This document describes the following software options:

- **R&S®SMBVB-K46**
  1413.3884.xx

This manual describes firmware version FW 4.60.112.xx and later of the R&S®SMBV100B.

The following abbreviations are used throughout this manual: R&S®SMBV100B is abbreviated as R&S SMBVB, R&S®WinIQSIM2™ is abbreviated as R&S WinIQSIM2; the license types 02/03/07/11/13/16/12 are abbreviated as xx.
## Contents

1 Preface ....................................................................................................................... 7

1.1 Documentation Overview .......................................................................................... 7

1.1.1 Getting Started Manual ............................................................................................. 7

1.1.2 User Manuals and Help ............................................................................................ 7

1.1.3 Service Manual ........................................................................................................... 7

1.1.4 Instrument Security Procedures .................................................................................... 8

1.1.5 Basic Safety Instructions ............................................................................................ 8

1.1.6 Data Sheets and Brochures ....................................................................................... 8

1.1.7 Release Notes and Open Source Acknowledgment (OSA) .......................................... 8

1.1.8 Application Notes, Application Cards, White Papers, etc ................................................ 8

2 Welcome to the CDMA2000 Digital Standard ................................................................. 9

2.1 Accessing the CDMA2000 Dialog ............................................................................... 9

2.2 Scope ........................................................................................................................... 10

2.3 Notes on Screenshots ................................................................................................ 10

3 About this Digital Standard ............................................................................................. 11

3.1 Modulation System CDMA2000 ................................................................................... 12

3.1.1 Modulation System CDMA2000 in the Downlink (Forward) ...................................... 12

3.1.2 Modulation System CDMA2000 in the Uplink (Reverse) ............................................ 13

3.1.3 Data Source - Uplink and Downlink ............................................................................. 14

3.1.4 Channel Coding - Uplink and Downlink .................................................................... 14

3.1.5 Long-Code Scrambling Generator - Downlink .............................................................. 15

3.1.6 Power Control Puncturing - Downlink ........................................................................ 15

3.1.7 Variable-Length Walsh Spreading - Downlink ............................................................ 16

3.1.8 PN Short-Code Scrambling - Downlink ....................................................................... 16

3.1.9 Spreading - Uplink ....................................................................................................... 16

3.1.9.1 Variable Length Walsh Spreading ................................................................................. 16

3.1.9.2 64-Ary Orthogonal Modulator ..................................................................................... 16

3.1.10 Scrambling - Uplink ................................................................................................... 17

3.1.10.1 Scrambling for Radio Configuration 1 and 2 ............................................................... 17

3.1.10.2 Scrambling for Radio Configuration 3, 4 and 5 ......................................................... 18

3.1.11 Baseband Filtering - Uplink and Downlink ............................................................... 19
3.1.12 I/Q Modulator - Uplink and Downlink.................................................................19
3.1.13 Constellation of I/Q Signals - Downlink.................................................................20
3.1.13.1 BPSK Channels.....................................................................................................20
3.1.13.2 QPSK Channels.....................................................................................................21
3.1.14 Power Control - Downlink and Uplink.................................................................22

4 CDMA2000 Configuration and Settings.................................................................23
  4.1 General Settings for CDMA2000 Signals.................................................................23
  4.2 Trigger Settings.........................................................................................................26
  4.3 Marker Settings.........................................................................................................29
  4.4 Clock Settings...........................................................................................................31
  4.5 Global Connector Settings.......................................................................................32
  4.6 CDMA2000 Basestations and Mobile Stations Settings........................................32
    4.6.1 Configure Base Station or Mobile Station............................................................33
    4.6.2 Predefined Settings - Downlink............................................................................36
    4.6.3 Additional Mobile Station - Uplink........................................................................40
    4.6.4 Base Station Configuration..................................................................................41
      4.6.4.1 Common Settings..............................................................................................42
      4.6.4.2 Channel Table - BS............................................................................................43
      4.6.4.3 Code Domain and Channel Graphs........................................................................50
      4.6.5 More Parameters - BS Channel Table.......................................................................54
        4.6.5.1 General Settings..............................................................................................55
        4.6.5.2 Power Control..................................................................................................55
        4.6.5.3 Channel Coding...............................................................................................58
        4.6.5.4 Additional Sync Channel Parameters.................................................................61
        4.6.6 More Parameters for F-PDCH - BS............................................................................63
          4.6.6.1 General Settings for Packet Channel.................................................................64
          4.6.6.2 Subpacket Table Settings..................................................................................64
          4.6.6.3 Subpacket Graph..............................................................................................67
          4.6.7 Mobile Station Configuration (MS).......................................................................67
            4.6.7.1 Common Settings - MS....................................................................................67
            4.6.7.2 Power Control - MS.........................................................................................69
            4.6.7.3 Channel Table - MS..........................................................................................72
  4.7 Filter / Clipping / ARB Settings................................................................................76
4.7.1 Filter Settings ................................................................. 76
4.7.2 Clipping Settings ............................................................ 77
4.7.3 ARB Settings ................................................................. 78
4.7.4 I/Q Setting ................................................................. 79

5 Remote-Control Commands .............................................. 80
  5.1 Primary Commands ...................................................... 81
  5.2 Filter/Clipping Settings ................................................ 87
    5.2.1 Filter Settings ....................................................... 87
    5.2.2 Clipping Settings .................................................. 90
  5.3 Trigger Settings .......................................................... 92
  5.4 Marker Settings .......................................................... 95
  5.5 Clock Settings ............................................................ 97
  5.6 Predefined Settings ...................................................... 97
  5.7 Base Stations Settings ................................................ 102
  5.8 Mobile Station Settings .............................................. 132

List of Commands ............................................................. 145
Index .................................................................................. 148
1 Preface

1.1 Documentation Overview

This section provides an overview of the R&S SMBV100B user documentation. Unless specified otherwise, you find the documents on the R&S SMBV100B product page at:

www.rohde-schwarz.com/manual/smbv100b

1.1.1 Getting Started Manual

Introduces the R&S SMBV100B and describes how to set up and start working with the product. Includes basic operations, typical measurement examples, and general information, e.g. safety instructions, etc. A printed version is delivered with the instrument.

1.1.2 User Manuals and Help

Separate manuals for the base unit and the software options are provided for download:

- Base unit manual
  Contains the description of all instrument modes and functions. It also provides an introduction to remote control, a complete description of the remote control commands with programming examples, and information on maintenance, instrument interfaces and error messages. Includes the contents of the getting started manual.

- Software option manual
  Contains the description of the specific functions of an option. Basic information on operating the R&S SMBV100B is not included.

All user manuals are also available for download or for immediate display on the Internet.

1.1.3 Service Manual

Describes the performance test for checking the rated specifications, module replacement and repair, firmware update, troubleshooting and fault elimination, and contains mechanical drawings and spare part lists.

The service manual is available for registered users on the global Rohde & Schwarz information system (GLORIS, https://gloris.rohde-schwarz.com).
1.1.4 **Instrument Security Procedures**

Deals with security issues when working with the R&S SMBV100B in secure areas. It is available for download on the Internet.

1.1.5 **Basic Safety Instructions**

Contains safety instructions, operating conditions and further important information. The printed document is delivered with the instrument.

1.1.6 **Data Sheets and Brochures**

The data sheet contains the technical specifications of the R&S SMBV100B. It also lists the options and their order numbers and optional accessories. The brochure provides an overview of the instrument and deals with the specific characteristics.

See [www.rohde-schwarz.com/brochure-datasheet/smbv100b](http://www.rohde-schwarz.com/brochure-datasheet/smbv100b)

1.1.7 **Release Notes and Open Source Acknowledgment (OSA)**

The release notes list new features, improvements and known issues of the current firmware version, and describe the firmware installation. The open source acknowledgment document provides verbatim license texts of the used open source software.

See [www.rohde-schwarz.com/firmware/smbv100b](http://www.rohde-schwarz.com/firmware/smbv100b)

1.1.8 **Application Notes, Application Cards, White Papers, etc.**

These documents deal with special applications or background information on particular topics.

See [www.rohde-schwarz.com/application/smbv100b](http://www.rohde-schwarz.com/application/smbv100b)
2 Welcome to the CDMA2000 Digital Standard

The R&S SMBVB-K46 is a firmware application that adds functionality to generate signals in accordance with the CDMA2000 standard 3GPP2 C.S0002-C, version 1.0, May 2002 (release C). CDMA2000® is a registered trademark of the Telecommunications Industry Association (TIA –USA).

The R&S SMBV100B simulates CDMA2000 at the physical channel level. The following list gives an overview of the R&S SMBVB-K46 features:

- Configuration of up to four base stations or four mobile stations
- All special channels and up to 78 channels on the downlink (depending on the radio configuration)
- Packet channel according to 1xEV-DV on the downlink
- "Misuse For Output Power Control" parameter for varying the original normal transmit power over time
- Simulation of up to 64 additional mobile stations
- Clipping for reducing the crest factor
- All channel coding modes included in IS-2000 (Frame Quality Indicator, Convolutional Encoder, Turbo Encoder, Symbol Puncture, Interleaver, etc.)

This user manual contains a description of the functionality that the application provides, including remote control operation.

All functions not discussed in this manual are the same as in the base unit and are described in the R&S SMBV100B user manual. The latest version is available at:

www.rohde-schwarz.com/manual/SMBV100B

Installation

You can find detailed installation instructions in the delivery of the option or in the R&S SMBV100B service manual.

2.1 Accessing the CDMA2000 Dialog

To open the dialog with CDMA2000 settings

► In the block diagram of the R&S SMBV100B, select "Baseband > CDMA2000".

A dialog box opens that displays the provided general settings.

The signal generation is not started immediately. To start signal generation with the default settings, select "State > On".
2.2 Scope

Tasks (in manual or remote operation) that are also performed in the base unit in the same way are not described here.

In particular, it includes:

- Managing settings and data lists, like storing and loading settings, creating and accessing data lists, or accessing files in a particular directory.
- Information on regular trigger, marker and clock signals and filter settings, if appropriate.
- General instrument configuration, such as checking the system configuration, configuring networks and remote operation
- Using the common status registers

For a description of such tasks, see the R&S SMBV100B user manual.

2.3 Notes on Screenshots

When describing the functions of the product, we use sample screenshots. These screenshots are meant to illustrate as many as possible of the provided functions and possible interdependencies between parameters. The shown values may not represent realistic usage scenarios.

The screenshots usually show a fully equipped product, that is: with all options installed. Thus, some functions shown in the screenshots may not be available in your particular product configuration.
3 About this Digital Standard

CDMA2000 is the North American standard for the third mobile radio generation (3G). It is a further development of the North American mobile radio system of the second-generation IS95 (CDMA).

Required options

The basic equipment layout for generating CDMA2000 signals includes the options:
- Base unit
- Option CDMA2000 (R&S SMBVB-K46)

For more information, see data sheet.

Overview of main CDMA2000 parameters

The R&S SMBV100B generates the CDMA2000 signals with a chip rate of 1,2288 Mcps, corresponding to the so-called "Spreading Rate 1".

The CDMA2000 signal is generated in arbitrary waveform mode, i.e. the signal is first calculated and then output.

The following table gives an overview of parameters of the modulation system CDMA2000.

Table 3-1: Parameters of the modulation system

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spreading rate</td>
<td>1.2288 MHz</td>
</tr>
<tr>
<td>Channel types</td>
<td></td>
</tr>
<tr>
<td>Downlink:</td>
<td></td>
</tr>
<tr>
<td>- Forward Pilot (F-PICH)</td>
<td></td>
</tr>
<tr>
<td>- Sync (F-SYNC)</td>
<td></td>
</tr>
<tr>
<td>- Paging (F-PCH)</td>
<td></td>
</tr>
<tr>
<td>- Transmit Diversity Pilot (F-TD-PICH)</td>
<td></td>
</tr>
<tr>
<td>- Auxiliary Pilot (F-API)</td>
<td></td>
</tr>
<tr>
<td>- Auxiliary Transmit Diversity Pilot (F-ATDPCH)</td>
<td></td>
</tr>
<tr>
<td>- Broadcast (F-BCH)</td>
<td></td>
</tr>
<tr>
<td>- Quick Paging (F-QPCH)</td>
<td></td>
</tr>
<tr>
<td>- Common Power Control (F-CPCCH)</td>
<td></td>
</tr>
<tr>
<td>- Common Assignment (F-CACH)</td>
<td></td>
</tr>
<tr>
<td>- Forward Common Control (F-CCCH)</td>
<td></td>
</tr>
<tr>
<td>- Packet Channels</td>
<td></td>
</tr>
<tr>
<td>- Forward Packet Data Control (F-PDCCH)</td>
<td></td>
</tr>
<tr>
<td>- Forward Packet Data (F-PDCH)</td>
<td></td>
</tr>
<tr>
<td>- Traffic Channels</td>
<td></td>
</tr>
<tr>
<td>- Forward Dedicated Control (F-DCCH)</td>
<td></td>
</tr>
<tr>
<td>- Forward Fundamental (F-FCH)</td>
<td></td>
</tr>
<tr>
<td>- Forward Supplemental (F-SCH)</td>
<td></td>
</tr>
<tr>
<td>Uplink:</td>
<td></td>
</tr>
<tr>
<td>- Reverse Pilot (R-PICH)</td>
<td></td>
</tr>
<tr>
<td>- Access (R-ACH)</td>
<td></td>
</tr>
<tr>
<td>- Enhanced Access (R-EACH)</td>
<td></td>
</tr>
<tr>
<td>- Reverse Common Control (R-CCCH)</td>
<td></td>
</tr>
<tr>
<td>- Traffic Channel</td>
<td></td>
</tr>
<tr>
<td>- Reverse Dedicated Control (R-DCCH)</td>
<td></td>
</tr>
<tr>
<td>- Reverse Fundamental (R-FCH)</td>
<td></td>
</tr>
<tr>
<td>- Reverse Supplemental Code (R-SCCH)</td>
<td></td>
</tr>
<tr>
<td>- Reverse Supplemental (R-SCH)</td>
<td></td>
</tr>
</tbody>
</table>
The following sections provide some background information on basic terms and principles used in the CDMA2000 modulation system.

### 3.1 Modulation System CDMA2000

The following simplified diagram is used to explain the system principle of CDMA200 in the forward (down) and reverse (up) link. The exact system configuration depends on parameters like link direction, spreading rate, mode, radio configuration and channel type. A detailed description cannot be given in this manual. For further information, refer to the IS2000 standard.

#### 3.1.1 Modulation System CDMA2000 in the Downlink (Forward)

The following block diagram shows the components of the CDMA2000 transmission system in the downlink.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel count</td>
<td>In downlink 4 base stations each with up to 78 code channels (depending on the radio configuration). In uplink 4 mobile stations with up to 8 code channels (depending on the radio configuration).</td>
</tr>
<tr>
<td>Radio configuration</td>
<td>RC 1 – RC 5 &amp; RC10</td>
</tr>
<tr>
<td>Frame length</td>
<td>Radio frame: 5 ms, 10 ms, 20 ms, 40 ms, 80 ms, 160 ms (depending on the channel type and the radio configuration)</td>
</tr>
<tr>
<td>PN offset</td>
<td>0 ... 511</td>
</tr>
<tr>
<td>Quasi Orthogonal Walsh Set</td>
<td>set 1 – set 3</td>
</tr>
<tr>
<td>Channel coding</td>
<td>All channel coding modes included in IS-2000 (Frame Quality Indicator, Convolutional Encoder, Turbo Encoder, Symbol Puncture, Interleaver, etc.)</td>
</tr>
<tr>
<td>Long Code Mask</td>
<td>0 ... 3FF FFFF FFFF hex</td>
</tr>
</tbody>
</table>
Figure 3-1: Components of the CDMA2000 transmission system in the downlink (forward)

3.1.2 Modulation System CDMA2000 in the Uplink (Reverse)

The following block diagram shows the components of the CDMA2000 transmission system in the uplink.
3.1.3 Data Source - Uplink and Downlink

The data fields of all channels can be filled from all possible data sources: pattern (all1, all0, user-defined up to 64 bits), PRBS data, data lists and external data.

3.1.4 Channel Coding - Uplink and Downlink

In contrast to 3GPP FDD, channel coding with CDMA2000 is part of the physical layer. The channel coding procedure can slightly vary depending on channel type, frame length and data rate. The basic coding procedure is illustrated by the coding block in the diagram above.

For a more exact definition, refer to the standard.

- **Add reserved bits:** filled with "0" bits
- **Add frame quality indicator:** calculation and insertion of a CRC (cyclic redundancy code) checksum for error identification.
- **Add 8 reserved/encoder**
- **Tail bits:** reserved, tail bits which set the subsequent coder to a defined final state.
- **Convolutional or turbo encoder:** error correction code, depending on data rate and other parameters either by convolutional coding or turbo codes.
Symbol repetition:
Symbol repetition is used together with block symbol puncture for adapting the convolutional or turbo coder output data rate to the required input data rate of the interleaver.

Symbol puncture:
Symbol puncturing (elimination) is used together with block symbol repetition for adapting the convolutional or turbo coder output data rate to the required input data rate of the interleaver.

Block interleaver:
Block-wise permutation of input data sequence of interleaver to reduce bit errors.

3.1.5 Long-Code Scrambling Generator - Downlink

The long-code generator is also referred to as scrambling code generator since it scrambles the chip sequence in a user-specific way (long-code mask).

![Figure 3-3: Long-code generator CDMA2000](image)

The long-code generator is a feedback 42-bit shift register with its status vector linked to a user-specific long-code mask to form the specific long-code sequence.

The generator polynomial of the shift-register section of the long-code generator is:

\[ p(x) = x^{42} + x^{35} + x^{33} + x^{31} + x^{27} + x^{26} + x^{25} + x^{22} + x^{21} + x^{19} + x^{18} + x^{17} + x^{16} + x^{10} + x^{7} + x^{6} + x^{5} + x^{3} + x^{2} + 1 \]

A real long code is used in the forward link. In the reverse link, a complex long code with I and Q component is required. The long code for the I component is derived directly from the 1X generator, that for the Q component corresponds to the I long code delayed by one chip.

3.1.6 Power Control Puncturing - Downlink

To control the output power of the mobile station, the BS sends power control bits in the traffic channel at an 800 Hz rate instead of the scrambled data bits. Depending on the power control bits, the mobile station increases or reduces its output power.
3.1.7 Variable-Length Walsh Spreading - Downlink

Spreading of the CDMA2000 signal is performed in this block. Walsh codes with a variable spreading factor are used. The spreading factor and the Walsh code depend on the spreading rate, channel type, frame length and data rate. To extend the base-station capacity, so-called ‘quasi-orthogonal Walsh sets’ can be used in addition to the Walsh codes. The input data stream of the spreading unit is already complex (I + jQ). If a standard Walsh code is used, spreading is performed by multiplying the input symbol (modulo 2 multiplication) with the real Walsh code. The quasi-orthogonal Walsh code results in complex spreading through an additional rotation of the output phase (the spreading code then consists of a real and an imaginary part).

3.1.8 PN Short-Code Scrambling - Downlink

The (complex) input data stream of the PN short-code scrambler is multiplied by a complex PN sequence (I_{PN} + j Q_{PN}). This is also called ‘quadrature spreading’. With channels of the radio configurations 1 and 2, whose generation is comparable with that of IS-95 systems, this block splits up the input stream in I and Q components.

The base-station-specific parameter PN offset determines the start phase of these PN short-code sequences. This permits signals of different base stations to be distinguished.

Generator polynomial for I and Q components of the PN short code:

\[
P_I(x) = x^{15}+x^{13}+x^9+x^8+x^7+x^5+1
\]

\[
P_Q(x) = x^{15}+x^{12}+x^{11}+x^{10}+x^6+x^5+x^4+x^3+1
\]

The period of a PN short-code sequence is 26.666 ms.

3.1.9 Spreading - Uplink

Increasing the data rate or spreading in the reverse link is performed in different ways depending on the radio configuration and the channel type.

3.1.9.1 Variable Length Walsh Spreading

Walsh codes with a variable spread factor are used for spreading. The spreading factor and the Walsh code depend on the spreading rate, channel type, frame length and the data rate. Spreading is obtained by multiplication of the input symbol (modulo 2 multiplication) by the real Walsh code.

3.1.9.2 64-Ary Orthogonal Modulator

Groups of 6 input bits are used for addressing a line of the Walsh code table with the spread code length of 64. This 'modulator' increases the data rate by a factor of 64/6.
This type of rate increase comes from IS-95 and is used in the radio configurations 1 and 2.

### 3.1.10 Scrambling - Uplink

In the scrambling block of the uplink system, the spread data stream is scrambled with the long code and the PN short code. Different methods are used for the radio configurations 1, 2 and RC3 to RC5.

#### 3.1.10.1 Scrambling for Radio Configuration 1 and 2

![Figure 3-4: Scrambling in the uplink RC 1 and RC2](image)

The output data stream of the spreading block is scrambled with the long code. The rate is increased in addition by a factor of four. The long-code generator is also referred to as scrambling code generator since it scrambles the chip sequence in a user-specific way (long-code mask). This generator exactly corresponds to the generation described in Chapter 3.1.5, "Long-Code Scrambling Generator - Downlink", on page 15 for the downlink.

The real input data stream of the PN short-code scrambler is multiplied by a complex PN sequence ($I_{PN} + jQ_{PN}$). This procedure is also called 'quadrature spreading'. With channels of the radio configurations 1 and 2, whose generation is comparable with that of IS-95 systems, this block splits up the input stream in I and Q components.

In contrast to the downlink, no variable PN offset parameter is available for the PN short code in the reverse link. The PN offset is always 0.

Different generation rules are used for the PN short codes depending on the mode and spreading rate. The generator polynomials of the PN short codes correspond to the polynomials in the downlink (see Chapter 3.1.8, "PN Short-Code Scrambling - Downlink", on page 16). The I and Q data streams consisting of {0, 1} sequences are then mapped to {+1, -1} in the signal point mapping block.

Because of the delay of the Q component, offset QPSK constellation known from the reverse link of IS-95 is obtained from the QPSK constellation. Due to the Q delay, the transfer of the I and Q signal components from one chip to the next is never synchro-
nous. For this reason, there are no zero crossings in the transfer from one chip to the next. This behavior can be seen in the vector diagram below.

Figure 3-5: Scrambling in the uplink RC1 and RC2

3.1.10.2 Scrambling for Radio Configuration 3, 4 and 5

Figure 3-6: Scrambling in the uplink RC3, RC4 and RC5
Here too, the long-code generator defined in Chapter 3.1.5, "Long-Code Scrambling Generator - Downlink", on page 15 for the downlink is used. A complex long-code sequence is required. For this purpose, the output sequence of the generator is used as the I component and the sequence delayed by one chip as the Q component.

The I component of the long code is then multiplied by the I component of the PN short code. The same applies for the Q component. The definition of the PN short code is given in Chapter 3.1.8, "PN Short-Code Scrambling - Downlink", on page 16.

The subsequent operations decimate by factor of 2 and link the Q component to the Walsh sequence (+-) and the I component. They serve for reducing the zero crossings of the I/Q signal at the end of the whole scrambling process. Thus a behavior similar to behavior in the uplink of 3GPP is obtained. It is also known as HPSK (hybrid phase shift keying).

The resulting I/Q output stream is obtained by complex multiplication (modulo 2) of the I/Q input sequence of the scrambler by the complex scramble sequence. The complex scramble sequence is obtained from the long code and the PN short code. The constellation obtained is a combination of QPSK and offset QPSK.

In this mode, the traffic data streams of a channel are mapped either to the I or to the Q path of the complex data stream (see Figure 3-6). With these so-called BPSK channels, the channel component at the scrambler input consists of a real or an imaginary component. As can be seen in the table below, the constellation after complex scrambling is again at the angle bisector.

<table>
<thead>
<tr>
<th>d(n) \ S-Code(n)</th>
<th>-1-j</th>
<th>-1+j</th>
<th>+1-j</th>
<th>+1+j</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>+1+j</td>
<td>+1-j</td>
<td>-1+j</td>
<td>-1-j</td>
</tr>
<tr>
<td>+1</td>
<td>-1-j</td>
<td>-1+j</td>
<td>+1-j</td>
<td>+1+j</td>
</tr>
<tr>
<td>-j</td>
<td>-1+j</td>
<td>+1+j</td>
<td>-1-j</td>
<td>+1-j</td>
</tr>
<tr>
<td>+j</td>
<td>+1-j</td>
<td>-1-j</td>
<td>+1+j</td>
<td>-1+j</td>
</tr>
</tbody>
</table>

### 3.1.11 Baseband Filtering - Uplink and Downlink

This block performs baseband filtering (pulse shaping and band limiting) of the I/Q signal. In addition to the filters specified in the standard, the signal generator also provides equalizer filters with a better adjacent-channel leakage ratio.

### 3.1.12 I/Q Modulator - Uplink and Downlink

The I/Q modulator defined in the IS2000 standard differs from the definition in this implementation. The definition on which the implementation is based is used by virtually all digital communication standards, except IS95 and IS2000.

In the final step, the filtered IQ signal is modulated to the desired RF in a different way in the I/Q modulator:
To generate baseband signals according to IS2000 (CDMA2000 standard) invert the Q-part of the signal, i.e. select "I/Q Modulator > I/Q Swap > On".

See also R&S SMBV100B user manual, section "Applying I/Q Vector Modulation".

### 3.1.13 Constellation of I/Q Signals - Downlink

Depending on radio configuration and channel type, the signal components in the different channels create different subconstellations.

#### 3.1.13.1 BPSK Channels

With some channel types (in RC1/2 and in the pilot channel), the data stream is split up in I and Q components in the PN short code scrambling block. The input data stream of this block is a real +/-1 sequence similar to BPSK. The complex output data sequence is then as follows:

\[ S_{\text{out}}(n) = d_{\text{in}}(n) \ (\text{PN}_I(n) + j \ \text{PN}_Q(n)), \]

with \( d_{\text{in}}(n), \ \text{PN}_I(n), \ \text{PN}_Q(n) \in \{-1, +1\} \).

This yields four different output combinations for \( S_{\text{out}} \):

\[ (-1 - j), (-1 + j), (+1 - j), (+1 + j), \]

i.e. all points are on one of the two angle bisectors at the I/Q level.
3.1.13.2 QPSK Channels

With other channel types, the input data stream of the PN short code scrambling block is a complex ±1 ±j sequence similar to QPSK. The complex output data sequence is then as follows:

\[ S_{out}(n) = (d_i(n) + jd_q(n)) (PN_i(n) + j PN_q(n)) \]

with \( d_i(n), d_q(n), PN_i(n), PN_q(n) \in \{-1, +1\} \).

Table 3-3: Output combinations with QPSK channels

<table>
<thead>
<tr>
<th>PN(n) \ d(n)</th>
<th>-1-j</th>
<th>-1+j</th>
<th>+1-j</th>
<th>+1+j</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1-j</td>
<td>+2j</td>
<td>+2</td>
<td>-2</td>
<td>-2j</td>
</tr>
<tr>
<td>-1+j</td>
<td>+2</td>
<td>-2j</td>
<td>+2j</td>
<td>-2</td>
</tr>
<tr>
<td>+1-j</td>
<td>-2</td>
<td>+2j</td>
<td>-2j</td>
<td>+2</td>
</tr>
<tr>
<td>+1+j</td>
<td>-2j</td>
<td>-2</td>
<td>+2</td>
<td>+2j</td>
</tr>
</tbody>
</table>

This again yields four different output combinations for \( S_{out} \):

-2j, 2j, -2, 2,

i.e. all points are on one of the two axes at the I/Q level.
3.1.14 Power Control - Downlink and Uplink

After spreading and scrambling, a channel-specific power factor $p$ is applied to the signal. For example, a value of -6 dB therefore results in half the level (or 1/4 power).
4 CDMA2000 Configuration and Settings

To access the CDMA2000 settings, select "Baseband > CDMA2000".

Tip: The dialog is comprehensive. To simplify the description and the orientation through this documentation, the headings of the following section follow a common naming convention:

<DialogName/TabName>< - ><SourceDialog>

This common structure is intended to identify your current location in the dialog.

The remote commands required to define these settings are described in Chapter 5, "Remote-Control Commands", on page 80.

- General Settings for CDMA2000 Signals..........................23
- Trigger Settings.................................................................26
- Marker Settings.................................................................29
- Clock Settings.................................................................31
- Global Connector Settings..................................................32
- CDMA2000 Basestations and Mobile Stations Settings........32
- Filter / Clipping / ARB Settings.............................................76

4.1 General Settings for CDMA2000 Signals

This tab provides access to the default and the "Save/Recall" settings, and displays the valid CDMA2000 version and the spreading rate. The selected link direction determines the available parameters.

State..........................................................................................................................24
Set to Default.............................................................................................................24
Save/Recall....................................................................................................................25
Generate Waveform File...............................................................................................25
CDMA 2000 Version

Spreading Rate

Link Direction

Filter / Clipping / ARB Settings

State
Activates the standard and deactivates all the other digital standards and digital modulation modes in the same path.
Remote command:
[:SOURce<hw>]:BB:C2K:STATe on page 86

Set to Default
Calls the default settings. The values of the main parameters are listed in the following table.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Not affected by &quot;Set to default&quot;</td>
</tr>
<tr>
<td>Link Direction</td>
<td>Downlink</td>
</tr>
<tr>
<td>Filter</td>
<td>CdmaOne + Equalizer</td>
</tr>
<tr>
<td>Clipping</td>
<td>Off</td>
</tr>
<tr>
<td>Base Station Configuration</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>Off</td>
</tr>
<tr>
<td>Radio Configuration Traffic Channels 1 and 2</td>
<td>RC3</td>
</tr>
<tr>
<td>Radio Configuration other Traffic Channels</td>
<td>RC1</td>
</tr>
<tr>
<td>Time Delay</td>
<td>0 chips</td>
</tr>
<tr>
<td>PN Offset</td>
<td>0</td>
</tr>
<tr>
<td>Transmit Diversity</td>
<td>Off</td>
</tr>
<tr>
<td>Quasi Orthogonal Walsh Set</td>
<td>1</td>
</tr>
<tr>
<td>Mobile Station Configuration</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>Off</td>
</tr>
<tr>
<td>Mode</td>
<td>Traffic</td>
</tr>
<tr>
<td>Radio Configuration</td>
<td>RC3</td>
</tr>
<tr>
<td>Channel Coding</td>
<td>Complete</td>
</tr>
<tr>
<td>LC Mask (hex)</td>
<td>0</td>
</tr>
<tr>
<td>State (all Channels)</td>
<td>Off</td>
</tr>
<tr>
<td>Power Control</td>
<td>Off</td>
</tr>
</tbody>
</table>

Remote command:
[:SOURce<hw>]:BB:C2K:PRESet on page 84
Save/Recall
Accesses the "Save/Recall" dialog, that is the standard instrument function for saving and recalling the complete dialog-related settings in a file. The provided navigation possibilities in the dialog are self-explanatory.

The filename and the directory, in which the settings are stored, are user-definable; the file extension is however predefined.

See also, chapter "File and Data Management" in the R&S SMBV100B user manual.

Remote command:
[:SOURce<hw>]:BB:C2K:SETTING:LOAD on page 85
[:SOURce<hw>]:BB:C2K:SETTING:STORE on page 86
[:SOURce<hw>]:BB:C2K:SETTING:DELeTe on page 85

Generate Waveform File
With enabled signal generation, triggers the instrument to store the current settings as an ARB signal in a waveform file. Waveform files can be further processed by the ARB and/or as a multi-carrier or a multi-segment signal.

The filename and the directory it is stored in are user-definable; the predefined file extension for waveform files is *.wv.

Remote command:
[:SOURce<hw>]:BB:C2K:WAVeform:CREate on page 87

CDMA 2000 Version
Displays the current version of the CDMA2000 standard.

The default settings and parameters provided are oriented towards the specifications of the version displayed.

Remote command:
[:SOURce]:BB:C2K:VERSion? on page 87

Spreading Rate
Displays the spreading rate.

Mode Spreading Rate 1 ("Direct Spread 1X") is used:

The "Chip Rate" parameter which determines the rate of the spread symbols that is used for signal output, can be varied in the Filter, Clipping, ARB Settings dialog (see Chapter 4.7, "Filter / Clipping / ARB Settings", on page 76).

Remote command:
[:SOURce<hw>]:BB:C2K:CRATe? on page 83

Link Direction
Selects the transmission direction.

