SELected[:RESult]?	344
FETCh:STABle:MERRor:STDeviation?	344
FETCh:STABle:P1DB:IN:AVERage?	344
FETCh:STABle:P1DB:IN:MAXimum?	344
FETCh:STABle:P1DB:IN:MINimum?	. 344
FETCh:STABle:P1DB:IN:SELected[:RESult]?	344
FETCh:STABle:P1DB:IN:STDeviation?	344
FETCh:STABle:P1DB:OUT:AVERage?	. 345
FETCh:STABle:P1DB:OUT:MAXimum?	. 345
FETCh:STABle:P1DB:OUT:MINimum?	345

FETCh:STABle:P1DB:OUT:SELected[:RESult]?	. 345
FETCh:STABle:P1DB:OUT:STDeviation?	. 345
FETCh:STABle:P2DB:IN:AVERage?	. 345
FETCh:STABle:P2DB:IN:MAXimum?	. 345
FETCh:STABle:P2DB:IN:MINimum?	. 345
FETCh:STABle:P2DB:IN:SELected[:RESult]?	.345
FETCh:STABle:P2DB:IN:STDeviation?	. 345
FETCh:STABle:P2DB:OUT:AVERage?	. 346
FETCh:STABle:P2DB:OUT:MAXimum?	. 346
FETCh:STABle:P2DB:OUT:MINimum?	346
FETCh:STABle:P2DB:OUT:SELected[:RESult]?	. 346
FETCh:STABle:P2DB:OUT:STDeviation?	. 346
FETCh:STABle:P3DB:IN:AVERage?	. 346
FETCh:STABle:P3DB:IN:MAXimum?	. 346
FETCh:STABle:P3DB:IN:MINimum?	. 346
FETCh:STABle:P3DB:IN:SELected[:RESult]?	.346
FETCh:STABle:P3DB:IN:STDeviation?	. 346
FETCh:STABle:P3DB:OUT:AVERage?	. 347
FETCh:STABle:P3DB:OUT:MAXimum?	. 347
FETCh:STABle:P3DB:OUT:MINimum?	347
FETCh:STABle:P3DB:OUT:SELected[:RESult]?	. 347
FETCh:STABle:P3DB:OUT:STDeviation?	. 347
FETCh:STABle:PC:AVERage?	. 347
FETCh:STABle:PC:MAXimum?	. 347
FETCh:STABle:PC:MINimum?	. 347
FETCh:STABle:PC:SELected[:RESult]?	.347
FETCh:STABle:PC:STDeviation?	. 347
FETCh:STABle:PCPA:AVERage?	348
FETCh:STABle:PCPA:MAXimum?	. 348
FETCh:STABle:PCPA:MINimum?	348
FETCh:STABle:PCPA:SELected[:RESult]?	. 347
FETCh:STABle:PCPA:STDeviation?	. 348
FETCh:STABle:PERRor:AVERage?	.348
FETCh:STABle:PERRor:MAXimum?	
FETCh:STABle:PERRor:MINimum?	. 348
FETCh:STABle:PERRor:SELected[:RESult]?	348
FETCh:STABle:PERRor:STDeviation?	.348
FETCh:STABle:POWer:INPut:AVG:AVERage?	. 349
FETCh:STABle:POWer:INPut:AVG:MAXimum?	.349
FETCh:STABle:POWer:INPut:AVG:MINimum?	. 349
FETCh:STABle:POWer:INPut:AVG:SELected[:RESult]?	
FETCh:STABle:POWer:INPut:AVG:STDeviation?	. 349
FETCh:STABle:POWer:INPut:MAX:AVERage?	349
FETCh:STABle:POWer:INPut:MAX:MAXimum?	. 349
FETCh:STABle:POWer:INPut:MAX:MINimum?	349
FETCh:STABle:POWer:INPut:MAX:SELected[:RESult]?	. 349
FETCh:STABle:POWer:INPut:MAX:STDeviation?	. 349
FETCh:STABle:POWer:INPut:MIN:AVERage?	349
FETCh:STABle:POWer:INPut:MIN:MAXimum?	349
FETCh:STABle:POWer:INPut:MIN:MINimum?	.350

