R&S[®]SMBVB-K131 LoRa[®] User Manual

1178971002 Version 07

Make ideas real

This document describes the following software option:

• R&S[®]SMBVB-K131 LoRa[®] (1423.8720.xx)

This manual describes firmware version FW 5.30.047.xx and later of the R&S®SMBV100B.

© 2023 Rohde & Schwarz Muehldorfstr. 15, 81671 Muenchen, Germany Phone: +49 89 41 29 - 0 Email: info@rohde-schwarz.com Internet: www.rohde-schwarz.com Subject to change – data without tolerance limits is not binding. R&S® is a registered trademark of Rohde & Schwarz GmbH & Co. KG. LoRa® Mark and LoRa Logo are registered trademarks of Semtech Corporation. LoRaWAN® Mark and LoRaWAN Logo are registered trademarks of LoRa Alliance, Inc. All other trademarks are the properties of their respective owners.

1178.9710.02 | Version 07 | R&S®SMBVB-K131

The following abbreviations are used throughout this manual: R&S[®]SMBVB100B is abbreviated as R&S SMBVB, R&S[®]WinIQSIM2 is abbreviated as R&S WinIQSIM2; the license types 02/03/07/11/13/16/12 are abbreviated as xx.

Contents

1	Welcome to the LoRa option	.5
1.1	Accessing the LoRa dialog	. 5
1.2	What's new	5
1.3	Documentation overview	.6
1.3.1	Getting started manual	.6
1.3.2	User manuals and help	. 6
1.3.3	Service manual	. 6
1.3.4	Instrument security procedures	.7
1.3.5	Printed safety instructions	.7
1.3.6	Data sheets and brochures	.7
1.3.7	Release notes and open source acknowledgment (OSA)	. 7
1.3.8	Application notes, application cards, white papers, etc	7
1.3.9	Videos	. 7
1.4	Scope	. 8
1.5	Notes on screenshots	8
2	About the LoRa option	9
2.1	Required options	9
2.2	About LoRa	.9
2.3	About LoRaWAN	11
2	LoPa configuration and sottings	11
24		
ა. I ა ე	General settings.	14
3.Z	Impoirmente estringe	יו 20
3.3	imparments settings	20
4	Signal generation control2	23
4.1	Trigger settings	23
4.2	Marker settings	28
4.3	Clock settings	30
4.4	Global connectors settings	31
5	Generating LoRa test signals	32
5.1	Generating RX sensitivity test signals	32

5.2	Generating blocking test signals	33
6	Remote-control commands	36
6.1	Programming examples	36
6.2	General commands	39
6.3	Frame configuration commands	43
6.4	Impairments commands	47
6.5	Trigger commands	49
6.6	Marker commands	54
6.7	Clock commands	56
	Glossary: Abbreviations and definitions	. 57
	Glossary: Specifications and references	58
	List of commands	. 59
	Index	61

1 Welcome to the LoRa option

The R&S SMBVB-K131 is a firmware application that adds functionality to generate signals in accordance with LoRa modulation.

The R&S SMBVB-K131 features

- Generation of LoRa up-/downlink signals
- Generation of waveforms for LoRa up-/downlink signals
- Frame configuration including modulation, coding and data configuration
- Impairing the output signal:
 - Adding symbol timing error and frequency offset
 - Applying a frequency drift to the carrier frequency of the output signal

This user manual contains a description of the functionality that the application provides, including remote control operation.

All functions not discussed in this manual are the same as in the base unit and are described in the R&S SMBV100B user manual. The latest version is available at:

www.rohde-schwarz.com/manual/SMBV100B

Installation

You can find detailed installation instructions in the delivery of the option or in the R&S SMBV100B service manual.

1.1 Accessing the LoRa dialog

To open the dialog with LoRa settings

In the block diagram of the R&S SMBV100B, select "Baseband > LoRa".

A dialog box opens that displays the provided general settings.

The signal generation is not started immediately. To start signal generation with the default settings, select "State > On".

1.2 What's new

This manual describes firmware version FW 5.30.047.xx and later of the R&S[®]SMBV100B.

Compared to the previous version, it provides the new features listed below:

 Time-based triggering, see "Time Based Trigger" on page 25 and "Trigger Time" on page 25. • Editorial changes

1.3 Documentation overview

This section provides an overview of the R&S SMBV100B user documentation. Unless specified otherwise, you find the documents at:

www.rohde-schwarz.com/manual/smbv100b

1.3.1 Getting started manual

Introduces the R&S SMBV100B and describes how to set up and start working with the product. Includes basic operations, typical measurement examples, and general information, e.g. safety instructions, etc. A printed version is delivered with the instrument.

1.3.2 User manuals and help

Separate manuals for the base unit and the software options are provided for download:

Base unit manual

Contains the description of all instrument modes and functions. It also provides an introduction to remote control, a complete description of the remote control commands with programming examples, and information on maintenance, instrument interfaces and error messages. Includes the contents of the getting started manual.

 Software option manual Contains the description of the specific functions of an option. Basic information on operating the R&S SMBV100B is not included.

The contents of the user manuals are available as help in the R&S SMBV100B. The help offers quick, context-sensitive access to the complete information for the base unit and the software options.

All user manuals are also available for download or for immediate display on the Internet.

1.3.3 Service manual

Describes the performance test for checking compliance with rated specifications, firmware update, troubleshooting, adjustments, installing options and maintenance.

The service manual is available for registered users on the global Rohde & Schwarz information system (GLORIS):

https://gloris.rohde-schwarz.com

1.3.4 Instrument security procedures

Deals with security issues when working with the R&S SMBV100B in secure areas. It is available for download on the internet.

1.3.5 Printed safety instructions

Provides safety information in many languages. The printed document is delivered with the product.

1.3.6 Data sheets and brochures

The data sheet contains the technical specifications of the R&S SMBV100B. It also lists the options and their order numbers and optional accessories.

The brochure provides an overview of the instrument and deals with the specific characteristics.

See www.rohde-schwarz.com/brochure-datasheet/smbv100b

1.3.7 Release notes and open source acknowledgment (OSA)

The release notes list new features, improvements and known issues of the current firmware version, and describe the firmware installation.

The software makes use of several valuable open source software packages. An opensource acknowledgment document provides verbatim license texts of the used open source software.

See www.rohde-schwarz.com/firmware/smbv100b

1.3.8 Application notes, application cards, white papers, etc.

These documents deal with special applications or background information on particular topics.

See www.rohde-schwarz.com/application/smbv100b

1.3.9 Videos

Find various videos on Rohde & Schwarz products and test and measurement topics on YouTube: https://www.youtube.com/@RohdeundSchwarz

On the menu bar, search for your product to find related videos.

HOME	VIDEOS	SHORTS	PLAYLISTS	COMMUNITY	CHANNELS	ABOUT	Q	<product></product>
------	--------	--------	-----------	-----------	----------	-------	---	---------------------

Figure 1-1: Product search on YouTube

1.4 Scope

Tasks (in manual or remote operation) that are also performed in the base unit in the same way are not described here.

In particular, it includes:

- Managing settings and data lists, like saving and loading settings, creating and accessing data lists, or accessing files in a particular directory.
- Information on regular trigger, marker and clock signals and filter settings, if appropriate.
- General instrument configuration, such as checking the system configuration, configuring networks and remote operation
- Using the common status registers

For a description of such tasks, see the R&S SMBV100B user manual.

1.5 Notes on screenshots

When describing the functions of the product, we use sample screenshots. These screenshots are meant to illustrate as many as possible of the provided functions and possible interdependencies between parameters. The shown values may not represent realistic usage scenarios.

The screenshots usually show a fully equipped product, that is: with all options installed. Thus, some functions shown in the screenshots may not be available in your particular product configuration.

2 About the LoRa option

2.1 Required options

The basic equipment layout for generating LoRa signals includes the options:

- Base unit
- Baseband real-time extension (R&S SMBVB-K520)
- Option LoRa (R&S SMBVB-K131)

You can generate signals via play-back of waveform files at the signal generator. To create the waveform file using R&S WinIQSIM2, you do not need a specific option.

To play back the waveform file at the signal generator, you have two options:

- Install the R&S WinIQSIM2 option of the digital standard, e.g. R&S SMBVB-K255 for playing LTE waveforms
- If supported, install the real-time option of the digital standard, e.g. R&S SMBVB-K55 for playing LTE waveforms

For more information, see data sheet.

2.2 About LoRa

The term LoRa refers to a "Long Range" end-to-end communication technology based on a PHY with a proprietary modulation scheme. The standard is owned by Semtech Corporation, Camarillo California, USA.

Modulation

LoRa modulation is based on a proprietary CSS modulation scheme. The modulation scheme is used to encode data onto swept frequency chirps, i.e. rapid changes of the modulation frequency.

A chirp (compressed high intensity radar pulse) is a signal whose frequency changes at a fixed rate (chirp rate). Each modulation symbol is represented as a rapid change in the frequency of the chirp.

The spreading factor represents the number of encoded bits per symbol and thus the change in frequency per unit time.

The higher the spreading factor, the lower the change in frequency per unit time.

Chirp rate R_c , signal bandwidth Δf , spreading factor SF, sample rate R_s , symbol duration T_s , bit rate R_B and coding rate CR are linked as in the equations below. Further more, typical values are given for SF, Δf and CR.

Symbol rate: $R_s = 1 / T_s = \Delta f / 2^{sF} | 125 \text{ kHz} \le \Delta f \le 500 \text{ kHz};$

Chirp rate: $R_C = R_S * 2^{SF} = \Delta f \mid 7 \le SF \le 12;$

Bit rate: $R_B = SF * \Delta f / 2^{SF} * 4 / (4 + CR) | 1 \le CR \le 4$

A coding rate CR = 0 corresponds to no coding.

For related settings, see "Modulation and Coding Configuration" on page 18.

Channel allocation

LoRa communication channels can be freely attributed by the network following the spectrum allocation rules defined by the regional radio regulation authorities. In Europe, the allocation rules are defined by ETSI in the specifications ETSI Specification EN 300 220-1 and CEPT/ERC Recommendation 70-03. In North America, the allocation rules are defined by FCC in the FCC Specification 47 Part 15.247.

For detailed info about regional LoRa performance requirements, see LoRaWAN Regional Parameters Specification.

Parameter Europe (ETSI)		North America (FCC)		
Frequency band	863 MHz to 869 MHz	902 MHz to 928 MHz		
Number of channels	Up- and downlink: 10	Uplink: 64 x 125 kHz and 8 x 500 kHz Downlink: 8 x 500 kHz		

Parameter	Europe (ETSI)	North America (FCC)	
Channel bandwidth	Uplink: 125 kHz and 250 kHz Downlink 125 kHz	Uplink: 125 kHz and 500 kHz Downlink: 500 kHz	
TX power	Uplink: 14 dBm (20 dBm allowed) Downlink: 14 dBm	Uplink: 20 dBm (30 dBm allowed) Downlink: 27 dBm	
Spreading factor	Uplink: 7 to 12	Uplink: 7 to 12	
Data rate	250 bit/s to 50000 bit/s	980 bit/s to 21900 bit/s	
Link budget	Uplink: 155 dB Downlink: 155 dB	Uplink: 154 dB Downlink: 157 dB	

For related settings, see Chapter 3.1, "General settings", on page 14.

