R&S[®]SMW-K68 TETRA Release 2 User Manual

1175681002 Version 18

Make ideas real

This document describes the following software options:

• R&S[®]SMW-K68 TETRA Release 2 (1413.4439.xx)

This manual describes firmware version FW 5.30.047.xx and later of the R&S®SMW200A.

© 2023 Rohde & Schwarz Muehldorfstr. 15, 81671 Muenchen, Germany Phone: +49 89 41 29 - 0 Email: info@rohde-schwarz.com Internet: www.rohde-schwarz.com Subject to change – data without tolerance limits is not binding. R&S[®] is a registered trademark of Rohde & Schwarz GmbH & Co. KG. Trade names are trademarks of the owners.

1175.6810.02 | Version 18 | R&S®SMW-K68

The following abbreviations are used throughout this manual: R&S[®]SMW200A is abbreviated as R&S SMW, R&S[®]WinIQSIM2[™] is abbreviated as R&S WinIQSIM2; the license types 02/03/07/11/13/16/12 are abbreviated as xx.

Contents

1	Welcome to the TETRA2 digital standard	5
1.1	Accessing the TETRA dialog	5
1.2	What's new	6
1.3	Documentation overview	6
1.3.1	Getting started manual	6
1.3.2	User manuals and help	6
1.3.3	Tutorials	7
1.3.4	Service manual	7
1.3.5	Instrument security procedures	7
1.3.6	Printed safety instructions	7
1.3.7	Data sheets and brochures	7
1.3.8	Release notes and open source acknowledgment (OSA)	7
1.3.9	Application notes, application cards, white papers, etc	8
1.3.10	Videos	
1.4	Scope	8
1.5	Notes on screenshots	8
2	Required options	10
2	Required options	10
2 3	Required options TETRA2 configuration and settings	10
2 3 3.1	Required options TETRA2 configuration and settings General settings	10
2 3 3.1 3.2	Required options TETRA2 configuration and settings General settings Trigger settings	10
2 3 3.1 3.2 3.3	Required options TETRA2 configuration and settings General settings Trigger settings Marker settings	10 11 11
2 3 3.1 3.2 3.3 3.4 3.5	Required options TETRA2 configuration and settings General settings Trigger settings Marker settings Clock settings	10 11
2 3 3.1 3.2 3.3 3.4 3.5 3.6	Required options TETRA2 configuration and settings General settings Trigger settings Marker settings Clock settings Local and global connectors settings Frame configuration settings	
2 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7	Required options TETRA2 configuration and settings General settings Trigger settings Marker settings Clock settings Local and global connectors settings Frame configuration settings	
2 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	Required options TETRA2 configuration and settings General settings Trigger settings Marker settings Clock settings Local and global connectors settings Frame configuration settings Burst editor	
2 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.8 1	Required options TETRA2 configuration and settings General settings Trigger settings Marker settings Clock settings Local and global connectors settings Frame configuration settings Burst editor BSCH / BNCH/T	
2 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.8.1 3.8.2	Required options TETRA2 configuration and settings General settings Trigger settings Marker settings Clock settings Local and global connectors settings Frame configuration settings Burst editor BSCH / BNCH/T TETRA frequency Contents settings	
2 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.8.1 3.8.2 3.8.2	Required options. TETRA2 configuration and settings. General settings. Trigger settings. Marker settings. Clock settings. Local and global connectors settings. Frame configuration settings. Burst editor. BSCH / BNCH/T. TETRA frequency. Contents settings.	
2 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.8.1 3.8.1 3.8.2 3.8.3	Required options. TETRA2 configuration and settings. General settings. Trigger settings. Marker settings. Clock settings. Local and global connectors settings. Frame configuration settings. Burst editor. BSCH / BNCH/T. TETRA frequency. Contents settings. Scrambling.	
2 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.8.1 3.8.2 3.8.3 3.8.3 3.9 2.0.4	Required options. TETRA2 configuration and settings. General settings. General settings. Trigger settings. Marker settings. Clock settings. Local and global connectors settings. Frame configuration settings. Burst editor. BSCH / BNCH/T. TETRA frequency. Contents settings. Scrambling. Filter / clipping settings.	

3.9.2	Modulation settings	
3.9.3	Clipping settings	41
3.10	Power ramp control	42
3.10.1	Ramp control	43
3.10.2	Slot attenuations	44
4	Remote control commands	46
4.1	General commands	47
4.2	Power ramp commands	53
4.3	Slot configuration commands	55
4.4	BSCH / BNCH/T commands	63
4.5	Filter/clipping commands	71
4.6	Trigger commands	73
4.7	Marker commands	80
4.8	Clock commands	83
	List of commands	85
	Index	88

1 Welcome to the TETRA2 digital standard

The R&S SMW-K68 is a firmware application that adds functionality to generate signals in accordance with the standard Terrestrial Trunked Radio Release 2 (TETRA2).

The R&S SMW-K68 main features:

- Generating of a signal in accordance with ETSI EN 300 392-2.
- The TETRA frame (bit stream) is generated according to the selected burst type, i.e. control burst (CB), normal burst (NB) or synchronization burst (SB).
- The frames are generated for the uplink (mobile station [MS] transmitting) or the downlink (base station [BS] transmitting).
- The channel types AACH, BSCH, BNCH, TCH, STCH, SCH as well as the TETRA Release 2 specific channels like SCH-Q, etc. are generated.
- Channel coding including scrambling with system code, base color code, mobile country code and mobile network code are performed for all channels.
- Frame repetition can be selected via sequence length.
- The T1 test signal is generated for the V+D (voice and data) test on MS and BS DUTs.
- Test channel types can be set for the downlink and for the uplink.
- The bit stream can be generated either from pseudo-random sequences (CCITT 0.153) or from user-selectable sequences.
- The R&S SMW calculates the appropriate TETRA2 T1, T2, T3 and T4 signal according to the specification.
- Additionally, user-defined test signal can be generated.

This user manual contains a description of the functionality that the application provides, including remote control operation.

All functions not discussed in this manual are the same as in the base unit and are described in the R&S SMW user manual. The latest version is available at:

www.rohde-schwarz.com/manual/SMW200A

Installation

You can find detailed installation instructions in the delivery of the option or in the R&S SMW service manual.

1.1 Accessing the TETRA dialog

To open the dialog with TETRA settings

▶ In the block diagram of the R&S SMW, select "Baseband" > "TETRA".

A dialog box opens that displays the provided general settings.

The signal generation is not started immediately. To start signal generation with the default settings, select "State" > "On".

1.2 What's new

This manual describes firmware version FW 5.30.047.xx and later of the R&S[®]SMW200A.

Compared to the previous version, it provides the new features listed below:

- Time-based triggering, see "Time Based Trigger" on page 18 and "Trigger Time" on page 18.
- Editorial changes

1.3 Documentation overview

This section provides an overview of the R&S SMW user documentation. Unless specified otherwise, you find the documents at:

www.rohde-schwarz.com/manual/smw200a

1.3.1 Getting started manual

Introduces the R&S SMW and describes how to set up and start working with the product. Includes basic operations, typical measurement examples, and general information, e.g. safety instructions, etc. A printed version is delivered with the instrument.

1.3.2 User manuals and help

Separate manuals for the base unit and the software options are provided for download:

Base unit manual

Contains the description of all instrument modes and functions. It also provides an introduction to remote control, a complete description of the remote control commands with programming examples, and information on maintenance, instrument interfaces and error messages. Includes the contents of the getting started manual.

 Software option manual Contains the description of the specific functions of an option. Basic information on operating the R&S SMW is not included.

The contents of the user manuals are available as help in the R&S SMW. The help offers quick, context-sensitive access to the complete information for the base unit and the software options.

All user manuals are also available for download or for immediate display on the Internet.

1.3.3 Tutorials

The R&S SMW provides interactive examples and demonstrations on operating the instrument in form of tutorials. A set of tutorials is available directly on the instrument.

1.3.4 Service manual

Describes the performance test for checking compliance with rated specifications, firmware update, troubleshooting, adjustments, installing options and maintenance.

The service manual is available for registered users on the global Rohde & Schwarz information system (GLORIS):

https://gloris.rohde-schwarz.com

1.3.5 Instrument security procedures

Deals with security issues when working with the R&S SMW in secure areas. It is available for download on the internet.

1.3.6 Printed safety instructions

Provides safety information in many languages. The printed document is delivered with the product.

1.3.7 Data sheets and brochures

The data sheet contains the technical specifications of the R&S SMW. It also lists the options and their order numbers and optional accessories.

The brochure provides an overview of the instrument and deals with the specific characteristics.

See www.rohde-schwarz.com/brochure-datasheet/smw200a

1.3.8 Release notes and open source acknowledgment (OSA)

The release notes list new features, improvements and known issues of the current firmware version, and describe the firmware installation.

The software makes use of several valuable open source software packages. An opensource acknowledgment document provides verbatim license texts of the used open source software.

Notes on screenshots

See www.rohde-schwarz.com/firmware/smw200a

1.3.9 Application notes, application cards, white papers, etc.

These documents deal with special applications or background information on particular topics.

See www.rohde-schwarz.com/application/smw200a and www.rohde-schwarz.com/ manual/smw200a

1.3.10 Videos

Find various videos on Rohde & Schwarz products and test and measurement topics on YouTube: https://www.youtube.com/@RohdeundSchwarz

On the menu bar, search for your product to find related videos.

Figure 1-1: Product search on YouTube

1.4 Scope

Tasks (in manual or remote operation) that are also performed in the base unit in the same way are not described here.

In particular, it includes:

- Managing settings and data lists, like saving and loading settings, creating and accessing data lists, or accessing files in a particular directory.
- Information on regular trigger, marker and clock signals and filter settings, if appropriate.
- General instrument configuration, such as checking the system configuration, configuring networks and remote operation
- Using the common status registers

For a description of such tasks, see the R&S SMW user manual.

1.5 Notes on screenshots

When describing the functions of the product, we use sample screenshots. These screenshots are meant to illustrate as many as possible of the provided functions and

possible interdependencies between parameters. The shown values may not represent realistic usage scenarios.

The screenshots usually show a fully equipped product, that is: with all options installed. Thus, some functions shown in the screenshots may not be available in your particular product configuration.

2 Required options

The basic equipment layout for generating TETRA Release 2 signals includes the:

- Standard or wideband Baseband Generator (R&S SMW-B10/-B9)
- Baseband main module (R&S SMW-B13) or wideband baseband main module (R&S SMW-B13XT)
- Frequency option (e.g. R&S SMW-B1003)
- Digital standard TETRA release 2 (R&S SMW-K68)

You can generate signals via play-back of waveform files at the signal generator. To create the waveform file using R&S WinIQSIM2, you do not need a specific option.

To play back the waveform file at the signal generator, you have two options:

- Install the R&S WinIQSIM2 option of the digital standard, e.g. R&S SMW-K255 for playing LTE waveforms
- If supported, install the real-time option of the digital standard, e.g. R&S SMW-K55 for playing LTE waveforms

For more information, see data sheet.

3 TETRA2 configuration and settings

Access:

► Select "Baseband" > "TETRA".

The remote commands required to define these settings are described in Chapter 4, "Remote control commands", on page 46.

Contents

•	General settings	11
•	Trigger settings	
•	Marker settings	21
•	Clock settings	23
•	Local and global connectors settings	24
•	Frame configuration settings	25
•	Burst editor	25
•	BSCH / BNCH/T	
•	Filter / clipping settings	
•	Power ramp control	

3.1 General settings

Access:

Select "Baseband > TETRA > General".

This dialog provides access to the default, the "Save/Recall" settings and provides test mode, channel type and link direction selection. The selected test mode and link direction determine the available parameters.

General settings

Tetra A		_ ×
• General Stopy Trigger In Retrig	Marker Clock Internal Frame Configurati	ion
0	Set Defa	To Generate Save Generate Waveform
Test Mode	Li	ink Direction
	T1	Downlink / Forward
Channel Type		
	0	
Sequence Length		
	1 Multiframe(s)	
BSCH / BNCH/T		
Filter/Clipping	Root Cosine / Clip Off	Power Ramp/Slot Attenuations Cosine / 2 / 0 / 0 sym

Settings:

State	
Set to Default	
Save/Recall	
Generate Waveform	
Test Mode	
Link Direction	
Channel Type	
Modulation Type	
Downlink Burst Type	
Sequence Length	
BSCH / BNCH/T	
Filter / Clipping	
Power Ramp/Slot Attenuations	

State

Enables or disables the TETRA standard.

Activates the standard and deactivates all the other digital standards and digital modulation modes in the same path.

Remote command:

[:SOURce<hw>]:BB:TETRa:STATe on page 51

Set to Default

Calls the default settings. The values of the main parameters are listed in the following table.

Parameter	Value
State	Not affected by "Set to Default"
Test Mode	Τ1

Parameter	Value
Link Direction	Downlink / Forward
Channel Type	0
Sequence Length	1 Multiframe
Power Ramp/Slot Attenuation	cosine/ 2 / 0 / 0sym
Filter/Clipping	Root Cosine / clipping Off
Trigger/Marker	Auto/Int
Clock	Internal

[:SOURce<hw>]:BB:TETRa:PRESet on page 49

Save/Recall

Accesses the "Save/Recall" dialog, that is the standard instrument function for saving and recalling the complete dialog-related settings in a file. The provided navigation possibilities in the dialog are self-explanatory.

The settings are saved in a file with predefined extension. You can define the filename and the directory, in that you want to save the file.

See also, chapter "File and Data Management" in the R&S SMW user manual.

Remote command:

[:SOURce<hw>]:BB:TETRa:SETTing:LOAD on page 50

[:SOURce<hw>]:BB:TETRa:SETTing:STORe on page 51

[:SOURce<hw>]:BB:TETRa:SETTing:CATalog? on page 50

[:SOURce<hw>]:BB:TETRa:SETTing:DELete on page 50

Generate Waveform

With enabled signal generation, triggers the instrument to save the current settings of an arbitrary waveform signal in a waveform file with predefined extension *.wv. You can define the filename and the directory, in that you want to save the file.

Using the ARB modulation source, you can play back waveform files and/or process the file to generate multi-carrier or multi-segment signals.

Remote command:

[:SOURce<hw>]:BB:TETRa:WAVeform:CREate on page 52

Test Mode

Selects the test mode.

Several settings depend on the selected test model.

"T1"	Test signal T1 (TETRA wanted signal, phase modulated) This test mode enables the generation of test signals that comply with the TETRA air interface multiframe, frame and slot structure. The T1 test signal is generated according to EN 300 394-1V3.1.1 and is intended to be the wanted signal transmitted by the test system dur- ing frames 1 to 17 in all receiver tests. The signal is pi/4-DQPSK or pi/8-D8PSK modulated. Frame 18 trans- mits information for control purposes. To enable configuration of the T1 signal for different receiver tests, the channel type for the "T1" signal is user-selectable. Channel types 0 to 4, 21, 22 and 25 are available in the Downlink/Forward "Link Direction" and channel types 7 to 11, 21, 23 and 24 for the Uplink/ Reverse direction. The burst types Uplink/Reverse and Downlink/Forward are derived from the channel types. The instrument generates the Tx data for
	complete multiframes for the V+D service (voice and data). The con- tents of data fields are automatically inserted according to the burst type. The control block (cb), blocks $1 + 2$ (bk), the synchronization block (sb) and the broadcast block (bb) for test signal T1 are gener- ated according to the frame number and the channel type.
"T4"	Test signal T4 (TETRA wanted signal, QAM modulated) The test signal T4 comply with the TETRA air interface multiframe, frame and slot structure. The T4 test signal is intended to be the wan- ted signal transmitted by the test system during frames 1 to 17 in all receiver tests. Except form frame 18, the signal is 4-QAM, 16-QAM or 64-QAM modulated. Frame 18 transmits information for control pur- poses and is QAM and phase modulated (QAM + pi/4-DQPSK); the frame is generated according to EN 300 394-1.
"User Defined"	Enables the generation of user-defined test signal.
"T2"	Test signal T2 (TETRA interfere) The T2 test signal is phase or QAM modulated, depending on the selected Modulation Type.
"T3"	Test signal T3 (unmodulated interferer) The T3 test signal is an unmodulated continuous sinusoidal out-of- band interfering signal.

[:SOURce<hw>]:BB:TETRa:TMODe on page 52

Link Direction

Selects the transmission direction.

This parameter determines the available "Channel Types".

"Downlink/	The transmission direction selected is from the base station (BS) to
Forward"	the terminal (MS). The signal corresponds to that of a BS.
"Uplink/	The transmission direction selected is from MS to the BS. The signal
Reverse"	corresponds to that of a terminal.

Remote command:

[:SOURce<hw>]:BB:TETRa:LDIRection on page 49

General settings

Channel Type

(for "Test Model" set to T1 or T4)

Determines the channel type.

Remote command:

[:SOURce<hw>]:BB:TETRa:CTYPe on page 48

Modulation Type

(for "Test Model" set to "User Defined" or "T2")

Determines the modulation type, "Phase" or "QAM."

"Phase" The T2 test signal is a pi/4-DQPSK modulated continuous radio signal.

"QAM" The T2 test signal is 4-QAM, 16-QAM or 64-QAM modulated and spans a bandwidth of 25kHz, 50kHz, 100kHz or 150kHz.

Remote command:

[:SOURce<hw>]:BB:TETRa:MTYPe on page 49

Downlink Burst Type

(in Downlink "Link Direction" and for "Test Model" set to "T2" or "User Defined")

Determines whether a discontinuous or continuous downlink burst type is used.

Remote command:

[:SOURce<hw>]:BB:TETRa:DBTYpe on page 48

Sequence Length

Selects the sequence length of the arbitrary waveform file in the number of multiframes. One multiframe is the minimum sequence length for a T1 signal.