FETCh:STABle:POWer:INPut:MIN:SELected[:RESult]?	. 349
FETCh:STABle:POWer:INPut:MIN:STDeviation?	350
FETCh:STABle:POWer:OUTPut:AVG:AVERage?	. 350
FETCh:STABle:POWer:OUTPut:AVG:MAXimum?	. 350
FETCh:STABle:POWer:OUTPut:AVG:MINimum?	. 350
FETCh:STABle:POWer:OUTPut:AVG:SELected[:RESult]?	350
FETCh:STABle:POWer:OUTPut:AVG:STDeviation?	350
FETCh:STABle:POWer:OUTPut:MAX:AVERage?	350
FETCh:STABle:POWer:OUTPut:MAX:MAXimum?	. 350
FETCh:STABle:POWer:OUTPut:MAX:MINimum?	351
FETCh:STABle:POWer:OUTPut:MAX:SELected[:RESult]?	. 350
FETCh:STABle:POWer:OUTPut:MAX:STDeviation?	. 351
FETCh:STABle:POWer:OUTPut:MIN:AVERage?	351
FETCh:STABle:POWer:OUTPut:MIN:MAXimum?	351
FETCh:STABle:POWer:OUTPut:MIN:MINimum?	351
FETCh:STABle:POWer:OUTPut:MIN:SELected[:RESult]?	. 351
FETCh:STABle:POWer:OUTPut:MIN:STDeviation?	351
FETCh:STABle:QERRor:AVERage?	. 351
FETCh:STABle:QERRor:MAXimum?	. 351
FETCh:STABle:QERRor:MINimum?	352
FETCh:STABle:QERRor:SELected[:RESult]?	. 351
FETCh:STABle:QERRor:STDeviation?	. 352
FETCh:STABle:REVM:AVG:AVERage?	. 352
FETCh:STABle:REVM:AVG:MAXimum?	. 352
FETCh:STABle:REVM:AVG:MINimum?	. 352
FETCh:STABle:REVM:AVG:SELected[:RESult]?	. 352
FETCh:STABle:REVM:AVG:STDeviation?	. 352
FETCh:STABle:REVM:MAX:AVERage?	352
FETCh:STABle:REVM:MAX:MAXimum?	352
FETCh:STABle:REVM:MAX:MINimum?	. 353
FETCh:STABle:REVM:MAX:SELected[:RESult]?	352
FETCh:STABle:REVM:MAX:STDeviation?	353
FETCh:STABle:REVM:MIN:AVERage?	. 353
FETCh:STABle:REVM:MIN:MAXimum?	. 353
FETCh:STABle:REVM:MIN:MINimum?	. 353
FETCh:STABle:REVM:MIN:SELected[:RESult]?	353
FETCh:STABle:REVM:MIN:STDeviation?	. 353
FETCh:STABle:RMEV:AVERage:MINimum?	. 353
FETCh:STABle:RMEV:AVG:AVERage?	. 353
FETCh:STABle:RMEV:AVG:MAXimum?	. 353
FETCh:STABle:RMEV:AVG:MINimum?	354
FETCh:STABle:RMEV:AVG:SELected[:RESult]?	. 353
FETCh:STABle:RMEV:AVG:STDeviation?	. 354
FETCh:STABle:RMEV:MAX:AVERage?	354
FETCh:STABle:RMEV:MAX:MAXimum?	354
FETCh:STABle:RMEV:MAX:MINimum?	. 354
FETCh:STABle:RMEV:MAX:SELected[:RESult]?	354
FETCh:STABle:RMEV:MAX:STDeviation?	354
FETCh:STABle:RMEV:MIN:AVERage?	. 354
FETCh:STABle:RMEV:MIN:MAXimum?	. 354

