
R&S[®]ZNBT VECTOR NETWORK ANALYZER

Specifications

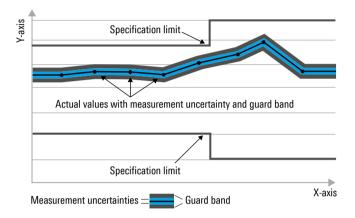
ROHDE&SCHWARZ

Make ideas real

CONTENTS

Definitions	3
Measurement range	4
Measurement speed	7
Measurement accuracy	10
R&S [®] ZNBT8	10
R&S [®] ZNBT20	11
R&S [®] ZNBT26 and R&S [®] ZNBT40	13
Effective system data	15
Factory-calibrated system data	16
Test port output	19
Test port input	23
Additional front panel connectors	24
Display	24
Rear panel connectors	25
Options	26
R&S [®] ZNBT-B4	26
R&S [®] ZNBT-B10	26
R&S [®] ZNBT-B12	26
R&S [®] ZNBT8/ZNBT20/ZNBT26/ZNBT40-B21/-B22/-B23/-B24/-B25/-B26	26
R&S [®] ZNBT-B81	27
R&S [®] ZNBT8-B108 to R&S [®] ZNBT8-B124, R&S [®] ZNBT20/ZNBT26/ZNBT40-B112 to R&S [®] ZNBT20/ZNBT26/ZNBT40-B124	27
R&S [®] ZNBT8-B361 to R&S [®] ZNBT8-B366	27
R&S [®] ZNBT8-B504/-B508/-B512/-B516/-B520/-B524	27
R&S [®] ZNBT-K27	28
R&S [®] ZNBT-K30	29
R&S [®] ZNBT-K980	29
R&S [®] ZNBT-Z14	29
R&S [®] ZNBT-USY	30
General data	31
Dimensions (in mm)	33
Ordering information	36

Definitions


General

Product data applies under the following conditions:

- Three hours of storage at ambient temperature followed by 30 minutes of warm-up operation
- Specified environmental conditions met
- · Recommended calibration interval adhered to
- · All internal automatic adjustments performed, if applicable

Specifications with limits

Represent warranted product performance by means of a range of values for the specified parameter. These specifications are marked with limiting symbols such as $\langle, \leq, \rangle, \geq, \pm$, or descriptions such as maximum, limit of, minimum. Compliance is ensured by testing or is derived from the design. Test limits are narrowed by guard bands to take into account measurement uncertainties, drift and aging, if applicable.

Non-traceable specifications with limits (n. trc.)

Represent product performance that is specified and tested as described under "Specifications with limits" above. However, product performance in this case cannot be warranted due to the lack of measuring equipment traceable to national metrology standards. In this case, measurements are referenced to standards used in the Rohde & Schwarz laboratories.

Specifications without limits

Represent warranted product performance for the specified parameter. These specifications are not specially marked and represent values with no or negligible deviations from the given value (e.g. dimensions or resolution of a setting parameter). Compliance is ensured by design.

Typical data (typ.)

Characterizes product performance by means of representative information for the given parameter. When marked with <, > or as a range, it represents the performance met by approximately 80 % of the instruments at production time. Otherwise, it represents the mean value.

Nominal values (nom.)

Characterize product performance by means of a representative value for the given parameter (e.g. nominal impedance). In contrast to typical data, a statistical evaluation does not take place and the parameter is not tested during production.

Measured values (meas.)

Characterize expected product performance by means of measurement results gained from individual samples.

Uncertainties

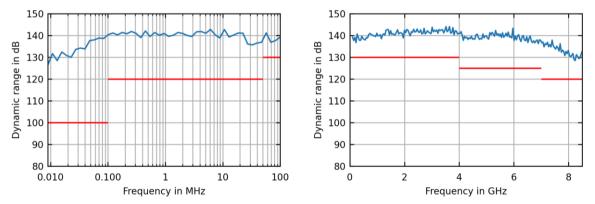
Represent limits of measurement uncertainty for a given measurand. Uncertainty is defined with a coverage factor of 2 and has been calculated in line with the rules of the Guide to the Expression of Uncertainty in Measurement (GUM), taking into account environmental conditions, aging, wear and tear.

Device settings and GUI parameters are designated with the format "parameter: value".

Non-traceable specifications with limits, typical data as well as nominal and measured values are not warranted by Rohde & Schwarz.

In line with the 3GPP standard, chip rates are specified in million chips per second (Mcps), whereas bit rates and symbol rates are specified in billion bit per second (Gbps), million bit per second (Mbps), thousand bit per second (kbps), million symbols per second (Msps) or thousand symbols per second (ksps), and sample rates are specified in million samples per second (Msample/s). Gbps, Mcps, Mbps, Msps, ksps and Msample/s are not SI units.