Remote command: [:SOURce<hw>]:BB:TETRa:SLENgth on page 51

BSCH / BNCH/T

Accesses the "BSCH / BNCH/T" dialog, used to configure the frequency settings, the scrambling code and the content of the "Broadcast Synchronization Channel (BSCH)" and the "Broadcast Network Channel (BNCH/T)", see Chapter 3.8, "BSCH / BNCH/T", on page 30.

Filter / Clipping

Access to the dialog for setting baseband filtering, clipping and the sequence length of the arbitrary waveform component, see Chapter 3.9, "Filter / clipping settings", on page 38.

Power Ramp/Slot Attenuations

Calls the "Power Ramp Control" dialog. This dialog is used to set the power ramping parameters and for setting values for the level attenuation in dB (see Chapter 3.10, "Power ramp control", on page 42).

The currently selected ramp function and ramp time are displayed.

3.2 Trigger settings

Access:

Select "Baseband" > "TETRA" > "Trigger In".

Tetra A	_	×
C General Stor Auto Marker Clock Frame Configuration		
Mode		

This tab provides settings to select and configure the trigger, like trigger source, trigger mode and trigger delays, and to arm or trigger an internal trigger manually. The header of the tab displays the status of the trigger signal and trigger mode. As in the tabs "Marker" and "Clock", this tab provides also access to the settings of the related connectors.

Routing and activating a trigger signal

- 1. Define the effect of a trigger event and the trigger signal source.
 - a) Select "Trigger In" > "Mode".
 - b) Select "Trigger In" > "Source".
- 2. For external trigger signals, define the connector for signal input. See Chapter 3.5, "Local and global connectors settings", on page 24.

You can map trigger signals to one or more USER x or T/M connectors.

Local and global connectors settings allow you to configure the signal mapping, the polarity, the trigger threshold and the input impedance of the input connectors.

3. Activate baseband signal generation. In the block diagram, set "Baseband" > "On".

The R&S SMW starts baseband signal generation after the configured trigger event.

About baseband trigger signals

This section focuses on the available settings.

For information on how these settings affect the signal, refer to section "Basics on ..." in the R&S SMW user manual.

Settings:

Trigger settings common to all basebands	17
Mode	17
Signal Duration Unit	17
Signal Duration	18
Running/Stopped	18
Time Based Trigger	
Trigger Time.	
Trigger Time	18

Arm	
Execute Trigger	19
Source	19
Sync. Output to External Trigger/Sync. Output to Trigger	19
External Inhibit/Trigger Inhibit	20
External Delay/Trigger Delay	

Trigger settings common to all basebands

To enable simultaneous signal generation in all basebands, the R&S SMW couples the trigger settings in the available basebands in any instrument's configuration involving signal routing with signal addition. For example, in MIMO configuration, routing and summing of basebands or of streams.

The icon S indicates that common trigger settings are applied.

You can access and configure the common trigger source and trigger mode settings in any of the basebands. An arm or a restart trigger event applies to all basebands, too. You can still apply different delay to each of the triggers individually.

Mode

Selects trigger mode, i.e. determines the effect of a trigger event on the signal generation.

For more information, refer to chapter "Basics" in the R&S SMW user manual.

- "Auto"
 - The signal is generated continuously.
- "Retrigger"

The signal is generated continuously. A trigger event (internal or external) causes a restart.

"Armed Auto"

The signal is generated only when a trigger event occurs. Then the signal is generated continuously.

An "Arm" stops the signal generation. A subsequent trigger event (internal or external) causes a restart.

"Armed Retrigger"

The signal is generated only when a trigger event occurs. Then the signal is generated continuously. Every subsequent trigger event causes a restart.

An "Arm" stops signal generation. A subsequent trigger event (internal or external) causes a restart.

"Single"

The signal is generated only when a trigger event occurs. Then the signal is generated once to the length specified at "Signal Duration".

Every subsequent trigger event (internal or external) causes a restart.

Remote command:

[:SOURce<hw>]:BB:TETRa:TRIGger:SEQuence on page 78

Signal Duration Unit

Defines the unit for describing the length of the signal sequence to be output in the "Single" trigger mode.

Remote command:

[:SOURce<hw>]:BB:TETRa:TRIGger:SLUNit on page 76

Trigger settings

Signal Duration

Requires trigger "Mode" > "Single".

Enters the length of the trigger signal sequence.

Use this parameter, for example, for the following applications:

- To output the trigger signal partly.
- To output a predefined sequence of the trigger signal.

Remote command:

[:SOURce<hw>]:BB:TETRa:TRIGger:SLENgth on page 76

Running/Stopped

With enabled modulation, displays the status of signal generation for all trigger modes.

- "Running" The signal is generated; a trigger was (internally or externally) initiated in triggered mode.
- "Stopped"
 The signal is not generated and the instrument waits for a trigger event.

Remote command:

[:SOURce<hw>]:BB:TETRa:TRIGger:RMODe on page 76

Time Based Trigger

Requires trigger "Mode" > "Armed Auto"/"Single".

Activates time-based triggering with a fixed time reference.

The R&S SMW triggers signal generation when its operating system time ("Current Time") matches a specified time trigger ("Trigger Time"). As trigger source, you can use an internal trigger or an external global trigger.

How to: Chapter "Time-based triggering" in the R&S SMW user manual.

Remote command: [:SOURce<hw>]:BB:TETRa:TRIGger:TIME[:STATe] on page 79

Trigger Time

Requires trigger "Mode" > "Armed Auto"/"Single".

Sets date and time for a time-based trigger signal.

Set a trigger time that is later than the "Current Time". The current time is the operating system time of the R&S SMW. If you set an earlier trigger time than the current time, time-based triggering is not possible.

How to: Chapter "Time-based triggering" in the R&S SMW user manual.

"Date" Sets the date of the time-based trigger in format YYYY-MM-DD. Remote command: [:SOURce<hw>]:BB:TETRa:TRIGger:TIME:DATE on page 78

"Time" Sets the time of the time-based trigger in format hh:mm:ss.

Remote command:

[:SOURce<hw>]:BB:TETRa:TRIGger:TIME:TIME on page 79

Arm

Stops the signal generation until subsequent trigger event occurs.

[:SOURce<hw>]:BB:TETRa:TRIGger:ARM:EXECute on page 74

Execute Trigger

For internal trigger source, executes trigger manually.

Remote command:

[:SOURce<hw>]:BB:TETRa:TRIGger:EXECute on page 75

Source

The following sources of the trigger signal are available:

- "Internal"
 - The trigger event is executed manually by the "Execute Trigger".
- "Internal (Baseband A/B)" The trigger event is provided by the trigger signal from the other basebands.
 If common trigger settings are applied, this trigger source is disabled.
- "External Global Trigger" The trigger event is the active edge of an external trigger signal provided and configured at the USER x connectors.
- "External Local Trigger"

The trigger event is the active edge of an external trigger signal provided and configured at the local T/M/C connector.

With coupled trigger settings, the signal has to be provided at the T/M/C1/2/3 connectors.

• "External Local Clock"

The trigger event is the active edge of an external local clock signal provided and configured at the local T/M/C connector.

With coupled trigger settings, the signal has to be provided at the T/M/C1 connector.

How to: "Routing and activating a trigger signal" on page 16

Remote command:

[:SOURce<hw>]:BB:TETRa:TRIGger:SOURce on page 77

Sync. Output to External Trigger/Sync. Output to Trigger

Enables signal output synchronous to the trigger event.

• "On"

Corresponds to the default state of this parameter.

The signal calculation starts simultaneously with the trigger event. Because of the processing time of the instrument, the first samples are cut off and no signal is output. After elapsing of the internal processing time, the output signal is synchronous to the trigger event.

• "Off"

The signal output begins after elapsing of the processing time. Signal output starts with sample 0. The complete signal is output.

This mode is recommended for triggering of short signal sequences. Short sequences are sequences with signal duration comparable with the processing time of the instrument.

Remote command:

[:SOURce<hw>]:BB:TETRa:TRIGger[:EXTernal<ch>]:SYNChronize:OUTPut on page 75

External Inhibit/Trigger Inhibit

Applies for external trigger signal or trigger signal from the other path.

Sets the duration with that any following trigger event is suppressed. In "Retrigger" mode, for example, a new trigger event does not cause a restart of the signal generation until the specified inhibit duration does not expire.

For more information, see chapter "Basics" in the R&S SMW user manual.

Remote command:

```
[:SOURce<hw>]:BB:TETRa:TRIGger[:EXTernal]:INHibit on page 78
[:SOURce<hw>]:BB:TETRa:TRIGger:OBASeband:INHibit on page 76
```

External Delay/Trigger Delay

Delays the trigger event of the signal from:

- The external trigger source
- The other path
- The other basebands (internal trigger), if common trigger settings are used.

```
Use this setting to:
```

- Synchronize the instrument with the device under test (DUT) or other external devices
- Postpone the signal generation start in the basebands compared to each other

For more information, see chapter "Basics on ..." in the R&S SMW user manual. Remote command:

```
[:SOURce<hw>]:BB:TETRa:TRIGger[:EXTernal]:DELay on page 77
[:SOURce<hw>]:BB:TETRa:TRIGger:OBASeband:DELay on page 75
```

3.3 Marker settings

Access:

▶ Select "Baseband" > "TETRA" > "Marker".

Tetra A	_ ×
• General Stope Auto Clock Internal Frame Configuration	
Mode	Marker 1 Restart
Delay 0.000 Samples	Marker 2 Restart Marker 3
	Restart

This tab provides settings to select and configure the marker output signal including marker mode and marker delay.

Routing and activating a marker signal

- To define the signal shape of an individual marker signal "x", select "Marker" > "Marker x" > "Mode".
- Optionally, define the connector for signal output. See Chapter 3.5, "Local and global connectors settings", on page 24.
 You can map marker signals to one or more USER x or T/M connectors.
- Activate baseband signal generation. In the block diagram, set "Baseband" > "On". The R&S SMW adds the marker signal to the baseband signal. Also, R&S SMW outputs this signal at the configured USER x connector.

About marker output signals

This section focuses on the available settings.

For information on how these settings affect the signal, refer to section "Basics on ..." in the R&S SMW user manual.

Settings:

Mode	
Delay	23

Mode

Marker configuration for up to 3 markers. The settings are used to select the marker mode defining the shape and periodicity of the markers. The contents of the dialog change with the selected marker mode.

How to: "Routing and activating a marker signal" on page 21

"Restart" A marker signal is generated at the start of each ARB sequence.

"Slot Start" A marker signal is generated at the start of each slot.

"Frame Start" A marker signal is generated at the start of each frame.

"Multiframe Start"

A marker signal is generated at the start of each multiframe.

"Hyperframe Start"

A marker signal is generated at the start of each hyperframe.

"Pulse" A regular marker signal is generated. The frequency is derived by dividing the sample rate by the divider. The input box for the divider opens when "Pulse" is selected, and the resulting pulse frequency is displayed below it.

Remote command:

[:SOURce<hw>]:BB:TETRa:TRIGger:OUTPut<ch>:PULSe: DIVider on page 82 [:SOURce<hw>]:BB:TETRa:TRIGger:OUTPut<ch>:PULSe:

FREQuency? on page 83

"Pattern" A marker signal that is defined by a bit pattern is generated. The pattern has a maximum length of 64 bits and is defined in an input field which opens when pattern is selected.

Remote command:

[:SOURce<hw>]:BB:TETRa:TRIGger:OUTPut<ch>:PATTern on page 82

"On/Off Ratio" A regular marker signal that is defined by an On/Off ratio is generated. A period lasts one On and Off cycle.

The "On Time" and "Off Time" are each expressed as several samples and are set in an input field which opens when On/Off ratio is selected.

[:SOURce<hw>]:BB:TETRa:TRIGger:OUTPut<ch>:ONTime on page 82

[:SOURce<hw>]:BB:TETRa:TRIGger:OUTPut<ch>:OFFTime on page 82

Remote command:

[:SOURce<hw>]:BB:TETRa:TRIGger:OUTPut<ch>:MODE on page 81

Delay

Delays the marker signal at the marker output relative to the signal generation start. Variation of the parameter "Marker x" > "Delay" causes signal recalculation.

Remote command:

[:SOURce<hw>]:BB:TETRa:TRIGger:OUTPut<ch>:DELay on page 81

3.4 Clock settings

Access:

Select "Baseband" > "TETRA" > "Clock".

Tetra A			_	×
General Stop Trigger In Aarker	Clock Ext. Local Clock Frame Configuration	n		
Clock Source				
	External Local Clock			
Clock Mode	0			
	Sample			
Measured External Clock	0			

This tab provides settings to select and configure the clock signal, like the clock source and clock mode.

Defining the clock

- 1. Select "Clock" > "Source" to define the source of clock signal.
- For external clock signals, define the connector for signal input. See Chapter 3.5, "Local and global connectors settings", on page 24. You can map clock signals to one or more USER x or T/M connectors.

User Manual 1175.6810.02 – 18

Local and global connectors settings allow you to configure the signal mapping, the polarity, the trigger threshold and the input impedance of the input connectors.

3. Activate baseband signal generation. In the block diagram, set "Baseband" > "On".

The R&S SMW starts baseband signal generation with a symbol rate that equals the clock rate.

About clock signals

This section focuses on the available settings.

For information on how these settings affect the signal, refer to section "Basics on ..." in the R&S SMW user manual.

Settings:

Clock Source	24
Clock Mode	24
Measured External Clock	

Clock Source

Selects the clock source.

- "Internal" The instrument uses its internal clock reference.
- "External Local Clock" Option: R&S SMW-B10 The instrument expects an external clock reference at the local T/M/C connector.

How to: "Defining the clock" on page 23

Remote command:

[:SOURce<hw>]:BB:TETRa:CLOCk:SOURce on page 84

Clock Mode

Sets the type of externally supplied clock.

Remote command: [:SOURce<hw>]:BB:TETRa:CLOCk:MODE on page 83

Measured External Clock

Provided for permanent monitoring of the enabled and externally supplied clock signal.

Remote command: CLOCk:INPut:FREQuency?

3.5 Local and global connectors settings

Accesses a dialog to configure local connectors or global connectors.

The button is available in the following dialogs or tabs:

 "Trigger / Marker / Clock" dialog that is accessible via the "TMC" block in the block diagram. "Trigger In", "Marker" and "Clock" tabs that are accessible via the "Baseband" block in the block diagram.

See also chapter "Local and global connectors settings" in the user manual.

3.6 Frame configuration settings

Access:

1. Select "Baseband > Tetra > Frame Configuration".

Tetra A		_ ×
General Stork Trigger In Marker Clock	Frame Configuration	
Frame 1-17: Select Slot	Fram	e 18: Select Slot
1 2 3	4 1 2	3 4

The dialog displays the frames slots graphically.

2. Select the slot to for configuration.

The corresponding burst editor dialog opens, see Chapter 3.7, "Burst editor", on page 25.

3.7 Burst editor

Access:

▶ Select "Frame Configuration > Frame: Select Slot > Frame".

At the top of the dialog, the structure of the current burst type for the selected slot is displayed. Individual fields of the frame are color-coded:

Field	Color
Data, Fixed, Mixed, Stealing	white
White Training Sequences: TSC, ETSC, SYNC	yellow
Tail, extended Tail	green
Guard, extended Guard	blue

normal burst:							
Tetra A: Frame 1 - 17 @	Slot4					_ ×]
Common Burst (Dow	nlink)						
		Normal Continu	uous Dow	nlink Bur	st		
TSC P 12 2	Data1 216	S 14	TSC 22	S 16	Data2 216	P TSC 2 10	
Data Source		Data	: TCH/7,2				
Data Source		PN 9	9				
Scrambling			2				
Training Sequence T	SC						
		Defaul	ť				
control burst:							
Tetra A: Frame 1 - 17 @ 1	Slot1					_ ×	
Common Burst (Unli	nk)						
Common Burst (Opin		Control	Uplink Du	urot	_		
	Data	Control	Оршк вс	iist	Data		
			Data				
Data Source		PN (9 -				
			-				

The rest of the dialog displays the data contained in fields predefined by the standard for the current burst type. Data fields with variable content can be edited.

The following sections list all possible settings and displays for the various burst types. If a setting applies only to a particular burst type, it is mentioned for the corresponding parameter.

Settings:

Common	27
L T2 Burst Type	27
L (Sub-) Slot Level	
(Sub-) Slot Attenuation.	

Burst editor

L Use Coded T1/T4 Data	27
Logical Channel Type	
L AACH-Q Mode	
L Access-Assign PDU	
Burst (Downlink/Uplink)	29
L Data Source.	
L Scrambling	
L Training Sequence	
L TSC User Defined	

Common

Selects the common settings for the selected slot.

T2 Burst Type ← Common

Selects the burst type for "Test Mode T2".

Remote command:

[:SOURce<hw>]:BB:TETRa:SCONfiguration:SLOT<st>:LDIRection<ch>:
TBTYpe on page 55

(Sub-) Slot Level ← Common

Sets the level for the selected (sub-)slot.

Subslots are used by control bursts only.

"Off" Attenuation is maximum. The (sub-) slot is inactive.

"Full" The level corresponds to the level indicated in the display.

"Attenuated" Level is reduced by the level attenuation set in "(Sub-)Slot Attenuation".

Remote command:

[:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>: LDIRection<ch>:SLEVel on page 61 for "Slot Level" [:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>: LDIRection<ch>:SSLevel on page 62 for "Sub-Slot Level".

(Sub-) Slot Attenuation - Common

Selects the level attenuation for the "(Sub-)Slot Level" attenuated setting.

Subslots are used by control bursts only.

Use the "Power Ramp Control" > "Slot Attenuations" dialog to define four different values for level attenuation.

