R&S[®]FPL1000 스펙트럼 분석기 시작하기

ROHDE&SCHWARZ

본 매뉴얼에서 설명하는 R&S[®]FPL1000 모델(펌웨어 1.81 이상)은 다음과 같습니 다.

- R&S[®]FPL1003 (1304.0004K03) FPL1000(최대 주파수 3 GHz)
- R&S[®]FPL1007 (1304.0004K07) FPL1000(최대 주파수 7.5 GHz)
- R&S[®]FPL1014 (1304.0004K14) FPL1000(최대 주파수 14 GHz)
- R&S[®]FPL1026 (1304.0004K26) FPL1000(최대 주파수 26.5 GHz)

본체에 대한 설명과 함께 다음 옵션에 대한 설명도 나와 있습니다.

- R&S FPL1-B4, OCXO(1323.1902.02)
- R&S FPL1-B5, 추가 인터페이스(1323.1883.02)
- R&S FPL1-B9, 내부 발생기(1323.1925.03/1323.1925.07)
- R&S FPL1-B10, GPIB 인터페이스(1323.1890.02)
- R&S FPL1-B11, YIG 사전 선택기 바이패스(1323.1619.02)
- R&S FPL1-B22, 전치 증폭기(1323.1719.02)
- R&S FPL1-B25, 전자 감쇠기(1323.1990.02)
- R&S FPL1-B30, DC 전원공급장치(1323.1877.02)
- R&S FPL1-B31, 리튬이온 배터리 팩과 충전기(1323.1725.02)
- R&S FPL1-K9, 파워 센서 지원(1323.1754.02)

© 2021 Rohde & Schwarz GmbH & Co. KG Mühldorfstr. 15, 81671 München, Germany 전화: +49 89 41 29 - 0 이메일:info@rohde-schwarz.com 웹사이트:www.rohde-schwarz.com 사정에 따라 변경될 수 있음 - 허용 한계가 없는 데이터는 구속력이 없음 R&S®는 Rohde & Schwarz GmbH & Co. KG의 등록 상표입니다. 상품명은 해당 소유자의 상표권의 보호를 받습니다.

1179.4657.19 | 버전 13 | R&S®FPL1000

본 매뉴얼에서 Rohde & Schwarz 제품은 [®] 기호 없이 표시됩니다. 예를 들어 R&S[®]FPL1000은 R&S FPL1000으로 표시되며, R&S[®] FPL1-Bxx/-Kxx는 R&S FPL1-Bxx/-Kxx로 표시됩니다.

목차

1	안전 및 규제 안내	. 7
1.1	사용 안전 지침	7
1.2	R&S FPL1000의 라벨	11
1.3	한국 인증 등급 A	11
2	문서 개요	12
2.1	시작 매뉴얼	12
2.2	사용자 매뉴얼 및 도움말	12
2.3	서비스 매뉴얼	13
2.4	기기 보안 절차	13
2.5	안전 지침 인쇄본	13
2.6	데이터 시트 및 브로셔	13
2.7	릴리스 노트 및 오픈소스 확인(OSA)	13
2.8	애플리케이션 노트, 애플리케이션 카드, 백서 등	.14
2.9	교정 인증서	14
3	주요 특징	15
4	사용 준비	16
4.1	운반	16
4.2	포장 제거 및 점검	16
4.3	운용 장소 선택	17
4.4	R&S FPL1000 셋업	17
4.5	전원 연결	20
4.6	전원 켜기/끄기	23
4.7	LAN에 연결	.24
4.8	키보드 연결	25

4.9	외부 모니터 연결	26
4.10	Windows 운영체제	27
4.11	로그인	29
4.12	제공 옵션 확인	31
4.13	Self-Alignment 수행	31
4.14	테스트 셋업 시 고려사항	32
5	기기 둘러보기	34
5.1	전면 패널	34
5.2	후면 패널	41
6	기기 시험 사용	48
6.1	기본 신호 측정	48
6.2	스펙트로그램 표시	50
6.3	추가 측정 채널 활성화	52
6.4	연속 측정 실행하기	57
6.5	마커 설정 및 이동	58
6.6	Marker Peak List 표시	60
6.7	디스플레이 확대/축소	61
6.8	설정 저장하기	65
6.9	결과 인쇄 및 저장	67
7	기기 작동	69
7.1	디스플레이 정보 이해하기 - 스펙트럼 모드	69
7.2	기능 액세스	78
7.3	데이터 입력	83
7.4	터치스크린 제스처	85
7.5	도움말 보기	87
8	고객 지원	89

4

8.1	지원에 필요한 정보 수집	89
8.2	고객 지원팀 문의	91
	색인	93

1 안전 및 규제 안내

제품 설명서에는 안전하고 효율적인 제품 사용 방법이 나와 있습니다. 본 매뉴얼 과 아래의 장에 나온 안내를 따르십시오.

규정된 용도

본 제품은 산업, 관리 및 실험 환경에서 전자 부품 및 장치의 개발, 생산 및 검증 을 위한 제품입니다. 지정된 용도로만 제품을 사용하십시오. 데이터 시트에 나오 는 작동 조건과 한계 성능을 준수하십시오.

안전 정보는 어디에서 확인할 수 있나요?

안전 정보는 제품 설명서에서 확인 할 수 있습니다. 잠재적인 위험에 대한 경고하 고, 위험한 상황으로 인한 부상이나 손상을 방지하는 내용이 안전 정보에 나와 있 습니다. 안전 정보에서 제공하는 내용은 다음과 같습니다.

- 장 1.1, "사용 안전 지침", 페이지 7의 경우 동일한 내용이 "안전 지침" 책자 에 다양한 언어로 제공됩니다. '안전 지침' 인쇄본은 제품과 함께 제공됩니다.
- 제품 설치 또는 작동 중에 안전을 위해 주의해야 할 사항이 설명서에 나와 있 습니다.

1.1 사용 안전 지침

Rohde & Schwarz 그룹의 제품은 최고의 기술 표준에 따라 제작되었습니다. 제품 의 안전한 사용을 위해 이 문서와 제품 설명서에 제시된 지침을 준수하십시오. 제 품 설명서를 기기 주변에 비치하여 다른 사용자가 볼 수 있도록 하십시오.

제품은 규정된 용도와 성능 한도 내에서만 사용하십시오. 규정된 용도와 한도는 데이터 시트, 설명서 및 "안전 지침" 인쇄본에 기술되어 있습니다. 적절한 사용 방 법에 대해 알고 싶은 경우, Rohde & Schwarz 고객 서비스 센터에 문의하십시오.

제품을 사용할 때에는 전문가 또는 특별 교육을 이수한 사람이 필요합니다. 또한, 해당 사용자는 사용자 인터페이스 및 제품 설명서가 작성된 언어 중 하나 이상에 익숙해야 합니다.

절대 제품의 케이스를 열지 마십시오. Rohde & Schwarz의 공인 서비스 담당자만 제품을 수리할 수 있습니다. 제품의 일부가 손상되거나 고장이 발생한 경우, 제품 사용을 중단하십시오. Rohde & Schwarz 고객 서비스 센터(http:// www.customersupport.rohde-schwarz.com)에 문의하시기 바랍니다.

제품 리프팅 운반하기

제품의 최대 무게는 데이터 시트에 나와 있습니다. 제품의 안전한 이동을 위해 리 프트 또는 리프트 트럭, 지게차와 같은 운송 장비를 사용할 수 있습니다. 해당 장 비 제조사에서 제공하는 지침을 준수하십시오.

제품 운용 장소 선택

제품은 실내에서만 사용하십시오. 제품 케이스는 방수 기능이 없으며, 물이 유입 될 경우 충전부가 있는 케이스와 전기 접촉을 일으킬 수 있기 때문에, 케이스와 신체 일부가 접촉할 경우 감전, 심각한 부상을 입거나 사망에 이를 수 있습니다. Rohde & Schwarz에서 제품 전용으로 설계된 액세서리(예: 운반용 가방)를 제공 하는 경우 제품을 실외에서 사용할 수 있습니다.

별도 언급이 없다면 해발 2,000 m까지 제품을 운용할 수 있습니다. 이 제품은 비 전도성 오염이 발생하지 않는 오염 2 급 환경에 적합합니다. 주변 온도 및 습도와 같은 환경 조건에 대한 세부 내용은 데이터 시트를 참조하십시오.

제품 설정

항상 제품 바닥이 아래로 향한 상태에서 견고하고 평평한 수평면에 제품을 배치 하십시오. 해당 제품이 다른 위치에서 사용할 수 있도록 설계된 경우, 제품이 넘 어지지 않도록 잘 고정시키십시오.

제품에 접이식 받침대가 있는 경우, 받침대를 안쪽이나 바깥쪽으로 완전히 접어 서(펼쳐서) 완전하게 고정하십시오. 받침대가 바깥쪽으로 완전히 펴지지 않았거 나 제품을 들어올리지 않은 상태에서 움직일 경우, 받침대가 접힐 수 있습니다. 접이식 받침대는 추가 부하를 제외한 제품의 무게만 견디도록 설계되었습니다.

적재할 경우, 적재된 제품이 넘어져 부상을 입을 수 있다는 점을 염두에 두십시 오.

제품을 랙에 설치할 경우, 랙이 적재 용량을 충분히 견딜 수 있을 만큼 견고한지 확인하십시오. 랙 제조사의 제원을 살펴 보십시오. 제품은 항상 바닥쪽에 있는 선 반에서부터 위쪽에 있는 선반 순서로 설치하여 랙이 안전하게 유지될 수 있도록 하십시오. 제품이 랙에서 떨어지지 않도록 잘 고정시키십시오.

전원 연결

본 제품은 과전압 카테고리 II 제품입니다. 가전 또는 비슷한 부하의 에너지 소비 장비에 전원을 공급하는 고정 설비에 본 제품을 연결하십시오. 전기 제품은 감전, 화재, 부상의 위험이 있으며, 사망에 이를 수도 있다는 점에 유의하십시오.

사용 안전 지침

안전을 위해 다음 사항에 주의하십시오.

- 제품의 전원을 켜기 전에 제품에 표시된 전압과 주파수가 이용 가능한 전원과 일치하는지 확인하십시오. 전원 어댑터가 자동으로 조정되지 않는 경우, 올바 른 값을 설정하고 퓨즈의 등급을 확인하십시오.
- 제품에 교체식 퓨즈가 사용된 경우, 퓨즈 홀더 옆에 해당 퓨즈의 타입과 특징 이 표시되어 있습니다. 퓨즈를 교체하기 전에 제품을 끄고 전원에서 분리하십 시오. 퓨즈를 교체하는 방법은 제품 설명서에 나와 있습니다.
- 제품과 함께 제공된 전원케이블만 사용하십시오. 제공된 전원케이블은 국가별 안전 요구사항에 부합합니다. 전원케이블은 반드시 보호 접지 단자가 설치된 전원에만 삽입하십시오.
- 손상되지 않은 케이블만 사용하고, 케이블이 손상되지 않도록 주의하여 배선 하십시오. 전원 케이블을 정기적으로 점검하여 손상 여부를 확인하십시오. 또 한 사람들이 느슨한 케이블에 걸려 넘어지지 않도록 하십시오.
- 제품에 외부 전원 공급 장치가 필요한 경우, 제품에 기본적으로 제공되는 전원 공급 장치, 제품 설명서에서 권장하는 전원 공급 장치 또는 국가별 규정에 부 합하는 전원 공급 장치를 사용하십시오.
- 최대 20 A의 퓨즈 보호가 적용된 전원에만 제품을 연결하십시오.
- 언제든지 전원에서 제품을 분리할 수 있도록 하십시오. 제품을 분리하려면 전 원 플러그를 당깁니다. 전원 플러그에 손쉽게 접근할 수 있어야 합니다. 제품 이 시스템에 통합되어 이러한 요건을 충족하지 않는 경우, 시스템 수준에서 쉽 게 접근할 수 있는 회로 차단기를 제공하십시오.

배터리 안전 취급

본 제품에는 교체형 또는 내장형 리튬 폴리머 또는 리튬 이온 전지 또는 배터리가 들어 있습니다. 다음과 같은 상황에서 배터리라는 단어를 사용할 경우 항상 모든 타입의 배터리를 의미합니다. 배터리 안에 든 내용물만이 잠재적인 위험을 내포 합니다. 손상되지 않은 밀봉된 배터리는 위험하지 않습니다.

충격 또는 열은 찌그러짐, 구멍, 기타 변형 등의 손상을 일으킬 수 있습니다. 배터 리가 손상되면 부상의 위험이 있습니다. 손상되거나 누액된 배터리는 주의해서 취급하십시오. 배터리에서 유해한 가스가 방출되므로 즉시 공간을 환기하십시오. 배터리액에 닿은 경우, 즉시 배터리액이 묻은 옷을 벗으십시오. 배터리액이 피부 또는 눈에 닿은 경우, 염증이 일어날 수 있습니다. 피부 또는 눈을 즉시 물로 완전 히 씻어내고 의사의 상담을 받으십시오.

안전한 취급을 위해 다음 규칙을 따르십시오.

- 배터리를 단락시키지 마십시오.
- 배터리를 기계적으로 손상시키지 마십시오. 배터리를 열거나 분해하지 마십시 오.

안전 및 규제 안내

사용 안전 지침

- 불꽃, 뜨거운 표면, 햇빛과 같은 고온에 배터리를 노출시키지 마십시오.
- Rohde & Schwarz에서 지정한 제품에만 배터리를 사용하십시오.
- 적절한 Rohde & Schwarz 충전기만 사용하여 배터리를 충전하십시오. 배터리 가 부적절하게 충전된 경우, 폭발의 위험이 있습니다. 충전 및 방전 온도 범위 는 제품 설명서를 참조하십시오.
- 교체형 배터리는 동일한 배터리 유형으로만 교체하십시오.
- 배터리를 제품에 넣어두거나 제품 포장을 사용하십시오.
- 교체형 배터리는 현지 폐기물 관할당국에서 지정하는 대로 일반 가정 쓰레기 와 별도로 폐기하십시오.

이러한 규칙을 준수하지 않는 경우, 폭발, 화재 또는 위험 화학물질로 인해 심각 한 부상을 입거나 사망할 수 있습니다. 자세한 내용은 제품 설명서를 참조하십시 오.

교체형 배터리 또는 내장형 배터리가 탑재된 제품에 결함이 있는 경우, Rohde & Schwarz 고객 서비스 센터에 문의하십시오. Rohde & Schwarz은(는) 결함의 심각도를 분류합니다. 배터리 또는 배터리가 탑재된 Rohde & Schwarz 제 품을 반환할 경우, 위험 물품 운반 자격을 갖춘 운송업체를 이용하고 운송업체에 해당 분류 내용을 공지하십시오. IATA-DGR, IMDG-Code, ADR 또는 RID에 따 라 운송업체의 운송 규정을 준수하십시오.

헤드폰 연결

청각 손상을 방지할 수 있도록 다음 사항을 준수하십시오. 헤드폰을 사용하기 전 에 볼륨을 확인하고 필요에 따라 볼륨을 줄이십시오. 변동하는 신호 레벨을 모니 터링하는 경우, 헤드폰을 벗고 신호가 안정될 때까지 기다리십시오. 그런 다음 볼 륨을 조정하십시오.

제품 청소

보푸라기가 없는 마른 천으로 제품을 닦으십시오. 청소할 때에는 케이스에 방수 기능이 없다는 점을 염두에 두십시오. 액체 세제를 사용하지 마십시오.

안전 레이블의 의미

제품의 안전 라벨은 잠재적 위험에 대한 경고입니다.

안전 및 규제 안내

한국 인증 등급 A

Ń	잠재적 위험 제품 설명서를 읽고 부상 또는 제품 손상을 방지하십시오.
4	전기 위험 전기로 동작하는 부분을 나타냅니다. 감전, 화재, 부상의 위험이 있으며, 사망에 이를 수도 있습니다.
	고온 표면 접촉하지 마십시오. 피부 화상의 위험이 있습니다. 화재의 위험이 있습니다.
	보호 접지 단자 이 단자를 접지된 외부 도체 또는 보호 접지에 연결하십시오. 전기 문제가 발생할 경 우 이러한 연결 장치가 감전으로부터 보호해 줄 수 있습니다.

1.2 R&S FPL1000의 라벨

케이스 라벨은 다음에 대한 정보를 알려줍니다.

- 인적 안전("안전 레이블의 의미" 페이지 10 참조)
- 제품 및 환경 안전(표 1-1 참조)
- 제품 식별(장 5.2.14, "장치 ID", 페이지 47 참조)

표 1-1: R&S FPL1000 및 환경 안전 관련 라벨

1.3 한국 인증 등급 A

이 기기는 업무용(A급) 전자파 적합기기로서 판매자 또는 사용자는 이 점을 주의 하시기 바라며, 가정외의 지역에서 사용하는 것을 목적으로 합니다.

사용자 매뉴얼 및 도움말

2 문서 개요

이 섹션에는 R&S FPL1000 사용자 설명서의 개요가 나와 있습니다. 달리 명시되 지 않는 한, R&S FPL1000 장비 페이지에서 사용자 설명서를 확인할 수 있습니 다.

www.rohde-schwarz.com/manual/FPL1000

2.1 시작 매뉴얼

R&S FPL1000에 대한 설명 문구와 제품 설치 및 사용 방법이 나와 있으며, 기본 적인 작동 방법, 일반적인 측정 예시, 일반적인 정보(예: 안전 지침)도 포함되어 있습니다.

제품 구매 시 시작 매뉴얼을 인쇄물로 제공합니다. 인터넷에서 PDF 버전을 다운 로드할 수도 있습니다.

2.2 사용자 매뉴얼 및 도움말

본체와 펌웨어 애플리케이션의 사용자 매뉴얼이 별도로 제공됩니다.

 본체 매뉴얼 모든 장비 모드와 기능에 대한 설명이 나와 있습니다. 또한 원격 제어에 관한 개요, 원격 제어 명령어에 대한 설명과 프로그래밍 예시, 유지보수, 장비 인터 페이스, 에러 메시지에 대한 정보가 나와 있습니다. 시작하기 매뉴얼의 내용도 사용자 매뉴얼에 포함됩니다.

 펌웨어 애플리케이션 매뉴얼 펌웨어 애플리케이션의 특정 기능(예: 원격 제어 명령어)에 대한 설명이 나와 있습니다. R&S FPL1000 작동에 대한 기본 정보는 나와 있지 않습니다.

사용자 매뉴얼의 목차는 R&S FPL1000 도움말로 나와 있습니다. 도움말에서는 문맥 검색을 통해 본체 및 펌웨어 애플리케이션의 전체 정보에 신속하게 접속할 수 있습니다.

모든 사용자 매뉴얼은 인터넷을 통해서도 다운로드 및 확인 가능합니다.

문서 개요

릴리스 노트 및 오픈소스 확인(OSA)

2.3 서비스 매뉴얼

정격 사양, 모듈 교체 및 수리, 펌웨어 업데이트, 문제 해결 및 오류 제거를 위한 성능 테스트에 대한 설명과 기계 도면 및 예비 부품 목록이 나와 있습니다.

서비스 매뉴얼은 글로벌 Rohde & Schwarz 정보 시스템(GLORIS)에 등록된 사용 자에게 제공됩니다.

https://gloris.rohde-schwarz.com

2.4 기기 보안 절차

보안 구역에서 R&S FPL1000로 작업 시 보안 문제에 대해 다룹니다. 인터넷에서 다운로드 가능합니다.

2.5 안전 지침 인쇄본

안전 관련 정보는 다양한 언어로 제공됩니다. 제품 구매 시 인쇄물로 제공됩니다.

2.6 데이터 시트 및 브로셔

데이터시트에는 R&S FPL1000 기술 사양이 포함되어 있으며, 펌웨어 애플리케이 션과 주문 번호, 옵션 액세서리도 나와 있습니다.

브로셔에는 장비에 대한 개요와 구체적인 특징이 나와 있습니다.

www.rohde-schwarz.com/brochure-datasheet/FPL1000을 참조하십시오.

2.7 릴리스 노트 및 오픈소스 확인(OSA)

Release Note에는 최신 펌웨어 버전의 새 기능, 개선사항 및 알려진 이슈사항, 펌웨어 설치 방법이 나와 있습니다.

문서 개요

교정 인증서

Open source acknowledgment 문서에는 사용된 오픈소스 소프트웨어의 라이센 스 문구가 그대로 나와 있습니다.

www.rohde-schwarz.com/firmware/FPL1000을 참조하십시오.

