R&S®RT-ZVCxx MULTI-CHANNEL POWER PROBE

Specifications

Specifications Version 06.00

ROHDE&SCHWARZ

Make ideas real

CONTENTS

Definitions	
Probe characteristics	4
Voltmeter of the R&S [®] RT-ZVC02/02A/04/04A	
Amperemeter of the R&S®RT-ZVC02/-ZVC04	5
Amperemeter of the R&S®RT-ZVC02A/-ZVC04A	7
Digital backend of the R&S [®] RT-ZVC02/02A/04/04A	10
R&S [®] CMWrun interface	11
R&S®RTO2000/RTO6/RTP interface (R&S®RT-ZVC02/-ZVC04 only)	11
Vertical system	
Horizontal system	
Acquisition system	
Trigger system	
Prerequisites	
Features	
General data of the R&S [®] RT-ZVC02/02A/04/04A	
Ordering information	14

Definitions


General

Product data applies under the following conditions:

- · Three hours storage at ambient temperature followed by 30 minutes warm-up operation
- Specified environmental conditions met
- · Recommended calibration interval adhered to
- All internal automatic adjustments performed, if applicable

Specifications with limits

Represent warranted product performance by means of a range of values for the specified parameter. These specifications are marked with limiting symbols such as $\langle, \leq, \rangle, \geq, \pm$, or descriptions such as maximum, limit of, minimum. Compliance is ensured by testing or is derived from the design. Test limits are narrowed by guard bands to take into account measurement uncertainties, drift and aging, if applicable.

Non-traceable specifications with limits (n. trc.)

Represent product performance that is specified and tested as described under "Specifications with limits" above. However, product performance in this case cannot be warranted due to the lack of measuring equipment traceable to national metrology standards. In this case, measurements are referenced to standards used in the Rohde & Schwarz laboratories.

Specifications without limits

Represent warranted product performance for the specified parameter. These specifications are not specially marked and represent values with no or negligible deviations from the given value (e.g. dimensions or resolution of a setting parameter). Compliance is ensured by design.

Typical data (typ.)

Characterizes product performance by means of representative information for the given parameter. When marked with <, > or as a range, it represents the performance met by approximately 80 % of the instruments at production time. Otherwise, it represents the mean value.

Nominal values (nom.)

Characterize product performance by means of a representative value for the given parameter (e.g. nominal impedance). In contrast to typical data, a statistical evaluation does not take place and the parameter is not tested during production.

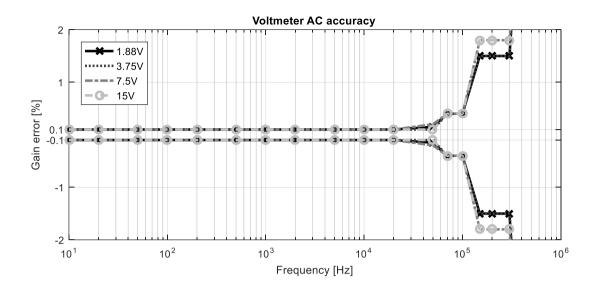
Measured values (meas.)

Characterize expected product performance by means of measurement results gained from individual samples.

Uncertainties

Represent limits of measurement uncertainty for a given measurand. Uncertainty is defined with a coverage factor of 2 and has been calculated in line with the rules of the Guide to the Expression of Uncertainty in Measurement (GUM), taking into account environmental conditions, aging, wear and tear.

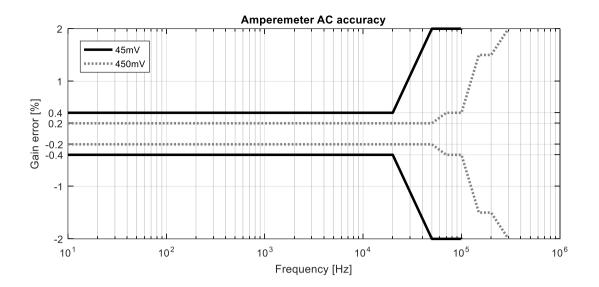
Device settings and GUI parameters are designated with the format "parameter: value".


Non-traceable specifications with limits, typical data as well as nominal and measured values are not warranted by Rohde & Schwarz.

In line with the 3GPP standard, chip rates are specified in million chips per second (Mcps), whereas bit rates and symbol rates are specified in billion bit per second (Gbps), million bit per second (Mbps), thousand bit per second (kbps), million symbols per second (Msps) or thousand symbols per second (ksps), and sample rates are specified in million samples per second (Msample/s). Gbps, Mcps, Mbps, Msps, kbps, ksps and Msample/s are not SI units.

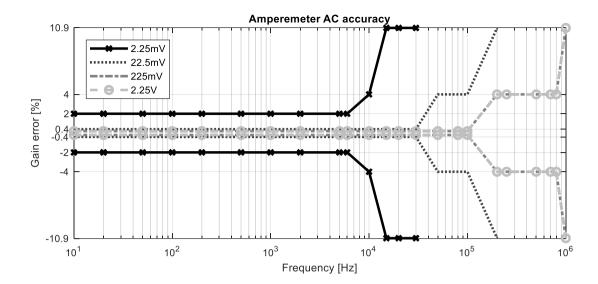
Probe characteristics

Voltmeter of the R&S®RT-ZVC02/02A/04/04A


Number of signals		2/4
DC characteristics		
Voltage ranges		1.88 V, 3.75 V, 7.5 V, 15 V
DC accuracy	system	\pm (0.1 % of reading + 0.01 % of range)
Specified accuracy temperature range	rated accuracy applies after 30 min stabilization	+23 °C ± 5 °C
Temperature coefficient	from 0 °C to +18 °C or +28 °C to +50 °C	0.15 × specified accuracy/°C
Dynamic range		
Overall range	referred to LSB	102 dB (nom.)
Differential input	single socket	±7.5 V
Single-ended input	single socket	±15 V
Maximum rated input voltage		
Continuous voltage		±18 V (CAT I)
ESD tolerance	human body model	8 kV
Input impedance		
DC input resistance	between signal sockets	10 MΩ (nom.)
nput capacitance		48 pF (meas.)
Sensitivity	1	
Noise	AC RMS value computed with 5 Msample	/s
	1.88 V	< 50 µV (meas.)
	3.75 V	< 100 µV (meas.)
	7.5 V	< 200 µV (meas.)
	15 V	< 400 µV (meas.)
Frequency response	13 V	< 400 µV (meas.)
Bandwidth	system, -1 dB (10.9 % error), starting at D	
Danuwium	1.88 V/3.75 V	1 MHz
	7.5 V	800 kHz
	15 V	
A O		700 kHz
AC accuracy	1.88 V	
	10 Hz to 20 kHz	$\pm (0.1\% \text{ of reading} + 0.01\% \text{ of range})$
	20 kHz to 50 kHz	\pm (0.15 % of reading + 0.01 % of range)
	50 kHz to 100 kHz	\pm (0.4 % of reading + 0.01 % of range)
	100 kHz to 300 kHz	± (1.5 % of reading + 0.01 % of range)
	300 kHz to 400 kHz	± (5 % of reading + 0.01 % of range)
	400 kHz to 1 MHz	± (10.9 % of reading + 0.01 % of range)
	3.75 V	
	10 Hz to 50 kHz	± (0.1 % of reading + 0.01 % of range)
	50 kHz to 100 kHz	± (0.4 % of reading + 0.01 % of range)
	100 kHz to 300 kHz	± (1.5 % of reading + 0.01 % of range)
	300 kHz to 600 kHz	± (5 % of reading + 0.01 % of range)
	600 kHz to 1 MHz	± (10.9 % of reading + 0.01 % of range)
	7.5 V	
	10 Hz to 20 kHz	± (0.1 % of reading + 0.01 % of range)
	20 kHz to 50 kHz	± (0.2 % of reading + 0.01 % of range)
	50 kHz to 100 kHz	± (0.4 % of reading + 0.01 % of range)
	100 kHz to 300 kHz	± (1.8 % of reading + 0.01 % of range)
	300 kHz to 500 kHz	\pm (5 % of reading + 0.01 % of range)
	500 kHz to 800 kHz	\pm (10.9 % of reading + 0.01 % of range)
	15 V	
	10 Hz to 50 kHz	± (0.1 % of reading + 0.01 % of range)
	50 kHz to 100 kHz	$\pm (0.4\% \text{ of reading} + 0.01\% \text{ of range})$ $\pm (0.4\% \text{ of reading} + 0.01\% \text{ of range})$
	100 kHz to 300 kHz	$\pm (0.4\% \text{ of reading} \pm 0.01\% \text{ of range})$ $\pm (1.8\% \text{ of reading} \pm 0.01\% \text{ of range})$
	300 kHz to 400 kHz	
		± (5 % of reading + 0.01 % of range) ± (10.9 % of reading + 0.01 % of range)
Specified acquirecy temperature record	400 kHz to 700 kHz	č č /
Specified accuracy temperature range	rated accuracy applies after 30 min stabilization	+23 °C ± 5 °C
Temperature coefficient	from 0 °C to +18 °C or +28 °C to +50 °C	0.15 x specified accuracy/°C