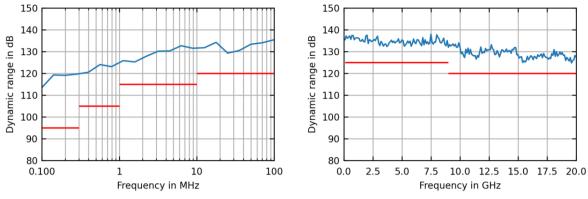
Measurement range

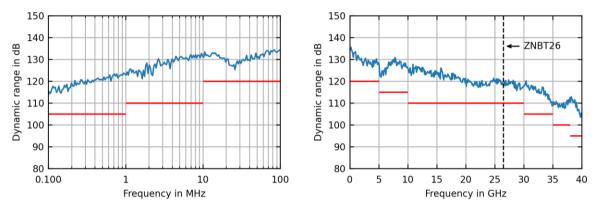

Impedance		50 Ω
Test port connector	R&S [®] ZNBT8	N, female
	R&S [®] ZNBT20	3.5 mm, male, ruggedized
	R&S [®] ZNBT26	2.92 mm, male, ruggedized
	R&S [®] ZNBT40	2.92 mm, male, ruggedized
Number of test ports	R&S [®] ZNBT8 base unit	4
(the R&S [®] ZNBT8 supports simultaneous	R&S [®] ZNBT20 base unit	8
data acquisition at all test ports)	R&S [®] ZNBT26 base unit	8
	R&S [®] ZNBT40 base unit	8
	with R&S [®] ZNBT8-B108 option	8 (additional ports 5 to 8)
	with R&S [®] ZNBT8-B112 or	12 (additional ports 9 to 12)
	R&S [®] ZNBT20-B112 or	
	R&S [®] ZNBT26-B112 or	
	R&S [®] ZNBT40-B112 option	
	with R&S [®] ZNBT8-B116 or	16 (additional ports 13 to 16)
	R&S [®] ZNBT20-B116 or	
	R&S [®] ZNBT26-B116 or	
	R&S [®] ZNBT40-B116 option	
	with R&S [®] ZNBT8-B120 or	20 (additional ports 17 to 20)
	R&S [®] ZNBT20-B120 or	
	R&S [®] ZNBT26-B120 or	
	R&S [®] ZNBT40-B120 option	
	with R&S [®] ZNBT8-B124 or	24 (additional ports 21 to 24)
	R&S [®] ZNBT20-B124 or	
	R&S [®] ZNBT26-B124 or	
	R&S [®] ZNBT40-B124 option	
Frequency range	R&S [®] ZNBT8	9 kHz to 8.5 GHz
· · -	R&S [®] ZNBT20	100 kHz to 20 GHz
	R&S [®] ZNBT26	100 kHz to 26.5 GHz
	R&S [®] ZNBT40	100 kHz to 40 GHz

Static frequency accuracy		(time since last adjustment × aging rate) + temperature drift + calibration accuracy
Aging per year	standard	$\pm 1 \times 10^{-6}$
	with R&S [®] ZNBT-B4 precision frequency reference option	±1 × 10 ⁻⁷
Temperature drift (+5 °C to +40 °C)	standard	$\pm 1 \times 10^{-6}$
	with R&S [®] ZNBT-B4 precision frequency reference option	±1 × 10 ⁻⁸
Achievable initial calibration accuracy	standard	±5 × 10 ⁻⁷
	with R&S [®] ZNBT-B4 precision frequency reference option	±5 × 10 ⁻⁸

Frequency resolution		1 Hz
Number of measurement points ¹	per trace	2 to 100001
Measurement bandwidth	1/1.5/2/3/5/7 sequence	
	without optional increased bandwidth	1 Hz to 1 MHz
	with optional increased bandwidth	1 Hz to 10 MHz

¹ The maximum number of sweep points may vary depending on the number of ports involved in the measurement.