FETCh:STABle:RMEV:MIN:MINimum?	
FETCh:STABle:RMEV:MIN:SELected[:RESult]?	
FETCh:STABle:RMEV:MIN:STDeviation?	
FETCh:STABle:SRERor:AVERage?	
FETCh:STABle:SRERor:MAXimum?	
FETCh:STABle:SRERor:MINimum?	
FETCh:STABle:SRERor:SELected[:RESult]?	
FETCh:STABle:SRERor:STDeviation?	
FETCh:SYNC:FAIL?	
FETCh:TTF:CURRent[:RESult]?	
FETCh:TTS:CURRent[:RESult]?	
FETCh VCC CURRent RESult?	327
FETCh-VCC-MAXimum[:RESult]?	327
FETCh:VCC:MINimum[:RESult]?	327
FETChI:SYNCI?	231
FORMat:DEXPort:DSEParator	278
FORMat:DEXPort:HEADer	278
	270
	308
INDut: ATTopugtion: DPOToction: DESot	
	200
INPut <ip>:Al lenuation:PRO lection[:STATe]</ip>	
INPut <ip>:COUPling<ant></ant></ip>	
INPut <ip>:DPATh</ip>	
INPut <ip>:EGAin[:STATe]</ip>	
INPut <ip>:FILE:ZPADing</ip>	
INPut <ip>:FILTer:HPASs[:STATe]</ip>	
INPut <ip>:FILTer:YIG[:STATe]</ip>	190
INPut <ip>:GAIN<ant>:STATe</ant></ip>	211
INPut <ip>:GAIN<ant>[:VALue]</ant></ip>	211
INPut <ip>:IMPedance<ant></ant></ip>	191
INPut <ip>:PRESelection:SET</ip>	191
INPut <ip>:PRESelection[:STATe]</ip>	191
INPut <ip>:RF:CAPMode</ip>	192
INPut <ip>:RF:CAPMode:IQ:SRATe</ip>	
INPut <ip>:RF:CAPMode:WAVeform:SRATe</ip>	
INSTrument:BLOCk:CHANnel[:SETTings]:SOURce <si></si>	194
INSTrument:BLOCk:CHANnel[:SETTings]:SOURce <si>:CONFig</si>	194
INSTrument:BLOCk:CHANnel[:SETTings]:SOURce <si>:TYPE</si>	
LAYout:ADD[:WINDow]?	154
LAYout:CATalog[:WINDow]?	155

LAYout:GLOBal:ADD[:WINDow]?	
LAYout:GLOBal:CATalog[:WINDow]?	152
LAYout:GLOBal:IDENtify[:WINDow]?	153
LAYout:GLOBal:REMove[:WINDow]	
LAYout:GLOBal:REPLace[:WINDow]	154
LAYout:IDENtify[:WINDow]?	155
LAYout:MOVE[:WINDow]	
LAYout:REMove[:WINDow]	156
LAYout:REPLace[:WINDow]	157
LAYout:WINDow <n>:ADD?</n>	157
LAYout:WINDow <n>:IDENtify?</n>	
LAYout:WINDow <n>:REMove</n>	158
LAYout:WINDow <n>:REPLace</n>	
MMEMory:LOAD:EQUalizer:FILTer:COEFficient	
MMEMory:LOAD:IQ:STATe	356
MMEMory:STORe:MDPD:COEFficient	259
MMEMory:STORe:MDPD:WAVeform	
MMEMory:STORe <n>:DDPD</n>	
MMEMory:STORe <n>:DPD</n>	
MMEMory:STORe <n>:EQUalizer:FILTer:COEFficient</n>	239
MMEMory:STORe <n>:IQ:COMMent</n>	
MMEMory:STORe <n>:IQ:STATe</n>	
MMEMory:STORe <n>:TRACe</n>	279
READ:PMETer?	
SYSTem:COMMunicate:RDEVice:OSCilloscope:PSMode[:STATe]	
SYSTem:COMMunicate:RDEVice:OSCilloscope:SRATe	
SYSTem:COMMunicate:RDEVice:OSCilloscope:TCPip	
SYSTem:COMMunicate:RDEVice:OSCilloscope:VDEVice?	197
SYSTem:COMMunicate:RDEVice:OSCilloscope:VFIRmware?	
SYSTem:COMMunicate:RDEVice:OSCilloscope[:STATe]	195
SYSTem:COMMunicate:RDEVice:PMETer:CONFigure:AUTO[:STATe]	
SYSTem:COMMunicate:RDEVice:PMETer:COUNt?	
SYSTem:COMMunicate:RDEVice:PMETer:DEFine	177
SYSTem:PRESet:CHANnel[:EXEC]	150
TRACe:IQ:BWIDth	
TRACe:IQ:DATA:FORMat	
TRACe:IQ:DDPD[:DATA]?	
TRACe:IQ:EQUalized?	
TRACe:IQ:REF[:DATA]?	
TRACe:IQ:RLENgth?	
TRACe:IQ:SRATe	
TRACe:IQ:SRATe:AUTO	
TRACe:IQ:SYNC:RLENgth?	
TRACe:IQ:SYNChronized?	
TRACe:IQ:TPIS?	
TRACe:IQ:WBANd:MBWidth	
TRACe:IQ:WBANd[:STATe]	
TRACe <n>[:DATA]:X?</n>	
TRACe <n>[:DATA]:Y?</n>	
TRACe <n>[:DATA]?</n>	