Message and frame structure

For related settings, see Chapter 3.2, "Frame configuration settings", on page 17.

2.3 About LoRaWAN

The LoRa Alliance, Inc. specifies a wide area network (WAN) stack for long range communication as shown in Figure 2-1 (1MA295). The LoRa modulation physical layer enables the long-range communication link. The LoRa MAC and application layers affect battery lifetime of the end-device, network capacity, quality of service and security.

About LoRaWAN

Figure 2-1: LoRaWAN stack

Network architecture

A LoRaWAN architecture has a star-shaped structure as shown in Figure 2-2 (1MA295). End-devices exchange data with the network server via gateways. Also, the network server is connected to application servers, on which typically IoT applications run.

Figure 2-2: LoRaWAN network architecture

For more information, see the LoRaWAN Specification.

Device communication classes

There are three classes specified for LoRaWAN compliant devices:

 Class A: Bi-directional end-devices (mandatory support) Bi-directional communication between LoRa network server and receiver. A scheduled uplink transmission slot (Transmit) is followed by two downlink receive slots (Rx 1 and Rx 2).

Figure 2-3: Class A communication

• **Class B**: Bi-directional end-devices with scheduled receive slots (optional support) Besides Class A communication, more downlink receive slots (Rx) are available due to a time synchronized periodic beacon signal (Beacon) from network gateway.

Figure 2-4: Class B communication

• **Class C**: Bi-directional end-devices with maximal receive slots (optional support) Besides Class A and B communication, there are continuously open receive slots except during transmission.

Figure 2-5: Class C communication

Typically, power consumption increases and latency decreases from Class A to Class C communication.

Key features and applications

Devices compliant with the LoRa technology and operating in a LoRaWAN offer the following key features:

- Long range: outdoor coverage of up to 30 miles/48.3 km (line of sight)
- Low power consumption: battery lifetime of up to 20 years
- Low cost: low-cost end-devices and open software

The key features meet the requirements for IoT applications in rural areas.

3 LoRa configuration and settings

Access:

► Select "Baseband > LoRa".

The remote commands required to define these settings are described in Chapter 6, "Remote-control commands", on page 36.

Settings:

•	General settings	.14
•	Frame configuration settings	.17
•	Impairments settings	.20

3.1 General settings

Access:

Select "Baseband > LoRa".

LoRa	_ ×
General Stork Auto Marker Clock Frame Config	uration Impairments
	Set To Default CRecall Save Generate Waveform
Bandwidth	
125 kHz	
Idle Interval	
100.0 us	
Sequence Length	
1 Frames	
Oversampling	
4	
Sample Rate Variation	
500.000 000 kHz	

The tab comprises the standard general settings.

Settings:

State	15
Set to Default	
Save/Recall	
Generate Waveform File	
Bandwidth	
Idle Interval	16

General settings

Sequence Length	16
Oversampling	16
Sample Rate Variation	16

State

Activates the standard and deactivates all the other digital standards and digital modulation modes in the same path.

Remote command: [:SOURce<hw>]:BB:LORA:STATe on page 42

Set to Default

Calls the default settings. The values of the main parameters are listed in the following table.

Parameter	Value
"State"	Not affected by the "Set to Default"
"Bandwidth"	125 kHz
"Idle Interval"	100.0 us
"Sequence Length"	1 frame
"Oversampling"	4
"Sample Rate Variation"	500.000 000 kHz

Remote command:

[:SOURce<hw>]:BB:LORA:PRESet on page 40

Save/Recall

Accesses the "Save/Recall" dialog, that is the standard instrument function for saving and recalling the complete dialog-related settings in a file. The provided navigation possibilities in the dialog are self-explanatory.

The settings are saved in a file with predefined extension. You can define the filename and the directory, in that you want to save the file.

See also, chapter "File and Data Management" in the R&S SMBV100B user manual.

Remote command:

```
[:SOURce<hw>]:BB:LORA:SETTing:CATalog on page 40
```

[:SOURce<hw>]:BB:LORA:SETTing:STORe on page 41

```
[:SOURce<hw>]:BB:LORA:SETTing:LOAD on page 41
```

```
[:SOURce<hw>]:BB:LORA:SETTing:DELete on page 41
```

Generate Waveform File

With enabled signal generation, triggers the instrument to save the current settings of an arbitrary waveform signal in a waveform file with predefined extension *.wv. You can define the filename and the directory, in that you want to save the file.

Using the ARB modulation source, you can play back waveform files and/or process the file to generate multi-carrier or multi-segment signals.

Remote command:

[:SOURce<hw>]:BB:LORA:WAVeform:CREate on page 43

Bandwidth

Sets the channel bandwidth.

The sample rate and FFT size are calculated internally and updated automatically.

Remote command: [:SOURce<hw>]:BB:LORA:BWIDth on page 40

Idle Interval

Sets the time of the interval separating two frames.

Remote command:

[:SOURce<hw>]:BB:LORA:IINTerval on page 40

Sequence Length

Sets the sequence length of the signal in number of frames. The signal is calculated in advance and output in the arbitrary waveform generator.

Remote command: [:SOURce<hw>]:BB:LORA:SLENgth on page 41

Oversampling

Sets the oversampling factor of the generated waveform. The ARB generator of the R&S SMBV100B requires low oversampling factors and still provides excellent signal quality in terms of EVM and ACP.

A reduced sample rate saves significantly the amount of memory or allows an increased signal cycle time, and vice versa.

Remote command:

[:SOURce<hw>]:BB:LORA:OSAMpling on page 42

Sample Rate Variation

Sets the sample rate of the signal. A variation of this parameter affects the ARB clock rate; all other signal parameters remain unchanged.

When changing values of the affecting parameters, the sample rate is reset according to the equations below:

- Symbol Timing Error disabled: Sample rate = Bandwidth * Oversampling
- Impairments enabled: Sample rate = (abs(Freq. drift deviation) + abs(Freq. offset + (bandwidth * over-sampling) / 2) * 2

Remote command:

[:SOURce<hw>]:BB:LORA:SRATe:VARiation on page 42

3.2 Frame configuration settings

Access:

► Select "Baseband > LoRa > Frame Configuration".

LoRa					_	×
General Stop	General Stor Trigger In Marker Clock Frame Configuration Impairments					
Preamble	Header CR = 4/8		Payload CR = 4/5		Payload C CR = 4/5	RC
Payload Redu	Payload Reduced Coding Mode Sync Mode Public			General		
Unmodulated	Unmodulated Preamble Length D			Data		
Modulation and Coding Configuration						
Coding Rate		1	Encoder Active			
Spreading Fa	ctor	7	Interleaver Active			

This tab comprises the general and data settings to configure the frame structure.

Settings

Payload Reduced Coding Mode	17
Unmodulated Preamble Length	17
Sync Mode	
Modulation and Coding Configuration	18
L Coding Rate	
L Spreading Factor	
L Encoder Active	
L Interleaver Active	
Data	
L Data Length	
L Data Source	
L Payload CRC	
L Header Configuration	
L Header Active	
L Compressed Mode	
L Burst Mode	
L Reserved Bit.	

Payload Reduced Coding Mode

Activates the payload reduced coding mode.

Remote command:

[:SOURce<hw>]:BB:LORA:FCONfiguration:PRCMode:STATe on page 46

Unmodulated Preamble Length

Sets the unmodulated preamble length.

Remote command:

[:SOURce<hw>]:BB:LORA:FCONfiguration:UPLength on page 47

Sync Mode

Sets the synchronization mode of the preamble.

Public A preamble with a public sync word is generated.

Private A preamble with a private sync word is generated.

Remote command:

[:SOURce<hw>]:BB:LORA:FCONfiguration:SMODe on page 46

Modulation and Coding Configuration

Configures the modulation and coding information in the frame configuration.

Coding Rate ← Modulation and Coding Configuration

Sets the coding rate. The coding rate R_{Coding} is calculated as follows:

R_{Coding} = 4 / (4 + "Coding Rate")

"Coding Rate = 0" corresponds to no coding, i.e. $R_{Coding} = 1$.

Remote command: [:SOURce<hw>]:BB:LORA:FCONfiguration:CRATe on page 43

Spreading Factor Modulation and Coding Configuration

Sets the spreading factor for the modulation.

Remote command:

[:SOURce<hw>]:BB:LORA:FCONfiguration:SFACtor on page 47

Encoder Active Modulation and Coding Configuration

Activates encoding of the modulation symbols.

Remote command:

[:SOURce<hw>]:BB:LORA:FCONfiguration:EACTive:STATe on page 45

Interleaver Active - Modulation and Coding Configuration

Activates the interleaver in the frame.

Remote command:

[:SOURce<hw>]:BB:LORA:FCONfiguration:IACTive:STATe on page 46

Data

Access:

Select "Baseband > LoRa> Frame Configuration > Data".

Configures header and payload data settings.

Frame configuration settings

l	oRa A					_ ×
	O General Stop	Trigger In Auto	arker Clock Ext. Local Clock	rame Configuration Impairmen	ts	
	Preamble	Header CR = 4/8		Payload CR = 4/5		Payload CRC CR = 4/5
	Data Length		16 bytes	Payload CRC		General
	Data Source					Data
l			Header Co	nfiguration		
	Header Active	9	\checkmark	Burst Mode		
	Compressed N	Mode		Reserved Bit		

Data Length ← Data

Sets the data length of the payload in the frame.

Remote command:

[:SOURce<hw>]:BB:LORA:FCONfiguration:DLENgth on page 45

Data Source ← Data

Selects the data source for the payload.

The following standard data sources are available:

• "All 0, All 1"

An internally generated sequence containing 0 data or 1 data.

"PNxx"

An internally generated pseudo-random noise sequence.

• "Pattern"

An internally generated sequence according to a bit pattern. Use the "Pattern" box to define the bit pattern.

"Data List/Select DList"

A binary data from a data list, internally or externally generated.

Select "Select DList" to access the standard "Select List" dialog.

- Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
- Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.
- Use the standard "File Manager" function to transfer external data lists to the instrument.

See also:

- Section "Modulation Data" in the R&S SMBV100B user manual.
- Section "File and Data Management" in the R&S SMBV100B user manual.
- Section "Data List Editor" in the R&S SMBV100B user manual

Remote command:

[:SOURce<hw>]:BB:LORA:FCONfiguration:DATA on page 44 [:SOURce<hw>]:BB:LORA:FCONfiguration:DATA:DPATtern on page 44 [:SOURce<hw>]:BB:LORA:FCONfiguration:DATA:DSELection on page 45

Payload CRC ← Data

Activates a cyclic redundancy check (CRC) of the payload.