Amperemeter of the R&S®RT-ZVC02/-ZVC04

Number of signals		2/4	
DC characteristics			
Current ranges	limited by internal overload protection and 15 A fuse,		
-	limits for continuous current given in brackets		
		4.5 μΑ	
		45 μΑ	
		4.5 mA	
		45 mA	
		4.5 A	
		10 A (5 A)	
	external shunt on DUT,	45 mV	
	recommended for currents > 3 A	450 mV	
Shunt resistors	4.5 μΑ, 45 μΑ	10 kΩ ± 0.1 %	
	4.5 mA, 45 mA	10 Ω ± 0.1 %	
	4.5 A, 10 A	10 mΩ ± 0.1 %	
Voltage burden	including total (round trip) input resistance		
	10 kΩ shunt (4.5 μA, 45 μA)	10 mV/µA, max. 500 mV	
	10 Ω shunt (4.5 mA, 45 mA)	10.7 mV/mA, max. 535 mV	
	10 mΩ shunt (4.5 A, 10 A)	128 mV/A, max. 1.28 V	
DC accuracy	system, all ranges except 4.5 A and 10 A	± (0.2 % of reading + 0.02 % of range)	
	system, 4.5 A range	± (0.3 % of reading + 0.02 % of range)	
	system, 10 A range	± (0.2 % of reading + 0.09 % of range)	
Specified accuracy temperature range	rated accuracy applies after 30 min	+23 °C ± 5 °C	
	stabilization		
Temperature coefficient	from 0 °C to +18 °C or +28 °C to +50 °C	0.15 × specified accuracy/°C	
Dynamic range			
Overall range	including range switching	228 dB	
Differential input	single socket	±250 mV	
Single-ended input	single socket	±500 mV	
Common mode range	single socket	±15 V	
Maximum rated input voltage			
Continuous voltage	external shunt	±18 V (CAT I)	
ESD tolerance	human body model	8 kV	