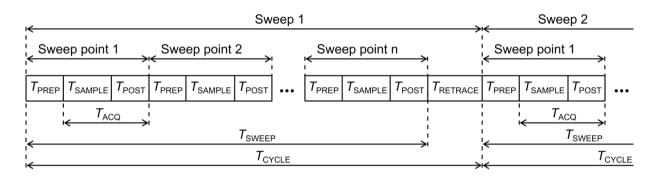

Dynamic range ^{2, 3} at all ports		specified	typical
R&S [®] ZNBT8 (without optional step	9 kHz to 100 kHz	≥ 100 dB	122 dB
attenuators)	100 kHz to 50 MHz	≥ 120 dB	138 dB
	50 MHz to 4 GHz	≥ 130 dB	140 dB
	4 GHz to 7 GHz	≥ 125 dB	138 dB
	7 GHz to 8.5 GHz	≥ 120 dB	130 dB
R&S [®] ZNBT20	100 kHz to 300 kHz	≥ 95 dB	108 dB
	300 kHz to 1 MHz	≥ 105 dB	120 dB
	1 MHz to 10 MHz	≥ 115 dB	125 dB
	10 MHz to 100 MHz	≥ 120 dB	130 dB
	100 MHz to 9 GHz	≥ 125 dB	135 dB
	9 GHz to 20 GHz	≥ 120 dB	130 dB
R&S [®] ZNBT26	100 kHz to 1 MHz	≥ 105 dB	120 dB
	1 MHz to 10 MHz	≥ 110 dB	130 dB
	10 MHz to 5 GHz	≥ 120 dB	135 dB
	5 GHz to 10 GHz	≥ 115 dB	125 dB
	10 GHz to 26.5 GHz	≥ 110 dB	120 dB
R&S [®] ZNBT40	100 kHz to 1 MHz	≥ 105 dB	120 dB
	1 MHz to 10 MHz	≥ 110 dB	130 dB
	10 MHz to 5 GHz	≥ 120 dB	135 dB
	5 GHz to 10 GHz	≥ 115 dB	125 dB
	10 GHz to 30 GHz	≥ 110 dB	120 dB
	30 GHz to 35 GHz	≥ 105 dB	115 dB
	35 GHz to 38 GHz	≥ 100 dB	105 dB
	38 GHz to 40 GHz	≥ 95 dB	100 dB


Measured dynamic range in dB versus frequency for the R&S®ZNBT8

² Dynamic range is defined as the difference between the actual maximum source power and the RMS value of the data trace of the transmission magnitude, which is produced by noise and crosstalk with the test ports short-circuited. The specification applies at 10 Hz measurement bandwidth, without system error correction. The dynamic range can be increased by using a measurement bandwidth of 1 Hz. Crosstalk does not limit the dynamic range.

³ Below 100 MHz, dynamic range is typical between adjacent ports on the same horizontal level, e.g. between ports 1 and 2 or 5 and 6. Between 1.5 MHz and 2.5 MHz, dynamic range may be degraded compared to specified value.

Measured dynamic range in dB versus frequency for the R&S[®]ZNBT20



Measured dynamic range in dB versus frequency for the R&S[®]ZNBT26/R&S[®]ZNBT40

Measurement speed

Measured with firmware version 3.71 and Windows 10 (64 bit).

Measurement time	for 201 measurements points, with 200 MHz sp	an, 1 MHz	measurem	ent bandw	idth			
		Tsw	/EEP	T _C	YCLE			
	R&S [®] ZNBT8 ⁴							
	with 900 MHz center frequency	< 2.5	5 ms	< 5	ms			
	with 5.1 GHz center frequency	< 2.0) ms	< 5	ms			
	R&S [®] ZNBT20							
	with 900 MHz center frequency	< 3	ms	< 7.5 ms				
	with 5.1 GHz center frequency	< 3.5	5 ms	< 7.	5 ms			
	R&S [®] ZNBT26 ⁴	R&S [®] ZNBT26 ⁴						
	with 900 MHz center frequency	< 3.5	5 ms	< 1'	1 ms			
	with 5.1 GHz center frequency	< 3.5	5 ms	< 7	ms			
	R&S [®] ZNBT40 ⁴							
	with 900 MHz center frequency	< 3.5	5 ms	< 11 ms				
	with 5.1 GHz center frequency	< 3.5 ms		< 7 ms				
Acquisition time per point (T_{ACQ})	1 MHz measurement bandwidth, CW mode		7.5	μs				
Sampling time per point (T _{SAMPLE}),	at 1 MHz measurement bandwidth		860) ns				
IF filter: normal	at 10 MHz measurement bandwidth		312	2 ns				
Time for measurement and data transfer (nom.)	for 201 measurements points, with 800 MHz start frequency, 1 GHz stop frequency,	VXI11	HiSLIP	IEC/ IEEE	USB 3.0			
	1 MHz measurement bandwidth ⁵	over 1 G	bit/s LAN					
	R&S [®] ZNBT8 ⁴	4.8 ms	4.3 ms	5.1 ms	4.5 ms			
	R&S [®] ZNBT20	6.9 ms	7.3 ms	7.5 ms	6.3 ms			
	R&S [®] ZNBT26 ⁴	6.7 ms	6.1 ms	7.1 ms	6.3 ms			
	R&S [®] ZNBT40 ⁴	6.7 ms	6.1 ms	7.1 ms	6.3 ms			
Data transfer time (nom.)	for 201 measurements points (magnitude)	0.9 ms	1 ms	1.3 ms	0.4 ms			
Switching time between channels or preloaded instrument settings	with a maximum of 2001 points	< 8 ms						