The "Payload CRC" bits are appended to the payload of the frame.

Remote command: [:SOURce<hw>]:BB:LORA:FCONfiguration:PCRC:STATe on page 46

Header Configuration ← Data

Configures the header information in the payload.

Header Active - Header Configuration - Data

Activates the header data in the frame.

Remote command: [:SOURce<hw>]:BB:LORA:FCONfiguration:HACTive:STATe on page 45

Compressed Mode ← Header Configuration ← Data

Activates the compressed mode of the header data in the frame.

Remote command: [:SOURce<hw>]:BB:LORA:FCONfiguration:CMODe:STATe on page 43

Burst Mode ← Header Configuration ← Data

Activates the burst mode of header data in the frame.

Remote command: [:SOURce<hw>]:BB:LORA:FCONfiguration:BMODe:STATe on page 43

Reserved Bit ← Header Configuration ← Data

Enables the reserved bit in the frame header.

Remote command:
[:SOURce<hw>]:BB:LORA:FCONfiguration:RBIT:STATe on page 46

3.3 Impairments settings

Access:

Select "Baseband > LoRa > Impairments".

Impairments settings

LoRa								_	×
I General	Stopy Trigger In	Marker	Clock Internal	Frame Configu	ration	Impairments			
Impairme	ents			l					
Symbol T	iming Error				Frequ	uency Offset			
				0 ppm				0.000) kHz
				Frequency Drif	t Config	guration			
State				\checkmark	Туре			L	.inear
Deviation	1				Rate				
				0.000 kHz				30	00 Hz

This tab comprises the impairments settings for the signal.

Settings

Impairments	
Symbol Timing Error	21
Frequency Offset	21
Frequency Drift Configuration	
L State	
L Deviation	
L Type	
L Rate	

Impairments

Activates the impairments settings.

Impairments change the signal to simulate a non-ideal transmitter.

Remote command:

[:SOURce<hw>]:BB:LORA:IMPairments:STATe on page 49

Symbol Timing Error

Sets the symbol timing error.

The set error corresponds to applying a deviation to the transmitter symbol clock.

Remote command:

[:SOURce<hw>]:BB:LORA:IMPairments:STERror on page 49

Frequency Offset

Sets the carrier frequency offset.

Remote command: [:SOURce<hw>]:BB:LORA:IMPairments:FOFFset on page 48

Frequency Drift Configuration

Configures carrier frequency drift settings of the signal.

State - Frequency Drift Configuration

Activates carrier frequency drift settings.

Remote command:

[:SOURce<hw>]:BB:LORA:IMPairments:FDRift:STATe on page 48

Deviation \leftarrow **Frequency Drift Configuration**

Sets the maximum deviation of the carrier signal from the center frequency during the frequency drift procedure.

Remote command:

[:SOURce<hw>]:BB:LORA:IMPairments:FDDeviation on page 47

Type ← Frequency Drift Configuration

Sets the type of frequency drift, i.e. how the carrier signal drifts around the center frequency.

Linear Linear frequency drift.

Sine Sine frequency drift.

Remote command:

[:SOURce<hw>]:BB:LORA:IMPairments:FDTYpe on page 48

Rate \leftarrow **Frequency Drift Configuration**

Sets the rate of the carrier frequency drift.

A rate of, e.g., 300 Hz implies, that the carrier signal drifts 300 times per second around the center frequency.

Remote command:

[:SOURce<hw>]:BB:LORA:IMPairments:FDRate on page 48

4 Signal generation control

This section lists settings provided for configuring the baseband filter, for defining the signal generation start and for generating signals necessary for synchronization with other instruments.

Settings:

•	Trigger settings	23
•	Marker settings	28
•	Clock settings	30
•	Global connectors settings	31

4.1 Trigger settings

Access:

Select "Baseband" > "LoRa" > "Trigger In".

LoRa								_	×
🚺 General	stop Auto	Marker	Clock Internal	Frame Configur	ation	Impairments			
Mode				Auto			Stopped		\langle

This tab provides settings to select and configure the trigger, like trigger source, trigger mode and trigger delays, and to arm or trigger an internal trigger manually. The header of the tab displays the status of the trigger signal and trigger mode. As in the tabs "Marker" and "Clock", this tab provides also access to the settings of the related connectors.

Routing and activating a trigger signal

- 1. Define the effect of a trigger event and the trigger signal source.
 - a) Select "Trigger In" > "Mode".
 - b) Select "Trigger In" > "Source".
- 2. For external trigger signals, define the connector for signal input. See Chapter 4.4, "Global connectors settings", on page 31.

You can map trigger signals to one or more User x connectors.

Global connectors settings allow you to configure the signal mapping, the polarity, the trigger threshold and the input impedance of the input connectors.

Activate baseband signal generation. In the block diagram, set "Baseband" > "On".

The R&S SMBV100B starts baseband signal generation after the configured trigger event.

About baseband trigger signals

This section focuses on the available settings.

For information on how these settings affect the signal, refer to section "Basics on ..." in the R&S SMBV100B user manual.

Settings:

Mode	24
Signal Duration Unit	24
Signal Duration	25
Running/Stopped	25
Time Based Trigger	25
Trigger Time	25
Arm	26
Execute Trigger	26
Source	26
Sync. Output to External Trigger/Sync. Output to Trigger	26
External Inhibit/Trigger Inhibit	27
External Delay/Trigger Delay	27

Mode

Selects trigger mode, i.e. determines the effect of a trigger event on the signal generation.

- "Auto" The signal is generated continuously.
- "Retrigger" The signal is generated continuously. A trigger event (internal or external) causes a restart.
- "Armed Auto"
 The signal is generated only when a trigger event occurs. Then the signal is gener-

ated continuously. An "Arm" stops the signal generation. A subsequent trigger event (internal or exter-

nal) causes a restart.

"Armed Retrigger"

The signal is generated only when a trigger event occurs. Then the signal is generated continuously. Every subsequent trigger event causes a restart.

An "Arm" stops signal generation. A subsequent trigger event (internal or external) causes a restart.

"Single"

The signal is generated only when a trigger event occurs. Then the signal is generated once to the length specified at "Signal Duration".

Every subsequent trigger event (internal or external) causes a restart.

Remote command:

[:SOURce<hw>]:BB:LORA[:TRIGger]:SEQuence on page 50

Signal Duration Unit

Defines the unit for describing the length of the signal sequence to be output in the "Single" trigger mode.

Remote command:

[:SOURce<hw>]:BB:LORA:TRIGger:SLUNit on page 52

Signal Duration

Requires trigger "Mode" > "Single".

Enters the length of the trigger signal sequence.

Use this parameter, for example, for the following applications:

To output the trigger signal partly.

To output a predefined sequence of the trigger signal.

Remote command:

[:SOURce<hw>]:BB:LORA:TRIGger:SLENgth on page 52

Running/Stopped

With enabled modulation, displays the status of signal generation for all trigger modes.

- "Running"
 The signal is generated; a trigger was (internally or externally) initiated in triggered mode.
- "Stopped"

The signal is not generated and the instrument waits for a trigger event.

Remote command:

[:SOURce<hw>]:BB:LORA:TRIGger:RMODe on page 52

Time Based Trigger

Requires trigger "Mode" > "Armed Auto"/"Single".

Activates time-based triggering with a fixed time reference.

The R&S SMBV100B triggers signal generation when its operating system time ("Current Time") matches a specified time trigger ("Trigger Time"). As trigger source, you can use an internal trigger or an external global trigger.

How to: Chapter "Time-based triggering" in the R&S SMBV100B user manual.

Remote command:

[:SOURce<hw>]:BB:LORA:TRIGger:TIME[:STATe] on page 54

Trigger Time

Requires trigger "Mode" > "Armed Auto"/"Single".

Sets date and time for a time-based trigger signal.

Set a trigger time that is later than the "Current Time". The current time is the operating system time of the R&S SMBV100B. If you set an earlier trigger time than the current time, time-based triggering is not possible.

How to: Chapter "Time-based triggering" in the R&S SMBV100B user manual.

"Date" Sets the date of the time-based trigger in format YYYY-MM-DD.

Remote command:

[:SOURce<hw>]:BB:LORA:TRIGger:TIME:DATE on page 53

"Time"

Sets the time of the time-based trigger in format hh:mm:ss. Remote command:

[:SOURce<hw>]:BB:LORA:TRIGger:TIME:TIME on page 53

Arm

Stops the signal generation until subsequent trigger event occurs.

Remote command:

[:SOURce<hw>]:BB:LORA:TRIGger:ARM:EXECute on page 51

Execute Trigger

For internal trigger source, executes trigger manually.

Remote command:

[:SOURce<hw>]:BB:LORA:TRIGger:EXECute on page 52

Source

The following sources of the trigger signal are available:

- "Internal"
 - The trigger event is executed manually by the "Execute Trigger".
- "External Global Trigger"
 - The trigger event is the active edge of an external trigger signal provided and configured at the User x connectors.
- "Baseband Sync In" In primary-secondary instrument mode, secondary instruments are triggered by the active edge of the synchronization signal.

How to: "Routing and activating a trigger signal" on page 23

Remote command:

[:SOURce<hw>]:BB:LORA:TRIGger:SOURce on page 50

Sync. Output to External Trigger/Sync. Output to Trigger

Enables signal output synchronous to the trigger event.

• "On"

Corresponds to the default state of this parameter.

The signal calculation starts simultaneously with the trigger event. Because of the processing time of the instrument, the first samples are cut off and no signal is output. After elapsing of the internal processing time, the output signal is synchronous to the trigger event.

The signal output begins after elapsing of the processing time. Signal output starts with sample 0. The complete signal is output.

This mode is recommended for triggering of short signal sequences. Short sequences are sequences with signal duration comparable with the processing time of the instrument.

In primary-secondary instrument mode, this setting ensures that once achieved, synchronization is not lost if the baseband signal sampling rate changes.

Remote command:

[:SOURce<hw>]:BB:LORA:TRIGger[:EXTernal]:SYNChronize:OUTPut on page 50

External Inhibit/Trigger Inhibit

Applies for external trigger signal.

Sets the duration with that any following trigger event is suppressed. In "Retrigger" mode, for example, a new trigger event does not cause a restart of the signal generation until the specified inhibit duration does not expire.

For more information, see chapter "Basics" in the R&S SMBV100B user manual.

Remote command:

```
[:SOURce<hw>]:BB:LORA:TRIGger[:EXTernal]:INHibit on page 51
```

External Delay/Trigger Delay

Delays the trigger event of the signal from:

• The external trigger source

Use this setting to:

- Synchronize the instrument with the device under test (DUT) or other external devices
- Compensate delays and align the signal generation start in multi-instrument setup

For more information, see chapter "Basics on ..." in the R&S SMBV100B user manual.