Input impedance			
DC input resistance	resistance between signal sockets		
	external shunt	1 MΩ (nom.)	
	10 kΩ shunt (4.5 μA, 45 μA)	1 MΩ 10 kΩ = 9.89 kΩ (nom.)	
	10 Ω shunt (4.5 mA, 45 mA)	10.6 Ω (nom.)	
	10 mΩ shunt (4.5 A, 10 A)	21.2 mΩ (nom.)	
	additional resistance caused by cabling and	d connectors	
	AWG24 cable (standard shipping)	2*(41 + 0.77/cm) mΩ (nom.)	
	AWG20 cable (used in accessory sets)	2*(41 + 0.33/cm) mΩ (nom.)	
	total (round trip) resistance including conne		
	causes total voltage burden seen at the lea		
	10 kΩ shunt (4.5 μA, 45 μA)	9.89 kΩ (nom.)	
	10 Ω shunt (4.5 mA, 45 mA)	10.7 Ω (nom.)	
	10 mΩ shunt (4.5 A, 10 A)	128 mΩ (nom.)	
nput capacitance	between signal sockets		
	external shunt	< 2.3 nF (meas.)	
Sensitivity			
Noise	AC RMS value computed with 5 Msample/s		
	4.5 μA	< 2 nA (meas.)	
	45 µA	< 6 nA (meas.)	
	4.5 mA	< 2 µA (meas.)	
	45 mA	< 6 µA (meas.)	
	4.5 A	< 2 mA (meas.)	
	10 A	< 6 mA (meas.)	
	45 mV	< 30 µV (meas.)	
	450 mV	< 60 µV (meas.)	
-	400 1110		
	system, -1 dB (10.9 % error), starting at DC only characterized in external shunt mode (capacitance, comparable specification for c given in brackets)	worst case condition in terms of input	
	only characterized in external shunt mode (worst case condition in terms of input	
	only characterized in external shunt mode (capacitance, comparable specification for c given in brackets)	worst case condition in terms of input surrent ranges using internal shunts are	
	only characterized in external shunt mode (capacitance, comparable specification for c given in brackets) 45 mV (4.5 µA, 4.5 mA, 4.5 A)	worst case condition in terms of input urrent ranges using internal shunts are 300 kHz	
Bandwidth	only characterized in external shunt mode (capacitance, comparable specification for c given in brackets) 45 mV (4.5 μA, 4.5 mA, 4.5 A) 450 mV (45 μA, 45 mA, 10 A)	worst case condition in terms of input surrent ranges using internal shunts are	
Bandwidth	only characterized in external shunt mode (capacitance, comparable specification for c given in brackets) 45 mV (4.5 μA, 4.5 mA, 4.5 A) 450 mV (45 μA, 45 mA, 10 A) 45 mV (4.5 μA, 4.5 mA, 4.5 A)	worst case condition in terms of input current ranges using internal shunts are 300 kHz 1 MHz	
Bandwidth	only characterized in external shunt mode (capacitance, comparable specification for c given in brackets) 45 mV (4.5 μA, 4.5 mA, 4.5 A) 450 mV (45 μA, 45 mA, 10 A)	worst case condition in terms of input urrent ranges using internal shunts are 300 kHz	
Bandwidth	only characterized in external shunt mode (capacitance, comparable specification for c given in brackets) 45 mV (4.5 μA, 4.5 mA, 4.5 A) 450 mV (45 μA, 45 mA, 10 A) 45 mV (4.5 μA, 4.5 mA, 4.5 A)	worst case condition in terms of input current ranges using internal shunts are 300 kHz 1 MHz	
Bandwidth	only characterized in external shunt mode (capacitance, comparable specification for c given in brackets) 45 mV (4.5 μA, 4.5 mA, 4.5 A) 450 mV (45 μA, 45 mA, 10 A) 45 mV (4.5 μA, 4.5 mA, 4.5 A) 10 Hz to 40 kHz	worst case condition in terms of input surrent ranges using internal shunts are 300 kHz 1 MHz ± (0.4 % of reading + 0.02 % of range)	
Bandwidth	only characterized in external shunt mode (capacitance, comparable specification for c given in brackets) 45 mV (4.5 μA, 4.5 mA, 4.5 A) 450 mV (45 μA, 45 mA, 10 A) 45 mV (4.5 μA, 4.5 mA, 4.5 A) 10 Hz to 40 kHz 40 kHz to 100 kHz 100 kHz to 270 kHz	 worst case condition in terms of input surrent ranges using internal shunts are 300 kHz 1 MHz ± (0.4 % of reading + 0.02 % of range) ± (2 % of reading + 0.02 % of range) 	
Bandwidth	only characterized in external shunt mode (capacitance, comparable specification for c given in brackets) $45 \text{ mV} (4.5 \mu\text{A}, 4.5 \text{ mA}, 4.5 \text{ A})$ $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ $45 \text{ mV} (4.5 \mu\text{A}, 4.5 \text{ mA}, 10 \text{ A})$ 10 Hz to 40 Hz 40 Hz to 100 Hz 100 Hz to 270 Hz $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$	worst case condition in terms of input surrent ranges using internal shunts are 300 kHz 1 MHz ± (0.4 % of reading + 0.02 % of range) ± (2 % of reading + 0.02 % of range) ± (10.9 % of reading + 0.02 % of range)	
Bandwidth	only characterized in external shunt mode (capacitance, comparable specification for c given in brackets) $45 \text{ mV} (4.5 \mu\text{A}, 4.5 \text{ mA}, 4.5 \text{ A})$ $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ $45 \text{ mV} (4.5 \mu\text{A}, 4.5 \text{ mA}, 10 \text{ A})$ 10 Hz to 40 Hz 40 Hz to 100 Hz 100 Hz to 270 Hz $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 50 Hz	worst case condition in terms of input surrent ranges using internal shunts are 300 kHz 1 MHz ± (0.4 % of reading + 0.02 % of range) ± (2 % of reading + 0.02 % of range) ± (10.9 % of reading + 0.02 % of range) ± (0.2 % of reading + 0.02 % of range)	
Bandwidth	only characterized in external shunt mode (capacitance, comparable specification for c given in brackets) $45 \text{ mV} (4.5 \mu\text{A}, 4.5 \text{ mA}, 4.5 \text{ A})$ $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ $45 \text{ mV} (4.5 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 40 Hz 40 Hz to 100 Hz 100 Hz to 270 Hz $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 50 Hz 50 Hz to 100 Hz	worst case condition in terms of input surrent ranges using internal shunts are 300 kHz 1 MHz ± (0.4 % of reading + 0.02 % of range) ± (2 % of reading + 0.02 % of range) ± (10.9 % of reading + 0.02 % of range) ± (0.2 % of reading + 0.02 % of range) ± (0.4 % of reading + 0.02 % of range)	
Bandwidth	only characterized in external shunt mode (capacitance, comparable specification for c given in brackets) $45 \text{ mV} (4.5 \mu\text{A}, 4.5 \text{ mA}, 4.5 \text{ A})$ $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ $45 \text{ mV} (4.5 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 40 Hz 40 Hz to 100 Hz 100 Hz to 270 Hz $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 50 Hz 50 Hz to 100 Hz 100 Hz to 200 Hz	worst case condition in terms of input surrent ranges using internal shunts are 300 kHz 1 MHz ± (0.4 % of reading + 0.02 % of range) ± (2 % of reading + 0.02 % of range) ± (10.9 % of reading + 0.02 % of range) ± (0.2 % of reading + 0.02 % of range) ± (0.4 % of reading + 0.02 % of range) ± (1.5 % of reading + 0.02 % of range)	
Bandwidth	only characterized in external shunt mode (capacitance, comparable specification for c given in brackets) $45 \text{ mV} (4.5 \mu\text{A}, 4.5 \text{ mA}, 4.5 \text{ A})$ $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ $45 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 40 Hz 40 Hz to 100 Hz 100 Hz to 270 Hz $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 50 Hz 50 Hz to 100 Hz 100 Hz to 200 Hz 200 Hz to 300 Hz	worst case condition in terms of input surrent ranges using internal shunts are 300 HHz 1 MHz $\pm (0.4 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (0.2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (0.4 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (1.5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$	
Bandwidth	only characterized in external shunt mode (capacitance, comparable specification for c given in brackets) $45 \text{ mV} (4.5 \mu\text{A}, 4.5 \text{ mA}, 4.5 \text{ A})$ $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ $45 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 40 Hz 40 Hz to 100 Hz 100 Hz to 270 Hz $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 50 Hz 50 Hz to 100 Hz 100 Hz to 200 Hz 200 Hz to 300 Hz 300 Hz to 800 Hz	worst case condition in terms of input surrent ranges using internal shunts are 300 kHz 1 MHz $\pm (0.4 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (0.2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (0.4 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (1.5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (5 \% \text{ of reading} + 0.02 \% \text{ of range})$	
AC accuracy	only characterized in external shunt mode (capacitance, comparable specification for c given in brackets) $45 \text{ mV} (4.5 \mu\text{A}, 4.5 \text{ mA}, 4.5 \text{ A})$ $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ $45 \text{ mV} (4.5 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 40 Hz 40 Hz to 100 Hz 100 Hz to 270 Hz $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 50 Hz 50 Hz to 100 Hz 100 Hz to 200 Hz 200 Hz to 200 Hz 300 Hz to 800 Hz 800 Hz to 1 MHz	worst case condition in terms of input surrent ranges using internal shunts are 300 kHz 1 MHz $\pm (0.4 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (0.2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (0.4 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (1.5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$	
AC accuracy	only characterized in external shunt mode (capacitance, comparable specification for c given in brackets) $45 \text{ mV} (4.5 \mu\text{A}, 4.5 \text{ mA}, 4.5 \text{ A})$ $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ $45 \text{ mV} (4.5 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 40 Hz 40 Hz to 100 Hz 100 Hz to 270 Hz $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 50 Hz 50 Hz to 100 Hz 100 Hz to 200 Hz 200 Hz to 200 Hz 300 Hz to 800 Hz 300 Hz to 1 MHz rated accuracy applies after 30 min	worst case condition in terms of input surrent ranges using internal shunts are 300 kHz 1 MHz $\pm (0.4 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (0.2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (0.4 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (1.5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (5 \% \text{ of reading} + 0.02 \% \text{ of range})$	
Bandwidth AC accuracy Specified accuracy temperature range	only characterized in external shunt mode (capacitance, comparable specification for c given in brackets) $45 \text{ mV} (4.5 \mu\text{A}, 4.5 \text{ mA}, 4.5 \text{ A})$ $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ $45 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 40 Hz 40 kHz to 100 kHz 100 kHz to 270 kHz $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 50 kHz 50 kHz to 100 kHz 100 kHz to 200 kHz 200 kHz to 300 kHz 300 kHz to 800 kHz 800 kHz to 1 MHz rated accuracy applies after 30 min stabilization	worst case condition in terms of input surrent ranges using internal shunts are 300 HHz 1 MHz $\pm (0.4 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (0.2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (0.4 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (1.5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (3 °C \pm 5 °C$	
Bandwidth AC accuracy Specified accuracy temperature range Femperature coefficient	only characterized in external shunt mode (capacitance, comparable specification for c given in brackets) $45 \text{ mV} (4.5 \mu\text{A}, 4.5 \text{ mA}, 4.5 \text{ A})$ $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ $45 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 40 Hz 40 Hz to 100 Hz 100 Hz to 270 Hz $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 50 Hz 50 Hz to 100 Hz 100 Hz to 200 Hz 200 Hz to 200 Hz 200 Hz to 300 Hz 300 Hz to 800 Hz 800 Hz to 1 MHz rated accuracy applies after 30 min stabilization from 0 °C to +18 °C or +28 °C to +50 °C	worst case condition in terms of input surrent ranges using internal shunts are 300 kHz 1 MHz $\pm (0.4 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (0.2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (0.4 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (1.5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.5 \% \text{ specified accuracy/°C}$	
Bandwidth AC accuracy Specified accuracy temperature range Femperature coefficient	only characterized in external shunt mode (capacitance, comparable specification for c given in brackets) $45 \text{ mV} (4.5 \mu\text{A}, 4.5 \text{ mA}, 4.5 \text{ A})$ $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ $45 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 40 Hz 40 kHz to 100 kHz 100 kHz to 270 kHz $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 50 kHz 50 kHz to 100 kHz 100 kHz to 200 kHz 200 kHz to 300 kHz 300 kHz to 800 kHz 300 kHz to 1 MHz rated accuracy applies after 30 min stabilization from 0 °C to +18 °C or +28 °C to +50 °C input frequency < analog bandwidth, from v	worst case condition in terms of input surrent ranges using internal shunts are 300 kHz 1 MHz $\pm (0.4 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (0.2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (0.4 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (1.5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.5 \text{ specified accuracy/°C}$ roltmeter to amperemeter channel of same	