Remote command:

```
[:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:
LDIRection<ch>:BSATtenuation on page 57 for "Slot-Attenuation".
[:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:
LDIRection<ch>:SSATtenuation on page 57 for "Sub-Slot Attenuation".
```

Use Coded T1/T4 Data ← Common

Enables/disables auto coding of the data.

If enabled, the selection of the data source is disabled.

[:SOURce<hw>]:BB:TETRa:SCONfiguration:SLOT<st>:UBBNch on page 56

Logical Channel Type - Common

Selects the logical channel type.

The available channels depend on the selected Test Mode and Link Direction.

Remote command:
[:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:
LDIRection<ch>:LCTYpe on page 59

AACH-Q Mode ← Common

(enabled for Frame 1-17)

Sets the AACH-Q mode element that indicates whether the "Access-Assign PDU" follows in the AACH-Q.

The AACH-Q ("Access Assignment Channel, QAM") channel is present on all transmitted downlink slots (except slots containing BLCH-Q). It is used to indicate on each QAM physical channel the assignment of the uplink and downlink slots.

"Access-	The value of the AACH-Q mode element is set to 0, i.e. contents of
Assign PDU"	"Access-Assign PDU" are present.
	The "Access-Assign PDU" is used to convey information about the
	downlink slot in which it appears and also the access rights for the
	corresponding (same-numbered) uplink slot.
	The fields of the "Access-Assign PDU" are defined with the corre-
	sponding parameters.

"Reserved Ele- The value must be set to all zeros. ment"

Remote command:

[:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>: LDIRection<ch>:AMODe on page 56

Access-Assign PDU ← Common

(enabled for Frame 1-17)

Enables configuration of the "Access-Assign PDU" content.

"Header"	Sets the value for the information element Header.
	<pre>Remote command: [:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>: SLOT<st>:LDIRection<ch>:APHeader on page 57</ch></st></di></hw></pre>
"Field1"	Sets the value for the information element Field 1.
	<pre>Remote command: [:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>: SLOT<st>:LDIRection<ch>:APF1 on page 56</ch></st></di></hw></pre>
"Field2"	Sets the value for the information element "Field2".
	<pre>Remote command: [:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>: SLOT<st>:LDIRection<ch>:APF2 on page 57</ch></st></di></hw></pre>

Burst (Downlink/Uplink)

Selects the settings for the "Logical Channel Type" of the selected burst "Link Direction".

Data Source ← Burst (Downlink/Uplink)

Selects a data source for the "Data" field.

The data source for both channels can be defined separately, i.e. each (sub-)slot has its own data source.

If a burst contains multiple "Data" fields, they are treated as a continuous field. For instance, a pseudo-random sequence is continued without interruption from one "Data" field to the next.

The following standard data sources are available:

- "All 0, All 1"
 An internally generated sequence containing 0 data or 1 data.
- "PNxx" An internally generated pseudo-random noise sequence.
- "Pattern"

An internally generated sequence according to a bit pattern. Use the "Pattern" box to define the bit pattern.

"Data List/Select DList"

A binary data from a data list, internally or externally generated. Select "Select DList" to access the standard "Select List" dialog.

- Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
- Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.
- Use the standard "File Manager" function to transfer external data lists to the instrument.

See also:

- Section "Modulation Data" in the R&S SMW user manual.
- Section "File and Data Management" in the R&S SMW user manual.
- Section "Data List Editor" in the R&S SMW user manual

Remote command:

[:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>: LDIRection<ch>:DATA on page 58 [:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>: LDIRection<ch>:SDATa on page 60 [:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>: LDIRection<ch>:DATA:DSELection on page 59 [:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>: LDIRection<ch>:SDATa:SDSelection on page 61 [:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>: LDIRection<ch>:DATA:DPATtern on page 58 [:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>: LDIRection<ch>:DATA:DPATtern on page 58 [:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>: LDIRection<ch>:SLOT<st>:

Scrambling ← Burst (Downlink/Uplink)

Enables/disables auto scrambling.

[:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>: LDIRection<ch>:SCRambling on page 59

Training Sequence ← Burst (Downlink/Uplink)

Determines whether the default or a user-defined training sequence (TSC) is used.

A user-defined training sequence can be created in the field "TSC User Defined".

Remote command:

[:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>: LDIRection<ch>:TSOurce on page 62

TSC User Defined ← Burst (Downlink/Uplink)

Enters a user-defined TSC. The length of the training sequences depends on the burst type. The first user bit is equivalent to the first bit of the training sequence. All further sequences are inserted successively.

Remote command:

```
[:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:
LDIRection<ch>:TPATtern on page 62
```

3.8 BSCH / BNCH/T

Access:

Select "General > BSCH/BNCH/T".

In the "BSCH / BNCH/T" dialog, the contents of the broadcast synchronization channel (BSCH) and the broadcast network channel (BNCH/T) are configured. The BSCH and the BNCH are the two possible broadcast control channels (BCCH) that are transmitted in downlink direction only.

Contents

•	TETRA frequency	30
•	Contents settings	33
•	Scrambling	

3.8.1 TETRA frequency

Access:

Select "General > BSCH/BNCH/T > TETRA Frequency"

Tetra A: BSCH / BNCH/T			_ ×
TETRA Frequency Contents Settings Scrambling	9		
Carrier Bandwidth		Main Carrier Number	
	25 kHz		0
Frequency Band		Offset	
	100 MHz		0 kHz
Duplex Spacing	⊘ 1.6 MHz	Reverse Operation	0
Coded RF Frequency	0		
	100 MHz		

This section comprises the parameters necessary to set the carrier bandwidth and the frequency band.

Settings:

Carrier Bandwidth	31
Main Carrier Number	31
Frequency Band	31
Offset	32
Duplex Spacing	
Reverse Operation	
Coded RF Frequency	32

Carrier Bandwidth

Selects the carrier bandwidth, i.e. determines the carrier spacing.

The default value for all standard test modes is 25kHz. The carrier spacing of 50 kHz, 100 kHz and 150 kHz is enabled for "Test Mode" set to "User Defined" or "T4".

Remote command:

[:SOURce<hw>]:BB:TETRa:BBNCht:CBANdwidth on page 64

Main Carrier Number

The "Main Carrier Number" divides the TETRA band into carriers with a spacing as set with the parameter "Carrier Bandwidth". The range is 0 to 4095 (12 bits).

The main carrier frequency is calculated as follows:

Main Carrier Frequency, kHz = "Main Carrier Number" * "Carrier Bandwidth"

Remote command:

[:SOURce<hw>]:BB:TETRa:BBNCht:MCNumber on page 67

Frequency Band

Sets the "Frequency Band".

This setting affects the calculation of the transmission frequency. The frequency band information is inserted only in the TETRA BSCH protocol channel.

Remote command:

[:SOURce<hw>]:BB:TETRa:BBNCht:FBANd on page 66

Offset

Set the "Offset" to shift the center frequency in the channel spacing. The allowed offsets are +6.25, 0,–6.25 kHz and +12.50 kHz.

Remote command:

[:SOURce<hw>]:BB:TETRa:BBNCht:OFFSet on page 68

Duplex Spacing

(for Uplink direction only)

The "Duplex Spacing" and "Reverse Operation" parameters in the BNCH/T indicate the required uplink frequency with respect to the indicated downlink frequency. These parameters are defined in ETSI 300 392-2.

Remote command:

[:SOURce<hw>]:BB:TETRa:BBNCht:DSPacing on page 65

Reverse Operation

(for Uplink direction only)

Enables reverse operation.

Reverse operation is used to fix the uplink frequency relative to the downlink frequency. In normal operation, the uplink frequency is lower than the downlink frequency and in reverse operation, the uplink frequency is higher than the downlink frequency.

Remote command:

[:SOURce<hw>]:BB:TETRa:BBNCht:ROPeration on page 68

Coded RF Frequency

Displays the resulting RF frequency, calculated from the previous settings. The frequency is calculated from the "Frequency Band", "Main Carrier Number", "Offset", "Duplex Spacing" and "Reverse Operation" and transmitted in message channel BNCH/T when "Downlink MS V+D Testing" is selected.

The "Coded RF Frequency" is calculated as described in Table 3-1.

Table 3-1: Calculation of coded RF frequency

"Link Direc- tion"	"Reverse Opera- tion"	"Coded RF Frequency", MHz
Downlink	-	Downlink coded RF Frequency = "Frequency Band" + ("Main Carrier Number"* "Carrier Bandwidth") + "Offset"
Uplink	Off (Normal opera- tion)	Uplink coded RF Frequency = Downlink coded RF Frequency - "Duplex Spacing"
	On	Uplink coded RF Frequency = Downlink coded RF Frequency + "Duplex Spacing"

Remote command:

[:SOURce<hw>]:BB:TETRa:BBNCht:CRFRequency? on page 64

3.8.2 Contents settings

Access:

- 1. Select "General > Link Direction > Downlink/ Forward".
- 2. Select "BSCH/BNCH/T > Contents Settings".

Tetra A: BSCH / BNCH/T		_	×
TETRA Frequency Contents Settings Sc	rambling		
System Code	4	Commor	n
TS Reserved Frames	1 frame	Base Sta	ation
	Neighbour Cell Broadcast	Mobile S	Station
D-NWRK-BROADCAST Broadcast is Not Supported	D-NWRK-BROADCAST Enquiry is Not Supported		
Loop Back is Not On			
Error Correction is On			

This dialog is enabled for downlink direction only. In the downlink mode, a synchronization burst is used to control the MS messages. In this burst, protocol elements are transmitted in BSCH and BNCH. The parameters are used to form the commands for the mobile station. This section comprises the parameters necessary to set the carrier bandwidth and the frequency band.

Settings:

System Code	33
TS reserved frames	34
Frame 18 extension	34
Sharing Mode	34
U-plane DTX	34
D-NWRK-BROADCAST broadcast	
D-NWRK-BROADCAST enquiry	
Cell service level	
MS TXPWR MAX CELL	
Tx_on	35
T1 T4 Burst Type	35
Error Correction	35
Late Entry	35
ACCESS PARAMETER	35
Tx burst type	
Loop Back	

System Code

Indicates whether the system is a TETRA V+D system or whether it is a "Direct Mode" transmission.

[:SOURce<hw>]:BB:TETRa:BBNCht:SCODe on page 69

TS reserved frames

Determines the number of frames reserved over two multiframes period.

The way this field is processed, depends on the selected "Sharing Mode" on page 34. If MCCH sharing is indicated, the TS reserved frames field indicates which frames are reserved in this mode of operation. For the other values of sharing mode, the contents of the TS reserved frames field are ignored.

Remote command:

[:SOURce<hw>]:BB:TETRa:BBNCht:TRFRames on page 70

Frame 18 extension

Enables the frame 18 extension element, i.e. indicates whether an MS is allowed to receive downlink information on all slots of the frame 18. If extension is allowed, only MSs which can receive consecutive slots are able to perform this function.

Remote command:

[:SOURce<hw>]:BB:TETRa:BBNCht:FEEXtension on page 66

Sharing Mode

The sharing mode field indicates whether the BS is using continuous transmission, carrier sharing, MCCH sharing or traffic carrier sharing.

Remote command:

[:SOURce<hw>]:BB:TETRa:BBNCht:SMODe on page 69

U-plane DTX

The "U-plane DTX" element indicates whether the BS supports discontinuous traffic transmission by the MS.

Remote command: [:SOURce<hw>]:BB:TETRa:BBNCht:UPDTx on page 71

D-NWRK-BROADCAST broadcast

Enables the support of the D-NWRK-BROADCAST PDU.

Remote command:

[:SOURce<hw>]:BB:TETRa:BBNCht:DNBBroadcast on page 65

D-NWRK-BROADCAST enquiry

Enables the support of the D-NWRK-BROADCAST inquiry.

Remote command: [:SOURce<hw>]:BB:TETRa:BBNCht:DNBenquiry on page 65

Cell service level

Sets the cell service level information element, i.e. define the level of service an MS can receive in a cell. It can relate to the traffic loading in a cell.

The following service levels are supported:

- "Cell load unknown"
- "Low cell load"

- "Medium cell load"
- "High cell load"

[:SOURce<hw>]:BB:TETRa:BBNCht:CSLevel on page 65

MS_TXPWR_MAX_CELL

Sets the protocol information on the maximum transmission power for the mobile station. Allowed are values from 15 dBm to 45 dBm in 5 dB steps.

The MS_TXPWR_MAX_CELL parameter is used for cell selection and reselection, and for power adjustments.

Remote command:

[:SOURce<hw>]:BB:TETRa:BBNCht:MTMCell on page 68

Tx_on

Determines the value of the Tx_on parameter, i.e. selects the test mode the MS operates in, "Reception ON" or "Transmission ON".

This parameter is necessary for the generation of test signal T1 or T4 transmitted by the test system.

"Transmission The mobile station is requested to transmit. ON"

"Reception The mobile station is requested to receipt.

ON"

Remote command:

[:SOURce<hw>]:BB:TETRa:BBNCht:TXON on page 70

T1_T4_Burst_Type

Sets the value of the special parameter T1_T4_Burst_Type, i.e. determines the logical channel the BS is expecting to receive.

Remote command: [:SOURce<hw>]:BB:TETRa:BBNCht:TTBType on page 70

Error Correction

Enables error correction.

Remote command: [:SOURce<hw>]:BB:TETRa:BBNCht:ECORrection on page 66

Late Entry

Sets the value of the late entry supported information element, used to indicate to the MS whether late entry can be supported by the cell.

Remote command:

[:SOURce<hw>]:BB:TETRa:BBNCht:LENTry on page 67

ACCESS_PARAMETER

Sets the value of the ACCESS_PARAMETER information field. This parameter is used for subsequent power adjustments for the mobile station.

This protocol information field can have values from -53 dBm to -23 dBm in 2 dB steps.

[:SOURce<hw>]:BB:TETRa:BBNCht:APARameter on page 63

Tx_burst_type

Sets the parameter Tx_burst_type and determines whether the MS under test transmit either a normal uplink burst or control uplink burst.

"Normal uplink The mobile station transmits using normal uplink burst. burst"

"Control uplink The mobile station transmits using control uplink burst. burst"

Remote command:

[:SOURce<hw>]:BB:TETRa:BBNCht:TBTYpe on page 69

Loop Back

Enables the loop back for test purposes.

If enabled, the mobile station sets up a loop and returns the data when requested by the Tx_burst_type.

Remote command: [:SOURce<hw>]:BB:TETRa:BBNCht:LBACk on page 66

3.8.3 Scrambling

Access:

Select "General > BSCH/BNCH/T > Scrambling".

Tetra A: BSCH / BNCH/T		_	×	
TETRA Frequency	Contents Settings		Scramblin	g
Base Colour Cod	e 1			
Mobile Country C	ode 262			
Mobile Network (5	Code 519			

The "Srcambling" section contains of the parameters necessary to configure the scrambling sequence.

The scrambling code is a 24-bit field composed of the "Mobile Country Code" (MCC) and "Mobile Network Code" (MNC) and is calculated as defined in EN 300 392. The MCC and MNC is a part of the MLE information contained within the SYNC PDU broadcast by the BS on the BSCH. The upper MAC adds a 6-bit color code which is
contained in the SYNC PDU. The combination of MCC, MNC and color code make up the scrambling code which the upper MAC passes to the lower MAC via the TMV-SAP. This scrambling code corresponds to the extended color code used for scrambling and descrambling in the lower MAC. The scrambling code corresponds to the 30-bit extended color code e(1), e(2),..., e(30).

Table 3-2: Building of scrambling code

"Mobile Country Code (MCC)"	"Mobile Network Code (MNC)"	"Colour Code"
10 bits	14 bits	6 bits
e(1) - e(10)	e(11) - e(24)	e(25) - e(30)
e(1) = msb ¹⁾ of MCC	e(11) = msb of MNC	e(25) = msb of colour code
¹⁾ Most Significant Bit		

Settings:

Base Colour Code	37
Mobile Network Code	
Mobile Country Code	

Base Colour Code

Sets the colour code.

The base color code is the number of subscriber groups in a network.

See Table 3-2 for information on how the scrambling code is calculated.

Remote command:

[:SOURce<hw>]:BB:TETRa:BBNCht:BCCode on page 64

Mobile Network Code

Sets the mobile network code (MNC).

The MNC is the number of the TETRA network operator.

See Table 3-2 for information on how the scrambling code is calculated.

Remote command:

[:SOURce<hw>]:BB:TETRa:BBNCht:MNCode on page 68

Mobile Country Code

Sets the mobile country code.

The MCC is the number of the country in which the unit is operated.

See Table 3-2 for information on how the scrambling code is calculated.

Remote command:

[:SOURce<hw>]:BB:TETRa:BBNCht:MCCode on page 67

3.9 Filter / clipping settings

Access:

► Select "General > Filter/Clipping/ARB/IQ Settings".

The dialog contains the settings required to configure the baseband filter and to enable clipping.

Settings:

•	Filter settings	38
•	Modulation settings	. 40
•	Clipping settings	41

3.9.1 Filter settings

Access:

► Select "General > Filter/Clipping".

Settings:

-ilter	. 39
Roll Off Factor or BxT	39
Cut Off Frequency Shift	39
Cut Off Frequency Factor	39
mpulse Length	39

Filter

Selects the baseband filter.

Remote command: [:SOURce<hw>]:BB:TETRa:FILTer:TYPE on page 73

Roll Off Factor or BxT

Sets the filter parameter.

The filter parameter ("Roll off Factor" or "BxT") depends on the currently selected filter type. This parameter is preset to the default for each of the predefined filters.