2.8 애플리케이션 노트, 애플리케이션 카드, 백서 등

이들 문서에는 특수 용도 또는 특정 주제에 대한 배경 정보가 나와 있습니다. www.rohde-schwarz.com/application/FPL1000을 참조하십시오.

2.9 교정 인증서

교정 성적서는 https://gloris.rohde-schwarz.com/calcert에서 다운로드할 수 있 습니다. 후면 패널의 라벨에 표시된 제품 ID가 있어야 합니다.

3 주요특징

R&S FPL1000은 RF 성능과 사용편의성의 새로운 표준을 수립합니다. 주요 기능 중 특히 뛰어난 기능은 다음과 같습니다.

한 대의 기기로 다양한 작업 수행

- Spectrum analysis
- 아날로그 및 디지털 변조 신호의 신호 분석
- 파워 센서를 이용한 파워 측정
- Noise Figure 및 Gain 측정
- 위상 노이즈 측정

높은 신뢰성의 RF 성능

- 낮은 Spurious response
- 낮은 DANL(Displayed Average Noise Level)
- 40 MHz 신호 분석 대역폭
- 낮은 레벨 측정 불확도
- 낮은 위상 노이즈로 인한 정밀 스펙트럼 측정

직관적 사용자 인터페이스

- 고해상도 디스플레이
- 멀티포인트 터치스크린
- 유연한 결과 화면 구성 및 MultiView
- Toolbar
- 저소음 작동

뛰어난 휴대성

- 배터리팩 및 12 V/24 V 파워 서플라이
- 휴대용 가방 및 하네스
- 낮은 전력 소비

포장 제거 및 점검

4 사용준비

본 장에서는 제품을 처음 설정할 때 필요한 기본 정보에 대해 설명합니다.

•	운반	.16
•	포장 제거 및 점검	.16
•	운용 장소 선택	.17
•	R&S FPL1000 셋업	.17
•	전원 연결	. 20
•	전원 켜기/끄기	.23
•	LAN에 연결	. 24
•	키보드 연결	. 25
•	외부 모니터 연결	. 26
•	Windows 운영체제	. 27
•	로그인	. 29
•	제공 옵션 확인	. 31
•	Self-Alignment 수행	.31
•	테스트 셋업 시 고려사항	. 32

4.1 운반

운반용 손잡이는 기기를 들어올리거나 운반하는 데 사용하도록 설계되었습니다. 손잡이에 과도한 힘을 가하지 마십시오.

"제품 리프팅 운반하기" 페이지 8 참조.

4.2 포장 제거 및 점검

- 1. R&S FPL1000의 포장을 조심스럽게 제거합니다.
- 2. 포장재를 보관하십시오. 나중에 R&S FPL1000를 운반 또는 운송할 때 사용할 수 있습니다.
- 3. 배송 목록표를 참조하면서 누락된 장비가 없는지 확인합니다.

4. 장비에 손상된 부분이 있는지 확인합니다.

누락된 내용물이 있거나 장비에 손상된 부분이 있는 경우 Rohde & Schwarz 에 연락하십시오.

4.3 운용 장소 선택

제품 및 연결된 장치가 손상되지 않고 올바르게 작동할 수 있도록 명시된 운용 조 건을 준수하십시오. 주변 온도 및 습도와 같은 환경 조건에 대한 세부 내용은 데 이터 시트를 참고하십시오.

"제품 운용 장소 선택" 페이지 8도 참고하십시오.

전자기 호환성 등급

전자기 호환성(EMC) 등급은 제품의 운용 가능 장소를 나타냅니다. 제품의 EMC 등급은 'General Data'의 데이터 시트에 나와 있습니다.

- B 등급 장비는 다음 환경에서 사용하기에 적합합니다.
 - 주거 환경
 - 주거용 건물에 전원을 공급하는 저전압 공급망에 직접 연결된 환경
- A 등급 장비는 산업 환경에서 사용하기에 적합합니다. 주거 환경에서 사용할 경우 전도 및 방사 간섭으로 인해 통신 장애가 발생할 수 있습니다. 따라서 B 등급 환경에는 적합하지 않습니다.
 A 등급 장비가 통신 장애를 발생시키면 주의해서 장애 문제를 해결하십시오.

4.4 R&S FPL1000 셋업

R&S FPL1000은 작업대 위나 랙에서 사용하는 용도 또는 현장에서 운반용 가방에 넣는 휴대용 장비(배터리 작동은 옵션)로 제작되었습니다.

다음 내용을 함께 참고하십시오.

- "제품 설정" 페이지 8
- "규정된 용도" 페이지 7

4.4.1 작업대에 R&S FPL1000 설치하기

작업대에 제품을 설치하는 방법

- 평평하고 안정적인 작업대에 제품을 설치하십시오. 제품의 무게를 지지할 수 있는 작업대여야 합니다. 무게에 대한 세부 내용은 데이터 시트를 참고하십시 오.
- 주의! 제품의 접이식 받침대는 쓰러질 수 있으니 주의하십시오.. "제품 설정" 페이지 8의 내용을 참고하십시오.
 항상 받침대를 완전히 접거나 펴십시오. 받침대를 편 상태에서 위나 아래에 물 건을 놓지 마십시오.
- 3. 주의! 제품이 쓰러질 경우 상해를 입힐 수 있습니다.. 층으로 장비를 쌓기에는 장비 윗면의 공간이 너무 작습니다. 위에 다른 제품을 올리지 마십시오.

필요한 경우에는 제품을 이용하십시오.

주의사항! 과열이 발생하면 제품이 손상될 수 있습니다.
 다음을 참고하여 과열이 발생하지 않도록 주의하십시오.

- 제품의 팬 입구와 주변 물체 사이의 거리가 10 cm 이상이어야 합니다.
- 라디에이터 또는 다른 장비 주변에 제품을 두지 마십시오.

4.4.2 랙에 R&S FPL1000 장착

랙 준비 방법

- 1. "제품 설정" 페이지 8에 나온 요건과 안내를 따르십시오.
- 주의사항! 공기 흐름이 충분하지 않으면 제품이 과열 및 손상될 수 있습니다. 효율적인 랙 환기 구조를 설계하고 구현하십시오.

랙에 R&S FPL1000를 장착하려면

- 1. 랙에 R&S FPL1000를 장착하려면 어댑터 키트가 필요합니다.
 - a) R&S FPL1000 전용 랙 어댑터 키트를 주문하십시오. 주문 번호는 데이터 시트를 참조하십시오.
 - b) 어댑터 키트를 장착합니다. 어댑터 키트와 함께 제공된 조립 지침을 따르 십시오.
- 2. R&S FPL1000를 선반 높이로 들어 올립니다.
- 3. 손잡이를 잡고 브라켓이 랙에 잘 끼워질 때까지 R&S FPL1000를 밀어 넣습니다.
- 4. 1.2 Nm 조임 토크로 브라켓에 모든 나사를 조여 랙에 R&S FPL1000를 고정합 니다.

랙에서 R&S FPL1000를 해체하려면

- 1. 브라켓의 나사를 풉니다.
- 2. 랙에서 R&S FPL1000를 제거합니다.
- 3. 작업대에 R&S FPL1000를 다시 배치할 경우, R&S FPL1000에서 어댑터 키트 를 해체하십시오. 어댑터 키트와 함께 제공된 지침을 따르십시오.

4.4.3 이동 작업

R&S FPL1000 구매 시 옵션으로 제공되는 운반용 가방을 이용하면 현장에서 장 비를 안전하게 사용할 수 있습니다. 이 가방에는 환기 구멍이 있습니다. 투명한 덮개를 사용하면 장비를 가방에 둔 상태로 사용할 수 있습니다. 옵션으로 제공되 는 운반 조끼를 착용하면 R&S FPL1000을(를) 가방에 넣은 상태로 손을 자유롭게 이용할 수 있습니다. 전용 운반용 가방에서 옵션으로 제공되는 배터리 팩 (장 4.5.3, "옵션 배터리 팩(R&S FPL1-B31)", 페이지 22 참조)과 함께 이용하면 외부 환경에서도 R&S FPL1000을(를) 바로 사용할 수 있습니다.

사용 준비 전원 연결

운반용 가방 안에 장비를 넣기 전에 가방에 마모되거나 찢긴 부분이 있는지 점 검하십시오.

옵션 액세서리에 대해 자세히 알아보려면 R&S FPL1000 데이터시트를 참조하십 시오.

4.5 전원 연결

R&S FPL1000에 다양한 방법으로 전원을 공급할 수 있습니다.

- R&S FPL1000에는 AC 전원 공급 커넥터가 설치되어 있습니다.
- R&S FPL1000에는 옵션인 (내부) DC 전원 커넥터(R&S FPL1-B30)도 장착할 수 있습니다.
- R&S FPL1000에 R&S FPL1-B31 옵션이 설치된 경우 배터리로 작동할 수 있습니다.

4.5.1 AC 전원 연결

R&S FPL1000는 다른 AC 전압으로 사용 가능하며 다른 AC 전압에 자동 대응합 니다. 전압 및 주파수 요구사항은 데이터 시트를 참조하십시오.

시작하기 1179.4657.19 — 13

안전 정보는 "전원 연결" 페이지 8을(를) 참조하십시오.

AC 전원을 연결하려면

1. AC 전원 케이블을 기기의 후면 패널에 있는 AC 전원 커넥터에 연결합니다. R&S FPL1000와 함께 제공된 AC 전원 케이블만 사용하십시오.

 AC 전원 케이블을 접지 단자가 있는 콘센트에 연결합니다. 필요한 등급은 AC 전원 커넥터 옆과 데이터 시트에 표시되어 있습니다.

커넥터에 대한 자세한 내용은 장 5.2.1, "AC 전원공급장치 연결 및 주 전원 스위 치", 페이지 42을(를) 참조하십시오.

4.5.2 옵션 DC 전원공급장치(R&S FPL1-B30) 연결

R&S FPL1000에는 옵션인 DC 전원 커넥터(R&S FPL1-B30)도 장착할 수 있습니 다. 이 커넥터를 설치한 R&S FPL1000은 +12 V ~ +24 V의 DC 전압으로 작동할 수 있습니다. 커넥터에 대한 자세한 내용은 장 5.2.2, "리튬이온 배터리 팩과 DC 전원 커넥터", 페이지 42을(를) 참조하십시오.

기기에 안전 DC 저전압(SELV)을 공급하기 위해 외부 전원공급장치를 사용하는 경우 DIN/EN/IEC 61010(UL 3111, CSA C22.2 No. 1010.1) 또는 DIN/EN/IEC 60950 (UL 1950, CSA C22.2 No. 950)에 따라 강화/이중 절연 요건을 충족하십 시오. DIN EN 61010-1 부록 F2.1에 따라 한도 내 전류를 공급하십시오. 3 m 이 상의 케이블을 사용하십시오.

"전원 연결" 페이지 8의 내용도 참조하십시오.

DC 연결

▶ 위의 설명과 같이 케이블을 사용하여 R&S FPL1000 후면 패널의 DC 전원 커 넥터를 DC 전원에 연결합니다.

4.5.3 옵션 배터리 팩(R&S FPL1-B31)

R&S FPL1000은 고정 AC 또는 DC 전원공급장치 대신 배터리로도 작동할 수 있 습니다. "배터리 팩" 옵션 R&S FPL1-B31은 두 개의 리튬이온 배터리와 내부 충 전기로 구성되어 있습니다. 내부 충전기는 기기가 AC 또는 DC 전원에 연결될 때 마다 배터리를 충전합니다. 작동 중 DC 전원 또는 AC 전원이 공급되지 않을 경우 R&S FPL1000은 배터리 작동으로 자동 전환됩니다.

배터리 팩은 로데슈바르즈 서비스팀에서 신규 장착할 수 있습니다.

안전 정보는 "배터리 안전 취급" 페이지 9을(를) 참조하십시오.

배터리 충전

배터리 작동으로 처음 사용하는 경우 먼저 배터리를 충전하십시오. 장기간 보관 한 후에는 최대 용량에 도달할 수 있도록 배터리의 충전과 방전을 여러 번 반복해 야 할 수 있습니다.

타사 배터리의 경우 제조업체에서 제공한 지침을 따르십시오. Rohde & Schwarz 에서 제조한 배터리의 경우 다음을 준수하십시오.

- R&S FPL1000에 삽입한 배터리의 경우 일반적인 AC 또는 DC 전원공급장치 를 통해 충전됩니다.
- 외부 배터리 충전기 R&S FSV-B34를 사용하여 최대 4개의 배터리를 충전할 수도 있습니다.
- +0 °C ~ +45 °C 온도 범위에서 충전하십시오. 온도가 이 값보다 높거나 낮을 경우 또는 온도가 크게 변동할 경우 충전이 중단됩니다. 배터리 온도가 +53 °C를 넘으면 충전이 중단됩니다.
- 충전으로 인해 배터리의 사용 수명이 감소하므로 배터리를 너무 자주 과충전 하지 마십시오.

사용 준비

전원 켜기/끄기

65 % 🚺 대기 모드에서 배터리가 충전 중이면 [Power] LED가 점멸합니다. 작 동 중에는 배터리가 충전 중이라는 상태 바가 표시됩니다.

예비 배터리 팩(R&S FPL1-Z4)

R&S FPL1000에는 내부 배터리 팩(옵션 R&S FPL1-B31) 외에 예비 배터리를 사용할 수 있습니다. 예비 배터리 팩 R&S FPL1-Z4는 두 개의 추가 리튬이온 배터 리로 구성되어 있습니다.

배터리를 R&S FPL1000 밖에서 충전할 경우 외부 배터리 충전기 R&S FSV-B34 를 사용합니다. 배터리 작동 중에도 R&S FPL1000이 실행되는 동안 기기 내에 배 터리 하나가 남아 있으면 내부 배터리를 교체할 수 있습니다. 하지만 배터리 하나 로 R&S FPL1000을 장시간 작동하는 것은 권장하지 않습니다.

4.6 전원 켜기/끄기

표 4-1: 전원 상태 요약

상태	전원 키 LED	주 전원 스위치의 위치
오프	● 회색	[0]
대기	● 주황색	[1]
대기	● 녹색	[1]

R&S FPL1000를 켜려면

R&S FPL1000가 꺼져 있지만 전원에 연결된 경우

- 전원 스위치를 [I] 위치에 설정합니다.
 장 5.2.1, "AC 전원공급장치 연결 및 주 전원 스위치", 페이지 42 참고.
 파워 키의 LED는 주황색입니다.
 장 5.1.2, "전원 키", 페이지 36 참고.
- 2. 파워 키를 누릅니다.

LED가 녹색으로 바뀝니다. 제품에 배터리, DC 또는 AC 전원을 연결하면 해당 전원으로 작동합니다. R&S FPL1000가 부팅됩니다.

부팅 후 기기를 작동할 수 있습니다.

제품의 전원을 끄는 방법

제품이 대기 상태입니다.

▶ [파워] 키를 누릅니다. 작동 시스템이 꺼집니다. LED가 주황색으로 바뀝니다.

전원을 차단하려면

R&S FPL1000가 대기 상태입니다.

- 주의사항! 데이터 손실의 위험이 있습니다.. 제품을 대기 상태에서 전원 연결 을 해제하면 설정과 데이터가 손실될 수 있습니다. 먼저 시스템을 끄십시오. 전원 스위치를 [0] 위치에 설정합니다. 장 5.2.1, "AC 전원공급장치 연결 및 주 전원 스위치", 페이지 42 참고. 대기 키의 LED가 꺼집니다.
- 2. 전원에서 R&S FPL1000를 분리하십시오.

4.7 LAN에 연결

기기를 LAN에 연결하여 PC를 통해 원격 조작할 수 있습니다.

커넥터에 대한 자세한 내용은 장 5.2.12, "LAN", 페이지 46을(를) 참조하십시오.

네트워크 관리자가 사용자에게 적절한 권리를 할당하고 Windows 방화벽 구성을 적용한 경우, 다음과 같은 방식으로 인터페이스를 사용할 수 있습니다.

- 제어 기기와 테스트 기기 간 데이터 전송(예: 원격 제어 프로그램을 실행하려 는 경우)
- "원격 데스크톱" 애플리케이션(또는 유사 툴)을 사용하여 원격 컴퓨터에서 측 정 액세스 또는 제어
- 외부 네트워크 기기 연결(예: 프린터)
- 원격 컴퓨터와 데이터 전송 (예: 네트워크 폴더 사용)

네트워크 환경

제품을 LAN(Local Area Network)에 연결하기 전 다음을 고려하십시오.

- 보안 위험을 줄일 수 있도록 최신 펌웨어를 설치합니다.
- 인터넷 또는 원격으로 액세스하는 경우 보안 연결을 사용합니다.

사용 준비

키보드 연결

- 네트워크 설정이 회사의 보안 정책을 준수하는지 확인합니다. 제품을 회사 LAN에 연결하기 전에 로컬 시스템 관리자 또는 IT 부서에 문의하십시오.
- LAN에 연결된 경우 제품이 인터넷을 통해 접속될 가능성이 있으므로 보안 위 험에 노출될 수 있습니다. 예를 들어 공격자가 제품을 악용하거나 손상시킬 가 능성이 있습니다. IT 보안에 대한 자세한 내용과 보안 LAN 환경에서 제품을 작동하는 방법을 알아보려면, Rohde & Schwarz 백서 1EF96: Malware Protection Windows 10을 참조하십시오.

주의사항! 네트워크 장애 위험. 다음 작업을 수행하기 전 네트워크 관리자에게 문의하십시오.

- 기기를 네트워크에 연결
- 네트워크 구성
- IP 주소 변경
- 하드웨어 교체

오류는 전체 네트워크에 영향을 미칠 수 있습니다.

기기의 후면 패널에 있는 LAN 인터페이스를 통해 R&S FPL1000를 LAN에 연 결하십시오.

Windows가 네트워크 연결을 자동으로 탐지하고 필요한 드라이브를 활성화합 니다.

기본적으로 R&S FPL1000는 DHCP를 사용하도록 구성되어 있으며 정적 IP 주소는 구성되어 있지 않습니다.

♀ 기본 기기 이름은 <Type><variant>-<serial_number>입니다(예:
 FPL1003-123456). 일련 번호를 확인하는 방법은 장 5.2.14, "장치 ID",
 페이지 47을(를) 참조하십시오.

LAN 구성에 대한 자세한 내용은 R&S FPL1000 사용자 매뉴얼을 참조하십시오.

4.8 키보드 연결

키보드를 연결하면 자동으로 검색됩니다. 기본 입력 언어는 English - US입니다. 하지만 외국어 키보드도 연결할 수 있으며, 현재 R&S FPL1000에 지원되는 언어 는 다음과 같습니다.

- 독일어
- 스위스어

시작하기 1179.4657.19 — 13

- 프랑스어
- 러시아어

키보드 언어를 구성하려면

- 1. 외부 키보드에서 Windows 키를 눌러 Windows 운영 체제에 액세스합니다.
- 2. "Start > Settings > Time & language > Region & language > Add a language"를 선택합니다.

4.9 외부 모니터 연결

외부 모니터(또는 프로젝터)를 R&S FPL1000의 후면 패널에 있는 "DVI" 커넥터에 연결할 수 있습니다(장 5.2.13, "DVI", 페이지 46 참조).

화면 해상도 및 포맷

R&S FPL1000는 16:10 포맷으로 교정되어 있습니다. 다른 포맷(예: 4:3)의 모니터 또는 프로젝터를 연결하는 경우, 교정이 정확하지 않고 화면이 터치 동작에 올바르게 반응하지 않습니다.
 터치스크린의 화면 해상도는 1280x800 픽셀입니다. 일반적으로 외부 모니 터에는 기기 모니터가 복제되어 디스플레이됩니다.
 Windows 구성 대화상자에서 외부 모니터 *한 대만* 디스플레이로 구성하는 경우("Show only on 2") 모니터의 최대 화면 해상도가 사용됩니다. 이 경우 R&S FPL1000 애플리케이션 창을 최대화하여 더 자세한 내용을 볼 수 있습니다. Windows의 표준 구성 대화상자에서는 모니터의 화면 해상도를 변경 할 수 없습니다.

R&S FPL1000는 최소 해상도인 1280x768 픽셀을 지원합니다.