Bandwidth AC accuracy Specified accuracy temperature range Femperature coefficient	only characterized in external shunt mode (capacitance, comparable specification for c given in brackets) $45 \text{ mV} (4.5 \mu\text{A}, 4.5 \text{ mA}, 4.5 \text{ A})$ $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ $45 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 40 Hz 40 Hz to 100 Hz 100 Hz to 270 Hz $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 50 Hz 50 Hz to 100 Hz 100 Hz to 200 Hz 200 Hz to 200 Hz 200 Hz to 300 Hz 300 Hz to 800 Hz 300 Hz to 1 MHz rated accuracy applies after 30 min stabilization from 0 °C to +18 °C or +28 °C to +50 °C input frequency < analog bandwidth, from v channel number (not relevant between volto	worst case condition in terms of input surrent ranges using internal shunts are 300 kHz 1 MHz $\pm (0.4 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (0.2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (0.4 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (1.5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.5 \text{ specified accuracy/°C}$ roltmeter to amperemeter channel of same	
Bandwidth AC accuracy Specified accuracy temperature range Femperature coefficient	only characterized in external shunt mode (capacitance, comparable specification for c given in brackets) $45 \text{ mV} (4.5 \mu\text{A}, 4.5 \text{ mA}, 4.5 \text{ A})$ $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ $45 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 40 Hz 40 Hz to 100 Hz 100 Hz to 270 Hz $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 50 Hz 50 Hz to 100 Hz 100 Hz to 200 Hz 200 Hz to 200 Hz 200 Hz to 300 Hz 300 Hz to 800 Hz 800 Hz to 1 MHz rated accuracy applies after 30 min stabilization from 0 °C to +18 °C or +28 °C to +50 °C input frequency < analog bandwidth, from v channel number (not relevant between volta numbers)	worst case condition in terms of input surrent ranges using internal shunts are 300 kHz 1 MHz ± (0.4 % of reading + 0.02 % of range) ± (2 % of reading + 0.02 % of range) ± (10.9 % of reading + 0.02 % of range) ± (0.2 % of reading + 0.02 % of range) ± (0.4 % of reading + 0.02 % of range) ± (1.5 % of reading + 0.02 % of range) ± (2 % of reading + 0.02 % of range) ± (5 % of reading + 0.02 % of range) ± (10.9 % of reading + 0.02 % of range) ± (10.9 % of reading + 0.02 % of range) ± (10.9 % of reading + 0.02 % of range) ± (10.9 % of reading + 0.02 % of range) ± (10.9 % of reading + 0.02 % of range) ± (10.5 × specified accuracy/°C roltmeter to amperemeter channel of same meter and amperemeter of different channel	
Bandwidth AC accuracy Specified accuracy temperature range Temperature coefficient	only characterized in external shunt mode (capacitance, comparable specification for c given in brackets) $45 \text{ mV} (4.5 \mu\text{A}, 4.5 \text{ mA}, 4.5 \text{ A})$ $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ $45 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 40 Hz 40 Hz to 100 Hz 100 Hz to 270 Hz $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 50 Hz 50 Hz to 100 Hz 100 Hz to 200 Hz 200 Hz to 200 Hz 200 Hz to 300 Hz 300 Hz to 800 Hz 300 Hz to 1 MHz rated accuracy applies after 30 min stabilization from 0 °C to +18 °C or +28 °C to +50 °C input frequency < analog bandwidth, from v channel number (not relevant between volta numbers) $4.5 \mu\text{A}$	worst case condition in terms of input surrent ranges using internal shunts are 300 kHz 1 MHz $\pm (0.4 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (0.2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (0.4 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.5 \text{ specified accuracy/°C}$ roltmeter to amperemeter channel of same meter and amperemeter of different channel > 67 dB (meas.)	
Bandwidth AC accuracy Specified accuracy temperature range Temperature coefficient	only characterized in external shunt mode (capacitance, comparable specification for c given in brackets) $45 \text{ mV} (4.5 \mu\text{A}, 4.5 \text{ mA}, 4.5 \text{ A})$ $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ $45 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 40 Hz 40 Hz to 100 Hz 100 Hz to 270 Hz $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 50 Hz 50 Hz to 100 Hz 100 Hz to 200 Hz 200 Hz to 200 Hz 200 Hz to 300 Hz 300 Hz to 800 Hz 300 Hz to 1 MHz rated accuracy applies after 30 min stabilization from 0 °C to +18 °C or +28 °C to +50 °C input frequency < analog bandwidth, from v channel number (not relevant between volta numbers)	worst case condition in terms of input surrent ranges using internal shunts are 300 kHz 1 MHz ± (0.4 % of reading + 0.02 % of range) ± (2 % of reading + 0.02 % of range) ± (10.9 % of reading + 0.02 % of range) ± (0.2 % of reading + 0.02 % of range) ± (0.4 % of reading + 0.02 % of range) ± (1.5 % of reading + 0.02 % of range) ± (2 % of reading + 0.02 % of range) ± (5 % of reading + 0.02 % of range) ± (10.9 % of reading + 0.02 % of range) ± (10.9 % of reading + 0.02 % of range) ± (10.9 % of reading + 0.02 % of range) ± (10.9 % of reading + 0.02 % of range) ± (10.9 % of reading + 0.02 % of range) ± (10.5 × specified accuracy/°C roltmeter to amperemeter channel of same meter and amperemeter of different channel	
Bandwidth AC accuracy Specified accuracy temperature range Temperature coefficient	only characterized in external shunt mode (capacitance, comparable specification for c given in brackets) $45 \text{ mV} (4.5 \mu\text{A}, 4.5 \text{ mA}, 4.5 \text{ A})$ $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ $45 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 40 Hz 40 Hz to 100 Hz 100 Hz to 270 Hz $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 50 Hz 50 Hz to 100 Hz 100 Hz to 200 Hz 200 Hz to 200 Hz 200 Hz to 300 Hz 300 Hz to 800 Hz 300 Hz to 1 MHz rated accuracy applies after 30 min stabilization from 0 °C to +18 °C or +28 °C to +50 °C input frequency < analog bandwidth, from v channel number (not relevant between volta numbers) $4.5 \mu\text{A}$	worst case condition in terms of input surrent ranges using internal shunts are 300 kHz 1 MHz $\pm (0.4 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (0.2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (0.4 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.5 \text{ specified accuracy/°C}$ roltmeter to amperemeter channel of same meter and amperemeter of different channel > 67 dB (meas.)	
Bandwidth AC accuracy Specified accuracy temperature range Temperature coefficient	only characterized in external shunt mode (capacitance, comparable specification for c given in brackets) $45 \text{ mV} (4.5 \mu\text{A}, 4.5 \text{ mA}, 4.5 \text{ A})$ $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ $45 \text{ mV} (4.5 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ $45 \text{ mV} (4.5 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 40 Hz 40 kHz to 100 kHz 100 kHz to 270 kHz $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 50 kHz 50 kHz to 100 kHz 100 kHz to 200 kHz 200 kHz to 300 kHz 300 kHz to 300 kHz 300 kHz to 1 MHz rated accuracy applies after 30 min stabilization from 0 °C to +18 °C or +28 °C to +50 °C input frequency < analog bandwidth, from v channel number (not relevant between volta numbers) $4.5 \mu\text{A}$ $45 \mu\text{A}$	worst case condition in terms of input surrent ranges using internal shunts are 300 kHz 1 MHz $\pm (0.4 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (0.2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (0.4 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.5 \text{ specified accuracy/°C}$ roltmeter to amperemeter channel of same meter and amperemeter of different channel > 67 dB (meas.) > 54 dB (meas.)	
Bandwidth AC accuracy Specified accuracy temperature range Temperature coefficient	only characterized in external shunt mode (capacitance, comparable specification for c given in brackets) $45 \text{ mV} (4.5 \mu\text{A}, 4.5 \text{ mA}, 4.5 \text{ A})$ $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ $45 \text{ mV} (4.5 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 40 Hz 40 Hz to 100 Hz 100 Hz to 270 Hz $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 50 Hz 50 Hz to 100 Hz 100 Hz to 200 Hz 200 Hz to 200 Hz 200 Hz to 300 Hz 300 Hz to 800 Hz 800 Hz to 1 MHz rated accuracy applies after 30 min stabilization from 0 °C to +18 °C or +28 °C to +50 °C input frequency < analog bandwidth, from v channel number (not relevant between voltt numbers) $4.5 \mu\text{A}$ $4.5 \mu\text{A}$ 4.5 mA	worst case condition in terms of input surrent ranges using internal shunts are 300 kHz 1 MHz $\pm (0.4 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (0.2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (0.4 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.5 \% \text{ specified accuracy/°C}$ roltmeter to amperemeter channel of same meter and amperemeter of different channel > 67 dB (meas.) > 54 dB (meas.)	
Frequency response Bandwidth AC accuracy Specified accuracy temperature range Temperature coefficient Vx-to-Ix channel isolation	only characterized in external shunt mode (capacitance, comparable specification for c given in brackets) $45 \text{ mV} (4.5 \mu\text{A}, 4.5 \text{ mA}, 4.5 \text{ A})$ $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ $45 \text{ mV} (4.5 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ $10 \text{ Hz to 40 \text{ Hz}}$ $40 \text{ Hz to 100 \text{ Hz}}$ $100 \text{ Hz to 270 \text{ Hz}}$ $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ $10 \text{ Hz to 50 \text{ Hz}}$ $50 \text{ Hz to 100 \text{ Hz}}$ $100 \text{ Hz to 50 \text{ Hz}}$ $200 \text{ Hz to 200 \text{ Hz}}$ $200 \text{ Hz to 300 \text{ Hz}}$ $300 \text{ Hz to 800 \text{ Hz}}$ $300 \text{ kHz to 1 \text{ MHz}}$ rated accuracy applies after 30 min stabilization from 0 °C to +18 °C or +28 °C to +50 °C input frequency < analog bandwidth, from v channel number (not relevant between voltt numbers) $4.5 \mu\text{A}$ 45 mA 45 mA 4.5 mA	worst case condition in terms of input surrent ranges using internal shunts are 300 kHz 1 MHz $\pm (0.4 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (0.2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (0.4 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (3 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (3 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (3 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm ($	
Bandwidth AC accuracy Specified accuracy temperature range Temperature coefficient	only characterized in external shunt mode (capacitance, comparable specification for c given in brackets) $45 \text{ mV} (4.5 \mu\text{A}, 4.5 \text{ mA}, 4.5 \text{ A})$ $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ $45 \text{ mV} (4.5 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 40 Hz 40 Hz to 100 Hz 100 Hz to 270 Hz $450 \text{ mV} (45 \mu\text{A}, 45 \text{ mA}, 10 \text{ A})$ 10 Hz to 50 Hz 50 Hz to 100 Hz 100 Hz to 200 Hz 200 Hz to 200 Hz 200 Hz to 300 Hz 300 Hz to 800 Hz 800 Hz to 1 MHz rated accuracy applies after 30 min stabilization from 0 °C to +18 °C or +28 °C to +50 °C input frequency < analog bandwidth, from v channel number (not relevant between voltt numbers) $4.5 \mu\text{A}$ 45 mA 45 mA	worst case condition in terms of input surrent ranges using internal shunts are 300 kHz 1 MHz $\pm (0.4 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (0.2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (0.4 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (2 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (5 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (10.9 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm (3 \% \text{ of reading} + 0.02 \% \text{ of range})$ $\pm ($	