Remote command:

```
[:SOURce<hw>]:BB:TETRa:FILTer:PARameter:COSine on page 72
[:SOURce<hw>]:BB:TETRa:FILTer:PARameter:RCOSine on page 72
[:SOURce<hw>]:BB:TETRa:FILTer:PARameter:PGAuss on page 72
[:SOURce<hw>]:BB:TETRa:FILTer:PARameter:GAUSs on page 72
[:SOURce<hw>]:BB:TETRa:FILTer:PARameter:SPHase on page 72
[:SOURce<hw>]:BB:TETRa:FILTer:PARameter:APC025 on page 72
```

Cut Off Frequency Shift

(available for filter parameter "Cosine" only)

Sets the value for the cut off frequency shift. The cut off frequency of the cosine filter can be adjusted to reach spectrum mask requirements.

The value range is -1.0 to 1.0.

Remote command: [:SOURce<hw>]:BB:TETRa:FILTer:PARameter:COSine:COFS on page 73

Cut Off Frequency Factor

Sets the value for the cutoff frequency factor. The cutoff frequency of the filter can be adjusted to reach spectrum mask requirements.

Remote command:

[:SOURce<hw>]:BB:TETRa:FILTer:PARameter:LPASs on page 72
[:SOURce<hw>]:BB:TETRa:FILTer:PARameter:LPASSEVM on page 72

Impulse Length

Sets the number of filter tabs.

Remote command:

[:SOURce<hw>]:BB:TETRa:FILTer:ILENgth on page 72

3.9.2 Modulation settings

Access:

► Select "General > Filter/Clipping > Modulation".

This tab displays the used modulation type.

Settings:

Modulation Type......40

Modulation Type

Displays the modulation type as selected with the parameter "Modulation Type".

Remote command:

[:SOURce<hw>]:BB:TETRa:MTYPe on page 49

3.9.3 Clipping settings

Access:

► Select "General > Filter/Clipping > Clipping".

This tab contains the settings necessary ro configure the clipping.

Settings:

Clipping State	41
Clipping Level	
Clipping Mode	
- 11 5	

Clipping State

Switches baseband clipping on and off.

Baseband clipping is a simple and effective way of reducing the crest factor of the signal. Since clipping is done before to filtering, the procedure does not influence the spectrum. The EVM however increases.

Remote command:

[:SOURce<hw>]:BB:TETRa:CLIPping:STATe on page 72

Clipping Level

Sets the limit for clipping.

This value indicates at what point the signal is clipped. It is specified as a percentage, relative to the highest level. 100% indicates that clipping does not take place.

Remote command:

[:SOURce<hw>]:BB:TETRa:CLIPping:LEVel on page 71

Clipping Mode

Selects the clipping method. The dialog displays a graphical illustration on how this two methods work.

- "Vector | i + jq |" The limit is related to the amplitude | i + q |. The I and Q components are mapped together, the angle is retained.
- "Scalar | i | , | q |" The limit is related to the absolute maximum of all the I and Q values | i | + | q |. The I and Q components are mapped separately, the angle changes.

Remote command:

[:SOURce<hw>]:BB:TETRa:CLIPping:MODE on page 72

3.10 Power ramp control

Access:

► Select "General > Power Ramp/Slot Attenuations".

Tetra A: Power Ramp Control			_	×
Ramp Control				
Ramp Functi	on		С	osine
Ramp Time			2 Sy	mbols
Rise Offset 0 Symbo		mbols		
Fall Offset			0 Sy	mbols

The dialog contains the settings for configuring the power ramping and level attenuation. The "Slot Attenuations" (used in "Frame Editor") section is used to define four possible values for level attenuation. You can select these values from the frame editor for the slot currently being edited.

This dialog provides access to the settings for power ramping and slot attenuation.

Contents

•	Ramp control	43
•	Slot attenuations	44

3.10.1 Ramp control

Access:

Select "General > Power Ramp/Slot Attenuations > Ramp Control".

Ramp Control Sid	ot Attenuations		
Ramp Function		Co	sine
Ramp Time		2 Sym	bols
Rise Offset		0 Sym	bols
Fall Offset		0 Sym	bols

The dialog contains the settings for configuring the power ramping.

Settings:

Ramp Function	43
Ramp Time	44
Rise Offset	44
Fall Offset	

Ramp Function

Selects the form of the transmitted power, i.e. the shape of the rising and falling during power ramp control.

"Linear" The transmitted power rises and falls linear fashion.

"Cosine" The transmitted power rises and falls with a cosine-shaped edge. This setting causes a more favorable spectrum than the "Linear" setting.

Remote command:

[:SOURce<hw>]:BB:TETRa:PRAMping:RFUNction on page 53

Ramp Time

Sets the power ramping rise time and fall time for a frame. The setting is expressed in symbols.

Do not switch the transmitted power abruptly at the end or the start of a frame, since the switching operation generates excessively strong non-harmonics. The switching operation is therefore stretched over several symbol clocks.

Remote command:

[:SOURce<hw>]:BB:TETRa:PRAMping:RTIMe on page 54

Rise Offset

Sets the offset in the rising edge of the envelope at the start of a frame. A positive value causes a delay and a negative value causes an advance. The setting is expressed in symbols.

Remote command:

[:SOURce<hw>]:BB:TETRa:PRAMping:ROFFset on page 53

Fall Offset

Sets the offset in the falling edge of the envelope at the end of a frame. A positive value causes a delay and a negative value causes an advance. The setting is expressed in symbols.

Remote command:

[:SOURce<hw>]:BB:TETRa:PRAMping:FOFFset on page 53

3.10.2 Slot attenuations

Access:

Select "General > Power Ramp/Slot Attenuations > Slot Attenuations".

Ramp Control	Slot Attenuations	
Slot	t Attenuations(Used	l In Burst Editors)
A1		0.0 dB
A2		0.0 dB
A3		0.0 dB
A4		0.0 dB

The dialog contains the settings for level attenuation. The "Slot Attenuations" (used in "Frame Editor") section is used to define four possible values for level attenuation. You can select these values from the frame editor for the slot currently being edited.

"Slot Level > Full" setting in the frame editor corresponds to 0 dB attenuation.

See "(Sub-) Slot Level" on page 27.

Settings

Slot Attenuation A1 to A4	. 4	-5
---------------------------	-----	----

Slot Attenuation A1 to A4

Sets the four different values for level attenuation.

The frame editor can be used to set the level attenuation for the four slots to one of these predefined values independently of one another.

The set value determines the slot output power (slot power = RF power - attenuation). 0 dB attenuation corresponds to "Slot Level = Full".

This feature is provided to set a sequence of slots to different levels in order to measure transmission stability.

The frame editor is likewise used to assign the "Slot Level" attribute "Attenuated" to individual slots.

Remote command:

[:SOURce<hw>]:BB:TETRa:SATTenuation<ch> on page 54

4 Remote control commands

The following commands are required to perform signal generation with the TETRA options in a remote environment. We assume that the R&S SMW has already been set up for remote operation in a network as described in the R&S SMW documentation. A knowledge about the remote control operation and the SCPI command syntax are assumed.

Conventions used in SCPI command descriptions

For a description of the conventions used in the remote command descriptions, see section "Remote Control Commands" in the R&S SMW user manual.

Common suffixes

The following common suffixes are used in remote commands:

Suffix	Value range	Description
ENTity <ch></ch>	14	entity in a multiple entity configuration with separate base- band sources
		ENTity3 4 require option R&S SMW-K/6
SOURce <hw></hw>	[1] to 4	available baseband signals
		only ${\tt SOURCe1}$ possible, if the keyword ${\tt ENTity}$ is used
OUTPut <ch></ch>	1 to 3	available markers
TMODe <di></di>	14	The numeric suffix to TMODe distinguishes between the test modes: TMODe1 = Test Mode 1 TMODe2 = Test Mode 4 TMODe3 = User Defined TMODe4 = Test Mode 2
SLOT <st></st>	18	The numeric suffix to SLOT distinguishes between the slot numbers: SLOT<14> = Slots#1 to Slot#4 in Frame 117 SLOT<58> = Slots#1 to Slot#4 in Frame 18
LDIRection <ch></ch>	12	The numeric suffix to LDIRection distinguishes between the link directions: • LDIRection1 = Downlink • LDIRection2 = Uplink

Using SCPI command aliases for advanced mode with multiple entities

You can address multiple entities configurations by using the SCPI commands starting with the keyword SOURce or the alias commands starting with the keyword ENTity.

Note that the meaning of the keyword SOURce<hw> changes in the second case.

For details, see section "SCPI Command Aliases for Advanced Mode with Multiple Entities" in the R&S SMW user manual.

Programming examples

This description provides simple programming examples. The purpose of the examples is to present **all** commands for a given task. In real applications, one would rather reduce the examples to an appropriate subset of commands.

The programming examples have been tested with a software tool which provides an environment for the development and execution of remote tests. To keep the example as simple as possible, only the "clean" SCPI syntax elements are reported. Non-executable command lines (e.g. comments) start with two // characters.

At the beginning of the most remote control program, an instrument (p)reset is recommended to set the instrument to a definite state. The commands *RST and SYSTem: PRESet are equivalent for this purpose. *CLS also resets the status registers and clears the output buffer.

The following commands specific to the TETRA are described here:

٠	General commands	47
•	Power ramp commands	53
•	Slot configuration commands	55
•	BSCH / BNCH/T commands	63
•	Filter/clipping commands	71
•	Trigger commands	73
•	Marker commands	80
•	Clock commands	83

4.1 General commands

Example: Selecting test mode, link direction and channel type

```
// set to default and query the TETRA standard version
SOURCe1:TETRa:PRESet
SOURce:BB:TETRa:VERSion?
// Response: "ETSI EN 300 392-2 V3.2.1."
SOURce1:BB:TETRa:TMODe T1
SOURce1:BB:TETRa:LDIRection DOWN
SOURce1:BB:TETRa:CTYPe CH0
// setting parameters for user and T2 test modes
// SOURce1:BB:TETRa:TMODe USER
// SOURce1:BB:TETRa:MTYPe PHASe
// SOURce1:BB:TETRa:DBTYpe CONT
SOURce1:BB:TETRa:SLENgth 1
// Save the configuraton in a waveform file
SOURCe1:BB:TETRa:WAVeform:CREate 'tetra_waveform_t1_dl'
// activate signal generation
```

General commands

Example: Saving current configuration

SOURce1:BB:TETRa:SETTing:STORe '/var/user/tetra_t1_dl'
*RST
SOURce1:BB:TETRa:SETTing:CATalog?
// Response: tetra_t1_dl, tetra_user_dl
SOURce1:BB:TETRa:SETTing:LOAD '/var/user/tetra_t1_dl'
SOURce1:BB:TETRa:SETTing:DELete 'tetra_user_dl'

[:SOURce <hw>]:BB:TETRa:CTYPe</hw>	
[:SOURce <hw>]:BB:TETRa:DBTYpe</hw>	48
[:SOURce <hw>]:BB:TETRa:LDIRection</hw>	49
[:SOURce <hw>]:BB:TETRa:MTYPe</hw>	49
[:SOURce <hw>]:BB:TETRa:PRESet</hw>	
[:SOURce <hw>]:BB:TETRa:SETTing:CATalog?</hw>	50
[:SOURce <hw>]:BB:TETRa:SETTing:DELete</hw>	50
[:SOURce <hw>]:BB:TETRa:SETTing:LOAD</hw>	50
[:SOURce <hw>]:BB:TETRa:SETTing:STORe</hw>	51
[:SOURce <hw>]:BB:TETRa:SLENgth</hw>	51
[:SOURce <hw>]:BB:TETRa:SRATe:VARiation</hw>	51
: SOURce <hw>]:BB:TETRa:STATe</hw>	
: SOURce <hw>]:BB:TETRa:TMODe</hw>	
: [:SOURce <hw>]:BB:TETRa:VERSion?</hw>	52
- [:SOURce <hw>]:BB:TETRa:WAVeform:CREate</hw>	

[:SOURce<hw>]:BB:TETRa:CTYPe <CType>

(for "Test Model" set to T1 or T4)

Determines the channel type.

Parameters:

<ctype></ctype>	CH0 CH1 CH2 CH3 CH4 CH7 CH8 CH9 CH10 CH11 CH21 CH22 CH23 CH24 CH25 CH26 CH27
	*RST: CH0
Example:	See Example"Selecting test mode, link direction and channel type" on page 47
Manual operation:	See "Channel Type" on page 15

[:SOURce<hw>]:BB:TETRa:DBTYpe <DBType>

(in Downlink "Link Direction" and for "Test Model" set to T2 or User Defined)

Determines the downlink burst type.

Parameters: <DBType> CONTinuous | DCONtinuous *RST: CONTinuous Example: See Example"Selecting test mode, link direction and channel type" on page 47

Manual operation: See "Downlink Burst Type" on page 15

[:SOURce<hw>]:BB:TETRa:LDIRection <LDirection>

Selects the transmission direction.

This parameter determines the available "Channel Types".

Parameters:

<ldirection></ldirection>	DOWN UP
	DOWN
	The transmission direction selected is from the base station (BS) to the terminal (MS). The signal corresponds to that of a BS.
	UP
	The transmission direction selected is from MS to the BS. The signal corresponds to that of a terminal.
	*RST: DOWN
Example:	See Example"Selecting test mode, link direction and channel type" on page 47
Manual operation:	See "Link Direction" on page 14

[:SOURce<hw>]:BB:TETRa:MTYPe <MType>

(for "Test Model" set to User Defined)

Determines the modulation type, "Phase" or "QAM."

Parameters:	
<mtype></mtype>	PHASe QAM
	PHASe

The T2 test signal is

The T2 test signal is a pi/4-DQPSK modulated continuous rad	lio
signal.	

QAM

The T2 test signal is 4-QAM, 16-QAM or 64-QAM modulated and spans a bandwidth of 25kHz, 50kHz, 100kHz or 150kHz. *RST: PHASe

Example:			See Example"Selecting test mode, link direction and channel
			type" on page 47
	_	_	

Manual operation:	See "Modulation T	[ype"	on page	15
	See "Modulation T	Type"	on page	40

[:SOURce<hw>]:BB:TETRa:PRESet

Sets the parameters of the digital standard to their (*RST values specified for the commands).

Not affected is the state set with the command [:SOURce<hw>]:BB:TETRa:STATe.

Example:	See Example"Selecting test mode, link direction and channel type" on page 47
Usage:	Event
Manual operation:	See "Set to Default" on page 12

[:SOURce<hw>]:BB:TETRa:SETTing:CATalog?

Queries the files with settings in the default directory. Listed are files with the file extension $\star.\texttt{tetra}.$

Return values:	
<catalog></catalog>	<filename1>,<filename2>,</filename2></filename1>
	Returns a string of file names separated by commas.
Example:	See Example"Saving current configuration" on page 48.
Usage:	Query only
Manual operation:	See "Save/Recall" on page 13

[:SOURce<hw>]:BB:TETRa:SETTing:DELete <Filename>

Deletes the selected file in the specified directory. Deleted are files with the file extension *.tetra.

Setting parameters:

<filename></filename>	<file name=""></file>
	file name or complete file path
Example:	See Example"Saving current configuration" on page 48
Usage:	Setting only
Manual operation:	See "Save/Recall" on page 13

[:SOURce<hw>]:BB:TETRa:SETTing:LOAD <Filename>

Loads the selected file from the default or the specified directory. Loaded are files with extension $\star.\texttt{tetra}.$

Setting parameters:	
<filename></filename>	string
	file name or complete file path
Example:	See Example"Saving current configuration" on page 48
Usage:	Setting only
Manual operation:	See "Save/Recall" on page 13

[:SOURce<hw>]:BB:TETRa:SETTing:STORe <Filename>

Stores the current settings into the selected file; the file extension (*.tetra) is assigned automatically.

Setting parameters:

<filename></filename>	string		
	file name or complete file path		
Example:	See Example"Saving current configuration" on page 4		
Usage:	Setting only		
Manual operation:	See "Save/Recall" on page 13		

[:SOURce<hw>]:BB:TETRa:SLENgth <SLength>

Selects the sequence length of the arbitrary waveform file in the number of multiframes. One multiframe is the minimum sequence length for a T1 signal.

Parameters:

<slength></slength>	integer		
	Range: *RST:	 to depends on carrier bandwidth 1 	
Example:	See Examp type" on pa	le"Selecting test mode, link direction and channel ge 47	
Manual operation:	See "Sequence Length" on page 15		

[:SOURce<hw>]:BB:TETRa:SRATe:VARiation </ariation>

Sets the symbol rate of the signal. A variation of this parameter only affects the ARB clock rate; all other signal parameters remain unchanged.

Parameters:

<variation></variation>	float	
	Range: Increment: *RST:	400 to 15E6 0.001 18000
Example:	BB:TETR:SRAT:VAR? queries the symbol rate of the signa	

[:SOURce<hw>]:BB:TETRa:STATe <State>

Activates the standard and deactivates all the other digital standards and digital modulation modes in the same path.

Parameters:

<state></state>	1 ON 0	0 OFF	
	*RST:	0	

Example:	See Example"Selecting test mode, link direction and channel
	type" on page 47

Manual operation: See "State" on page 12

[:SOURce<hw>]:BB:TETRa:TMODe <Tmode>

Selects the test mode.

Several settings depend on the selected test mode.

Parameters:		
<tmode></tmode>	T1 T4 USER T2 T3	
	*RST: T1	
Example:	See Example"Selecting test mode, link direction and channel type" on page 47	
Manual operation:	See "Test Mode" on page 13	

[:SOURce<hw>]:BB:TETRa:VERSion?

Queries the tetra standard version.

Return values:	
<version></version>	string
Example:	See Example"Selecting test mode, link direction and channel type" on page 47
Usage:	Query only

[:SOURce<hw>]:BB:TETRa:WAVeform:CREate <Filename>

Saves the current settings as an ARB signal in a waveform file (*.wv).