- 1. R&S FPL1000에 외부 모니터를 연결합니다.
- 2. [Setup] 키를 누릅니다.
- 3. "Display"(표시) 소프트키를 누릅니다.
- "Display"(표시) 대화상자에서 "Configure Monitor"(모니터 구성) 탭을 선택합 니다.

Windows 표준 "Screen Resolution"(화면 해상도) 대화상자가 표시됩니다.

R&S [®] FPL1000	사용 준비
W	indows 운영체제
Correct Control Panel Items + Display + Screen Resolution • • Search Control	ol Panel P
Change the appearance of your displays Detect Image: Im	
Display: 1.T-55312D121J ▼ Resolution: 1280 × 800 (recommended) ▼ Qrientation: Landscape ▼ Multiple displays: Show desktop only on 1 ▼	
This is currently your main display. Advanced settings Make text and other items larger or smaller What display settings should I choose?	
OK Cancel Apply	

5. 필요한 경우 화면 해상도를 변경합니다. 위 참고 사항의 내용을 고려하십시오.

- 6. 표시할 기기를 선택합니다.
 - "Display 1"(디스플레이 1): 내부 모니터만
 - "Display 2"(디스플레이 2) : 외부 모니터만
 - "Duplicate"(복제) : 내부 및 외부 모니터 모두
- 7. "Apply"(적용) 를 눌러 설정을 적용하기 전 시험해 본 다음, 필요에 따라 이전 설정으로 쉽게 돌아갈 수 있습니다.
- 8. 설정이 완료된 경우, "OK"(확인) 를 선택합니다.

4.10 Windows 운영체제

본 기기에는 기기의 기능과 요구사항에 따라 구성된 Windows 운영체제가 포함 되어 있습니다. 시스템 설정은 키보드, 프린터와 같은 주변기기를 설치한 경우 또 는 네트워크 구성이 기본 설정과 다를 경우에만 변경합니다. R&S FPL1000를 시 작하면 운영체제가 부팅되고 기기 펌웨어가 자동으로 시작됩니다.

테스트를 마친 소프트웨어

Windows에 따라 본 기기에 사용된 드라이버와 프로그램은 본 기기에 맞게 수정 되었습니다. 기존 기기 소프트웨어를 수정하려면 Rohde & Schwarz에서 릴리스 한 업데이트 소프트만 설치하십시오.

본 기기에 추가 소프트웨어를 설치할 수 있지만, 추가 소프트웨어로 인해 기기 기 능이 손상될 수 있습니다. 그러므로 Rohde & Schwarz에서 기기 소프트웨어와 호 환성 테스트를 마친 프로그램만 실행하십시오.

다음은 테스트를 마친 프로그램 패키지입니다.

- Symantec Endpoint Security 바이러스 차단 소프트웨어
- FileShredder 하드 디스크에 있는 파일을 확실히 삭제

서비스 팩 및 업데이트

Microsoft는 정기적으로 Windows 기반 운영체제를 보호할 수 있는 보안 업데이 트와 기타 패치를 개발하여 공개하고 있습니다. 이러한 업데이트는 Microsoft 업 데이트 웹사이트와 관련 업데이트 서버를 통해 공개됩니다. 특히 네트워크에 연 결된 기기의 경우 Windows를 사용하여 정기적으로 업데이트하십시오.

방화벽 설정

방화벽은 권한 없는 사용자가 네트워크를 통해 장비에 무단 액세스할 수 없도록 보호합니다. Rohde & Schwarz는 장비에 방화벽을 사용할 것을 권장합니다. Rohde & Schwarz 기기는 Windows 방화벽이 활성화된 상태로 출고됩니다. 모든 포트와 원격 제어용 연결이 활성화되어 있습니다.

방화벽 설정을 변경하려면 관리자 권한이 필요합니다.

바이러스 차단

기기가 바이러스에 감염되지 않도록 조치하십시오. 강력한 방화벽 설정을 이용하 고 Rohde & Schwarz 장비에서 사용하는 탈착식 저장 장치를 정기적으로 검사해 야 합니다. 장비에 백신 소프트웨어를 설치를 권장합니다. Rohde & Schwarz은 (는) 장비 성능 저하 때문에 Windows 기반 장비에서 백그라운드로 백신 소프트 웨어를 실행('액세스 상태' 모드)하는 것은 권장하지 않습니다. 하지만 Rohde & Schwarz은(는) 중요한 작업을 진행하지 않는 시간에 백신 소프트웨어 를 실행할 것을 권장합니다.

자세한 내용과 권장사항은 아래의 Rohde & Schwarz 백서를 참조하십시오.

• 1EF96: 멀웨어 보호 Windows 10

"Start"(시작) 메뉴에 액세스하려면

Windows "Start"(시작) 메뉴를 통해 Windows 기능과 설치된 프로그램에 액세스 할 수 있습니다.

▶ 전면 패널에서 "Windows" 키를 누르거나 (외부) 키보드에서 "Windows" 키 또 는 [CTRL + ESC] 키 조합을 누릅니다.

"Start"(시작) 메뉴와 Windows 작업 표시줄이 표시됩니다.

 ✔ Windows 작업 표시줄에서도 자주 사용하는 프로그램(예: Paint, WordPad)
 ● 빠르게 액세스할 수 있습니다. Rohde & Schwarz에서 사전 설치해 무료
 로 제공하는 보조 원격 제어 도구인 IECWIN도 작업 표시줄 또는 "Start"(시 작) 메뉴를 통해 사용할 수 있습니다.
 IECWIN 도구에 대한 자세한 내용은 R&S FPL1000 사용자 매뉴얼의 "Network and Remote Control" 장을 참조하십시오.

필요한 모든 시스템 설정은 "Start > Settings"(시작 > 설정) 메뉴에서 정의할 수 있습니다.

필수 설정은 Windows 설명서와 하드웨어 설명을 참조하십시오.

4.11 로그인

Windows에서는 사용자가 로그인 창에서 사용자 이름과 비밀번호를 입력하여 직 접 ID를 식별해야 합니다. 기본적으로 R&S FPL1000에는 두 가지 사용자 계정이 있습니다.

- "Instrument"(기기): 제한된 액세스 권한을 가진 표준 사용자 계정
- "Admin"(관리자) 또는 "Administrator"(관리자) (펌웨어 이미지에 따라 다름): 컴퓨터/도메인에 대해 제한 없는 액세스 권한을 가진 관리자 계정

일부 관리 작업을 수행하려면 관리자 권한이 필요합니다(예: LAN 네트워크 구성). 해당 기능을 알아보려면 기본 기기 설정([Setup] 메뉴)에 대한 설명을 참조 하십시오.

비밀번호

모든 기본 사용자 계정의 초기 비밀번호는 *894129*입니다. 이 비밀번호는 매우 약 하므로 최초 로그인 후 반드시 두 사용자의 비밀번호를 변경하십시오. 관리자는 Windows에서 언제든지 "Start > Settings > Account > SignIn Options >

로그인

Password > Change"(시작 > 설정 > 계정 > 로그인 옵션 > 비밀번호 > 변경)를 통해 모든 사용자의 비밀번호를 변경할 수 있습니다.

자동 로그인

출고 시에는 기기가 기본 비밀번호를 사용하여 기본 "Instrument"(기기) 사용자를 Windows으로 자동 로그인하도록 설정되어 있습니다. 이 기능은 관리자가 명시 적으로 비활성화하거나 비밀번호를 변경할 때까지 유효합니다.

🚺 비밀번호 변경 및 자동 로그인 기능 사용

 기본 비밀번호를 변경할 경우 기본 자동 로그인 기능이 더 이상 작동하지 않 습니다.

이 경우 로그인하려면 새 비밀번호를 수동으로 입력해야 합니다.

자동 로그인 기능에 새 비밀번호 적용

자동 로그인 중 사용한 비밀번호를 변경할 경우 더 이상 자동 로그인이 작동하지 않습니다. 우선 자동 로그인 기능의 설정을 수정하십시오.

1. 도구 모음에서 "Windows" 아이콘을 선택해 R&S FPL1000의 운영체제에 액세 스합니다(""Start"(시작) 메뉴에 액세스하려면" 페이지 29 참조).

- 2. 아무 텍스트 에디터(예: Notepad)에서 C:\Users\Public\Documents\Rohde-Schwarz\Analyzer\user\ user\AUTOLOGIN.REG 파일을 엽니다.
- "DefaultPassword"="894129" 라인에서 기본 비밀번호(894129)를 자동 로그인에 사용할 새 비밀번호로 바꿉니다.
- 4. 변경사항을 파일에 저장합니다.
- 5. Windows "Start"(시작) 메뉴에서 "Run"(실행)을 선택합니다. "Run"(실행) 대화상자가 표시됩니다.
- 6. C:\Users\Public\Documents\Rohde-Schwarz\Analyzer\user\ user\AUTOLOGIN.REG 명령을 입력합니다.
- 7. [ENTER] 키를 눌러 확인합니다.
 자동 로그인 기능이 변경된 비밀번호로 다시 활성화됩니다. 다음에 전원 스위 치를 켤 때 적용됩니다.

자동 로그인 기능 사용 시 사용자 전환

어느 사용자 계정이 사용되는가는 로그인 중 정의됩니다. 자동 로그인이 활성화 된 경우에는 로그인 창이 표시되지 않습니다. 하지만 자동 로그인 기능이 활성화 된 상태에서도 사용할 사용자 계정을 전환할 수 있습니다.

1. 도구 모음에서 "Windows" 아이콘을 선택해 R&S FPL1000의 운영체제에 액세 스합니다(""Start"(시작) 메뉴에 액세스하려면" 페이지 29 참조).

2. [CTRL] + [ALT] + [DEL]를 누른 다음 "Sign out"(로그아웃)을 선택합니다. "Login"(로그인) 대화상자가 표시되면 여기에 다른 사용자 이름과 비밀번호를 입력할 수 있습니다.

자동 로그인 기능 비활성화 및 재활성화에 대한 자세한 내용은 R&S FPL1000 사 용자 매뉴얼을 참조하십시오.

4.12 제공 옵션 확인

본 기기에는 하드웨어 및 펌웨어 옵션이 탑재되어 있을 수 있습니다. 설치된 옵션 이 배송 목록표에 나와 있는 옵션에 해당하는지 확인하려면 다음과 같이 하십시 오.

- 1. [SETUP] 키를 누릅니다.
- 2. "System Config" 소프트키를 누릅니다.
- "System Configuration"(시스템 구성) 대화상자에서 "Versions + Options"(버 전 + 옵션) 탭으로 전환합니다.
 하드웨어 및 펌웨어 정보가 포함된 목록이 표시됩니다.
- 4. 배송 목록표에 표시된 하드웨어 옵션의 사용 가능 여부를 확인합니다.

4.13 Self-Alignment 수행

R&S FPL1000 환경에 큰 온도 변화가 발생할 경우 또는 펌웨어를 업데이트한 후 에는 Self-Alignment을 수행해 데이터를 레퍼런스 소스에 맞추어야 합니다.

사용 준비

테스트 셋업 시 고려사항

Self-Alignment 중에는 RF 입력 커넥터로 신호를 연결하지 마십시오. RF 입력에 신호가 연결된 상태에서 Self-Alignment를 실행할 경우 측정 결과가 잘못될 수 있습니다.

Self-Alignment 수행

이 기능 테스트를 수행하기 전 기기가 작동 온도에 도달했는지 확인하십시오(자 세한 내용은 데이터 시트 참조).

상태 바의 메시지("Instrument warming up..."(기기 예열 중...))는 작동 온도가 아직 도달하지 않았음을 나타냅니다.

설치 설정에 따라 전원 스위치를 켤 때마다 자동 Self-Alignment가 수행됩니다. 자체 정렬을 수행할 수 있을 때까지 필요한 예열 시간을 나타내는 대화상자가 표 시됩니다.

- 1. [Setup] 키를 누릅니다.
- 2. "Alignment"(정렬) 소프트키를 누릅니다.
- "Alignment"(정렬) 대화상자에서 "Start Self Alignment"(자체 정렬 시작) 버튼 을 선택합니다.

시스템 보정 값이 성공적으로 계산되면 메시지가 표시됩니다.

정렬 결과를 나중에 표시하려면

- [SETUP] 키를 누릅니다.
- "Alignment" 소프트키를 누릅니다.

4.14 테스트 셋업 시 고려사항

케이블 선택 및 전자기 간섭(EMI)

전자기 간섭(EMI)은 측정 결과에 영향을 미칠 수 있습니다.

작동 중 전자기 방사를 억제하려면:

- 고품질 차폐 케이블(이중 차폐 RF 및 LAN 케이블 등)을 사용하십시오.
- 개방된 케이블 끝부분을 항상 종단 처리하십시오.
- 연결한 외부 장치가 EMC 규정을 준수하는지 확인하십시오.

시작하기 1179.4657.19 — 13

테스트 셋업 시 고려사항

정전기(ESD) 방지

테스트 중인 장치(DUT)를 연결하거나 분리할 때 정전기가 발생할 수 있습니다.

주의사항! 정전기 위험. 정전기(ESD)로 인해 제품의 전자 부품과 DUT가 손상 될 수 있습니다.

정전기 피해가 발생하지 않도록 자체 접지를 하는 방법:

- a) 손목 스트랩과 코드를 이용해 접지하십시오.
- b) 전도성이 있는 플로어 매트와 힐 스트랩을 동시에 사용하십시오.

신호 입력 및 출력 레벨

신호 레벨에 대한 정보는 데이트 시트와 기기의 커넥터 옆에 나와 있습니다. R&S FPL1000와 연결된 장치가 손상되지 않도록 신호 레벨을 지정된 범위 이내 로 유지하십시오.

기기 둘러보기 전면 패널

5 기기 둘러보기

5.1 전면 패널

이 장에서는 모든 기능 키와 커넥터를 포함한 전면 패널에 대해 설명합니다.

그림 5-1: R&S FPL1000의 전면 패널

1 = 전원 버튼 2 = USB (2.0) 커넥터 3 = 시스템 버튼 4 = 터치스크린 5 = 기능 키 6 = 키패드 + 탐색 컨트롤 7 = RF 입력 50 Ω 커넥터 8 = 내부 발생기 출력 50Ω 커넥터(R&S FPL1-B9 옵션 필요)

5.1.1 터치스크린

모든 측정 결과는 전면 패널의 화면에 표시됩니다. 화면에는 상태 및 설정 정보도 표시되며 화면에서 다양한 측정 작업을 전환할 수 있습니다. 터치 동작은 사용자 가 화면을 이용해 기기를 쉽고 빠르게 조작할 수 있는 방법입니다.

```
시작하기 1179.4657.19 — 13
```

기기 둘러보기

전면 패널

그림 5-2: 터치스크린 요소

1 = 표준 애플리케이션 기능(예: 인쇄, 파일 저장/열기 등)이 포함된 도구 모음

2 = 개별 채널 셋업의 탭

3 = 펌웨어 및 측정 설정이 나타나는 채널 셋업 바

4 = 측정 결과 영역

5 = 다이어그램별(트레이스) 정보가 포함된 창 제목 표시줄

6 = 기능 액세스를 위한 소프트키

7 = 다이어그램별 정보(애플리케이션에 따라 다름)가 포함된 다이어그램 하단 정보 표시줄

8 = 에러 메시지와 날짜/시간이 표시되는 장비 상태 바

마우스 포인터로 클릭할 때 반응하는 사용자 인터페이스 요소도 화면을 탭할 때 동일하게 반응하며, 그 반대도 마찬가지입니다. 터치스크린 제스처로 수행할 수 있는 주요 작업은 다음과 같습니다.

(장 6, "기기 시험 사용", 페이지 48 참조)

- 설정 변경
- 디스플레이 변경
- 다이어그램에 표시된 결과 범위 변경
- 마커 이동

시작하기 1179.4657.19 — 13

전면 패널

- 다이어그램 확대
- 새 평가 방법 선택
- 결과 목록 또는 표 스크롤
- 결과 및 설정 저장 또는 인쇄

터치스크린에서 마우스의 오른쪽 버튼을 클릭하는 동작을 수행하려면(예를 들어 특정 항목에 대한 문맥에 따른 메뉴를 열려면) 화면을 약 1초간 누르고 계십시오.

터치스크린 제스처에 대한 자세한 내용은 장 7.4, "터치스크린 제스처", 페이지 85을 참조하십시오.

5.1.2 전원 키

[Power] 키는 전면 패널의 좌측 하단에 있으며, 전원 키로 기기를 켜거나 끌 수 있습니다.

"전원 연결" 페이지 8 및장 4.5, "전원 연결", 페이지 20도 참조하십시오.

5.1.3 USB

전면 패널에는 키보드 또는 마우스와 같은 장치를 연결할 수 있는 USB 커넥터 (female, USB-A, 2.0 표준)가 2개 있습니다. 메모리스틱을 연결하여 장비 설정 과 측정 데이터를 저장하고 다시 로드할 수 있습니다.

후면 패널에는 추가 USB 커넥터(표준 3.0)가 있습니다. 장 5.2.11, "USB", 페이지 46의 내용을 참조하십시오.

5.1.4 시스템 버튼

시스템 키는 장비를 기본 상태로 설정하거나 기본 설정을 변경하거나 인쇄 및 표 시 기능을 수행할 때 사용합니다.

R&S FPL1000 사용자 매뉴얼에 각 기능에 대한 자세한 설명이 나와 있습니다.
전면 패널

표 5-1: 시스템 버튼

SYSTEM JI	할당 기능
[Preset]	기기를 기본 상태로 초기화합니다.
[Setup]	기본 기기 구성 기능을 제공합니다. 예를 들어 다음과 같습니다. • Refernece frequency(외부/내부) • 날짜, 시간, 디스플레이 구성 • LAN interface • 펌웨어 업데이트 및 옵션 사용 설정 • 펌웨어 버전, 시스템 에러 메시지 등의 기기 구성에 대한 정 보 • 서비스 지원 기능(자체 테스트 등) • 자체 조정(스펙트럼 분석 옵션 있음)
[Mode]	채널 셋업을(를) 관리합니다.
[Print]	인쇄 기능을 설정합니다.
[FILE]	장비 설정 및 측정 결과에 대한 Save/Recall 기능을 제공합니다.
	스크린 키보드 표시를 전환합니다. • 화면 상단 • 화면 하단 • 오프

5.1.5 기능 키

기능 키는 가장 자주 사용하는 측정 설정과 기능에 액세스하는 데 사용합니다. R&S FPL1000 사용자 매뉴얼에 각 기능에 대한 자세한 설명이 나와 있습니다.

표 5-2: 기능 키

기능 키	할당 기능
[Freq]	관련 주파수 범위의 중심 주파수와 시작 및 정지 주파수를 설정 합니다. 이 키는 주파수 오프셋과 신호 추적 기능을 설정하는 데 에도 사용합니다.
[Span]	분석할 주파수 Span을 설정합니다.
[Ampt]	레벨 표시에 대한 레퍼런스 레벨, 표시되는 Dynamic Range, RF 감쇠 및 단위를 설정합니다. 레벨 오프셋과 입력 임피던스를 설정합니다. (옵션) 프리앰프를 활성화합니다.
[BW]	분해능 대역폭 및 비디오 대역폭을 설정합니다.
[Sweep]	스윕 시간과 측정 지점 개수를 설정합니다. 연속 측정 또는 단일 측정을 선택합니다.

기기 둘러보기

전면 패널

기능 키	할당 기능
[Trace]	측정 데이터의 그래픽 분석을 구성합니다.
[Meas]	측정 기능 제공: 멀티캐리어 인접 채널 출력 측정(Ch Power ACLR) 노이즈 스페이싱에 대한 캐리어(C/N C/N₀) 점유 대역폭(OBW, Occupied Bandwidth) 스펙트럼 방사 마스크 측정(Spectrum Emission Mask) 스퓨리어스 방사(Spurious Emissions) 시간 도메인 출력 측정(Time Domain Power) 3차 교차점(TOI, Third-order Intercept Point) AM 변조 깊이(AM Mod Depth)
[Meas Config]	측정과 데이터 입력 및 출력을 구성하는 용도로 사용됨
[Lines]	표시선 및 한계 라인을 설정합니다.
[Mkr]	절대 측정 및 상대 측정 마커를 설정하고 위치를 지정합니다(마 커 및 델타 마커). 특수 마커 기능을 선택합니다.
[Mkr->]	측정 마커의 검색 기능으로 사용됩니다(트레이스 최대/최소). 마커 주파수를 중심 주파수로, 마커 레벨을 레퍼런스 레벨로 할 당합니다. 검색 영역 제한(검색 한계) 및 최대 지점과 최저 지점(피크 편위) 을 지정합니다.
[Trig]	트리거 모드, 트리거 임계값, 트리거 지연을 설정합니다. 게이트 스윕의 경우 게이트 구성을 설정합니다.
[Peak]	액티브 마커에 대한 피크 검색을 수행합니다. 액티브 마커가 없 을 경우 일반 마커 1이 활성화되고 그에 대한 피크 검색이 수행됩 니다.
[Run Single]	새로운 단일 측정을 시작 및 종료합니다(단일 스윕 모드).
[Run Cont]	연속 측정을 시작 및 종료합니다(연속 스윕 모드).