Amperemeter of the R&S®RT-ZVC02A/-ZVC04A

Number of signals		2/4	
DC characteristics		· · · · · · · · · · · · · · · · · · ·	
Current ranges	limited by internal overload protection and 15 A fuse,		
	limits for continuous current given in brackets		
		2.25 mA	
		11.25 mA	
		22.5 mA	
		45 mA	
		112.5 mA	
		225 mA	
		450 mA	
		900 mA	
		1.125 A	
		3 A (1.5 A)	
		4.5 A	
		6 A (3 A)	
	external shunt on DUT,	2.25 mV	
	recommended for currents $> 3 A$	22.5 mV	
		225 mV	
		2.25 V	
Shunt resistors	2.25/22.5/225/900 mA	$1 \Omega \pm 0.1 \%$	
	11.25 mA, 112.5 mA, 1.125 A, 3 A	200 mΩ ± 0.1 %	
	45 mA, 450 mA, 4.5 A, 6 A	$50 \text{ m}\Omega \pm 0.1 \%$	
Voltage burden	including total (round trip) input resistan		
	50 mΩ shunt	128 mV/A, max. 300 mV	
	200 mΩ shunt	0.2 mV/mA, max. 600 mV	
	1 Ω shunt	1 μV/μA, max. 900 mV	
DC accuracy (system)	2.25/11.25/45 mA	± (0.2 % of reading + 0.16 % of range)	
	2.25 mV	\pm (0.2 % of reading + 0.25 % of range)	
	22.5 mV, 22.5/112.5/450 mA	\pm (0.2 % of reading + 0.03 % of range)	
	225 mA, 1.125 A, 4.5A, 225 mV, 2.25 V	\pm (0.2 % of reading + 0.02 % of range)	
	900 mA	± (0.2 % of reading + 0.05 % of range)	
	3 A	± (0.2 % of reading + 0.08 % of range)	
	6 A	$\pm (0.2\% \text{ of reading} + 0.15\% \text{ of range})$	
Minimum current with best accuracy	2 % accuracy		
	50 mΩ shunt	4 mA	
	200 mΩ shunt	1 mA	
	1 Ω shunt	200 µA	
	5 % accuracy	ŀ. ,	
	50 mΩ shunt	1.6 mA	
	$200 \text{ m}\Omega$ shunt	400 µA	
	1 Ω shunt	80 µA	