 T_{PREP} Preparation time required to set up the internal hardware components

T_{SAMPLE} Sampling time (approximately equal to the settling time of the digital filters)

 T_{POST} Time required for hardware postprocessing

 T_{ACQ} Aquisition time ($T_{SAMPLE} + T_{POST}$)

 T_{SWEEP} Time required for one sweep

 T_{RETRACE} Time between two sweeps

 T_{CYCLE} Sweep cycle time ($T_{\text{SWEEP}} + T_{\text{RETRACE}}$)

Measurement data acquisition process

⁴ Applies to instruments with serial number > 200000 or equipped with R&S[®]ZNBT-USY.

⁵ In continuous mode, no additional time for data transfer is needed, as this occurs simultaneously during the measurement.

51	201	401	1601	5001
step	step	step	step	step
p frequency. A	GC AUTO, 500 kH	z measurement bar	ndwidth	
				25.4
	-			107
		-		1508
1				
p frequency. A	GC LOW DIST. 1 k	Hz measurement b	andwidth	
47.7	174	345	1357	4228
187	694	1376	5426	16901
	4161	8257	32586	101634
o frequency, A	GC AUTO, 500 kHz	measurement ban	dwidth	
2.3	3.5	4.7	11.8	31.6
5.6	10.0	15.3	43.8	122
35.1	75.2	129	479	1490
o frequency, A	GC LOW DIST, 1 k	Hz measurement ba	andwidth	
47.3	176	347	1369	4262
184	700	1383	5470	17037
1108	4207	8307	32843	102446
o frequency, A	GC AUTO, 500 kHz	measurement ban	dwidth	
2.9	4.2	5.5	12.9	32.3
8.1	13.4	18.6	47.8	126
50.0	95.4	146	479	1480
o frequency, A	GC LOW DIST, 1 k	Hz measurement ba	andwidth	
47.4	177	349	1374	4268
187	704	1394	5496	17076
1116	4228	8378	32999	102644
-	-			5001
step	step	step	step	step
(6. 2. IO.	
				01.0
3.0	3.8	5.4	12.1	31.8
7.3	11.8	18.4	54.8	156
	51 step p frequency, A 1.7 3.7 21.7 p frequency, A 47.7 187 1121 p frequency, A 2.3 5.6 35.1 p frequency, A 47.3 184 1108 p frequency, A 2.9 8.1 50.0 p frequency, A 47.4 187 1116 sus number o 51 step	51 201 step step p frequency, AGC AUTO, 500 kH 1.7 2.5 3.7 7.1 21.7 67.0 p frequency, AGC LOW DIST, 1 k 47.7 174 187 694 1121 4161 D frequency, AGC AUTO, 500 kHz 2.3 3.5 5.6 10.0 35.1 75.2 D frequency, AGC LOW DIST, 1 k 47.3 176 184 700 1108 4207 D frequency, AGC AUTO, 500 kHz 2.9 4.2 8.1 13.4 50.0 95.4 D frequency, AGC LOW DIST, 1 k 47.4 177 187 704 1116 4228 Sus number of measurement po 51 201 step step	51 201 401 step step step p frequency, AGC AUTO, 500 kHz measurement bar 1.7 2.5 3.6 3.7 7.1 11.0 21.7 67.0 131 p frequency, AGC LOW DIST, 1 kHz measurement bar 47.7 174 345 187 694 1376 1121 4161 8257 p frequency, AGC AUTO, 500 kHz measurement bar 2.3 3.5 4.7 5.6 10.0 15.3 35.1 75.2 129 129 1383 1108 4207 8307 p frequency, AGC LOW DIST, 1 kHz measurement bar 2.9 4.2 5.5 8.1 13.4 18.6 50.0 95.4 146 146 146 146 p frequency, AGC LOW DIST, 1 kHz measurement bar 2.9 4.2 5.5 8.1 13.4 18.6 50.0 95.4 146 p frequency, AGC LOW DIST, 1 kHz measurement bar 2.9 4.2 5.5 8.1 13.4 18.6 50.0 95.4 </td <td>step step step step step p frequency, AGC AUTO, 500 kHz measurement bandwidth 1.7 2.5 3.6 9.2 3.7 7.1 11.0 36.5 21.7 67.0 131 484 p frequency, AGC LOW DIST, 1 kHz measurement bandwidth 47.7 174 345 1357 187 694 1376 5426 1121 4161 8257 32586 p frequency, AGC AUTO, 500 kHz measurement bandwidth 2.3 3.5 4.7 11.8 5.6 10.0 15.3 43.8 35.1 75.2 129 479 p frequency, AGC LOW DIST, 1 kHz measurement bandwidth 47.3 176 347 1369 184 700 1383 5470 1108 4207 8307 32843 p frequency, AGC AUTO, 500 kHz measurement bandwidth 2.9 4.2 5.5 12.9 8.1 13.4 18.6 47.8 50.0 95.4 146 479 1108 4228 8378 32999 32499</td>	step step step step step p frequency, AGC AUTO, 500 kHz measurement bandwidth 1.7 2.5 3.6 9.2 3.7 7.1 11.0 36.5 21.7 67.0 131 484 p frequency, AGC LOW DIST, 1 kHz measurement bandwidth 47.7 174 345 1357 187 694 1376 5426 1121 4161 8257 32586 p frequency, AGC AUTO, 500 kHz measurement bandwidth 2.3 3.5 4.7 11.8 5.6 10.0 15.3 43.8 35.1 75.2 129 479 p frequency, AGC LOW DIST, 1 kHz measurement bandwidth 47.3 176 347 1369 184 700 1383 5470 1108 4207 8307 32843 p frequency, AGC AUTO, 500 kHz measurement bandwidth 2.9 4.2 5.5 12.9 8.1 13.4 18.6 47.8 50.0 95.4 146 479 1108 4228 8378 32999 32499