5.1.6 키패드

키패드는 단위를 포함한 숫자 파라미터를 입력하는 용도로 사용됩니다. 키패드에 는 다음과 같은 키가 포함되어 있습니다.

전면 패널

표 5-3: 키패드의 키

키 유형	설명
소수점	커서 위치에서 소수점 "."을 삽입합니다.
기호 키	숫자 파라미터의 기호를 변경합니다. 영숫자 파라미터의 경우 커 서 위치에 "-"를 삽입합니다.
단위 키	입력한 숫자값에 선택한 단위를 추가하여 입력을 완성합니다.
(예: GHz/-dBm MHz/dBm, kHz/dB, Hz/dB)	레벨 입력(예: dB 단위) 또는 크기가 없는 값의 경우 모든 단위의 배율값은 "1"이 됩니다. 따라서 [ENTER] 키와 기능이 같습니다.
[ESC]	편집 모드가 비활성 상태인 경우 모든 유형의 대화상자를 닫습니 다. 편집 모드가 활성 상태가 아닌 경우 편집 모드를 닫습니다. "Cancel"(취소) 버튼이 포함된 대화상자에서 해당 버튼을 활성화 합니다. "Edit"(편집) 대화상자에서 다음과 같이 작동합니다. • 데이터 입력이 시작된 경우 원래값을 유지하고 대화상자를 닫습니다.
	 네이터 입력이 시작되지 않았거나 완료된 경우 내와장자를 닫습니다.
▲ (백스페이스)	영숫자 입력이 이미 시작된 경우 이 키는 커서 왼쪽에 있는 문자 를 삭제합니다.
[ENTER]	• 크기가 없는 항목의 입력을 완료합니다. 새 값이 승인됩니
	 다른 항목을 입력할 경우 "Hz/dB" 단위 키 대신 사용할 수 있습니다. 대화상자에서 기본 또는 강조 표시된 요소를 선택합니다.

5.1.7 탐색 컨트롤

탐색 컨트롤에는 로터리 노브, 탐색 키 등이 있습니다. 이러한 컨트롤을 사용하여 디스플레이 또는 대화상자 안에서 탐색할 수 있습니다.

표(결과 표 및 구성 표) 안에서 탐색하는 가장 쉬운 방법은 터치스크린에서 손가락으로 항목을 스크롤하는 것입니다.

5.1.7.1 로터리 노브

노터리 노브에는 몇 가지 기능이 있습니다.

시작하기 1179.4657.19 — 13

기기 둘러보기

전면 패널

- 숫자 입력 시: 기기의 파라미터를 정의된 폭으로 증가(시계 방향) 또는 감소 (시계 반대 방향)합니다
- 목록에서: 항목 사이를 전환합니다
- 화면의 마커, 리미트 라인, 기타 그래픽 요소에 대해: 해당 위치를 이동합니다
- 액티브 스크롤 바에 대해: 스크롤 바를 수직으로 움직입니다
- 대화상자에서: 누르면 Enter 키와 같은 기능을 합니다

5.1.7.2 탐색 키

탐색 키로 대화상자, 다이어그램 또는 표를 탐색할 수 있으며 로터리 노브 대신 사용할 수 있습니다.

위쪽 화살표/아래쪽 화살표 키

<위쪽 화살표> 또는 <아래쪽 화살표> 키는 다음과 같은 기능을 합니다.

- 숫자 입력 시: 기기의 파라미터를 정의된 폭으로 증가(위쪽 화살표) 또는 감소 (아래쪽 화살표)합니다
- 목록에서: 목록 항목을 앞으로/뒤로 스크롤합니다
- 표에서: 선택 막대를 수직으로 움직입니다
- 수직 스크롤 바가 있는 창 또는 대화상자에서: 스크롤 바를 움직입니다

왼쪽 화살표/오른쪽 화살표 키

<왼쪽 화살표> 또는 <오른쪽 화살표> 키는 다음과 같은 기능을 합니다.

- 숫자 편집 대화상자에서 커서를 움직입니다.
- 목록에서 목록 항목을 앞으로/뒤로 스크롤합니다.
- 표에서 선택 막대를 수직으로 움직입니다.
- 수평 스크롤 바가 있는 창 또는 대화상자에서 스크롤 바를 움직입니다.

5.1.8 RF 입력 50 옴

연결된 테스트 기기(DUT)의 RF 입력을 R&S FPL1000에 연결한 다음 RF 측정으 로 분석합니다. 적절한 커넥터와 함께 탑재된 케이블을 통해 DUT를 R&S FPL1000의 "RF Input"(RF 입력)에 연결합니다. 입력이 과부하되지 않도록 하십시오. 최대 허용값은 데이터 시트를 참조하십시오.

장 4.14, "테스트 셋업 시 고려사항", 페이지 32도 참고하십시오.

후면 패널

특정 커넥터 유형은 기기 모델에 따라 다릅니다.

- R&S FPL1003/1007: N female
- R&S FPL1014: N female
- R&S FPL1026: 테스트 포트 어댑터, 2.92 mm female(표준) 또는 N female

5.1.9 GEN 출력 50 Ω

(옵션) 내부 신호 발생기의 출력을 내보냅니다(내부 발생기 옵션 R&S FPL1-B9 필요). 출력 레벨 범위는 0.1 dB 분해능의 -60 dBm ~ +10 dBm입니다. 자세한 내용은 데이터 시트를 참조하십시오.

5.2 후면 패널

이 그림은 R&S FPL1000의 후면 패널입니다. 각 항목에 대한 설명은 다음 섹션에 자세히 나와 있습니다.

그림 5-3: 후면 패널

1+3 = 탈착식, 충전형 리튬이온 배터리

- 2 = AC 전원 연결 및 퓨즈가 있는 주 전원 스위치
- 4 = DC 전원 커넥터
- 5 = GPIB (IEC 625) 인터페이스

기기 둘러보기

후면 패널

- 6 = Reference Clock 커넥터
- 7 = 트리거 입력 커넥터
- 8 = 노이즈 소스 제어 *) 9 = "IF/Video out" 커넥터 *)
- 10 = 외부 포트 *)
- 11 = 헤드폰 커넥터 *)
- 12 = 파워 센서 커넥터 *)
- 13 = "USB" (3.0) 커넥터
- 14 ="LAN"커넥터
- 15 = 외부 디스플레이용 "DVI" 커넥터
- 16 = 일련번호와 기타 레이블로 구성된 장치 ID

*) "추가 인터페이스" 옵션 R&S FPL1-B5가 필요합니다.

① R&S FPL1000 라벨의 의미는 장 1.2, "R&S FPL1000의 라벨", 페이지 11에 설명되어 있습니다.

5.2.1 AC 전원공급장치 연결 및 주 전원 스위치

AC 전원공급장치 커넥터와 주 전원 스위치는 기기 후면 패널의 유닛에 있습니다.

주 전원 스위치의 기능:

1 위치: 제품이 작동 중입니다.

O 위치: 전체 제품이 AC 전원과 분리되어 있습니다.

자세한 내용은 "전원 연결" 페이지 8 및 장 4.5, "전원 연결", 페이지 20을(를) 참 조하십시오.

5.2.2 리튬이온 배터리 팩과 DC 전원 커넥터

리튬이온 배터리 팩(R&S FPL1-B31 옵션)을 사용하면 AC 또는 DC 전원공급장 치와 상관없이 R&S FPL1000을(를) 작동할 수 있습니다. 이 장비에는 AC 또는 DC 전원공급장치로 충전하는 리튬이온 배터리 2개를 넣을 수 있습니다.

배터리에 관한 안전 정보는 "배터리 안전 취급" 페이지 9을 참조하십시오.

대신 DC 전원 커넥터(옵션 R&S FPL1-B30)를 사용할 수 있습니다. +12 V ~ +24 V 및 13 A ~ 6.5 A와 연결된 DC 전원공급장치를 사용할 수 있습니다. 다음 다이어그램에 따라 커넥터를 연결하십시오.

기기 둘러보기

후면 패널

	핀	설명
\bigcirc	1	플러스
$\begin{pmatrix} 1 & 2 \end{pmatrix}$	2	접지
	3	사용되지 않음

기기에 안전 DC 저전압(SELV)을 공급하기 위해 외부 전원공급장치를 사용하는 경우 DIN/EN/IEC 61010(UL 3111, CSA C22.2 No. 1010.1) 또는 DIN/EN/IEC 60950 (UL 1950, CSA C22.2 No. 950)에 따라 강화/이중 절연 요건을 충족하십 시오. DIN EN 61010-1 부록 F2.1에 따라 한도 내 전류를 공급하십시오.

"전원 연결" 페이지 8의 내용도 참조하십시오.

5.2.3 GPIB 인터페이스

옵션으로 제공되는 GPIB 인터페이스(R&S FPL1-B10)는 IEEE488과 SCPI를 준 수합니다. 원격 제어용 컴퓨터를 이 인터페이스를 통해 연결할 수 있습니다. 연결 을 셋업하려면 차폐 케이블을 사용하는 것이 좋습니다.

자세한 내용은 사용자 매뉴얼에 있는 "Setting Up Remote Control"(원격 제어 설 정)을 참조하십시오.

5.2.4 Ref. In / Ref. Out

Ref. In 커넥터는 외부 레퍼런스 신호를 R&S FPL1000에 공급합니다.

Ref. Out 커넥터는 R&S FPL1000의 레퍼런스 신호를 이 장비에 연결된 다른 기 기로 공급합니다.

각 레퍼런스 신호에 맞는 다양한 커넥터가 제공됩니다.

커넥터	레퍼런스 신호	용도
Ref. In	10 MHz 10 dBm	R&S FPL1000에 외부 레퍼런스 신호를 공급합니 다.
Ref. Out	10 MHz 10 dBm	R&S FPL1000의 내부 레퍼런스 신호를 다른 장치 로 연속적으로 공급합니다. R&S FPL1000의 경우 옵션인 OCXO 레퍼런스 신 호를 다른 기기로 공급할 때에도 사용합니다.

5.2.5 Trigger In

외부 트리거 또는 게이트 데이터를 입력하려면 Trigger In 커넥터(female)를 이용 하십시오. 따라서 외부 신호를 사용하여 측정을 컨트롤할 수 있습니다. 전압 레벨 은 1.4 V입니다. 일반적인 입력 임피던스는 10 kΩ입니다.

5.2.6 노이즈 소스 제어

노이즈 소스 제어 커넥터(female)는 외부 노이즈 소스에 공급 전압을 제공하는 용도로 사용됩니다. 예를 들어 이 커넥터를 사용하여 증폭기와 주파수 변환 장치 의 노이즈 지수와 게인을 측정합니다.

이 커넥터는 R&S FPL1-B5 옵션이 설치된 경우에만 제공됩니다.

기존 노이즈 소스는 전원을 켜는 데 +28 V, 전원을 끄는 데 0 V의 전압이 필요합 니다. 출력은 최대 100 mA의 부하를 지원합니다.

5.2.7 IF/Video 출력

BNC 커넥터(female)은 스펙트럼 응용프로그램에서 다양한 출력용으로 사용할 수 있습니다.

- 약 20 MHz IF(중간 주파수) 출력
- 비디오 출력 (1V)

출력은 소프트웨어에서 지정됩니다("Overview"(개요) > "Output"(출력)).

이 커넥터는 R&S FPL1-B5 옵션이 설치된 경우에만 제공됩니다.

자세한 내용은 사용자 매뉴얼을 참조하십시오.

5.2.8 외부 포트

저전압 TTL 제어 신호용 입력 및 출력으로 사용되는 25폴 SUB-D 커넥터(male) (최대 5 V). 이 커넥터는 "추가 인터페이스" 옵션 R&S FPL1-B5으로 추가할 수 있 습니다.

주의사항

합선 위험

항상 지정된 핀 할당을 준수하십시오. 합선이 발생하면 포트가 손상될 수 있습니다.

표 5-4: 옵션 AUX 포트용 핀 배열

핀	신호	설명
1	GND	접지
2		스펙트럼 분석에 사용하지 않음
3	GND	접지
4		스펙트럼 분석에 사용하지 않음
5	GND	접지
6		스펙트럼 분석에 사용하지 않음
7	GND	접지
8~11		스펙트럼 분석에 사용하지 않음
12	GND	접지
13	+5 V / 최대 250 mA	외부 회로용 공급 전압
14 ~ 19	I/O_ <no.></no.>	사용자 포트용 제어선(사용자 매뉴얼 참조)
20	GND	접지
21	READY FOR TRIGGER	장비가 트리거 신호를 받을 준비가 되었음을 알려주는 신호 신호 극성을 설정할 수 있습니다. (R&S FPL1000 사용자 매뉴얼 참조)
22 ~ 25		스펙트럼 분석에 사용하지 않음
23	GND	접지
24 ~ 25		스펙트럼 분석에 사용하지 않음

5.2.9 헤드폰 커넥터

R&S FPL1000에는 헤드폰 커넥터로 라우팅할 수 있는 AM, FM, PM 신호용 복조 기가 제공됩니다. 헤드폰 또는 외부 라우드스피커를 3.5 mm 헤드폰 소켓에 연결 한 경우 표시되는 신호를 청각으로 식별할 수 있습니다.

이 커넥터는 R&S FPL1-B5 옵션이 설치된 경우에만 제공됩니다.

기기 둘러보기

후면 패널

"헤드폰 연결" 페이지 10에 나와 있는 안전 관련 내용을 참조하십시오. 자세한 내용은 사용자 매뉴얼을 참조하십시오.

5.2.10 센서 커넥터

LEMOSA 커넥터(female)는 로데슈바르즈 NRP-Zxy 계열의 파워 센서를 연결하 는 데 사용됩니다. 지원되는 센서의 자세한 목록은 데이터 시트를 참조하십시오. 파워 센서 설정 및 사용에 대해 자세히 알아보려면 사용자 매뉴얼을 참조하십시 오.

① 이 커넥터는 "추가 인터페이스" 옵션 R&S FPL1-B5으로 추가할 수 있습니 다.

5.2.11 USB

후면 패널에는 키보드, 마우스, 메모리스틱과 같은 기기를 연결할 수 있는 추가 USB(3.0 표준) 커넥터 2개가 있습니다(장 5.2.11, "USB", 페이지 46 참조).

5.2.12 LAN

R&S FPL1000에는 Auto-MDI(X) 기능이 탑재된 1 GBit Ethernet IEEE 802.3u 네 트워크 인터페이스가 장착되어 있습니다. RJ-45 커넥터의 배열은 별 모양 구성 의 연선 카테고리 5 UTP/STP 케이블을 지원합니다(UTP는 *Unshielded Twisted Pair*, STP는 *Shielded Twisted Pair*의 약자).

자세한 내용은 R&S FPL1000 사용자 매뉴얼을 참조하십시오.

5.2.13 DVI

DVI(디지털 비주얼 인터페이스) 커넥터를 통해 외부 모니터 또는 기타 디스플레 이 기기를 R&S FPL1000에 연결하여 대형 화면을 이용할 수 있습니다.

자세한 내용은 장 4.14, "테스트 셋업 시 고려사항", 페이지 32을(를) 참조하십시 오.

5.2.14 장치 ID

R&S FPL1000 후면 패널에 고유한 장치 식별자가 바코드 스티커로 부착되어 있 습니다.

장치 ID는 장치 주문번호와 일련번호로 구성됩니다.

6 기기시험사용

이 장에서는 R&S FPL1000의 가장 중요한 기능과 설정을 단계적으로 소개합니 다. 기능과 용도에 대한 자세한 설명은 R&S FPL1000 사용자 매뉴얼에 나와 있습 니다. 기본 장비 작동에 대한 설명은 장 7, "기기 작동", 페이지 69에 나와 있습 니다.

전제조건

• 장 4, "사용 준비", 페이지 16에 나온 설명대로 장비를 설정하고 전원에 연결 하고 작동시킵니다.

이러한 첫 번째 측정에서는 내부 교정 신호를 사용하므로 추가 신호 소스 또는 기 기가 필요하지 않습니다. 다음을 시도해 보십시오.

•	기본 신호 측정	. 48
•	스펙트로그램 표시	. 50
•	추가 측정 채널 활성화	. 52
•	연속 측정 실행하기	. 57
•	마커 설정 및 이동	. 58
•	Marker Peak List 표시	. 60
•	디스플레이 확대/축소	.61
•	설정 저장하기	. 65
•	결과 인쇄 및 저장	. 67

6.1 기본 신호 측정

내부 교정 신호를 입력으로 사용하여 기본 신호 측정을 시작하겠습니다.

내부 50MHz 교정 신호를 표시하는 방법

- 1. [Preset] 키를 눌러 정의된 기기 구성에서 시작합니다.
- 2. [Setup] 키를 누릅니다.
- 3. "Service + Support"(서비스 + 지원) 소프트키를 누릅니다.
- 4. "Calibration Signal"(교정 신호) 탭을 누릅니다.
- 5. "Calibration Frequency RF"(교정 주파수 RF) 옵션을 누릅니다. 주파수를 기 본값인 50 MHz로 설정하십시오.

6. 대화상자를 닫습니다.

이제 교정 신호가 R&S FPL1000의 RF 입력으로 전송됩니다. 기본적으로 연속 주파수 스윕이 수행되므로 교정 신호의 스펙트럼이 표준 레벨 대 주파수 다이 어그램에 표시됩니다.

그림 6-1: RF 입력을 교정 신호로 사용

() 기기 예열 시간

본 기기는 전원을 켠 후 초기 예열 시간이 필요합니다. 상태 바의 메시지 ("Instrument warming up...")는 작동 온도가 아직 도달하지 않았음을 나타 냅니다. 정확한 측정을 위해 이 메시지가 사라진 다음 측정을 시작하십시오.

디스플레이를 최적화하려면

교정 신호 디스플레이를 최적화하기 위해 주요 측정 설정을 조정하겠습니다.

- 1. 중심 주파수를 교정 주파수로 설정합니다.
 - a) "Overview"(개요) 소프트키를 탭하여 "Overview"(개요) 구성을 표시합니다.
 - b) "Frequency"(주파수) 버튼을 누릅니다.
 - c) "Center"(중심) 필드에서 전면 패널의 숫자 패드로 50을 입력합니다.
 - d) 숫자 패드 옆에 있는 "MHz" 키를 누릅니다.

- 2. Span을 20 MHz로 줄입니다.
 - a) "Frequency"(주파수) 대화상자의 "Span"(스팬) 필드에 *20 MHz*를 입력합 니다.
 - b) "Frequency"(주파수) 대화상자를 닫습니다.
- 3. 노이즈 제거를 위한 트레이스 평균값 산출:
 - a) "Overview"(개요) 구성에서 "Analysis"(분석) 버튼을 누릅니다.
 - b) "Traces"(트레이스) 탭에서 "Average"(평균) 트레이스 모드를 선택합니다.
 - c) "Average Count"(평균 수): 100을 입력합니다.
 - d) "Analysis"(분석) 대화상자를 닫습니다.

이제 교정 신호 디스플레이가 개선됩니다. 중심 주파수(=교정 주파수)가 최대 값인 50 MHz로 표시됩니다.

그림 6-2: 최적화된 디스플레이 설정의 교정 신호

6.2 스펙트로그램 표시

표준 "레벨 대 주파수" 스펙트럼 디스플레이 이외에, R&S FPL1000에서는 측정된 데이터의 스펙트로그램 표시가 가능합니다. 스펙트로그램은 신호의 스펙트럼 밀 도가 시간에 따라 어떻게 달라지는지를 보여줍니다. x-축은 주파수를 나타내며 y-축은 시간을 나타냅니다. 세 번째 차원인 파워 레벨은 다른 색으로 표시됩니다. 따라서 신호의 세기가 시간의 경과에 따라 다른 주파수별로 어떻게 달라지는지확 인할 수 있습니다.