from 0 °C to +20 °C or +26 °C to +50 °C 2.25/11.25/45 mA, 2.25 mV 22.5/112.5/450 mA, 22.5 mV all other ranges gain switching only including shunt switching single socket single socket only available for R&S®RT-ZVC02A/-ZVC04A, for operation	0.7 × specified accuracy/°C 0.35 × specified accuracy/°C 0.15 × specified accuracy/°C up to 161 dB 170 dB ±125 mV ±250 mV ±15 V
gain switching only including shunt switching single socket single socket single socket only available for	up to 161 dB 170 dB ±125 mV ±250 mV
including shunt switching single socket single socket only available for	170 dB ±125 mV ±250 mV
including shunt switching single socket single socket only available for	170 dB ±125 mV ±250 mV
single socket single socket only available for	±125 mV ±250 mV
single socket single socket only available for	±250 mV
single socket only available for	
only available for	±15 V
with R&S [®] CMWrun	all amperemeter ranges with internal and external shunts
	gain switching only (fixed shunt), range by range
to ranges 2.25/2.25/11.25/45 mA	≤ 10 μs
all other transitions	≤ 2.5 µs
voltage, current, and power	50 ksample/s
external shunt	±18 V (CAT I)
human body model	8 kV
resistance between signal sockets	
external shunt	1 MΩ (nom.)
50 m Ω shunt	150 mΩ (nom.)
200 mΩ shunt	300 mΩ (nom.)
	1.1 Ω (nom.)
	1
	$2*(41 + 0.77/cm) m\Omega$ (nom.)
	2*(41 + 0.33/cm) mΩ (nom.)
causes total voltage burden seen at the lead	d ends
50 mΩ shunt (45 mA, 450 mA, 4.5 A, 6 A)	257 mΩ (nom.)
(11.25 mA, 112.5 mA, 1.125 A, 3 A)	407 mΩ (nom.)
1 Ω shunt (2.25/22.5/225/900 mA)	1.2 Ω (nom.)
external shunt	< 2.2 nF (meas.)
	< 5 µA (meas.)
	< 26 µA (meas.)
	< 20 µA (meas.)
	< 105 µA (meas.)
112.5 mA	< 90 µA (meas.)
11 h m /	< 60 µA (meas.)
225 mA	
450 mA	< 380 µA (meas.)
450 mA 900 mA	< 380 µA (meas.) < 260 µA (meas.)
450 mA 900 mA 1.125 A	< 380 µA (meas.) < 260 µA (meas.) < 300 µA (meas.)
450 mA 900 mA 1.125 A 3 A	 < 380 μA (meas.) < 260 μA (meas.) < 300 μA (meas.) < 1.5 mA (meas.)
450 mA 900 mA 1.125 A 3 A 4.5 A	 < 380 µA (meas.) < 260 µA (meas.) < 300 µA (meas.) < 1.5 mA (meas.) < 1.2 mA (meas.)
450 mA 900 mA 1.125 A 3 A 4.5 A 6 A	 < 380 µA (meas.) < 260 µA (meas.) < 300 µA (meas.) < 1.5 mA (meas.) < 1.2 mA (meas.) < 5.5 mA (meas.)
450 mA 900 mA 1.125 A 3 A 4.5 A 6 A 2.25 mV	 < 380 µA (meas.) < 260 µA (meas.) < 300 µA (meas.) < 1.5 mA (meas.) < 1.2 mA (meas.) < 5.5 mA (meas.) < 8 µV (meas.)
450 mA 900 mA 1.125 A 3 A 4.5 A 6 A	 < 380 µA (meas.) < 260 µA (meas.) < 300 µA (meas.) < 1.5 mA (meas.) < 1.2 mA (meas.) < 5.5 mA (meas.)
	all other transitions voltage, current, and power external shunt human body model resistance between signal sockets external shunt 50 m Ω shunt (45 mA, 450 mA, 4.5 A, 6 A) 200 m Ω shunt (11.25 mA, 112.5 mA, 1.125 A, 3 A) 1 Ω shunt (2.25/22.5// 225/900 mA) additional resistance caused by cabling and AWG24 cable (standard shipping) AWG20 cable (used in accessory sets) total (round trip) resistance including conne causes total voltage burden seen at the lea 50 m Ω shunt (45 mA, 450 mA, 4.5 A, 6 A) 200 m Ω shunt (11.25 mA, 112.5 mA, 1.125 A, 3 A) 1 Ω shunt (2.25/22.5/225/900 mA) between signal sockets external shunt AC RMS value computed with 5 Msample/s 2.25 mA 11.25 mA 22.5 mA

Noise (cont.)	AC RMS value computed with	h 50 ksample/s
	2.25 mA	< 2.3 µA (meas.)
	11.25 mA	< 11.2 µA (meas.)
	22.5 mA	< 2.7 µA (meas.)
	45 mA	< 46.1 µA (meas.)
	112.5 mA	< 13.4 µA (meas.)
	225 mA	< 6.4 µA (meas.)
	450 mA	< 54 µA (meas.)
	900 mA	< 38 µA (meas.)
	1.125 A	< 32 µA (meas.)
	3 A	< 199 µA (meas.)
	4.5 A	< 131 µA (meas.)
	6 A	< 787 µA (meas.)
	2.25 mV	< 3.2 µV (meas.)
	22.5 mV	< 3.6 µV (meas.)
	225 mV	< 7.1 µV (meas.)
	2.25 V	< 40 µV (meas.)

Frequency response		
Bandwidth	system, -1 dB (10.9 % error), starting at DC,	
	only characterized in external shunt mode (worst case condition in terms of input	
	capacitance, comparable specification for current ranges using internal shunts are	
	given in brackets)	5 5
	2.25 mV (2.25/11.25/45 mA)	30 kHz
	22.5 mV (22.5/112.5/450 mA)	230 kHz
	225 mV (225 mA, 1.125 A, 4.5 A)	1 MHz
	2.25 V (900 mA, 3 A, 6 A)	1 MHz
AC accuracy	2.25 mV (2.25/11.25/45 mA)	
-	10 Hz to 4 kHz	± (2 % of reading + 0.25 % of range)
	4 kHz to 10 kHz	± (4 % of reading + 0.25 % of range)
	10 kHz to 30 kHz	± (10.9 % of reading + 0.25 % of range)
	22.5 mV (22.5/112.5/450 mA)	
	10 Hz to 40 kHz	± (0.4 % of reading + 0.03 % of range)
	40 kHz to 100 kHz	± (4 % of reading + 0.03 % of range)
	100 kHz to 230 kHz	± (10.9 % of reading + 0.03 % of range)
	225 mV (225 mA, 1.125 A, 4.5 A), 2.25 V (900 mA, 3 A, 6 A)
	10 Hz to 100 kHz	± (0.2 % of reading + 0.02 % of range)
	100 kHz to 800 kHz	± (4 % of reading + 0.02 % of range)
	800 kHz to 1 MHz	± (10.9 % of reading + 0.02 % of range)
Specified accuracy temperature range	rated accuracy applies after 30 min	+23 °C ± 3 °C
	stabilization and typical device operation	
Temperature coefficient	from 0 °C to +20 °C or +26 °C to +50 °C	
	2.25/11.25/45 mA, 2.25 mV	0.7 × specified accuracy/°C
	all other ranges	0.15 × specified accuracy/°C

Vx-to-Ix channel isolation		input frequency < analog bandwidth, from voltmeter to amperemeter channel of same	
		channel number (not relevant between voltmeter and amperemeter of different channel	
	numbers)	numbers)	
	2.25 mA	> 81 dB (meas.)	
	11.25 mA	> 82 dB (meas.)	
	22.5 mA	> 63 dB (meas.)	
	45 mA	> 81 dB (meas.)	
	112.5 mA	> 64 dB (meas.)	
	225 mA	> 53 dB (meas.)	
	450 mA	> 63 dB (meas.)	
	900 mA	> 50 dB (meas.)	
	1.125 A	> 53 dB (meas.)	
	3 A	> 50 dB (meas.)	
	4.5 A	> 53 dB (meas.)	
	6 A	> 49 dB (meas.)	
	2.25 mV	> 61 dB (meas.)	
	22.5 mV	> 57 dB (meas.)	
	225 mV	> 55 dB (meas.)	
	2.25 V	> 52 dB (meas.)	