The settings of the base station or the mobile station are provided in the following dialog section in accordance with the selection.

"Downlink/ Forward Link"

The transmission direction selected is base station to mobile station.

The signal corresponds to that of a base station.
"Uplink/ Reverse Link"
   The transmission direction selected is mobile station to base station.
   The signal corresponds to that of a mobile station.

Remote command:
[:SOURce<hw>]:BB:C2K:LINK on page 84

Filter / Clipping / ARB Settings
Provides access to the dialog for setting baseband filtering, clipping and the sequence
length of the arbitrary waveform component, see Chapter 4.7, "Filter / Clipping / ARB
Settings", on page 76.

4.2 Trigger Settings

This dialog provides access to the settings necessary to select and configure the trig-
ger, like trigger source, mode, trigger delay and trigger suppression, as well as to arm
or trigger an internal trigger manually. The current signal generation status is displayed
in the header of the dialog together with information on the enabled trigger mode. As in
the "Marker" and "Clock" dialogs, this dialog provides also access to the settings of the
related connectors.

This section focuses on the available settings.
For information on how these settings affect the signal, refer to section "Basics on ...
" in the R&S SMBV100B user manual.

► To access this dialog, select "Baseband > CDMA2000 > Trigger In".

This dialog comprises the settings required for configuring the trigger signal.

Routing and enabling a trigger
The provided trigger signals are not dedicated to a particular connector. Trigger signals
can be mapped to one or more User x connectors.
Use the Global Connector Settings to configure the signal mapping, the polarity, the
trigger threshold and the input impedance of the input connectors.
To route and enable a trigger signal, perform the following general steps:
• Define the signal source and the effect of a trigger event.
  Select the "Trigger In > Mode" and "Trigger In > Source".
• Define the connector where the selected signal is provided.
  Use the Global Connector Settings.
Provided are the following settings:

**Trigger Mode**
Selects trigger mode, i.e. determines the effect of a trigger event on the signal generation.
- "Auto"
  The signal is generated continuously.
- "Retrigger"
  The signal is generated continuously. A trigger event (internal or external) causes a restart.
- "Armed Auto"
  The signal is generated only when a trigger event occurs. Then the signal is generated continuously.
  An "Arm" stops the signal generation. A subsequent trigger event (internal or external) causes a restart.
- "Armed Retrigger"
  The signal is generated only when a trigger event occurs. Then the signal is generated continuously. Every subsequent trigger event causes a restart.
  An "Arm" stops signal generation. A subsequent trigger event (internal or external) causes a restart.
- "Single"
  The signal is generated only when a trigger event occurs. Then the signal is generated once to the length specified at "Signal Duration".
  Every subsequent trigger event (internal or external) causes a restart.

Remote command:
[:SOURce<hw>:BB:C2K[:TRIGger]:SEQuence on page 92

**Signal Duration Unit**
Defines the unit for describing the length of the signal sequence to be output in the "Single" trigger mode.
Available units are chip sequence length (CLS), chips or frames.
Remote command:
[:SOURce<hw>:BB:C2K:TRIGger:SLUNit on page 95

**Trigger Signal Duration**
Enter the length of the signal sequence to be output in the "Single" trigger mode.
Use this parameter to output part of the signal deliberately, an exact sequence of the signal, or a defined number of repetitions of the signal.
Remote command:
[:SOURce<hw>:BB:C2K:TRIGger:SLENgth on page 94

**Running/Stopped**
With enabled modulation, displays the status of signal generation for all trigger modes.
- "Running"
  The signal is generated; a trigger was (internally or externally) initiated in triggered mode.
- "Stopped"
  The signal is not generated and the instrument waits for a trigger event.
Remote command:
[:SOURce<hw>]:BB:C2K:TRIGger:RMODE? on page 94

Arm
Stops the signal generation until subsequent trigger event occurs.
Remote command:
[:SOURce<hw>]:BB:C2K:TRIGger:ARM:EXECute on page 93

Execute Trigger
For internal trigger source, executes trigger manually.
Remote command:
[:SOURce<hw>]:BB:C2K:TRIGger:EXECute on page 93

Trigger Source
The following sources of the trigger signal are available:
- "Internal"
  The trigger event is executed manually by the "Execute Trigger".
- "External Global Trigger"
  The trigger event is the active edge of an external trigger signal provided and configured at the User x connectors.
- "Baseband Sync In"
  In master-slave mode, slave instruments are triggered by the active edge of the synchronization signal.
Remote command:
[:SOURce<hw>]:BB:C2K:TRIGger:SOURce on page 93

Sync. Output to External Trigger/Sync. Output to Trigger
Enables signal output synchronous to the trigger event.
- "On"
  Corresponds to the default state of this parameter.
  The signal calculation starts simultaneously with the trigger event. Because of the processing time of the instrument, the first samples are cut off and no signal is output. After elapsing of the internal processing time, the output signal is synchronous to the trigger event.

- "Off"
  The signal output begins after elapsing of the processing time. Signal output starts with sample 0. The complete signal is output.
This mode is recommended for triggering of short signal sequences. Short sequences are sequences with signal duration comparable with the processing time of the instrument.

In master-slave mode, this setting ensures that once achieved, synchronization is not lost if the baseband signal sampling rate changes.

Remote command:

```
[:SOURce<hw>]:BB:C2K:TRIGger:EXTernal:SYNChronize:OUTPut
```
on page 93

**External Trigger Inhibit**

Applies for external trigger signal.

Sets the duration with that any following trigger event is suppressed. In "Retrigger" mode, for example, a new trigger event does not cause a restart of the signal generation until the specified inhibit duration does not expire.

For more information, see chapter "Basics" in the R&S SMBV100B user manual.

Remote command:

```
[:SOURce<hw>]:BB:C2K:TRIGger[:EXTernal]:INHibit
```
on page 94

**Trigger Delay**

Delays the trigger event of the signal from:
- The external trigger source

Use this setting to:
- Synchronize the instrument with the device under test (DUT) or other external devices
- Compensate delays and align the signal generation start in multi-instrument setup

For more information, see chapter "Basics on ..." in the R&S SMBV100B user manual.

Remote command:

```
[:SOURce<hw>]:BB:C2K:TRIGger[:EXTernal]:DELay
```
on page 94

## 4.3 Marker Settings

This dialog provides access to the settings necessary to select and configure the marker output signal, like the marker mode or marker delay settings.
This section focuses on the available settings. For information on how these settings affect the signal, refer to section "Basics on ..." in the R&S SMBV100B user manual.

- To access this dialog, select "Baseband > CDMA2000 > Marker".

This dialog comprises the settings required for configuring the marker mode and the marker delay.

Routing and enabling a marker

The provided marker signals are not dedicated to a particular connector. They can be mapped to one or more User x connectors.

To route and enable a marker signal, perform the following general steps:

- Define the shape of the generated marker, i.e. select the "Marker > Mode".
- Define the connector where the selected signal is provided.

Use the Global Connector Settings.

Settings:

Marker Mode

Marker configuration for up to 3 markers. The settings are used to select the marker mode defining the shape and periodicity of the markers. The contents of the dialog change with the selected marker mode; the settings are self-explanatory.

"Power Control Group (1.25 ms)"

A marker signal is generated at the start of each Power Control Group (every 1.25 ms).

"Radio Frame (20 ms)"

A marker signal is generated every 20 ms (traffic channel frame clock).
"Sync Channel Frame (26.6 ms)"
A marker signal is generated at the beginning of each Sync Channel Frame (every 26.6 ms).

"Superframe (80 ms)"
A marker signal is generated every 80 ms (super frame clock).

"Even Second Mark (2 s)"
A marker signal is generated every 2 seconds.

"Chip Sequence Period (ARB)"
A marker signal is generated at the beginning of every Arbitrary Waveform sequence (depending on the set sequence length). The marker signal is generated regardless of whether an ARB component is used.

"ON/OFF Period"
A regular marker signal that is defined by an ON/OFF ratio is generated. A period lasts one ON and OFF cycle.

Remote command:
[:SOURce<hw>]:BB:C2K:TRIGger:OUTPut<ch>:ONTime on page 96
[:SOURce<hw>]:BB:C2K:TRIGger:OUTPut<ch>:OFFTime on page 96

"User Period"
A marker signal is generated at the beginning of every user-defined period. The period is defined in "Period".

Remote command:
[:SOURce<hw>]:BB:C2K:TRIGger:OUTPut<ch>:PERiod on page 96
Remote command:
[:SOURce<hw>]:BB:C2K:TRIGger:OUTPut<ch>:MODE on page 95

Marker x Delay
Delays the marker signal at the marker output relative to the signal generation start. Variation of the parameter "Marker x Delay" causes signal recalculation.

Remote command:
[:SOURce<hw>]:BB:C2K:TRIGger:OUTPut<ch>:DELay on page 97

4.4 Clock Settings

This tab provides access to the settings necessary to select and configure the clock signal, like the clock source and clock mode.

This section focuses on the available settings. For information on how these settings affect the signal, refer to section "Basics on ..." in the R&S SMBV100B user manual.
To access this dialog, select "Baseband > CDMA2000 > Clock".

This dialog comprises the settings required for configuring the clock signal.

**Defining the Clock**

The provided clock signals are not dedicated to a particular connector. They can be mapped to one or more User x connectors.

Use the Global Connector Settings to configure the signal mapping, the polarity, the trigger threshold, and the input impedance of the input connectors.

To route and enable a trigger signal, perform the following general steps:

- Define the signal source, that is select the "Clock > Source".
- Define the connector where the selected signal is provided.

Use the Global Connector Settings.

**Clock Source**

Selects the clock source.

- "Internal"
  
  The instrument uses its internal clock reference.

Remote command:

```
[:SOURce<hw>]:BB:C2K:CLOCK:SOURce
```
on page 97

4.5 **Global Connector Settings**

Each of the "Trigger In", "Marker" and "Clock" dialogs as well as the "Trigger Marker Clock" dialog provides a quick access to the related connector settings.

For more information, refer to the description R&S SMBV100B user manual, section "Global Connector Settings".

4.6 **CDMA2000 Basestations and Mobile Stations Settings**

Depending on the selected transmission direction, the last dialog contains either the "Basestations" or the "Mobile Stations" common settings.
4.6.1 Configure Base Station or Mobile Station

How to configure the base stations settings

Access:
1. Select "CDMA 2000 > General > Transmission Direction > Downlink / Forward".
2. Select the "Base Stations" dialog.

![Base Stations settings dialog]

This dialog provides access to the appropriate settings dialogs for configuring the base stations.

How to configure the mobile stations settings

1. To access the mobile stations settings, select "CDMA 2000 > General > Link Direction > Uplink / Reverse".
2. Select the "Mobile Stations" dialog.

![Mobile Stations settings dialog]

Provides access to the appropriate settings dialogs for configuring the mobile stations.

Reset All Base Stations

Resets all base stations to the predefined settings. The following table gives an overview of the settings. The preset value for each parameter is specified in the description of the remote-control commands.
### Base Station Configuration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Off</td>
</tr>
<tr>
<td>Time Delay</td>
<td>0 chips</td>
</tr>
<tr>
<td>PN Offset</td>
<td>0</td>
</tr>
<tr>
<td>Transmit Diversity</td>
<td>Off</td>
</tr>
<tr>
<td>Quasi-orthogonal Walsh set</td>
<td>1</td>
</tr>
<tr>
<td>State (all channels)</td>
<td>Off</td>
</tr>
<tr>
<td>Frame Length (0-5 / 0-7 / 0-10)</td>
<td>26.6 ms / 40 ms / 5 ms</td>
</tr>
<tr>
<td>Frame Length (all other channels)</td>
<td>20 ms</td>
</tr>
<tr>
<td>Data Rate (0-6,0-10,0-11,1-1,1-4,2-1,2-4)</td>
<td>9.6 kbps</td>
</tr>
<tr>
<td>Data Rate (0-7,0-9,1-2,1-3,2-2,2-3)</td>
<td>19.2 kbps</td>
</tr>
<tr>
<td>Data Rate (all other channels)</td>
<td>1.2 kbps</td>
</tr>
<tr>
<td>Walsh (0-2 / 0-5)</td>
<td>16 / 32</td>
</tr>
<tr>
<td>Walsh (1-1 / 1-2 / 1-3 / 2-1 / 2-2 / 2-3)</td>
<td>8 / 17 / 18 / 9 / 19 / 20</td>
</tr>
<tr>
<td>Walsh (all other channels)</td>
<td>0</td>
</tr>
<tr>
<td>Power (0-1 / 0-6 )</td>
<td>-7 dB / -6.62 dB</td>
</tr>
<tr>
<td>Power (0-5 , 1-1, 2-1 / 1-2, 1-3, 2-2, 2-3)</td>
<td>-12.72 dB / -9.72 dB</td>
</tr>
<tr>
<td>Power (all other channels)</td>
<td>0 dB</td>
</tr>
<tr>
<td>Data Source (0-1, 0-2, 0-3, 0-4)</td>
<td>All0</td>
</tr>
<tr>
<td>Data Source (all other channels)</td>
<td>PN9</td>
</tr>
<tr>
<td>Channel Coding (all Channels)</td>
<td>Complete</td>
</tr>
</tbody>
</table>

Remote command:
```
[:SOURce<hw>]:BB:C2K:BSTation:FRESet
```
on page 104

### Reset All Mobile Stations

Reset all mobile stations to the predefined settings. The following table gives an overview of the settings. The preset value for each parameter is specified in the description of the remote-control commands.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile Station Configuration</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>Off</td>
</tr>
<tr>
<td>Mode</td>
<td>Traffic</td>
</tr>
<tr>
<td>Radio Configuration</td>
<td>3</td>
</tr>
<tr>
<td>Channel Coding</td>
<td>Complete</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>LC Mask (hex)</td>
<td>0</td>
</tr>
<tr>
<td>State (all Channels)</td>
<td>Off</td>
</tr>
<tr>
<td>Frame Length</td>
<td>20 ms</td>
</tr>
<tr>
<td>Data Rate (2 / 3, 4, 5)</td>
<td>9.6 kbps / 1.5 kbps</td>
</tr>
<tr>
<td>Walsh (0 / 8 / 4 / 2 /6)</td>
<td>0 / 8 / 4 / 2 /6</td>
</tr>
<tr>
<td>Spread (2 / 3, 4, 5)</td>
<td>32 / 16</td>
</tr>
<tr>
<td>Power</td>
<td>0 dB</td>
</tr>
<tr>
<td>Data Source</td>
<td>PN9</td>
</tr>
</tbody>
</table>

Remote command:
`:SOURce<hw>]:BB:C2K:MSTation:PRESet` on page 134

**Copy** ...
Copies the settings of a base or mobile station to a second base or mobile station. A window opens for creating the destination station.

<table>
<thead>
<tr>
<th>&quot;Downlink / Forward&quot; link direction</th>
<th>&quot;Uplink / Reverse&quot;</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="Copy Basestation" /></td>
<td><img src="image2" alt="Copy Mobile Station" /></td>
</tr>
<tr>
<td><strong>Copy From Source</strong></td>
<td><strong>Copy From Source</strong></td>
</tr>
<tr>
<td><strong>To Destination</strong></td>
<td><strong>To Destination</strong></td>
</tr>
<tr>
<td><strong>Walsh Code Offset (Base Station only)</strong></td>
<td>Enter the offset to be applied when copying the base station to the Walsh codes of the destination base station. The minimum value is 0 (Walsh codes are identical), the maximum value is 255.</td>
</tr>
<tr>
<td><strong>Accept</strong></td>
<td><strong>Accept</strong></td>
</tr>
</tbody>
</table>

"Copy from Source"
- Selects the base station or mobile station whose settings are to be copied.

"To Destination"
- Selects the base station or mobile station whose settings are to be overwritten.

"Walsh Code Offset (Base Station only)"
- Enters the offset to be applied when copying the base station to the Walsh codes of the destination base station. The minimum value is 0 (Walsh codes are identical), the maximum value is 255.

"Accept"
- Starts the copy process.

Remote command:
`:SOURce<hw>]:BB:C2K:COPY:SOURce` on page 82
`:SOURce<hw>]:BB:C2K:COPY:DESTination` on page 81
`:SOURce<hw>]:BB:C2K:COPY:COFFset` on page 81
`:SOURce<hw>]:BB:C2K:COPY:EXECute` on page 82
Predefined Settings
Accesses the dialog for setting predefined configurations in "Downlink / Forward" direction, see Chapter 4.6.2, "Predefined Settings - Downlink", on page 36.

Additional Mobile Station
Accesses the dialog for simulating up to 64 additional mobile stations, see Chapter 4.6.3, "Additional Mobile Station - Uplink", on page 40.

Adjust Total Power to 0dB
Sets the power of an enabled channel so that the total power of all the active channels is 0 dB. This does not change the power ratio among the individual channels.
This parameter is available when the "CDMA2000 > State > On".
Remote command:
[:SOURce<hw>]:BB:C2K:POWer:ADJust on page 84

Total Power
Displays the total power of the active channels.
The total power is calculated from the power ratio of the powered up code channels with modulation on. If the value is not equal to 0 dB, the individual code channels are internally adapted so that the "Total Power" for achieving the set output level is 0 dB. Power ratios between the channels are retained.
Remote command:
[:SOURce<hw>]:BB:C2K:POWer[:TOTal]? on page 84

Select ...
Selects the base or mobile station and opens a dialog for editing the selected base or mobile station.
The dialogs are described in Chapter 4.6.4, "Base Station Configuration", on page 41 and Chapter 4.6.7, "Mobile Station Configuration (MS)", on page 67.
Remote command:
(the base station or mobile station is selected by the keyword index BSTation<i> or MSTation<i>.)

Base Station/Mobile Station State
Activates a base or mobile station.
Remote command:
[:SOURce<hw>]:BB:C2K:BSTation<st>:STATe on page 130
[:SOURce<hw>]:BB:C2K:MSTation<st>:STATe on page 141

4.6.2 Predefined Settings - Downlink

1. To access this dialog, select "CDMA 2000 > General > Link Direction > Downlink / Forward".
2. Select "Basestations > Predefined Settings".
This dialog contains the predefined settings.

The channel table of base station 1 is filled (preset) with the set parameters.

With the "Predefined Settings" function, it is possible to create highly complex scenarios with just a few keystrokes. This function is of use if, say, just the envelope of the signal is of interest.

A separate set of settings of all predefined parameters is provided for each radio configuration. If the radio configuration is changed, the set of traffic channel settings belonging to this RC is automatically indicated.

In the "Traffic Channel Settings" section, the number and the structure of the traffic channels used in the test scenario is set. The selected structure is valid for all activated traffic channels.

The indicated parameters depend on the radio configuration. Their settings are specific for the selected radio configuration.

Also, the desired range for the crest factor is selected. Button "Accept" presets the channel table of base station 1 with the predefined parameters.

**Radio Configuration**
Selects the radio configuration (RC).

The R&S SMBV100B provides a separate set of settings of all predefined traffic channel parameters for each radio configuration. If the radio configuration is changed, the set of traffic channel table values belonging to this RC is automatically activated.

Remote command:

```
[:SOURce<hw>]:BB:C2K:PPARameter:RCONfiguration on page 99
```

**Use Pilot (F-PICH)**
Selects if pilot channel F-PICH is used in the scenario or not.

Remote command:

```
[:SOURce<hw>]:BB:C2K:PPARameter:PICHannel[:STATe] on page 99
```
Use Sync (F-Sync)
Selects if sync channel F-SYNC is used in the scenario or not.
Remote command:
[:SOURce<hw>]:BB:C2K:PPARameter:SChannel[:STATe] on page 99

Use Paging Channel (F-PCH)
Selects if paging channel F-PCH is used in the scenario or not.
Remote command:
[:SOURce<hw>]:BB:C2K:PPARameter:PChannel[:STATe] on page 99

Crest Factor
Selects the desired range for the crest factor of the test scenario. The crest factor of the signal is kept in the desired range by automatically setting appropriate Walsh Code Numbers.
"Minimum" The crest factor is minimized by assigning Walsh codes which are chosen as close as possible.
"Average" An average crest factor is set. The Walsh codes are distributed uniformly over the code domain.
"Worst" The crest factor is set to an unfavorable value (i.e. maximum) by assigning Walsh codes which are separated as widely as possible.
Remote command:
[:SOURce<hw>]:BB:C2K:PPARameter:CRESt on page 98

Traffic Channel Setting
Access:
"CDMA 2000 > General > Link Direction > Downlink / Forward > Basestations > Predefined Settings > Traffic Channel Setting"

Number of Traffic Channels ← Traffic Channel Setting
Sets the number of activated traffic channels. Channels F-DCCH, F-FCH, and F-SCH form a traffic channel.
Remote command:
[:SOURce<hw>]:BB:C2K:PPARameter:TChannel:COUNt on page 100

**Use Dedicated Control (F-DCCH) ← Traffic Channel Setting**
Selects if the dedicated control channel F-DCCH is activated for the traffic channel or not. PN9 is used as a data source for F-DCCH.
The set state is specific for the selected radio configuration.
F-DCCH cannot be activated for radio configuration RC1 and RC2.
Remote command:
[:SOURce<hw>]:BB:C2K:PPARameter:TChannel:DCCHannel[:STATe] on page 101

**Use Fundamental (F-FCH) ← Traffic Channel Setting**
Selects if the fundamental channel F-FCH is activated for the traffic channel or not. PN9 is used as data source for F-FCH. The set value is specific for the selected radio configuration.
Remote command:
[:SOURce<hw>]:BB:C2K:PPARameter:TChannel:FCHannel[:STATe] on page 101

**Number of Supplemental (F-SCH) ← Traffic Channel Setting**
Sets the number of activated supplemental channels F-SCH. PN9 is used as data source for F-SCH. The set value is specific for the selected radio configuration.
The maximum number depends on the selected radio configuration:
- RC1 and RC2: 0 ... 7
- RC3, RC4, and RC5: 0 ... 2
Remote command:
[:SOURce<hw>]:BB:C2K:PPARameter:TChannel:SChannel:COUNt on page 102

**Frame Length ← Traffic Channel Setting**
Sets the frame length of the traffic channel. The set value is specific for the selected radio configuration.
The value range for the frame length depends on the selected radio configuration:
- RC1 and RC2: 20 ms
- RC3 to RC5: 5, 20, 40 ms and 80 ms
Remote command:
[:SOURce<hw>]:BB:C2K:PPARameter:TChannel:FLENgth on page 101

**Data Rate ← Traffic Channel Setting**
Sets the data rate for F-FCH and all F-SCH. The set value is specific for the selected radio configuration.
The value range depends on the set frame length.
Remote command:
[:SOURce<hw>]:BB:C2K:PPARameter:TChannel:DATA:RATE on page 100
Accept
Presets the channel table of base station 1 with the parameters defined in the "Prede-
defined Settings" dialog. Base station one is switched on, the other base stations are
switched off.

Remote command:
[:SOURce<hw>:]:BB:CC2K:PPARameter:EXECute on page 98

4.6.3 Additional Mobile Station - Uplink

1. To access the additional mobile station settings, select "CDMA 2000 > General >
Link Direction > Uplink / Reverse".

2. Select "Mobile Stations > Additional Mobile Station".

The dialog provides the settings for configuring additional mobile stations.

It is possible to simulate up to 64 additional mobile stations and thus to generate a sig-
nal that corresponds to the received signal for a base station with high capacity utiliza-
tion.

The fourth mobile station (MS4) serves as a template for all other stations. The following
parameters are the only ones modified for the additional mobile stations:

- LC Mask Step (different for all stations)
- Power (different to MS4, but identical among themselves)

State
Activates additional mobile stations. At "State Off", all the additional mobile stations are
switched off.
Remote command: 
[:SOURce<hw>]:BB:C2K:MSTation:ADDitional:STATe on page 134

**Number of Additional MS**
Sets the number of additional mobile stations. As many as 64 additional mobile stations can be simulated.
Remote command: 
[:SOURce<hw>]:BB:C2K:MSTation:ADDitional:COUNt on page 133

**LC Mask Step**
Enters the step width for increasing the LC mask of the additional mobile stations. The start value is the scrambling code of MS4. 
The Long Code generator mask serves for channel-specific and user-specific scrambling of the code channel.
Remote command: 
[:SOURce<hw>]:BB:C2K:MSTation:ADDitional:LCMask:STEP on page 133

**Power Offset**
Sets the power offset of the active channels of the additional mobile stations to the power outputs of the active channels of MS4.
The resultant power must fall within the range 0 ... - 80 dB. If the value is above or below this range, it is limited automatically.
Remote command: 
[:SOURce<hw>]:BB:C2K:MSTation:ADDitional:POWer:OFFSet on page 133

**Time Delay Step**
Enters the step width for the time delay of the additional mobile stations to one another. 
The start value returns the time delay of MS4. Entry is made in chips and can be a maximum of one frame.
The time delay allows mobile stations to be simulated even if the arrival of their signals is not synchronized at the base station.
Remote command: 
[:SOURce<hw>]:BB:C2K:MSTation:ADDitional:TDELay:STEP on page 134

### 4.6.4 Base Station Configuration

1. To access this dialog, select "CDMA 2000 > General > Transmission Direction > Downlink / Forward".
2. Select "Basestations > Basestation > BS1...BS4".

Base stations can be configured independently of one another.
4.6.4.1 Common Settings

1. To access this dialog select "Basestations > Basestation > BS1...BS4 ".
2. Select "BS1...BS4 > Common ".

This dialog comprises the common settings required for configuring the basestation.

State
Activates or deactivates the selected base station.

Remote command:
[:SOURce<hw>]:BB:C2K:BSTation<st>:STATe on page 130

Transmit Diversity
Switches transmit diversity on and off.
The signal can be sent simultaneously on several antennas. Various forms of transmit diversity are described in the CDMA2000 standard. Different coding is used to divide the signal between the two antennas. As a result, the receiver can decode the traffic signal from the two input signals and is less liable to fading and other interference. The R&S SMBV100B can simulate the signal of one of the two antennas.

To activate transmit diversity, the antennas whose signals are to be simulated must be specified. The signal is generated differently depending on the selected antenna.

Additionally two diversity schemes for the calculation of the signals are available for selection at "Diversity Mode".

"Off" No transmit diversity
"Antenna 1" Calculates and applies the output signal for antenna 1. The diversity scheme is selected at "Diversity Mode".
"Antenna 2" Calculates and applies the output signal for antenna 2. The diversity scheme is selected at "Diversity Mode".

Remote command:
[:SOURce<hw>]:BB:C2K:BSTation<st>:TDIversity on page 131

Time Delay
Enters the time delay of the signal of the selected basestation compared to the signal of BS1.
Note: For BS1, this value is always 0 and read-only.

Remote command: [:SOURce<hw>]:BB:C2K:BSTation<st>:TDELay on page 130

Diversity Mode
Selects the diversity scheme for "Transmit Diversity". The diversity scheme defines the calculation mode of the signal for the selected antenna (at Transmit Diversity).

"OTD" Orthogonal Transmit Diversity Mode. A forward link transmission method which distributes forward link channel symbols among multiple antennas and spreads the symbols with a unique Walsh or quasi-orthogonal function associated with each antenna.

"STS" Space Time Spreading Mode. A forward link transmission method which transmits all forward link channel symbols on multiple antennas and spreads the symbols with complementary Walsh or quasi-orthogonal functions.

Remote command: [:SOURce<hw>]:BB:C2K:BSTation<st>:TDIversity:MODE on page 131

PN Offset
Enters the PN offset (short code).
The PN offset determines the start phase of these PN short-code sequences (see Chapter 3.1.8, "PN Short-Code Scrambling - Downlink", on page 16). This permits signals of different basestations to be distinguished.

Remote command: [:SOURce<hw>]:BB:C2K:BSTation<st>:PNOFFset on page 130

Quasi orth Walsh Set
Selects the Quasi Orthogonal Walsh Set. The standard defines three different sets. The so-called 'quasi-orthogonal Walsh sets' can be used in addition to the Walsh codes. They increase the number of possible channels and thus extend the basestation capacity. When the quasi-orthogonal Walsh code is used, spreading the data stream results in complex spreading also through an additional rotation of the output phase (the spreading code then consists of a real and an imaginary part).

In the channel table, a decision can be made for each channel whether the Walsh code of the standard set or of the quasi-orthogonal set should be used. The quasi-orthogonal Walsh codes are used if "On" is activated in column "Q. Orth".

Remote command: [:SOURce<hw>]:BB:C2K:BSTation<st>:QWSet on page 130

4.6.4.2 Channel Table - BS

1. To access this dialog select "Base Stations > Base Station > BS1...BS4".
2. Select "BS1...BS4 > Channel Table".
In this tab, you can set the channel parameters individually.

Up to 78 channels are available for each base station. Channels 0 to 1 to 0 to 11 are assigned to the special channels which are responsible for the correct communication between base station and mobile station. The packet channels (0-12 to 0-14) and the traffic channels (1-0 and above) transmit the data.

A traffic channel is used for transmitting the radio link information, i.e. for communication with the addressee. The traffic channels consist of a dedicated channel, a fundamental channel and, depending on the radio configuration, of up to seven supplemental channels.

The packet data channel and the packet data control channels are used for transmitting data packets usually at higher data rates than is the case with purely circuit-mode traffic channels. The radio configuration of these channels is defined as 10 in accordance with the CDMA2000 standard.

The number of sub channels and the sub channel types of a traffic channel depend on the selected radio configuration. The radio configuration can be set separately for each traffic channel and is the same for all sub channels of this traffic channel. It determines among other things the channel coding types, the frame lengths and the data rates that can be used and the settings of fixed parameter, e.g. CRC length. The R&S SMBV100B provides a separate set of settings of all channel table parameters for each radio configuration. Thus, when the radio configuration is changed, the current set of settings is internally stored for the old radio configuration. The complete set of settings belonging to the new radio configuration is activated and indicated in the channel table.

**Channel Number**
Displays the channel numbers.

The channel number is made up of two numbers. If the first number is 0 it identifies the special channels, i.e. the control channels and packet channels. A first number of 1 to 8 designates the traffic channels. The second number refers consecutively to the special channels or the subchannels of a traffic channel.
All available channels are always displayed, even the channels that are inactive. The number of subchannels per traffic channel 1 (four or eight) depends on the chosen radio configuration.

Each channel is switched on and off by the "On/Off" button in the "State" column.

Remote command:
In remote control, the channel is selected via the suffix to the keywords :CGRoup<n>:COFFset<n>.

CGRoup0 selects the special channels group, CGRoup1 to 8 the traffic channel.
COFFset1 to 14 selects either the special channel or the code channel of a traffic channel.

For example, :CGRoup0:COFFset14 selects the packet channel F-PDCH, :CGRoup3:COFFset1 selects the F-FCH of traffic channel 3.

### Channel Type

Indication of the channel type (see following table).