- 1. "Overview"(개요) 소프트키를 탭해서 일반 설정 대화상자를 표시합니다.
- 2. "Display Config"(구성 표시) 버튼을 누릅니다.

스펙트로그램 표시

SmartGrid 모드가 활성화되고 사용 가능한 평가 방법이 포함된 평가 막대가 표시됩니다.

3.

Spectrogram

"Spectrogram"(스펙트로그램) 아이콘을 측정 바에서 다이어그램 영역으로 드 래그합니다. 파란색은 이전 스펙트럼 디스플레이가 새로운 다이어그램으로 바 뀜을 나타냅니다. 여기에서 스펙트럼을 교체하지 않을 것이므로 대신 아이콘 을 디스플레이 화면 아래쪽으로 끌어와 창을 추가합니다.

그림 6-3: 디스플레이에 스펙트로그램 추가

아이콘에서 손을 뗍니다.

4. 툴바의 우측 상단에 있는 "Close"(닫기) 아이콘을 눌러서 SmartGrid 모드를 닫습니다.

추가 측정 채널 활성화

5. "Overview"(개요) 를 닫습니다.

스펙트로그램을 표준 스펙트럼 디스플레이와 비교해볼 수 있습니다. 교정 신 호는 시간의 경과에 따라 달라지지 않으므로 주파수 레벨의 색은 시간에 따라 (즉, 수직으로) 달라지지 않습니다. 스펙트로그램 창 상단에 있는 범례는 색이 나타내는 파워 레벨을 나타냅니다.

그림 6-4: 교정 신호의 스펙트로그램

6.3 추가 측정 채널 활성화

R&S FPL1000에는 다양한 측정 채널이 있는데, 여러 측정 설정을 동시에 지정한 다음 다른 채널로 자동으로 전환하면서 연속으로 측정을 수행할 수 있습니다. 다 양한 주파수 범위, Zero Span 측정, I/Q 분석에 대해 추가 측정 채널을 활성화하 면서 이 기능을 보여드리겠습니다.

추가 측정 채널을 활성화하려면

1. 전면 패널에서 [Mode] 키를 누릅니다.

기기 시험 사용

추가 측정 채널 활성화

2. "Mode"(모드) 대화상자의 "New Channel Setup"(새 채널 설정) 탭에서 "Spectrum"(스펙트럼) 버튼을 누릅니다.

그림 6-5: 새 측정 채널 추가

3. 이 스펙트럼 디스플레이의 주파수 범위를 변경합니다. "Frequency"(주파수) 대화상자에서 Center frequency를 500 MHz로, Span을 1 GHz로 설정합니다.

기기 시험 사용

추가 측정 채널 활성화

그림 6-6: 더 큰 스팬이 적용된 교정 신호의 주파수 스펙트럼

- 4. 이전 단계를 반복해 세 번째 Spectrum 창을 활성화합니다.
- 5. 이 스펙트럼 디스플레이의 주파수 범위를 변경합니다. "Frequency"(주파수) 대화상자에서 Center frequency를 *50 MHz*로 설정하고 "Zero Span"(제로 스팬) 을 누릅니다.
- 6. 교정 신호의 레벨이 1 dBm이 되도록 레퍼런스 레벨을 높입니다.
 - a) "Amplitude"(진폭) 대화상자에서 "Reference Level"(레퍼런스 레벨) 값을 *+10 dBm*으로 설정합니다.

교정 신호는 시간의 경과에 따라 달라지지 않으므로 레벨 대 시간 다이어그램 에 직선으로 표시됩니다.

기기 시험 사용

추가 측정 채널 활성화

	MultiView	Spectrum	n <mark>.</mark> 🗙	Spectrum 2	× Spe	ectrum 3 🚦	×			Frequency
0	Ref Level 10.0	00 dBm	● RBV	V 1 MHz						Cantan
7 27	Att 1 Zero Span	20 dB 🗢 SW1	1.01 ms VBV	V 1 MHz					• 1AP Clrw	Center
E										
◆	0 dBm									Start
	-10 dBm									
Ľė	20 dBm									Stop
	-20 0611									Auto
1:1	-30 dBm									Frequency
Д	40.15									Signal Track
(s)	-40 dBm									
₹?	-50 dBm									
?										
	-60 dBm									
	-70 dBm									Frequency
	-80 dBm									
					100				101.0	Overview
					100				ιring	25.11.2016

그림 6-7: 교정 신호의 시간 도메인 표시

- 7. I/Q 분석을 위한 새 채널을 만듭니다.
 - a) [Mode] 키를 누릅니다.
 - b) "IQ Analyzer"(IQ 분석기) 버튼을 탭해서 I/Q 분석기용 측정 채널을 활성화 합니다.
 - c) "Display Config"(구성 표시) 소프트키를 탭해서 SmartGrid 모드를 활성화 합니다.

기기 시험 사용

추가 측정 채널 활성화

d) "Real/Imag (I/Q)"(실수/허수(I/Q)) 아이콘을 평가 바에서 SmartGrid로 드 래그하여 기본 "Magnitude"(크기) 표시를 변경합니다.

	MultiView 🎫 S	pectrum X	Spectrum 2	× Spectrum	з <mark>.</mark> Х	IQ Analyzer	. ×		•	×
0	Ref Level -3.00 a	dBm 1 dB Freq 3,75 GH:	Meas Time 31.28 Z Rec Length 1	1 µs SRate 32	.0 MHz				SGL	
F ^7	1 Real/Imag (I/C	2) Real	- Recention -					0 1	LAP Clrw	
Ð										
¢	3100 vo) (~~	
\rightarrow									Ma	gnitude
Ľ	0 V								~^m	
	-50 mV								Spe	ctrum
	-100 mV								⊕ I/Q-	Vector
Ĭ	-150 mV								~	
(js)	1 Real/Imag (I/Q	2) Imag						• 1	IAP (Real/Ir	nag (I/Q)
k ?	100								MKR	
?									Mark	er Table
									PEAK	r Dook Liet
	0 Y									PCak List
				•						
	CF 3.75 GHz			1001	pts				3.13 µs/	
	UNCAL -								eady	03.03.2017 09:21:38

그림 6-8: I/Q Analysis를 위한 Real/Imag 다이어그램 삽입

e) SmartGrid 모드를 닫습니다.

"IQ Analyzer"(IQ 분석기) 측정 채널에서 여러 창에 Real/Imag 신호 부분이 표 시됩니다.

MultiView 탭을 표시하려면

사용 중인 모든 측정 채널에 대한 요약 정보가 "MultiView"(멀티뷰) 탭에 표시됩니 다. 2개 이상의 측정 채널이 활성화되고 닫을 수 없으면 이 탭이 항상 표시됩니 다.

▶ "MultiView"(멀티뷰) 탭을 누릅니다.

기기 시험 사용

R&S[®]FPL1000

연속 측정 실행하기

	MultiView = Spectrum X Spectrum 2 🕀 X Spectrum 3	X IQ Analyzer X -	Sequencer
0	Ref Level 0.00 dBm RBW 200 kHz Source Sour	pectrum 2 Ref Level 0.00 dBm RBW 3 MHz Att 13 dB SWT 1.74 ms VBW 3 MHz Mode Auto Sweep	Sequencer
	1 Frequency Sweep • 1Sa Avg 1 F	requency Sweep • 1AP Clrw	On Off
	-20 dBm		
Ð	-10 dBm	2 d8m	
	-60 dBm		
	-80 dBm	J dBm	Continuous
		D dBm	Sequence
	CF 50.0 MHz 1001 pts 2.0 MHz/ Span 20.0 MHz		
	Z Spectrogram • TSa Avg _100dBm _80dBm _60dBm _60dBm _60dBm _20dBm _0dBm		Single
Ľ⊕,			Sequence
		2. Physiology is a start way they are been indicated and they work the later that the start the start of the st	Sequence
ĽQ			Chan.Setup
\cap			Defined
		n in the second state of the second state of the second state state. It is the second state of the second state	Sequence
	CF 50.0 MHz 1001 pts Span 20.0 MHz Frame # 0 CF	500.0 MHz 1001 pts 100.0 MHz/ Span 1.0 GHz	
Щ	RefLevel 10 00 dBm @ RBW 1 MHz	Ref Level 10.00 dBm Meas Time 31.281 us SRate 32.0 MHz	
7.5	Spectrum 3 Att 23 dB © 5WT 1.01 ms VBW 1 MHz	Q Analyzer Att 23 dB Freq 50.0 MHz Rec Length 1001	
÷2+	1 Zero Span • 1AP Clrw 1 F	Real/Imag (I/Q) Real • 1AP Clrw	
	60		
^ ?	0 dBm		
	-10 dBm	0 mV	
9	20.40m		
	-20 0011 -20		
	-30 dBm		
	-40 dBm	eal/Imag (I/Q) Imag • 1AP Clow	
	60	0 mV	
	-50 dBm 40		
	-60 dBm 20		
	-70 dBm		→ → = → =
	-20		
	-80 dBm 40		
	CE EO O MUN 1001 ptr 101 0 vr / CE	E0.0 MHz 1001 ptc 2.12 us/	Overview
		3.13 µs/	18 04 2017
		✓ Measuring	12:44:48

그림 6-9: "MultiView" 탭

6.4 연속 측정 실행하기

한 번에 한 번만 측정할 수 있지만 사용 중인 채널 셋업에서 구성된 측정은 연속 으로 실행할 수 있습니다. 즉, 한 번 이상 연속으로 실행할 수 있습니다.

1. 툴바에서 "Sequencer"(시퀀서) 아이콘을 탭합니다.

 "Sequencer"(시퀀서) 메뉴에서 "Sequencer"(시퀀서) 소프트키를 "On"(켜기) (으)로 전환합니다.
 연속 시퀀스가 시작됩니다. 즉, 시퀀스가 중단할 때까지 각 채널 셋업 측정이 연속으로 실행됩니다.

기기 시험 사용

	MultiView	== Spectrum	×	Spectrum 2	× Spectrum 3	×	IQ Analyzei	r 🗙				× Sequenœr
0	Spectrum	Ref Level 0.00 dBm	5W/T 1.01 mc	RBW 200 kHz	uto Surgeon Count 100/100	Spectrum 2	RefLevel 0.00	dBm	RBW 3 MHz	Mada Auto Ewor		Sequencer
	, 1 Frequency Sw	reep	SWIT LUTINS	VDW 200 KH2 MIDDE AD	• 1Sa Avg	1 Frequency Sw	еер	13 00 3WVI 1.7411	S VDVV SIVILIZ	MOULE AUTO SWEE	• 1AP Clrw	On Off
F 7	-20 dBm		^			10 h						
Ē	-40 dBm					-10 aBm						
	60 dBm					-20 dBm						
	90 dBm					-30 dBm					1 1	C
	~00 ubiii					-40 dBm						Continuous
\rightarrow	CF 50.0 MHz	10	001 pts	2.0 MHz/	Span 20.0 MHz	-50 dBm						Sequence
	2 Spectrogram	• 1Sa Avg	Bm -80dBm	-60dBm -40dBm	-20dBm OdBm							Single
ĽQ						-60 dBm						Sequence
						70 diama and		Very layer part	HAR MARY YOUR	a di teris popi da	n <mark>i mart kiani sinya</mark>	
PO												Chan.Setup
						Juli	In all as	ير الليار ي	at the second	n an bitat	l to a test of the	Sequence
						1111 . I.K. D.O.	Jahn Antar	LINK AL AN MULANCU	i dal UNUT	da d	A HAN A COUL	
\sim	CF 50.0 MHz	1(001 pts	Span 20.0 MHz	Frame # 0	CF 500.0 MHz		1001 pts	100.0 MH	z/	Span 1.0 GHz	
	Spectrum 3	Ref Level 10.00 dBr	m IB = SWT 1.01 m	RBW 1 MHz		IQ Analyzer	RefLevel 10.0	00 dBm 23 dB Freq 50 01	Meas Time	31.281 μs SRat	e 32.0 MHz	
	Spectrum 3 1 Zero Span	RefLevel 10.00 dBr Att 23 d	m IB = SWT 1.01 m	● RBW 1 MHz ns VBW 1 MHz	• 1AP Clrw	IQ Analyzer 1 Real/Imag (I/	RefLevel 10.0 Att Q)Real	0 dBm 23 dB Freq 50.0 l	Meas Time MHz Rec Length	31.281 μs SRat 1001	e 32.0 MHz • 1AP Clrw	
	Spectrum 3 1 Zero Span	RefLevel 10.00 dBr Att 23 d	m IB = SWT 1.01 m	● RBW 1 MHz ns VBW 1 MHz	• 1AP Clrw	IQ Analyzer 1 Real/Imag (I/ 600 mV	RefLevel 10.0 Att Q) Real	0 dBm 23 dB Freq 50.0 l	Meas Time MHz Rec Length	: 31.281 µs 5Rat 1001	e 32.0 MHz • 1AP Clrw	
 ▲?	Spectrum 3 1 Zero Span 0 dBm	RefLevel 10.00 dBr Att 23 d	m IB ⊜ SWT 1.01 m	RBW 1 MHz VBW 1 MHz	• 1AP Clrw	IQ Analyzer 1 Real/Imag (I/ 600 mV 400 mV	RefLevel 10.0 Att Q) Real	0dBm 23 dB Freq 50.01	Meas Time MHz Rec Lengt	: 31.281 µs 5Rat 1 1001	e 32.0 MHz • 1AP Clrw	
	Spectrum 3 1 Zero Span 0 dBm -10 dBm	Ref Level 10.00 dBr Att 23 d	m B = 5WT 1.01 m	RBW 1 MHz VBW 1 MHz	• 1AP Clow	IQ Analyzer 1 Real/Imag (I/ 600 mV 400 mV 200 mV 0 V	Ref Level 10.0 Att Q) Real	00 dBm 23 dB Freq 50.01	Meas Time MHz Rec Lengtł	: 31.281 µs 5Rat 1001	• 1AP Clow	
Ĩ	Spectrum 3 1 Zero Span 0 dBm -10 dBm -20 dBm	Ref Level 10.00 dBi Att 23 d	m IB • SWT 1.01 m	● RBW 1 MHz is VBW 1 MHz	• 1AP Clow	IQ Analyzer I Real/Imag (I/4 600 mV 400 mV 200 mV 0V -200 mV	RefLevel 10.0 Att Q) Real	0dBm 23 dB Freq 50.01	Meas Time MHz Rec Length	: 31.281 µs 5Rat	• 1AP Clrw	
Ĩ <u>∛</u> ? ?	Spectrum 3 1 Zero Span 0 dBm -10 dBm -20 dBm -20 dBm	Ref Level 10.00 dB Att 23 d	m B = SWT 1.01 m	● RBW 1 MHz Is VBW 1 MHz	• 1AP Cirw	IQ Analyzer I Real/Imag (I/ 600 mV 400 mV 200 mV 0 -200 mV 400 mV 400 mV	RefLevel 10.0 Att Q) Real	0dBm 23 dB Freq 50.01	Meas Time MHz Rec Length	: 31.281 µs SRat	• 1AP Clrw	
Ĩ ∲ *? ?	Spectrum 3 1 Zero Span 0 dBm -10 dBm -20 dBm -30 dBm	RefLevel 10.00 dB Att 23 d	m B ⊜ SWT 1.01 m	© RBW 1 MH2 Is VBW 1 MH2	• 1AP Cirw	IQ Analyzer I Real/Imag (I// 600 mV 400 mV 200 mV 200 mV - 200 mV - 400 mV - 600 mV - 600 mV 600 mV	RefLevel 10.0 Att Q) Real	0dBm 23 dB Freq 50.0	Meas Time VIHz Rec Length	: 31.281 µs 5Rat	• 1AP Clrw	
Ĩ <u>∲</u> <u>*</u> ? <u>?</u>	Spectrum 3 1 Zero Span 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Ref Level 10.00 dBr	m B = SWT 1.01 m	• R8W 1 MHz s VBW 1 MHz	• 1AP Cirv	IQ. Analyzer I. Real/Imag (I/ FOO mV 400 mV 200 mV 200 mV 400 mV 400 mV 400 mV 400 mV 400 mV 500 mV 1. Real/Imag (I/) 1.	Ref Level 10.0 Att Q) Real Q) Imag	00dBm 23 dB Freq 50.01	Meas Time MHz Rec Length	: 31.281 µs SRat	• 1AP Clrw • 1AP Clrw	
Ĩ ∲ ₹? ?	Spectrum 3 1 Zero Span 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm 50 dBm	Reflevel 10.00 dB Att 23 d	m 16 e SWT 1.01 m	RBW 1 MHz VBW 1 MHz	• 1AP Clrw	IQ Analyzer 1 Real/Imag (I/f 600 mV 400 mV 200 mV -200 mV -400 mV -600 mV -600 mV -600 mV -600 mV -600 mV	Ref Level 10.0 Att Q) Real Q) Imag	0068m 23 d8 Freq 50.01	Meas Time MHz Rec Length	31.281 µs SRat	• 1AP Claw • 1AP Claw	
Ĩ <u>₹</u> } *? ?	Spectrum 3 1 Zero Span 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	Reflevel 10.00 dB Att 23 d	m 18 e SWT 1.01 m	© RBW 1 MHz vBW 1 MHz	• 1AP Cirw	IQ. Analyzer 1. Real/Imag (I/f 600 mV 400 mV 200 mV 400 mV 500 mV 400 mV 500 mV 400 mV 200 mV 400 mV 200 mV 200 mV 400 mV 200 mV 200 mV	Ref Level 10.0 Att Q) Real Q) Imag	008m 23 dB Freq 50.01	Meas Time	31.281 µs SRat	• 1AP Claw • 1AP Claw	
Ĩ <u>₹</u> 3} * ? ?	Spectrum 3 1 Zero Span 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	Reflevel 10.00 dBA	m 18 e SWT 1.01 m	• RBW 1 MHz vBW 1 MHz	• 1AP Cirv	IQ Analyzer 1 Real/Imag (I/i 600 mV 400 mV 200 mV 200 mV 400 mV 400 mV 600 mV 400 mV 400 mV 200 mV 400 mV 200 mV 200 mV 200 mV 200 mV 200 mV 200 mV	Ref Level 10.0 Att Q) Real Q) Imag	008m 23 88 Freq 50.01	Meas Time MHz Rec Length	2 31.281 µs SRat	• 1AP Claw • 1AP Claw	
Ĩ <u>₹</u> ? ≹ ? ?	Spectrum 3 1 Zero Span 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	Reflevel 10.00 dB Att 23 d	m 16 e SWT 1.01 m	• R8W 1 MHz vBW 1 MHz	• 1AP Cirv	IQ Analyzer 1 Real/Imag (I/i 600 mV 400 mV 200 mV 200 mV 400 mV 200 mV 400 mV 200 mV 200 mV 200 mV	Ref Level 10.0 Att Q) Real Q) Imag	0038 Freq 50.01	Meas Time MHz Rec Length	2 31.281 µs 5Rat	• 1AP Claw • 1AP Claw	
Ĩ <u></u> *? ?	Spectrum 3 1 Zero Span 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm -90 dBm	Reflevel 10.00 dB/Reflevel 10.	m 18 = SWT 1.01 m	• R8W 1 MHz vBW 1 MHz	• 1AP Cirv	IQ. Analyzer 1 Resi/Imag (I/ 600 mV 400 mV 200 mV 200 mV 400 mV 200 mV 1 Resi/Imag (I/ 600 mV 1 Resi/Imag (I/ 600 mV 200 mV 400 mV 200 mV 10 V	Reflevei 10.0 Att Q) Real	0088m 23 d8 Freq 50.01	Meas Time VIHz Rec Length	2 31.281 µs 5Rat	• 1AP Claw • 1AP Claw	
Ì 🚱 ⊁? ♥?	Spectrum 3 1 Zero Span 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm -70 dBm -80 dBm -75 50.0 MHz	Reflevel 10.00 dBL Att 23 d	m IB = SWT 1.01 m IB	• R8W 1 MHz vBW 1 MHz	• 1AP Cirv	IQ. Analyzer 1 Resi/Imag (I/I 600 mV 400 mV 200 mV 200 mV 200 mV 400 mV 400 mV 400 mV 400 mV 400 mV 400 mV 200 mV 200 mV 200 mV 200 mV 400 mV 400 mV 200 mV 400 mV 400 mV	Reflevel 10.0 Att Q) Real	0088m 23 d8 Freq 50.01	Meas Time RecLength	2 31.281 µs 5Rat	• 1AP Claw • 1AP Claw • 1AP Claw • 1AP Claw	the second seco

그림 6-10: 사용 중인 Sequencer가 있는 'MultiView' 탭

그림 6-10에서 "Spectrum 2"(스펙트럼 2) 측정이 사용 중입니다(탭 라벨에 "channel active"(채널 활성) 아이콘이 표시됨).