Digital backend of the R&S[®]RT-ZVC02/02A/04/04A

A/D conversion		
Number of channels	1 per input signal	4/8
Readings per second (speed)		5 Msample/s
Resolution		18 bit
Resolution voltmeter (LSB)	1.88 V	14 μV
	3.75 V	28 µV
	7.5 V	57 μV
	15 V	114 μV
Resolution amperemeter (LSB)	R&S®RT-ZVC02/-ZVC04	
	4.5 µA	0.038 nA
	45 µA	0.38 nA
	4.5 mA	38 nA
	45 mA	381 nA
	4.5 A	38 µA
	10 A	381 µA
	45 mV	381 nV
	450 mV	3.81 µV
	R&S [®] RT-ZVC02A/-ZVC04A	
	2.25 mA	19 nA
	11.25 mA	95 nA
	22.5 mA	191 nA
	45 mA	381 nA
	112.5 mA	954 nA
	225 mA	1.91 µA
	450 mA	3.81 µA
	900 mA	19 µA
	1.125 A	9.54 µA
	3 A	95.4 µA
	4.5 A	38.1 µA
	6 A	381 µA
	2.25 mV	19 nV
	22.5 mV	191 nV
	225 mV	1.91 µV
	2.25 V	19 µV
Oscilloscope interface	2.20 V	10 M 1
Use with	R&S [®] RT-ZVC02/-ZVC04	R&S [®] RTO2000/RTO6/RTP
Connector	as shipped with article 1326.0259.02/04	HDMR-29
Connector	or accessory 1333.1770.02	
USB interface	01 d000301y 1000.1110.02	
Connector		USB 3.0 Micro B
Maximum cable length	as shipped with article	1.5 m
Maximum cable length	1326.0259.22/24/32/34	1.0 11

R&S[®]CMWrun interface

Use with	R&S [®] CMW-KT051 software option plus	R&S [®] CMW500, R&S [®] CMW290
	dedicated signaling extension for control	
	and evaluation of power consumption	
	monitoring and battery life measurements	
PC prerequisites		
Operating system		Windows PC, Windows version \geq 7
CPU	minimum	Intel [™] Core i3 or similar processor performance
RAM		≥ 8 Gbyte
HDD		high performance HDD or SDD for storing sample data
Peripherals		USB 3.0 interface
Graphical user interface for results		
Number of supported power	Each power measurement group consists of	of a voltmeter and amperemeter with internal
measurement groups in parallel multiplier for instantaneous power calculation.		on.
	R&S [®] RT-ZVC02/-ZVC02A	up to 2
	R&S [®] RT-ZVC04/-ZVC04A	up to 4
Displayed measurements in the R&S [®] CMWrun report/power consumption monitor		parallel monitoring of voltage and current samples with calculation and display of the instantaneous power in R&S [®] CMWrun software
Sample rate displayed in the	available sample rate per measured	10/50/100/500/1000/5000/10000/
R&S [®] CMWrun report/power consumption monitor	channel (voltage, current and instantaneous power)	50000 sample/s
Decimation methods		peak or average
Output formats		PDF, XML, CSV, TXT
Trigger events		signaling events in red lines
		IP analysis triggers in blue lines

R&S®RTO2000/RTO6/RTP interface (R&S®RT-ZVC02/-ZVC04 only)

Vertical system

Input channels	depending on number (up to 2) and type of connected probes (2 × 2 or 2 × 4 voltage/current channel version)		
	1 × R&S [®] RT-ZVC02	2 voltage, 2 current channels	
	2 × R&S [®] RT-ZVC02	4 voltage, 4 current channels	
	1 × R&S [®] RT-ZVC04	4 voltage, 4 current channels	
	1 × R&S [®] RT-ZVC02,	6 voltage, 6 current channels	
	1 × R&S [®] RT-ZVC04		
	2 × R&S [®] RT-ZVC04	8 voltage, 8 current channels	
Arrangement of input channels	arranged in two probes Z1 and Z2 with up	Z1V1 to Z1V4, Z1I1 to Z1I4	
	to 4 voltage/current channels each,	Z2V1 to Z2V4, Z2I1 to Z2I4	
	assignment of the power probe to the port		
	at the back of the oscilloscope is indicated		
	on the probe (probe Z1, probe Z2)		

Horizontal system

Channel deskew	for each channel	
	min.	–6 μs
	max.	+6 µs
	step	200 ns
Oscilloscope to R&S [®] RT-ZVC channel	R&S®RT-ZVC bandwidth set to 1 MHz, oscilloscope channels not filtered	
skew (CH1 to CH4 to V1 to V4, I1 to I4)	amperemeter channels: 45 μA, 45 mA, 10 A, 450 mV; voltmeter channels: 1.88 V, 3.75 V, 7.5 V, 15 V	≤ ±200 ns (meas.)
	amperemeter channels: 4.5 μA, 4.5 mA, 4.5 A, 45 mV	≤ +400 ns (meas.)

Acquisition system

Acquisition mode		realtime and interpolated time	
Acquisition history	supported		
Sampling rate	max.	5 Msample/s	
Realtime waveform acquisition rate	max.	500 waveforms/s	
Memory depth	1 active power probe (R&S [®] RT-ZVC02/-ZVC04)	16 Msample for every channel	
	2 active power probes (R&S [®] RT-ZVC02/-ZVC04)	8 Msample for every channel	
	acquisition and postprocessing settings can reduce the memory depth		
Decimation	modes	sample, peak, highres	
	min. sample rate	25 ksample/s	
Bandwidth	reduction performed by first order digital lowpass filtering		
	min.	5 kHz	
	max.	1 MHz	
	step	5 kHz	

Trigger system

Edge trigger on R&S®RT-ZVC channels	triggers on specified slope (positive, negative or either) in the source signal		
	sources	any channel from V1 to V4, I1 to I4	
Other trigger features		all trigger features of the base unit on	
	oscilloscope channels		

Prerequisites

Hardware option	R&S [®] RTO2000/RTO6/RTP	R&S [®] RTO-B1/RTO6-B1/RTP-B1 mixed signal option (latest version with included B1E digital extension port) or R&S [®] RTO-B1E/RTO6-B1E/RTP-B1E digital extension port
	for details, see ordering information in the R&S®RTO2000/RT	
R&S [®] RTx software version	R&S®RT-ZVC02/-ZVC04 support	with 3.60.1.0 onwards

Features

General features	waveform measurements, mask testing, waveform math, search and mark function, display characteristics	all features of base unit as well as R&S [®] RTO-K18 and R&S [®] RTO-K19 options are supported
	sources	all channels from V1 to V4, I1 to I4
Mixed operation	R&S [®] RT-ZL04 logic probe and R&S [®] RT-ZVC02/04 power probe	simultaneous connection, but no parallel
	R&S [®] RT-ZVC02/04 power probe	operation on screen supported, running on same horizontal
	R&S®RT-ZVC02/04 power probe together	scale
	with analog input channels	