<table>
<thead>
<tr>
<th>Index</th>
<th>Short form</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>F-PICH</td>
<td>Forward Pilot Channel</td>
<td>The base station continuously transmits the pilot channel. This channel provides capabilities for soft handoff and coherent detection. Handoff is a procedure where a mobile with an on-going call changes channel and/or base station under the supervision of the network. The Walsh code is 0.</td>
</tr>
<tr>
<td>0-2</td>
<td>F-TDPICH</td>
<td>Forward Transmit Diversity Pilot Channel</td>
<td>The base station continuously transmits this pilot channel from the secondary antenna when transmit diversity is enabled.</td>
</tr>
<tr>
<td>0-3</td>
<td>F-APICH</td>
<td>Forward Auxiliary Pilot Channel</td>
<td>This pilot channel transmits the base station as an option.</td>
</tr>
<tr>
<td>0-4</td>
<td>F-ATDPICH</td>
<td>Forward Auxiliary Transmit Diversity Pilot Channel</td>
<td>The base station optionally transmits this pilot channel from the secondary antenna when transmit diversity is enabled.</td>
</tr>
<tr>
<td>0-5</td>
<td>F-SYNC</td>
<td>Forward Synchronization Channel</td>
<td>The synchronization channel enables the mobile station to synchronize with the base station. It contains the PN offset, the system time and the long code status, information about the paging channel, together with the system ID and the network ID. The Walsh code is 32.</td>
</tr>
<tr>
<td>0-6</td>
<td>F-PCH</td>
<td>Forward Paging Channel</td>
<td>The paging channel carries control information specific to a mobile station when the network does not know where the mobile station is located.</td>
</tr>
<tr>
<td>0-7</td>
<td>F-BCCH</td>
<td>Forward Broadcast Channel</td>
<td>The broadcast channel is used to broadcast system- and cell-specific information.</td>
</tr>
<tr>
<td>0-8</td>
<td>F-QPCH</td>
<td>Forward Quick Paging Channel</td>
<td>The paging channel contains short form information for the mobile station, particularly if the latter is not transmitting.</td>
</tr>
<tr>
<td>Index</td>
<td>Short form</td>
<td>Name</td>
<td>Function</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>-----------------------------------</td>
<td>--------------------------------------------------------------------------</td>
</tr>
<tr>
<td>0-9</td>
<td>F-CPCCCH</td>
<td>Forward Common Power Control Channel</td>
<td></td>
</tr>
<tr>
<td>0-10</td>
<td>F-CACH</td>
<td>Forward Common Assignment Channel</td>
<td></td>
</tr>
<tr>
<td>0-11</td>
<td>F-CCCH</td>
<td>Forward Common Control Channel</td>
<td>General channel for transmitting control information. It also provides a mean for paging functions but it supports different data rates. It provides capability for short burst data communications.</td>
</tr>
<tr>
<td>0-12/13</td>
<td>F-PDCCCH</td>
<td>Forward Packet Data Control Channel</td>
<td>The F-PDCCCH carries the control information for the F-PDCH.</td>
</tr>
<tr>
<td>0-14</td>
<td>F-PDCH</td>
<td>Forward Packet Data Channel</td>
<td>Packet-oriented data channel, supports high data rates</td>
</tr>
<tr>
<td>1-1</td>
<td>F-FCH</td>
<td>Forward Fundamental Channel</td>
<td>Subchannel of a traffic channel. Contains control data and user data.</td>
</tr>
<tr>
<td>1-2</td>
<td>F-SCCH1</td>
<td>Forward Supplemental Code Channel</td>
<td>Subchannel of a traffic channel. Enables higher data rates for control and user data.</td>
</tr>
<tr>
<td>1-2</td>
<td>F-SCH1</td>
<td>Forward Supplemental Channel</td>
<td>Subchannel of a traffic channel. Enables higher data rates for control and user data.</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-4</td>
<td>F-DCCH</td>
<td>Forward Dedicated Control Channel (RC3, RC4 and RC5)</td>
<td>Subchannel of a traffic channel. It transports specific control information.</td>
</tr>
</tbody>
</table>

Remote command:

**Real Time - BS1**
Activates real-time generation of the channel. This option is only available for the sync channel F-SYNC and the first traffic channel. The set state for the first traffic channel is specific for the selected radio configuration.

**Tip:** Feed through artificial bit errors and block errors to the CRC checksum to all the data sources to test the BER/BLER testers that are integrated in the BS.

Remote command:
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:REALtime:STATe on page 115

**Radio Configuration (RC)**
Selects radio configuration of the traffic channel.

The radio configuration determines the channel types, the frame lengths, the channel coding types and the data rates that can be used.

The radio configuration is the same for all sub channels of a traffic channel. If the radio configuration is modified for one of the sub channels, the new value is then automatically used by all other subchannels of this traffic channel.
The radio configuration for the packet channels F-PDCCH and F-PDCH is fixed to RC10.

The R&S SMBV100B provides a separate set of settings of all channel table parameters for each radio configuration. Changing the radio configuration causes the settings belonging to the new RC value to be activated in the channel table (the settings belonging to the old RC value are stored).

The radio configuration determines the permissible frame lengths. The frame length defines the permitted data rate and channel coding type which in turn determine the permitted Walsh codes.

This relation causes a hierarchy within the following parameters:
"Frame Length" -> "Data Rate + Channel Coding Type" -> "Walsh Code"

Changing one of the parameters in this hierarchy automatically causes the lower-level settings to be changed if they are no longer permitted following the change to the higher-level parameter.

Remote command:
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:RCONfiguration

**Frame Length**
En ters the frame length of the channel. The set value is specific for the selected radio configuration.

The value range depends on the channel type and radio configuration. The frame length of the F-SCH is fixed to 26.6 ms. The maximum frame length is 160 ms, the minimum frame length is 5 ms.

The frame length affects the data rates and the channel coding types that are possible within a channel. Changing the frame length can lead to a change of data rate and/or the channel coding type, which in turn can bring about a change of the Walsh code.

Remote command:
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:FLENth on page 113

**Data Rate**
En ters the data rate of the channel. The set value is specific for the selected radio configuration.

The R&S SMBV100B supports all data rates between 1.2 kbps and 1,036.8 kbps defined in the standard.

The value range depends on the frame length. If the frame length is changed so that the set data rate becomes invalid, the next permissible value is automatically set.

The data rate affects the Walsh code (spreading factor) that is possible within a channel. If a data rate is changed so that the selected Walsh code becomes invalid, the next permissible value is automatically set.

Remote command:
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:DATA:RATE on page 112
Walsh
Assigns the Walsh code to the channel (see Chapter 3.1.7, "Variable-Length Walsh Spreading - Downlink", on page 16, and see "Code domain " on page 52). The set value is specific for the selected radio configuration.

The code channel is spread with the set Walsh code (spreading code).

The value range of the Walsh code depends on the frame length, the channel coding type and the data rate.

If one of these parameters is changed so that the set Walsh code gets invalid, the next permissible value is automatically set.

The standard assigns a fixed Walsh code to some channels (F-PICH, for example, always uses Walsh code 0). Generally, the Walsh code can only be varied within the range specified by the standard.

Remote command:
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:WCODe

Quasi Orthogonal Walsh Code State
Activates/deactivates the use of the quasi-orthogonal Walsh codes for the channel.

The set state is specific for the selected radio configuration.

Depending on the channel type and other parameters, the standard does not allow the use of quasi-orthogonal codes. In this case, the selection field is dimmed.

The quasi-orthogonal Walsh code set is selected for all channels of the base station in the upper area of the CDMA200 dialog.

Remote command:
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:QWCode:STATe

Power
Sets the channel power in dB. The set value is specific for the selected radio configuration.

The power entered is relative to the powers outputs of the other channels. If "Adjust Total Power to 0 dB" is executed (top level of the CDMA dialog), all the power data is relative to 0 dB.

The set "Power" value is also the start power of the channel, if "For Output Power Control > (Mis-)Use" is activated.

Note: The maximum channel power of 0 dB applies to non-blanked channels (duty cycle 100%).

With blanked channels, the maximum value can be increased to values greater than 0 dB. Where the maximum value is calculated as:

\[ 10 \log_{10} \frac{1}{\text{duty_cycle}} \]

Remote command:
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:POWer

Data
Selects data source. The set value is specific for the selected radio configuration.
The following standard data sources are available:

- "All 0, All 1"
  An internally generated sequence containing 0 data or 1 data.
- "PNxx"
  An internally generated pseudo-random noise sequence.
- "Pattern"
  An internally generated sequence according to a bit pattern.
  Use the "Pattern" box to define the bit pattern.
- "Data List/Select DList"
  A binary data from a data list, internally or externally generated.
  Select "Select DList" to access the standard "Select List" dialog.
  - Select the "Select Data List" > navigate to the list file *.dm_iqd > Select" to
    select an existing data list.
  - Use the "New" and "Edit" functions to create internally new data list or to edit
    an existing one.
  - Use the standard "File Manager" function to transfer external data lists to the
    instrument.

See also:
- Section "Modulation Data" in the R&S SMBV100B user manual.
- Section "File and Data Management" in the R&S SMBV100B user manual.
- Section "Data List Editor" in the R&S SMBV100B user manual

Remote command:
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:DATA
on page 111
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:DATA:PATTern
on page 112
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:DATA:DSEl ect
on page 111

More Params
Provides access to a dialog covering additional parameters of the selected channel
(see Chapter 4.6.5, "More Parameters - BS Channel Table", on page 54).

Remote command:
n.a.

Channel State
Activates or deactivates the channel. The set state is specific for the selected radio
configuration.

Remote command:
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:STATe
on page 115

Domain Conflict
Displays whether the channel has a code domain conflict with another channel. If there
is a conflict, an attention triangle appears and the column is colored soft orange. If
there is no conflict, the column is colored soft gray. The indicated value is specific for
the selected radio configuration.
4.6.4.3 Code Domain and Channel Graphs

The Walsh codes of variable length used by CDMA2000 are the so-called Hadamard codes.

The structure of these codes is explained below. The code matrix of the order \(N+1\) is obtained from the matrix \(N\) by extending the latter to the right and downwards through copying and downwards to the right by copying and inversion.

![Generation scheme of Walsh code](image)

Walsh codes of the lengths 4, 8, 16, 32, 64, and 128 are used in CDMA2000 with spreading rate 1. The greater the spreading factor / Walsh code length, the smaller the useful symbol rate prior to spreading and vice versa.

In contrast to the spreading codes of 3GPP, Walsh codes of short lengths (low spreading factor) do not occupy a block area in a Walsh matrix of larger spreading factor. Several lines (ratio of the two spreading factors) are occupied in the matrix with a higher spreading factor, distributed over the whole matrix. This behavior is illustrated in the
This results from the structuring scheme of the Walsh codes that are obtained by copying and inverting the next smaller matrix.

If a Walsh code with the length 4 and index 1 is used, codes 1 and 5 are disabled at the length 8, and codes 1, 5, 9 and 13 at the length 16 because codes of greater length contain the output code of shorter length (or its inversion).

When using such conflicting Walsh codes simultaneously, the signals of the associated code channels are mixed so that they can no longer be separated in the receiver. Orthogonality then is lost.

The matrix range with the highest spreading factor (i.e. 128), which is based on the spreading code selected in the code tree, is then defined as domain of a specific Walsh spreading code. Using a spreading code means that its entire domain is used.

Channel graph

1. To access the channel graph, select "Basestations > Basestation > BS1...BS4".
2. Select "BS1...BS4 > Channel Graph".
This tab graphically shows the active code channels. The channel number is plotted on the X axis. The red bars represent the special channels, the green bars the traffic channels. The channel index is plotted on the X-axes. The height of the bars shows the relative power of the channel.

**Code domain**

1. To access this dialog select "Basestations > Basestation > BS1...BS4".
2. Select "BS1...BS4 > Code Domain".

This tab shows the code domain of the standard Walsh set and the quasi-orthogonal Walsh sets graphically.

The "Code Domain" graphic shows the assignment of active code channels in the code domain.

The code numbers are plotted on the X axes, the colored bars show the code channels. The legend at the left of the graph indicates the assignment of colors to the spreading factors. An additional color is reserved for the packet channel F-PDCH because this channel can be assigned to more than one code channel. The height of the bars indicates the power of the code channel.

In this display assignment of the domains can be seen at a glance. Compared to 3GPP it is however much more difficult to see whether the code domains of different channels overlap, i.e. whether there is a domain conflict. This is due to the structure of the Walsh codes described above. The reason is that no block areas are occupied in the domain but several areas of minimum width are distributed over the whole domain.

Therefore, the occurrence of a domain conflict is indicated by a red dot marking of the involved channels. In addition, in the channel table, a code domain conflict is indicated in the column "Dom Conf" on the far right of the graph by an orange-colored column.
The graph is calculated from the settings that have been made. A change in the settings results at once in a change of the graphical display.

**Order - Code Domain BS**

Switches the order of the spreading codes.

"Hadamard" The code channels are displayed in the order determined by the Hadamard matrix. The codes are numbered as Walsh codes according to the standard.
"Bit reversed" The code channels are displayed in the order defined by the Orthogonal Variable Spreading Factor (OVSF) code tree (3GPP code). The Walsh codes and their generation scheme are closely related to the spreading codes of 3GPP. Basically, the same spreading sequences are used, only the order in the respective code trees is different. According to 3GPP TS 25.213, the following code tree is used:

To find a 3GPP code that corresponds to a CDMA2000 code, the bit-inverted line (line index) has to be selected in the 3GPP matrix of identical spreading factor.

**Example:**
The 3GPP spreading code matching line 10 of the 16-bit Walsh code matrix is searched for. The binary form of the line index 10 (with 4 bits, because of Walsh length $16 = 2^4$) is 1010. The bit-inverted index is 0101, i.e. 5 in decimal notation. This means that the Walsh code No. 10 with the length 16 corresponds to the 3GPP spreading code 5 of the same length (spreading factor).

Remote command:
[:SOURce<hw>]:BB:C2K:BSTation<st>:DCONflict:MODE on page 121

4.6.5 More Parameters - BS Channel Table

1. To access this dialog, select "CDMA 2000 > General > Link Direction > Downlink / Forward".
2. Select "Base Stations > Select Base Station > BS1...BS4".
3. Select "Channel Table > Channel# > More Params > Config"
This dialog contains the parameters required for configuring the channel coding.

The settings for the packet channel F-PDCH channel and all other channels are different (see Chapter 4.6.6, “More Parameters for F-PDCH - BS”, on page 63). The dialog for the special channels and the traffic channels is described below.

### 4.6.5.1 General Settings

In the upper section, the channel number, channel type and Walsh length of the selected channel are displayed.

**Channel No - More Parameters BS**
Displays the channel number of the channel.
Remote command:
n.a.

**Channel Type - More Parameters BS**
Displays the type of the channel.
Remote command:
n.a.

**Walsh Length - More Parameters BS**
Displays the Walsh code of the channel. The indicated value is specific for the selected radio configuration.
Remote command:
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:WLENgth? on page 120

**LC Mask (hex) - More Parameters BS**
Enters the mask of the long-code generator in hexadecimal form. The set value is specific for the selected radio configuration.
The long-code mask is a 42-bit value. The mask serves for channel-specific and user-specific scrambling of the code channel.
The LC Mask is the same for all sub channels of a traffic channel. If the mask is modified for one of the sub channels, the new value is then automatically used by all other subchannels of this traffic channel.
Remote command:
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:LCMask on page 113

### 4.6.5.2 Power Control

In this section, you can configure the settings for the power control bits. These bits are used to control the transmission power.

1. To access this dialog, select "CDMA 2000 > General > Link Direction > Downlink / Forward".
2. Select "Base Stations > Select Base Station > BS1...BS4".

3. Select "Channel Table > F-FCH/F-DCCH > More Params > Config".

This section contains the parameters required for configuring the power control for the channel types F-FCH and F-DCCH.

Data Source - Power Control - BS
Defines the data source for the power control bits of the channel. The set value is specific for the selected radio configuration.

The following standard data sources are available:

- "All 0, All 1"
  An internally generated sequence containing 0 data or 1 data.

- "PNxx"
  An internally generated pseudo-random noise sequence.

- "Pattern"
  An internally generated sequence according to a bit pattern. Use the "Pattern" box to define the bit pattern.

- "Data List/Select DList"
  A binary data from a data list, internally or externally generated. Select "Select DList" to access the standard "Select List" dialog.
  - Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
  - Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.
  - Use the standard "File Manager" function to transfer external data lists to the instrument.

See also:

- Section "Modulation Data" in the R&S SMBV100B user manual.
- Section "File and Data Management" in the R&S SMBV100B user manual.
- Section "Data List Editor" in the R&S SMBV100B user manual.
Read Out Mode (Power Control) - BS
Defines power control bits usage. The set value is specific for the selected radio configuration.

With CDMA, the power control bits are used to signal the increase or reduction in transmit power to the called station.

The BS sends power control bits in the traffic channel at an 800 Hz rate instead of the scrambled data bits. The mobile station increases or decrease its output power depending on these power control bits. One to four data bits (depending on the data rate) are replaced a corresponding number of power control bits (“0...0” or “1...1”).

With all read out modes, 1 bit is taken from the power control, multiplied and entered into the bitstream. The difference between the modes lies in the usage of the power control bits.

These different modes can be used to set a BS to a specific output power (e.g. with the pattern 11111) and then let it oscillate around this power. This behavior allows power measurements to be carried out at the BS (at quasi-constant power).

Together with the option misuse output power control (see For Output Power Control - BS), this parameter can also be used to generate various output power profiles.

"Continuous" The power control bits are used cyclically.

"Single + All 0" The power control bits are used once, and then the power control sequence is continued with 0 bits.

"Single + All 1" The power control bits are used once, and then the power control sequence is continued with 1 bit.

"Single + alt. 01" The power control bits are used once. The power control sequence is continued with 0 bits and 1 bit alternately (in multiples, depending on the data rate, for example, 00001111).

"Single + alt. 10" The power control bits are used once. The power control bit sequence is continued with 1 bit and 0 bits alternately (in multiples, depending on the data rate, for example, 11100000).

Remote command:
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:TPC: DATA on page 115

For Output Power Control - BS
Activates "(Mis-)Use" of the power control data. The set value is specific for the selected radio configuration.
The power control bits are used to signal the increase or reduction of transmit power to the called station.

If "For Output Power Control > (Mis-)Use" is activated, the specified pattern is used to vary the intrinsic transmit power over time. Every 1.25 ms (800 Hz) a bit of this pattern is removed in order to increase (bit = "1") or reduce (bit = "0") the channel power by the specified "Power Step". The upper limit is 0 dB and the lower limit -80 dB.

The following envelope is produced with the settings:
- Channel power = 0 dB
- Power step = 1.0 dB
- Pattern = "001110100000011"
- "TPC Read Out Mode = Continuous"

**Note:** The first bit is assigned to the first power control section. In this first section, the start power specified in the channel table is always used. Only in the next power control section (with the second power control bit) will the defined power change be effective.

![Figure 4-3: Dynamic change of channel power (continuous)](image)

Remote command:

`[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:TPC:MISuse` on page 117

**Power Step (DPCCH) - BS**

Sets the step width of the power change in dB for "(Mis-) use TPC for output power control".

The set value is specific for the selected radio configuration.

Remote command:

`[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:TPC: PSTep` on page 118

### 4.6.5.3 Channel Coding

1. To access this dialog, select "CDMA 2000 > General > Link Direction > Downlink / Forward".
2. Select "Base Stations > Select Base Station > BS1...BS4".
3. Select "Channel Table > Channel# > More Params > Config > Channel Coding"

In this section, you can configure the settings for the channel coding. The indicated values and the settings are specific for the selected radio configuration.

In contrast to 3GPP FDD, channel coding with CDMA2000 is part of the physical layer. The channel coding procedure can slightly vary depending on channel type, frame length and data rate.

**Coding Mode**
Activates or deactivates channel coding. The set state is specific for the selected radio configuration.

"Off"  
Channel coding is deactivated. Channel coding is not performed. The data sources of the individual channels apply their data stream directly to the long-code scrambler. The data source supplies the traffic data with the data rate that would be available at the long-code scrambler after coding is switched on. This effective data rate, which is used for reading off from the data source, is indicated with the parameter "Effective Data Rate". The Data Rate parameter displayed in the channel table continues to affect the "Effective Data Rate", but no longer agrees with it.

"Complete" 
The complete channel coding is performed. The channel coding procedure can slightly vary depending on channel type, frame length and data rate.

"Without Interleaving" 
Except for the block interleaver, the whole channel coding procedure is carried out. In this mode, the frame structure and the convolutional coder of a receiver can be tested.

"Interleaving Only" 
In this mode, only a block interleaver is used for coding. This behavior allows the deinterleaver in the receiver to be tested independently of the remaining (de-)coding process.

Remote command:

```plaintext
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:CCODing:MODE
```

**Coder Type**
Selects error protection. The set value is specific for the selected radio configuration.
Which coder types are available depends on the channel type and other channel settings such as frame length.

If one of these parameters is changed so that the set channel coding type gets invalid, the next permissible value is automatically set.

“Off”  No error protection. This selection is available for the pilot channels only.

“Conv Encoder”  Convolution coder with generator polynomials defined by CDMA. The numeric value defines the rate of the convolution coder.

“Turbo Encoder”  Turbo coder of rate 1/3 in accordance with the CDMA specifications. The numeric value defines the rate of the turbo coder.

Remote command:
\[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>: CCODing:TYPE on page 110

Source Bits / Frame
Indicates the number of input bits per frame for the channel coder. The indicated value is specific for the selected radio configuration.

Remote command:

CRC Length
Indicates the CRC (cyclic redundancy code) type (length) for error identification. The indicated value is specific for the selected radio configuration.

Remote command:
n.a.

Symbol Repetition
Indicates the symbol repetition rate. The value is specific for the selected radio configuration.

Symbol repetition is used together with block symbol puncture for adapting the convolutional or turbo coder output data rate to the required input data rate of the interleaver.

Remote command:

Symbol Puncture
Indicates the symbol puncture rate. The value is specific for the selected radio configuration.

Symbol puncturing (elimination) is used together with block symbol repetition for adapting the convolutional or turbo coder output data rate to the required input data rate of the interleaver.

Remote command:
**Data Rate**
Indicates the effective data rate. The value is specific for the selected radio configuration.

For coding modes "Interleaving Only" and "Coding Off", the effective data rate differs from the set data rate. This is because no increase in the data rate is brought about by the convolution coder. The data rate set in the channel table is therefore not correct.

For coding modes "Without Interleaving" and "Complete", the data rate in the channel table agrees with the effective data rate. This is because there is an increase in the data rate due to the convolution coder.

Remote command:
```plaintext
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:CCODing:DATA:RATE?
```
on page 108

**Block Interleaver**
Displays the number of symbols that the interleaver processes per block. The indicated value is specific for the selected radio configuration.

Remote command:
```plaintext
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:CCODing:BINTerleaver?
```
on page 106

### 4.6.5.4 Additional Sync Channel Parameters

1. To access this dialog, select "CDMA 2000 > General > Link Direction > Downlink / Forward".
2. Select "Base Stations > Select Base Station > BS1...BS4".
3. Select "Channel Table > F-SYNC > More Params > Config".

![CDMA2000: BS1/More Parameters CH0-5](#)
This section contains the additional parameters for the channel type F-SYNC.

**CDMA Channel Number - More Params BS**
Displays the CDMA channel number which corresponds to the RF.

Remote command:
\[
[:SOURce<hw>]:BB:C2K:BSTation:SYNC:CNUMBER
\]
on page 104

**P_REV - More Params BS**
Displays the Protocol revision level that specifies the CDMA2000 system release number.

The table below gives the cross-reference between the P_REV values and the CDMA2000 releases.

<table>
<thead>
<tr>
<th>P_REV</th>
<th>CDMA2000 release</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Korean PCS(Band Class4), USPCS(Band Class1)</td>
</tr>
<tr>
<td>2</td>
<td>IS-95</td>
</tr>
<tr>
<td>3</td>
<td>TBS74</td>
</tr>
<tr>
<td>4</td>
<td>IS-95A</td>
</tr>
<tr>
<td>5</td>
<td>IS-95B</td>
</tr>
<tr>
<td>6</td>
<td>IS2000 Release 0</td>
</tr>
<tr>
<td>7</td>
<td>IS2000 Release A</td>
</tr>
<tr>
<td>8</td>
<td>IS2000 Release B</td>
</tr>
</tbody>
</table>

Remote command:
\[
[:SOURce<hw>]:BB:C2K:BSTation:SYNC:PREV
\]
on page 105

**MIN_P_REV - More Params BS**
Displays the minimum protocol revision level.

The BS sets this field to prevent mobile stations which cannot be supported by the BS from accessing the CDMA system.

Remote command:
\[
[:SOURce<hw>]:BB:C2K:BSTation:SYNC:MPREV
\]
on page 105

**SID - More Params BS**
Displays the system identification.

The BS sets the system identification number.

Remote command:
\[
[:SOURce<hw>]:BB:C2K:BSTation:SYNC:SID
\]
on page 106

**NID - More Params BS**
Displays the network identification.

The NID serves as a subidentifier of a CDMA system as defined by the owner of the SID.
Remote command:
[:SOURce<hw>]:BB:C2K:BSTation:SYNC:NID on page 105

4.6.6 More Parameters for F-PDCH - BS

1. To access this dialog, select "CDMA 2000 > General > Link Direction > Downlink / Forward".
2. Select "Basestations > Basestation > BS1...BS4".
3. Select "Channel Table > F-PDCH > More Params > Config".

This dialog contains the settings required for configuring the packet channel F-PDCH.

The settings for the packet channel F-PDCH channel and all other channels are different (see Chapter 4.6.5, "More Parameters - BS Channel Table", on page 54). The dialog for the special channels and the traffic channels is described below.

The channel coding for the F-PDCHs is always carried out in full (see 3GPP2 C.S0002-C figure 3.1.3.1.1.1-19).

The parameters of both F-PDCCHs (such as Number of Slots per Subpacket, Subpacket Position) are implicitly defined by the F-PDCH settings, since both these channels are always transmitted simultaneously with the F-PDCH. The "More Parameters" dialog for these F-PDCCHs is therefore mostly for display, it only enables you to select the channel coding mode.

The left part is used to enter the general settings for the packet channel.

The right, upper part contains a table for setting the parameters of the subpackets. Up to eight subpackets can be transmitted for each regular packet.

The right, lower part displays the current configuration of the packet channel in graphical form.
4.6.6.1 General Settings for Packet Channel

In the left section, you can configure the general settings for the packet channel.

Packet Interval - More Params F-PDCHs BS
Selects the interval at which new data packets arrive.

New F-PDCH packets are generated in this interval. Within an interval, up to eight subpackets of a data packet can be transmitted with any required time offset.

The value range depends on the set sequence length (ARB settings). The values 80 ms, 40 ms, 20 ms, 10 ms and 5 ms can always be set, and the maximum value is 2000 ms. All intermediate values must satisfy the condition:

Sequence Length = $80\text{ms}/2^n$

where $n$ is a whole number.

Example:
Sequence length = one 80 ms frame.
The possible values for the packet interval are 80 ms, 40 ms, 20 ms, 10 ms and 5 ms.
Sequence length = three 80 ms frames.
The possible values for the packet interval are 240 ms, 120 ms, 80 ms, 40 ms, 20 ms, 10 ms and 5 ms.

Remote command:
[:SOURce<hw>]:BB:C2K:BSTation<st>:PDCHannel:PINTerval on page 122

Walsh Code Column Index - More Params F-PDCHs BS
Selects the standard-compliant set of available Walsh codes for the F_PDCH (see 3GPP2 C.S0003-C, table 2-35).

Remote command:
[:SOURce<hw>]:BB:C2K:BSTation<st>:PDCHannel:WINDex on page 129

Same Packet Setup for all Subpackets - More Params F-PDCHs BS
Activates that all subpackets are generated with the same settings.
If enabled, you can only set the parameters of subpackage1 (number of bits, etc., see Subpacket Table Settings). The same settings are automatically assigned to all subpackets.
The "Off" setting allows individual settings for each subpacket.

Remote command:
[:SOURce<hw>]:BB:C2K:BSTation<st>:PDCHannel:PSETup on page 123

4.6.6.2 Subpacket Table Settings

The middle part contains a table for setting the parameters of the subpackets. Up to eight subpackets can be transmitted for each regular packet (Encoder Packet).
Subpacket Number - More Params F-PDCCHs BS
Denotes the index number of the subpackets in the selected channel. Each packet can include up to eight subpackets.
The subpacket is selected by the suffix to SUBPacket in remote control.

Subpacket State - More Params F-PDCCHs BS
Activates a subpacket.
Subpacket 1 is always active. The rest can be turned on and off.
Remote command:
[:SOURce<hw>]:BB:C2K:BSTation<st>:PDCHannel:SUBPacket<di>:STATE
on page 128

Subpacket ID (SPID) - More Params F-PDCCHs BS
Selects the subpacket ID.
The subpacket ID controls the subpacket symbol selection and adopts one of four possible subpackets from the encoder packet.
The ID of the first subpacket is fixed at 0. The ID can be chosen for each of the rest.
Remote command:
[:SOURce<hw>]:BB:C2K:BSTation<st>:PDCHannel:SUBPacket<di>:ID
on page 123

Time Slot Offset - More Params F-PDCCHs BS
Sets the starting time of the subpacket relative to the starting time of the packet interval.
The first subpacket always has an offset of 0, which cannot be changed.
The value range for the individual subpackets depends on the settings of the other subpackets:
The time slot offsets of the remaining subpackets must be entered in ascending order. Also it is not permitted to transmit two packets simultaneously.

Example:
Subpacket 2 is transmitted in time slot 5 and is four slots long. Subpacket 3 can only be transmitted in time slot 9 and no sooner.
In total, the value range is 0 to (Packet Interval/1.25 ms - Number of Slots per Subpacket).
Example:
Packet Interval = 20 ms, Number of Slots per Subpacket = 2. The value range is 0 to 14.
The entry for "Number of Slots per Subpacket" defines the length of a packet.

Remote command:

PDCH Subpacket Table Parameters - More Params F-PDCHs BS
Only certain combinations of this parameter with the parameters of the last five table columns are possible. These combinations are shown in the selection list in the form of a table for all five parameters.

"Number of Bits per Encoder Packet"
Sets the number of bits per encoder packet.
The "Number of Bits per Encoder Packet" defines the number of data bits that can be read from the data source for an encoder packet. Due to the channel coding, this number is multiplied by a factor of about 5. The subsequent subpacket symbol selection then divides these bits into four different subpackets which can be selected via the SPID parameter.
The "Number of Bits per Encoder Packet" can only be changed for subpacket 1. This value must be identical for the remaining subpackets, since they are all part of a single encoder packet.

"Number of 32-Chip Walsh Channels"
Selects the number of 32-chip Walsh channels.

"Subpacket Data Rate (kbps)"
Selects the data rate of the subpacket.
The data rate is the result of the "Number of Bits per Encoder Packet" divided by the duration of the subpacket (= "Number of Slots per Subpacket"). Therefore only specified combinations of the "Subpacket Data Rate" with the "Number of Slots per Subpacket" at a specified "Number of Bits per Encoder Packet" are possible.

"Number of Slots per Subpacket"
Selects the number of slots per subpacket. This parameter defines the duration of the subpacket. A slot equals 1.25 ms. The "Number of Slots per Subpacket" is the result of the "Number of Bits per Encoder Packet" divided by the data rate. Therefore only specified combinations of the Subpacket Data Rate with the "Number of Slots per Subpacket" at a specified "Number of Bits per Encoder Packet" are possible.

"Modulation"
Indication of the modulation type.
The modulation type is fix for each combination of the above parameters.

Remote command:
[:SOURce<hw>]:BB:C2K:BSTation<st>:PDCHannel:SUBPacket<di>:PARameters on page 123
Resulting Walsh Codes - More Params F-PDCHs BS
Indicates the resulting Walsh codes for the subpacket.

Remote command:

4.6.6.3 Subpacket Graph

Displays the current configuration of the packet channel and its active subpackets graphically.

The X axis is the length of the set packet interval in ms, i.e. the duration of the transmission of an encoder packet.

The relative power of the subpackets is represented on the Y axis. The subpackets are shown as bars and are one, two or four time slots wide according to the configuration. The position on the X axis corresponds to the selected time slot offset.

The color of the bar depends on the sub packet ID (SPID). The assignment of colors to SPIDs is shown below the graph.

4.6.7 Mobile Station Configuration (MS)

1. To access this dialog, select "CDMA 2000 > General > Transmission Direction > Uplink / Reverse".
2. Select "Mobile Stations > Mobile Station > MS1...MS4".

The structure of the channel table depends on the selected operating mode and - for the traffic channel - on the selected radio configuration.

4.6.7.1 Common Settings - MS

1. To access this dialog select "CDMA2000 > Mobile Station> MS1..MS4".
2. Select "MS1...MS4 > Common".
This dialog comprises the common settings required for configuring the mobile station.

**State - MS**
Activates or deactivates the selected mobile station. The number of the selected mobile station is specified in the dialog header.

Remote command: 
[:SOURce<hw>]:BB:C2K:MSTation<st>:STATe on page 141

**Operation Mode - MS**
Selects the mode in which the mobile station is to work.

The operation mode defines the generated channel types. The lower part of the dialog changes in accordance with the mode. The following modes are available:

- **"Traffic"**
  In this mode, the instrument generates a single traffic channel. A traffic channel consists of up to eight sub channels depending on the selected radio configuration.
  This mode corresponds to the standard mode of a mobile station during voice and data transmission.

- **"Access"**
  In this mode, the instrument generates an access channel (R-ACH). This channel is needed to set up the connection between the mobile station and the base station.

- **"Enhanced Access"**
  In this mode, the instrument generates an enhanced access channel (R-ACH) and a pilot channel (R-PICH). These channels are used to set up the connection between the mobile station and the BS.

- **"Common Control"**
  In this mode, the instrument generates a common control channel (R-ACH) and a pilot channel (R-PICH).