3. "Sequencer"(시퀀서) 소프트키를 다시 탭해서 Sequencer를 멈춥니다.

6.5 마커 설정 및 이동

마커는 트레이스에서 특정 효과의 위치를 확인하는 데 유용합니다. 가장 일반적 인 용도는 마커를 활성화할 때 기본 설정인 피크를 확인하는 것입니다. 첫 번째 스펙트럼 측정에서 피크에 마커를 설정하겠습니다.

- 1. "MultiView"(멀티뷰) 탭에서 "Spectrum"(스펙트럼) 창(스펙트로그램 디스플레 이가 있는 주파수 스윕)을 두 번 탭하면 "Spectrum"(스펙트럼) 측정 채널로 돌 아갑니다.
- 2. 스펙트럼 디스플레이를 눌러 해당 창에 포커스를 설정합니다.
- 현재는 스펙트로그램 표시가 필요하지 않으므로 스펙트럼 창을 두 번 탭하여 전체 화면을 표시합니다.

시작하기 1179.4657.19 — 13

기기 시험 사용

마커 설정 및 이동

- 4. 전면 패널에서 [Run Single] 키를 눌러서 단일 스윕을 실행합니다. 이제 마커 를 설정할 고정 트레이스가 생깁니다.
- 5. 전면 패널에서 [Mkr] 키를 눌러서 "Marker"(마커) 메뉴를 표시합니다.

Marker 1이 활성화되고 트레이스 1의 최대값으로 자동 설정됩니다. 마커 위치 와 값이 다이어그램 영역에 M1[1]으로 나타납니다.

MultiView 📰 Spectrum	× Spectrum 2	× Spectrum 3	× IQ Analyzer	Marker 1
Ref Level 0.00 dBm	RBW 200 kHz		50.0 MH	
Att 13 dB SWT 1	1.01 ms VBW 200 kHz	Mode Auto Sweep		Count 100/100
1 Frequency Sweep				• 1Sa Avg
		M1		M1[1] -7.61 dBm
		X		50.0000 MHz
-10 dBm				
		$= \{ \}$		
-20 dBm		/ {		
-50 abm				
-40 dBm				
-50 dBm				
60 dBm				
-00 abiii				
-70 dBm				
			h	
-80 dBm				
-90 dBm		/	<u> </u>	
Many many marker Mark	mmmmmmm	mmmm	- Mannaharananana	man man man man man man and and a second sec
CF 50.0 MHz	1	001 pts	2.0 MHz/	Span 20.0 MHz

 이제 마커를 누르고 끌어서 다른 위치로 이동할 수 있습니다. 현재 위치는 파 란색 점선으로 나타납니다. 다이어그램의 마커 영역에서 위치와 값이 어떻게 달라지는지 주목하십시오.

기기 시험 사용

Marker Peak List 표시

MultiView		Spec	trum	×	Spec	trum 2	>	< s	pectrur	n 3		×	10	Analyzer	50.0		Marker 1	
Ref Level	0.00	dBm	_	_	RBW 2	00 kHz									50.8	375 MHZ		
Att	1	3 dB	SWT 1	.01 ms	VBW 2	00 kHz	Mode A	Auto S	weep									Count 100/100
1 Frequen	cy Sw	eep																• 1Sa Avg
																	M	I[1] -89.68 dBm
																		50.8750 MHz
-10 dBm										-f		~						
											Į.							
-20 dBm										+	Ļ							
20 40-5																		
-30 abm																		
-40 dBm										$^{++}$	┽							
-50 dBm																		
50 ID																		
-60 aBm																		
-70 dBm											\dashv							
-80 dBm																		
00 40 -									h			M1						
-90 abm	an	5.1 A.C.	Mr. Mus	MM	wmm		mm	why	w			MW	wy/v	Mythy		mmmum	MA MA NORMA	m. Arman m. All
	- V.	~~~~~													4 - Y		w w w w w	A 10 10 10 10 1
CF 50.0 MI	Ηz						1001 pts	5					2	.0 MHz/				Span 20.0 MHz

6.6 Marker Peak List 표시

Marker Peak List는 스펙트럼에서 피크의 주파수와 레벨을 자동으로 결정합니다. "Spectrum 2"(스펙트럼 2) 측정 채널에 대한 마커 피크 목록을 보여드리겠습니 다.

- 1. "Spectrum 2"(스펙트럼 2) 탭을 누릅니다.
- 2. 전면 패널에서 [Run Single] 키를 눌러서 피크를 정할 단일 스윕을 실행합니 다.
- 3. 툴바에서 "SmartGrid"(스마트그리드) 아이콘을 탭해서 SmartGrid 모드를 활 성화합니다.

4. 평가 바에서 "Marker Peak List"(마커 피크 목록) 아이콘을 화면의 하단으로 드래그하여 피크 목록에 새 창을 추가합니다.

- 5. SmartGrid 모드를 닫습니다.
- 6. 노이즈 피크가 들어있지 않고 보다 확실한 피크 목록을 얻으려면, 예를 들어, 노이즈 플로어보다 높은 임계값을 정의합니다.
 - a) 전면 패널에서 [Mkr] 키를 누릅니다.
 - b) "Marker"(마커) 메뉴에서 "Marker Config"(마커 구성) 소프트키를 누릅니 다.
 - c) "Marker"(마커) 대화상자에서 "Search"(검색) 탭을 누릅니다.
 - d) "Threshold"(임계값) 필드에 -68 dBm을 입력합니다.
 - e) "Threshold"(임계값) 에 대한 "State"(상태) 상자를 탭해서 활성화합니다. -90 dBm보다 더 큰 피크만 피크 목록에 포함됩니다.
 - f) "Marker"(마커) 대화상자를 닫습니다.

파커 피크 목록에 정의된 임계값보다 확실히 높은 피크가 표시됩니다.

그림 6-11: 마커 피크 리스트

6.7 디스플레이 확대/축소

피크 주변 영역을 자세히 분석하려면 상위 3개 피크를 확대해서 확인하십시오.

시작하기 1179.4657.19 — 13

기기 시험 사용

디스플레이 확대/축소

1. 툴바에서 "Multiple Zoom"(복수 확대/축소) 아이콘을 누릅니다.

이 아이콘이 강조표시되면 복수 확대/축소 모드가 활성화되었다는 뜻입니다.

 첫 번째 피크 근처에 있는 다이어그램을 살짝 누르고 손가락을 확대 영역의 반 대 구석으로 드래그합니다. 현재 위치로 터치한 지점에서 흰색 직사각형이 표 시됩니다.

그림 6-12: 확대/축소 영역 정하기

1 Frequency Sw	veep								• 1AP Clrw
0 dBm			<u>¥</u>					M1[1] -5.25 dBm
									1.00010 GHz
-50 dBm		and the state of the second structure	title and the			la la lla contracto de constante	hanga dhannarata dha mili ata an ta	ullinens of shirther that of	e din de chine prédiction des
all a state of the	and should be an labor	tracation for a straight	and a state of the state of the	a la detta tasta	and the second state of the second	have as the first of	have south a	an oale, beer sole	المتحديد الشميل
CF 1.45 GHz			1001 pt	5	2	90.0 MHz/			Span 2.9 GHz
									X
4 -10									
-4 aBm				M1					
C 10				<u></u>					
-6 dBm									
0.10									
-8 dBm									
-10 dBm									
-12 dBm									
4 CF 1.004 GHz			58 pts			6.8 MHz/		S	≥ 21 21 pan 168.0 MHz
			50 pts					-	

손가락을 떼면 확대 영역이 하위 창에서 확대됩니다.

- 그림 6-14에서 확대된 피크는 두꺼운 트레이스로 표시됩니다. 스윕 지점 개 수가 충분하지 않기 때문입니다. 확대된 화면에서 누락된 스윕 지점이 삽입되 는데, 이에 따라 결과가 안 좋게 나타납니다. 결과를 최적화하기 위해 스윕 지 점의 개수를 기본 1001개에서 32001개로 늘릴 것입니다.
 - a) 전면 패널에서 [Sweep] 키를 누릅니다.

그림 6-13: 피크 주변 확대해서 보기

기기 시험 사용

디스플레이 확대/축소

- b) "Sweep"(스윕) 메뉴에서 "Sweep Config"(스윕 구성) 소프트키를 누릅니 다.
- c) "Sweep Points"(스윕 포인트) 필드에서 *32001*을 입력합니다.
- d) "Bandwidth"(대역폭) 대화상자를 닫습니다.
- e) 전면 패널에서 [Run Single] 키를 누르면 스윕 지점이 증가한 상태에서 새 스윕이 실행됩니다.

1 Frequency Sweep)			• 1AP Clrw
0 dBm		<u>N47</u>		M1[1]5.29 dBm 1.0000980 GHz
-50 dBm	n de pot a coligation conte por de la conte de la c La conte de la c			Serve 2.0 GH-
CF 1.45 GHZ		32001 pts	290.0 MH2/	Span 2.9 GHz
-4 dBm				
-6 dBm		Å_		
-8 dBm				
-10 dBm				
-12 dBm				
4				71
CF 1.004 GHz		1854 pts	16.8 MHz/	Span 168.0 MHz

그림 6-14: 스윕 지점이 늘어나서 확대된 피크

더욱 정교해지는 트레이스를 확인하십시오.

디스플레이 확대/축소

 4. 툴바에서 "Multiple Zoom"(복수 확대/축소) 아이콘을 다시 탭하고 마커 M2, M3, M4 주변의 확대/축소 영역을 지정합니다.

2	$\overline{\oplus}$				
_	MultiView 🕶 Spectrum 🛛 关 🗙	Spectrum 2 X		•	Sweep 🔀
0	Ref Level 15.00 dBm RBW	3 MHz		SGL	Continuous
F -77	1 Frequency Sweep	3 MHZ MODE Auto Sweep		• 1AP Clrw	Sweep
	0 dBm			M1[1] -5.21 dBm	Single
			Z2 Z3	1.0000980 GHz	Sweep
	-50.dBm				
\rightarrow					
1 20	CF 1.45 GHz	32001 pts	290.0 MHz/	Span 2.9 GHz	Continue Single
					Sweep
Ľ	-4 dBm		-35 dBm		Sweep Time
1:1	6 dBm				Auto
Ц		-40 dBm	-40 dBm		Sweep Time
<u>~</u>	-8 dBm		45 dDm		Manual
v≃v N	10 10 -	-45 dBm			Sweep
₹?	-10 dBm		-50 dBm		Count
?	-12 dBm	-50 dBm -2			
		- <u></u>	1.1		
	4 CF 1.004 GHz 1854 pts 16.8 MHz/Span 168	0 MHz CF 1.6722723 89 8	8.11 Span 81.064021 CF 1.992605	≥23 103 9.41 Span 94.138863	Sweep
	2 Marker Peak List				¹ Config
	No X-Value	Y-Value	No X-Value	Y-Value	
	2 1.669940 GHz	-50.632 dBm	4 2.849569 GHz	-51.619 dBm	□ + □ +]
					∽∎≁
					Overview
	▼	Instrum	nent warming up	- Ready	09.03.2017 08:10:26

그림 6-15: 복수 확대 창

5. 툴바에서 "Multiple Zoom"(복수 확대/축소) 아이콘을 다시 탭하고 M5 주변의 확대/축소 영역을 지정합니다.

6. 세 번째 확대/축소 창을 확장하려면 창 사이의 "splitter"(분할선) 를 좌우 또는 위아래로 드래그합니다.

M30 dBm	X Mi	
-35 dBm		
-40 dBm	40 dBm	
-45 dBm	-45 dBm	
-50 dBm	-50 dBm	3
اب میں اس اختیار کا آمامات کے انداز کی م	- <u>55.d8m-11</u>	
CF 1.6722723 89 8.11 Span 81.064021.	CF 1.992605 103	9.41 Span 94.138863

기기 시험 사용

설정 저장하기

그림 6-16: 확대된 확대 창

6.8 설정 저장하기

측정 결과를 나중에 복원할 수 있도록 장비 설정을 파일에 저장합니다.

장비 설정을 파일에 저장하는 방법

1. 툴바에서 "Save"(저장) 아이콘을 누릅니다.

2. 전면 패널에 있는 키보드 키를 눌러서온라인 키보드가 표시되게 합니다. 다음 단계에서 텍스트를 입력해야 합니다.

3. "Save"(저장) 대화상자에서 "File Name"(파일 이름) 필드를 탭한 다음 키보드 를 이용하여 *MyMultiViewSetup*을 입력합니다.

기기 시험 사용

설정 저장하기

기본 "File Type"(파일 유형) 설정을 "Instrument with all Channel Setups"(모 든 채널 설정 포함 기기) 상태로 유지하여 전체 채널 셋업의 구성을 저장합니 다.

Save				X
Quick Save Save				
Drive: 🍆 (C:) Operating 🝷 Pa	th: 📕 Save (C:/Users	/Public/Documents/Rohd	e-Schwarz/Analyz	er/Save) 🔻
Files			Size	
■				
File Name MyMultiViewSetup				
Comment				
File Type	Items:	n an Lindbark an Lindbarn ann 1921 an		a hallon a hill and
Instrument	Current Se	ttings		•
Connect Channel Setups	🗆 All Transdo	ucers		
Spectrum				-
			Sa	ive

그림 6-17: 장비 설정을 파일에 저장하기

4. "Save"(저장) 버튼을 누릅니다.

MyMultiViewSetup.dfl 파일은 기본 디렉토리에 저장됩니다 C:\Users\Public\Documents\Rohde-Schwarz\Analyzer\Save.

저장된 장비 설정을 로드하는 방법

언제든지 설정 파일을 이용하여 장비 설정을 복원할 수 있습니다.

1. 기본 제품 설정을 복원하는 [Preset] 버튼을 눌러서 저장된 사용자 설정이 실 제로 복원되는지 확인합니다.

2. 툴바에서 "Load"(불러오기) 아이콘을 누릅니다.

- 3. "Load"(불러오기) 대화상자에서 기본 디렉토리 C:\Users\Public\Documents\Rohde-Schwarz\Analyzer\Save에 있 는 MyMultiViewSetup.dfl 파일을 선택합니다.
- 4. "Load"(불러오기) 버튼을 누릅니다.

모든 장비 설정이 복구되면 설정 저장 직전의 장비 설정이 화면에 구현됩니다.

6.9 결과 인쇄 및 저장

마지막으로 성공적 측정 후 결과를 문서화하겠습니다. 가장 먼저 트레이스 데이 터를 내보낸 다음 그래픽 디스플레이의 스크린샷을 만들겠습니다.

트레이스 데이터를 내보내려면

- 1. 전면 패널에서 [Trace] 키를 누릅니다.
- 2. "Trace Config"(트레이스 구성) 소프트키를 누릅니다.
- 3. "Trace / Data Export"(트레이스/데이터 내보내기) 탭을 누릅니다.
- 4. "Export Trace to ASCII File"(트레이스를 ASCII 파일로 내보내기) 버튼을 누 릅니다.
- 5. 파일 이름인 *MyMultiViewResults*을 입력합니다.

트레이스 데이터가 MyMultiViewResults.DAT에 저장됩니다.

디스플레이의 스크린샷을 만들려면

1. 툴바에서 "Print immediately"(즉시 인쇄) 아이콘을 누릅니다.

현재 디스플레이의 스크린샷이 만들어집니다. 스크린샷에서 화면의 색이 반전 표시되어 출력 결과가 개선됩니다.

기기 시험 사용

결과 인쇄 및 저장

2. "Save Hardcopy as"(하드카피를 다음 이름으로 저장) > "Portable Network Graphics (PNG)" 대화상자에서 파일 이름(예: *MyMultiViewDisplay*)을 입력합 니다.

스크린샷이 MyMultiViewDisplay.png에 저장됩니다.

MultiView	Spectrum	🔆 🗙 Specti	rum 2 🗙	[
Ref Level 22.0	00 dBm	RBW 3 MHz							SGL
Att	35 dB SWT 32.1 m	ns VBW 3 MHz	Mode Auto Swe	ер					
1 Frequency S	weep	1							• 1AP Clrw
20 dBm								M	[1] -5.04 dBm
10 dBm									1.0001410 GHz
TO UBIT									
0 dBm			1011						
			1						
-10 dBm									
-20 dBm									
l									
-30 dBm									
40 dBm									
-40 0.011				23	ala si thuan tat	4		5	6 1
Hen provided all the	a da paga dun anan k	hallykellespergestellen	⁶ 17070 (1990) (1990)	epidenter (en ander som	Merculate collocation of rel I	hilds depicted in the second	laipean bibite	an physical and a statistical definition of the	n ha beer te beer an a
			-						
			-						
			22001		24				6 2 0 CH
CF 1.5 GHz			32001 p	ts	30	00.0 MHz/			Span 3.0 GHz
2 Marker Peak	CLIST X-V-Jure		VV	luo	No	X-V-Juo		V.V.5	110
1	1.000141 G	GHz	-5.042	2 dBm	4	1.999672 G	Hz	-44.821	dBm
2	1.411972 @	GHz	-44.01	5 dBm	5	2.416471 G	Hz	-44.471	dBm
3	1.462501 @	GHz	-43.962	2 dBm	6	2.964798 G	Hz	-43.557	dBm
	~							Ready	09.03.2017 08:17:45

08:17:47 09.03.2017

디스플레이 정보 이해하기 - 스펙트럼 모드

7 기기 작동

이 장에서는 R&S FPL1000를 작동하는 방법에 대해 간단히 설명합니다.

(i)

Remote control

기기에서 직접 R&S FPL1000를 상호대화식으로 조작하는 방법 이외에도 원 격 PC에서 조작 및 제어할 수 있습니다. 다양한 원격 제어 방법이 지원됩니 다.

- 기기를 (LAN) 네트워크에 연결
- LAN 네트워크에서 웹 브라우저 인터페이스 사용
- LAN 네트워크에서 Windows Remote Desktop 애플리케이션 사용
- GPIB 인터페이스를 통해 PC 연결

원격 제어 인터페이스를 구성하는 방법은 R&S FPL1000 사용자 매뉴얼에 설명되어 있습니다.

•	디스플레이 정보 이해하기 - 스펙트럼 모드	69
•	기능 액세스	78
•	데이터 입력	83
•	터치스크린 제스처	85
•	도움말 보기	87

7.1 디스플레이 정보 이해하기 - 스펙트럼 모드

다음 그림은 Spectrum 모드에서 측정 다이어그램을 나타냅니다. 각각의 정보 영 역에 대한 라벨이 표시되어 있습니다. 자세한 설명은 다음 섹션에 나와 있습니다.

1 = 펌웨어 및 측정 설정을 위한 채널 표시줄

2 = 다이어그램별(트레이스) 정보가 포함된 창 제목 표시줄

- 3 = 마커 정보가 포함된 다이어그램 영역
- 4 = 다이어그램별 정보(측정 애플리케이션에 따라 다름)가 포함된 다이어그램 하단 정보 표시줄
- 5 = 에러 메시지와 날짜/시간이 표시되는 장비 상태 바

✔ 디스플레이에서 항목 숨기기 디스플레이에서 일부 항목(예: 상태 막대 또는 채널 막대)을 숨겨 측정 결과 의 디스플레이 영역을 확대할 수 있습니다. ("Setup"(설정) > "Display"(표 시) > "Displayed Items"(표시 항목)) 자세한 내용은 R&S FPL1000 사용자 매뉴얼을 참조하십시오.

 • 다이어그램

		디스플리	비이 정	보 이해히	하기 - 스	펙트럼	모드
하단 정보	표시줄의	주파수 및	Span	정보			76

7.1.1 채널 설정 바

R&S FPL1000을(를) 사용하면 다양한 측정 작업(채널)을 동시에 처리할 수 있습니다. 각각의 동작은 동기되지는 않습니다. 화면에 각 채널에 대한 별도의 탭이 표시됩니다. 채널 디스플레이 사이를 전환하려면 해당 탭을 선택하십시오.