Remote command:

[:SOURce<hw>]:BB:LORA:TRIGger[:EXTernal]:DELay on page 50

4.2 Marker settings

Access:

Select "Baseband" > "LoRa" > "Marker".

LoRa	_ ×
General Story Trigger In Marker Clock I Frame Configuration Impairments	
Mode	Marker 1 Restart
Delay 0.000 Samples	Marker 2 _{Restart}
	Marker 3 Restart

This tab provides settings to select and configure the marker output signal including marker mode and marker delay.

Routing and activating a marker signal

- To define the signal shape of an individual marker signal "x", select "Marker" > "Marker x" > "Mode".
- Optionally, define the connector for signal output. See Chapter 4.4, "Global connectors settings", on page 31.
 You can map marker signals to one or more User x connectors.

3. Activate baseband signal generation. In the block diagram, set "Baseband" > "On".

The R&S SMBV100B adds the marker signal to the baseband signal. Also, R&S SMBV100B outputs this signal at the configured User x connector.

About marker output signals

This section focuses on the available settings.

For information on how these settings affect the signal, refer to section "Basics on ..." in the R&S SMBV100B user manual.

Settings:

Mode	
Delay	

Mode

Marker configuration for up to 3 markers. The settings are used to select the marker mode defining the shape and periodicity of the markers. The contents of the dialog change with the selected marker mode.

How to: "Routing and activating a marker signal" on page 28

"Restart" A marker signal is generated at the start of each ARB sequence.

"Frame"	A frame clock with the frame period specified under "Period" is gener- ated on the output connector. The marker signal is generated after every specified number of frames.						
"Pulse"	A regular ma by entering a rate by the c is selected, a The maximu	arker signal is g a divider. The fr livider. The inpu and the resultin ım pulse freque	enerated. T equency is It box for the g pulse freq ncy is half t	he pulse frequency is define derived by dividing the samp e divider opens when "Pulse juency is displayed below it. he symbol rate.	ed ble !"		
	Remote com [:SOURce< DIVider or [:SOURce< FREQuency	hmand: hw>]:BB:LOR page 55 hw>]:BB:LOR ? on page 56	A:TRIGger A:TRIGger	:OUTPut <ch>:PULSe:</ch>			
"Pattern"	A marker signal that is defined by a bit pattern is generated. The pat- tern has a maximum length of 64 bits and is defined in an input field which opens when pattern is selected.						
	Remote command: [:SOURce <hw>]:BB:LORA:TRIGger:OUTPut<ch>:PATTern on page 55</ch></hw>						
"On/Off Ratio"	A regular marker signal that is defined by an On/Off ratio is gener- ated. A period lasts one On and Off cycle.						
	On time	Off time	On time	Off time			
	Remote command:						
	[:SOURce <hw>]:BB:LORA:TRIGger:OUTPut<ch>:ONTime</ch></hw>						
	on page 55						
	[:SOURce <hw>]:BB:LORA:TRIGger:OUTPut<ch>:OFFTime</ch></hw>						
	on page 55						
Remote comma	nd:						
[:SOURce <hw></hw>]:BB:LORA:	TRIGger:OUT	Put <ch>:N</ch>	AODE on page 54			

Delay

Delays the marker signal at the marker output relative to the signal generation start. Variation of the parameter "Marker x" > "Delay" causes signal recalculation.

Remote command:

[:SOURce<hw>]:BB:LORA:TRIGger:OUTPut<ch>:DELay on page 54

4.3 Clock settings

Access:

Select "Baseband" > "LoRa" > "Clock".

LoRa	_	×
General Stork Trigger In Marker Clock Internal Frame Configuration Impairments		
Clock Source		
Internal		

This tab provides settings to select and configure the clock signal, like the clock source and clock mode.

Defining the clock

- 1. Select "Clock" > "Source" to define the source of clock signal.
- For external clock signals, define the connector for signal input. See Chapter 4.4, "Global connectors settings", on page 31.

You can map clock signals to one or more User x connectors.

Global connectors settings allow you to configure the signal mapping, the polarity, the trigger threshold and the input impedance of the input connectors.

3. Activate baseband signal generation. In the block diagram, set "Baseband" > "On".

The R&S SMBV100B starts baseband signal generation with a symbol rate that equals the clock rate.

About clock signals

This section focuses on the available settings.

For information on how these settings affect the signal, refer to section "Basics on ..." in the R&S SMBV100B user manual.

Settings:

Clock Source

Selects the clock source.

Internal"

The instrument uses its internal clock reference.

How to: "Defining the clock" on page 30

Remote command:

[:SOURce<hw>]:BB:LORA:CLOCk:SOURce on page 56

4.4 Global connectors settings

Accesses a dialog to configure global connectors.

The button is available in the following dialogs or tabs:

- "Trigger / Marker / Clock" dialog that is accessible via the "TMC" block in the block diagram.
- "Trigger In", "Marker" and "Clock" tabs that are accessible via the "Baseband" block in the block diagram.

See also chapter "Global connectors settings" in the user manual.

5 Generating LoRa test signals

The section describes how to set up and configure the R&S SMBV100B for LoRa signal generation for simple receiver tests.

See also:

- Application note 1MA295, for a comprehensive overview on LoRa device characterization, including Tx measurements.
- Chapter 6.1, "Programming examples", on page 36, for remote command configuration examples.

5.1 Generating RX sensitivity test signals

Rx sensitivity test setup

The R&S SMBV100B generates a LoRa test signal. The LoRa DUT receives and demodulates the test signal. The LoRa Test Tool, installed on an external PC, analyzes the demodulation data in terms of PER analysis.

Figure 5-1: Test setup for Rx sensitivity test

1 = R&S SMBV100B gen	nerating the RF signal
----------------------	------------------------

- 2 = LoRa DUT receiving the RF signal
- 3 = External PC with LoRa Test Tool for PER analysis
- Blue arrow = LoRa test RF signal path

Orange arrow = Connection for LoRa DUT control and analysis via LoRa Test Tool at the external PC

To perform an Rx sensitivity test

- 1. Preset the R&S SMBV100B.
- 2. Select "Baseband > LoRa".
- Configure "General" settings of the LoRa test signal, e.g. the "Bandwidth" compatible with the DUT.

- Select "Frame Configuration > General" to configure modulation and coding parameters, e.g. "Coding Rate" and "Spreading Factor".
- Select "Frame Configuration > Data" to configure payload, e.g. "Data Length" and "Data Source".
- 6. Set "General > State > On" to activate LoRa baseband modulation.
- In the block diagram, set "I/Q Mod > On" and "RF > On" to activate I/Q modulation and signal generation.
 - PEP Level Frequency Int Ref 902.000 000 000 MHz -110.0 dBm -110.0 dBm RF On Mod On Ŷ TELP Baseband AWGN I/Q Mod RF Running Α RF Т On On 🔽 On 🖌 On \checkmark On OM AWGN С oRa //Q Stream Mapper ○ I/Q Out **BB** Input HS Dig. I/Q On 🛛 🔿 🖉 🖉 System • Config
- 8. On the "Status Bar", set "Frequency" and "Level".

- Configure the DUT for reception of the LoRa test signal generated at the R&S SMBV100B.
- 10. Gradually reduce the level of the LoRa test signal.
- 11. Monitor the PER at the DUT, e.g. at an external PC with an analysis software (LoRa Test Tool).

The Rx sensitivity level corresponds to a specified PER value, e.g. "Level > -137 dBm" with PER = 1 %. The level depends on the spreading factor.

5.2 Generating blocking test signals

Blocking test setup

The R&S SMBV100B generates a LoRa test signal, the wanted signal. A second signal generator, e.g. an R&S SGS, generates an interfering CW signal, the unwanted signal. Both signals are combined via an RF power combiner. The LoRa DUT receives and

demodulates the combined signal. The LoRa Test Tool, installed on external PC, analyzes the demodulation data in terms of PER analysis.

Figure 5-2: Test setup for blocking test

1	= R&S SGS generating an interfering RF signal, the unwanted signal
2	= R&S SMBV100B generating a LoRa test signal, the wanted signal
3	= External PC with R&S SGS control software and with LoRa Test Tool for PER analysis
4	= RF power combiner combining the interfering RF signal and the LoRa test signal
5	= LoRa DUT receiving the combined RF signal
Blue arrow	= LoRa test signal path
Green arrow	= Connection for R&S SGS control via R&S SGMA-GUI control software at the external PC
Orange arrow	= Connection for LoRa DUT control and analysis via LoRa Test Tool at the external PC

To perform an adjacent channel blocking test

- 1. To generate the wanted signal, configure the R&S SMBV100B as in "To perform an Rx sensitivity test" on page 32.
- To generate the adjacent channel blocking signal at the second signal generator, e.g. the R&S SGS, proceed as follows:
 - a) Preset the R&S SGS.
 - b) Set the frequency as specified. The frequency value is typically a few hundred kilohertz higher/lower than the frequency of the wanted signal.

c) Set the level as specified.

The level values for uplink and downlink can differ.

- 3. At the R&S SMBV100B, increase the level of the wanted signal.
- 4. Monitor the PER at the DUT, e.g. with an analysis software (LoRa Test Tool).

The adjacent channel blocking level is the wanted signal level, that corresponds to a specified PER value, typically PER < 1 %.

To perform an on-channel blocking test

- 1. To generate the wanted signal, configure the R&S SMBV100B as in "To perform an Rx sensitivity test" on page 32.
- 2. To generate the on-channel blocking signal at the second signal generator, e.g. the R&S SGS, proceed as follows:
 - a) Preset the R&S SGS.
 - b) Set the frequency, that is the same frequency as the wanted signal (step 8).
 - c) Set the level as specified. The level values for uplink and downlink can differ.
- 3. At the R&S SMBV100B, increase the level of the wanted signal.
- 4. Monitor the PER at the DUT, e.g. with an analysis software (LoRa Test Tool).

The on-channel blocking level is the wanted signal level, that corresponds to a specified PER value, typically PER < 1 %.

See also:

- R&S SGS100A user manual
- R&S SGMA-GUI Software software for control of the R&S SGS

6 Remote-control commands

The following commands are required to generate signals with the LoRa option in a remote environment. We assume that the R&S SMBV100B has already been set up for remote operation in a network as described in the R&S SMBV100B documentation. A knowledge about the remote control operation and the SCPI command syntax are assumed.

Conventions used in SCPI command descriptions

For a description of the conventions used in the remote command descriptions, see section "Remote-Control Commands" in the R&S SMBV100B user manual.