TRIGger[:SEQuence]:LEVel:MAPower	.184
TRIGger[:SEQuence]:SOURce	.183
UNIT <n>:PMETer:POWer</n>	.184
UNIT <n>:PMETer:POWer:RATio</n>	. 184

Index

Α

AC/DC coupling	53, 61
ACLR Adj Lower	
ACLR Adj Upper	
ACLR Tx	
ACP	
Configuration	117
Results	
Activating	
Amplifier measurements (remote)	160
Adjacent channel power	
see ACP	13
AM/AM	14, 102
Model	100
AM/AM Curve Width	
AM/AM Curve Width (Pk-Pk)	
AM/PM	15, 102
Configuration of result display	138
Model	100
AM/PM Curve Width	
AM/PM Curve Width (Pk-Pk)	
Amplitude Droop	
Analysis bandwidth	
ARB (arbitrary waveform)	
Attenuation	
Auto	61
Electronic	61
Manual	61
Option	
Protective (remote)	
Reference signal	72
Auto level	
Reference level	60
Automatic	
Analysis bandwidth	
Capture time	
Average count	
Power sensor	

В

B2000	
State	54
Balanced ACLR Magnitude	
Bandwidth	
Analysis	88
CP/ACLR	119
Reference signal	
Resolution	
Spectrum measurements	
Blue	
Line	

С

87
20, 94, 95
11, 89
119

Channel bar	
Displayed information	10
Channels	
CP/ACLR measurements	118
Spacings (CP/ACLR)	120
Weighting filters	120
Clock rate	11
Reference signal	40
Signal analysis	
Closing	
Windows (remote)	158
Compensating	
Errors	96
Compression Point (1 dB / 2 dB / 3 dB)	34
Compression points	117
Confidence level	93
Conventions	
SCPI commands	146
CP/ACLR	
Channel bandwidths	119
Channel spacings	120
Number of channels	118
Reference channel	119
Weighting filters	120
Crest factor	
Reference signal	
Crest Factor In	35
Crest Factor Out	35

D

Data capture	87
Data format	
Remote	
DDPD Results	
Decimal separator	
Trace export	
Degree of model	
Delta markers	
Defining	
Detailed MSE	115
Detector settings	131
Detectors	
Trace	
Digital predistortion	
see DPD	102
Direct DPD	106
Result type selection	140
Direct path	
Input configuration	
Display	
Information	
Display line	
Blue	
Red	
DPD	
Configuration	
Direct	
Memory Polynomial	
Method	103
Order of calculation	
Polynomial	103
Shaping	104

Drop-out time	
Trigger (Power sensor)	67
DUT behavior	
Describing	100
Duty cycle	
Power sensor	