MultiVie	w 🎫 S	pectrum	<mark>∗</mark> ×	Spec	trum 2	×
Ref Level	0.00 dBm		RBW	3 MHz		
Att	13 dB	SWT 5.2 ms	VBW	3 MHz	Mode Auto	Sweep

많은 탭이 표시된 경우 채널 막대 오른쪽 끝에 있는 탭 선택 목록 아이콘을 선택 합니다. 목록에서 전환하려는 대상 채널을 선택합니다.

MultiView
Spectrum
Analog Demod
IQ Analyzer
Spectrum 2

MultiView 탭

"MultiView"(멀티뷰) 추가 탭에서는 사용 중인 모든 채널의 요약 정보를 한 번에 확인할 수 있습니다. "MultiView"(멀티뷰) 탭에서는 각 창에 추가 버튼이 있는 자 체 채널 바가 표시됩니다. 해당 채널 디스플레이로 빠르게 전환하려면, 이 버튼을 누르거나 아무 창에서 두 번 누르십시오.

MultiView		Spectr	um		×]
Spectrum	RefLev	el 0.00 dBm			RBW	З
	Att	10 dB	S WT	79.5 ms	VBW	з
1 Frequency Sweep						

기기 작동

디스플레이 정보 이해하기 - 스펙트럼 모드

채널 막대의 아이콘

탭 라벨에서 황색 별 모양 아이콘 ▲("더티 플래그"라고도 함)은 잘못되거나 일관 적이지 않은 데이터가 표시되었음을 나타냅니다. 즉, 트레이스가 더 이상 표시된 기기 설정과 일치하지 않습니다. 이 현상은 예를 들어 측정 대역폭을 변경했지만 트레이스가 이전 대역폭에 따라 표시된 경우에 발생할 수 있습니다. 새 측정을 수 행하거나 디스플레이를 업데이트하는 즉시 아이콘은 사라집니다.

■ 아이콘은 채널 셋업에서 에러 또는 경고가 발생했다는 뜻입니다. 특히 MultiView 탭이 표시된 경우 유용합니다.

아이콘은 자동 측정 시퀀스 중 현재 활성 상태인 채널을 나타냅니다 (Sequencer 기능).

채널별 설정

채널 이름 아래 **채널 막대**에 측정에 대한 채널별 설정에 대한 정보가 표시됩니다. 채널 정보는 활성 애플리케이션에 따라 달라집니다.

Spectrum 애플리케이션에서 R&S FPL1000는 다음과 같은 설정을 표시해줍니다.

레퍼런스 레벨	레퍼런스 레벨		
Att	RF 입력에 적용되는 RF 감쇠		
Ref Offset	레퍼런스 레벨 오프셋		
SWT	설정된 스윕 시간. 스윕 시간이 자동 설정 값에 해당하지 않는 경우 필드 앞에 점이 표시됩니다. 스윕 시간이 자동 설정 값보다 낮게 설정된 경우 점이 적색으로 바뀝니다. 또한 UNCAL 플래그가 표시됩니다. 이 경우 스윕 시간을 늘려야 합니다. FFT 스윕의 경우 데이터 캡처 <i>및 처리</i> 예상 시간이 채널 막대에서 스윕 시간 뒤에 표시됩니다.		
RBW	설정된 분해능 대역폭. (CISPR)은 CISPR 트레이스 탐지기가 활성화된 상태와 같이 CISPR 대역폭 필터가 사용 중인 경우를 나타냅니다. 자세한 내용은 R&S FPL1000 사용자 매뉴얼에서 EMI 측정을 참 조하십시오. 대역폭이 자동 설정 값에 해당하지 않는 경우 필드 앞에 녹색 점이 나타납니다.		
VBW	설정된 비디오 대역폭. 대역폭이 자동 설정 값에 해당하지 않는 경우 필드 앞에 녹색 점이 표시됩니다.		
호환	호환 기기 모드(FSL, FSV, 기본. 기본은 표시되지 않음)		

표 7-1: Spectrum 애플리케이션의 채널 막대에 표시되는 채널 설정
디스플레이 정보 이해하기 - 스펙트럼 모드

모드	사용 중인 스윕 모드 유형 표시 • "Auto FFT"(자동 FFT) : 자동으로 선택된 FFT 스윕 모드 • "Auto sweep"(자동 스윕) : 자동으로 선택된 스윕된 스윕 모 드
Pwr.Swp	내부 추적 발생기 옵션을 사용하여 파워 스윕 측정을 수행할 경우 파워 스윕 범위를 나타냅니다

개별 설정용 아이콘

설정 옆의 점은 자동 설정이 아닌 사용자 정의 설정이 사용되었음을 나타냅니다. 녹색 점은 이 설정이 유효하며 측정이 올바름을 나타냅니다. 적색 점은 설정이 잘 못되었고 유용한 결과를 제공하지 않음을 나타냅니다.

공통 설정

다이어그램 위의 채널 바에 각 채널의 설정과 측정 결과에 영향을 주는 장비 설정 에 대한 정보가 표시됩니다. 단, 이 정보는 측정된 값 표시에서는 바로 보이지 않 습니다. 이 정보는 항상 표시되는 채널별 설정과 달리, 현재 측정에 해당하는 경 우에만 회색 폰트로 표시됩니다.

MultiVie	w 🎫 Sp	pectrum	××	Spec	trum 2	×
Ref Level	0.00 dBm		RBW	3 MHz		
Att	13 dB	SWT 5.2 ms	VBW	3 MHz	Mode Auto	Sweep

해당하는 경우 다음 유형의 정보가 표시됩니다.

표 7-2: 채널 막대에 표시되는 공통 설정

SGL	스윕이 단일 스윕 모드로 설정되어 있습니다.
스윕 횟수	특정 수의 향후 스윕이 관련된 측정 작업에 대한 현재 신호 수 (사용자 매뉴얼에서 "Sweep Settings"(스윕 설정) 의 "Sweep Count"(스윕 수) 설정 참조)
TRG	트리거 소스 (자세한 내용은 사용자 매뉴얼의 "트리거 설정" 참조) • EXT: 외부 • IFP: IF 출력 (+트리거 대역폭) • PSE: 파워 센서 • TIM: 시간 • VID: 비디오
PA	프리앰프가 활성화되었습니다.
"YIG Bypass" (YIG 바이패 스)	YIG 필터가 비활성화되었습니다.

디스플레이 정보 이해하기 - 스펙트럼 모드

GAT	주파수 스윕은 "TRIGGER INPUT" 커넥터를 통해 제어합니다.
TDF	지정된 트랜스듀서 팩터가 활성화되었습니다.
75 Ω	기기의 입력 임피던스가 75 Ω으로 설정되었습니다.
FRQ	주파수 오프셋 ≠ 0 Hz가 설정되었습니다.
CWSource: <level></level>	내부 발생기를 지정된 레벨(옵션 R&S FPL1-B9 필요)의 독립 CW 소스로 작동 중.
<"NOR" "APX"> /Trk.Gen	내부 발생기를 추적 발생기로 작동 중(옵션 R&S FPL1-B9 필요). NOR: 내부 발생기 교정 결과를 사용하여 측정값을 정규화합니다. APX(근사치): 내부 발생기 교정 결과를 사용하여 측정값을 정규화합니다. 단, 교정 후에는 측정 설정이 변경됩니다. 표시된 라벨이 없는 경우 아직 교정이 수행되지 않았거나 교정이 활성 상태가 아닙니다. 자세한 내용은 R&S FPL1000 사용자 매뉴얼에서 "내부 발생기" 절을 참조하십 시오.

채널 셋업 이름 변경

채널 셋업은 기본 이름으로 표시됩니다. 해당 이름이 이미 존재하는 경우 순차적 이름이 추가됩니다. 채널 바의 이름을 두 번 탭한 후 새 이름을 입력하여 채널 셋 업의 이름을 변경할 수 있습니다.

7.1.2 창제목표시줄

R&S FPL1000 디스플레이의 각 채널은 여러 창을 포함할 수 있습니다. 각 창은 채널 측정의 결과를 그래프 또는 표로 표시할 수 있습니다. 창 제목 표시줄에 어 떤 평가 유형이 표시되는가가 나타납니다.

창 제목 표시줄

표시된 트레이스의 정보는 창 제목 표시줄에 나타납니다.

(1) 트레이스 색	다이어그램의 트레이스 표시 색
(2) 트레이스 번호	트레이스 번호(1 ~ 6)
(3) 검출기	선택된 검출기:

디스플레이 정보 이해하기 - 스펙트럼 모드

	AP	AUTOPEAK 검출기
	Pk	MAX PEAK 검출기
	Mi	MIN PEAK 검출기
	Sa	SAMPLE 검출기
	Av	AVERAGE 검출기
	Rm	RMS 검출기
(4) 트레이스 모드		스윕 모드:
	Clrw	CLEAR/WRITE
	Clrw 최대	CLEAR/WRITE MAX HOLD
	Clrw 최대 최소	CLEAR/WRITE MAX HOLD MIN HOLD
	Clrw 최대 최소 평균	CLEAR/WRITE MAX HOLD MIN HOLD AVERAGE (Lin/Log/Pwr)
	Clrw 최대 최소 평균 보기	CLEAR/WRITE MAX HOLD MIN HOLD AVERAGE (Lin/Log/Pwr) VIEW

7.1.3 마커 정보

마커 정보는 구성에 따라 다이어그램 그리드 또는 별도의 마커 표로 제공됩니다.

다이어그램 그리드의 마커 정보

다이어그램 그리드 내에 설정된 마지막 마커 2개 또는 델타 마커의 x-축 및 y-축 위치(사용 가능한 경우)와 해당 인덱스가 표시됩니다. 인덱스 다음의 대괄호 내 값은 마커가 할당된 트레이스를 나타냅니다. (예: M2[1]는 트레이스 1의 마커 2 를 나타냅니다.) 마커가 2개보다 많은 경우 기본적으로 다이어그램 아래에 별도 의 마커 표가 표시됩니다.

마커 표의 마커 정보

다이어그램 그리드 내에 표시되는 마커 정보 이외에, 다이어그램 아래에 별도의 마커 표가 표시될 수 있습니다. 이 표는 모든 활성 마커에 대해 다음과 같은 정보 를 제공합니다.

"Type"(유형)	마커 유형: N(일반), D(델타), T(임시, 내부), PWR(파워 센서)
"Ref"(레퍼런스)	레퍼런스(델타 마커용)
"Trc"	마커가 할당된 트레이스

시작하기 1179.4657.19 — 13

디스플레이 정보 이해하기 - 스펙트럼 모드

"X-value"(X-값)	마커의 X-값
"Y-Value"(Y-값)	마커의 Y-값
"Function"(기능)	활성화된 마커 또는 측정 기능
"Function Result"(기 능 결과)	활성 마커 또는 측정 기능의 결과

기능은 다음과 같은 약어로 표시됩니다.

"FXD"	고정 레퍼런스 마커
"Phase Noise"(위상 노이즈)	위상 노이즈 측정
"Signal Count"(신호 수)	신호 수
"TRK"	신호 추적
"Noise Meas"(노이즈 측정)	노이즈 측정
"MDepth"(AM 변조 깊 이)	AM 변조 깊이
"TOI"	3차 교차점 측정

7.1.4 다이어그램 하단 정보 표시줄의 주파수 및 Span 정보

다이어그램 하단 정보 표시줄의 내용은 현재 애플리케이션, 측정, 결과 표시에 따 라 달라집니다.

Spectrum 모드에서 기본 측정의 경우 다이어그램 결과 표시에 다음과 같은 정보 가 표시됩니다. 예를 들어 다음과 같습니다.

라벨	정보
CF	중심 주파수
스팬	주파수 스팬 (주파수 도메인 표시)
ms/	분할당 시간(시간 도메인 디스플레이)
Pts	Zoom 모드에서 스윕 포인트 수 또는 현재 표시된 포인트 수(반올림)

디스플레이 정보 이해하기 - 스펙트럼 모드

7.1.5 기기 및 상태 정보

전역 설정과 기능, 기기 상태 및 모든 이상은 다이어그램 아래 상태 표시줄에 표 시됩니다.

MultiView 탭에서 상태 표시줄에는 언제나 현재 선택된 측정에 대한 정보가 표시 됩니다.

다음과 같은 정보가 표시됩니다.

기기 상태

EXT REF	기기가 외부 레퍼런스를 이용해 작동하도록 구성되었습니다.
65 % 🧕	배터리 로드 상태

날짜 및 시간

기기의 날짜 및 시간 설정이 상태 표시줄에 표시됩니다.

7.1.6 에러 정보

에러 또는 이상이 감지되는 경우 키워드 및 에러 메시지(사용 가능한 경우)가 상 태 표시줄에 표시됩니다.

Sync failed

UNCAL 🗘

메시지 유형에 따라 상태 메시지가 다양한 색으로 표시됩니다.

표 7-3: 상태 바 정보 - 컬러 코딩

색	유형	설명
적색	에러	측정을 시작할 때 또는 측정 중, 예를 들어 누락된 데이터 또는 잘못 된 설정으로 인해 측정을 시작할 수 없거나 올바르게 완료할 수 없 을 경우 발생한 에러
주황색	경고	측정 중 발생한 이상 상황. 예를 들어 설정이 더 이상 표시된 결과와 일치하지 않거나 외부 장치 연결이 일시적으로 중단된 경우.

기능 액세스

색	유형	설명
회색	정보	개별 처리 단계 상태에 대한 정보
무색	에러 없음	표시된 메시지 없음 - 정상 작동.
녹색	측정 성공	일부 애플리케이션은 메시지를 표시하여 측정이 성공적임을 시각화 합니다.

채널 셋업에 에러 정보가 있는 경우 채널 셋업 이름 옆에 느낌표가 표시됩니 다(I). MultiView 탭의 상태 표시줄에는 항상 현재 선택된 채널 셋업의 정보 만 표시되므로 MultiView 탭이 표시된 경우 특히 유용합니다.

7.2 기능 액세스

이 사용자 인터페이스를 사용하여 기기를 작동하는 데 필요한 모든 작업을 수행 할 수 있습니다. 제품의 고유한 키 이외에 외부 키보드에 연관되는 다른 모든 키 (예: 화살표 키, 엔터 키)들은 Microsoft 방식에 따라 작동합니다.

대부분의 작업은 2가지 이상의 방법으로 수행할 수 있습니다.

- 터치스크린 사용
- 전면 패널의 다른 요소 사용(예: 키패드, 로터리 노브 또는 화살표 및 위치 키)

측정 및 기기 기능과 설정은 다음 요소 중 하나를 선택하여 액세스할 수 있습니 다.

- 기기 전면 패널의 시스템 및 기능 키
- 터치스크린의 소프트키
- 터치스크린의 특정 항목에 대한 문맥 메뉴
- 터치스크린 도구 모음의 아이콘
- 터치스크린에 표시된 설정

7.2.1 툴바 기능

화면 상단의 툴바에 있는 아이콘으로 표준 기능을 수행할 수 있습니다.

기능 액세스

♀ 예를 들어 원격 제어를 사용하면서 측정 결과 표시 영역을 넓히려는 경우 툴 바 영역을 숨길 수 있습니다("Setup"(설정) > "Display"(표시) > "Displayed Items"(표시 항목)).

R&S FPL1000 사용자 매뉴얼을 참조하십시오.

즉시 인쇄	79
열기	79
저장	79
보고서 생성기	79
실행 취소	79
다시 실행	80
확대/축소 모드	80
복수 확대/축소	80
확대/축소 해제	80
SmartGrid(스마트그리드)	80
Sequencer(시퀀서)	80
Gen On/Off(발생기 켜기/끄기)	80
Gen Config(발생기 구성)	80
도움말 (+ 선택)	80
도움말	80
Windows	81

즉시 인쇄

현재 디스플레이(스크린샷)를 구성대로 인쇄합니다.

열기 기기에서 파일을 엽니다("Save/Recall"(저장/불러오기) 메뉴).

저장

기기에 데이터를 저장합니다("Save/Recall"(저장/불러오기) 메뉴).

보고서 생성기

보고서를 구성하는 "Report"(보고서) 메뉴를 표시합니다.

실행 취소

마지막 작동을 취소합니다. 즉, 이전 동작 전의 상태로 되돌립니다.

기기 작동

기능 액세스

실행 취소 기능은 예를 들어 여러 마커와 한도 라인을 정의한 상태에서 Zero Span 측정을 수행하면서 실수로 다른 측정을 선택하는 경우 유용합니다. 이러한 경우 많은 설정이 삭제될 수 있습니다. 하지만 즉시 [UNDO]를 누르면 이전 상 태, 즉, Zero Span 측정과 모든 설정이 복원됩니다.

메모: [UNDO] 기능은 [PRESET] 또는 "Recall"(불러오기) 작업 후에는 사용할 수 없습니다. 이러한 기능을 사용할 경우 이전 동작의 이력이 삭제됩니다.

다시 실행

이미 되돌린 작업을 다시 실행합니다.

확대/축소 모드

다이어그램에서 확대/축소 영역을 지정할 수 있는 점선 사각형이 표시됩 니다.

복수 확대/축소 한 다이어그램에서 2개 이상의 확대/축소 영역을 지정합니다.

확대/축소 해제 다이어그램을 원래 크기로 표시합니다.

SmartGrid(스마트그리드)

화면 레이아웃을 구성하는 "SmartGrid"(스마트그리드) 모드를 활성화합 니다.

Sequencer(시퀀서) 연속 측정을 수행하는 "Sequencer"(시퀀서) 메뉴를 엽니다.

Gen On/Off(발생기 켜기/끄기) 내부 발생기를 활성화/비활성화합니다.

GEN Config Gen Config(발생기 구성) 내부 발생기를 구성하는 대화상자를 엽니다.

도움말 (+ 선택)

상황별 도움말이 표시되는 개체를 선택할 수 있습니다 장 7.5, "도움말 보기", 페이지 87 참고

가장 최근에 선택된 요소에 대해 상황에 맞는 도움말 항목을 표시합니다 장 7.5, "도움말 보기", 페이지 87 참고

시작하기 1179.4657.19 - 13

H Windows

Windows "Start"(시작) 메뉴와 작업 표시줄을 표시합니다. ""Start"(시작) 메뉴에 액세스하려면" 페이지 29 참고.

7.2.2 소프트키

소프트키는 소프트웨어에서 제공하는 가상 키입니다. 따라서 기기의 기능 키를 통해 직접 액세스할 수 있는 기능보다 더 많은 기능을 제공합니다. 소프트키는 동 적입니다. 즉, 선택한 기능 키에 따라 화면 오른쪽에 다른 소프트 목록이 표시됩 니다.

특정 기능 키에 대한 소프트키 목록을 메뉴라고도 합니다. 소프트키로 특정 기능 을 수행하거나 대화상자를 열 수 있습니다.

"More"(기타) 소프트키를 누르면 화면에서 메뉴에 더 많은 소프트키가 표시됩니 다. 이 소프트키를 누르면 다음 소프트키 세트가 표시됩니다.

색으로 소프트키 상태 구분

색	១០
주황색	관련 대화상자가 열려 있습니다
청색	관련 기능이 활성 상태입니다. 키를 전환합니다. 현재 활성 상태를 나타냅니 다.
회색	특정 설정 또는 옵션이 없어 기기 기능을 일시적으로 사용할 수 없습니다

♀ 예를 들어 원격 제어를 사용하면서 측정 결과 표시 영역을 넓히려는 경우 소 프트키 영역을 숨길 수 있습니다("Setup"(설정) > "Display"(표시) > "Displayed Items"(표시 항목)). 자세한 내용은 사용자 매뉴얼을 참조하십 시오.

7.2.3 문맥 메뉴

다이어그램 영역의 여러 항목에는 컨텍스트 메뉴(예: 마커, 트레이스 또는 채널 바)가 있습니다. 이 항목 중 하나를 마우스 오른쪽 버튼으로 클릭하거나 1초 정도 탭하면 해당 소프트 키와 동일한 기능을 포함하는 메뉴가 표시됩니다. 예를 들어, 소프트키 디스플레이가 숨겨졌을 때 이 기능이 매우 유용합니다.