Remote command: 
[:SOURce<hw>]:BB:C2K:MSTation<st>:MODE on page 140

**Radio Configuration - MS**
Selects the radio configuration for the traffic channel.

In the reverse link, the channel scenario with the spreading codes of the individual channels is predefined by selecting the radio configuration. For this reason, the channel table does not contain selection parameters for the Walsh code.
A separate set of settings of all channel table parameters is provided for each radio configuration. Changing the radio configuration causes the settings belonging to the new RC value to be activated in the channel table. The settings belonging to the old RC value are not lost.

The radio configuration determines the permissible frame lengths and the frame length defines the permitted data rate.

Changing the frame length automatically causes the data rate to be changed if it is no longer permitted.

Remote command:

[:SOURce<hw>]:BB:C2K:MSTation<st>:RCONfiguration on page 141

Channel Coding - MS
Activates or deactivates channel coding.

"Off"  Channel coding is deactivated.
"Complete"  The complete channel coding is performed. The channel coding procedure can slightly vary depending on channel type, frame length and data rate.
"Without Interleaving"  Except for the block interleaver, the whole channel coding procedure is carried out.
"Interleaving Only"  In this mode, only block interleaver is used for coding.

Remote command:

[:SOURce<hw>]:BB:C2K:MSTation<st>:CCODing:MODE on page 135

LC Mask (hex) - MS
Enters the mask of the long-code generator in hexadecimal form.

The long-code mask is a 42-bit value. The mask serves for channel-specific and user-specific scrambling of the code channel.

Remote command:

[:SOURce<hw>]:BB:C2K:MSTation<st>:LCMask on page 140

4.6.7.2 Power Control - MS

1. To access this dialog select "Mobile Stations > Select Mobile Station> MS1..MS4".
2. Select "MS1...MS4 > Power Control".
This dialog contains the parameters for configuring the power control bits for mobile stations.

In the uplink, the bits are used exclusively for controlling the mobile station output power by activating the "(Mis-)Use Power Control" function. Power control puncturing of the data bits of the traffic channels for controlling the base station power is not performed.

This section is only available for the traffic channel.

**Read Out Mode (Power Control) - MS**
Defines a read-out mode of power control bits.

Together with the parameter For Output Power Control - MS, this parameter can also be used to generate various output power profiles.

- "Continuous" The power control bits are used cyclically.
- "Single + All 0" The power control bits are used once and then the power control sequence is continued with 0 bits.
- "Single + All 1" The power control bits are used once and then the power control sequence is continued with 1 bit.
- "Single + Alt. 01" The power control bits are used once and then the power control sequence is continued with 0 bits and 1 bit alternately.
- "Single + Alt. 10" The power control bits are used once and then the power control sequence is continued with 1 bit and 0 bits alternately.

Remote command:
[:SOURce<hw>:BB:C2K:MSTation<st>:TPC:READ on page 143

**Data Source (Power Control) - MS**
Defines the data source for the power control bits of the channel.

The following standard data sources are available:
- "All 0, All 1" An internally generated sequence containing 0 data or 1 data.
- "PNxx" An internally generated pseudo-random noise sequence.
- "Pattern" An internally generated sequence according to a bit pattern.

Use the "Pattern" box to define the bit pattern.

- "Data List/Select DList" A binary data from a data list, internally or externally generated.

Select "Select DList" to access the standard "Select List" dialog.

- Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
- Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.
- Use the standard "File Manager" function to transfer external data lists to the instrument.

See also:
- Section "Modulation Data" in the R&S SMBV100B user manual.
For Output Power Control - MS
Activates "(Mis-)Use" of the power control data.

In the uplink, the power control bits are used exclusively for controlling the mobile station output power. Power control puncturing is not defined for controlling the BS power. If "For Output Power Control > (Mis-)Use" is activated, the specified pattern is used to vary the intrinsic transmit power over time. Every 1.25 ms (800 Hz) a bit of this pattern is removed in order to increase (bit = "1") or reduce (bit = "0") the channel power by the specified "Power Step". The upper limit is 0 dB and the lower limit -80 dB.

The following envelope is produced with the settings:
- Channel power = 0 dB
- Power step = 1.0 dB
- Pattern = "001110100000011"
- "TPC Read Out Mode = Continuous"

**Note:** The first bit is assigned to the first power control section. In this first section, the start power specified in the channel table is always used. Only in the next power control section (with the second power control bit) will the defined power change be effective.

![Figure 4-4: Dynamic change of channel power (continuous)](image)

Remote command:
[:SOURce<hw>]:BB:C2K:MSTation<st>:TPC:MISuse on page 143

**Power Step - MS**
Sets the step width of the power change in dB for "(Mis-) use TPC for output power control".

Remote command:
[:SOURce<hw>]:BB:C2K:MSTation<st>:TPC:PSTep on page 143
4.6.7.3 Channel Table - MS

1. To access this dialog select "Mobile Stations > Select Mobile Station> MS1..MS4".
2. Select "MS1...MS4 > Channel Table".

This table contains the channel table for configuring the channel parameters individually.

The structure of the channel table depends on the selected operating mode and - for the traffic channel - on the selected radio configuration. Also, for the traffic channels, the indicated values and the settings are specific for the selected radio configuration.

In uplink, the employed Walsh code is determined by the radio configuration and cannot be chosen.

The following combinations between the operating modes of the four mobile stations are allowed:

<table>
<thead>
<tr>
<th></th>
<th>Traffic, RC1 &amp; RC 2</th>
<th>Traffic, RC3 &amp; RC 4</th>
<th>Access</th>
<th>Enhanced access</th>
<th>Common Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic, RC1 &amp; RC 2</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Traffic, RC3 &amp; RC 4</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Access</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enhanced access</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Common control</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Channel Number- MS
Displays the channel number.
All channels of the selected operating mode are listed. The channels are switched on and off with the "On/Off" button in the "State" column.
Remote command:
n.a.

**Channel Type - MS**
Indicates the channel type (see Table 4-2). The possible channel types depend on the selected operating mode of the mobile station.

<table>
<thead>
<tr>
<th>Short form</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-PICH</td>
<td>Reverse Pilot Channel</td>
<td>Provides the capabilities for coherent detection.</td>
</tr>
<tr>
<td>R-DCCH</td>
<td>Reverse Dedicated Control Channel</td>
<td>Transports mobile-specific control information.</td>
</tr>
<tr>
<td>R-FCH</td>
<td>Reverse Fundamental Channel</td>
<td>Similar to F-FCH; designed to transport dedicated data.</td>
</tr>
<tr>
<td>R-SCH</td>
<td>Reverse Supplemental Channel (RC 3...5)</td>
<td>Allocated dynamically to meet a required data rate.</td>
</tr>
<tr>
<td>R-SCCH</td>
<td>Reverse Supplemental Code Channel (RC 1 / 2)</td>
<td>Allocated dynamically to meet a required data rate.</td>
</tr>
<tr>
<td>Access</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-ACH</td>
<td>Reverse Access Channel</td>
<td>Required connection set up between the mobile station and the base station.</td>
</tr>
<tr>
<td>Enhanced Access</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-EACH</td>
<td>Reverse Enhanced Access Channel</td>
<td>Required connection set up between the mobile station and the base station.</td>
</tr>
<tr>
<td>R-PICH</td>
<td>Reverse Pilot Channel</td>
<td>Provides the capabilities for coherent detection.</td>
</tr>
<tr>
<td>Common Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-CCCH</td>
<td>Reverse Common Control Channel</td>
<td>Similar to R-ACH but it is meant to transport control information.</td>
</tr>
</tbody>
</table>

Remote command:
[:SOURce<hw>]:BB:C2K:MSTation<st>:CHANnel<ch>:TYPE? on page 139

**Frame Length - MS**
Sets the frame length of the channel. For the traffic channels, the indicated value is specific for the selected radio configuration.

The value range depends on the channel type and the selected radio configuration. The frame length of some channels is fixed. The maximum frame length is 80 ms, the minimum frame length is 5 ms.

The frame length affects the data rates that are possible within a channel. If a frame length is changed so that the set data rate becomes invalid, the next permissible value is automatically set.

**Data Rate - MS**
Sets the data rate of the channel. For the traffic channels, the indicated value is specific for the selected radio configuration.

The R&S SMBV100B supports all data rates between 1.2 kbps and 1,036.8 kbps defined in the standard.

The value range depends on the frame length. If one of these parameters is changed so that the set data rate becomes invalid, the next permissible value is automatically set.


**Walsh - MS**
Assigns the Walsh code to the channel (see Chapter 3.1.9, "Spreading - Uplink", on page 16). For the traffic channels, the indicated value is specific for the selected radio configuration.

The code channel is spread with the set Walsh code (spreading code). The Walsh codes to be used are specified by the standard and cannot be chosen.

Remote command: \[:SOURce<hw>:BB:C2K:MSTation<st>:CHANnel<ch>:WCODe?\] on page 139

**Spread - MS**
Indication of the spreading factor of the channel. For the traffic channels, the indicated value is specific for the selected radio configuration.

The spreading factor corresponds to the length of the employed Walsh code. The Walsh codes to be used are specified by the standard and cannot be chosen.


**Power - MS**
Enters the channel power in dB. For the traffic channels, the set value is specific for the selected radio configuration.

The power entered is relative to the power's output of the other channels. If "Adjust Total Power to 0 dB" is executed (top level of the CDMA2000 dialog), all the power data is relative to 0 dB.

The set power value is also the start power of the channel, if "For Output Power Control > (Mis-)Use" is activated.

**Note:** The maximum channel power of 0 dB applies to non-blanked channels (duty cycle 100%). With blanked channels, the maximum value can be increased (by "Adjust Total Power") to values greater than 0 dB.

Data - MS
Selects data source. For the traffic channels, the set value is specific for the selected radio configuration.

The following standard data sources are available:
- "All 0, All 1"
  An internally generated sequence containing 0 data or 1 data.
- "PNxx"
  An internally generated pseudo-random noise sequence.
- "Pattern"
  An internally generated sequence according to a bit pattern.
  Use the "Pattern" box to define the bit pattern.
- "Data List/Select DList"
  A binary data from a data list, internally or externally generated.
  Select "Select DList" to access the standard "Select List" dialog.
  - Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
  - Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.
  - Use the standard "File Manager" function to transfer external data lists to the instrument.

See also:
- Section "Modulation Data" in the R&S SMBV100B user manual.
- Section "File and Data Management" in the R&S SMBV100B user manual.
- Section "Data List Editor" in the R&S SMBV100B user manual

Remote command:
[:SOURce<hw>]:BB:C2K:MSTation<st>:CHANnel<ch>:DATA on page 135
[:SOURce<hw>]:BB:C2K:MSTation<st>:CHANnel<ch>:DATA:PATTern on page 136
[:SOURce<hw>]:BB:C2K:MSTation<st>:CHANnel<ch>:DATA:DSELect on page 136

Channel State - MS
Activates/deactivates the channel. For the traffic channels, the indicated value is specific for the selected radio configuration.

Remote command:
[:SOURce<hw>]:BB:C2K:MSTation<st>:CHANnel<ch>:STATe on page 138
4.7 Filter / Clipping / ARB Settings

Access:
► Select "General > Filter/Clipping/ARB Settings".

The dialog comprises the settings, necessary to configure the baseband filter, to enable clipping and adjust the sequence length of the arbitrary waveform component.

4.7.1 Filter Settings

Access:
► Select "Filter".

The dialog contains the parameters required for configuring the baseband filter.

Settings:

Filter
Selects the baseband filter.
Remote command:
[:SOURce<hw>]:BB:C2K:FILTertYPE on page 88

Chip Rate Variation
Enters the chip rate.
Remote command:
[:SOURce<hw>]:BB:C2K:CRATe:VARIation on page 83

Roll Off Factor or BxT
Sets the filter parameter.
The filter parameter ("Roll off Factor" or "BxT") depends on the currently selected filter type. This parameter is preset to the default for each of the predefined filters.
Remote command:
[:SOURce<hw>]:BB:C2K:FILTertPARameter:APCO25 on page 88
[:SOURce<hw>]:BB:C2K:FILTertPARameter:COSine on page 88
Cutoff Frequency Factor
Sets the value for the cutoff frequency factor. The cutoff frequency of the filter can be adjusted to reach spectrum mask requirements.

Remote command:

\[
\text{[:SOURce<hw>:]BB:C2K:FILTera:PARameter:GAUSs on page 88}
\]

\[
\text{[:SOURce<hw>:]BB:C2K:FILTera:PARameter:PGAuss on page 89}
\]

\[
\text{[:SOURce<hw>:]BB:C2K:FILTera:PARameter:RCO sine on page 90}
\]

\[
\text{[:SOURce<hw>:]BB:C2K:FILTera:PARameter:SPHase on page 90}
\]

4.7.2 Clipping Settings

To access this dialog, select "Clipping".

The dialog comprises the settings, necessary to configure the clipping.

Clipping State
Switches baseband clipping on and off.

Baseband clipping is a simple and effective way of reducing the crest factor of the signal. Since clipping is done before to filtering, the procedure does not influence the spectrum. The EVM however increases.

Remote command:

\[
\text{[:SOURce<hw>:]BB:C2K:CLIPping:STATe on page 91}
\]

Clipping Level
Sets the limit for clipping.

This value indicates at what point the signal is clipped. It is specified as a percentage, relative to the highest level. 100% indicates that clipping does not take place.
Remote command: 
[:SOURce<hw>]:BB:C2K:CLIPping:LEVel on page 90

Clipping Mode
Selects the clipping method. The dialog displays a graphical illustration on how this two methods work.

- "Vector | i + jq |
  The limit is related to the amplitude | i + q |. The I and Q components are mapped together, the angle is retained.
- "Scalar | i | , | q |
  The limit is related to the absolute maximum of all the I and Q values | i | + | q |. The I and Q components are mapped separately, the angle changes.

Remote command: 
[:SOURce<hw>]:BB:C2K:CLIPping:MODE on page 91

4.7.3 ARB Settings

▸ To access this dialog, select "ARB Settings".

The dialog comprises the settings, required to adjust the sequence length of the arbitrary waveform component.

Sequence Length ARB
Changes the sequence length of the arbitrary waveform component of the signal. This component is calculated in advance and output in the arbitrary waveform generator.

The number of chips is determined from this sequence length (1 Frame = 80 ms) and the chip rate. At 1.2288 MChips/s, a frame equals 98.304 chips.

In pure amplifier tests with several channels and no realtime channels, it is possible to improve the statistical properties of the signal by increasing the sequence length.

Note: Unlike for 3GPP, in the case of CDMA2000 the length of a frame is not uniformly defined. This implementation uses a frame length of 80 ms. Division into 80 ms frames was chosen because in this time grid the frame lengths for both the SYNC channel, with its cycle duration of 26.67 ms, and all other channels work out to 5 ms, 10 ms, 20 ms or 80 ms. The F-BCH has a frame length of 160 ms. In order to use this channel, an even number of 80 ms frames has to be set.

Remote command: 
[:SOURce<hw>]:BB:C2K:SLENgth on page 86
4.7.4 I/Q Setting

To access this dialog, select "I/Q Settings".

This dialog contains the parameters for configuring the IQ settings.

**Invert Q for Correct Baseband Output**

Inverts Q-part of the baseband signal, see Chapter 3.1.12, "I/Q Modulator - Uplink and Downlink", on page 19.

With its default CDMA2000 settings, the R&S SMBV100B generates a standard compliant RF signal.

If a standard compliant baseband signal is required, enable this parameter to invert the Q-part of the baseband signal.

If both, the RF signal and baseband signal have to be compliant with the CDMA2000 standard:

- Set "Invert Q for Correct Baseband Output > On"
- Set "I/Q Mod > I/Q Settings > I/Q Swap > On"

See also R&S SMBV100B user manual, section "Applying I/Q Vector Modulation".

Remote command:

```
[:SOURce<hw>]:BB:C2K:IQSWap[:STATe] on page 83
```
5 Remote-Control Commands

The following commands are required to perform signal generation with the CDMA2000 options in a remote environment. We assume that the R&S SMBV100B has already been set up for remote operation in a network as described in the R&S SMBV100B documentation. Knowledge of the remote control operation and the SCPI command syntax is assumed.

Conventions used in SCPI command descriptions

For a description of the conventions used in the remote command descriptions, see section “Remote Control Commands” in the R&S SMBV100B user manual.

The commands in the SOURce:BB:C2K subsystem are described in several sections, separated into general remote commands, commands for base station settings and commands for mobile station settings.

Common suffixes

The following common suffixes are used in remote commands:

<table>
<thead>
<tr>
<th>Suffix</th>
<th>Value range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTity&lt;ch&gt;</td>
<td>1</td>
<td>Optional keyword, provided for compatibility with R&amp;S®SMW200A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENTity1:SOURce1 = SOURce1</td>
</tr>
<tr>
<td>SOURce&lt;hw&gt;</td>
<td>1</td>
<td>available baseband signals</td>
</tr>
<tr>
<td>OUTPut&lt;ch&gt;</td>
<td>1 to 3</td>
<td>available markers</td>
</tr>
<tr>
<td>BSTation&lt;st&gt;</td>
<td>[1]</td>
<td>2</td>
</tr>
<tr>
<td>CGRowup&lt;di0&gt;</td>
<td>0[1]</td>
<td>..8</td>
</tr>
<tr>
<td>COFFset&lt;ch&gt;</td>
<td>[1]</td>
<td>..13</td>
</tr>
<tr>
<td>MSTation&lt;st&gt;</td>
<td>[1]</td>
<td>2</td>
</tr>
<tr>
<td>CHANnel&lt;ch&gt;</td>
<td>0[1]</td>
<td>..8</td>
</tr>
</tbody>
</table>

The following commands specific to the CDMA2000 are described here:

- Primary Commands................................................................................................ 81
- Filter/Clipping Settings......................................................................................... 87
- Trigger Settings...................................................................................................... 92
- Marker Settings....................................................................................................... 95
- Clock Settings........................................................................................................ 97
- Predefined Settings.............................................................................................. 97
- Base Stations Settings......................................................................................... 102
- Mobile Station Settings....................................................................................... 132
5.1 Primary Commands

[:SOURce<hw>]:BB:C2K:COPY:COFFset <COffset>............................................................................... 81
[:SOURce<hw>]:BB:C2K:COPY:DEStinatlon............................................................................ 81
[:SOURce<hw>]:BB:C2K:COPY:EXECute............................................................................. 82
[:SOURce<hw>]:BB:C2K:COPY:SOURce............................................................................. 82
[:SOURce<hw>]:BB:C2K:CRAte?.......................................................................................... 83
[:SOURce<hw>]:BB:C2K:CRAte:VARiation........................................................................ 83
[:SOURce<hw>]:BB:C2K:IQSWap[STAtes]........................................................................ 83
[:SOURce<hw>]:BB:C2K:LINK............................................................................................ 84
[:SOURce<hw>]:BB:C2K:POWer:ADJust................................................................................ 84
[:SOURce<hw>]:BB:C2K:POWer[TOTal]?............................................................................ 84
[:SOURce<hw>]:BB:C2K:PRESet......................................................................................... 84
[:SOURce<hw>]:BB:C2K:SETTing:CATalog?........................................................................ 85
[:SOURce<hw>]:BB:C2K:SETTing:DELete.......................................................................... 85
[:SOURce<hw>]:BB:C2K:SETTing:LOAD................................................................................ 85
[:SOURce<hw>]:BB:C2K:SETTing:STORe............................................................................. 86
[:SOURce<hw>]:BB:C2K:SLENgth......................................................................................... 86
[:SOURce<hw>]:BB:C2K:STAtel........................................................................................ 86
[:SOURce<hw>]:BB:C2K:WAVeform:CREate..................................................................... 87
[:SOURce]:BB:C2K:VERSion?............................................................................................. 87

[:SOURce<hw>]:BB:C2K:COPY:COFFset <COffset>

The command sets the offset for the Walsh code in the destination base station. The minimum value is 0 (Walsh codes are identical), the maximum value is 255.

This command is only available in the downlink (SOUR:BB:C2K:LINK FORW/DOWN).

Parameters:

<COffset>
integer
Range: 0 to 255
Increment: 1
*RST: 0

Example:
BB:C2K:COPY:COFF 10
the Walsh code is shifted by 10 when the source base station is copied to the destination base station.

Manual operation: See "Copy ... " on page 35

[:SOURce<hw>]:BB:C2K:COPY:DEStination <Destination>

The command selects the station to which data is to be copied. Whether the data is copied to a base station or a mobile station depends on which transmission direction is selected (command C2K:LINK UP | DOWN).

Parameters:

<Destination> 1 | 2 | 3 | 4
Range: 1 to 4
*RST: 2
Example:

BB:C2K:LINK DOWN
selects the downlink transmit direction (base station to mobile station).
BB:C2K:COPY:SOUR 1
selects base station 1 as the source.
BB:C2K:COPY:DEST 4
selects base station 4 as the destination.
BB:C2K:COPY:EXEC
starts copying the parameter set of base station 1 to base station 4.

Manual operation: See "Copy ... " on page 35

[:SOURce<hw>]:BB:C2K:COPY:EXECute
The command starts the copy process. The dataset of the source station is copied to the destination station. Whether the data is copied to a base station or a mobile station depends on which transmission direction is selected (command :BB:C2K:LINK UP | DOWN).

Example: BB:C2K:COPY:EXEC
starts copying the parameter set of the selected source station to the selected destination station.

Usage: Event

Manual operation: See "Copy ... " on page 35

[:SOURce<hw>]:BB:C2K:COPY:SOURce <Source>
The command selects the station that has data to be copied. Whether the station copied is a base or mobile station depends on which transmission direction is selected (command C2K:LINK UP | DOWN).

Parameters:

<Source>
1 | 2 | 3 | 4
Range: 1 to 4
*RST: 1

Example:
BB:C2K:LINK UP
selects the uplink transmit direction (mobile station to base station).
BB:C2K:COPY:SOUR 1
selects mobile station 1 as the source.
BB:C2K:COPY:DEST 4
selects mobile station 4 as the destination.
BB:C2K:COPY:EXEC
starts copying the parameter set of mobile station 1 to mobile station 4.

Manual operation: See "Copy ... " on page 35
**[:SOURce<hw>:]BB:C2K:CRATe?**

The command queries the spreading rate. The output chip rate which determines the rate of the spread symbols as is used for signal output can be set with the command SOUR:BB:C2K:CRAT:VAR.

**Return values:**

- `<CRate>`: R1M2
- `{RST: R1M2}`

**Example:**

BB:C2K:CRAT?

queries the system chip rate.

Response: R1M2

the system chip rate is 1.2288 Mcps.

**Usage:**

Query only

**Manual operation:** See "Spreading Rate" on page 25

**[:SOURce<hw>:]BB:C2K:CRATe:VARiation <Variation>**

Sets the output chip rate.

The output chip rate changes the output clock and the modulation bandwidth, as well as the synchronization signals that are output. It does not affect the calculated chip sequence.

**Parameters:**

- `<Variation>`: float
  - Range: 400 to 5E6
  - Increment: 1E-3
  - `{RST: 1.2288E6}`

**Example:**

BB:C2K:CRAT:VAR 4086001

sets the chip rate to 4.08 Mcps.

**Manual operation:** See "Chip Rate Variation" on page 76

**[:SOURce<hw>:]BB:C2K:IQSWap[:STATe] <State>**

This command inverts the Q-part of the baseband signal if set to ON. The signal on the baseband outputs meets the cdma2000 standard. In order to generate an RF signal that conforms to the standard, the "I/Q Swap" function in the "I/Q Modulator" menu must be enabled ("On") (SOURce:IQ:SWAP ON).

**Parameters:**

- `<State>`: 0 | 1 | OFF | ON
  - `{RST: OFF}`

**Example:**

BB:C2K:IQSW:STAT ON

inverts the Q-part of the baseband signal.

**Manual operation:** See "Invert Q for Correct Baseband Output" on page 79
[:SOURce<hw>]:BB:C2K:LINK <Link>

The command defines the transmission direction. The signal either corresponds to that of a base station (FORWard | DOWN) or that of a mobile station (REVerse | UP).

Parameters:

<Link>

Parameters: DOWN | UP | FORWard | REVerse

*RST: DOWN

Example: BB:C2K:LINK DOWN

the transmission direction selected is base station to mobile station. The signal corresponds to that of a base station.

Manual operation: See "Link Direction" on page 25

[:SOURce<hw>]:BB:C2K:POWer:ADJ

The command sets the power of the active channels in such a way that the total power of the active channels is 0 dB. This does not change the power ratio among the individual channels.

Example: BB:C2K:POW:ADJ

The total power of the active channels is set to 0 dB, the power ratio among the individual channels is unchanged.

Usage: Event

Manual operation: See "Adjust Total Power to 0dB" on page 36

[:SOURce<hw>]:BB:C2K:POWer[:TOTal]?

The command queries the total power of the active channels. After "Power Adjust" this power corresponds to 0 dB.

Return values:

<Total>

float

Range: -80 dB to 30 dB

Increment: 0.01 dB

*RST: 0 dB

Example: BB:C2K:POW?

queries the total power of the active channels.

Response: -22.5

the total power is -25 dB.

Usage: Query only

Manual operation: See "Total Power" on page 36

[:SOURce<hw>]:BB:C2K:PRESet

Sets the parameters of the digital standard to their default values (*RST values specified for the commands).
Not affected is the state set with the command `SOURce<hw>:BB:C2K:STATe`.

**Example:**

```
SOURce1:BB:C2K:PRESet
```

**Usage:**

Event

**Manual operation:**

See “Set to Default” on page 24

---

`[:SOURce<hw>]:BB:C2K:SETTing:CATalog?`

Queries the files with settings in the default directory. Listed are files with the file extension `*.cdma2k`.

For general information on file handling in the default and in a specific directory, see section “MMEMory Subsystem” in the R&S SMBVB operating manual.

**Return values:**

```
<Catalog> <filename1>,<filename2>,...
```

Returns a string of filenames separated by commas.

**Example:**

```
MMEM:CDIR '/var/user/cdma'
SOURce1:BB:C2K:SETTing:CATalog?
// Response: "cdma_up", "cdma_down"
SOURce1:BB:C2K:SETTing:DELETE "cdma_down"
SOURce1:BB:C2K:SETTing:LOAD "cdma_up"
```

**Usage:**

Query only

**Manual operation:**

See "Save/Recall" on page 25

---

`[:SOURce<hw>]:BB:C2K:SETTing:DELETE <Filename>`

Deletes the selected file from the default or the specified directory. Deleted are files with extension `*.cdma2k`.

**Setting parameters:**

```
<Filename> string
```

**Example:**

See `[:SOURce<hw>]:BB:C2K:SETTing:CATalog?` on page 85

**Usage:**

Setting only

**Manual operation:**

See "Save/Recall" on page 25

---

`[:SOURce<hw>]:BB:C2K:SETTing:LOAD <Filename>`

Loads the selected file from the default or the specified directory. Loaded are files with extension `*.cdma2k`.

**Setting parameters:**

```
<Filename> "<filename>"
```

Filename or complete file path; file extension can be omitted
Example: See [:SOURce<hw>]:BB:C2K:SETTing:CATalog? on page 85
Usage: Setting only
Manual operation: See "Save/Recall" on page 25

[:SOURce<hw>]:BB:C2K:SETTing:STORe <Filename>
Stores the current settings into the selected file; the file extension (*.cdma2k) is assigned automatically.

Setting parameters:
<Filename> string
Filename or complete file path

Example: BB:C2K:SETT:STOR 'CDMA_UP'
Usage: Setting only
Manual operation: See "Save/Recall" on page 25

[:SOURce<hw>]:BB:C2K:SLENgth <SLength>
Sets the sequence length of the arbitrary waveform component of the CDMA2000 signal in the number of frames.

Parameters:
<SLength> integer
Range: 1 to max
*RST: 1

Example: BB:C2K:SLEN 10
sets the sequence length to 10 frames.
Manual operation: See "Sequence Length ARB" on page 78

[:SOURce<hw>]:BB:C2K:STATe <State>
Activates the standard and deactivates all the other digital standards and digital modulation modes in the same path.

Parameters:
<State> 0 | 1 | OFF | ON
*RST: 0

Example: SOURce1:BB:C2K:STATe ON
Manual operation: See "State" on page 24
[:SOURce<hw>]:BB:C2K:WAVeform:CREate <Filename>
This command creates a waveform using the current settings of the "CDMA2000" menu. The file name is entered with the command. The file is stored with the predefined file extension *.wv. The file name and the directory it is stored in are user-definable.

Setting parameters:
<Filename> string

Example: MMEM:CDIR "/var/user/temp/waveform"
sets the default directory to /var/user/temp/waveform.
BB:C2K:WAve:CRE "cdma bs"
creates the waveform file cdma bs.wv in the default directory.

Usage: Setting only

Manual operation: See "Generate Waveform File" on page 25

[:SOURce]:BB:C2K:VERSion?
The command queries the version of the CDMA standard underlying the definitions.

Return values:
<Version> string

Example: BB:C2K:VERS?
queries the CDMA version.
Response: Release C
CDMA Release 5

Usage: Query only


5.2 Filter/Clipping Settings

5.2.1 Filter Settings

[:SOURce<hw>]:BB:C2K:FILTer:TYPe
[:SOURce<hw>]:BB:C2K:FILTer:PARameter:APCO25
[:SOURce<hw>]:BB:C2K:FILTer:PARameter:COSine
[:SOURce<hw>]:BB:C2K:FILTer:PARameter:GAUSs
[:SOURce<hw>]:BB:C2K:FILTer:PARameter:LPASs
[:SOURce<hw>]:BB:C2K:FILTer:PARameter:LPASSEVM
[:SOURce<hw>]:BB:C2K:FILTer:PARameter:PGAuss
[:SOURce<hw>]:BB:C2K:FILTer:PARameter:RCOSine
[:SOURce<hw>]:BB:C2K:FILTer:PARameter:SPHase
[[:SOURce<hw>]:BB:C2K:FILTer:TYPe <Type>]

The command selects the filter type.

**Parameters:**

<Type>  
RCOSine | COSine | GAUSs | LGAuss | CONE | COF705 | COEQualizer | COFequalizer | C2K3x | APCO25 | SPHase | RECTangle | PGauss | LPASs | DIRac | ENPShape | EWPShape | LPASSEVM  
*RST: Downlink:COEF; Uplink: CONE

**Example:**

BB:C2K:FILT:TYPE CONE  
sets the filter type CdmaOne. This filter type is defined by the standard for the uplink.

**Manual operation:**  
See "Filter" on page 76


Sets the roll-off factor for filter type APCO25.

**Parameters:**

<Apco25>  
float  
Range: 0.05 to 0.99  
Increment: 0.01  
*RST: 0.20

**Example:**

BB:C2K:FILT:PAR:APCO25 0.2  
Sets the roll-off factor to 0.2 for filter type APCO25.

**Manual operation:**  
See "Roll Off Factor or BxT" on page 76

[[:SOURce<hw>]:BB:C2K:FILTer:PARameter:COSine <Cosine>]

Sets the roll-off factor for the Cosine filter type.

**Parameters:**

<Cosine>  
float  
Range: 0 to 1.0  
Increment: 0.01  
*RST: 0.35

**Example:**

BB:C2K:FILT:PAR:COS 0.35  
Sets the roll-off factor to 0.35 for filter type Cosine.

**Manual operation:**  
See "Roll Off Factor or BxT" on page 76

[[:SOURce<hw>]:BB:C2K:FILTer:PARameter:GAUSs <Gauss>]

Sets the roll-off factor for the Gauss filter type.
Remote-Control Commands

Parameters:
<Gauss>  
float  
Range: 0.15 to 2.5  
Increment: 0.01  
*RST: 0.5  

Example:  
BB:C2K:FILT:PAR:GAUS 0.5  
Sets B x T to 0.5 for the Gauss filter type.  

Manual operation:  
See "Roll Off Factor or BxT" on page 76

[:SOURce<hw>:]:BB:C2K:FILTer:PARameter:LPASs <LPass>  
The command sets the cut-off frequency factor for the Lowpass (ACP Opt.) filter type.  

Parameters:
<LPass>  
float  
Range: 0.05 to 2  
Increment: 0.01  
*RST: 0.5  

Example:  
BB:C2K:FILT:PAR:LPAS 0.5  
The cut-off frequency factor is set to 0.5.  