Setting parameters: <filename></filename>	string		
	file name or complete file path; file extension is assigned auto- matically		
Example:	See Example"Selecting test mode, link direction and channel type" on page 47		
Usage:	Setting only		
Manual operation:	See "Generate Waveform" on page 13		

4.2 Power ramp commands

:SOURce <hw>]:BB:TETRa:PRAMping:RFUNction</hw>
:SOURce <hw>]:BB:TETRa:PRAMping:ROFFset53</hw>
:SOURce <hw>]:BB:TETRa:PRAMping:RTIMe54</hw>
[:SOURce <hw>]:BB:TETRa:SATTenuation<ch></ch></hw>

[:SOURce<hw>]:BB:TETRa:PRAMping:FOFFset <FOffset>

Sets the offset in the falling edge of the envelope at the end of a frame. A positive value gives rise to a delay and a negative value causes an advance. The setting is expressed in symbols.

Parameters:

<foffset></foffset>	integer		
	Range: *RST:	0 to 4 0	
Example:	BB:TETR:PRAM:FOFF 10		10
Manual operation:	See "Fall Offset" on page 44		

[:SOURce<hw>]:BB:TETRa:PRAMping:RFUNction <RFunction>

Enters the form of the transmitted power during the switching operation, i.e. the shape of the rising and falling edges of the envelope.

Parameters:

<rfunction></rfunction>	LINear COSine	
	LINear	
	The transmi	itted power rises and falls linear fashion.
	COSine The transmitted power rises and falls with a cosine-shaped edge. This gives rise to a more favorable spectrum than the "Linear" setting.	
	*RST:	COSine
Example:	BB:TETR: F	PRAM:RFUN LIN
Manual operation:	See "Ramp	Function" on page 43

[:SOURce<hw>]:BB:TETRa:PRAMping:ROFFset <ROffset>

Sets the offset in the rising edge of the envelope at the start of a frame. A positive value gives rise to a delay and a negative value causes an advance. The setting is expressed in symbols.

Parameters:			
<roffset></roffset>	integer		
	Range: *RST:	-4 to 0 0	
Example:	BB:TETR:PRAM:ROFF 6		
Manual operation:	See "Rise Offset" on page 44		

[:SOURce<hw>]:BB:TETRa:PRAMping:RTIMe <Rtime>

Enters the power ramping rise time and fall time for a frame. The setting is expressed in symbols.

The transmitted power must not be switched abruptly at the start and end of a frame, because the switching operation would otherwise generate excessively strong non-harmonics; the switching operation is therefore stretched over several symbol clocks.

Parameters: <rtime></rtime>	integer Range: *RST:	1 to 13 16, depends on test mode 2
Example:	BB:TETR:	PRAM:RTIM 25
Manual operation:	See "Ramp	Time" on page 44

[:SOURce<hw>]:BB:TETRa:SATTenuation<ch> <Sattenuation>

Enters four different values for level attenuation.

The frame editor can be used to set the level attenuation for the four slots to one of these predefined values independently of one another.

The entered value determines the slot output power (slot power = RF power - attenuation). 0 dB attenuation corresponds to "Slot Level" = Full.

This feature is provided to set a sequence of slots to different levels in order to measure transmission stability.

The frame editor is likewise used to assign the "Slot Level" attribute Attenuated to individual slots.

Parameters:

<sattenuation></sattenuation>	float		
	Range: Increment: *RST:	0 to 50 0.1 0	
Example:	BB:TETR:S	SATT1 30	
Manual operation:	See "Slot A	ttenuation A1 to A4" on page 45	

4.3 Slot configuration commands

[:SOURce <hw>]:BB:TETRa:SCONfiguration:SLOT<st>:LDIRection<ch>:TBTYpe</ch></st></hw>	55
[:SOURce <hw>]:BB:TETRa:SCONfiguration:SLOT<st>:UBBNch</st></hw>	56
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:</ch></st></di></hw>	
AMODe	56
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:APF1.</ch></st></di></hw>	56
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:APF2.</ch></st></di></hw>	57
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:</ch></st></di></hw>	
APHeader	57
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:</ch></st></di></hw>	
BSATtenuation	57
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:</ch></st></di></hw>	
SSATtenuation	57
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:DATA.</ch></st></di></hw>	58
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:</ch></st></di></hw>	
DATA:DPATtern	58
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:</ch></st></di></hw>	
DATA:DSELection	59
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:</ch></st></di></hw>	
LCTYpe	59
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:</ch></st></di></hw>	
SCRambling	59
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:SDATa</ch></st></di></hw>	a60
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:</ch></st></di></hw>	
SDATa:SDPattern	60
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:</ch></st></di></hw>	
SDATa:SDSelection	61
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:</ch></st></di></hw>	
SLEVel	61
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:</ch></st></di></hw>	
SSLevel	62
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:</ch></st></di></hw>	
TPATtern	62
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:</ch></st></di></hw>	
TSOurce	62

[:SOURce<hw>]:BB:TETRa:SCONfiguration:SLOT<st>:LDIRection<ch>:TBTYpe <TbType>

Selects the burst type for "Test Mode T2".

Parameters:

<tbtype></tbtype>	NCDB SCDB NDDB SDDB ND4 ND16 ND64 NUB CUB NU4 NU16 NU64 CU4 CU16 CU64 RAB *RST: NCDB
Example:	BB:TETR:SCON:SLOT3:LDIR1:TBTY NCDB
Manual operation:	See "T2 Burst Type" on page 27

[:SOURce<hw>]:BB:TETRa:SCONfiguration:SLOT<st>:UBBNch < Ubbnch>

Enables/disables auto coding of the data.

If enabled, the selection of the data source is disabled.

Parameters: <ubbnch></ubbnch>	1 ON 0 OFF *RST: 0
Example:	SOURce:BB:TETRa:TMODe USER SOURce:BB:TETRa:LDIRection DOWN SOURce:BB:TETRa:SCONfiguration:SLOT1:UBBNch ON
Manual operation:	See "Use Coded T1/T4 Data" on page 27

[:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>: LDIRection<ch>:AMODe <AMode>

(enabled for Frame 1-17)

Sets the AACH-Q Mode element that indicates whether the Access-Assign PDU follows in the AACH-Q.

The AACH-Q (Access Assignment Channel, QAM) channel is present on all transmitted downlink slots (except slots containing BLCH-Q) and is used to indicate on each QAM physical channel the assignment of the uplink and downlink slots.

Parameters:

<AMode>

AAPDu | RELement

AAPDu

The value of the AACH-Q Mode element is set to 0, i.e. contents of Access-Assign PDU are present.

The Access-Assign PDU is used to convey information about the downlink slot in which it appears and also the access rights for the corresponding (same-numbered) uplink slot.

The fields of the "Access-Assign PDU" are defined with the corresponding parameters.

RELement

The value shall be set to all zeros.

*RST: AAPDu

Example: BB:TETR:SCON:TMOD1:SLOT2:LDIR1:AMOD REL

Manual operation: See "AACH-Q Mode" on page 28

[:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>: LDIRection<ch>:APF1 <Apf1>

Sets the value for the information element Field 1 of the Access-Assign PDU.

Parameters:

<Apf1> 8 bits **Example:** BB:TETR:SCON:TMOD2:SLOT3:LDIR1:APF1 #B000000,6

Manual operation: See "Access-Assign PDU" on page 28

[:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>: LDIRection<ch>:APF2 <Apf2>

Sets the value for the information element Field 2 of the Access-Assign PDU.

Parameters: <apf2></apf2>	8 bits	
Example:	BB:TETR:SCON:TMOD2:SLOT3:LDIR1:APF2	#B000000,6
Manual operation:	See "Access-Assign PDU" on page 28	

[:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>: LDIRection<ch>:APHeader <ApHeader>

.

Sets the value for the information element Header 0f the Access-Assign PDU.

<apheader></apheader>	8 bits	
Example:	BB:TETR:SCON:TMOD3:SLOT5:LDIR1:APH	#B01,2
Manual operation:	See "Access-Assign PDU" on page 28	

[:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>: LDIRection<ch>:BSATtenuation <BsAttenuation>

Selects the level attenuation for the "Slot Level" Attenuated setting.

Parameters:		
<bsattenuation></bsattenuation>	A1 A2 A3 A4	
	*RST: A1	
Example:	BB:TETR:SCON:TMOD1:SLOT3:LDIR1:BSAT A1	
Manual operation:	See "(Sub-) Slot Attenuation" on page 27	

[:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>: LDIRection<ch>:SSATtenuation <SSATtenuation>

Sets the attenuation for the second sub-slot in a control burst.

<pre>Parameters: <ssattenuation></ssattenuation></pre>	A1 A2 A3 A4
	*RST: A1
Example:	BB:TETR:SCON:TMOD1:SLOT3:LDIR2:SSAT A1

Example:	BB:TETR:LDIR UP	
	BB:TETR:CTYP CH11	
	Selects a control burst.	
	BB:TETR:SCON:TMOD1:SLOT3:LDIR2:BSAT	A1
	BB:TETR:SCON:TMOD1:SLOT3:LDIR2:SSAT	A1
	Sets the attenuation of the first and second sub-s	slot.
Manual operation:	See "(Sub-) Slot Attenuation" on page 27	

[:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>: LDIRection<ch>:DATA <Data>

Defines the data source for the DATA fields in the burst.

Parameters:

<Data>

PATTern | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 | DLISt | ALL0 | ALL1 | PN09

ALL0|ALL1|

Internal 0 or 1 data is used.

PATT

Internal data is used. The bit pattern for the data is defined with the aid of command [:SOURce<hw>]:BB:TETRa: SCONfiguration:TMODe<di>:SLOT<st>:

LDIRection<ch>:DATA:DPATtern on page 58.

PNxx

The pseudo-random sequence generator is used as the data source. There is a choice of different lengths of random sequence.

DLISt

A data list is used. The data list is selected with the aid of command [:SOURce<hw>]:BB:TETRa:SCONfiguration: TMODe<di>:SLOT<st>:LDIRection<ch>:DATA: DSELection on page 59.

*RST: PN09

Example: BB:TETR:SCON:TMOD1:SLOT2:LDIR1:DATA PN23

Manual operation: See "Data Source" on page 29

[:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>: LDIRection<ch>:DATA:DPATtern <DPattern>, <BitCount>

Selects the data pattern for data source pattern ([:SOURce<hw>]:BB:TETRa: SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:DATA on page 58).

Parameters:

<DPattern> numeric *RST: #H0

<bitcount></bitcount>	integer	
	Range: *RST:	1 to 64 1
Example:	BB:TETR: BB:TETR:	SCON:TMOD1:SLOT2:LDIR1:DATA PATT SCON:TMOD1:SLOT2:LDIR1:DATA:DPAT #H3F,8
Manual operation:	See "Data S	Source" on page 29

[:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>: LDIRection<ch>:DATA:DSELection <DSelection>

Selects a data list. This command is only valid for bursts with DATA fields. This data list is only used if it is set as the data source with the aid of command [:SOURce<hw>]: BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:DATA on page 58.

Parameters:

<dselection></dselection>	<data list="" name=""></data>
Example:	<pre>BB:TETR:SCON:TMOD1:SLOT2:LDIR1:DATA DLIS BB:TETR:SCON:TMOD1:SLOT2:LDIR1:DATA:DSEL 'dl_tetra_t2_ul'</pre>

Manual operation: See "Data Source" on page 29

[:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>: LDIRection<ch>:LCTYpe <LcType>

Selects the logical channel type.

The available channels depend on the selected test mode and link direction.

Parameters:

<lctype></lctype>	T72 T48 T24 TCHF TCHH STCH SSTCh SCHF T108 SP8F SSHD BSHD SBNCh BBNCh S8HD D4H D16H D64H D64M D16U D64U B4H B16H B64H B64M B16U B64U SSHU S8HU S4S8 S8S4 U4H U16H U64H U64M U16U U64U H4H H16H H64H H64M H16U H64U SQRA D4U U4U *RST: T72 D4H	
Example:	BB:TETR:SCON:TMOD2:SLOT3:LDIR1:LCTY T72	
Manual operation:	See "Logical Channel Type" on page 28	

[:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>: LDIRection<ch>:SCRambling <Scrambling>

Enables/disables auto scrambling.

Parameters:			
<scrambling></scrambling>	1 ON 0 OFF		
	*RST: 1		
Example:	BB:TETR:SCON:TMOD2:SLOT3:LDIR1:SCR ON		
Manual operation:	See "Scrambling" on page 29		

[:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>: LDIRection<ch>:SDATa <SData>

Defines the data source for the DATA fields in the burst.

Parameters:

<SData>

PATTern | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 | DLISt | ALL0 | ALL1 | PN09

ALL0|ALL1|

Internal 0 or 1 data is used.

PATT

Internal data is used. The bit pattern for the data is defined with the aid of command [:SOURce<hw>]:BB:TETRa: SCONfiguration:TMODe<di>:SLOT<st>:

LDIRection<ch>:SDATa:SDPattern on page 60.

PNxx

The pseudo-random sequence generator is used as the data source. There is a choice of different lengths of random sequence.

DLISt

A data list is used. The data list is selected with the aid of command [:SOURce<hw>]:BB:TETRa:SCONfiguration: TMODe<di>:SLOT<st>:LDIRection<ch>:SDATa: SDSelection on page 61.

*RST: PN09

Example: BB:TETR:SCON:TMOD4:SLOT2:LDIR2:SDAT PN23

Manual operation: See "Data Source" on page 29

[:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>: LDIRection<ch>:SDATa:SDPattern <SdPattern>, <BitCount>

Selects the data pattern for data source pattern ([:SOURce<hw>]:BB:TETRa: SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:SDATa on page 60).

Parameters:

<SdPattern>

numeric *RST: #H0

<bitcount></bitcount>	integer Bange:	1 to 64
	*RST:	1
Example:	BB:TETR: BB:TETR:	<pre>SCON:TMOD4:SLOT2:LDIR2:SDAT PATT SCON:TMOD4:SLOT2:LDIR2:SDAT:SDP #H3F,8</pre>
Manual operation:	See "Data Source" on page 29	

[:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>: LDIRection<ch>:SDATa:SDSelection <SdSelection>

Selects a data list. This command is only valid for bursts with DATA fields. This data list is only used if it is set as the data source with the aid of command [:SOURce<hw>]: BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:SDATa on page 60.

Parameters: <sdselection></sdselection>	<data list="" name=""></data>
Example:	BB:TETR:SCON:TMOD4:SLOT2:LDIR2:SDAT DLIS
	BB:TETR:SCON:TMOD4:SLOT2:LDIR2:SDAT:SDS

Manual operation: See "Data Source" on page 29

[:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>: LDIRection<ch>:SLEVel<SLevel>

'dl_tetra_t4_ul_2'

Sets the level for the selected slot.

Para	meters:	
------	---------	--

<slevel></slevel>	OFF ATTenuated FULL		
	OFF		
	Attenuation is maximum. The slot is inactive.		
	ATT		
	Level is reduced by the level attenuation set in "Slot Attenua- tion".		
	FULL		
	The level corresponds to the level indicated in the display.		
	*RST: FULL		
Example:	BB:TETR:SCON:TMOD1:SLOT3:LDIR1:SLEV FULL		
Manual operation:	See "(Sub-) Slot Level" on page 27		

[:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>: LDIRection<ch>:SSLevel <SSLevel>

Sets the level for the second sub-slot.

Parameters:			
<sslevel></sslevel>	OFF ATTenuated FULL		
	OFF		
	Attenuation is maximum. The slot is inactive.		
	ATT		
	Level is reduced by the level attenuation set in "Slot Attenua- tion".		
	FULL		
	The level corresponds to the level indicated in the display.		
	*RST: FULL		
Example:	BB:TETR:LDIR UP		
	BB:TETR:CTYP CH11		
	Selects a control burst.		
	BB:TETR:SCON:TMOD1:SLOT3:LDIR2:SLEV FULL		
	BB:TETR:SCON:TMOD1:SLOT3:LDIR2:SSLevel FULL		
	Sets the level of the first and second sub-slot.		
Manual operation:	See "(Sub-) Slot Level" on page 27		

[:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>: LDIRection<ch>:TPATtern <TPattern>, <BitCount>

Enters a user-defined TSC. The length of the training sequences depends on the burst type. The first user bit is equivalent to the first bit of the training sequence. All further will be inserted successively.

Parameters:

<tpattern></tpattern>	numeric *RST:	#H000000000000000000000000000000000000
<bitcount></bitcount>	integer Range: *RST:	1 to 96 96
Example:	BB:TETR:S #H0000000	SCON:TMOD1:SLOT2:LDIR1:TPAT
Manual operation:	See "TSC L	Jser Defined" on page 30

[:SOURce<hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>: LDIRection<ch>:TSOurce<TSource>

Determines whether the default or a user-defined training sequence (TSC) is used.

A user-defined training sequence can be created in the field "TSC User Defined".