기기 작동 R&S[®]FPL1000 기능 액세스 1 Frequency Sweep • 1AP Clrw M1[1] 81.13 dBµV 99.600 MHz 100 dBµV-90 dBµV М1 80 dBµV ✓ Marker 1 Marker 2 70 dBµV Marker 3 Marker 4 60 dBµV Select Marker (M1) Mkr Type (Norm) Delta 50 dBµV **Marker To Trace** All Markers Off 40 dBµ∖ Marker Config 30 dBµV 20 dBµV 0 dBµV ሊዮላ 150.0 kHz 1001 pts 19.97 MHz/ 100 85 MH

7.2.4 온스크린 키보드

온스크린 키보드를 이용하면 외부 키보드를 연결하지 않고도 장비와 상호작용할 수 있습니다.

																										ô	> [\times
Esc				1		2		3		4		5		6	&	7		8		9		0				=	\otimes		
Tab	1	q		W		е		r		t		у		u		i		0		р			[]		\	Del	
Caps			а		S		d		f		g		h		j		k		I						Ent	er			
Shift				Z		х		с		v		b		n		m							/	\wedge		Shit	ft		
Fn	Ctrl				Alt													Alt		Ctr	I	<		\sim		>			3

온스크린 키보드 디스플레이는 화면 아래에 있는 "On-Screen Keyboard" 기능키 를 이용하여 실행 및 해제할 수 있습니다.

이 키를 누르면 디스플레이에서 다음 옵션 중 하나가 선택됩니다.

- 화면 상단에 키보드가 표시됨
- 화면 하단에 키보드가 표시됨

시작하기 1179.4657.19 — 13

• 키보드가 표시되지 않음

♀ 온스크린에 있는 TAB 키를 이용하여 커서 위치를 필드에서 대화상자에 있 는 다른 필드로 옮길 수 있습니다.

7.3 데이터 입력

대화상자에 데이터를 입력할 수 있는데 이용할 수 있는 방법은 다음과 같습니다.

- 터치스크린에서 온라인 키보드 이용하기
- 전면 패널의 다른 요소 사용(예: 키패드, 로터리 노브 또는 탐색 키) 로터리 노브를 누르면 [ENTER] 키와 같이 작동합니다.
- 연결된 외부 키보드 사용

▶ 투명 대화상자

습니다.)

대화상자의 투명도를 변경하여 대화상자 뒤에 있는 창으로 결과를 확인할 수 있습니다. 따라서 설정을 변경함으로 인한 효과를 결과에서 즉시 확인할 수 있습니다.

투명도를 변경하려면 대화상자 상단에 있는 투명도 아이콘을 선택합니다. 슬라이더가 표시됩니다. 슬라이더를 숨기려면 투명도 아이콘을 다시 선택합 니다.

______ (대화상자의 제목 표시줄은 항상 약간 투명하며 슬라이더의 영향을 받지 않

X

Windows 대화상자의 특이사항

프린터를 설치하려는 경우와 같은 일부 경우에는 원래 Windows 대화상자 가 사용됩니다. 이러한 대화상자에서는 로터리 노브와 기능 키가 작동하지 않습니다. 대신 터치스크린을 사용하십시오.

숫자 파라미터 입력

숫자 입력이 필요한 필드의 경우 키패드로 숫자 입력만 가능합니다.

- 키패드를 사용하여 파라미터 값을 입력하거나 로터리 노브(작은 폭) 혹은 [UP] 또는 [DOWN] 키(넓은 폭)를 사용하여 현재 사용된 파라미터 값을 변경 합니다.
- 2. 키패드로 숫자값을 입력한 후에는 해당 단위 키를 입력합니다. 입력 내용에 단위가 추가됩니다.
- 파라미터에 단위가 필요하지 않을 경우 [ENTER] 키 또는 단위 키를 눌러 입 력한 값을 확인합니다. 편집 라인이 강조 표시되면서 입력이 확인됩니다.

영숫자 파라미터 입력

입력란에 문자/숫자를 입력해야 하는 경우 온스크린 키보드를 이용해 숫자와 (특 수) 문자를 입력할 수 있습니다(장 7.2.4, "온스크린 키보드", 페이지 82 참조).

입력값 수정

- 화살표를 사용하여 커서를 삭제하려는 입력 내용의 오른쪽으로 커서를 이동합 니다.
- [Backspace] 키를 누릅니다.
 커서 왼쪽에 있는 입력 내용이 삭제됩니다.
- 3. 수정 내용을 입력합니다.

입력 완료하기

▶ [ENTER] 키 또는 로터리 노브를 누릅니다.

입력 취소하기

[ESC] 키를 누릅니다.
 설정이 변경되지 않고 대화상자가 닫힙니다.

터치스크린 제스처

터치스크린 제스처 7.4

터치스크린을 이용하여 다양한 손가락 제스처를 통해 소프트웨어를 조작할 수 있 습니다. 여기서는 소프트웨어와 대부분의 응용 프로그램에서 지원하는 기본 제스 처에 대해 설명합니다. 동일한 제스처로 다른 동작이 가능할 수도 있습니다.

참고: 부적합한 도구 또는 과도한 힘을 사용하면 터치스크린이 손상될 수 있습니 다.

스크린 청소 방법은 "제품 청소" 페이지 10의 내용을 참고하십시오.

탭

화면을 짧게 터치합니다(일반적으로 구체적인 요소를 터치).

화면에 나온 대부분의 요소를 탭할 수 있습니다. 특히 모든 요소는 마우스를 사용 하여서도 클릭할 수 있습니다.

그림 7-1: 탭

더블 탭

화면을 빠르게 이어서 두 번 누릅니다.

디스플레이에서 창을 최대화하거나 원래 크기로 복원하려면 다이어그램 또는 창 제목 표시줄을 더블 탭합니다.

드래그

화면에서 손가락을 다른 지점으로 이동합니다. 이 때 손가락이 화면에 계속 붙어 있어야 합니다.

표 또는 다이어그램 위에서 손가락을 드래그하면 표시된 영역에 안 보이던 결과 가 표시됩니다.

그림 7-2: 드래깅

손가락 2개를 모으면 표시된 영역이 작아지면서 안 보이던 주변 영역이 표시됩니 다.

손가락 2개를 벌리면 표시된 영역이 커지면서 세부정보가 표시됩니다.

손가락을 세로, 가로 또는 대각선 방향으로 모으거나 벌립니다. 손가락을 움직이 는 거리에 따라 표시되는 화면의 크기가 정해집니다.

그림 7-3: 핀칭

그림 7-4: 벌리기

도움말 보기

() 다이어그램에서 터치 제스처로 측정 설정 변경

터치 제스처로 디스플레이를 변경하면 그에 따라 해당 측정 설정이 수정됩니다. 이는 Zoom 모드에서 화면 영역을 선택하는 경우와 같이 표시된 트레이스 포인트의 해상도만 일시적으로 바뀌는 경우와 다릅니다.

마우스와 터치 동작의 비교

화면에서 마우스 포인터의 동작에 반응하는 사용자 인터페이스 요소는 손가락 제 스처에도 반응합니다. 다음은 기능이 동일한 터치 동작과 마우스 동작입니다.

표 7-4: 마우스와 터치 동작의 비교

마우스 동작	터치 동작
클릭	탭
더블 클릭	더블 탭
클릭 상태 유지	터치 상태 유지
오른쪽 클릭	1초 동안 터치 후 손가락 떼기
드래그 앤 드롭(클릭 상태에서 드래그한 후 클 릭 해제)	터치 상태에서 드래그 후 손가락 떼기
(하드웨어 설정 변경)	손가락 2개 벌리기 및 모으기
마우스 휠로 위아래 스크롤	스와이프
스크롤바를 드래그하여 위아래 또는 좌우로 스 크롤	스와이프

(그래픽) Zoom 모드만 해당: 표시된 사각형의	손가락으로 누른 다음 드래그하다 손가락을 뗍
경계를 끌어 크기를 변경합니다	니다

예시:

표의 스크롤바를 반복적으로 클릭하여 기존 마우스 조작으로 긴 표를 스크롤할 수 있습니다. 터치 조작에서는 손가락으로 표를 위아래로 드래그하여 표를 스크 롤합니다.

7.5 도움말 보기

R&S FPL1000에 대해 궁금한 사항이 있거나 문제가 발생하는 경우 언제든지 장 비에 제공되는 포괄적인 온라인 도움말 시스템을 참조할 수 있습니다. 도움말 시 스템은 상황에 따라 제공되며 현재 작업 또는 수행할 설정에 맞는 정보를 제공합

기기 작동

도움말 보기

니다. 또한, 일반 주제에서는 전체 작업이나 기능 그룹, 그리고 배경 정보에 대한 개요가 제공됩니다.

언제든지 툴바에 있는 "Help"(도움말) 아이콘 중 하나를 선택하거나 외부 또는 스 크린 키보드에서 [F1] 키를 눌러 온라인 도움말을 열 수 있습니다.

상황에 맞는 도움말을 불러오려면

현재 커서가 있는 화면 요소(예: 열린 대화상자의 소프트키 또는 설정)에 대한 "Help"(도움말) 대화상자를 표시하려면 툴바에서 "Help"(도움말) 아이콘을 선 택하십시오.

?

"Help"(도움말) 대화상자 "View"(보기) 탭이 표시됩니다. 커서가 위치한 화면 에 대한 정보가 표시됩니다.

도움말을 위한 주제가 없는 경우에는 더욱 일반적인 주제나 "Content"(내용) 탭이 표시됩니다.

① 일반 Windows 대화상자(예: 파일 속성, 인쇄 대화상자)의 경우 상황별 도움 말이 제공되지 않습니다.

현재 포커스되어 있지 않은 화면 요소에 대한 도움말 주제를 표시하는 방법

1. 툴바에서 "Help pointer"(도움말 포인터) 아이콘을 선택합니다.

포인터의 모양이 "?" 와 화살표로 변합니다.

커서를 변경할 화면 요소를 선택합니다.
 커서가 위치한(선택한) 화면 요소의 정보에 대한 주제가 표시됩니다.

8 고객지원

8.1 지원에 필요한 정보 수집

문제가 발생할 경우 장비에 에러 메시지가 표시되며, 대부분의 경우 사용자가 에 러 메시지를 읽고 에러의 원인을 찾거나 해결방법을 찾을 수 있습니다.

에러 메시지에 대한 자세한 설명은 사용자 매뉴얼의 "Troubleshooting"(문제해 결) 절을 참조하십시오.

또한 고객 센터에 연락하여 R&S FPL1000사용 중 발생하는 문제의 해결방법에 대해 문의할 수 있습니다. 아래 정보를 알려주실 경우 해결방법을 더욱 빠르고 효 율적으로 찾아드릴 수 있습니다.

• Windows 이벤트 로그 파일

Windows는 응용 프로그램과 운영 체제의 중요 동작을 이벤트 로그에 기록합 니다. 사용자가 이벤트 로그 파일을 만들어 기존 이벤트 로그를 요약 및 저장 할 수 있습니다("Windows 이벤트 로그 파일을 만들려면" 페이지 90 참조).

- 시스템 구성: "System Configuration"(시스템 구성) 대화상자("Setup"(설정) 메뉴)에 다음에 대한 정보가 표시됩니다.
 - Hardware Info: 하드웨어 어셈블리
 - Versions and Options: 장비에 설치된 모든 소프트웨어 및 하드웨어 옵션 의 상태
 - System Messages: 발생하는 모든 에러에 대한 메시지

DIAGnostic:SERVice:SINFo 명령을 사용하거나 "지원 정보를 수집하려 면" 페이지 89의 설명에 따라 시스템 구성("Device Footprint"(장치 설치면 적))에 대한 정보가 포함된 .xml 파일을 자동으로 만들 수 있습니다.

- 에러 로그: RSError.log 파일
 (C:\ProgramData\Rohde-Schwarz\ZNL-FPL\log 디렉터리)에 에러의 시간순 레코드가 포함되어 있습니다.
- 지원 파일: 중요한 지원 정보가 포함된 *.zip 파일을 자동으로 생성할 수 있습 니다(C:\ProgramData\Rohde-Schwarz\ZNL-FPL\user). *.zip 파일에는 시스템 구성 정보("Device Footprint"(장치 설치면적)), 현재 eeprom 데이 터, 화면 디스플레이의 스크린샷이 포함됩니다.

지원 정보를 수집하려면

1. [Setup] 키를 누릅니다.

시작하기 1179.4657.19 — 13

고객 지원

지원에 필요한 정보 수집

2. "Service"(서비스) > "R&S Support"(R&S 지원), "Create R&S Support Information"(R&S 지원 정보 작성) 을 차례로 선택합니다. 파일이 C:\ProgramData\Rohde-Schwarz\ZNL-FPL\user\ <inst_model>_<serial-no>_<date_and_time>.zip으로 저장됩니다. 예: C:\ProgramData\Rohde-Schwarz\ZNL-FPL\user\FPL1003_20160803_145113

Windows 이벤트 로그 파일을 만들려면

1. 왼쪽 아래 모서리에 있는 "Windows Start Button" (Windows 시작 버튼)을 누 릅니다.

- 2. *이벤트 뷰어*를 입력하고 "Enter"를 누릅니다.
- 3. "Console Tree"(콘솔 트리)에서 "Windows Logs"(Windows 로그)를 선택 및 확장합니다.
- 4. 각 하위 섹션을 마우스 오른쪽 버튼으로 클릭한 다음 "Save All Events As..." (모든 이벤트를 다음 이름으로 저장)를 선택합니다.

고객	지	문

고객 지원팀 문의

🛃 Event Viewer		
File Action V	iew Help	
🗢 🄿 📊 🛛		
Event Viewer (.ocal)	Event Viewer (L
> 😽 Custom Vi	Overview	
👔 Applica	tion /	Overview
 ☐ Setur € Syste ☐ Forw > ● Applicati 	Open Saved Create Custo Import Custo	Log om View om View
Subscrip	Clear Log Filter Curren Properties Find	t Log
	Save All Ever	nts As
	Attach a Tas	k To this Log
	Help	> -

그림 8-1: 이벤트 뷰어

5. 파일 이름을 입력하고 "Save"(저장)를 선택합니다.

에러 정보를 수집한 다음 문제에 대한 설명을 적은 이메일에 첨부합니다. 장 8.2, "고객 지원팀 문의", 페이지 91에 나열된 지역의 고객 지원 주소로 이메일을 전 송합니다.

8.2 고객 지원팀 문의

기술적 지원 - 지원이 필요한 경우

Rohde & Schwarz 제품과 관련된 전문 지원을 신속하게 받으려면 고객 지원 센터 에 문의하십시오. 전문 엔지니어 팀이 상담을 통해 Rohde & Schwarz 제품의 작 동, 프로그래밍 또는 애플리케이션에 대한 궁금증을 해결해 드립니다.

고객 지원

고객 지원팀 문의

연락처 정보

www.rohde-schwarz.com/support의 고객 지원 센터에 문의하거나, 이 QR 코드 를 스캔해주십시오.

그림 8-2: Rohde & Schwarz 지원 페이지로 이동하는 QR 코드

색인

부호

75 Ω (채널 막대) 74	4
-	
감쇠 (채널 설정) 72 검색 설정	2
시험 사용6(교정	С
신호(RF 입력)	3 4 7 3
개요31 자세한 내용 - 사용자 매뉴얼 참조 37 기술 지원 89	7 7 9
L	
노이즈 소스 컨트롤 커넥터44	4
_	
다이어그램 영역 상태 표시	7 2 4 6
네푀공지 슬라이더8(투명도8(3 3
다디 들대그 잘못된 데이터 아이콘 참조	2 3 3 7
2	
레퍼런스 레벨 (채널 설정)72 로드	2
사용해보기	6 9 3

가커
시험 사용58
정보75
바커 표
정보75
비뉴
상황 인식81
코드 (채널 설정) 73
문제 해결
사용자 매뉴얼 참조77

ы

백	서.						 14
별	모	양(횡	낭색)				
	잘	못된	데이터	아이콘] 참조	•••••	 72
보	안	절차					 13
⊟.	로서	∀					 13

ㅅ

상태 바		
상태별 색상 표시		77
에러 메시지		77
상태 표시		77
서비스 매뉴얼		13
소프트키		
상태		81
숫자 파라미터		84
스크린 키보드		84
스크린샷		
시험 사용		67
스펙트로그램		
시험 사용		50
시스템		
키		36
시퀀서	• • • • •	72
사용해보기		57
시험 사용		
전제조건		48

0

안전 지침	13
애플리케이션 노트	14
애플리케이션 카드	14
에러 로그	89

에	러 D 사동	비시 용자	지 매누	두얼	참2	조						77
평 어 어	상E 숫자 프셋 라이	비 비 파 (치 도	· 라미 내널 운믹	티. 설정)	· · · · · ·	• • • • • • • • • • • •	• • • • •	••••	••••	 	77 84 72
니 온 인	작업 소크 부권	고 날다 린 비머	급 2 상. 키도 러스	 	••••					••••	 	87 82
의	· · · 상E 부 5	" H H > I I	ᆫ_ 시기 터	- - 	••••		••••	• • • • •	••••	••••	••••	77
인	- 크 커널 보 픽	니터			••••		••••	• • • • •	••••	••••	••••	46
л 0	커널	- — 빅터		••••						••••		44
2	시힘	4 A	+용.	• • • • •	••••			••••	••••	••••	••••	67
ㅈ												
잘	못된	미고	0 E-	1								72
저	장	기드	 ы лі		••••	• • • • •	• • • • •	• • • • •	••••	••••	• • • •	7 <u>C</u>
저	사진	5 애 봄 시 	모기 용. 장치		••••		• • • • • •	••••	••••	• • • • • • • • • •	••••	65 67
<u> </u>	커널	비터	ס ∧ו 									42
지	원	••••	••••		••••	•••••	••••	• • • • •	••••	••••	•••	89
ᄎ												
창 재	제 5 널	루표	티시클	Se	••••	• • • • •		••••	••••	••••	•••	74
	시 p 전 환	남	·용 .		••••		 	••••	 	 	 	52 71
채	년 미 이 튼 파 마	남대 를 변	경.	••••	••••				••••	••••	••••	74
채	성도 널 실	 할정			••••	• • • • •	• • • • •	• • • • •	••••	••••	••••	/
최	표시 적화				••••		• • • • •		••••	7	1,	72
측	교 전 정 혹	성 신 확대	!호 	표시			 			••••	 	49 87
=												
커	넥터 노이 파우 헤드 Dis DV	즈 ^코 포 트폰 전원 play	소 / 트 . !서 . 린공 y Pc	스 컨 급징 ort	트를 		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	44 46 45 42 46

GPIB 인터페이스	3 1 3 3 3 0 1 5 1
이 애쪽)))))
온스크린82 키패드 개요 35	2
я <u>н</u>	,
탐색 컨트롤	<pre> 3 3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>
파라미터 입력84 파워 키36 파워 센서	1 5
구성 - 사용자 매뉴얼 참조	5
펌웨어 입네이드 사용자 매뉴얼 참조16	5
평가 시험사용)
표시 정보69	9

시작하기 1179.4657.19 — 13

색인

94

피크 목록 시험 사용60
ā
하드카피
스크린샷 보기67 헤드폰
커넥터
호환 모드 (세월 설성) 72 화살표 키 40
확대
측정
획대/국소 사용해보기61
황색 별 모양 잘못된 데이터 아이콘 참조
후면 패널
개요
^요(트레이스 전법) 75
AP (트레이스 영모)
с
CLRW (트레이스 정보)
CNT (마커 기등)
D
Display Port
거넥터46 DVI
커넥터46
E
EXT REF 상태 메시지 77
Ext.Gen (채널 막대)
F
Frq (채널 막대)74 FXD (마커 기능)76
G
GAT (채널 막대)74 Getting started12

GPIB 인터페이스 그성 - 사용자 메노억 차조 43
가영지 메뉴널 몸또
I
I/Q 분석기 시험 사용
기탁더
LAN 커넥터46
М
MAXH (트레이스 정보)
상태 표시77 시험 사용
Ν
NCor (개선 라벨)
Р
Pa (채널 막대)
R
RBW (채널 설정) 72 Ref In
거넥터
거넥터
개 입국 커넥터40 RM (트레이스 정보)
S
SA (트레이스 정보)
SmartGrid 시험 사용50 SWT (채널 설정)72

Т

Tdf (채널 막대)74 TOI (마커 기능)
거넥터
U
USB 커넥터
V
VBW (채널 설정)72
w
Windows 대화상자83 액세스27
Y
YIG Bypass (채널 막대)73