Manual operation:  
See "Cutoff Frequency Factor" on page 77

[:SOURce<hw>:]:BB:C2K:FILTer:PARameter:LPASSEVM <LPassEvm>  
The command sets the cut-off frequency factor for the Lowpass (EVM Opt.) filter type.  

Parameters:
<LPassEvm>  
float  
Range: 0.05 to 2  
Increment: 0.01  
*RST: 0.5  

Example:  
BB:C2K:FILT:PAR:LPASSEVM 0.5  
The cut-off frequency factor is set to 0.5.  

Manual operation:  
See "Cutoff Frequency Factor" on page 77

[:SOURce<hw>:]:BB:C2K:FILTer:PARameter:PGAuss <PGauss>  
The command sets the roll-off factor for the Pure Gauss filter type.  

Parameters:
<PGauss>  
float  
Range: 0.15 to 2.5  
Increment: 0.01  
*RST: 0.5  

Filter/Clipping Settings
Example: \[BB\>:C2K:FILT:PAR:GAUS 0.5\]  
sets B x T to 0.5 for the Pure Gauss filter type.

Manual operation: See "Roll Off Factor or BxT" on page 76

\[[:SOURce<hw>:]:BB:C2K:FILTER:PARameter:RCOSine <RCosine>\]

The command sets the roll-off factor for the Root Cosine filter type.

Parameters:
- <RCosine> float
  - Range: 0.00 to 1.0
  - Increment: 0.01
  - *RST: 0.22

Example: \[BB\>:C2K:FILT:PAR:RCOS 0.22\]  
sets the roll-off factor to 0.22 for filter type Root Cosine.

Manual operation: See "Roll Off Factor or BxT" on page 76

\[[:SOURce<hw>:]:BB:C2K:FILTER:PARameter:SPHase <SPhase>\]

The command sets B x T for the Split Phase filter type.

Parameters:
- <SPhase> float
  - Range: 0.15 to 2.5
  - Increment: 0.01
  - *RST: 2.00

Example: \[BB\>:C2K:FILT:PAR:SPH 0.5\]  
sets B x T to 0.5 for the Split Phase filter type.

Manual operation: See "Roll Off Factor or BxT" on page 76

### 5.2.2 Clipping Settings

\[[:SOURce<hw>:]:BB:C2K:CLIPping:LEVel \]<Level>

The command sets the limit for level clipping (Clipping). This value indicates at what point the signal is clipped. It is specified as a percentage, relative to the highest level. 100% indicates that clipping does not take place.

Level clipping is activated with the command \[[:SOURce<hw>:]:BB:C2K:CLIPping:STATe\]
Remote-Control Commands

**Parameters:**

<table>
<thead>
<tr>
<th>&lt;Level&gt;</th>
<th>integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range:</td>
<td>1 PCT to 100</td>
</tr>
<tr>
<td>Increment:</td>
<td>1</td>
</tr>
<tr>
<td>*RST:</td>
<td>100 PCT</td>
</tr>
</tbody>
</table>

**Example:**

`BB:C2K:CLIP:LEV 80PCT`

sets the limit for level clipping to 80% of the maximum level.

`BB:C2K:CLIP:STAT ON`

activates level clipping.

**Manual operation:** See "Clipping Level" on page 77

---

**[:SOURce<hw>]:BB:C2K:CLIPping:MODE <Mode>**

The command sets the method for level clipping (Clipping).

**Parameters:**

<table>
<thead>
<tr>
<th>&lt;Mode&gt;</th>
<th>VECTor</th>
<th>SCALar</th>
</tr>
</thead>
</table>

**Example:**

`BB:C2K:CLIP:MODE SCAL`

selects the absolute maximum of all the I and Q values as the reference level.

`BB:C2K:CLIP:LEV 80PCT`

sets the limit for level clipping to 80% of this maximum level.

`BB:C2K:CLIP:STAT ON`

activates level clipping.

**Manual operation:** See "Clipping Mode" on page 78

---

**[:SOURce<hw>]:BB:C2K:CLIPping:STATe <State>**

The command activates level clipping (Clipping). The value is defined with the command `[:SOURce<hw>]:BB:C2K:CLIPping:LEVel`, the mode of calculation with the command `[:SOURce<hw>]:BB:C2K:CLIPping:MODE`.

**Parameters:**

<table>
<thead>
<tr>
<th>&lt;State&gt;</th>
<th>0</th>
<th>1</th>
<th>OFF</th>
<th>ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>*RST:</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Example:**

`BB:C2K:CLIP:STAT ON`

activates level clipping.

**Manual operation:** See "Clipping State" on page 77
5.3 Trigger Settings

Example: Trigger configuration

```
SOURce1:BB:C2K:TRIGger:SOURce INTernal
SOURce1:BB:C2K:TRIGger:SEQUence ARETrigger
SOURce1:BB:C2K:STAT ON
SOURce1:BB:C2K:TRIGger:EXECute
SOURce1:BB:C2K:TRIGger:ARM:EXECute
SOURce1:BB:C2K:TRIGger:RMODe?
  // stopped
SOURce1:BB:C2K:TRIGger:EXECute
SOURce1:BB:C2K:TRIGger:RMODe?
  // run

  // SOURce1:BB:C2K:TRIGger:SEQUence SING
  // SOURce1:BB:C2K:TRIGger:SLUNit SEQ
  // SOURce1:BB:C2K:TRIGger:SLEnghth 2

  // SOURce1:BB:C2K:TRIGger:SEQUence ARET
  // SOURce1:BB:C2K:TRIGger:SOURce EGT1
  // SOURce1:BB:C2K:TRIGger:EXTernal:SYNChronize:OUTPut 1
  // SOURce1:BB:C2K:TRIGger:EXTernal:INHibit 100
```

```
[:SOURce<hw>:BB:C2K][TRIGger]:SEQUence ..............................................................92 
[:SOURce<hw>:BB:C2K][TRIGger]:SOURce ...............................................................93 
[:SOURce<hw>:BB:C2K][TRIGger]:ARM:EXECute ........................................................93 
[:SOURce<hw>:BB:C2K][TRIGger]:EXECute ...............................................................93 
[:SOURce<hw>:BB:C2K][TRIGger]:EXTernal:SYNChronize:OUTPut ................................93 
[:SOURce<hw>:BB:C2K][TRIGger]:EXTernal:DELay ....................................................94 
[:SOURce<hw>:BB:C2K][TRIGger]:EXTernal:INHibit ....................................................94 
[:SOURce<hw>:BB:C2K][TRIGger]:RMODe? .................................................................94 
[:SOURce<hw>:BB:C2K][TRIGger]:SLEnghth ..............................................................94 
[:SOURce<hw>:BB:C2K][TRIGger]:SLUNit .................................................................95 
```

```
[:SOURce<hw>:BB:C2K][TRIGger]:SEQUence <Sequence>
```

Selects the trigger mode:

- **AUTO** = auto
- **RETRigger** = retrigger
- **AAUTo** = armed auto
- **ARETrigger** = armed retrigger
- **SINGle** = single

Parameters:

```
<Sequence> AUTO | RETRigger | AAUTo | ARETrigger | SINGle
```

*RST: AUTO*
Example: See Example "Trigger configuration" on page 92
Manual operation: See "Trigger Mode" on page 27

[:SOURce<hw>:BB:C2K:TRIGger:SOURce <Source>
Selects the trigger signal source and determines the way the triggering is executed. Provided are:
● Internal triggering by a command (INTernal)
● External trigger signal via one of the User x connectors
  – EGT1: External global trigger
  – EGC1: External global clock
● In master-slave mode, the external baseband synchronization signal (BBSY)
● EXTernal: Setting only
  Provided only for backward compatibility with other Rohde & Schwarz signal generators.
  The R&S SMBV100B accepts this value and maps it automatically as follows: EXTernal = EGT1

Parameters:
<Source> INTernal|EGT1|EGC1|EXTernal|BBSY
*RST: INTernal

Example: See Example "Trigger configuration" on page 92
Manual operation: See "Trigger Source" on page 28

[:SOURce<hw>:BB:C2K:TRIGger:ARM:EXECute
Stops signal generation; a subsequent trigger event restarts signal generation.

Example: See Example "Trigger configuration" on page 92
Usage: Event
Manual operation: See "Arm" on page 28

[:SOURce<hw>:BB:C2K:TRIGger:EXECute
Executes a trigger.

Example: See Example "Trigger configuration" on page 92
Usage: Event
Manual operation: See "Execute Trigger" on page 28

Enables signal output synchronous to the trigger event.
### Remote-Control Commands

**Parameters:**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
<th>*RST:</th>
<th>Example</th>
<th>Manual operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;Output&gt;</td>
<td>0</td>
<td>1</td>
<td>OFF</td>
<td>ON</td>
</tr>
</tbody>
</table>

### [:SOURce<hw>]:BB:C2K:TRIGger[:EXTernal]:DElay <Delay>

Sets the trigger delay.

**Parameters:**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Range</th>
<th>Increment</th>
<th>*RST:</th>
<th>Example</th>
<th>Manual operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;Delay&gt;</td>
<td>float</td>
<td>0 to 2147483647</td>
<td>0.01</td>
<td>0</td>
<td>See Example &quot;Trigger configuration&quot; on page 92</td>
<td>See &quot;Trigger Delay&quot; on page 29</td>
</tr>
</tbody>
</table>

### [:SOURce<hw>]:BB:C2K:TRIGger[:EXTernal]:INHibit <Inhibit>

Specifies the duration by which a restart is inhibited.

**Parameters:**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Range</th>
<th>*RST:</th>
<th>Example</th>
<th>Manual operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;Inhibit&gt;</td>
<td>integer</td>
<td>0 to 21.47*chipRate</td>
<td>0</td>
<td>See Example &quot;Trigger configuration&quot; on page 92</td>
<td>See &quot;External Trigger Inhibit&quot; on page 29</td>
</tr>
</tbody>
</table>

### [:SOURce<hw>]:BB:C2K:TRIGger:RMODe? 

Queries the signal generation status.

**Return values:**

<table>
<thead>
<tr>
<th>&lt;RMode&gt;</th>
<th>STOP</th>
<th>RUN</th>
</tr>
</thead>
</table>

**Example:** See Example "Trigger configuration" on page 92

**Usage:** Query only

**Manual operation:** See "Running/Stopped" on page 27

### [:SOURce<hw>]:BB:C2K:TRIGger:SLENgth <SLength>

Defines the length of the signal sequence that is output in the SINGle trigger mode.
Marker Settings

5.4 Marker Settings

Example: Configure and enable standard marker signals

```
SOURce1:BB:C2K:TRIGger:OUTPut2:MODE RAT
SOURce1:BB:C2K:TRIGger:OUTPut3:MODE USER
SOURce1:BB:C2K:TRIGger:OUTPut3:PERiod 100
```

`[:SOURce<hw>]:BB:C2K:TRIGger:OUTPut<ch>:MODE <Mode>`

Defines the signal for the selected marker output.

**Parameters:**
- `<Mode>`
  - PCGRoup | RFRame | SCFRame | SFRame | ESECond | CSPeriod | RATio | USER
  - Marker signal that marks:
    - PCGRoup
      - The start of each power control group (every 1.25 ms).
**Remote-Control Commands**

**Marker Settings**

**RFRame**
Every 20 ms (traffic channel clock).

**SCFFrame**
The start of each sync channel frame (every 26.6 ms).

**SFRame**
Every 80 ms (super frame clock).

**ESSECond**
Every 2 s (even second mark).

**CSPeriod**
The start of each arbitrary waveform sequence

**RATio**
Off / On times

**USER**
The beginning of every user-defined period

*RST: PCGRoup

Example: See Example "Configure and enable standard marker signals" on page 95

Manual operation: See "Marker Mode" on page 30

```
```

Sets the duration during which the marker output is on or off.

**Parameters:**

- `<OffTime>`: integer
  - Range: 1 to 16777215
  - *RST: 1

Example: See Example "Configure and enable standard marker signals" on page 95.

Manual operation: See "Marker Mode" on page 30

```
[:SOURce<hw>:BB:C2K:TRIGger:OUTPut<ch>:PERiod <Period>
```

Sets the repetition rate for the signal at the marker outputs.

**Parameters:**

- `<Period>`: integer
  - Range: 1 to max
  - *RST: 2

Example: See Example "Configure and enable standard marker signals" on page 95.

Manual operation: See "Marker Mode" on page 30
5.5 Clock Settings

This section lists the remote control commands, necessary to configure the clock.

[:SOURce<hw>]:BB:C2K:CLOCk:SOURce

Selects the clock source:
- INTernal: Internal clock reference

Parameters:
- <Source> INTernal
- *RST: INTernal

Example: SOURce1:BB:C2K:CLOCk:SOURce INTernal
Selects an internal clock reference.

Manual operation: See "Clock Source" on page 32

5.6 Predefined Settings

The R&S SMBV100B gives you the opportunity to generate predefined test settings for base station 1. These predefined settings enable the creation of highly complex scenarios for the downlink by presetting the channel table of base station 1. The settings take effect only after execution of command [:SOURce<hw>]:BB:C2K:PPARameter:EXECute.

[:SOURce<hw>]:BB:C2K:PPARameter:CRESt..........................................................98
[:SOURce<hw>]:BB:C2K:PPARameter:EXECute...................................................98
[:SOURce<hw>]:BB:C2K:PPARameter:PCHannel[:STATe].......................................99
[:SOURce<hw>]:BB:C2K:PPARameter:PICHannel[:STATe]......................................99
[:SOURce<hw>]:BB:C2K:PPARameter:RCONfiguration..........................................99
[:SOURce<hw>]:BB:C2K:PPARameter:SCHannel:STATe ................................................... 99
[:SOURce<hw>]:BB:C2K:PPARameter:TChannel:COUNt .................................................. 100
[:SOURce<hw>]:BB:C2K:PPARameter:TChannel:DATA:RATE ........................................... 100
[:SOURce<hw>]:BB:C2K:PPARameter:TChannel:DCChannel:STATe .................................. 101
[:SOURce<hw>]:BB:C2K:PPARameter:TChannel:FChannel:STATe .................................. 101
[:SOURce<hw>]:BB:C2K:PPARameter:TChannel:FLENght ................................................ 101
[:SOURce<hw>]:BB:C2K:PPARameter:TChannel:SChannel:COUNt .................................. 102
[:SOURce<hw>]:BB:C2K:PPARameter:CRESt <Crest>

This command selects the desired range for the crest factor of the test scenario. The crest factor of the signal is kept in the desired range by automatically setting appropriate Walsh codes and timing offsets.

The setting takes effect only after execution of command [:SOURce<hw>]:BB:C2K:PPARameter:EXECute.

The setting of command [:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:WCODe is adjusted according to the selection.

Parameters:

<table>
<thead>
<tr>
<th>&lt;Crest&gt;</th>
<th>MINimum</th>
<th>AVERage</th>
<th>WORSt</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINimum</td>
<td>The crest factor is minimized. The Walsh codes are spaced as closely as possible.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVERage</td>
<td>An average crest factor is set. The Walsh codes are distributed uniformly over the code domain.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WORSt</td>
<td>The crest factor is set to an unfavorable value (i.e. maximum). The Walsh codes are as wildly spaced as possible.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*RST: MINimum

Example: BB:C2K:PPAR:CRES WORS
Sets the crest factor to an unfavorable value.

Manual operation: See "Crest Factor" on page 38

[:SOURce<hw>]:BB:C2K:PPARameter:EXECute

This command presets the channel table of base station 1 with the parameters defined by the PPARameter commands.

Example: BB:C2K:PPAR:EXEC
configures the signal sequence as defined by the :BB:C2K:PPARameter commands.

Usage: Event

Manual operation: See "Accept" on page 40
[:SOURce<hw>]:BB:C2K:PPARameter:PChannel[:STATe] <State>

The command activates/deactivates the paging channel.
The setting takes effect only after execution of command [:SOURce<hw>]:BB:C2K:PPARameter:EXECute.

Parameters:
<State>  0 | 1 | OFF | ON
       *RST: ON

Example:
BB:C2K:PPAR:PCH ON
activates F-PCH.

Manual operation: See "Use Paging Channel (F-PCH) " on page 38

[:SOURce<hw>]:BB:C2K:PPARameter:PICHannel[:STATe] <State>

The command activates/deactivates the pilot channel.
The setting takes effect only after execution of command [:SOURce<hw>]:BB:C2K:PPARameter:EXECute.

Parameters:
<State>  0 | 1 | OFF | ON
       *RST: ON

Example:
BB:C2K:PPAR:PICH ON
activates F-PICH.

Manual operation: See "Use Pilot (F-PICH) " on page 37

[:SOURce<hw>]:BB:C2K:PPARameter:RCONFiguration <RConfiguration>

Selects the radio configuration for the traffic channel.
The setting takes effect only after execution of command [:SOURce<hw>]:BB:C2K:PPARameter:EXECute.

Parameters:
<RConfiguration>  1 | 2 | 3 | 4 | 5
               *RST: 1

Example:
BB:C2K:PPAR:RCON 1
selects radio configuration 1.

Manual operation: See "Radio Configuration " on page 37

[:SOURce<hw>]:BB:C2K:PPARameter:SChannel[:STATe] <State>

Activates/deactivates the F-SYNC.
The setting takes effect only after execution of command [:SOURce<hw>]:BB:C2K:PPARameter:EXECute.
**Remote-Control Commands**

**Parameters:**

`<State>`

- 0 | 1 | OFF | ON

*RST:* 1

**Example:**

`BB:C2K:PPAR:SCH ON`

activates the F-SYNC.

**Manual operation:** See "Use Sync (F-Sync)" on page 38

---

`[:SOURce<hw>:]BB:C2K:PPARMeter:TCHannel:COUNt <Count>`

This command sets the number of activated traffic channels.

The setting takes effect only after execution of command `[:SOURce<hw>:]BB:C2K:PPARMeter:EXECute`.

**Parameters:**

`<Count>`

- integer

- Range: 0 to 8

*RST:* 1

**Example:**

`BB:C2K:PPAR:TCH:COUN 2`

the predefined signal contains 2 traffic channels.

**Manual operation:** See "Number of Traffic Channels" on page 38

---

`[:SOURce<hw>:]BB:C2K:PPARMeter:TCHannel:DATA:RATE <Rate>`

This command sets the data rate of F-FCH and F-SCH. The set value is specific for the selected radio configuration.

The setting takes effect only after execution of command `[:SOURce<hw>:]BB:C2K:PPARMeter:EXECute`. It is specific for the selected radio configuration.

The value range depends on the frame length. If the frame length is changed so that the set data rate becomes invalid, the next permissible value is automatically set.

The data rate affects the Walsh code (spreading factor) that are possible within a channel. If a data rate is changed so that the selected Walsh code becomes invalid, the next permissible value is automatically set.

**Parameters:**

`<Rate>`

- DR1K2 | DR1K3 | DR1K5 | DR1K8 | DR2K4 | DR2K7 | DR3K6 | DR4K8 | DR7K2 | DR9K6 | DR14K4 | DR19K2 | DR28K8 | DR38K4 | DR57K6 | DR76K8 | DR115K2 | DR153K6 | DR230K4 | DR259K2 | DR307K8 | DR460K8 | DR518K4 | DR614K4 | DR1036K8 | NUSed

*RST:* DR1K2

**Example:**


sets the data rate of F-FCH and F-SCH to 240 kps.

**Manual operation:** See "Data Rate" on page 39
[:SOURce<hw>]:BB:C2K:PPARameter:TChannel:DCChannel[:STATe] <State>
Activates/deactivates the dedicated control channel. F-DCCH cannot be selected for RC1 and RC2.
The setting takes effect only after execution of command [:SOURce<hw>]:BB:C2K:PPARameter:EXECute. It is specific for the selected radio configuration.
Parameters:
<State>
0 | 1 | OFF | ON
*RST: 1
Example: BB:C2K:PPAR:TCH:DCCH ON
Activates F-DCCH.
Manual operation: See "Use Dedicated Control (F-DCCH)" on page 39

[:SOURce<hw>]:BB:C2K:PPARameter:TChannel:FChannel[:STATe] <State>
Activates/deactivates the fundamental channel.
The setting takes effect only after execution of command [:SOURce<hw>]:BB:C2K:PPARameter:EXECute. It is specific for the selected radio configuration.
Parameters:
<State>
0 | 1 | OFF | ON
*RST: 1
Example: BB:C2K:PPAR:TCH:FCH ON
activates F-FCH.
Manual operation: See "Use Fundamental (F-FCH)" on page 39

[:SOURce<hw>]:BB:C2K:PPARameter:TChannel:FLENgh <FLength>
The command activates/deactivates the fundamental channel. The set value is specific for the selected radio configuration.
The setting takes effect only after execution of command [:SOURce<hw>]:BB:C2K:PPARameter:EXECute. It is specific for the selected radio configuration.
The frame length affects the data rates that are possible within a channel. Changing the frame length can lead to a change of data rate and this in turn can bring about a change of Walsh code.
Parameters:
<FLength> 20 | 40 | 80
*RST: 20 ms
Example: BB:C2K:PPAR:TCH:FLEN 20 ms
Sets the frame length of the code channels to 20 ms.
Manual operation: See "Frame Length" on page 39
[:SOURce<hw>]:BB:C2K:PPARameter:TCHannel:SCHannel:COUNt <Count>

Sets the number of supplemental channels. The maximum number of supplemental channels depends on the selected radio configuration.

The setting takes effect only after execution of command [:SOURce<hw>]:BB:C2K:PPARameter:EXECute. It is specific for the selected radio configuration.

Parameters:
<Count>    integer
Range:     0 to 7
*RST:      1

selects two F-SCHs.

Manual operation: See "Number of Supplemental (F-SCH)" on page 39

5.7 Base Stations Settings

The SOURce:BB:C2K:BSTation system contains commands for setting base stations.

The commands of this system only take effect if the CDMA2000 standard is activated, the DOWN transmission direction is selected and the particular base station is enabled:

- SOURce:BB:C2K:STATe ON
- SOURce:BB:C2K:LINK DOWN
- SOURce:BB:C2K:BSTation2:STATe ON

Suffixes

The channel table for the base station is configured from 14 special channels and up to eight traffic channels. Each traffic channel consists of four to eight code channels. The type and number of code channels depends on the radio configuration chosen for the traffic channel.

The individual channels are selected in SCPI via the suffixes to keywords CGRoup and COFFset.

The special channels have the suffix 0 to CGRoup and 1 to 14 to COFFset corresponding to the channel index 0 to 1 to 0 to 14 in the channel table.

The code channels of a traffic channel are addressed by means of suffixes 1 to 8 for the traffic channel and 1 to 8 to COFFset for the sub channels of the selected traffic channel. Thus CGRoup2:COFFset1 is the code channel F-FCH of the traffic channel 2 and equates to the channel index 2 to 1 in the channel table.
**Table 5-1: Structure of the traffic channel for different radio configurations.**

<table>
<thead>
<tr>
<th></th>
<th>Radio Configuration 1, 2</th>
<th>Radio Configuration 3, 4, 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1 (CGRoup1:COFFset1)</td>
<td>F-FCH</td>
<td>F-FCH</td>
</tr>
<tr>
<td>1-2 (CGRoup1:COFFset2)</td>
<td>F-SCH1</td>
<td>F-SCH1</td>
</tr>
<tr>
<td>1-3 (CGRoup1:COFFset3)</td>
<td>F-SCH2</td>
<td>F-SCH2</td>
</tr>
<tr>
<td>1-4 (CGRoup1:COFFset4)</td>
<td>F-SCH3</td>
<td>F-DCCH</td>
</tr>
<tr>
<td>1-5 (CGRoup1:COFFset5)</td>
<td>F-SCH4</td>
<td>-</td>
</tr>
<tr>
<td>1-6 (CGRoup1:COFFset6)</td>
<td>F-SCH5</td>
<td>-</td>
</tr>
<tr>
<td>1-7 (CGRoup1:COFFset7)</td>
<td>F-SCH6</td>
<td>-</td>
</tr>
<tr>
<td>1-8 (CGRoup1:COFFset8)</td>
<td>F-SCH7</td>
<td>-</td>
</tr>
</tbody>
</table>

Regardless of the radio configuration, in all traffic channels the **COffset1** corresponds to the F-FCH, and the **COffset2** and **COffset3** correspond to the F-SCH1 and F-SCH2, respectively. In radio configurations 1 and 2 the **COffset4** corresponds to the F-SCH3, and in radio configurations 3, 4, 5 to the F-DCCH. **COffset5**, **COffset6**, **COffset7** and **COffset8** exist only in radio configurations 1 and 2, where they correspond to the F-SCH4 to F-SCH7.

For the code channels of a traffic channels, the settings of the channel table parameters are specific for the selected radio configuration. I.e. a complete set of settings exists for each of the five possible radio configurations.

See also "Common suffixes" on page 80.

- [:SOURce<hw>:BB:C2K:BSTation:PRESet].................................................. 104
- [:SOURce<hw>:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:CCODing:SREPetition?].................................................. 110
- [:SOURce<hw>:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:DATA].................................................. 111
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:DATA:RATE.............. 112
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:FLENgth.............. 113
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:LCMask.............. 113
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:POWer................. 114
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:QWCode:STATE........ 114
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:REALtime:STATE........ 115
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:STAtE................. 115
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:TPC:DATA.............. 115
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:TPC:DPSetup........... 118
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:TPC:READ.............. 119
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:TYPE?.................. 119
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:WCODe.................. 120
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:WLENgth?............. 120
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:RCOnfiguration.................... 121
[:SOURce<hw>]:BB:C2K:BSTation<st>:DCONflict:MODE.................................. 121
[:SOURce<hw>]:BB:C2K:BSTation<st>:DCONflict:RESolve............................... 122
[:SOURce<hw>]:BB:C2K:BSTation<st>:DCONflict:[STATE]?............................. 122
[:SOURce<hw>]:BB:C2K:BSTation<st>:PDCChannel<PINTerval............................. 122
[:SOURce<hw>]:BB:C2K:BSTation<st>:PDCChannel<PSETup.............................. 123
[:SOURce<hw>]:BB:C2K:BSTation<st>:PDCChannel<SUBPacket<di>:ID.................... 123
[:SOURce<hw>]:BB:C2K:BSTation<st>:PDCChannel<SUBPacket<di>:PARameters.......... 123
[:SOURce<hw>]:BB:C2K:BSTation<st>:PDCChannel<SUBPacket<di>:STAtE................. 128
[:SOURce<hw>]:BB:C2K:BSTation<st>:PDCChannel<SUBPacket<di>:TOFFset............... 128
[:SOURce<hw>]:BB:C2K:BSTation<st>:PDCChannel<SUBPacket<di>:WCODe?................ 129
[:SOURce<hw>]:BB:C2K:BSTation<st>:PDCChannel<SUBPacket<di>:WIN Dex................ 129
[:SOURce<hw>]:BB:C2K:BSTation<st>:PNOFFset........................................ 130
[:SOURce<hw>]:BB:C2K:BSTation<st>:QWSel........................................... 130
[:SOURce<hw>]:BB:C2K:BSTation<st>:TDELay.......................................... 130
[:SOURce<hw>]:BB:C2K:BSTation<st>:TDIVersity....................................... 131
[:SOURce<hw>]:BB:C2K:BSTation<st>:TDIVersity:MODE................................. 131

[:SOURce<hw>]:BB:C2K:BSTation:PRESet
A standardized default for all the base stations (*RST values specified for the commands).

See "Reset All Base Stations" on page 33 for an overview.

Example: SOURcel:BB:C2K:BSTation:PRESet

Usage: Event

Manual operation: See "Reset All Base Stations" on page 33

[:SOURce<hw>]:BB:C2K:BSTation:SYNC:CNUMber <CNumber>

Sets the CDMA Channel Number which corresponds to the RF.
Remote-Control Commands

Parameters:

- **<CNumber>**
  - Type: integer
  - Range: 0 to 2047
  - *RST*: 387

Example:

```
BB:C2K:BST:SYNC:CNUM 400
```

- Sets the channel number

Manual operation:

See "CDMA Channel Number - More Params BS" on page 62

---

```
[:SOURce<hw>]:BB:C2K:BSTation:SYNC:MPRev <MPrev>
```

Sets the Minimum Protocol Revision Level.

The base station sets this field to prevent mobile stations which cannot be supported by the base station from accessing the CDMA system.

Parameters:

- **<MPrev>**
  - Range: 2 to 8
  - *RST*: 2

Example:

```
BB:C2K:BST:SYNC:MPR 3
```

- Sets the MIN_P_REV parameter

Manual operation:

See "MIN_P_REV - More Params BS" on page 62

---

```
[:SOURce<hw>]:BB:C2K:BSTation:SYNC:NID <Nid>
```

Sets the Network Identification.

The NID serves as a sub-identifier of a CDMA system as defined by the owner of the SID.

Parameters:

- **<Nid>**
  - Type: integer
  - Range: 0 to 65535
  - *RST*: 1

Example:

```
BB:C2K:BST:SYNC:NID 5
```

- Sets the network identification parameter

Manual operation:

See "NID - More Params BS" on page 62

---

```
[:SOURce<hw>]:BB:C2K:BSTation:SYNC:PREV <Prev>
```

Sets the Protocol Revision Level, i.e. specifies the CDMA2000 system release number.

The table below gives the cross-reference between the P_REV values and the CDMA2000 Releases.
### Parameters:

<table>
<thead>
<tr>
<th>P_REV</th>
<th>CDMA2000 Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Korean PCS(Band Class4), USPCS(Band Class1)</td>
</tr>
<tr>
<td>2</td>
<td>IS-95</td>
</tr>
<tr>
<td>3</td>
<td>TBS74</td>
</tr>
<tr>
<td>4</td>
<td>IS-95A</td>
</tr>
<tr>
<td>5</td>
<td>IS-95B</td>
</tr>
<tr>
<td>6</td>
<td>IS2000 Release 0</td>
</tr>
<tr>
<td>7</td>
<td>IS2000 Release A</td>
</tr>
<tr>
<td>8</td>
<td>IS2000 Release B</td>
</tr>
</tbody>
</table>

**Parameters:**

- `<Prev>`
  - integer
  - Range: 1 to 8
  - *RST: 6

**Example:**

```
BB:C2K:BST:SYNC:PREV 4
```

sets the `P_REV` parameter

**Manual operation:** See "P_REV - More Params BS" on page 62

---

### [:SOURce<hw>]:BB:C2K:BSTation<st>:SYNC:SID <Sid>

Displays the System Identification.

The base station sets the system identification number.

**Parameters:**

- `<Sid>`
  - integer
  - Range: 0 to 32767
  - *RST: 10

**Example:**

```
BB:C2K:BST:SYNC:SID 10
```

sets the system identification parameter

**Manual operation:** See "SID - More Params BS" on page 62

---

### [:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:CCODing:BINTerleaver?

The command queries the number of symbols per block which are processed by the interleaver. This value is only available for channel coding modes "Complete" and "Without Interleaving"


For the traffic channels, this value is specific for the selected radio configuration.
Remote-Control Commands

Return values:

*<BInterleaver>*

| Integer | 48 | 96 | 128 | 192 | 288 | 384 | 576 | 768 | 1152 | 1536 | 2304 | 3072 | 4608 | 6144 | 9216 | 12288 | 18432 | 36864 | NONE |

Example:

```
```

selects channel coding mode "Complete" for F-FCH of the third traffic channel.

```
```

queries the number of symbols per block which are processed by the interleaver.

Response: 384

384 symbols per block are processed.

Usage: Query only

Manual operation: See "Block Interleaver" on page 61

[<SOURce<hw>:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:CCODing:BITFrame?] Queries the number of input bits per frame for the channel coder. This value is only available for channel coding modes "Complete" and "Without Interleaving" (<SOURce:BB:C2K:BST<n>:CGRoup<n>:COFFset<n>:CCODing:MODE COMP | NOIN>).

For the traffic channels, this value is specific for the selected radio configuration.

Return values:

*<BitFrame>*

| Integer | 16 to 20712 |

*RST:* 16

Example:

```
```

selects channel coding mode "Complete" for F-FCH of the third traffic channel.

```
```

queries the number of input bits per frame.

Response: 16

16 bits per frame.

Usage: Query only

Manual operation: See "Source Bits / Frame" on page 60

[:SOURce<hw>:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:CCODing:CRC?] Queries the CRC (cyclic redundancy code) type (length). This value is only available for channel coding modes "Complete" and "Without Interleaving" (<SOURce:BB:C2K:BST<n>:CGRoup<n>:COFFset<n>:CCODing:MODE COMP | NOIN>).
For the traffic channels, this value is specific for the selected radio configuration.