Ε

Electronic input attenuation	61
	100
Envelope BIAS	
Envelope to RF delay	
Equalizer	
Error compensation	
Error vector	
Magnitude	
Spectrum	17
Errors	
IF OVLD	
Estimating	
Errors	
Evaluation methods	
Remote	151, 154
Evaluation range	
Exporting	
I/O data	84
Moosurement settings	130
External trigger	130
Level (power sensor)	
Power sensor	

F **F** - 112---

Falling	
Slope (Power sensor)	67
FFT	
Window functions	
Files	
Format, I/Q data	73
I/Q data binary XML	
I/Q data input	
I/Q parameter XML	
Filter training	
Filters	
High-pass (RF input)	53
YIG (remote)	190
Format	
Data (remote)	278
Frequency	
Configuration	58
Coupling (power sensor)	64
Offset	58
Parameter Sweep	122
Power sensor	64
Reference signal	71
Signal	
Stepsize	58
Synchronization	71
Frequency Error	29
Frequency spectrum	25

G

Gain	
Results	
Gain Compression	
Configuration of result display	138

Gain Imbalance	
Generation	
Reference signal	
Generator	
Attenuation	72
Control	
Control (Parameter Sweep)	122
DPD	102

Attenuation Control Control (Paramete DPD DPD update 104 Frequency71 IP address70 Multi-waveform files71 Path 71 Settings (query of) 69 Settings (update of) 69 Generator power Parameter Sweep 122 Green Grey

Η

Hammerstein model	112
Hardware settings	11
High-pass filter	
RF input	53
Hysteresis	
Trigger (Power sensor)	66

L

I/Q data	
Export file binary data description	
Export file parameter description	75
Input files	
I/Q Imbalance	
I/Q inversion	
I/Q Offset	
IF output	
see R&S VSE User Manual	67
Impedance	
Setting	
Importing	
I/Q data	75
Input	
B2000	54
Coupling	53, 61
Level characteristics	59
Overload (remote)	
Input sources	
Channels	
I/Q data files	72
Instrument	
Radio frequency (RF)	51
Installation	9
Instruments	
Input source	52
IP address	70
iq-tar	
Example file	82
Mandatory data elements	75

IQ-tar

Mandatory data elements	11
Optional data elements	78

L

LAN connection	
see Generator setup	
LED	
Colored	41, 68
Level offset	
Level range	101
Linking	
Markers	
LO feedthrough	53
Level range Linking Markers LO feedthrough	101

Μ

Magnitude Error	30
Marker to Trace	135
Markers	133
Assigned trace	135
Deactivating	135
Delta markers	134
Linking	134
Minimum	136
Next minimum	136
Next peak	
Peak	
Position	134
State	133
Table	132, 135
Туре	
X-value	
Maximum bandwidth	88
Measurement bandwidth	11, 88
ACP	118
Measurement channels	
Input source	52, 57
Measurement time	11, 89
Power sensor	65
Measurements	
see result displays	12
Memory DPD Coefficients	20
Memory effects	18
Memory Polynomial DPD	110
Method of synchronization	93
Minimum	
Marker positioning	136
Next	136
Minimum attenuation	55
Model	
Range	101
Modeling	99
Modulation accuracy	17
Multi-segment waveforms	41
Multi-waveform files	71

Ν

Neighboring channels	13
Next Minimum	136
Marker positioning	136
Next Peak	
Marker positioning	136
Noise notch	48

Noise source	
see R&S VSE User Manual	67
Notch position	48
Notch width	
Reference signal	47
Number of Readings	
Power sensor	66
Numeric results	24, 27

0

Occupied Bandwidth	36
Offset	
Frequency	58
Reference level	60
Options	
Electronic attenuation	61
High-pass filter	53
Oscilloscope	
Address	55
Output	
see R&S VSE User Manual	67
Output Compression Point (1 dB / 2 dB / 3 dB)	36
Overload	
RF input (remote)	188
Overview	
Configuration	38