Parameters:			
<tsource></tsource>	DEFault UDEFined		
	*RST:	DEFault	
Example:	BB:TETR:S	SCON:TMOD1:SLOT2:LDIR1:TSO	DEF
Manual operation:	See "Training Sequence" on page 30		

4.4 BSCH / BNCH/T commands

[:SOURce <hw>]:BB:TETRa:BBNCht:APARameter</hw>	63
[:SOURce <hw>]:BB:TETRa:BBNCht:BCCode</hw>	64
[:SOURce <hw>]:BB:TETRa:BBNCht:CBANdwidth</hw>	64
[:SOURce <hw>]:BB:TETRa:BBNCht:CRFRequency?</hw>	64
[:SOURce <hw>]:BB:TETRa:BBNCht:CSLevel</hw>	65
[:SOURce <hw>]:BB:TETRa:BBNCht:DNBBroadcast</hw>	65
[:SOURce <hw>]:BB:TETRa:BBNCht:DNBenquiry</hw>	65
[:SOURce <hw>]:BB:TETRa:BBNCht:DSPacing</hw>	65
[:SOURce <hw>]:BB:TETRa:BBNCht:ECORrection</hw>	66
[:SOURce <hw>]:BB:TETRa:BBNCht:FBANd</hw>	66
[:SOURce <hw>]:BB:TETRa:BBNCht:FEEXtension</hw>	
[:SOURce <hw>]:BB:TETRa:BBNCht:LBACk</hw>	66
[:SOURce <hw>]:BB:TETRa:BBNCht:LENTry</hw>	67
[:SOURce <hw>]:BB:TETRa:BBNCht:MCCode</hw>	67
[:SOURce <hw>]:BB:TETRa:BBNCht:MCNumber</hw>	67
[:SOURce <hw>]:BB:TETRa:BBNCht:MNCode</hw>	68
[:SOURce <hw>]:BB:TETRa:BBNCht:MTMCell</hw>	68
[:SOURce <hw>]:BB:TETRa:BBNCht:OFFSet</hw>	68
[:SOURce <hw>]:BB:TETRa:BBNCht:ROPeration</hw>	68
[:SOURce <hw>]:BB:TETRa:BBNCht:SCODe</hw>	69
[:SOURce <hw>]:BB:TETRa:BBNCht:SMODe</hw>	69
[:SOURce <hw>]:BB:TETRa:BBNCht:TBTYpe</hw>	69
[:SOURce <hw>]:BB:TETRa:BBNCht:TRFRames</hw>	70
[:SOURce <hw>]:BB:TETRa:BBNCht:TTBType</hw>	70
[:SOURce <hw>]:BB:TETRa:BBNCht:TXON</hw>	70
[:SOURce <hw>]:BB:TETRa:BBNCht:UPDTx</hw>	71

[:SOURce<hw>]:BB:TETRa:BBNCht:APARameter <AParameter>

Sets the value of the ACCESS_PARAMETER information field. This parameter is used for subsequent power adjustments for the mobile station.

This protocol information field can takes values from -53 dBm to -23 dBm in 2 dB steps.

Parameters:

<AParameter>
AP53 | AP51 | AP49 | AP47 | AP45 | AP43 | AP41 | AP39 | AP37 | AP35 | AP33 | AP31 | AP29 | AP27 | AP25 | AP23 *RST:
AP53 **Example:** BB:TETR:BBNC:APAR AP31

Manual operation: See "ACCESS_PARAMETER" on page 35

[:SOURce<hw>]:BB:TETRa:BBNCht:BCCode <Bccode>

Sets the colour code.

The base color code is the number of subscriber group in a network.

See Table 3-2 for information on how the scrambling code is calculated.

Parameters:			
<bccode></bccode>	integer		
	Range: *RST:	1 to 63 1	
Example:	BB:TETR:	BBNC:BCC 55	
Manual operation:	See "Base Colour Code" on page 37		

[:SOURce<hw>]:BB:TETRa:BBNCht:CBANdwidth <CBandwidth>

Selects the carrier bandwidth, i.e. determines the carrier spacing.

The default value for all standard test modes is 25kHz; carrier spacing of 50, 100 and 150 kHz is enabled for "Test Mode" set to User Defined or T4.

Parameters: <cbandwidth></cbandwidth>	C25 C50 C100 C150 *RST: C25	
Example:	BB:TETR:	BBNC:CBAN C25
Manual operation:	See "Carrier Bandwidth" on page 31	

[:SOURce<hw>]:BB:TETRa:BBNCht:CRFRequency?

Displays the resulting RF frequency, calculated from the previous settings. The frequency is calculated from the "Frequency Band", "Main Carrier Number", "Offset", "Duplex Spacing" and "Reverse Operation" and transmitted in message channel BNCH/T when Downlink MS V+D Testing is selected.

The "Coded RF Frequency" is calculated as described in Table 3-1.

Return values:	
<crfrequency></crfrequency>	float
	Range: 0 to 1000
Example:	BB:TETR:BBNC:CRFR?
Usage:	Query only
Manual operation:	See "Coded RF Frequency" on page 32

[:SOURce<hw>]:BB:TETRa:BBNCht:CSLevel <CSLevel>

Sets the cell service level information element, i.e. define the level of service a MS may receive in a cell. It may relate to the traffic loading in a cell.

Parameters:

	<u></u>		
<cslevel></cslevel>	CLUNknown LCLoad MCLoad HCLoad		
	CLUNknown		
	Cell load unknown		
	LCLoad		
	Low cell load		
	MCLoad		
	Medium cell load		
	HCLoad		
	High cell load		
	*RST:	CLUNknown	
Example:	BB:TETR:	BBNC:CSL LCL	
Manual operation:	See "Cell service level" on page 34		

[:SOURce<hw>]:BB:TETRa:BBNCht:DNBBroadcast <DnbBroadcast>

Enables/disables support of the D-NWRK-BROADCAST PDU.

Parameters:	
<dnbbroadcast></dnbbroadcast>	1 ON 0 OFF
	*RST: OFF
Example:	BB:TETR:BBNC:DNBB ON
Manual operation:	See "D-NWRK-BROADCAST broadcast" on page 34

[:SOURce<hw>]:BB:TETRa:BBNCht:DNBenquiry <DnbEnquiry>

Enables/disables support of the D-NWRK-BROADCAST enquiry.

Parameters:	
<dubendniri></dubendniri>	1 ON 0 OFF
	*RST: OFF
Example:	BB:TETR:BBNC:DNB ON
Manual operation:	See "D-NWRK-BROADCAST enquiry" on page 34

[:SOURce<hw>]:BB:TETRa:BBNCht:DSPacing <DSpacing>

(for Uplink direction only)

The "Duplex Spacing" and "Reverse Operation" parameters in the BNCH/T indicate the required uplink frequency with respect to the indicated downlink frequency. These parameters are defined in ETSI 300 392-2.

<pre>Parameters: <dspacing></dspacing></pre>	DS0 DS1	DS2 DS3 DS4 DS5 DS6 DS7
	ROI.	D30
Example:	BB:TETR:	BBNC:DSP DS2
Manual operation:	See "Duple	x Spacing" on page 32

[:SOURce<hw>]:BB:TETRa:BBNCht:ECORrection < ECorrection>

Enables/disables error correction.

Parameters:	1100110		
	*RST		
Example:	BB:TETR:	:BBNC:ECO	r on
Manual operation:	See "Error	r Correction	" on page 35

[:SOURce<hw>]:BB:TETRa:BBNCht:FBANd <FBand>

Sets the Frequency Band.

This setting has an effect on the calculation of the transmission frequency. The Frequency Band Information is inserted only in the TETRA BSCH protocol channel.

Parameters:

Example:	BB:TETR:B	BNC:FBAN F700
Examples	*RST:	F100
<fband></fband>	F100 F200	F300 F400 F500 F600 F700 F800 F900

[:SOURce<hw>]:BB:TETRa:BBNCht:FEEXtension <FeExtension>

Enables/disables the frame 18 extension element, i.e. indicates whether an MS is allowed to receive downlink information on all slots of the frame 18. If extension is allowed, only MSs which are capable of receiving consecutive slots are able to perform this function.

Parameters:

<feextension></feextension>	1 ON 0 OFF
	*RST: OFF
Example:	BB:TETR:BBNC:FEEX ON
Manual operation:	See "Frame 18 extension" on page 34

[:SOURce<hw>]:BB:TETRa:BBNCht:LBACk <LBack>

Enables/disables loop back for test purposes.

If enabled, the mobile station should set up a loop and return the data when requested by the Tx_burst_type.

Parameters:

<lback></lback>	1 ON 0 OFF		
	*RST:	OFF	
Example:	BB:TETF	BBNC:LBAC	ON
Manual operation:	See "Loo	p Back" on pa	ge 36

[:SOURce<hw>]:BB:TETRa:BBNCht:LENTry <LEntry>

Sets the value of the late entry supported information element, used to indicate to the MS whether or not late entry can be supported by the cell.

Parameters:

<lentry></lentry>	1 ON 0 OFF		
	*RST:	OFF	
Example:	BB:TETH	R:BBNC:LENT	ON
Manual operation:	See "Late	e Entry" on pag	je 35

[:SOURce<hw>]:BB:TETRa:BBNCht:MCCode <Mccode>

Sets the Mobile Country Code.

The MCC is the number of the country in which the unit is operated.

See Table 3-2 for information on how the scrambling code is calculated.

Parameters:

<mccode></mccode>	integer		
	Range: *RST:	0 to 1023 262	
Example:	BB:TETR:	BBNC:MCC 900	
Manual operation:	See "Mobile	e Country Code" on page 37	

[:SOURce<hw>]:BB:TETRa:BBNCht:MCNumber <Mcnumber>

The "Main Carrier Number" divides the TETRA band into carriers with a spacing as set with the parameter "Carrier Bandwidth". The range is 0 to 4095 (12 bits).

The Main Carrier Frequency is calculated as follow:

Main Carrier Frequency, kHz = "Main Carrier Number" * "Carrier Bandwidth"

Parameters: <Mcnumber>

integer	
Range:	0 to 4095
*RST:	0

Example: BB:TETR:BBNC:MCN 2300

Manual operation: See "Main Carrier Number" on page 31

[:SOURce<hw>]:BB:TETRa:BBNCht:MNCode <Mncode>

Sets the Mobile Network Code (MNC).

The MNC is the number of the TETRA network operator.

See Table 3-2 for information on how the scrambling code is calculated.

Parameters:

<mncode></mncode>	integer		
	Range: *RST:	0 to 16383 5519	
Example:	BB:TETR:	BBNC:MNC 230	
Manual operation:	See "Mobile	e Network Code" on page 37	

[:SOURce<hw>]:BB:TETRa:BBNCht:MTMCell <MtmCell>

Sets the protocol information on the maximum transmission power for the mobile station. Allowed are values from 15 dBm to 45 dBm in 5 dB steps.

The MS_TXPWR_MAX_CELL paramer is used for cell selection and reselection, and for power adjustments.

Parameters:

<mtmcell></mtmcell>	M15 M20 M25 M30 M35 M40 M45		
	*RST:	M15	
Example:	BB:TETR:	BBNC:MTMC M25	
Manual operation:	See "MS_T	XPWR_MAX_CELL" on page 35	

[:SOURce<hw>]:BB:TETRa:BBNCht:OFFSet <Offset>

Set the "Offset" to shiff the center frequency in the channel spacing. The allowed offsets are +6.25, 0,–6.25 and +12.50 kHz.

Parameters: <offset></offset>	ZERO P *RST:	625 M625 F ZERO	P125
Example:	BB:TETR	:BBNC:OFFS	P125
Manual operation:	See "Offs	et" on page 32	2

[:SOURce<hw>]:BB:TETRa:BBNCht:ROPeration <ROperation>

(for Uplink direction only)

Enables/disables reverse operation.

Reverse operation is used to fix the uplink frequency relative to the downlink frequency. In normal operation, the uplink frequency is lower than the downlink frequency and in reverse operation, the uplink frequency is higher than the downlink frequency.

<pre>Parameters: <roperation></roperation></pre>	1 ON 0 OFF	
	*RST:	OFF
Example:	BB:TETR:	BBNC:ROP ON
Manual operation:	See "Reve	rse Operation" on page 32

[:SOURce<hw>]:BB:TETRa:BBNCht:SCODe <SCode>

Indicate whether the system is a TETRA V+D system or whether this is a Direct Mode transmission.

Para	meters:
------	---------

<scode></scode>	S0 S1 S2 S3 S4 S5 S6 S7		
	^RST:	S4	
Example:	BB:TETR:	BBNC:SCOD S3	
Manual operation:	See "System Code" on page 33		

[:SOURce<hw>]:BB:TETRa:BBNCht:SMODe <SMode>

The sharing mode field indicates whether the BS is using continuous transmission, carrier sharing, MCCH sharing or traffic carrier sharing.

Parameters:

<smode></smode>	CTRansmission CSHaring MSHaring TCSHaring		
	*RST:	CTRansmission	
Example:	BB:TETR:B	BNC:SMOD CSHaring	
Manual operation:	See "Sharing	g Mode" on page 34	

[:SOURce<hw>]:BB:TETRa:BBNCht:TBTYpe <TbType>

Sets the parameter Tx_burst_type and determines whether the MS under test transmit either a normal uplink burst or control uplink burst.

Parameters:

<TbType> NUB | CUB NUB The mobile station should transmit using normal uplink burst. CUB The mobile station should transmit using control uplink burst. *RST: NUB

 Example:
 BB:TETR:BBNC:TBTY NUB

 Manual operation:
 See "Tx_burst_type" on page 36

[:SOURce<hw>]:BB:TETRa:BBNCht:TRFRames <TrFrames>

Determines the number of frames reserved over two multiframes period.

The way this field is processed, depends on the selected [:SOURce<hw>]:BB: TETRa:BBNCht:SMODe. If MCCH sharing is indicated, the TS reserved frames field shall indicate which frames are reserved in this mode of operation. For the other values of sharing mode, the contents of the TS reserved frames field shall be ignored.

Parameters:

<trframes></trframes>	F1 F2 F3 F4 F6 F9 F12 F18 *RST: F1	
Example:	BB:TETR:BBNC:TRFR F2	
Manual operation:	See "TS reserved frames" on page 34	

[:SOURce<hw>]:BB:TETRa:BBNCht:TTBType <TtbType>

Sets the value of the special parameter T1_T4_Burst_Type, i.e. determines the logical channel the BS is expecting to receive.

Parameters:

<ttbtype></ttbtype>	T72F T72S SFD BSHD T24D RSV1 RSV2 T72U SFU SSTCh T24U SSCH RSV3 RSBurst RSSBurst TPTD TPTU T48D T48U TSCD TSCU T108 SPHD SPHU SPF SQHU SQU SQD SQRA *RST: T72F
Example:	BB:TETR:BBNC:TTBT T48D
Manual operation:	See "T1_T4_Burst_Type" on page 35

[:SOURce<hw>]:BB:TETRa:BBNCht:TXON <TxOn>

Determines the value of the Tx_on parameter, i.e. selects the test mode the MS operates in, "Reception ON" or "Transmission ON".

This parameter is neccessary for the generation of test signal T1 or T4 transmitted by the test system.

Parameters:

<TxOn>

RON | TON **RON** The mobile station is requested to recept. **TON** The mobile station is requested to transmit. *RST: RON Example: BB:TETR:BBNC:TXON RON

Manual operation: See "Tx_on" on page 35

[:SOURce<hw>]:BB:TETRa:BBNCht:UPDTx <UpDtx>

The "U-plane DTX" element indicates whether or not the BS supports discontinuous traffic transmission by the MS.

Parameters:	
<1 In Dtvs	

<updtx></updtx>	1 ON 0 OFF	
	*RST:	OFF
Example:	BB:TETR:	BBNC:UPDT ON
Manual operation:	See "U-plar	ne DTX" on page 34

4.5 Filter/clipping commands

[:SOURce <hw>]:BB:TETRa:CLIPping:LEVel</hw>	71
[:SOURce <hw>]:BB:TETRa:CLIPping:MODE</hw>	72
[:SOURce <hw>]:BB:TETRa:CLIPping:STATe</hw>	72
[:SOURce <hw>]:BB:TETRa:FILTer:ILENgth</hw>	72
[:SOURce <hw>]:BB:TETRa:FILTer:PARameter:COSine</hw>	72
[:SOURce <hw>]:BB:TETRa:FILTer:PARameter:GAUSs</hw>	72
[:SOURce <hw>]:BB:TETRa:FILTer:PARameter:LPASs</hw>	72
[:SOURce <hw>]:BB:TETRa:FILTer:PARameter:LPASSEVM</hw>	72
[:SOURce <hw>]:BB:TETRa:FILTer:PARameter:PGAuss</hw>	
[:SOURce <hw>]:BB:TETRa:FILTer:PARameter:RCOSine</hw>	72
[:SOURce <hw>]:BB:TETRa:FILTer:PARameter:SPHase</hw>	
[:SOURce <hw>]:BB:TETRa:FILTer:PARameter:APCO25</hw>	72
[:SOURce <hw>]:BB:TETRa:FILTer:PARameter:COSine:COFS</hw>	73
[:SOURce <hw>]:BB:TETRa:FILTer:TYPE</hw>	73

[:SOURce<hw>]:BB:TETRa:CLIPping:LEVel <Level>

Sets the limit for clipping.

Parameters:

Example: BB:1	TETR:CLIP:LEV 25
Rang *RST Defa	ge: 1 to 100 Г: 100 ult unit: PCT
<level> integ</level>	er

Manual operation: See "Clipping Level" on page 42

[:SOURce<hw>]:BB:TETRa:CLIPping:MODE <Mode>

Selects the clipping method.

Parameters:

<mode></mode>	VECTor SCALar		
	*RST:	VECTor	
Example:	BB:TETR:	CLIP:MODE	SCAL
Manual operation:	See "Clippi	ng Mode" on	page 42

[:SOURce<hw>]:BB:TETRa:CLIPping:STATe <State>

Switches baseband clipping on and off.

Parameters:

Manual operation:	See "Clip	oping State" on	page 41
Example:	BB:TETH	R:CLIP:STAT	ON
	*RST:	OFF	
<state></state>	1 ON 0 OFF		

[:SOURce<hw>]:BB:TETRa:FILTer:ILENgth <ILength>

Sets the impulse length (number of filter tabs).