**Return values:**

<table>
<thead>
<tr>
<th>&lt;Crc&gt;</th>
<th>integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range:</td>
<td>0 to 16</td>
</tr>
<tr>
<td><em>RST</em>:</td>
<td>0</td>
</tr>
</tbody>
</table>

**Example:**

```
```

selects channel coding mode "Complete" for F-FCH of the first traffic channel.

```
BB:C2K:BST:CG1:COFF1:CCOD:CRC?
```

queries the CRC type.

Response: 6
CRC type 6 is used.

**Usage:**

Query only

```
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:CCODing:
DATA:RATE?
```

The command queries the effective data rate in Hz. This value is only available for channel coding modes "Off" and "Interleaving Only" (SOURce:BB:C2K:BST<n>:CGRoup<n>:COFFset<n>:CCODing:MODE OFF | OINT).

When channel coding is switched off, the effective data rate differs from the data rate set in the channel table. The data are read out with the effective rate.

For the traffic channels, this value is specific for the selected radio configuration.

**Return values:**

| <Rate> | float |

**Example:**

```
```

selects channel coding mode "Interleaving Only" for F-FCH of the third traffic channel.

```
```

queries the effective data rate.

Response: 19200
the effective data is 19.2 kbps.

**Usage:**

Query only

**Manual operation:**

See "Data Rate" on page 61

```
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:CCODing:
MODE <Mode>
```

Selects channel coding mode. For the traffic channels, this value is specific for the selected radio configuration.

**Parameters:**

| <Mode> | OFF | COMPLETE | NOINTERLEAVING | OINTERLEAVING |

**OFF**
Channel coding is deactivated.

**COMPLETE**
The complete channel coding is performed. The channel coding procedure can slightly vary depending on channel type, frame length and data rate.

**OINterleaving**
Except for the block interleaver, the whole channel coding procedure is carried out. In this mode, the frame structure and the convolutional coder of a receiver can be tested.

**NOINterleaving**
In this mode, only block interleaver is used for coding. This allows the deinterleaver in the receiver to be tested independently of the remaining (de-)coding process.

*RST: COMPLETE*

**Example:**
```
```
Deactivates channel coding for F-FCH of the third traffic channel.

**Manual operation:** See "Coding Mode" on page 59

---

```
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:CCODing:SPUncture?
```
The command queries the symbol puncture rate. This value is only available for channel coding modes "Complete" and "Without Interleaving" *(SOURCE:BB:C2K:BST<n>:CGRoup<n>:COFFset<n>:CCODing:MODE COMP | NOIN)*.

For the traffic channels, this value is specific for the selected radio configuration.

**Return values:**

```
<SPuncture> 8OF24 | 1OF5 | 1OF9 | 4OF12 | 2OF18 | 2OF6 | T2OF18 | T4OF12 | NONE
xOFy  
a symbol puncture rate of x out of y is used
```

```
TxOFy  
a symbol puncture rate of x out of y Turbo is used
```

**Example:**
```
selects channel coding mode "Complete" for F-FCH of the third traffic channel.
queries the symbol puncture rate.
Response: 8OF24
a symbol puncture rate of 8 out of 24 is used.
```

**Usage:** Query only

**Manual operation:** See "Symbol Puncture" on page 60
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:CCODing: SREPpetition?

Queries symbol repetition rate. This value is only available for channel coding modes "Complete" and "Without Interleaving" (SOURce:BB:C2K:BST<n>:CGRoup<n>:COFFset<n>:CCODing:MODE COMP | NOIN).

For the traffic channels, this value is specific for the selected radio configuration.

Return values:

<table>
<thead>
<tr>
<th>&lt;SRepetition&gt;</th>
<th>integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range:</td>
<td>1 to 16</td>
</tr>
<tr>
<td>*RST:</td>
<td>0</td>
</tr>
</tbody>
</table>

Example:

selects channel coding mode "Complete" for F-FCH of the third traffic channel.

queries symbol repetition rate.
Response: 8
a symbol repetition rate of 8 is used.

Usage:
Query only

Manual operation: See "Symbol Repetition" on page 60

[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:CCODing: TYPE <Type>

The command sets the channel coding type.

This value is only available for channel coding modes "Complete" and "Without Interleaving" (SOURce:BB:C2K:BST<n>:CGRoup<n>:COFFset<n>:CCODing:MODE COMP | NOIN). For the traffic channels, this value is specific for the selected radio configuration.

Parameters:

<table>
<thead>
<tr>
<th>&lt;Type&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON2</td>
</tr>
<tr>
<td>NONE</td>
</tr>
<tr>
<td>No error protection</td>
</tr>
<tr>
<td>TURx</td>
</tr>
<tr>
<td>Turbo Coder of rate 1/x in accordance with the CDMA specifications.</td>
</tr>
<tr>
<td>CONx</td>
</tr>
<tr>
<td>Convolution Coder of rate 1/x with generator polynomials defined by CDMA.</td>
</tr>
<tr>
<td>*RST: Channel-specific</td>
</tr>
</tbody>
</table>
Example:  

```
```

selects channel coding mode "Complete" for F-SCH1 of the third traffic channel.

```
```

selects turbo coder with a rate of 1/4 for F-SCH1 of the third traffic channel.

Manual operation:  
See "Coder Type" on page 59

```
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:DATA <Data>
```

The command selects the data source for the specified channel.

For the traffic channels, this value is specific for the selected radio configuration.

The data source for the power control bits is selected with the command:

```
```

Parameters:

- `<Data>`:  
  - ZERO | ONE | PATTern | PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 | DLISt
  - PNxx
    The pseudo-random sequence generator is used as the data source. Different random sequence lengths can be selected.
  - DLISt
    A data list is used. The data list is selected with the command:
    
    ```
    ```

- ZERO | ONE
  Internal 0 and 1 data is used.

- PATTern
  Internal data is used. The bit pattern for the data is defined by the command:
  
  ```
  ```

- *RST:
  F-PICH; F-TDPICH; F-APICH; F-ATDPICH: ALL0;
  all other channels: PN9

Example:  

```
BB:C2K:BST2:CGR3:COFF1:DATA PATT
```

Selects as the data source for the F-FCH of the third traffic channel of base station 2, the bit pattern defined with the following command:

```
```

Defines the bit pattern.

Manual operation:  
See "Data" on page 48

```
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:DATA: DSELect <DSelect>
```

The command selects the data list for the DLISt data source selection.

---

User Manual 1178.8136.02 — 03  111
The lists are stored as files with the fixed file extensions *.dm_iqd in a directory of the user's choice. The directory applicable to the following commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

For the traffic channels, this value is specific for the selected radio configuration.

**Parameters:**

- `<DSelect>` string

**Example:**

BB:C2K:BST2:CGR3:COFF1:DATA DLIS

selects the Data Lists data source for the F-FCH of the third traffic channel of basestation2.

MMEM:CDIR "/var/user/temp/Lists"

selects the directory for the data lists.

BB:C2K:BST2:CGR3:COFF1:DATA:DLIS "cdma_list1"

selects file "cdma_list1" as the data source. This file must be in specified directory and it must have the file extension *.dm_iqd.

**Manual operation:** See "Data" on page 48

---

### [:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:DATA: PATTern <Pattern>, <BitCount>

Sets the bit pattern for the PATTern selection. The first parameter determines the bit pattern (choice of hexadecimal, octal or binary notation), the second specifies the number of bits to use.

For the traffic channels, this value is specific for the selected radio configuration.

**Parameters:**

- `<Pattern>` numeric
  - `*RST:` #H0
- `<BitCount>` integer
  - Range: 1 to 64
  - `*RST:` 1

**Example:**


defines the bit pattern.

**Manual operation:** See "Data" on page 48

---

### [:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:DATA:RATE <Rate>

The command sets the data rate for the specified channel. The value range depends on the channel type, the selected radio configuration and the frame length. Parameter NUSed is returned for channel 0-1 to 0-4.

For the traffic channels, this value is specific for the selected radio configuration.
The value range depends on the frame length. If the frame length is changed so that the set data rate becomes invalid, the next permissible value is automatically set.

The data rate affects the Walsh code (spreading factor) that are possible within a channel. If a data rate is changed so that the selected Walsh code becomes invalid, the next permissible value is automatically set.

**Parameters:**

- **<Rate>**
  - DR1K2 | DR1K3 | DR1K5 | DR1K8 | DR2K4 | DR2K7 | DR3K6 |
  - DR4K8 | DR7K2 | DR9K6 | DR14K4 | DR19K2 | DR28K8 |
  - DR38K4 | DR57K6 | DR76K8 | DR115K2 | DR153K6 |
  - DR230K4 | DR307K2 | NUSed

**Example:**

```
```

Sets a data rate of 4.8 kbps for F-FCH of the third traffic channel of base station 2.

**Manual operation:** See "Data Rate" on page 47

```
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:FLENgth <FLength>
```

The command sets the frame length of the selected channel. The value range is channel specific.

For the traffic channels, this value is specific for the selected radio configuration.

The value range of the frame length depends on the channel type and the selected radio configuration.

The frame length affects the data rates that are possible within a channel. Changing the frame length can lead to a change of data rate and this in turn can bring about a change of Walsh code.

**Parameters:**

- **<FLength>**
  - 5 | 10 | 20 | 26.6 | 40 | 80 | 160 | NUSed
  - 26 ms
    - Frame length of 26.6. Also all inputs 26.6 ms and 26.7 ms are allowed.

**Example:**

```
BB:C2K:BST:CGR3:COFF4:FLEN 5 ms
```

Sets the frame length of sub channel 3 ms to 4 ms to 5 ms.

**Manual operation:** See "Frame Length" on page 47

```
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:LCMask <LcMask>
```

The command sets the mask of the Long Code Generator of the base station.

For the traffic channels, this value is specific for the selected radio configuration.
The LC Mask is the same for all subchannels of a traffic channel. If the mask is modified for one of the subchannels, the new value is then automatically used by all other subchannels of this traffic channel.

**Parameters:**

- `<LcMask>`: integer
  - Range: #H0 to #H3FF FFFF
  - *RST:* #H0

**Example:**

```
BB:C2K:BST1:CGR2:COFF1:LCM #H55
```

Sets the Long Code Mask to #H55.

**Manual operation:** See "LC Mask (hex) - More Parameters BS" on page 55

---

`[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:POWer <Power>`

Sets the channel power relative to the powers of the other channels. This setting also determines the starting power of the channel for Misuse Output Power Control.

With the command `[:SOURce<hw>]:BB:C2K:POWer:ADJust`, the power of all the activated channels is adapted so that the total power corresponds to 0 dB. This does not change the power ratio among the individual channels.

For the traffic channels, this value is specific for the selected radio configuration.

**Parameters:**

- `<Power>`: float
  - Range: -80 to depends on channel
  - Increment: 0.01
  - *RST:* 0

**Example:**

```
```

Sets the channel power of sub channel 3 to 4 of base station 2 dB to -10 dB relative to the power of the other channels.

**Manual operation:** See "Power" on page 48

---

`[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:QWCode:STATe <State>`

Activates/deactivates the use of the quasi orthogonal Walsh codes for the channel.

The quasi orthogonal Walsh Code set is selected for all channels of the base station with command `[:SOURce<hw>]:BB:C2K:BSTation<st>:QWSet`.

For the traffic channels, this value is specific for the selected radio configuration. It is only available for radio configuration 3 and higher.

**Parameters:**

- `<State>`: 0 | 1 | OFF | ON
  - *RST:* 0
Example:  

BB:C2K:BST1:QWS 3  
selects quasi orthogonal Walsh code set 3 for base station 1.  
BB:C2K:BST1:CGR3:COFF4:QWC:STAT ON  
activates the use of the quasi orthogonal Walsh code for sub channel 3-4.

Manual operation:  
See "Quasi Orthogonal Walsh Code State" on page 48

[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:REALtime:STATe <State>  
(not available in R&S SMBV)  
Activates/deactivates realtime generation of the selected channel. Realtime generation is possible for F-SYNC and the first traffic channel of base station 1.  
For the traffic channel, this value is specific for the selected radio configuration.

Parameters:  
<State>  
0 | 1 | OFF | ON  
*RST: 0

Example:  
BB:C2K:BST:CGR0:COFF5:REAL:STAT ON  
activates realtime generation of F-SYNC of base station 1.

Manual operation:  
See "Real Time - BS1" on page 46

[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:STATe <State>  
This command activates/deactivates the selected channel.  
For the traffic channels, this value is specific for the selected radio configuration.

Parameters:  
<State>  
0 | 1 | OFF | ON  
*RST: OFF

Example:  
BB:C2K:BST2:CGR1:COFF2:STAT OFF  
Deactivates sub channel 1 to 2 of base station 1.

Manual operation:  
See "Channel State" on page 49

[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:TPC:DATA <Data>  
Sets the data source for the power control bits of the selected F-FCH or F-DCCH.  
Power control is available for sub channel types F-FCH and F-DCCH. F-DCCH is only generated for radio configurations 3, 4 and 5.
For the traffic channels, this value is specific for the selected radio configuration.

**Parameters:**
- <Data>
- **DLISt**
  A data list is used. The data list is selected with the command `[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:TPC:DATA:DSELect`.
- **ZERO | ONE**
  Internal 0 and 1 data is used.
- **PATTern**
  Internal data is used. The bit pattern for the data is defined by the command `[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:TPC:DATA:PATTern`.
  The maximum length is 64 bits.

**Example:**
```
BB:C2K:BST2:CGR1:RCON 4
```
Selects radio configuration 4 for the first traffic channel of base station 2. This setting is valid for all sub channels of this traffic channel. With RC4, the traffic channel includes an F-DCCH.

```
```
Selects as the data source for the power control bits of F-DCCH the bit pattern defined with the following command.

```
```
Defines the bit pattern.

**Manual operation:** See "Data Source - Power Control - BS" on page 56

```
```
The command selects the data list for the DLISt data source selection.

Power control is available for sub channel types F-DCCH and F-FCH. F-DCCH is only generated for radio configurations 3, 4 and 5.

The lists are stored as files with the fixed file extensions `*.dm_iqd` in a directory of the user's choice. The directory applicable to the following commands is defined with the command `MMEMory:CDIR`.
To access the files in this directory, you only have to give the file name, without the path and the file extension.

For the traffic channels, this value is specific for the selected radio configuration.

**Parameters:**
- `<DSelect>` string
Example: 

```
BB:C2K:BST2:CGR1:RCON 4
```

selects radio configuration RC4 for the first traffic channel of base station 2. This setting is valid for all sub channels of the traffic channel. With RC4, the traffic channel includes a F-DCCH.

```
```

selects the DLIS data source.

```
MMEM:CDIR "/var/user/temp/Lists"
```

selects the directory for the data lists.

```
```

selects the file cdma_ch4 as the data source. This file must be in specified directory and it must have the file extension *.dm_iqd.

Manual operation: See "Data Source - Power Control - BS" on page 56

```
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:TPC:DATA: PATTern <Pattern>, <BitCount>
```

Sets the bit pattern for the PATTern selection.

Power control is available for sub channel types F-DCCH and F-FCH. F-DCCH is only generated for radio configurations 3, 4 and 5.

For the traffic channels, this value is specific for the selected radio configuration.

Parameters:

- `<Pattern>` numeric
  - *RST:* #H0

- `<BitCount>` integer
  - Range: 1 to 64
  - *RST:* 1

Example:  

```
BB:C2K:BST2:CGR1:RCON 4
```

selects radio configuration RC4 for the first traffic channel of base station 2. This setting is valid for all sub channels of the traffic channel. With RC4, the traffic channel includes a F-DCCH.

```
```

defines the bit pattern for the power control-bits.

Manual operation: See "Data Source - Power Control - BS" on page 56

```
[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:TPC:MIUse <MisUse>
```

The command activates "mis-" use of the power control bits of the selected F-DCCH or F- FCH for controlling the channel powers of these channels.

Power control is available for sub channel types F-DCCH and F-FCH. F-DCCH is only generated for radio configurations 3, 4 and 5.
The bit pattern (see command :BB:C2K:BStation<n>:CGroup<n>:COFFset<n>:TPC...) of the power control bits of each channel is used to control the channel power. A "1" leads to an increase of channel powers, a "0" to a reduction of channel powers. Channel power is limited to the range 0 dB to -80 dB. The step width of the change is defined with the command [:SOURce<hw>]:BB:C2K:BStation<st>:CGroup<di0>:COFFset<ch>:TPC:PSTep.

For the traffic channels, this value is specific for the selected radio configuration.

Parameters:

<MisUse> 0 | 1 | OFF | ON
*RST: OFF

Example:
BB:C2K:BST2:CGR1:RCON 4
selects radio configuration RC4 for the first traffic channel of base station 2. This setting is valid for all sub channels of the traffic channel. With RC4, the traffic channel includes a F-DCCH.

activates regulation of channel power for DCCH of the first traffic channel of base station 2 via the power control bit pattern.

sets the step width for the change of channel powers to 1 dB.

Manual operation: See "For Output Power Control - BS" on page 57

[:SOURce<hw>]:BB:C2K:BSTation<st>:CGroup<di0>:COFFset<ch>:TPC:PSTep <PStep>

The command defines the step width for the change of channel powers in the case of "mis-" use of the power control bits.

Power control is available for sub channel types F-DCCH and F-FCH. F-DCCH is only generated for radio configurations 3, 4 and 5.

For the traffic channels, this value is specific for the selected radio configuration.

Parameters:

<PStep> float
Range: -10 dB to 10 dB
Increment: 0.01 dB
*RST: 0 dB

Example:
BB:C2K:BST2:CGR1:RCON 4
selects radio configuration RC4 for the first traffic channel of base station 2. This setting is valid for all sub channels of the traffic channel. With RC4, the traffic channel includes a F-DCCH.

sets the step width for the change of channel powers to 1 dB.

Manual operation: See "Power Step (DPCCH) - BS" on page 58
The command sets the read out mode for the bit pattern of the power control bits.

The bit pattern is defined with the commands [:SOURce<hw>:BB:C2K:BST<n>:CGRoup<n>:COFFset<n>:TPC....

Power control is available for sub channel types F-DCCH and F-FCH. F-DCCH is only generated for radio configurations 3, 4 and 5.

For the traffic channels, this value is specific for the selected radio configuration.

**Parameters:**

- **CONTinuous | S0A | S1A | S01A | S10A**
  - **CONTinuous**
    - The bit pattern is used cyclically.
  - **S0A**
    - The bit pattern is used once, then the power control bit sequence continues with 0 bits.
  - **S1A**
    - The bit pattern is used once, then the power control bit sequence continues with 1 bit.
  - **S01A**
    - The bit pattern is used once and then the power control bit sequence is continued with 0 bits and 1 bit alternately.
  - **S10A**
    - The bit pattern is used once and then the power control bit sequence is continued with 1 bit and 0 bits alternately.

**Example:**

- **BB:C2K:BST2:CGR1:RCON 4**
  - Selects radio configuration RC4 for the first traffic channel of base station 2. This setting is valid for all sub channels of the traffic channel. With RC4, the traffic channel includes an F-DCCH.
- **BB:C2K:BST2:CGR1:COFF4:TPC:READ S0A**
  - 'the bit pattern is used once, after which a 0 sequence is generated (applies to F-DCCH of the first traffic channel of base station 2).

**Manual operation:**

- See "Read Out Mode (Power Control) - BS" on page 57

Queries the channel type.
The channel type is firmly fixed for channel numbers 0-1 to 0-14 (CGR0:COFF1 to CGR0:COFF14), i.e. for the special channels (control and packet channels). The remaining channel numbers are assigned to the individual code channels of the eight possible traffic channels. In this case, the first traffic channel occupies the range 1-1 to 1-8 (CGR1:COFF1 to CGR1:COFF8), the second occupies the range 2-1 to 2-8 (CGR2:COFF1 to CGR2:COFF8), etc. Since the type and number of code channels depends on the radio configuration of the channel, the channels x-2 to x-8 are variously occupied. X-1 is always the fundamental channel (F-FCH) of the traffic channel.

Return values:

- <Type>
  - F-PICH | F-SYNC | F-PCH | F-TDPICH | F-APICH |
  - F-ATDPICH | F-BCH | F-QPCH | F-CPCCH | F-CACH |
  - F-CCCH | F-DCCH | F-FCH | F-SCH | F-PDCCH | F-PDCH

Example:

- BB:C2K:BST2:CGR0:COFF12:TYPE?
  - Queries type of channel 0 to 12 of base station 2.
  - Response: F-PDCCH

Usage:

- Query only

Manual operation:

- See "Channel Type" on page 45

[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:WCODe <WCode>

Assigns the Walsh Code to the channel. The standard assigns a fixed walsh code to some channels (F-PICH, for example, always uses Walsh code 0). Generally, the Walsh code can only be varied within the range specified by the standard.

For the traffic channels, this value is specific for the selected radio configuration.

The value range of the Walsh code depends on the frame length, the channel coding type and the data rate.

If one of these parameters is changed so that the set Walsh code gets invalid, the next permissible value is automatically set.

Parameters:

- <WCode>  
  - integer
  - Range: 0 to 255
  - *RST: 0

Example:

  - Assigns Walsh code 23 to sub channel 3 to 5 of base station 1.

Manual operation:

- See "Walsh" on page 48

[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:COFFset<ch>:WLENgth?

Queries the Walsh Code length of the channel. For the traffic channels, this value is specific for the selected radio configuration.
Return values:
<WLenght> integer
Range: 0 to 255
*RST: 0

Example: BB:C2K:BST1:CGR3:COFF5:WLEN?
queries Walsh code length of sub channel 3-5 of base station 1.
Response: 64
the Walsh code length is 64.

Usage: Query only

Manual operation: See "Walsh Length - More Parameters BS" on page 55

[:SOURce<hw>]:BB:C2K:BSTation<st>:CGRoup<di0>:RCONfiguration
<RConfiguration>
Selects the radio configuration for the traffic channel. The settings of the channel table parameters are specific for the selected radio configuration.

Parameters:
<RConfiguration> 1 | 2 | 3 | 4 | 5
*RST: Traffic channel 1/2: 3; all other traffic channels: 1

Example: BB:C2K:BST2:CGR1:RCON 4
selects radio configuration RC4 for the first traffic channel of base station 2. This setting is valid for all sub channels of the traffic channel. With RC4, the traffic channel includes a F-DCCH.

Manual operation: See "Radio Configuration (RC)" on page 46

[:SOURce<hw>]:BB:C2K:BSTation<st>:DCONflict:MODE <Mode>
The command switches the order of the spreading codes.

Parameters:
<Mode> HAD | BREV
HAD
the code channels are displayed in the order determined by the Hadamard matrix. The codes are numbered as Walsh codes according to the standard.
BREV
the code channels are displayed in the order defined by the Orthogonal Variable Spreading Factor (OVSF) code tree (3GPP code).
*RST: HAD

Example: BB:C2K:BST2:DCON:MODE HAD
selects that the codes are numbered as Walsh codes according to the standard.
Manual operation: See "Order - Code Domain BS" on page 53

[:SOURce<hw>]:BB:C2K:BSTation<st>:DCONflict:RESolve

The command resolves existing domain conflicts by modifying the Walsh codes of the affected channels.

Example:
BB:C2K:BST2:DCON:STAT?
queries whether a code domain conflict exists for base station 2.
Response: 1
there is a conflict.
BB:C2K:BST2:DCON:RES
resolves the code domain error by modifying the Walsh codes of the affected channels.

Usage: Event

Manual operation: See "Domain Conflict" on page 49

[:SOURce<hw>]:BB:C2K:BSTation<st>:DCONflict:[STATE]?

The command queries whether there is (response 1) or is not (response 0) a conflict (overlap) in the hierarchically-structured Walsh codes.

Return values:
<State> 0 | 1 | OFF | ON

Example:
BB:C2K:BST2:DCON:STAT?
queries whether a code domain conflict exists for base station 2.
Response: 0
there is no conflict.

Usage: Query only

Manual operation: See "Domain Conflict" on page 49

[:SOURce<hw>]:BB:C2K:BSTation<st>:PDCHannel:PINTerval <PInterval>

The command sets the interval between two data packets for F-PDCH. The range depends on the ARB settings sequence length (:BB:C2K:SLENgth). The values 80 ms, 40 ms, 20 ms, 10 ms and 5 ms can always be set, and the maximum value is 2000 ms. All intermediate values must satisfy the condition:

Sequence Length * 80ms/2^n, where n is a whole number.

Parameters:
<PInterval> float
Range: 5 ms to 2000 ms
Increment: 0.005
*RST: 20 ms

Example:
BB:C2K:BST2:PDCH:PINT 10 ms
sets an interval of 10 ms between two data packets.
Manual operation:  See "Packet Interval - More Params F-PDCHs BS" on page 64

[:SOURce<hw>]:BB:C2K:BSTation<st>:PDCHannel:PSETup <PSetup>

Selects for F-PDCH if all subpackets are generated using the same settings or if the settings of subchannel 1 are valid for all sub channels. However, the value of "Number of Bits per Encoder Packet" is a quality of the complete encoder packet, therefore it is always set for all sub packet channels via the entry for sub channel 1.

Parameters:
<PSetup>  0 | 1 | OFF | ON
ON Packet parameters can be changed only for sub packet 1, all sub packets are generated with these settings.
OFF Packet parameters can be set individually for each sub packet.
*RST: 1

Example:  BB:C2K:BST2:PDCH:PSET OFF
selects that all sub packets can be configured separately.

Manual operation:  See "Same Packet Setup for all Subpackets - More Params F-PDCHs BS" on page 64

[:SOURce<hw>]:BB:C2K:BSTation<st>:PDCHannel:SUBPacket<di>:ID <Id>

The command selects the sub packet ID for F_PDCH. The sub packet ID determines the sub packet symbol selection and selects one of four available subpackets of the encoder packets. The SPID of sub packet 1 is always 1.

Parameters:
<Id>  0 | 1 | 2 | 3
Range:  0 to 3
*RST: 0

selects SPID 3 for sub packet 3.

Manual operation:  See "Subpacket ID (SPID) - More Params F-PDCHs BS" on page 65

[:SOURce<hw>]:BB:C2K:BSTation<st>:PDCHannel:SUBPacket<di>:PARameters <Parameters>

Selects a fixed combination of parameters "Bits per Encoder Packet", "Number of 32-Chip Walsh Channels", "Subpacket Data Rate", "Number of Slots per Subpackets" and "Modulation Order". These combinations are shown in the following list in the form of a table for all five parameters.
The complete range of 127 possible combinations is only available for subpacket 1. If "Same Packet Setup for all Subpackets" is enabled (SOUR:BB:C2K:BST2:PDCH:PSET ON), this command is only valid for subpacket 1.

<table>
<thead>
<tr>
<th>Parameter of command</th>
<th>Number of Bits per Encoder Packet</th>
<th>Number of 32-Chip Walsh Channels</th>
<th>Subpacket Data Rate (kbps)</th>
<th>Number of Slots per Subpacket</th>
<th>Modulation Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2328</td>
<td>28</td>
<td>1862.4</td>
<td>1</td>
<td>8-PSK</td>
</tr>
<tr>
<td>2</td>
<td>3864</td>
<td>27</td>
<td>1545.6</td>
<td>2</td>
<td>QPSK</td>
</tr>
<tr>
<td>3</td>
<td>3096</td>
<td>26</td>
<td>2476.8</td>
<td>1</td>
<td>16-QAM</td>
</tr>
<tr>
<td>4</td>
<td>3864</td>
<td>26</td>
<td>3091.2</td>
<td>1</td>
<td>16-QAM</td>
</tr>
<tr>
<td>5</td>
<td>1560</td>
<td>25</td>
<td>1248.0</td>
<td>1</td>
<td>QPSK</td>
</tr>
<tr>
<td>6</td>
<td>2328</td>
<td>25</td>
<td>1862.4</td>
<td>1</td>
<td>8-PSK</td>
</tr>
<tr>
<td>7</td>
<td>3096</td>
<td>25</td>
<td>1238.4</td>
<td>2</td>
<td>QPSK</td>
</tr>
<tr>
<td>8</td>
<td>3864</td>
<td>25</td>
<td>1545.6</td>
<td>2</td>
<td>8-PSK</td>
</tr>
<tr>
<td>9</td>
<td>2328</td>
<td>23</td>
<td>931.2</td>
<td>2</td>
<td>QPSK</td>
</tr>
<tr>
<td>10</td>
<td>2328</td>
<td>23</td>
<td>1862.4</td>
<td>1</td>
<td>16-QAM</td>
</tr>
<tr>
<td>11</td>
<td>3096</td>
<td>23</td>
<td>2476.8</td>
<td>1</td>
<td>16-QAM</td>
</tr>
<tr>
<td>12</td>
<td>3864</td>
<td>23</td>
<td>1545.6</td>
<td>2</td>
<td>8-PSK</td>
</tr>
<tr>
<td>13</td>
<td>1560</td>
<td>22</td>
<td>1248.0</td>
<td>1</td>
<td>QPSK</td>
</tr>
<tr>
<td>14</td>
<td>3096</td>
<td>22</td>
<td>1238.4</td>
<td>2</td>
<td>QPSK</td>
</tr>
<tr>
<td>15</td>
<td>1560</td>
<td>21</td>
<td>1248.0</td>
<td>1</td>
<td>8-PSK</td>
</tr>
<tr>
<td>16</td>
<td>3096</td>
<td>21</td>
<td>1238.4</td>
<td>2</td>
<td>8-PSK</td>
</tr>
<tr>
<td>17</td>
<td>3096</td>
<td>21</td>
<td>2476.8</td>
<td>1</td>
<td>16-QAM</td>
</tr>
<tr>
<td>18</td>
<td>3864</td>
<td>21</td>
<td>1545.6</td>
<td>2</td>
<td>8-PSK</td>
</tr>
<tr>
<td>19</td>
<td>1560</td>
<td>20</td>
<td>624.0</td>
<td>2</td>
<td>QPSK</td>
</tr>
<tr>
<td>20</td>
<td>2328</td>
<td>20</td>
<td>465.6</td>
<td>4</td>
<td>QPSK</td>
</tr>
<tr>
<td>21</td>
<td>2328</td>
<td>20</td>
<td>931.2</td>
<td>2</td>
<td>QPSK</td>
</tr>
<tr>
<td>22</td>
<td>2328</td>
<td>20</td>
<td>1862.4</td>
<td>1</td>
<td>16-QAM</td>
</tr>
<tr>
<td>23</td>
<td>3096</td>
<td>20</td>
<td>619.2</td>
<td>4</td>
<td>QPSK</td>
</tr>
<tr>
<td>24</td>
<td>408</td>
<td>19</td>
<td>326.4</td>
<td>1</td>
<td>QPSK</td>
</tr>
<tr>
<td>25</td>
<td>792</td>
<td>19</td>
<td>316.8</td>
<td>2</td>
<td>QPSK</td>
</tr>
<tr>
<td>26</td>
<td>792</td>
<td>19</td>
<td>633.6</td>
<td>1</td>
<td>QPSK</td>
</tr>
<tr>
<td>27</td>
<td>1560</td>
<td>19</td>
<td>1248.0</td>
<td>1</td>
<td>8-PSK</td>
</tr>
<tr>
<td>28</td>
<td>3096</td>
<td>19</td>
<td>1238.4</td>
<td>2</td>
<td>8-PSK</td>
</tr>
</tbody>
</table>
## Parameter of command