Ρ

Parameter Sweep	
Available parameters	122
Configuration	120
Configuration of result display	138
Diagram	
Result type selection	
Stepsize	122
Peaks	
Marker positioning	135
Next	136
Phase	
Results	
Phase difference	15
Phase Error	30
Polynomial DPD	103
Polynomial models	
Power characteristics	116
Power In	
Power Out	
Power Out (Sensor)	37
Power sensors	
Activating/Deactivating	63
Apply Auto Level Correction	63
Average count	
Configuration (softkey)	62
Duty cycle	66
External power trigger	66
External trigger level	
Frequency	64
Frequency Coupling	64
Measurement time	
Number of readings	66
Reference level	
Reference level offset	
Selecting	
Settings	62
-	

Unit/Scale Zeroing Power servoing	
Power splitter mode Predistortion	54, 196
Preselector	55
Presetting Channels	
Protection	
RF input (remote)	
Reference signal	

Q

Quadrature Error	
Query generator settings	69
Quick Config	
Traces	129

R

R&S SMW-K541	
Ramp length	
Reference signal	
Raw EVM	31
Raw Model EVM	32
Red	
LED	
Line	
Reference channel	
CP/ACLR	
Reference level	60
Auto level	60
Offset	60
Offset (Power sensor)	65
Power sensor	65
Unit	60
Value	60
Reference marker	134
Reference signal	
Attenuation	72
Bandwidth	46
Crest factor	47
Design	40
Frequency	71
Length	
Level	
Notch position	
Notch width	
Pulse duty cycle	
Ramp length	47
Sample rate	40
Source	40
Transmission	41
Remote commands	
Basics on syntax	145
Boolean values	149
Capitalization	146
Character data	149
Data blocks	150
Numeric values	148
Optional keywords	147
Parameters	148
Strings	
Suffixes	

Resetting	
RF input protection	188
Resolution bandwidth	
Restoring	
Channel settings	
Result	
Туре	129
Result calculation	
Result displays	
ACP (table)	13
AM/AM	
AM/PM	
Configuration	138
DDPD Results	16
Error Vector Spectrum	17
EVM vs Power	17
Gain Compression	
Gain Deviation vs Time	19
Magnitude Capture	20
Memory DPD Coefficients	20
Parameter Sween	21

S

Sample Error Rate	
Sample rate	11
Reference signal	
Signal analysis	
Sample Rate Error	
Scale	
X-axis	
Y-axis	142
Sequencer	
see R&S VSE user manual	
Signal capture	87
Signal characteristics	
see result displays	12
Signal errors	96
Signal generation	40
Signal length	
Reference signal	
Signal synchronization	
Slope	
Power sensor trigger	67
Trigger (Power sensor)	67

Softkeys	
Power Sensor Config	
Ref Level	60
Ref Level Offset	
Spacings	
CP/ACLR	120
Specifics for	
Configuration	
Status bar	11
Status registers	
STAT:QUES:POW	
Suffixes	
Common	150
Remote commands	
Sweep count	
Synchronization	
Additional	
Failure	
Method	
Parameter Sweep	123
Range	
Reference signal	
Second	94
State	
System models	

Т

Time Domain	
Configuration of result display	138
Timing	
of Signals	25
Trace export	130
Trace selection	127
Traces	
Detector	128
Export format	131
Mode	128
Settings, predefined	129
Transmission channel	. 13
Trigger	
Drop-out time (Power sensor)	67
External (remote)	183
External power	66
Holdoff (Power sensor)	66
Hysteresis (Power sensor)	66
Level (Power sensor)	66
Power sensor	66
Slope (Power sensor)	67
Sources (list)	86
Trigger output	
see R&S VSE User Manual	67
Trigger to frame	11
Troubleshooting	
Input overload	188

U

V	
Update generator settings	69
Reference level	
Power sensor	65
Units	

Videos	
--------	--

W

40
120
11
151, 154
158
152, 153, 155
157
151, 154

Χ

X-value	
Marker	 34

Υ

YIG-preselector	
Activating/Deactivating	
Activating/Deactivating (remote) 190

Ζ

Zeroing	
Power sensor	 4