General data of the R&S®RT-ZVC02/02A/04/04A

Environmental conditions		
Temperature	operating temperature range, for probe and for operation via USB and power adapter	0 °C to +50 °C
	operating temperature range, with oscilloscope	0 °C to +45 °C
	storage temperature range	–10 °C to +60 °C
Damp heat		+25 °C/+40 °C, 95 % relative humidity, cyclic, in line with EN 60068-2-30
Altitude	operating	up to 2000 m
	transport	up to 4500 m

Mechanical resistance			
Vibration	sinusoidal	5 Hz to 55 Hz, 0.15 mm amplitude cons 55 Hz to 150 Hz, 0.5 g const., in line with EN 60068-2-6	
	random	8 Hz to 500 Hz, acceleration 1.2 g RMS, in line with EN 60068-2-64	
Shock		40 g shock spectrum, in line with MIL-STD-810E, method 516.4 procedure I	
Power rating		1.	
Probe	all channels enabled, all sampling	6 V DC, 2 A	
Power adapter	input	100 V to 240 V at 47 Hz to 63 Hz, 0.4 A	
	output	+5.9 V DC, 1.5 A	
Product conformity			
Electromagnetic compatibility	EU: in line with EMC Directive 2014/30/EU	applied harmonized standards: • EN 61326-1 (industrial environment) • EN 61326-2-1 • EN 55011 (class A) • EN 61000-3-2 • EN 61000-3-3	
Electrical safety	EU: in line with Low Voltage Directive 2014/35/EU USA Canada	applied harmonized standard: EN 61010-1 UL 61010-1 CAN/CSA-C22.2 No. 61010-1	
Certifications		VDE, cCSAUS, KC	
Calibration interval	recommended for highest accuracy for general test and measurement applications	1 year 2 years	
Dimensions	probe head (L × W × H)	approx. 150 mm × 103 mm × 40 mm (5.9 in × 4.1 in × 1.6 in)	
	cable lengths of shipped test leads current cable size	approx. 16 cm (6.3 in) AWG24	
Weight	voltage cable size probe only	AWG28 approx. 500 g (1.1 lb)	

Ordering information

Designation	Туре	Order No.
Multi-channel power probe, 2 × 4 voltage/current channels, for R&S®RTO2000/RTO6/RTP	R&S [®] RT-ZVC04	1326.0259.04
Multi-channel power probe, 2 × 4 voltage/current channels, for R&S [®] CMWrun	R&S [®] RT-ZVC04	1326.0259.24
Multi-channel power probe, 2 × 2 voltage/current channels, for R&S®RTO2000/RTO6/RTP	R&S [®] RT-ZVC02	1326.0259.02
Multi-channel power probe, 2 × 2 voltage/current channels, for R&S [®] CMWrun	R&S [®] RT-ZVC02	1326.0259.22
Multi-channel power probe with autoranging, 2 × 4 voltage/current channels, for R&S [®] CMWrun	R&S [®] RT-ZVC04A	1326.0259.34
Multi-channel power probe with autoranging, 2×2 voltage/current channels, for R&S [®] CMWrun	R&S [®] RT-ZVC02A	1326.0259.32
Accessories		
Extended cable set for R&S®RT-ZVC, PCB probing, 1 current and voltage lead, length: 32 cm	R&S [®] RT-ZA30	1333.1686.02
Extended cable set for R&S [®] R ⁻ -ZVC, 4 mm probing, 1 current and voltage lead, length: 32 cm	R&S [®] RT-ZA31	1333.1692.02
Power Adapter for R&S [®] RT-ZVC02/04 (only for operation with R&S [®] CMWrun)	R&S [®] RT-ZA32	1333.1705.02
Oscilloscope interface cable for R&S®RT-ZVC (included in R&S®RT-ZVC02/-ZVC04, 1326.0259.02/.04)	R&S [®] RT-ZA33	1333.1770.02
Extended cable set for R&S [®] RT-ZVC, 4 mm probing, 1 current and voltage lead, length: 1 m	R&S [®] RT-ZA34	1333.1892.02
Extended cable set for R&S [®] R ⁻ ZVC, PCB probing, 1 current and voltage lead, length: 1 m	R&S [®] RT-ZA35	1333.1905.02
Solder-in cable set for R&S [®] RT-ZVC, 4 current and voltage solder-in cables, solder-in pins	R&S [®] RT-ZA36	1333.1911.02
Extended cable set for R&S [®] RT-ZVC, BNC connector, 1 current and voltage lead, length: 16 cm	R&S [®] RT-ZA37	1337.9130.02
Graphical user interface based on R&S [®] CMWrun (USB con	nection to the PC with R&S [®]	CMWrun environment)
R&S [®] CMWrun general-purpose (adds battery life, GUI and features such as audio and E2E applications)	R&S [®] CMW-KT051	1203.4157.02

Service options		
Extended warranty, one year	R&S [®] WE1	Contact your local
Extended warranty, two years	R&S [®] WE2	Rohde & Schwarz sales
Extended warranty, three years	R&S [®] WE3	office.
Extended warranty, four years	R&S [®] WE4	
Extended warranty with calibration coverage, one year	R&S [®] CW1	
Extended warranty with calibration coverage, two years	R&S [®] CW2	
Extended warranty with calibration coverage, three years	R&S [®] CW3	
Extended warranty with calibration coverage, four years	R&S [®] CW4	
Extended warranty with accredited calibration coverage, one year	R&S [®] AW1	
Extended warranty with accredited calibration coverage, two years	R&S [®] AW2	
Extended warranty with accredited calibration coverage, three years	R&S [®] AW3	
Extended warranty with accredited calibration coverage, four years	R&S [®] AW4	

Extended warranty with a term of one to four years (WE1 to WE4)

Repairs carried out during the contract term are free of charge ¹. Necessary calibration and adjustments carried out during repairs are also covered.

Extended warranty with calibration (CW1 to CW4)

Enhance your extended warranty by adding calibration coverage at a package price. This package ensures that your Rohde & Schwarz product is regularly calibrated, inspected and maintained during the term of the contract. It includes all repairs ¹ and calibration at the recommended intervals as well as any calibration carried out during repairs or option upgrades.

Extended warranty with accredited calibration (AW1 to AW4)

Enhance your extended warranty by adding accredited calibration coverage at a package price. This package ensures that your Rohde & Schwarz product is regularly calibrated under accreditation, inspected and maintained during the term of the contract. It includes all repairs ¹ and accredited calibration at the recommended intervals as well as any accredited calibration carried out during repairs or option upgrades.

¹ Excluding defects caused by incorrect operation or handling and force majeure. Wear-and-tear parts are not included.

Service at Rohde & Schwarz You're in great hands

- ► Worldwide
- Local and personalized
- Customized and flexible
 Uncompromising quality
 Long-term dependability

Rohde & Schwarz

The Rohde&Schwarz technology group is among the trailblazers when it comes to paving the way for a safer and connected world with its leading solutions in test&measurement, technology systems and networks & cybersecurity. Founded more than 85 years ago, the group is a reliable partner for industry and government customers around the globe. The independent company is headquartered in Munich, Germany and has an extensive sales and service network with locations in more than 70 countries.

www.rohde-schwarz.com

Sustainable product design

- Environmental compatibility and eco-footprint
- Energy efficiency and low emissions
- Longevity and optimized total cost of ownership

Certified Environmental Management ISO 14001

Rohde & Schwarz training

www.training.rohde-schwarz.com

Rohde & Schwarz customer support

www.rohde-schwarz.com/support

R&S[®] is a registered trademark of Rohde&Schwarz Trade names are trademarks of the owners PD 5214.7058.22 | Version 06.00 | September 2023 (sk) R&S°RT-ZVCxx Multi-Channel Power Probe Data without tolerance limits is not binding | Subject to change © 2016 - 2023 Rohde&Schwarz | 81671 Munich, Germany