<table>
<thead>
<tr>
<th>Parameter of command</th>
<th>Number of Bits per Encoder Packet</th>
<th>Number of 32-Chip Walsh Channels</th>
<th>Subpacket Data Rate (kbps)</th>
<th>Number of Slots per Subpacket</th>
<th>Modulation Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOUR:BB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2K:BST:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDCH:PAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>3864</td>
<td>19</td>
<td>772.8</td>
<td>4</td>
<td>QPSK</td>
</tr>
<tr>
<td>30</td>
<td>3864</td>
<td>19</td>
<td>1545.6</td>
<td>2</td>
<td>16-QAM</td>
</tr>
<tr>
<td>31</td>
<td>2328</td>
<td>18</td>
<td>1862.4</td>
<td>1</td>
<td>16-QAM</td>
</tr>
<tr>
<td>32</td>
<td>1560</td>
<td>17</td>
<td>1248.0</td>
<td>1</td>
<td>8-PSK</td>
</tr>
<tr>
<td>33</td>
<td>2328</td>
<td>17</td>
<td>931.2</td>
<td>2</td>
<td>QPSK</td>
</tr>
<tr>
<td>34</td>
<td>3096</td>
<td>17</td>
<td>1238.4</td>
<td>2</td>
<td>8-PSK</td>
</tr>
<tr>
<td>35</td>
<td>3864</td>
<td>17</td>
<td>1545.6</td>
<td>2</td>
<td>16-QAM</td>
</tr>
<tr>
<td>36</td>
<td>2328</td>
<td>16</td>
<td>1862.4</td>
<td>1</td>
<td>16-QAM</td>
</tr>
<tr>
<td>37</td>
<td>3096</td>
<td>16</td>
<td>619.2</td>
<td>4</td>
<td>QPSK</td>
</tr>
<tr>
<td>38</td>
<td>3864</td>
<td>16</td>
<td>772.8</td>
<td>4</td>
<td>QPSK</td>
</tr>
<tr>
<td>39</td>
<td>792</td>
<td>15</td>
<td>633.6</td>
<td>1</td>
<td>QPSK</td>
</tr>
<tr>
<td>40</td>
<td>1560</td>
<td>15</td>
<td>624.0</td>
<td>2</td>
<td>QPSK</td>
</tr>
<tr>
<td>41</td>
<td>1560</td>
<td>15</td>
<td>1248.0</td>
<td>1</td>
<td>16-QAM</td>
</tr>
<tr>
<td>42</td>
<td>2328</td>
<td>15</td>
<td>931.2</td>
<td>2</td>
<td>8-PSK</td>
</tr>
<tr>
<td>43</td>
<td>3096</td>
<td>15</td>
<td>1238.4</td>
<td>2</td>
<td>16-QAM</td>
</tr>
<tr>
<td>44</td>
<td>3864</td>
<td>15</td>
<td>1545.6</td>
<td>2</td>
<td>16-QAM</td>
</tr>
<tr>
<td>45</td>
<td>1560</td>
<td>14</td>
<td>312.0</td>
<td>4</td>
<td>QPSK</td>
</tr>
<tr>
<td>46</td>
<td>2328</td>
<td>14</td>
<td>465.6</td>
<td>4</td>
<td>QPSK</td>
</tr>
<tr>
<td>47</td>
<td>3864</td>
<td>14</td>
<td>772.8</td>
<td>4</td>
<td>QPSK</td>
</tr>
<tr>
<td>48</td>
<td>3864</td>
<td>14</td>
<td>1545.6</td>
<td>2</td>
<td>16-QAM</td>
</tr>
<tr>
<td>49</td>
<td>792</td>
<td>13</td>
<td>633.6</td>
<td>1</td>
<td>QPSK</td>
</tr>
<tr>
<td>50</td>
<td>1560</td>
<td>13</td>
<td>624.0</td>
<td>2</td>
<td>QPSK</td>
</tr>
<tr>
<td>51</td>
<td>1560</td>
<td>13</td>
<td>1248.0</td>
<td>1</td>
<td>16-QAM</td>
</tr>
<tr>
<td>52</td>
<td>2328</td>
<td>13</td>
<td>931.2</td>
<td>2</td>
<td>8-PSK</td>
</tr>
<tr>
<td>53</td>
<td>3096</td>
<td>13</td>
<td>619.2</td>
<td>4</td>
<td>QPSK</td>
</tr>
<tr>
<td>54</td>
<td>3096</td>
<td>13</td>
<td>1238.4</td>
<td>2</td>
<td>16-QAM</td>
</tr>
<tr>
<td>55</td>
<td>3864</td>
<td>13</td>
<td>1545.6</td>
<td>2</td>
<td>16-QAM</td>
</tr>
<tr>
<td>56</td>
<td>1560</td>
<td>12</td>
<td>1248.0</td>
<td>1</td>
<td>16-QAM</td>
</tr>
<tr>
<td>57</td>
<td>3096</td>
<td>12</td>
<td>1238.4</td>
<td>2</td>
<td>16-QAM</td>
</tr>
<tr>
<td>58</td>
<td>3864</td>
<td>12</td>
<td>772.8</td>
<td>4</td>
<td>8-PSK</td>
</tr>
<tr>
<td>59</td>
<td>408</td>
<td>11</td>
<td>326.4</td>
<td>1</td>
<td>QPSK</td>
</tr>
<tr>
<td>Parameter of command</td>
<td>Number of Bits per Encoder Packet</td>
<td>Number of 32-Chip Walsh Channels</td>
<td>Subpacket Data Rate (kbps)</td>
<td>Number of Slots per Subpacket</td>
<td>Modulation Order</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------</td>
<td>-------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>SOUR:BB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2K:BST:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDCH:PAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>792</td>
<td>11</td>
<td>158.4</td>
<td>4</td>
<td>QPSK</td>
</tr>
<tr>
<td>61</td>
<td>792</td>
<td>11</td>
<td>316.8</td>
<td>2</td>
<td>QPSK</td>
</tr>
<tr>
<td>62</td>
<td>792</td>
<td>11</td>
<td>633.6</td>
<td>1</td>
<td>QPSK</td>
</tr>
<tr>
<td>63</td>
<td>1560</td>
<td>11</td>
<td>624.0</td>
<td>2</td>
<td>QPSK</td>
</tr>
<tr>
<td>64</td>
<td>1560</td>
<td>11</td>
<td>1248.0</td>
<td>1</td>
<td>16-QAM</td>
</tr>
<tr>
<td>65</td>
<td>2328</td>
<td>11</td>
<td>465.6</td>
<td>4</td>
<td>QPSK</td>
</tr>
<tr>
<td>66</td>
<td>2328</td>
<td>11</td>
<td>931.2</td>
<td>2</td>
<td>16-QAM</td>
</tr>
<tr>
<td>67</td>
<td>3096</td>
<td>11</td>
<td>619.2</td>
<td>4</td>
<td>QPSK</td>
</tr>
<tr>
<td>68</td>
<td>3096</td>
<td>11</td>
<td>1238.4</td>
<td>2</td>
<td>16-QAM</td>
</tr>
<tr>
<td>69</td>
<td>3864</td>
<td>11</td>
<td>772.8</td>
<td>4</td>
<td>8-PSK</td>
</tr>
<tr>
<td>70</td>
<td>792</td>
<td>10</td>
<td>633.6</td>
<td>1</td>
<td>8-PSK</td>
</tr>
<tr>
<td>71</td>
<td>1560</td>
<td>10</td>
<td>624.0</td>
<td>2</td>
<td>8-PSK</td>
</tr>
<tr>
<td>72</td>
<td>2328</td>
<td>10</td>
<td>931.2</td>
<td>2</td>
<td>16-QAM</td>
</tr>
<tr>
<td>73</td>
<td>3096</td>
<td>10</td>
<td>619.2</td>
<td>4</td>
<td>8-PSK</td>
</tr>
<tr>
<td>74</td>
<td>792</td>
<td>9</td>
<td>633.6</td>
<td>1</td>
<td>8-PSK</td>
</tr>
<tr>
<td>75</td>
<td>1560</td>
<td>9</td>
<td>312.0</td>
<td>4</td>
<td>QPSK</td>
</tr>
<tr>
<td>76</td>
<td>1560</td>
<td>9</td>
<td>624.0</td>
<td>2</td>
<td>8-PSK</td>
</tr>
<tr>
<td>77</td>
<td>2328</td>
<td>9</td>
<td>465.6</td>
<td>4</td>
<td>QPSK</td>
</tr>
<tr>
<td>78</td>
<td>2328</td>
<td>9</td>
<td>931.2</td>
<td>2</td>
<td>16-QAM</td>
</tr>
<tr>
<td>79</td>
<td>3096</td>
<td>9</td>
<td>619.2</td>
<td>4</td>
<td>8-PSK</td>
</tr>
<tr>
<td>80</td>
<td>3864</td>
<td>9</td>
<td>772.8</td>
<td>4</td>
<td>16-QAM</td>
</tr>
<tr>
<td>81</td>
<td>408</td>
<td>8</td>
<td>163.2</td>
<td>2</td>
<td>QPSK</td>
</tr>
<tr>
<td>82</td>
<td>408</td>
<td>8</td>
<td>326.4</td>
<td>1</td>
<td>QPSK</td>
</tr>
<tr>
<td>83</td>
<td>792</td>
<td>8</td>
<td>316.8</td>
<td>2</td>
<td>QPSK</td>
</tr>
<tr>
<td>84</td>
<td>792</td>
<td>8</td>
<td>633.6</td>
<td>1</td>
<td>16-QAM</td>
</tr>
<tr>
<td>85</td>
<td>1560</td>
<td>8</td>
<td>624.0</td>
<td>2</td>
<td>16-QAM</td>
</tr>
<tr>
<td>86</td>
<td>2328</td>
<td>8</td>
<td>465.6</td>
<td>4</td>
<td>8-PSK</td>
</tr>
<tr>
<td>87</td>
<td>2328</td>
<td>8</td>
<td>931.2</td>
<td>2</td>
<td>16-QAM</td>
</tr>
<tr>
<td>88</td>
<td>3096</td>
<td>8</td>
<td>619.2</td>
<td>4</td>
<td>16-QAM</td>
</tr>
<tr>
<td>89</td>
<td>3864</td>
<td>8</td>
<td>772.8</td>
<td>4</td>
<td>16-QAM</td>
</tr>
<tr>
<td>90</td>
<td>408</td>
<td>7</td>
<td>326.4</td>
<td>1</td>
<td>QPSK</td>
</tr>
<tr>
<td>Parameter of command</td>
<td>Number of Bits per Encoder Packet</td>
<td>Number of 32-Chip Walsh Channels</td>
<td>Subpacket Data Rate (kbps)</td>
<td>Number of Slots per Subpacket</td>
<td>Modulation Order</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------</td>
<td>-------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>91</td>
<td>792</td>
<td>7</td>
<td>316.8</td>
<td>2</td>
<td>QPSK</td>
</tr>
<tr>
<td>92</td>
<td>792</td>
<td>7</td>
<td>633.6</td>
<td>1</td>
<td>16-QAM</td>
</tr>
<tr>
<td>93</td>
<td>1560</td>
<td>7</td>
<td>312.0</td>
<td>4</td>
<td>QPSK</td>
</tr>
<tr>
<td>94</td>
<td>1560</td>
<td>7</td>
<td>624.0</td>
<td>2</td>
<td>16-QAM</td>
</tr>
<tr>
<td>95</td>
<td>2328</td>
<td>7</td>
<td>465.6</td>
<td>4</td>
<td>8-PSK</td>
</tr>
<tr>
<td>96</td>
<td>3096</td>
<td>7</td>
<td>619.2</td>
<td>4</td>
<td>16-QAM</td>
</tr>
<tr>
<td>97</td>
<td>3864</td>
<td>7</td>
<td>772.8</td>
<td>4</td>
<td>16-QAM</td>
</tr>
<tr>
<td>98</td>
<td>408</td>
<td>6</td>
<td>326.4</td>
<td>1</td>
<td>QPSK</td>
</tr>
<tr>
<td>99</td>
<td>792</td>
<td>6</td>
<td>158.4</td>
<td>4</td>
<td>QPSK</td>
</tr>
<tr>
<td>100</td>
<td>792</td>
<td>6</td>
<td>316.8</td>
<td>2</td>
<td>QPSK</td>
</tr>
<tr>
<td>101</td>
<td>792</td>
<td>6</td>
<td>633.6</td>
<td>1</td>
<td>16-QAM</td>
</tr>
<tr>
<td>102</td>
<td>1560</td>
<td>6</td>
<td>312.0</td>
<td>4</td>
<td>QPSK</td>
</tr>
<tr>
<td>103</td>
<td>1560</td>
<td>6</td>
<td>624.0</td>
<td>2</td>
<td>16-QAM</td>
</tr>
<tr>
<td>104</td>
<td>2328</td>
<td>6</td>
<td>465.6</td>
<td>4</td>
<td>16-QAM</td>
</tr>
<tr>
<td>105</td>
<td>3096</td>
<td>6</td>
<td>619.2</td>
<td>4</td>
<td>16-QAM</td>
</tr>
<tr>
<td>106</td>
<td>408</td>
<td>5</td>
<td>163.2</td>
<td>2</td>
<td>QPSK</td>
</tr>
<tr>
<td>107</td>
<td>408</td>
<td>5</td>
<td>326.4</td>
<td>1</td>
<td>8-PSK</td>
</tr>
<tr>
<td>108</td>
<td>792</td>
<td>5</td>
<td>316.8</td>
<td>2</td>
<td>8-PSK</td>
</tr>
<tr>
<td>109</td>
<td>1560</td>
<td>5</td>
<td>312.0</td>
<td>4</td>
<td>8-PSK</td>
</tr>
<tr>
<td>110</td>
<td>2328</td>
<td>5</td>
<td>465.6</td>
<td>4</td>
<td>16-QAM</td>
</tr>
<tr>
<td>111</td>
<td>408</td>
<td>4</td>
<td>81.6</td>
<td>4</td>
<td>QPSK</td>
</tr>
<tr>
<td>112</td>
<td>408</td>
<td>4</td>
<td>163.2</td>
<td>2</td>
<td>QPSK</td>
</tr>
<tr>
<td>113</td>
<td>408</td>
<td>4</td>
<td>326.4</td>
<td>1</td>
<td>16-QAM</td>
</tr>
<tr>
<td>114</td>
<td>792</td>
<td>4</td>
<td>158.4</td>
<td>4</td>
<td>QPSK</td>
</tr>
<tr>
<td>115</td>
<td>792</td>
<td>4</td>
<td>316.8</td>
<td>2</td>
<td>16-QAM</td>
</tr>
<tr>
<td>116</td>
<td>1560</td>
<td>4</td>
<td>312.0</td>
<td>4</td>
<td>16-QAM</td>
</tr>
<tr>
<td>117</td>
<td>2328</td>
<td>4</td>
<td>465.6</td>
<td>4</td>
<td>16-QAM</td>
</tr>
<tr>
<td>118</td>
<td>408</td>
<td>3</td>
<td>81.6</td>
<td>4</td>
<td>QPSK</td>
</tr>
<tr>
<td>119</td>
<td>408</td>
<td>3</td>
<td>163.2</td>
<td>2</td>
<td>QPSK</td>
</tr>
<tr>
<td>120</td>
<td>408</td>
<td>3</td>
<td>326.4</td>
<td>1</td>
<td>16-QAM</td>
</tr>
<tr>
<td>121</td>
<td>792</td>
<td>3</td>
<td>158.4</td>
<td>4</td>
<td>QPSK</td>
</tr>
</tbody>
</table>
Remote-Control Commands

### Parameters of command

<table>
<thead>
<tr>
<th>Parameter of command</th>
<th>Number of Bits per Encoder Packet</th>
<th>Number of 32-Chip Walsh Channels</th>
<th>Subpacket Data Rate (kbps)</th>
<th>Number of Slots per Sub-packet</th>
<th>Modulation Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOUR:BB:C2K:BST:PDCH:PAR</td>
<td>122</td>
<td>792</td>
<td>3</td>
<td>316.8</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>123</td>
<td>1560</td>
<td>3</td>
<td>312.0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>124</td>
<td>408</td>
<td>2</td>
<td>81.6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>408</td>
<td>2</td>
<td>163.2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>126</td>
<td>792</td>
<td>2</td>
<td>158.4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>127</td>
<td>408</td>
<td>1</td>
<td>81.6</td>
<td>4</td>
</tr>
</tbody>
</table>

**Parameters:**

<Parameters> 1 to 127

*RST: 1

**Example:**

BB:C2K:BST2:PDCH:SUBP1:PAR 48

selects combination of parameters with index 48 (see following table).

**Manual operation:**

See "PDCH Subpacket Table Parameters - More Params F-PDCHs BS" on page 66


### [:SOURce<hw>]:BB:C2K:BSTation<st>:PDCHannel:SUBPacket<di>:STATe <State>

This command activates/deactivates the selected sub packet for F_PDCH. Sub packet 1 is always active.

**Parameters:**

<State> 0 | 1 | OFF | ON

*RST: OFF

**Example:**

BB:C2K:BST2:PDCH:SUBP3:STAT ON

activates sub packet 3.

**Manual operation:**

See "Subpacket State - More Params F-PDCHs BS" on page 65


### [:SOURce<hw>]:BB:C2K:BSTation<st>:PDCHannel:SUBPacket<di>:TOFFset <TOffset>

Sets start of the sub packet relative to the start of the packet interval. The offset is entered in slots. Sub packet 1 has offset 0. The value range for the individual subpackets depends on the settings of the other subpackets. The time slot offsets of the other sub packet have to be entered in ascending order. Also, two packets cannot be sent at the same time.
In total the maximum value depends on the selected packet interval and the number of slots per sub packet as follows:

**Packet Interval/1.25 ms - Number of Slots per Subpacket.**

**Parameters:**
- `<TOffset>`
  - **Type:** integer
  - **Range:** 0 to max
  - *RST:* 0|1|2|3

**Example:**

```
```

enters at time slot offset of 4 slots. Sub packet 3 is sent 4 slots after the begin of the packet interval.

**Manual operation:**
See "Time Slot Offset - More Params F-PDCHs BS" on page 65

```
[:SOURce<hw>]:BB:C2K:BSTation<st>:PDCHannel:SUBPacket<di>:WCODes?
```

The command queries the resulting Walsh codes for the selected sub packet of F-PDCH. Packet channels may be assigned to more than one code channel.

**Return values:**
- `<WCodes>`
  - **Type:** string

**Example:**

```
```

queries the resulting Walsh codes for sub packet 3 of F-PDCH of base station 2.

Response: "31, 15, 23"

the resulting walsh codes are 31,15,23.

**Usage:**
Query only

**Manual operation:**
See "Resulting Walsh Codes - More Params F-PDCHs BS" on page 67

```
[:SOURce<hw>]:BB:C2K:BSTation<st>:PDCHannel:WINDex <WIndex>
```

The command selects a standard Walsh set for F-PDCH. Four different sets are defined in the standard.

**Parameters:**
- `<WIndex>`
  - 0 | 1 | 2 | 3
  - *RST:* 0

**Example:**

```
BB:C2K:BST2:PDCH:WIND 2
```

selects set 2 for PDCH of base station 2.

**Manual operation:**
See "Walsh Code Column Index - More Params F-PDCHs BS" on page 64
[:SOURce<hw>]:BB:C2K:BSTation<st>:PNOffset <PnOffset>

The command sets the PN offset (short code) of the base station. The PN offset permits signals of different base stations to be distinguished.

Parameters:
<PnOffset> integer
Range: 0 to 511
*RST: 0

Example: BB:C2K:BST3:PNOF 123
sets a PN offset of 123 for base station 3.

Manual operation: See "PN Offset" on page 43

[:SOURce<hw>]:BB:C2K:BSTation<st>:QWSet <QwSet>

The command selects the quasi orthogonal Walsh code set. The standard defines three different sets.

The quasi-orthogonal Walsh codes are used for a given channel if [:SOURce<hw>]:BB:C2K:BSTation<st>:CGroup<di0>:COFFset<ch>:QWCode:STATE is ON.

Parameters:
<QwSet> integer
Range: 1 to 3
*RST: 1

Example: BB:C2K:BST2:QWS 2
selects set 2 for base station 2.

Manual operation: See "Quasi orth Walsh Set" on page 43

[:SOURce<hw>]:BB:C2K:BSTation<st>:STATE <State>

The command activates and deactivates the specified base station.

Parameters:
<State> 0 | 1 | OFF | ON
*RST: OFF

Example: BB:C2K:BST2:STAT OFF
deactivates base station 2.

Manual operation: See "Base Station/Mobile Station State " on page 36

[:SOURce<hw>]:BB:C2K:BSTation<st>:TDELay <TDelay>

Sets the time shift of the selected base station compared to base station 1.
Parameters:
<TDelay> integer
Range: 0 to dynamic
*RST: 0
Default unit: chip

Example: BB:C2K:BST2:TDEL 256
shifts base station 2 by 256 chips compared to base station 1.

Manual operation: See "Time Delay" on page 42

[:SOURce<hw>]:BB:C2K:BSTation<st>:TDIVersity <T Diversity>

The command activates and deactivates signal calculation with transmit diversity (OFF). To activate transmit diversity, the antenna must be specified whose signals are to be simulated (ANT1 or ANT2).

The diversity scheme is selected using command [:SOURce<hw>]:BB:C2K:BSTation<st>:TDIVersity:MODE.

Parameters:
<T Diversity> OFF | ANT1 | ANT2
OFF No transmit diversity.
ANT1 Calculate and apply the output signal for antenna 1.
ANT2 Calculate and apply the output signal for antenna 2.
*RST: OFF

Example: BB:C2K:BST2:TDIV ANT2
Activates transmit diversity, the signal of antenna 2 is simulated.

Manual operation: See "Transmit Diversity" on page 42

[:SOURce<hw>]:BB:C2K:BSTation<st>:TDIVersity:MODE <Mode>

The command selects the diversity scheme.

Command [:SOURce<hw>]:BB:C2K:BSTation<st>:TDIVersity activates transmit diversity and selects the antenna.

Parameters:
<Mode> OTD | STS
OTD Orthogonal Transmit Diversity Mode.
STS Space Time Spreading Mode.
*RST: OTD
Example:  
BB:C2K:BST2:TDIV:MODE OTD  
selects scheme OTD for Transmit Diversity.  
BB:C2K:BST2:TDIV ANT2  
activates transmit diversity, the signal of antenna 2 is simulated.

Manual operation:  
See "Diversity Mode" on page 43

5.8 Mobile Station Settings

The SOURce:BB:C2K:MSTation system contains commands for setting mobile stations.

The commands of this system only take effect when the CDMA2000 standard is activated, the UP transmission direction is selected and the particular mobile station is enabled:

- SOURce:BB:C2K:STATe ON  
- SOURce:BB:C2K:LINK UP  
- SOURce:BB:C2K:MSTation2:STATe ON

For the code channels of a traffic channels, the settings of the channel table parameters are specific for the selected radio configuration. I.e. a complete set of settings exists for each of the four possible radio configurations.

[:SOURce<hw>]:BB:C2K:MSTation:ADDitional:COUNT...................................................... 133  
[:SOURce<hw>]:BB:C2K:MSTation:ADDitional:LCMask:STEP............................................133  
[:SOURce<hw>]:BB:C2K:MSTation:ADDitional:POWer:OFFSet.......................................... 133  
[:SOURce<hw>]:BB:C2K:MSTation:ADDitional:STATe..................................................... 134  
[:SOURce<hw>]:BB:C2K:MSTation:ADDitional:TDELay:STEP............................................134  
[:SOURce<hw>]:BB:C2K:MSTation:PRESet......................................................................134  
[:SOURce<hw>]:BB:C2K:MSTation<st>:CCODing:MODE.................................................. 135  
[:SOURce<hw>]:BB:C2K:MSTation<st>:CHANnel<ch>:DATA............................................. 135  
[:SOURce<hw>]:BB:C2K:MSTation<st>:CHANnel<ch>:DATA:DSELect............................... 136  
[:SOURce<hw>]:BB:C2K:MSTation<st>:CHANnel<ch>:DATA:PATTern................................ 136  
[:SOURce<hw>]:BB:C2K:MSTation<st>:CHANnel<ch>:FLENgth........................................ 137  
[:SOURce<hw>]:BB:C2K:MSTation<st>:CHANnel<ch>:POWer........................................... 138  
[:SOURce<hw>]:BB:C2K:MSTation<st>:CHANnel<ch>:SPReading?................................... 138  
[:SOURce<hw>]:BB:C2K:MSTation<st>:CHANnel<ch>:STATe............................................138  
[:SOURce<hw>]:BB:C2K:MSTation<st>:CHANnel<ch>:TYPE?.......................................... 139  
[:SOURce<hw>]:BB:C2K:MSTation<st>:CHANnel<ch>:WCODE?........................................ 139  
[:SOURce<hw>]:BB:C2K:MSTation<st>:LCMask.............................................................. 140  
[:SOURce<hw>]:BB:C2K:MSTation<st>:MODE.................................................................. 140  
[:SOURce<hw>]:BB:C2K:MSTation<st>:RCONfiguration.................................................... 141  
[:SOURce<hw>]:BB:C2K:MSTation<st>:STATe................................................................. 141  
[:SOURce<hw>]:BB:C2K:MSTation<st>:TPC:DATA............................................................ 141  
[:SOURce<hw>]:BB:C2K:MSTation<st>:TPC:DATA:DSELect............................................ 142  
[:SOURce<hw>]:BB:C2K:MSTation<st>:TPC:DATA:PATTern............................................ 142
[:SOURce<hw>]:BB:C2K:MSTation<st>:TPC:MISuse .................................................. 143
[:SOURce<hw>]:BB:C2K:MSTation<st>:TPC:PSTep .................................................... 143
[:SOURce<hw>]:BB:C2K:MSTation<st>:TPC:READ ..................................................... 143

[:SOURce<hw>]:BB:C2K:MSTation:ADDitional:COUNt <Count>
Sets the number of additional mobile stations.

Parameters:  
<Count>  
integer  
Range: 1 to 64  
*RST: 4

Example:  
BB:C2K:MST:ADD:COUN 20  
sets 20 additional mobile stations.
sets the power offset to -3 dB.
BB:C2K:MST:ADD:LCM:STEP #H1  
sets the step width for increasing the LC mask to 1.
BB:C2K:MST:ADD:STAT ON  
connects the 20 mobile stations to the CDMA signal.

Manual operation:  See "Number of Additional MS" on page 41

[:SOURce<hw>]:BB:C2K:MSTation:ADDitional:LCMask:STEP <Step>
Sets the step width for increasing the LC mask of the additional mobile stations. The start value is the LC mask of MS4.

Parameters:  
<Step>  
24 bits  
*RST: #H1

Example:  
sets the step width for increasing the long code mask to #H55.

Manual operation:  See "LC Mask Step" on page 41

[:SOURce<hw>]:BB:C2K:MSTation:ADDitional:POWer:OFFSet <Offset>
The command sets the power offset of the active channels of the additional mobile stations relative to the power of the active channels of the reference station MS4.

The offset applies to all the additional mobile stations. The resultant overall power must fall within the range 0 ... -80 dB. If the value is above or below this range, it is limited automatically.

Parameters:  
<Offset>  
float  
Range: -80 dB to 0 dB  
Increment: 0.01 dB  
*RST: 0 dB
Example: \texttt{BB:C2K:MST:ADD:POW:OFFS -3.0} 
sets the offset to -3 dB.

Manual operation: See "Power Offset" on page 41

\texttt{[:SOURCE<hw>]:BB:C2K:MSTation:ADDitional:STATE <State>}

The command activates additional mobile stations.

Parameters: 
\texttt{<State>}
0 | 1 | OFF | ON
*RST: OFF

Example: \texttt{BB:C2K:MST:ADD:STAT ON}
connects the additional mobile stations to the CDMA2000 signal.

Manual operation: See "State" on page 40

\texttt{[:SOURCE<hw>]:BB:C2K:MSTation:ADDitional:TDELAY:STEP <Step>}

Sets the step width for the time delay of the additional mobile stations to one another. The start value returns the time delay of MS4.

Parameters: 
\texttt{<Step>}
integer
Range: 0 to 1535 (1 frame)
Increment: 1
*RST: 0
Default unit: chip

Example: \texttt{BB:C2K:MST:ADD:TDEL:STEP 256}
shifts each of the mobile stations 256 chips apart, starting from the time delay of MS4.

Manual operation: See "Time Delay Step" on page 41

\texttt{[:SOURCE<hw>]:BB:C2K:MSTation:PRESet}

A standardized default for all the mobile stations (*RST values specified for the commands).

See "Reset All Mobile Stations" on page 34 for an overview.

Example: \texttt{SOURcel1:BB:C2K:MSTation:PRESet}

Usage: Event

Manual operation: See "Reset All Mobile Stations" on page 34
[:SOURce<hw>]:BB:C2K:MSTation<st>:CCODing:MODE <Mode>

The command selects the channel coding mode.

**Parameters:**

- **<Mode>**
  - OFF | COMPLETE | NOINTERLEAVING | OINterleaving
  - OFF: Channel coding is deactivated.
  - COMPLETE: The complete channel coding is performed. The channel coding procedure can slightly vary depending on channel type, frame length and data rate.
  - OINterleaving: Except for the block interleaver, the whole channel coding procedure is carried out.
  - NOINterleaving: In this mode, only block interleaver is used for coding.

**Example:**

BB:C2K:MST:CCOD:MODE OFF

Deactivates channel coding for mobile station 1.

**Manual operation:** See "Channel Coding - MS" on page 69

[:SOURce<hw>]:BB:C2K:MSTation<st>:CHANnel<ch>:DATA <Data>

The command sets the data source for the specified channel.

The data source for the power control bits is selected with the command [:SOURce<hw>]:BB:C2K:MSTation<st>:TPC:DATA. For the traffic channels, this value is specific for the selected radio configuration.

**Parameters:**

- **<Data>**
  - ZERO | ONE | PATTern | PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 | DLISt
  - PNxx: The pseudo-random sequence generator is used as the data source. Different random sequence lengths can be selected.
  - DLISt: A data list is used. The data list is selected with the command [:SOURce<hw>]:BB:C2K:MSTation<st>:CHANnel<ch>:DATA:DSElect.
  - ZERO | ONE: Internal 0 and 1 data is used.
  - PATTern: Internal data is used. The bit pattern for the data is defined by the command [:SOURce<hw>]:BB:C2K:MSTation<st>:CHANnel<ch>:DATA:PATTern.

**RST:** PN9
Example:  
BB:C2K:MST1:CHAN2:DATA PN16  
Selects as the data source for channel 2 of mobile station 1,  
internal PRBS data with a sequence length of $2^{16}-1$.

Manual operation:  
See "Data - MS" on page 75

[:SOURce<hw>]:BB:C2K:MSTation<st>:CHANnel<ch>:DATA:DSElect <DSelect>  
The command selects the data list for the DLIST data source selection.  
The lists are stored as files with the fixed file extensions \*.*.dm_iqd in a directory of the user's choice. The directory applicable to the following commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

For the traffic channels, this value is specific for the selected radio configuration.

Parameters:

<table>
<thead>
<tr>
<th>&lt;DSelect&gt;</th>
<th>string</th>
</tr>
</thead>
</table>

Example:  
BB:C2K:MST1:CHAN1:DATA DLIS  
selects the Data Lists data source.

MMEM:CDIR "/var/user/temp/Lists"  
selects the directory for the data lists.

BB:C2K:MST1:CHAN1:DATA:DSEL "dpdch_13"'  
selects file 'cdma_13' as the data source. This file must be in specified directory and it must have the file extension \*.*.dm_iqd.

Manual operation:  
See "Data - MS" on page 75

[:SOURce<hw>]:BB:C2K:MSTation<st>:CHANnel<ch>:DATA:PATTern <Pattern>,<BitCount>  
Sets the bit pattern for the data component when the PATTern data source is selected. The first parameter determines the bit pattern (choice of hexadecimal, octal or binary notation), the second specifies the number of bits to use.

For the traffic channels, this value is specific for the selected radio configuration.

Parameters:

<table>
<thead>
<tr>
<th>&lt;Pattern&gt;</th>
<th>numeric</th>
</tr>
</thead>
<tbody>
<tr>
<td>RST:</td>
<td>#H0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>&lt;BitCount&gt;</th>
<th>integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range:</td>
<td>1 to 64</td>
</tr>
<tr>
<td>RST:</td>
<td>1</td>
</tr>
</tbody>
</table>

Example:  
BB:C2K:MST1:CHAN1:DATA PATT  
selects Pattern data source.

BB:C2K:MST1:CHAN1:DATA:PATT #H800FFFF80003FF,  
60  
defines the bit pattern.
Remote-Control Commands

Manual operation: See "Data - MS" on page 75

[:SOURce<hw>]:BB:C2K:MSTation<st>:CHANnel<ch>:DATA:RATE <Rate>

The command sets the data rate for the specified channel. The value range depends on the channel type, the selected radio configuration and the frame length.

For the traffic channels, this value is specific for the selected radio configuration.

The value range of the data rate depends on the channel type and the frame length. If the frame length is changed so that the set data rate becomes invalid, the next permissible value is automatically set.