Parameters:

<ilength></ilength>	integer	
	Range: *RST:	2 to 100 40
Example:	BB:TETR:	FILT:ILEN 20
Manual operation:	See "Impuls	se Length" on page 39

[:SOURce<hw>]:BB:TETRa:FILTer:PARameter:COSine <Cosine> [:SOURce<hw>]:BB:TETRa:FILTer:PARameter:GAUSs <Gauss> [:SOURce<hw>]:BB:TETRa:FILTer:PARameter:LPASs <LPass> [:SOURce<hw>]:BB:TETRa:FILTer:PARameter:LPASSEVM <LPassEvm> [:SOURce<hw>]:BB:TETRa:FILTer:PARameter:PGAuss <PGauss> [:SOURce<hw>]:BB:TETRa:FILTer:PARameter:RCOSine <RCosine> [:SOURce<hw>]:BB:TETRa:FILTer:PARameter:SPHase <SPhase> [:SOURce<hw>]:BB:TETRa:FILTer:PARameter:APCO25 <Apco25>

Sets the filter parameter.

Parameters: <Apco25>

float	
Range:	0.05 to 0.99
Increment:	0.01
*RST:	0.2
Example: BB:TETR:FILT:TYPE APC025 BB:TETR:FILT:PAR:APC025 0.1

Manual operation: See "Roll Off Factor or BxT" on page 39

[:SOURce<hw>]:BB:TETRa:FILTer:PARameter:COSine:COFS <Cofs>

Sets the value for the cut off frequency shift. The cut off frequency of the cosine filter can be adjusted to reach spectrum mask requirements.

Parameters:

<cofs></cofs>	float	
	Range: Increment: *RST:	-1 to 1 0.01 -0.1
Example:	BB:TETR:E BB:TETR:E	FILT:TYPE COS FILT:PAR:COS:COFS 0.5
Manual operation:	See "Cut O	ff Frequency Shift" on page 39

[:SOURce<hw>]:BB:TETRa:FILTer:TYPE <Type>

Sets the baseband filter.

Parameters:

<Туре>	RCOSine COSine GAUSs LGAuss CONE COF705 COEQualizer COFequalizer C2K3x APCO25 SPHase RECTangle PGAuss LPASs DIRac ENPShape EWPShape	
	*RST:	RCOSine
Example:	SOURcel:	BB:TETRa:FILTer:TYPE GAUS
Manual operation:	See "Filter" on page 39	

4.6 Trigger commands

Example: Configuring trigger signals

```
SOURce1:BB:TETRa:TRIGger:SEQuence ARETrigger
SOURce1:BB:TETRa:TRIGger:SOURce EGT1
SOURce1:BB:TETRa:TRIGger:EXTernal:SYNChronize:OUTPut 1
SOURce1:BB:TETRa:TRIGger:EXTernal:INHibit 100
SOURce1:BB:TETRa:TRIGger:EXTernal:DELay 10
```

```
SOURce1:BB:TETRa:TRIGger:SEQuence SING
SOURce1:BB:TETRa:TRIGger:SLUNit SEQ
```

```
// SOURce1:BB:TETRa:TRIGger:SLUNit MFR
SOURce1:BB:TETRa:TRIGger:SLENgth 2
```

```
SOURce1:BB:TETRa:TRIGger:SOURce INTernal
SOURce1:BB:TETRa:TRIGger:SEQuence ARETrigger
SOURce1:BB:TETRa:STATe ON
SOURce1:BB:TETRa:TRIGger:EXEcute
// executes a trigger, signal generation starts
SOURce1:BB:TETRa:TRIGger:ARM:EXECute
// signal generation stops
SOURce1:BB:TETRa:TRIGger:EXEcute
// executes a trigger, signal generation starts again
SOURce1:BB:TETRa:TRIGger:RMODe?
// queries the current signal generation status
// 1 (running)
```

BB:TETRa:TRIG:SOUR OBAS
// sets triggering by the other path
BB:TETRa:TRIG:INH 200
// sets a restart inhibit for 200 chips following a trigger event
BB:TETRa:TRIG:OBAS:DEL 50
// sets a delay of 50 symbols for the trigger

Commands:

[:SOURce <hw>]:BB:TETRa:TRIGger:ARM:EXECute</hw>	74
[:SOURce <hw>]:BB:TETRa:TRIGger:EXECute</hw>	75
[:SOURce <hw>]:BB:TETRa:TRIGger[:EXTernal<ch>]:SYNChronize:OUTPut</ch></hw>	75
[:SOURce <hw>]:BB:TETRa:TRIGger:OBASeband:DELay</hw>	75
[:SOURce <hw>]:BB:TETRa:TRIGger:OBASeband:DELay</hw>	75
[:SOURce <hw>]:BB:TETRa:TRIGger:OBASeband:INHibit</hw>	76
[:SOURce <hw>]:BB:TETRa:TRIGger:RMODe</hw>	76
[:SOURce <hw>]:BB:TETRa:TRIGger:SLENgth</hw>	76
[:SOURce <hw>]:BB:TETRa:TRIGger:SLUNit</hw>	76
[:SOURce <hw>]:BB:TETRa:TRIGger:SOURce</hw>	77
[:SOURce <hw>]:BB:TETRa:TRIGger[:EXTernal<ch>]:DELay</ch></hw>	77
[:SOURce <hw>]:BB:TETRa:TRIGger[:EXTernal]:DELay</hw>	77
[:SOURce <hw>]:BB:TETRa:TRIGger[:EXTernal<ch>]:INHibit</ch></hw>	
[:SOURce <hw>]:BB:TETRa:TRIGger[:EXTernal]:INHibit</hw>	78
[:SOURce <hw>]:BB:TETRa:TRIGger:SEQuence</hw>	78
[:SOURce <hw>]:BB:TETRa:TRIGger:TIME:DATE</hw>	
[:SOURce <hw>]:BB:TETRa:TRIGger:TIME:TIME</hw>	79
[:SOURce <hw>]:BB:TETRa:TRIGger:TIME[:STATe]</hw>	79

[:SOURce<hw>]:BB:TETRa:TRIGger:ARM:EXECute

Stops signal generation; a subsequent trigger event restarts signal generation.

Example:See Example"Configuring trigger signals" on page 73Usage:Event

Manual operation: See "Arm" on page 18

[:SOURce<hw>]:BB:TETRa:TRIGger:EXECute

Executes a trigger manually. A manual trigger can be executed only when an internal trigger source and a trigger mode other than "Auto" have been selected.

Example: See Example"Configuring trigger signals" on page 73

Usage: Event

Manual operation: See "Execute Trigger" on page 19

[:SOURce<hw>]:BB:TETRa:TRIGger[:EXTernal<ch>]:SYNChronize:OUTPut <Output>

Enables signal output synchronous to the trigger event.

Parameters:	
<output></output>	1 ON 0 OFF
	*RST: 1
Example:	See Example"Configuring trigger signals" on page 73
Manual operation:	See "Sync. Output to External Trigger/Sync. Output to Trigger" on page 19

[:SOURce<hw>]:BB:TETRa:TRIGger:OBASeband:DELay <Delay>

Sets the trigger delay (expressed as a number of samples) for triggering by the trigger signal from the second path.

Parameters:	

<delay></delay>	float	
	Range: Increment: *RST:	0 to 2147483647 0.01 0
Example:	See Examp	le"Configuring trigger signals" on page 73
Manual operation:	See "Extern	al Delay/Trigger Delay" on page 20

[:SOURce<hw>]:BB:TETRa:TRIGger:OBASeband:DELay <Delay>

Sets the trigger delay (expressed as a number of samples) for triggering by the trigger signal from the second path.

Parameters:

<Delay>

float	
Range:	0 to 65535
Increment:	0.01
*RST:	0

[:SOURce<hw>]:BB:TETRa:TRIGger:OBASeband:INHibit < Inhibit>

For triggering via the other path, specifies the duration by which a restart is inhibited.

Parameters:		
<inhibit></inhibit>	integer	
	Range: *RST:	0 to 67108863 0
Example:	See Example"Configuring trigger signals" on page 73	
Manual operation:	See "Exte	rnal Inhibit/Trigger Inhibit" on page 20

[:SOURce<hw>]:BB:TETRa:TRIGger:RMODe <RMode>

Queries the status of signal generation for all trigger modes.

Parameters:		
<rmode></rmode>	STOP RUN	
	*RST: STOP	
Example:	See Example"Configuring trigger signals" on page 73	
Manual operation:	See "Running/Stopped" on page 18	

[:SOURce<hw>]:BB:TETRa:TRIGger:SLENgth <Slength>

Defines the length of the signal sequence that is output in the SINGle trigger mode.

Parameters:		
<slength></slength>	integer	
	Range: *RST:	1 to 7000 1
Example:	See Example"Configuring trigger signals" on page 73	
Manual operation:	See "Signa	al Duration" on page 18

[:SOURce<hw>]:BB:TETRa:TRIGger:SLUNit <SIUnit>

Defines the unit of the signal sequence length that is output in the SINGle trigger mode.

Parameters:		
<siunit></siunit>	SEQuence MFRame	
	*RST:	SEQuence
Example:	See Examp	ele"Configuring trigger signals" on page 73
Manual operation:	See <mark>"Signa</mark>	I Duration Unit" on page 17

[:SOURce<hw>]:BB:TETRa:TRIGger:SOURce <Source>

Selects the trigger signal source and determines the way the triggering is executed. Provided are:

- Internal triggering by a command (INTernal)
- External trigger signal via one of the local or global connectors
 - EGT1 | EGT2: External global trigger
 - EGC1 | EGC2: External global clock
 - ELTRigger: External local trigger
 - ELCLock: External local clock
- Internal triggering by a signal from the other basebands (INTA | INTB)
- OBASeband | BEXTernal | EXTernal: Setting only Provided only for backward compatibility with other Rohde & Schwarz signal generators.
 The DSS CMW eccents these values and more them outematically as follows:

```
The R&S SMW accepts these values and maps them automatically as follows:
EXTernal = EGT1, BEXTernal = EGT2, OBASeband = INTA or INTB
(depending on the current baseband)
```

Parameters:

<source/>	INTB/INTernal/OBASeband/EGT1/EGT2/EGC1/EGC2/ELTRig- ger/INTA/ELCLock/BEXTernal/EXTernal	
	*RST:	INTernal
Example:	See Exampl	e"Configuring trigger signals" on page 73
Manual operation:	See "Source	e" on page 19

[:SOURce<hw>]:BB:TETRa:TRIGger[:EXTernal<ch>]:DELay <Delay>

Sets the trigger delay.

Parameters:

<Delay>

float	
Range:	0.0 to 65535
Increment:	0.01
*RST:	0.0

[:SOURce<hw>]:BB:TETRa:TRIGger[:EXTernal]:DELay <Delay>

Sets the trigger delay.

Parameters:

<Delay> float
Range: 0 to 2147483647
Increment: 0.01
*RST: 0
Default unit: samples
Example: See Example"Configuring trigger signals" on page 73

User Manual 1175.6810.02 - 18

Manual operation: See "External Delay/Trigger Delay" on page 20

[:SOURce<hw>]:BB:TETRa:TRIGger[:EXTernal<ch>]:INHibit <Inhibit>

Specifies the duration by which a restart is inhibited.

Parameters:

<Inhibit>

integer Range: 0 to 67108863 *RST: 0

[:SOURce<hw>]:BB:TETRa:TRIGger[:EXTernal]:INHibit <Inhibit>

Specifies the number of samples by which a restart is to be inhibited following an external trigger event.

Parameters	3:
------------	----

<inhibit></inhibit>	integer	
	Range: *RST:	0 to 21.47*symRate(=18E3) 0
Example:	See Example"Configuring trigger signals" on page 73	
Manual operation:	See "External Inhibit/Trigger Inhibit" on page 20	

[:SOURce<hw>]:BB:TETRa:TRIGger:SEQuence <Sequence>

Selects the trigger mode:

- AUTO = auto
- RETRigger = retrigger
- AAUTO = armed auto
- ARETrigger = armed retrigger
- SINGle = single

Parameters:

<sequence></sequence>	AUTO RETRigger AAUTo ARETrigger SINGle	
	*RST:	AUTO
Example:	See Example"Configuring trigger signals" on page 73	
Manual operation:	See "Mode" on page 17	

[:SOURce<hw>]:BB:TETRa:TRIGger:TIME:DATE <Year>, <Month>, <Day>

Sets the date for a time-based trigger signal. For trigger modes single or armed auto, you can activate triggering at this date via the following command:

SOURce<hw>:BB:<DigStd>:TRIGger:TIME:STATe

<DigStd> is the mnemonic for the digital standard, for example, ARB. Time-based triggering behaves analogously for all digital standards that support this feature.

Parameters:

Manual operation:	See "Trigge	er Time" on page 18
Example:	See examp chapter "Tri subsystem"	le "Configure a time-based trigger signal" in the sub- gger Commands" of the chapter "SOURce:BB:ARB ' in the R&S SMW user manual.
<day></day>	integer Range:	1 to 31
<month></month>	integer Range:	1 to 12
<year></year>	integer Range:	1980 to 9999

[:SOURce<hw>]:BB:TETRa:TRIGger:TIME:TIME <Hour>, <Minute>, <Second>

Sets the time for a time-based trigger signal. For trigger modes single or armed auto, you can activate triggering at this time via the following command:

SOURce<hw>:BB:<DigStd>:TRIGger:TIME:STATe

<DigStd> is the mnemonic for the digital standard, for example, ARB. Time-based triggering behaves analogously for all digital standards that support this feature.

Parameters:		
<hour></hour>	integer	
	Range:	0 to 23
<minute></minute>	integer	
	Range:	0 to 59
<second></second>	integer	
	Range:	00 to 59
Example:	See exampl chapter "Trig subsystem"	e "Configure a time-based trigger signal" in the sub- gger Commands" of the chapter "SOURce:BB:ARB in the R&S SMW user manual.
Manual operation:	See "Trigge	Time" on page 18

[:SOURce<hw>]:BB:TETRa:TRIGger:TIME[:STATe] <State>

Activates time-based triggering with a fixed time reference. If activated, the R&S SMW triggers signal generation when its operating system time matches a specified time.

Specify the trigger date and trigger time with the following commands:

SOURce<hw>:BB:<DigStd>:TRIGger:TIME:DATE

SOURce<hw>:BB:<DigStd>:TRIGger:TIME:TIME

<DigStd> is the mnemonic for the digital standard, for example, ARB. Time-based triggering behaves analogously for all digital standards that support this feature.

Parameters: <state></state>	1 ON 0 OFF *RST: 0
Example:	See example "Configure a time-based trigger signal" in the sub- chapter "Trigger Commands" of the chapter "SOURce:BB:ARB subsystem" in the R&S SMW user manual.
Manual operation:	See "Time Based Trigger" on page 18

4.7 Marker commands

Example: Configuring marker signals

SOURcel:BB:TETRa:TRIGger:OUTPutl:MODE RESTart

- // sets a marker at ARB sequence start
- // SOURce1:BB:TETRa:TRIGger:OUTPut1:MODE SSTart
- // SOURce1:BB:TETRa:TRIGger:OUTPut1:MODE FSTart
- // SOURce1:BB:TETRa:TRIGger:OUTPut1:MODE MFSTart
- // SOURce1:BB:TETRa:TRIGger:OUTPut1:MODE HFSTart

SOURce1:BB:TETRa:TRIGger:OUTPut1:MODE PULSe

// sets a pulse marker
SOURce1:BB:TETRa:TRIGger:OUTPut1:PULSe:DIVider 2
SOURce1:BB:TETRa:TRIGger:OUTPut1:PULSe:FREQuency?
// 500000

SOURce1:BB:TETRa:TRIGger:OUTPut1:MODE PATTern
// sets a bit pattern marker
SOURce1:BB:TETRa:TRIGger:OUTPut1:PATTern #H2,2

SOURce1:BB:TETRa:TRIGger:OUTPut1:MODE RAT SOURce1:BB:TETRa:TRIGger:OUTPut1:ONTime 40 SOURce1:BB:TETRa:TRIGger:OUTPut1:OFFTime 20 // defines the on/off ratio

Example: Configuring marker delay

SOURce1:BB:TETRa:TRIGger:OUTPut2:DELay 1600
// delays the marker signal output

Commands:

[:SOURce <hw>]:BB:TETRa:TRIGger:OUTPut<ch>:DELay</ch></hw>	81
[:SOURce <hw>]:BB:TETRa:TRIGger:OUTPut<ch>:MODE</ch></hw>	81
[:SOURce <hw>]:BB:TETRa:TRIGger:OUTPut<ch>:ONTime</ch></hw>	82
[:SOURce <hw>]:BB:TETRa:TRIGger:OUTPut<ch>:OFFTime</ch></hw>	82

[:SOURce <hw>]:BB:TETRa:TRIGger:OUTPut<ch>:PATTern</ch></hw>	82
[:SOURce <hw>]:BB:TETRa:TRIGger:OUTPut<ch>:PULSe:DIVider</ch></hw>	82
[:SOURce <hw>]:BB:TFTRa:TRIGger:OUTPut<ch>:PUI Se:EREQuency?</ch></hw>	

[:SOURce<hw>]:BB:TETRa:TRIGger:OUTPut<ch>:DELay <Delay>

Defines the delay between the signal at the marker outputs and the start of the signals.

Parameters:

<delay></delay>	float		
	Range: Increment: *RST:	0 to 16777215 1E-3 0	
Example:	See Example"Configuring marker delay" on page 80.		
Manual operation:	See "Delay" on page 23		

[:SOURce<hw>]:BB:TETRa:TRIGger:OUTPut<ch>:MODE <Mode>

Defines the signal for the selected marker output.

Parameters:

<Mode>

RESTart SSTart FSTart	MFSTart	HFSTart	PULSe
PATTern RATio			

RESTart

A marker signal is generated at the start of each ARB sequence.

SSTart

A marker signal is generated at the start of each slot.

FSTart

A marker signal is generated at the start of each frame.

MFSTart

A marker signal is generated at the start of each multiframe.

HFSTart

A marker signal is generated at the start of each hyperframe.

PULSe

A regular marker signal is generated. The pulse frequency is defined by entering a divider. The frequency is derived by dividing the sample rate by the divider.