Common suffixes

The following common suffixes are used in the remote commands:

Suffix	Value range	Description
ENTity <ch></ch>	1	Optional keyword, provided for compatibility with R&S [®] SMW200A
		ENTity1:SOURce1 = SOURce1
SOURce <hw></hw>	1	Available baseband signals
OUTPut <ch></ch>	1 to 3	Available markers

The following commands specific to the R&S SMBV100B-K131 option are described here:

•	Programming examples	36
•	General commands	.39
•	Frame configuration commands.	.43
•	Impairments commands.	.47
•	Trigger commands	49
•	Marker commands	54
•	Clock commands	56
-		

6.1 Programming examples

The corresponding sections of the same title provide simple programming examples for the R&S SMBV100B. The purpose of the examples is to present **all** commands for a given task. In real applications, one would rather reduce the examples to an appropriate subset of commands.

The programming examples have been tested with a software tool which provides an environment for the development and execution of remote tests. To keep the examples as simple as possible, only the "clean" SCPI syntax elements are reported. Non-executable command lines (for example comments) start with two // characters.

At the beginning of the most remote control program, an instrument (p)reset is recommended to set the R&S SMBV100B to a definite state. The commands *RST and SYSTem: PRESet are equivalent for this purpose. *CLS also resets the status registers and clears the output buffer.

Example: Storing current configuration

```
SOURce1:BB:LORA:SETTing:STORe "/var/user/my_settings"
*RST
SOURce1:BB:LORA:SETTing:CATalog?
// my_lora, lora
SOURce1:BB:LORA:SETTing:LOAD "/var/user/lora"
SOURce1:BB:LORA:STATE 1
SOURce1:BB:LORA:SETTing:DEL "my_lora"
SOURce1:BB:LORA:WAVeform:CREate "/var/user/my_lora_wv"
```

Example: Generating a LoRa signal

```
SOURce1:BB:LORA:PRESet
// Configure LoRa general settings: Bandwidth, idle interval time, sequence
// length and sampling parameters
SOURce1:BB:LORA:BWIDth BW125
SOURce1:BB:LORA:IINTerval 0.0001
SOURce1:BB:LORA:SLENgth 1
SOURce1:BB:LORA:SAMpling 4
SOURce1:BB:LORA:SRATe:VARiation 500000
SOURce1:BB:LORA:STATE 1
// Configure the carrier signal, e.g. for ETSI compliant devices.
SOURce1:FREQuency:CW 86850000
SOURce1:POWer:POWer 14
OUTPut1:STATE 1
```

Programming examples

Example: Configuring LoRa frame parameters

SOURce1:BB:LORA:PRESet

// Configure preamble and synchronization parameters. SOURce1:BB:LORA:FCONfiguration:PRCMode:STATE 0 SOURce1:BB:LORA:FCONfiguration:SMODe PUBL SOURce1:BB:LORA:FCONfiguration:UPLength 8

// Configure modulation and coding parameters. SOURce1:BB:LORA:FCONfiguration:CRATe CR1 SOURce1:BB:LORA:FCONfiguration:EACTive:STATe 1 SOURce1:BB:LORA:FCONfiguration:SFACtor SF7 SOURce1:BB:LORA:FCONfiguration:IACTive:STATe 1

// Configure data, header and payload parameters. SOURce1:BB:LORA:FCONfiguration:DLENgth 16 SOURce1:BB:LORA:FCONfiguration:PCRC:STATE 1 SOURce1:BB:LORA:FCONfiguration:DATA PN9 SOURce1:BB:LORA:FCONfiguration:HACTive:STATE 1 SOURce1:BB:LORA:FCONfiguration:BMODe:STATE 0 SOURce1:BB:LORA:FCONfiguration:CMODe:STATE 0 SOURce1:BB:LORA:FCONfiguration:RBIT:STATE 0

Example: Configuring impairments to LoRa modulation

SOURce1:BB:LORA:PRESet // Configure symbol timing error and frequency offset. SOURce1:BB:LORA:IMPairments:STERror 0 SOURce1:BB:LORA:IMPairments:FOFFset 0 // Configure frequency drift parameters. SOURce1:BB:LORA:IMPairments:FDTYpe LIN SOURce1:BB:LORA:IMPairments:FDDeviation 0 SOURce1:BB:LORA:IMPairments:FDRate 300 SOURce1:BB:LORA:IMPairments:FDRift:STATe 1 // Activate the impairment settings. SOURce1:BB:LORA:IMPairments:STATE 1

General commands

Example: Trigger configuration

SOURce1:BB:LORA:TRIGger:SOURce INTernal SOURce1:BB:LORA:TRIGger:SEQuence ARETrigger SOURce1:BB:LORA:STAT ON SOURce1:BB:LORA:TRIGger:EXECute SOURce1:BB:LORA:TRIGger:ARM:EXECute SOURce1:BB:LORA:TRIGger:RMODe? // stopped SOURce1:BB:LORA:TRIGger:EXECute SOURce1:BB:LORA:TRIGger:RMODe?

// run

SOURce1:BB:LORA:TRIGger:SEQuence SING SOURce1:BB:LORA:TRIGger:SLUNit SAMP SOURce1:BB:LORA:TRIGger:SLENgth 25777 SOURce1:BB:LORA:TRIGger:SEQuence ARET SOURce1:BB:LORA:TRIGger:SOURce EGT1 SOURce1:BB:LORA:TRIGger:EXTernal:SYNChronize:OUTPut 1 SOURce1:BB:LORA:TRIGger:EXTernal:INHibit 100 SOURce1:BB:LORA:TRIGger:EXTernal:DELay 10

Example: Configure and enable standard marker signals

// Configure marker 1 settings. SOURce:BB:LORA:TRIGger:OUTPut1:MODE RAT SOURce:BB:LORA:TRIGger:OUTPut1:ONTime 10 SOURce:BB:LORA:TRIGger:OUTPut1:OFFTime 20 // Configure marker 2 settings. SOURce:BB:LORA:TRIGger:OUTPut2:MODE? // RESTart SOURce:BB:LORA:TRIGger:OUTPut2:DELay 16384 // Configure marker 3 settings. SOURce:BB:LORA:TRIGger:OUTPut3:MODE PATT SOURce:BB:LORA:TRIGger:OUTPut3:PATTern #H2,2

Example: Clock settings

SOURce1:BB:LORA:CLOCk:SOURce? INT

6.2 General commands

[:SOURce <hw>]:BB:LORA:BWIDth</hw>	40
[:SOURce <hw>]:BB:LORA:IINTerval</hw>	40
[:SOURce <hw>]:BB:LORA:PRESet</hw>	40
[:SOURce <hw>]:BB:LORA:SETTing:CATalog</hw>	40
[:SOURce <hw>]:BB:LORA:SETTing:DELete</hw>	41
[:SOURce <hw>]:BB:LORA:SETTing:LOAD</hw>	41
[:SOURce <hw>]:BB:LORA:SETTing:STORe</hw>	41
[:SOURce <hw>]:BB:LORA:SLENath</hw>	41
[:SOURce <hw>]:BB:LORA:OSAMpling</hw>	42

[:SOURce <hw>]:BB:LORA:SRATe:VARiation</hw>	
[:SOURce <hw>]:BB:LORA:STATe</hw>	
[SOURce <hw>1BB:1 ORA:WAVeform:CREate</hw>	43

[:SOURce<hw>]:BB:LORA:BWIDth <Bw>

Sets the channel bandwidth.

Parameters: <bw></bw>	BW7 BW10 BW15 BW20 BW31 BW41 BW62 BW125		
	BW220 B	//500	
	*RST:	BW125	
Example:	See Example"Generating a LoRa signal" on page 37.		
Manual operation:	See "Bandwidth" on page 16		

[:SOURce<hw>]:BB:LORA:IINTerval <IInterval>

Sets the time of the interval separating two frames.

Parameters: <iinterval></iinterval>	float	
	Range:0 to 1Increment:0.1E-6*RST:100E-6Default unit:s	
Example:	See Example"Generating a LoRa signal" on page 37.	
Manual operation:	See "Idle Interval" on page 16	

[:SOURce<hw>]:BB:LORA:PRESet

Sets the parameters of the digital standard to their default values (*RST values specified for the commands).

Not affected is the state set with the command SOURce<hw>:BB:LORA:STATe.

Example:	See Example	"Generating a	LoRa signal	' on page 37.
----------	-------------	---------------	-------------	---------------

Usage: Event

Manual operation: See "Set to Default" on page 15

[:SOURce<hw>]:BB:LORA:SETTing:CATalog <Catalog>

Queries the files with settings in the default directory. Listed are files with the file extension *.lora.

Parameters: <Catalog>

<filename1>,<filename2>,...

Returns a string of filenames separated by commas.

Example: See Example"Storing current configuration" on page 37.

Manual operation: See "Save/Recall" on page 15

[:SOURce<hw>]:BB:LORA:SETTing:DELete <Filename>

Deletes the selected file from the default or the specified directory. Deleated are files with extension *.lora.

Parameters:	
<filename></filename>	" <filename>"</filename>
	Filename or complete file path; file extension can be omitted
Example:	See Example"Storing current configuration" on page 37.
Manual operation:	See "Save/Recall" on page 15

[:SOURce<hw>]:BB:LORA:SETTing:LOAD <Filename>

Loads the selected file from the default or the specified directory. Loaded are files with extension *.lora.

" <filename>"</filename>
Filename or complete file path; file extension can be omitted
See Example"Storing current configuration" on page 37.
See "Save/Recall" on page 15

[:SOURce<hw>]:BB:LORA:SETTing:STORe <Filename>

Saves the current settings into the selected file; the file extension (*.lora) is assigned automatically.

Setting parameters:		
<filename></filename>	" <filename>"</filename>	
	Filename or complete file path	
Example:	See Example"Storing current configuration" on page 37.	
Usage:	Setting only	
Manual operation:	See "Save/Recall" on page 15	

[:SOURce<hw>]:BB:LORA:SLENgth <SLength>

Sets the sequence length of the signal in number of frames. The signal is calculated in advance and output in the arbitrary waveform generator.

Parameters:

<slength></slength>	integer	
	Range: *RST:	1 to dynamic 1
Example:	See Example"Generating a LoRa signal" on page 37.	
Manual operation:	See "Sequence Length" on page 16	

[:SOURce<hw>]:BB:LORA:OSAMpling <OSampling>

Sets the oversampling factor of the generated waveform.

A reduced sample rate saves significantly the amount of memory or allows an increased signal cycle time, and vice versa.

Parameters:		
<osampling></osampling>	integer	
	Range: *RST:	1 to 32 4
Example:	See Example"Generating a LoRa signal" on page 37	
Manual operation:	See "Oversampling" on page 16	

[:SOURce<hw>]:BB:LORA:SRATe:VARiation </ariation>

Sets the sample rate of the signal.

A variation of this parameter affects the ARB clock rate; all other signal parameters remain unchanged. When changing values of the affecting parameters, the sample rate is reset.