Parameters:

<Rate>

DR1K2 | DR1K3 | DR1K5 | DR1K8 | DR2K4 | DR2K7 | DR3K6 | DR4K8 | DR7K2 | DR9K6 | DR14K4 | DR19K2 | DR28K8 |
DR38K4 | DR57K6 | DR76K8 | DR115K2 | DR153K6 |
DR230K4 | DR259K2 | DR307K2 | DR460K8 | DR518K4 | DR614K4 | DR1036K8 | NUSed

*RST: R-DCCH: DR9K6; R-FCH: DR1K5; R-SCH: DR1K5; R-ACC: DR4K8

Example:

BB:C2K:MST2:MODE TRAF
selects operating mode traffic.
BB:C2K:MST2:RCON 3
selects radio configuration 3 for the traffic channel.
BB:C2K:MST2:CHAN3:DATA:RATE DR4K8
sets a data rate of 4.8 kbps for channel 3 mobile station 2 (R-FCH in this configuration).

Manual operation: See "Data Rate - MS" on page 74

[:SOURce<hw>]:BB:C2K:MSTation<st>:CHANnel<ch>:FLENgth <FLength>

The command sets the frame length of the selected channel. The value range depends on the channel type and the selected radio configuration.

For the traffic channels, this value is specific for the selected radio configuration.

The frame length affects the data rates that are possible within a channel. Changing the frame length may lead to a change of data rate.

Parameters:

<FLength> 5 | 10 | 20 | 26.6 | 40 | 80

*RST: 20 ms

Example:

BB:C2K:MST:CHAN3:FLEN 5 ms
sets the frame length of sub channel 3 to 5 ms.

Manual operation: See "Frame Length - MS" on page 73
Remote-Control Commands

[:SOURce<hw>:BB:C2K:MSTation<st>:CHANnel<ch>:POWer <Power>

Sets the channel power relative to the powers of the other channels. This setting also determines the starting power of the channel for Misuse Output Power Control.

With the command [:SOURce<hw>:BB:C2K:POWer:ADJust], the power of all the activated channels is adapted so that the total power corresponds to 0 dB. This does not change the power ratio among the individual channels.

For the traffic channels, this value is specific for the selected radio configuration.

Parameters:
<Power>  
float  
Range:  -80 to 0  
Increment:  0.01  
*RST:  0  

Example:  
BB:C2K:MST2:CHAN3:POW -10dB  
Sets the channel power of sub channel 3 of mobile station 2 dB to -10 dB relative to the power of the other channels.

Manual operation:  See "Power - MS " on page 74

[:SOURce<hw>:BB:C2K:MSTation<st>:CHANnel<ch>:SPReading?

Queries the spreading factor of the channel. The spreading factor corresponds to the length of the employed Walsh code. The Walsh codes to be used are specified by the standard and cannot be chosen.

For the traffic channels, this value is specific for the selected radio configuration.

Return values:
<Spreading>  
integer  
Range:  0 to 255  
*RST:  0  

Example:  
BB:C2K:MST2:CHAN3:SPR?
Queries the spreading factor of channel 3 of mobile station 2.
Response:  32

Usage:  Query only

Manual operation:  See "Spread- MS " on page 74

[:SOURce<hw>:BB:C2K:MSTation<st>:CHANnel<ch>:STATe <State>

This command activates/deactivates the selected channel.

For the traffic channels, this value is specific for the selected radio configuration.

Parameters:
<State>  
0 | 1 | OFF | ON  
*RST:  OFF
Remote-Control Commands

Example:  
```
BB:C2K:MST2:CHAN2:STAT OFF
```  
deactivates sub channel 2 of mobile station 2.

Manual operation:  
See "Channel State - MS" on page 75

```[:SOURce<hw>]:BB:C2K:MSTation<st>:CHANnel<ch>:TYPE?
```

The command queries the channel type. The channel type depends on the selected operating mode and, for the sub channels of the traffic channel, from the selected radio configuration.

Return values:
- **<Type>**
  - R-PICH
  - R-ACH
  - R-EACH
  - R-CCCH
  - R-DCCH
  - R-FCH
  - R-SCCH
  - R-SCH1
  - R-SCH2

**Example:**
```
BB:C2K:MST2:CHAN2:TYPE?
```
queries type of channel 2.

Response: **R-SCCH**  
channel 2 is a Supplemental Control Channel.

**Usage:**  
Query only

Manual operation:  
See "Channel Type - MS" on page 73

```[:SOURce<hw>]:BB:C2K:MSTation<st>:CHANnel<ch>:WCODe?
```

Queries the Walsh code. The standard assigns a fixed walsh code to some channels.

For the traffic channels, this value is specific for the selected radio configuration.

Return values:
- **<WCode>**  
  - integer
  - Range: 0 to 255
  - *RST: 0
Example:  

```
BB:C2K:MST1:CHAN3:WCOD?
```

Queries the Walsh code of channel 3 of mobile station 1.

Response: 3

The Walsh code is 3.

Usage:  
Query only

Manual operation:  
See "Walsh - MS" on page 74

[[:SOURce<hw>:]BB:C2K:MSTation<st>]:LCMask <LcMask>

Sets the mask of the Long Code Generator of the mobile station.

Parameters:

- `<LcMask>`: 42 bits
- *RST:* #H0

Example:

```
BB:C2K:MST1:LCM #H55
```

sets the Long Codes to #H55.

Manual operation:  
See "LC Mask (hex) - MS" on page 69

[[:SOURce<hw>:]BB:C2K:MSTation<st>]:MODE <Mode>

The command selects operating mode for the mobile station. The channel-specific parameters are set with commands SOUR:BB:C2K:MST<n>:CHANnel<n>:

Parameters:

- `<Mode>`: TRAFFic | ACCess | EACCess | CCONtrl

**TRAFFic**

The mobile station generates a single traffic channel. A traffic channel consists of up to eight sub channels depending on the selected radio configuration (R-FCH, R-SCCH, R-SCH, R-DCCH). This mode corresponds to the standard mode of a mobile station during voice and data transmission.

**ACCess**

The mobile station generates an access channel (R-ACH). This channel is needed to set up the connection between the mobile station and the base station.

**EACCess**

The mobile station generates an enhanced access channel (R-ACH) and a pilot channel (R-PICH).

**CCONtrol**

The mobile station generates a common control channel (R-ACH) and a pilot channel (R-PICH).

*RST:* TRAFFic

Example:

```
BB:C2K:MST1:MODE TRAF
```

Switches the mobile station into standard mode - voice and data transmission.
Manual operation: See "Operation Mode - MS" on page 68

[:SOURce<hw>]:BB:C2K:MSTation<st>:RCONfiguration <RConfiguration>
The command selects the radio configuration for the traffic channel.
The settings of the channel table parameters are specific for the selected radio configuration.
A separate set of settings of all channel table parameters for each radio configuration is provided. If the radio configuration is changed, the set of channel table values belonging to this RC is automatically activated.
Parameters:
<configuration> 1 | 2 | 3 | 4
*RST: 3
Example: BB:C2K:MST2:MODE TRAF
switches mobile station 2 into standard mode - voice and data transmission.
BB:C2K:MST2:RCON 3
selects radio configuration 3. With RC3, the traffic channel includes five sub channels.
Manual operation: See "Radio Configuration - MS" on page 68

[:SOURce<hw>]:BB:C2K:MSTation<st>:STATe <State>
The command activates and deactivates the specified mobile station.
Parameters:
<State> 0 | 1 | OFF | ON
*RST: OFF
Example: BB:C2K:MST2:STAT OFF
deactivates mobile station 2.
Manual operation: See "Base Station/Mobile Station State" on page 36

[:SOURce<hw>]:BB:C2K:MSTation<st>:TPC:DATA <Data>
Sets the data source for the power control bits of the traffic channels.
Parameters:
<Data> ZERO | ONE | PATTern | DLIS|t
DLIS|t
A data list is used. The data list is selected with the command [:SOURce<hw>]:BB:C2K:MSTation<st>:TPC:DATA:DS|ELect.
ZERO | ONE
Internal 0 and 1 data is used.
**PATTern**

Internal data is used. The bit pattern for the data is defined by the command [:SOURce<hw>]:BB:C2K:MSTation<st>:TPC:DATA:PATTern. The maximum length is 64 bits.

*RST: \#H0

Example:

BB:C2K:MST2:TPC:DATA PATT

Selects Pattern data source for the power control bits. The bit pattern is defined with the following command.


Defines the bit pattern.

**Manual operation:** See "Data Source (Power Control) - MS" on page 70


The command selects the data list for the DLIST data source selection.

The lists are stored as files with the fixed file extensions *.dm_iqd in a directory of the user's choice. The directory applicable to the following commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

**Parameters:**

<\texttt{DSelect}> <\texttt{data list name}>

Example:

BB:C2K:MST2:TPC:DATA DLIS

selects the DLIST data source.

MMEM:CDIR "/var/user/temp/Lists"

defines the directory for the data lists.


selects the file "cdma_ch4" as the data source. This file must be in specified directory and it must have the file extension *.dm_iqd.

**Manual operation:** See "Data Source (Power Control) - MS" on page 70


Sets the bit pattern for the PATTern selection.

**Parameters:**

<\texttt{Pattern}> numeric

*RST: \#H0

<\texttt{BitCount}> integer

Range: 1 to 64

*RST: 1

Example:


defines the bit pattern for the power control-bits.

**Manual operation:** See "Data Source (Power Control) - MS" on page 70
[:SOURce<hw>]:BB:C2K:MSTation<st>:TPC:MISuse <MisUse>

The command activates/deactivates the use of the power control data for controlling the mobile station output power. On the uplink, the power control bits are used exclusively for controlling the mobile station output power. Power control puncturing is not defined for controlling the base station power.

The bit pattern (see commands :BB:C2K:MSTation<n>:TPC...) of the power control bits w is used to control the channel power. A "1" leads to an increase of channel powers, a "0" to a reduction of channel powers. Channel power is limited to the range 0 dB to -80 dB. The step width of the change is defined with the command [:SOURce<hw>]:BB:C2K:MSTation<st>:TPC:PSTep.

Parameters:

<table>
<thead>
<tr>
<th>&lt;MisUse&gt;</th>
<th>0</th>
<th>1</th>
<th>OFF</th>
<th>ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>*RST:</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example:

BB:C2K:MST2:TPC:MIS ON
activates regulation of channel power for mobile station 2 via the power control bit pattern.
BB:C2K:MST2:TPC:PST 1 dB
sets the step width for the change of channel powers to 1 dB.

Manual operation: See "For Output Power Control - MS" on page 71

[:SOURce<hw>]:BB:C2K:MSTation<st>:TPC:PSTep <PStep>

The command defines the step width for the change of channel powers in the case of "mis-" use of the power control bits.

Parameters:

<table>
<thead>
<tr>
<th>&lt;PStep&gt;</th>
<th>float</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range:</td>
<td>-10 to 10 dB</td>
</tr>
<tr>
<td>Increment:</td>
<td>0.01 dB</td>
</tr>
<tr>
<td>*RST:</td>
<td>0 dB</td>
</tr>
</tbody>
</table>

Example:

BB:C2K:MST2:TPC:PST 0.1 dB
sets the step width for the change of channel powers to 1 dB.

Manual operation: See "Power Step - MS" on page 71

[:SOURce<hw>]:BB:C2K:MSTation<st>:TPC:READ <Read>

The command sets the read out mode for the bit pattern of the power control bits.

The bit pattern is defined with the commands :BB:C2K:MST<n>:TPC....

Parameters:

<table>
<thead>
<tr>
<th>&lt;Read&gt;</th>
<th>CONTinuous</th>
<th>S0A</th>
<th>S1A</th>
<th>S01A</th>
<th>S10A</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTinuous</td>
<td>The bit pattern is used cyclically.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
S0A
The bit pattern is used once, then the power control bit sequence continues with 0 bits.

S1A
The bit pattern is used once, then the power control bit sequence continues with 1 bit.

S01A
The bit pattern is used once and then the power control bit sequence is continued with 0 bits and 1 bit alternately.

S10A
The bit pattern is used once and then the power control bit sequence is continued with 1 bit and 0 bits alternately.

*RST: CONTinuous

Example: BB: C2K: MST2: TFC: READ S0A
The bit pattern is used once, after which a 0 sequence is generated (applies to R-DCCCH of mobile station 2).

Manual operation: See "Read Out Mode (Power Control) - MS" on page 70
List of Commands

[:SOURce]:BB:C2K:VERSion?..........................................................87
[:SOURce>:BB:C2K:BSTation:PRESet.............................................104
[:SOURce>:BB:C2K:BSTation:SYNC:Number.................................104
[:SOURce>:BB:C2K:BSTation:SYNC:NID.........................................105
[:SOURce>:BB:C2K:BSTation:SYNC:PREV..................................105
[:SOURce>:BB:C2K:BSTation:SYNC:SID..................................106
[:SOURce>:BB:C2K:BSTation<st>:CGroup<di0>:OFFset<ch>:CCODing:CRC?.........................107
[:SOURce>:BB:C2K:BSTation<st>:CGroup<di0>:OFFset<ch>:CCODing:SREPetition?..............110
[:SOURce>:BB:C2K:BSTation<st>:CGroup<di0>:OFFset<ch>:DATA........................................111
[:SOURce>:BB:C2K:BSTation<st>:CGroup<di0>:OFFset<ch>:FLENgth...........................................113
[:SOURce>:BB:C2K:BSTation<st>:CGroup<di0>:OFFset<ch>:LCMask...........................................113
[:SOURce>:BB:C2K:BSTation<st>:CGroup<di0>:OFFset<ch>:POWER............................................114
[:SOURce>:BB:C2K:BSTation<st>:CGroup<di0>:OFFset<ch>:QWCode:STATe..................................114
[:SOURce>:BB:C2K:BSTation<st>:CGroup<di0>:OFFset<ch>:STATe........................................115
[:SOURce>:BB:C2K:BSTation<st>:CGroup<di0>:OFFset<ch>:TPC:MiSuSe........................................117
[:SOURce>:BB:C2K:BSTation<st>:CGroup<di0>:OFFset<ch>:WCODe........................................120
[:SOURce>:BB:C2K:BSTation<st>:CGroup<di0>:OFFset<ch>:WLENgth?........................................120
[:SOURce>:BB:C2K:BSTation<st>:CGroup<di0>:RCONfiguration.............................................121
[:SOURce>:BB:C2K:BSTation<st>:DCONflict:MODE......................................121
[:SOURce>:BB:C2K:BSTation<st>:DCONflict:RSEolve..........................122
[:SOURce>:BB:C2K:BSTation<st>:DCONflict:STATe?........................122
[:SOURce>:BB:C2K:BSTation<st>:PDCannel:PINterval........................122
[:SOURce>:BB:C2K:BSTation<st>:PDCannel:PSETup......................................123
[:SOURce>:BB:C2K:BSTation<st>:PDCannel:WINDe..................................129
[:SOURce>:BB:C2K:BSTation<st>:PNOFFset....................................130
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>[:SOURce&lt;hw&gt;:BB:C2K:STation&lt;st&gt;:TPC:MIStUse]</td>
<td>143</td>
</tr>
<tr>
<td>[:SOURce&lt;hw&gt;:BB:C2K:POWer:ADJust]</td>
<td>84</td>
</tr>
<tr>
<td>[:SOURce&lt;hw&gt;:BB:C2K:POWer[:TOTal]?]</td>
<td>84</td>
</tr>
<tr>
<td>[:SOURce&lt;hw&gt;:BB:C2K:PPArameter:PCChannel[:STATe]]</td>
<td>99</td>
</tr>
<tr>
<td>[:SOURce&lt;hw&gt;:BB:C2K:PPArameter:PCChannel[:STATe]]</td>
<td>99</td>
</tr>
<tr>
<td>[:SOURce&lt;hw&gt;:BB:C2K:PPArameter:SCChannel[:STATe]]</td>
<td>99</td>
</tr>
<tr>
<td>[:SOURce&lt;hw&gt;:BB:C2K:PPArameter:TCChannel:COUNt]</td>
<td>100</td>
</tr>
<tr>
<td>[:SOURce&lt;hw&gt;:BB:C2K:PPArameter:TCChannel:DCChannel[:STATe]]</td>
<td>101</td>
</tr>
<tr>
<td>[:SOURce&lt;hw&gt;:BB:C2K:PPArameter:TCChannel:FCChannel[:STATe]]</td>
<td>101</td>
</tr>
<tr>
<td>[:SOURce&lt;hw&gt;:BB:C2K:PRESet]</td>
<td>84</td>
</tr>
<tr>
<td>[:SOURce&lt;hw&gt;:BB:C2K:SETTing:CATalog?]</td>
<td>85</td>
</tr>
<tr>
<td>[:SOURce&lt;hw&gt;:BB:C2K:SETTing:DELete]</td>
<td>85</td>
</tr>
<tr>
<td>[:SOURce&lt;hw&gt;:BB:C2K:SETTing:STORe]</td>
<td>86</td>
</tr>
<tr>
<td>[:SOURce&lt;hw&gt;:BB:C2K:SLEngh]</td>
<td>86</td>
</tr>
<tr>
<td>[:SOURce&lt;hw&gt;:BB:C2K:STATe]</td>
<td>86</td>
</tr>
<tr>
<td>[:SOURce&lt;hw&gt;:BB:C2K:TRIGger:EXECute]</td>
<td>93</td>
</tr>
<tr>
<td>[:SOURce&lt;hw&gt;:BB:C2K:TRIGger:RMODE?]</td>
<td>94</td>
</tr>
<tr>
<td>[:SOURce&lt;hw&gt;:BB:C2K:TRIGger:SLUnit]</td>
<td>95</td>
</tr>
<tr>
<td>[:SOURce&lt;hw&gt;:BB:C2K:TRIGger:SOURCE]</td>
<td>93</td>
</tr>
<tr>
<td>[:SOURce&lt;hw&gt;:BB:C2K:WAVeform:CREate]</td>
<td>87</td>
</tr>
<tr>
<td>[:SOURce&lt;hw&gt;:BB:C2K[:TRIGger]:SEQUence]</td>
<td>92</td>
</tr>
</tbody>
</table>
Symbols

(Mis-) use for output power control - BS .................................................. 57, 117
(Mis-) use for output power control - MS .................................................. 143

A

Accept - Copy ............................................................................................ 82
Accept - predefined settings .................................................................. 40
Accept - predefined settings .................................................................. 98
Access ........................................................................................................ 68
Additional MS ......................................................................................... 40, 134
Adjust total Power to 0 dB .................................................................. 36
Application cards ....................................................................................... 8
Application notes ....................................................................................... 28
Armed_Auto ............................................................................................... 27
Armed_Retrigger ......................................................................................... 27
Auto ........................................................................................................... 27

B

B x T ......................................................................................................... 76
Base station default values ........................................................................ 33
Baseband Clipping ..................................................................................... 77
Baseband filter ............................................................................................ 76, 88
Bit reversed ................................................................................................. 53, 121
Block interleaver - BS ............................................................................... 61
Block Interleaver - BS ............................................................................... 106
Brochures .................................................................................................... 8

C

CDMA channel number ........................................................................... 62
CDMA Channel Number - BS ................................................................. 104
CDMA Version .......................................................................................... 87
Channel Coding Mode - BS ....................................................................... 59
Channel Coding Mode - MS ....................................................................... 69
Channel number .......................................................................................... 44
Channel Number- MS ............................................................................... 72
Channel Power ........................................................................................... 48
Channel Power - MS .................................................................................. 74
Channel state .............................................................................................. 49
Channel state - MS .................................................................................... 75
Channel State - MS .................................................................................... 138
Channel Type .............................................................................................. 45
Channel Type - MS .................................................................................... 73, 139
Chip rate variation ...................................................................................... 76
Clipping Level .............................................................................................. 77, 90
Clipping Mode ............................................................................................ 78
Clipping state .............................................................................................. 77
Clock Source ................................................................................................ 32
Code domain ................................................................................................. 50
Code domain - BS ....................................................................................... 52
Code domain conflict .................................................................................. 49
Code domain conflict - BS ......................................................................... 50
Code Domain Conflict - BS ....................................................................... 122
Coder Type .................................................................................................. 59
Coder Type - BS .......................................................................................... 110
Common control .......................................................................................... 68
Conventions
  SCPI commands ......................................................................................... 80
  Convolution coder ...................................................................................... 59
  Convolution Coder - BS .......................................................................... 110

Copy Base Station ...................................................................................... 35, 82
Copy from Source ..................................................................................... 35, 82
Copy Mobile Station .................................................................................. 35, 82
CRC Length - BS ....................................................................................... 60
Crest factor ................................................................................................... 77
Crest factor - Clipping .................................................................................. 90
Crest Factor, desired range ......................................................................... 38
Cutoff Frequency factor ............................................................................. 77

D

Data pattern .................................................................................................. 48
MS ................................................................................................................. 75
Data Rate ...................................................................................................... 47
Data Rate - BS ............................................................................................. 112
Data Rate - MS ............................................................................................ 74, 137
Data Rate - predefined settings .................................................................. 39
Data Rate - Predefined Settings ................................................................ 100
Data sheets .................................................................................................... 8
Data source
  BS ............................................................................................................. 48
  MS ............................................................................................................. 75
  Power control .......................................................................................... 70
  Power Control .......................................................................................... 56
Default settings ........................................................................................... 24, 33
Default values MS ....................................................................................... 34
Delay
  Marker ...................................................................................................... 31
  Trigger ....................................................................................................... 29
Diversity Mode- BS ..................................................................................... 43, 131
Do Conf - BS ............................................................................................... 122
Documentation overview ............................................................................ 7
Downlink ....................................................................................................... 25

E

Effective Data Rate - BS ........................................................................... 61, 108
Enhanced access .......................................................................................... 68
Error Protection ........................................................................................... 59
Error Protection - BS .................................................................................. 110
External trigger
  Delay ........................................................................................................ 29

F

Filter parameter .......................................................................................... 76
Filter Type ..................................................................................................... 76, 88
Filtering, Clipping, ARB Settings ............................................................... 76
For output power control - MS ................................................................... 71
Frame Length ............................................................................................... 47
Frame Length - MS ....................................................................................... 73, 137
Frame Length - predefined settings .......................................................... 39

G

Generate
  Waveform file .......................................................................................... 25
Getting started ............................................................................................ 7

H

Hadamard .................................................................................................... 53, 121
Help ............................................................................................................. 7
**Index**

<table>
<thead>
<tr>
<th>Letter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>55, 69</td>
</tr>
<tr>
<td></td>
<td>25, 84</td>
</tr>
<tr>
<td></td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>38, 100</td>
</tr>
<tr>
<td></td>
<td>76, 88</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>25, 63</td>
</tr>
<tr>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>68, 141</td>
</tr>
<tr>
<td></td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>65, 123</td>
</tr>
<tr>
<td></td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>81</td>
</tr>
</tbody>
</table>

**I**

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/Q swap</td>
<td>79</td>
</tr>
<tr>
<td>I/Q-Swap</td>
<td>83</td>
</tr>
<tr>
<td>Installation</td>
<td>9</td>
</tr>
<tr>
<td>Instrument help</td>
<td>7</td>
</tr>
<tr>
<td>Instrument security procedures</td>
<td>8</td>
</tr>
<tr>
<td>Invert Q for correct Baseband Output</td>
<td>79</td>
</tr>
<tr>
<td>Invert Q for Correct Baseband Output</td>
<td>83</td>
</tr>
</tbody>
</table>

**L**

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC Mask</td>
<td>55, 69</td>
</tr>
<tr>
<td>LC Mask Step - additional MS</td>
<td>41</td>
</tr>
<tr>
<td>Link Direction</td>
<td>25, 84</td>
</tr>
</tbody>
</table>

**M**

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marker Delay</td>
<td>31</td>
</tr>
<tr>
<td>Marker Mode</td>
<td>30</td>
</tr>
<tr>
<td>Marker Period</td>
<td>30</td>
</tr>
<tr>
<td>Minimum protocol revision level</td>
<td>62</td>
</tr>
<tr>
<td>Mobile station default values</td>
<td>34</td>
</tr>
<tr>
<td>Modulation data</td>
<td>66</td>
</tr>
<tr>
<td>More parameters</td>
<td>48</td>
</tr>
<tr>
<td>BS</td>
<td>54</td>
</tr>
<tr>
<td>More Params F-PDCH</td>
<td>63</td>
</tr>
</tbody>
</table>

**N**

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network identification</td>
<td>62</td>
</tr>
<tr>
<td>Number of 32-Chip Walsh Channels - BS</td>
<td>66</td>
</tr>
<tr>
<td>Number of additional MS</td>
<td>41</td>
</tr>
<tr>
<td>Number of bits per Encoder Packet</td>
<td>66</td>
</tr>
<tr>
<td>Number of Slots per subpacket</td>
<td>66</td>
</tr>
<tr>
<td>Number of Supplemental Channels - Predef</td>
<td>39</td>
</tr>
<tr>
<td>Number of Traffic Channels - Predef</td>
<td>38, 100</td>
</tr>
<tr>
<td>Nyquist filter</td>
<td>76, 88</td>
</tr>
</tbody>
</table>

**O**

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON/OFF Ratio Marker</td>
<td>30</td>
</tr>
<tr>
<td>Open source acknowledgment (OSA)</td>
<td>8</td>
</tr>
<tr>
<td>Operation mode</td>
<td>68</td>
</tr>
<tr>
<td>Order code domain - BS</td>
<td>53</td>
</tr>
<tr>
<td>Order Code Domain - BS</td>
<td>121</td>
</tr>
</tbody>
</table>

**P**

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet interval - BS</td>
<td>64</td>
</tr>
<tr>
<td>Packet Interval - BS</td>
<td>122</td>
</tr>
<tr>
<td>Packet Setup - BS</td>
<td>64</td>
</tr>
<tr>
<td>PN Offset - BS</td>
<td>43, 130</td>
</tr>
<tr>
<td>Power Offset - additional MS</td>
<td>41</td>
</tr>
<tr>
<td>Power Offset - Additional MS</td>
<td>133</td>
</tr>
<tr>
<td>Power step - BS</td>
<td>58</td>
</tr>
<tr>
<td>Power Step - BS</td>
<td>118</td>
</tr>
<tr>
<td>Power step - MS</td>
<td>71</td>
</tr>
<tr>
<td>Power Step - MS</td>
<td>143</td>
</tr>
<tr>
<td>Power/DB</td>
<td>48</td>
</tr>
<tr>
<td>Power/DB - MS</td>
<td>74</td>
</tr>
<tr>
<td>Protocol revision level</td>
<td>62</td>
</tr>
<tr>
<td>Protocol Revision Level - BS</td>
<td>105</td>
</tr>
</tbody>
</table>

**Q**

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quasi Orthogonal Walsh Set - BS</td>
<td>43, 130</td>
</tr>
<tr>
<td>Quasi-orthogonal Walsh code</td>
<td>48</td>
</tr>
</tbody>
</table>

**R**

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio configuration</td>
<td>37</td>
</tr>
<tr>
<td>Radio Configuration - MS</td>
<td>46</td>
</tr>
<tr>
<td>Radio Configuration - MS</td>
<td>68, 141</td>
</tr>
<tr>
<td>Raised cosine filter</td>
<td>76</td>
</tr>
<tr>
<td>see Cosine filter</td>
<td>76</td>
</tr>
<tr>
<td>Read out mode</td>
<td>57</td>
</tr>
<tr>
<td>Read out mode - MS</td>
<td>70</td>
</tr>
<tr>
<td>Release notes</td>
<td>8</td>
</tr>
<tr>
<td>Reset all Base Stations</td>
<td>33</td>
</tr>
<tr>
<td>Reset all Mobile Stations</td>
<td>34</td>
</tr>
<tr>
<td>Resulting Walsh code for subpacket - BS</td>
<td>67</td>
</tr>
<tr>
<td>Resulting Walsh Code for Subpacket - BS</td>
<td>129</td>
</tr>
<tr>
<td>Retrigger</td>
<td>27</td>
</tr>
<tr>
<td>Roll Off</td>
<td>76</td>
</tr>
<tr>
<td>Root raised cosine filter</td>
<td>76</td>
</tr>
<tr>
<td>see Root Cosine</td>
<td>76</td>
</tr>
<tr>
<td>RRC filter</td>
<td>76</td>
</tr>
<tr>
<td>see Root Cosine filter</td>
<td>76</td>
</tr>
</tbody>
</table>

**S**

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety instructions</td>
<td>8</td>
</tr>
<tr>
<td>Same Packet Setup - BS</td>
<td>64</td>
</tr>
<tr>
<td>Save/Recall</td>
<td>25</td>
</tr>
<tr>
<td>CDMA2000</td>
<td>36</td>
</tr>
<tr>
<td>Select Base Station</td>
<td>36</td>
</tr>
<tr>
<td>Select Mobile Station</td>
<td>36</td>
</tr>
<tr>
<td>Sequence Length (ARB)</td>
<td>78</td>
</tr>
<tr>
<td>Service manual</td>
<td>7</td>
</tr>
<tr>
<td>Set to default</td>
<td>24</td>
</tr>
<tr>
<td>Signal duration unit</td>
<td>27</td>
</tr>
<tr>
<td>Signal generation status</td>
<td>27</td>
</tr>
<tr>
<td>Single</td>
<td>27</td>
</tr>
<tr>
<td>Source bits / Frame - BS</td>
<td>60</td>
</tr>
<tr>
<td>Spread - MS</td>
<td>74</td>
</tr>
<tr>
<td>Spreading code number</td>
<td>48</td>
</tr>
<tr>
<td>Spreading Rate</td>
<td>25, 63</td>
</tr>
<tr>
<td>Standard settings</td>
<td>24</td>
</tr>
<tr>
<td>State</td>
<td>91</td>
</tr>
<tr>
<td>Clipping</td>
<td></td>
</tr>
<tr>
<td>State - BS</td>
<td>130</td>
</tr>
<tr>
<td>State - MS</td>
<td>68, 141</td>
</tr>
<tr>
<td>Subpacket #</td>
<td>65</td>
</tr>
<tr>
<td>Subpacket Data Rate - BS</td>
<td>66</td>
</tr>
<tr>
<td>Subpacket ID - BS</td>
<td>65, 123</td>
</tr>
<tr>
<td>Subpacket state - BS</td>
<td>65</td>
</tr>
<tr>
<td>Subpacket State - BS</td>
<td>128</td>
</tr>
<tr>
<td>Symbol puncture - BS</td>
<td>60</td>
</tr>
<tr>
<td>Symbol Puncture - BS</td>
<td>109</td>
</tr>
<tr>
<td>Symbol repetition - BS</td>
<td>60</td>
</tr>
<tr>
<td>System identification</td>
<td>62</td>
</tr>
<tr>
<td>System Identification - BS</td>
<td>106</td>
</tr>
</tbody>
</table>

**T**

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Delay - BS</td>
<td>42</td>
</tr>
<tr>
<td>Time delay step - additional MS</td>
<td>41</td>
</tr>
<tr>
<td>Time Slot Offset - BS</td>
<td>65</td>
</tr>
<tr>
<td>To destination</td>
<td>35</td>
</tr>
<tr>
<td>To Destination</td>
<td>81</td>
</tr>
</tbody>
</table>
Index

Total Power ................................................................. 36, 84
Traffic ................................................................................ 68
Transmission direction ................................................ 25, 84
Transmit Diversity - BS ......................................................42
Transmit Diversity Mode - BS ............................................. 43, 131
Trigger
  Sync. output ................................................................ 28
  Trigger delay ............................................................... 29
  Trigger mode ................................................................ 27
  Trigger signal duration ................................................... 27
  Trigger source ............................................................. 28
Turbo coder ........................................................................ 59
Turbo Coder - BS ............................................................ 110

U

Uplink ................................................................. 25
Use Dedicated Control (F-DCCH) - Predef ....................... 39
Use Fundamental (F-FCH) - Predef .................................. 39
Use paging channel (F-PCH) - Predef .............................. 38
Use Paging Channel (F-PCH) - Predef .............................. 99
Use pilot (F-PICH) - Predef .............................................. 37
Use Pilot (F-Pich) - Predef ................................................ 99
Use Sync (F-Sync) - Predef ............................................... 38
User manual ................................................................. 7
User Period ................................................................. 30

V

Version ........................................................................ 25, 87

W

Walsh - MS ................................................................. 74
Walsh code ................................................................. 48
Walsh code column index - BS ....................................... 64
Walsh Code Column Index - BS ...................................... 129
Walsh Code Offset ........................................................ 81
Walsh Length - BS ........................................................ 55
Waveform file
  Create ........................................................................ 25
White papers ............................................................... 8