PATTern

A marker signal that is defined by a bit pattern is generated. The pattern has a maximum length of 64 bits and is defined with the command [:SOURce<hw>]:BB:TETRa:TRIGger: OUTPut<ch>:PATTern on page 82.

RATio

```
A marker signal corresponding to the Time Off / Time On specifi-
cations in the commands [:SOURce<hw>]:BB:TETRa:
TRIGger:OUTPut<ch>:ONTime on page 82 and [:
SOURce<hw>]:BB:TETRa:TRIGger:OUTPut<ch>:OFFTime
on page 82 is generated.
*RST: RESTart
Example: See Example"Configuring marker signals" on page 80.
```

Manual operation: See "Mode" on page 22

[:SOURce<hw>]:BB:TETRa:TRIGger:OUTPut<ch>:ONTime <Ontime> [:SOURce<hw>]:BB:TETRa:TRIGger:OUTPut<ch>:OFFTime <Offtime>

Sets the duration during which the marker output is on or off.

^{*)} If R&S SMW-B9 is installed, the minimum marker duration depends on the sample/ symbol rate.

See chapter "Basics on ..." in the R&S SMW user manual.

Parameters:

<offtime></offtime>	integer	
	Range:	1 (R&S SMW-B10) / 1* (R&S SMW-B9) to 16777215
	*RST:	1
Example:	See Example"Configuring marker signals" on page 80	
Manual operation:	See "Mode" on page 22	

[:SOURce<hw>]:BB:TETRa:TRIGger:OUTPut<ch>:PATTern <Pattern>, <BitCount>

Sets a data pattern.

Parameters:

<pattern></pattern>	numeric *RST:	#H2
<bitcount></bitcount>	integer Range: *RST:	1 to 64 2
Example:	See Examp	le"Configuring marker signals" on page 80
Manual operation:	See "Mode"	on page 22

[:SOURce<hw>]:BB:TETRa:TRIGger:OUTPut<ch>:PULSe:DIVider <Divider>

Sets the divider for the clock frequency.

^{*)} If R&S SMW-B9 is installed, the minimum marker duration depends on the sample/ symbol rate.

See chapter "Basics on ..." in the R&S SMW user manual.

Parameters:		
<divider></divider>	integer	
	Range: *RST:	2 (R&S SMW-B10) / 2* (R&S SMW-B9) to 1024 2
Example:	See Examp	le"Configuring marker signals" on page 80.
Manual operation:	See "Mode"	on page 22

[:SOURce<hw>]:BB:TETRa:TRIGger:OUTPut<ch>:PULSe:FREQuency?

Queries the marker pulse frequency.

Return values:	
<frequency></frequency>	float
	Increment: 0.001
Example:	See Example"Configuring marker signals" on page 80.
Usage:	Query only
Manual operation:	See "Mode" on page 22

4.8 Clock commands

This section lists the remote control commands to configure the clock.

Example: Configuring the clock

```
SOURce:BB:TETRa:CLOCk:SOURce INTernal
// selects internal clock
SOURce1:BB:TETRa:CLOCk:SOURce ELCL
// selects and configure the external clock signal
SOURce1:BB:TETRa:CLOCk:MODe SAMP
```

[:SOURce <hw>]:BB:TETRa:CLOCk:MODE</hw>	83
[:SOURce <hw>]:BB:TETRa:CLOCk:SOURce</hw>	84

[:SOURce<hw>]:BB:TETRa:CLOCk:MODE <Mode>

Sets the type of externally supplied clock.

Parameters:			
<mode></mode>	SAMPle		
	*RST:	SAMPle	
Example:	SOURcel:E	BB:TETRa:CLOCk:MODE	SAMPle

Options: R&S SMW-B10

Manual operation: See "Clock Mode" on page 24

[:SOURce<hw>]:BB:TETRa:CLOCk:SOURce <Source>

Selects the clock source.

Parameters:

<source/>	INTernal ELCLock EXTernal
	INTernal The instrument uses its internal clock reference
	ELCLock External local clock
	EXTernal EXTernal = EGC1 Setting only; provided for backward compatibility with other Rohde & Schwarz signal generators. *RST: INTernal
Example:	BB:TETR:CLOC:SOUR INT selects the nternal clock reference.
Options:	ELCLock requires R&S SMW-B10
Manual operation:	See "Clock Source" on page 24

List of commands

[:SOURce <hw>]:BB:TETRa:BBNCht:APARameter</hw>	63
[:SOURce <hw>]:BB:TETRa:BBNCht:BCCode</hw>	64
[:SOURce <hw>]:BB:TETRa:BBNCht:CBANdwidth</hw>	
[:SOURce <hw>]:BB:TETRa:BBNCht:CRFRequency?</hw>	64
[:SOURce <hw>]:BB:TETRa:BBNCht:CSLevel</hw>	65
[:SOURce <hw>]:BB:TETRa:BBNCht:DNBBroadcast</hw>	65
[:SOURce <hw>]:BB:TETRa:BBNCht:DNBenquiry</hw>	
[:SOURce <hw>]:BB:TETRa:BBNCht:DSPacing</hw>	65
[:SOURce <hw>]:BB:TETRa:BBNCht:ECORrection</hw>	
[:SOURce <hw>]:BB:TETRa:BBNCht:FBANd</hw>	
[:SOURce <hw>]:BB:TETRa:BBNCht:FEEXtension</hw>	66
[:SOURce <hw>]:BB:TETRa:BBNCht:LBACk</hw>	
[:SOURce <hw>]:BB:TETRa:BBNCht:LENTry</hw>	67
[:SOURce <hw>]:BB:TETRa:BBNCht:MCCode</hw>	
[:SOURce <hw>]:BB:TETRa:BBNCht:MCNumber</hw>	
[:SOURce <hw>]:BB:TETRa:BBNCht:MNCode</hw>	
[:SOURce <hw>]:BB:TETRa:BBNCht:MTMCell</hw>	
[:SOURce <hw>]:BB:TETRa:BBNCht:OFFSet</hw>	
[:SOURce <hw>]:BB:TETRa:BBNCht:ROPeration</hw>	68
[:SOURce <hw>]:BB:TETRa:BBNCht:SCODe</hw>	
[:SOURce <hw>]:BB:TETRa:BBNCht:SMODe</hw>	69
[:SOURce <hw>]:BB:TETRa:BBNCht:TBTYpe</hw>	69
[:SOURce <hw>]:BB:TETRa:BBNCht:TRFRames</hw>	
[:SOURce <hw>]:BB:TETRa:BBNCht:TTBType</hw>	70
[:SOURce <hw>]:BB:TETRa:BBNCht:TXON</hw>	70
[:SOURce <hw>]:BB:TETRa:BBNCht:UPDTx</hw>	71
[:SOURce <hw>]:BB:TETRa:CLIPping:LEVel</hw>	71
[:SOURce <hw>]:BB:TETRa:CLIPping:MODE</hw>	72
[:SOURce <hw>]:BB:TETRa:CLIPping:STATe</hw>	72
[:SOURce <hw>]:BB:TETRa:CLOCk:MODE</hw>	
[:SOURce <hw>]:BB:TETRa:CLOCk:SOURce</hw>	
[:SOURce <hw>]:BB:TETRa:CTYPe</hw>	
[:SOURce <hw>]:BB:TETRa:DBTYpe</hw>	
[:SOURce <hw>]:BB:TETRa:FILTer:ILENgth</hw>	72
[:SOURce <hw>]:BB:TETRa:FILTer:PARameter:APCO25</hw>	
[:SOURce <hw>]:BB:TETRa:FILTer:PARameter:COSine</hw>	72
[:SOURce <hw>]:BB:TETRa:FILTer:PARameter:COSine:COFS</hw>	73
[:SOURce <hw>]:BB:TETRa:FILTer:PARameter:GAUSs</hw>	
[:SOURce <hw>]:BB:TETRa:FILTer:PARameter:LPASs</hw>	72
[:SOURce <hw>]:BB:TETRa:FILTer:PARameter:LPASSEVM</hw>	
[:SOURce <hw>]:BB:TETRa:FILTer:PARameter:PGAuss</hw>	72
[:SOURce <hw>]:BB:TETRa:FILTer:PARameter:RCOSine</hw>	72
[:SOURce <hw>]:BB:TETRa:FILTer:PARameter:SPHase</hw>	72
[:SOURce <hw>]:BB:TETRa:FILTer:TYPE</hw>	
[:SOURce <hw>]:BB:TETRa:LDIRection</hw>	49
[:SOURce <hw>]:BB:TETRa:MTYPe</hw>	
[:SOURce <hw>]:BB:TETRa:PRAMping:FOFFset</hw>	53

[:SOURce <hw>]:BB:TETRa:PRAMping:RFUNction</hw>	53
[:SOURce <hw>]:BB:TETRa:PRAMping:ROFFset</hw>	53
[:SOURce <hw>]:BB:TETRa:PRAMping:RTIMe</hw>	54
[:SOURce <hw>]:BB:TETRa:PRESet</hw>	49
[:SOURce <hw>]:BB:TETRa:SATTenuation<ch></ch></hw>	54
[:SOURce <hw>]:BB:TETRa:SCONfiguration:SLOT<st>:LDIRection<ch>:TBTYpe</ch></st></hw>	55
[:SOURce <hw>]:BB:TETRa:SCONfiguration:SLOT<st>:UBBNch</st></hw>	56
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:AMODe</ch></st></di></hw>	56
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:APF1</ch></st></di></hw>	56
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:APF2</ch></st></di></hw>	57
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:APHeader</ch></st></di></hw>	57
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:BSATtenuation</ch></st></di></hw>	57
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:DATA</ch></st></di></hw>	58
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:DATA:DPATtern</ch></st></di></hw>	58
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:DATA:DSELection</ch></st></di></hw>	59
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:LCTYpe</ch></st></di></hw>	59
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:SCRambling</ch></st></di></hw>	59
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:SDATa</ch></st></di></hw>	60
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>SLOT<st>:LDIRection<ch>:SDATa:SDPattern.</ch></st></di></hw>	60
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>SLOT<st>:LDIRection<ch>:SDATa:SDSelection</ch></st></di></hw>	on.61
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:SLEVel</ch></st></di></hw>	61
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:SSATtenuation</ch></st></di></hw>	57
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:SSLevel</ch></st></di></hw>	62
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:TPATtern</ch></st></di></hw>	62
[:SOURce <hw>]:BB:TETRa:SCONfiguration:TMODe<di>:SLOT<st>:LDIRection<ch>:TSOurce</ch></st></di></hw>	62
[:SOURce <hw>]:BB:TETRa:SETTing:CATalog?</hw>	50
[:SOURce <hw>]:BB:TETRa:SETTing:DELete</hw>	50
[:SOURce <hw>]:BB:TETRa:SETTing:LOAD</hw>	50
[:SOURce <hw>]:BB:TETRa:SETTing:STORe</hw>	51
[:SOURce <hw>]:BB:TETRa:SLENgth</hw>	51
[:SOURce <hw>]:BB:TETRa:SRATe:VARiation</hw>	51
[:SOURce <hw>]:BB:TETRa:STATe</hw>	51
[:SOURce <hw>]:BB:TETRa:TMODe</hw>	52
[:SOURce <hw>]:BB:TETRa:TRIGger:ARM:EXECute</hw>	74
[:SOURce <hw>]:BB:TETRa:TRIGger:EXECute</hw>	75
[:SOURce <hw>]:BB:TETRa:TRIGger:OBASeband:DELay</hw>	75
[:SOURce <hw>]:BB:TETRa:TRIGger:OBASeband:DELay</hw>	75
[:SOURce <hw>]:BB:TETRa:TRIGger:OBASeband:INHibit</hw>	76
[:SOURce <hw>]:BB:TETRa:TRIGger:OUTPut<ch>:DELay</ch></hw>	81
[:SOURce <hw>]:BB:TETRa:TRIGger:OUTPut<ch>:MODE</ch></hw>	81
[:SOURce <hw>]:BB:TETRa:TRIGger:OUTPut<ch>:OFFTime</ch></hw>	82
[:SOURce <hw>]:BB:TETRa:TRIGger:OUTPut<ch>:ONTime</ch></hw>	82
[:SOURce <hw>]:BB:TETRa:TRIGger:OUTPut<ch>:PATTern</ch></hw>	82
[:SOURce <hw>]:BB:TETRa:TRIGger:OUTPut<ch>:PULSe:DIVider</ch></hw>	82
[:SOURce <hw>]:BB:TETRa:TRIGger:OUTPut<ch>:PULSe:FREQuency?</ch></hw>	83
[:SOURce <hw>]:BB:TETRa:TRIGger:RMODe</hw>	76
[:SOURce <hw>]:BB:TETRa:TRIGger:SEQuence</hw>	78
[:SOURce <hw>]:BB:TETRa:TRIGger:SLENgth</hw>	76
[:SOURce <hw>]:BB:TETRa:TRIGger:SLUNit</hw>	76
[:SOURce <hw>]:BB:TETRa:TRIGger:SOURce</hw>	77

[:SOURce <hw>1:BB:TETRa:TRIGger:TIME:DATE</hw>	78
[:SOURce <hw>]:BB:TETRa:TRIGger:TIME:TIME</hw>	79
[:SOURce <hw>]:BB:TETRa:TRIGger:TIME[:STATe]</hw>	79
[:SOURce <hw>]:BB:TETRa:TRIGger[:EXTernal]:DELay</hw>	77
[:SOURce <hw>]:BB:TETRa:TRIGger[:EXTernal]:INHibit</hw>	78
[:SOURce <hw>]:BB:TETRa:TRIGger[:EXTernal<ch>]:DELay</ch></hw>	77
[:SOURce <hw>]:BB:TETRa:TRIGger[:EXTernal<ch>]:INHibit</ch></hw>	78
[:SOURce <hw>]:BB:TETRa:TRIGger[:EXTernal<ch>]:SYNChronize:OUTPut</ch></hw>	75
[:SOURce <hw>]:BB:TETRa:VERSion?</hw>	52
[:SOURce <hw>]:BB:TETRa:WAVeform:CREate</hw>	52

Index

Α

AACH configuration	
AACH-Q mode	
ACCESS PARAMETER	
Application cards	8
Application notes	8
Arm	
Trigger	18
Armed	
Auto, trigger mode	17
Retrigger, trigger mode	
Auto	
Trigger mode	17

В

ВхТ	
Base colour code	37
Baseband clipping	
Baseband filter	39
BNCH/T	
Brochures	7
BSCH	15

С

Carrier bandwidth	. 31
Cell service level	. 34
Channel type	. 15
Clipping	. 38
Level	. 41
Mode	.41
Settings	.41
State	. 41
Clipping Level	42
Clipping Mode	. 42
Clock	
Mode	. 24
Source	. 24
Clock settings	.23
Coded RF Frequency	. 32
Common trigger settings	. 17
Conventions	
SCPI commands	. 46
Coupled trigger settings	. 17
Crest factor	41
Current range without recalculation	. 23
Cut Off Frequency factor	. 39
Cut Off Frequency Shift	. 39

D

D-NWRK-BROADCAST broadcast	
D-NWRK-BROADCAST inquiry	34
Data sheets	7
Data source	
Default settings	12
Delay	
Marker	23
Trigger	20
Documentation overview	6
Downlink Burst Type	15
Duplex spacing	32

Е

Error Correction	35
Execute	
Trigger	19
External trigger	
Delay	20
Inhibit	20
F	
Fall offset	44
Fall offset Filter	
Fall offset Filter Settings	
Fall offset Filter Settings Type	
Fall offset Filter Settings Type Filter parameter	44 38 38 39 39
Fall offset Filter Settings Type Filter parameter Frame 18 extension	
Fall offset Filter Settings Type Filter parameter Frame 18 extension Frequency band	

G

Generate	
Waveform file	13
Getting started	6

Н

Help	. 6
------	-----

I

Impulse Length	
Installation	5
Instrument help	6
Instrument security procedures	7

L

Late entry	35
Logical Channel Type	
Loop back	

Μ

Main carrier number
Marker
Delay23
Mode
Settings21
Measured external clock
Mobile country code
Mobile network code
Mode
Clock
Marker22
Modulation
Settings40
Туре
Modulation type15
MS_TXPWR_MAX_CELL
Ν

Nyquist filter	39
----------------	----

0

Offset	
Open source acknowledgment (OSA)	
0 ()	

Ρ

Power Ramp Control15	5
----------------------	---

R

Raised cosine filter	
see Cosine filter	39
Ramp function	43
Ramp time	44
Release notes	7
Retrigger	
Trigger mode	17
Reverse operation	32
Rise offset	44
Roll Off	39
Root raised cosine filter	
see Root Cosine	39
RRC filter	
see Root Cosine filter	39

S

Safety instructions	7
Save/Recall	
Tetra	13
Scrambling	29
Security procedures	7
Sequence Length	15
Service manual	7
Set to default	12
Settings	
Clipping	41
Clock	
Filter	38
Modulation	40
Sharing mode	34
Signal duration	18
Signal duration unit	17
Signal generation status	
Single	
Trigger	17
Slot attenuation	45
Subslot attenuation	27
Slot Attenuations	15
Slot level	
Subslot level	27
Source	
Clock	24
Triager	
Standard settings	12
State	
Tetra	12
System code	33
,	
т	

T1_T4_Burst_Type	. 35 27
Tetra	
cut off frequency LP EVM	72
State	12

Time-based trigger	
Date	18
State	
Time	
Training sequence	
Transmission direction	14
Trigger	
Arm	
Delay	20
Execute	19
External	20
External, inhibit	20
Mode	
Running/Stopped	
Signal duration	
Source	19
Synchronize output	19
TS reserved frames	
Tutorials	7
Tx_burst_type	36
Tx on	35

U

U-plane DTX	34
Use coded T1/T4 data	27
User manual	6

۷

W

Waveform file	
Create	13
White papers	8