Parameters:

<variation></variation>	float		
	Range: Increment: *RST:	4E2 to 20E6 1E-3 1E6	
Example:	See Example"Generating a LoRa signal" on page 37.		
Manual operation:	See "Sample Rate Variation" on page 16		

[:SOURce<hw>]:BB:LORA:STATe <State>

Activates the standard and deactivates all the other digital standards and digital modulation modes in the same path.

Parameters:

<state></state>	1 ON 0 OFF
	*RST: 0
Example:	See Example"Generating a LoRa signal" on page 37.

Manual operation: See "State" on page 15

[:SOURce<hw>]:BB:LORA:WAVeform:CREate <Filename>

Saves the current settings as an ARB signal in a waveform file (* . wv).

Setting parameters:

<filename></filename>	string		
	Filename or complete file path; file extension is assigned auto- matically		
Example:	See Example"Storing current configuration" on page 37.		
Usage:	Setting only		
Manual operation:	See "Generate Waveform File" on page 15		

6.3 Frame configuration commands

[:SOURce<hw>]:BB:LORA:FCONfiguration:BMODe:STATe <State>

Activates the burst mode of header data in the frame.

Parameters:	
<state></state>	1 ON 0 OFF
	*RST: 0
Example:	See Example"Configuring LoRa frame parameters" on page 38.
Manual operation:	See "Burst Mode" on page 20

[:SOURce<hw>]:BB:LORA:FCONfiguration:CMODe:STATe <State>

Activates the compressed mode of the header data in the frame.

Parameters:	
<state></state>	1 ON 0 OFF
	*RST: 0
Example:	See Example"Configuring LoRa frame parameters" on page 38.
Manual operation:	See "Compressed Mode" on page 20

[:SOURce<hw>]:BB:LORA:FCONfiguration:CRATe <CRate>

Sets the coding rate.

Parameters:

<CRate> CR0 | CR1 | CR2 | CR3 | CR4 CR<x> = 0 to 4 The coding rate R_{Coding} is calculated as follows:

	$R_{Coding} = 4 /$	(4 + CR <x>)</x>
	"CR0" corresponds to no coding, i.e. R _{Coding} = 1.	
	*RST:	CR1
Example:	See Examp	ble"Configuring LoRa frame parameters" on page 38.
Manual operation:	See "Codin	g Rate" on page 18

[:SOURce<hw>]:BB:LORA:FCONfiguration:DATA <Data>

Sets the data source for the payload data in a LoRa frame.

Parameters:			
<data></data>	ZERO ONE PATTern PN9 PN11 PN15 PN16 PN20 PN21 PN23 DLISt		
	PNxx		
	The pseudo-random sequence generator is used as the data source. There is a choice of different lengths of random sequence.		
	DLISt A data list is used. The data list is selected with the aid of com- mand SOURce:BB:LORA:DATA DLISt.		
	ALL0 ALL1 Internal 0 or 1 data is used.		
	PATTern Internal data is used. The bit pattern for the data is defined with the aid of command :SOURCe:BB:LORA:DATA PATTern. *RST: PN9		
Example:	See Example"Configuring LoRa frame parameters" on page 38		
Manual operation:	See "Data Source" on page 19		

[:SOURce<hw>]:BB:LORA:FCONfiguration:DATA:DPATtern <DPattern>, <BitCount>

Sets the data pattern, if the data source PATT is selected.

Parameters: <dpattern></dpattern>	numeric *RST:	#H0
<bitcount></bitcount>	integer Range: *RST:	1 to 64 1

Example: See Example"Configuring LoRa frame parameters" on page 38.

Manual operation: See "Data Source" on page 19

[:SOURce<hw>]:BB:LORA:FCONfiguration:DATA:DSELection <DSelection>

Selects an existing data list file from the default directory or from the specific directory.

The data list is only used, if the data source DLIS is selected.

Parameters: <dselection></dselection>	string Filename incl. file extension or complete file path
Example:	Soo Example"Configuring LoBo frame parameters" on page 28
Manual operation:	See "Data Source" on page 19
Manual Operation.	See Data Source on page 19

[:SOURce<hw>]:BB:LORA:FCONfiguration:DLENgth <DLength>

Sets the data length of the payload in the frame.

Parameters:		
<dlength></dlength>	integer	
	Range: *RST:	1 to 255 16
Example:	See Example"Configuring LoRa frame parameters" on page 38.	
Manual operation:	See "Data Length" on page 19	

[:SOURce<hw>]:BB:LORA:FCONfiguration:EACTive:STATe <State>

Activates encoding of the modulation symbols.

Parameters:	
<state></state>	1 ON 0 OFF
	*RST: 1
Example:	See Example"Configuring LoRa frame parameters" on page 38.
Manual operation:	See "Encoder Active" on page 18

[:SOURce<hw>]:BB:LORA:FCONfiguration:HACTive:STATe <State>

Activates the header data in the frame.

Parameters:	
<state></state>	1 ON 0 OFF
	*RST: 1
Example:	See Example"Configuring LoRa frame parameters" on page 38.
Manual operation:	See "Header Active" on page 20

[:SOURce<hw>]:BB:LORA:FCONfiguration:IACTive:STATe <State>

Activates the interleaver in the frame.

Parameters:	
<state></state>	1 ON 0 OFF
	*RST: 1
Example:	See Example"Configuring LoRa frame parameters" on page 38.
Manual operation:	See "Interleaver Active" on page 18

[:SOURce<hw>]:BB:LORA:FCONfiguration:PCRC:STATe <State>

Activates a cyclic redundancy check (CRC) of the payload.

Parameters:	
<state></state>	1 ON 0 OFF
	*RST: 1
Example:	See Example"Configuring LoRa frame parameters" on page 38.
Manual operation:	See "Payload CRC" on page 20

[:SOURce<hw>]:BB:LORA:FCONfiguration:PRCMode:STATe <State>

Activates the payload reduced coding mode.

Parameters:	
<state></state>	1 ON 0 OFF
	*RST: 0
Example:	See Example"Configuring LoRa frame parameters" on page 38.
Manual operation:	See "Payload Reduced Coding Mode" on page 17

[:SOURce<hw>]:BB:LORA:FCONfiguration:RBIT:STATe <State>

Enables the reserved bit in the frame header.

Parameters:	
<state></state>	1 ON 0 OFF
	*RST: 0
Example:	See Example"Configuring LoRa frame parameters" on page 38.
Manual operation:	See "Reserved Bit" on page 20

[:SOURce<hw>]:BB:LORA:FCONfiguration:SMODe <SMode>

Sets the synchronization mode of the preamble.

Parameters:

<SMode> PRIVate | PUBLic

	PRIVate A preamble with a public sync word is generated.
	PUBLic A preamble with a private sync word is generated.
	*RST: PUBLic
Example:	See Example"Configuring LoRa frame parameters" on page 38.
Manual operation:	See "Sync Mode" on page 18

[:SOURce<hw>]:BB:LORA:FCONfiguration:SFACtor <Sf>

Sets the spreading factor for the modulation.

Parameters:	
<sf></sf>	SF6 SF7 SF8 SF9 SF10 SF11 SF12
	*RST: SF7
Example:	See Example"Configuring LoRa frame parameters" on page 38.
Manual operation:	See "Spreading Factor" on page 18

[:SOURce<hw>]:BB:LORA:FCONfiguration:UPLength <PLength>

Sets the unmodulated preamble length.

Parameters:		
<plength></plength>	integer	
	Range: *RST:	6 to 8 8
Example:	See Examp	le"Configuring LoRa frame parameters" on page 38.
Manual operation:	See "Unmo	dulated Preamble Length" on page 17

6.4 Impairments commands

[:SOURce<hw>]:BB:LORA:IMPairments:FDDeviation <FDDeviation>

Sets the frequency deviation of the frequency drift.

Parameters:		
<fddeviation></fddeviation>	integer	
	Range: *RST:	-200E3 to 200E3 0
Example:	See Example"Configuring impairments to LoRa modulation" on page 38.	
Manual operation:	See "Deviat	ion" on page 22

[:SOURce<hw>]:BB:LORA:IMPairments:FDRate <FDRate>

Sets the rate of the carrier frequency drift.

Parameters:	interer	
<fdrale></fdrale>	integer	
	Range: *RST:	160 to 1.6E3 300
Example:	See Exampl on page 38.	e"Configuring impairments to LoRa modulation"
Manual operation:	See "Rate" of	on page 22

[:SOURce<hw>]:BB:LORA:IMPairments:FDRift:STATe <State>

Activates frequency drift settings in the payload.

Parameters:	
<state></state>	1 ON 0 OFF
	*RST: 1
Example:	See Example"Configuring impairments to LoRa modulation" on page 38.
Manual operation:	See "State" on page 21

[:SOURce<hw>]:BB:LORA:IMPairments:FDTYpe <FDType>

Sets the frequency drift type.

Parameters:

<fdtype></fdtype>	LINear SINE	
	LINear Generation of frequency drift is set linear.	
	SINE Generation of frequency drift is set sinusoid. *RST: LINear	
Example:	See Example"Configuring impairments to LoRa modulation" on page 38.	
Manual operation:	See "Type" on page 22	

[:SOURce<hw>]:BB:LORA:IMPairments:FOFFset <FOffset>

Sets the frequency offset.

Parameters:

<FOffset> i

integer Range: -200E3 to 200E3 *RST: 0

Example:	See Example"Configuring impairments to LoRa modulation"
	on page 38.

Manual operation: See "Frequency Offset" on page 21

[:SOURce<hw>]:BB:LORA:IMPairments:STATe <State>

Activates impairments settings in the payload.

Parameters:	
<state></state>	1 ON 0 OFF
	*RST: 0
Example:	See Example"Configuring impairments to LoRa modulation" on page 38.
Manual operation:	See "Impairments" on page 21

[:SOURce<hw>]:BB:LORA:IMPairments:STERror <STError>

Sets symbol timing error.

Parameters: <sterror></sterror>	integer Range:	-300 to 300
	*RST:	0
Example:	See Exampl on page 38.	le"Configuring impairments to LoRa modulation"
Manual operation:	See "Symbo	ol Timing Error" on page 21

6.5 Trigger commands

[:SOURce <hw>]:BB:LORA[:TRIGger]:SEQuence</hw>	50
[:SOURce <hw>]:BB:LORA:TRIGger:SOURce</hw>	50
[:SOURce <hw>]:BB:LORA:TRIGger[:EXTernal]:SYNChronize:OUTPut</hw>	50
[:SOURce <hw>]:BB:LORA:TRIGger[:EXTernal]:DELay</hw>	
[:SOURce <hw>]:BB:LORA:TRIGger[:EXTernal]:INHibit</hw>	51
[:SOURce <hw>]:BB:LORA:TRIGger:OBASeband:DELay</hw>	51
[:SOURce <hw>]:BB:LORA:TRIGger:OBASeband:INHibit</hw>	51
[:SOURce <hw>]:BB:LORA:TRIGger:ARM:EXECute</hw>	51
[:SOURce <hw>]:BB:LORA:TRIGger:EXECute</hw>	52
[:SOURce <hw>]:BB:LORA:TRIGger:RMODe</hw>	
[:SOURce <hw>]:BB:LORA:TRIGger:SLENgth</hw>	52
[:SOURce <hw>]:BB:LORA:TRIGger:SLUNit</hw>	52
[:SOURce <hw>]:BB:LORA:TRIGger:TIME:DATE</hw>	53
[:SOURce <hw>]:BB:LORA:TRIGger:TIME:TIME</hw>	53
[:SOURce <hw>]:BB:LORA:TRIGger:TIME[:STATe]</hw>	54

[:SOURce<hw>]:BB:LORA[:TRIGger]:SEQuence <Sequence>

Sets the trigger mode.

Parameters:			
<sequence></sequence>	AUTO RETRigger AAUTo ARETrigger SINGle		
	*RST: AUTO		
Example:	See Example"Trigger configuration" on page 39.		
Manual operation:	See "Mode" on page 24		

[:SOURce<hw>]:BB:LORA:TRIGger:SOURce <Source>

Selects the trigger signal source and determines the way the triggering is executed. Provided are:

- Internal triggering by a command (INTernal)
- External trigger signal via one of the User x connectors EGT1: External global trigger
- In primary-secondary instrument mode, the external baseband synchronization signal (BBSY)
- EXTernal: Setting only

Provided only for backward compatibility with other Rohde & Schwarz signal generators.

The R&S SMBV100B accepts this value and maps it automatically as follows: EXTernal = EGT1

Parameters:

<source/>	INTernal EGT1 EXTernal BBSY	
	*RST:	INTernal
Example:	See Examp	le"Trigger configuration" on page 39.
Manual operation:	See "Source" on page 26	

[:SOURce<hw>]:BB:LORA:TRIGger[:EXTernal]:SYNChronize:OUTPut <Output>

Enables signal output synchronous to the trigger event.

Parameters:	
<output></output>	1 ON 0 OFF
	*RST: 1
Example:	See Example"Trigger configuration" on page 39.
Manual operation:	See "Sync. Output to External Trigger/Sync. Output to Trigger" on page 26

[:SOURce<hw>]:BB:LORA:TRIGger[:EXTernal]:DELay <Delay>

Sets the trigger delay.

Parameters:

<delay></delay>	float	
	Range: Increment: *RST:	0 to 2147483647 0.01 0
Example:	See Example"Trigger configuration" on page 39.	
Manual operation:	See "Extern	al Delay/Trigger Delay" on page 27

[:SOURce<hw>]:BB:LORA:TRIGger[:EXTernal]:INHibit <Inhibit>

Specifies the duration by which a restart is inhibited.

Parameters:		
<inhibit></inhibit>	integer	
	Range: *RST:	0 to dynamic 0
Example:	See Example"Trigger configuration" on page 39.	
Manual operation:	See "External Inhibit/Trigger Inhibit" on page 27	

[:SOURce<hw>]:BB:LORA:TRIGger:OBASeband:DELay <Delay>

Sets the trigger delay for triggering by the trigger signal from the other path.

Parameters:

<delay></delay>	float	
	Range: Increment: *RST:	0 to 65535 0.01 0
Example:	See Examp	le"Trigger configuration" on page 39.

[:SOURce<hw>]:BB:LORA:TRIGger:OBASeband:INHibit <Inhibit>

For triggering via the other path, specifies the duration by which a restart is inhibited.

Parameters:			
<inhibit></inhibit>	integer		
	Range: *RST:	0 to 67108863 0	
Example:	See Examp	le"Trigger configuration" on page 39.	

[:SOURce<hw>]:BB:LORA:TRIGger:ARM:EXECute

Stops signal generation; a subsequent trigger event restarts signal generation.

Example: See Example"Trigger configuration" on page 39.

Usage: Event

Manual operation: See "Arm" on page 26

[:SOURce<hw>]:BB:LORA:TRIGger:EXECute

Executes a trigger.

Example:See Example"Trigger configuration" on page 39.Usage:Event

Manual operation: See "Execute Trigger" on page 26

[:SOURce<hw>]:BB:LORA:TRIGger:RMODe <RMode>

Queries the signal generation status.

Parameters:		
<rmode></rmode>	STOP RUN	
	*RST:	STOP
Example:	See Exampl	e"Trigger configuration" on page 39.
Manual operation:	See "Runnin	g/Stopped" on page 25

[:SOURce<hw>]:BB:LORA:TRIGger:SLENgth <SLength>

Defines the length of the signal sequence that is output in the SINGle trigger mode

Parameters: <slength></slength>	integer		
	Range: *RST:	1 to dynamic 1	
Example:	See Example"Trigger configuration" on page 39.		
Manual operation:	See "Signa	I Duration" on page 25	

[:SOURce<hw>]:BB:LORA:TRIGger:SLUNit <SIUnit>

Defines the unit for the entry of the signal sequence length.

Parameters:				
<siunit></siunit>	SEQuence SAMPle			
	*RST:	SEQuence		
Example:	SOURcel:BB	LORA:TRIGger:SEQuence SING		
	SOURcel:BB	LORA:TRIGger:SLUNit SEQ		
	SOURcel:BB:	LORA:TRIGger:SLENgth 2		
Manual operation:	See "Signa	Duration Unit" on page 24		

[:SOURce<hw>]:BB:LORA:TRIGger:TIME:DATE <Year>, <Month>, <Day>

Sets the date for a time-based trigger signal. For trigger modes single or armed auto, you can activate triggering at this date via the following command:

SOURce<hw>:BB:<DigStd>:TRIGger:TIME:STATe

<DigStd> is the mnemonic for the digital standard, for example, ARB. Time-based triggering behaves analogously for all digital standards that support this feature.

1980 to 9999

Parameters:	
<year></year>	integer
	Range:

<month></month>	integer Range:	1 to	o 12
<day></day>	integer Range:	1 to	o 31
Example:	See example "Configure a time-based trigger signal" in the sub- chapter "Trigger Commands" of the chapter "SOURce:BB:ARB subsystem" in the R&S SMBV100B user manual.		
Manual operation:	See "Trigge	r Tim	ne" on page 25

[:SOURce<hw>]:BB:LORA:TRIGger:TIME:TIME <Hour>, <Minute>, <Second>

Sets the time for a time-based trigger signal. For trigger modes single or armed auto, you can activate triggering at this time via the following command:

SOURce<hw>:BB:<DigStd>:TRIGger:TIME:STATe

<DigStd> is the mnemonic for the digital standard, for example, ARB. Time-based triggering behaves analogously for all digital standards that support this feature.

Parameters:

<hour></hour>	integer	
	Range:	0 to 23
<minute></minute>	integer	
	Range:	0 to 59
<second></second>	integer	
	Range:	0 to 59
Example:	See exampl chapter "Trig subsystem"	le "Configure a time-based trigger signal" in the sub- gger Commands" of the chapter "SOURce:BB:ARB in the R&S SMBV100B user manual.
Manual operation:	See "Trigge	r Time" on page 25

[:SOURce<hw>]:BB:LORA:TRIGger:TIME[:STATe] <State>

Activates time-based triggering with a fixed time reference. If activated, the R&S SMBV100B triggers signal generation when its operating system time matches a specified time.

Specify the trigger date and trigger time with the following commands:

SOURce<hw>:BB:<DigStd>:TRIGger:TIME:DATE

SOURce<hw>:BB:<DigStd>:TRIGger:TIME:TIME

<DigStd> is the mnemonic for the digital standard, for example, ARB. Time-based triggering behaves analogously for all digital standards that support this feature.

Parameters:

<state></state>	1 ON 0 OFF		
	*RST: 0		
Example:	See example "Configure a time-based trigger signal" in the sub- chapter "Trigger Commands" of the chapter "SOURce:BB:ARB subsystem" in the R&S SMBV100B user manual.		
Manual operation:	See "Time Based Trigger" on page 25		

6.6 Marker commands

[:SOURce <hw>]:BB:LORA:TRIGger:OUTPut<ch>:MODE</ch></hw>	54
: [:SOURce <hw>]:BB:LORA:TRIGger:OUTPut<ch>:DELay</ch></hw>	54
: [:SOURce <hw>]:BB:LORA:TRIGger:OUTPut<ch>:ONTime</ch></hw>	55
: [:SOURce <hw>]:BB:LORA:TRIGger:OUTPut<ch>:OFFTime</ch></hw>	55
: [:SOURce <hw>]:BB:LORA:TRIGger:OUTPut<ch>:PATTern</ch></hw>	.55
: [:SOURce <hw>]:BB:LORA:TRIGger:OUTPut<ch>:PULSe:DIVider</ch></hw>	55
: [:SOURce <hw>]:BB:LORA:TRIGger:OUTPut<ch>:PULSe:FREQuency?</ch></hw>	56

[:SOURce<hw>]:BB:LORA:TRIGger:OUTPut<ch>:MODE <Mode>

Defines the signal for the selected marker output.

Parameters:

<mode></mode>	RESTart PULSe PATTern RATio TRIGger FRAMe		
	*RST:	RESTart	
Example:	See Exampon page 39	ble"Configure and enable standard marker signals").	
Manual operation:	See "Mode	" on page 28	

[:SOURce<hw>]:BB:LORA:TRIGger:OUTPut<ch>:DELay <Delay>

Defines the delay between the signal on the marker outputs and the start of the signals.

Parameters: <Delay> float Range: 0 to 16777215 Increment: 1 *RST: 0 Default unit: Samples Example: See Example"Configure and enable standard marker signals" on page 39. Manual operation: See "Delay" on page 29

[:SOURce<hw>]:BB:LORA:TRIGger:OUTPut<ch>:ONTime <OnTime> [:SOURce<hw>]:BB:LORA:TRIGger:OUTPut<ch>:OFFTime <OffTime>

Sets the number of samples during which the marker output is on or off.

Parameters: <0ffTime>	integer	
	Range: *RST:	1 to 16777215 1
Example:	See Example"Configure and enable standard marker signals" on page 39.	
Manual operation:	See "Mode"	on page 28

[:SOURce<hw>]:BB:LORA:TRIGger:OUTPut<ch>:PATTern <Pattern>, <BitCount>

Sets the bit pattern defining the marker signal.

Parameters:		
<pattern></pattern>	numeric	
	*RST:	#H2
<bitcount></bitcount>	integer	
	Range:	1 to 64
	*RST:	2
Example:	See Example"Configure and enable standard marker signals" on page 39.	
Manual operation:	See "Mode"	on page 28

[:SOURce<hw>]:BB:LORA:TRIGger:OUTPut<ch>:PULSe:DIVider <Divider>

Set the pulse divider for marker mode PULSe.

Parameters:

<Divider>

integer Range: 2 to 1024 *RST: 2

Example:	:	See [:SOURce <hw>]:BB:LORA:TRIGger:OUTPut<ch>:</ch></hw>
	1	PULSe: FREQuency? on page 56.
	-	

Manual operation: See "Mode" on page 28

[:SOURce<hw>]:BB:LORA:TRIGger:OUTPut<ch>:PULSe:FREQuency?

Queries the pulse frequency.

The return value depends on the pulse divider, which is the sample rate divider ded by the pulse divider.

Return values:

<frequency></frequency>	float		
	Range: Increment: *RST:	2 to 1024 1E-3 2	
Example:	SOURce1:BB: SOURce1:BB: SOURce1:BB: // 500000 SOURce1:BB: // 125000	LORA:TRIGger:OUTPut1:MODE PULSe LORA:TRIGger:OUTPut1:PULSe:DIVider 4 LORA:SRATe:VARiation? LORA:TRIGger:OUTPut1:PULSe:FREQuency?	
Usage:	Query only		
Manual operation:	See "Mode'	on page 28	

6.7 Clock commands

[:SOURce<hw>]:BB:LORA:CLOCk:SOURce <Source>

Selects the clock source:

• INTernal: Internal clock reference

Parameters:

<source/>	INTernal	
	*RST:	INTernal
Example:	See Example"Clock settings" on page 39.	
Manual operation:	See "Clock	Source" on page 30

Glossary: Abbreviations and definitions

С

CEPT: European Conference of Postal and Telecommunications Administrations

CSS: Chirp Spread Spectrum

CW: Continous Wave

Ε

ECO: European Communications Office

ERC: European Radiocommunications Committee

ETSI: European Telecommunications Standards Institute

F

FCC: Federal Communications Commission

IoT: Internet of Things

L

LoRa: Longe Range

LoRaWAN: Longe Range Wide Area Network

Ρ

PER: Packet Error Rate

PHY: Physical layer

R

REC: Physical layer

W

WAN: LoRaWAN

Glossary: Specifications and references

Symbols

1MA295: Rohde&Schwarz Application Note 1MA295: Characterization of LoRa Devices https://www.rohde-schwarz.com/appnote/1MA295

С

CEPT/ERC Recommendation 70-03: "Relating to the use of Short Range Devices (SRD)" Available at ECO data base https://www.ecodocdb.dk/download/25c41779-cd6e/Rec7003e.pdf

Ε

ETSI Specification EN 300 220-1: "Short Range Devices (SRD) operating in the frequency range 25 MHz to 1000 MHz" https://www.etsi.org/deliver/etsi_en/300200_300299/30022001/

F

FCC Specification 47 Part 15.247: "47 CFR 15.247 - Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz." https://www.govinfo.gov/content/pkg/CFR-2010-title47-vol1/pdf/CFR-2010-title47-vol1-sec15-247.pdf

L

LoRaWAN Regional Parameters Specification: "LoRaWAN[™] 1.1 Regional Parameters"

https://lora-alliance.org/resource-hub/lorawantm-regional-parameters-v11ra

LoRaWAN Specification: "LoRaWANTM 1.1 Specification" https://lora-alliance.org/resource-hub/lorawantm-specification-v11

R

R&S SGMA-GUI Software: Software for control of R&S SGS https://www.rohde-schwarz.com/software/sgs100a/

R&S SGS100A user manual: https://www.rohde-schwarz.com/manual/sgs100a/

List of commands

[:SOURce <hw>]:BB:LORA:BWIDth</hw>	40
[:SOURce <hw>]:BB:LORA:CLOCk:SOURce</hw>	
[:SOURce <hw>]:BB:LORA:FCONfiguration:BMODe:STATe</hw>	
[:SOURce <hw>]:BB:LORA:FCONfiguration:CMODe:STATe</hw>	
[:SOURce <hw>]:BB:LORA:FCONfiguration:CRATe</hw>	
[:SOURce <hw>]:BB:LORA:FCONfiguration:DATA</hw>	
[:SOURce <hw>]:BB:LORA:FCONfiguration:DATA:DPATtern</hw>	
[:SOURce <hw>]:BB:LORA:FCONfiguration:DATA:DSELection</hw>	
[:SOURce <hw>]:BB:LORA:FCONfiguration:DLENgth</hw>	45
[:SOURce <hw>]:BB:LORA:FCONfiguration:EACTive:STATe</hw>	45
[:SOURce <hw>]:BB:LORA:FCONfiguration:HACTive:STATe</hw>	45
[:SOURce <hw>]:BB:LORA:FCONfiguration:IACTive:STATe</hw>	
[:SOURce <hw>]:BB:LORA:FCONfiguration:PCRC:STATe</hw>	
[:SOURce <hw>]:BB:LORA:FCONfiguration:PRCMode:STATe</hw>	
[:SOURce <hw>]:BB:LORA:FCONfiguration:RBIT:STATe</hw>	
[:SOURce <hw>]:BB:LORA:FCONfiguration:SFACtor</hw>	47
[:SOURce <hw>]:BB:LORA:FCONfiguration:SMODe</hw>	
[:SOURce <hw>]:BB:LORA:FCONfiguration:UPLength</hw>	
[:SOURce <hw>]:BB:LORA:IINTerval</hw>	
[:SOURce <hw>]:BB:LORA:IMPairments:FDDeviation</hw>	
[:SOURce <hw>]:BB:LORA:IMPairments:FDRate</hw>	48
[:SOURce <hw>]:BB:LORA:IMPairments:FDRift:STATe</hw>	48
[:SOURce <hw>]:BB:LORA:IMPairments:FDTYpe</hw>	
[:SOURce <hw>]:BB:LORA:IMPairments:FOFFset</hw>	
[:SOURce <hw>]:BB:LORA:IMPairments:STATe</hw>	
[:SOURce <hw>]:BB:LORA:IMPairments:STERror</hw>	
[:SOURce <hw>]:BB:LORA:OSAMpling</hw>	
[:SOURce <hw>]:BB:LORA:PRESet</hw>	
[:SOURce <hw>]:BB:LORA:SETTing:CATalog</hw>	
[:SOURce <hw>]:BB:LORA:SETTing:DELete</hw>	
[:SOURce <hw>]:BB:LORA:SETTing:LOAD</hw>	41
[:SOURce <hw>]:BB:LORA:SETTing:STORe</hw>	41
[:SOURce <hw>]:BB:LORA:SLENgth</hw>	41
[:SOURce <hw>]:BB:LORA:SRATe:VARiation</hw>	42
[:SOURce <hw>]:BB:LORA:STATe</hw>	
[:SOURce <hw>]:BB:LORA:TRIGger:ARM:EXECute</hw>	51
[:SOURce <hw>]:BB:LORA:TRIGger:EXECute</hw>	
[:SOURce <hw>]:BB:LORA:TRIGger:OBASeband:DELay</hw>	51
[:SOURce <hw>]:BB:LORA:TRIGger:OBASeband:INHibit</hw>	51
[:SOURce <hw>]:BB:LORA:TRIGger:OUTPut<ch>:DELay</ch></hw>	54
[:SOURce <hw>]:BB:LORA:TRIGger:OUTPut<ch>:MODE</ch></hw>	54
[:SOURce <hw>]:BB:LORA:TRIGger:OUTPut<ch>:OFFTime</ch></hw>	
[:SOURce <hw>]:BB:LORA:TRIGger:OUTPut<ch>:ONTime</ch></hw>	
[:SOURce <hw>]:BB:LORA:TRIGger:OUTPut<ch>:PATTern</ch></hw>	55
[:SOURce <hw>]:BB:LORA:TRIGger:OUTPut<ch>:PULSe:DIVider</ch></hw>	
[:SOURce <hw>]:BB:LORA:TRIGger:OUTPut<ch>:PULSe:FREQuency?</ch></hw>	
[:SOURce <hw>]:BB:LORA:TRIGger:RMODe</hw>	

52
50
53
53
54
50
51
50
43
50

Index

Α

Application cards	7 7
Arm	26
Armed	20
Auto, trigger mode	
Retrigger, trigger mode	
Auto	
Trigger mode	24
P	

В

Bandwidth	16
Blocking test	
Generate adjacent channel blocking signal	34
Test setup	33
Brochures	7

С

Clock Source	30
Coding	
Activate	
Interleaver active	18
Rate	
Conventions	
SCPI commands	

D

Data	
Longth	10
Pattern	
Payload CRC	
Source	19
Data sheets	7
Default settings	
LoRa	15
Delay	
Marker	
Trigger	
Documentation overview	6
	•

F

Frame configuration Burst mode	17 20
Coding rate	18
Compressed mode	20
Data	18
Data length	19
Data source	19
Encoder active	18
Header	20
Header active	20
Interleaver active	18
Modulation and coding	
Payload CRC	20
Payload reduced coding mode	17
Reserved bit	20
Spreading factor	18

Sync mode Unmodulated preamble length	
Frequency drift	
Configuration	21
Deviation	
Rate	22
State	
Туре	
Frequency offset	21

G

Generate		
Waveform file	e15	5
Getting started	6	ò

Н

Header	
Activate	20
Burst mode	20
Compressed mode	20
Reserved bit	20
Help	6
How to	
Generate adjacent channel blocking test signals .	34
Generate LoRa signals	32
Generate Rx sensitivity test signals	32

Т

Idle interval	
Impairments	20
Frequency drift configuration	
Frequency drift deviation	22
Frequency drift rate	22
Frequency drift state	21
Frequency drift type	22
Frequency offset	21
State	21
Symbol timing error	21
Installation	5
Instrument help	6
Instrument security procedures	7

L

LoRa	
About	
Applications	13
Blocking test	33
Channel allocation	10
Frame structure	
Generating test signals	32
Key features	13
Message structure	11
Modulation	9
LoRa testing	
Rx sensitivity test	32
LoRaWAN	
Device communication classes	12
Network architecture	

Μ

Marker delay Marker mode	29 . 28
Modulation	10
Spreading factor	18

0

Open source acknowledgment (OSA)	7
Oversampling	16

Ρ

Payload reduced coding mode17	
R	
Release notes	

Remote control	
Programming examples	
Retrigger	
Trigger mode	24
Rx sensitivity test	
Generate signal	32
Test setup	32

S

Safety instructions	7
Sample rate variation	
Save/Recall	
LoRa	15
Security procedures	7
Sequence length	
Service manual	6
Set to default	
LoRa	15
Signal duration unit	24
Signal generation status	
Single	
Trigger	
Standard settings	
LoRa	15
State	
LoRa	15
Symbol timing error	21
Synchronization mode	
-	

Т

Time-based trigger	
Date	25
State	25
Time	
Trigger	
Delay	27
External	27
External, inhibit	27
Mode	24
Signal duration	
Source	26
Synchronize output	

U

Unmodulated preamble length	17
User manual	6

V

Videos	7
W	
Waveform file Create	15
White papers	7