With correction switched off	48.8	175	345	1362	4241
With 4-port TOSM calibration	190	697	1376	5444	16960
With 24-port TOSM calibration	1135	4177	8255	32696	101976
1 MHz start frequency 20 GHz stor	frequency A(massurement han	dwidth	
1 MHz start frequency, 20 GHz stop					
1 MHz start frequency, 20 GHz stop With correction switched off	frequency, A0	GC AUTO, 500 kHz 10.1	measurement band	dwidth 23.9	55.8
1 2					55.8 218

147

492

1568

84.4

1 MHz start frequency, 20 GHz stop	frequency, AGC LC	W DIST, 1 kHz mea	asurement bandwid	th	
With correction switched off	53.1	183	352	1379	4280
With 4-port TOSM calibration	208	728	1406	5510	17118
With 24-port TOSM calibration	1238	4361	8429	33096	103061

With 24-port TOSM calibration

41.9

⁶ Sweep time is to be understood as cycle time; static frequency accuracy of the instrument applies; measured with LPW11 controller.

⁷ Not valid for discontinued R&S[®]ZNBT20 model (order no.: 1332.9002.24). See section "R&S[®]ZNBT-USY" for measured sweep times.

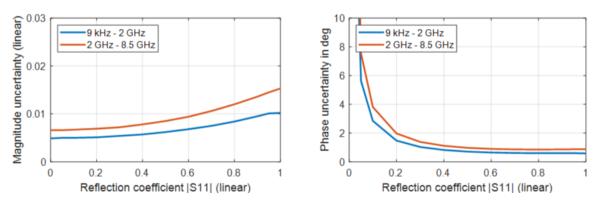
Number of measurement points	51	201	401	1601	5001
Sweep mode	step	step	step	step	step
9 GHz start frequency, 10 GHz stop		GC AUTO, 500 kHz	measurement band	dwidth	
With correction switched off	3.0	3.9	5.1	11.9	31.5
With 4-port TOSM calibration	7.8	12.4	18.4	54.2	156
With 24-port TOSM calibration	43.2	87.6	144	480	1543
			I	un alter si altela	
9 GHz start frequency, 10 GHz stop	48.8		1	Í.	40.44
With correction switched off		176	345	1362	4241
With 4-port TOSM calibration	191	700	1377	5443	16959
With 24-port TOSM calibration	1136	4190	8259	32673	101957
1 MHz start frequency, 26.5 GHz sto	op frequency.	AGC AUTO, 500 kH	lz measurement ba	ndwidth	
With correction switched off	12.6	14.4	16.6	28.3	60.2
With 4-port TOSM calibration	45.5	52.7	61.3	108	236
With 24-port TOSM calibration	267	321	390	797	2138
		-			
1 MHz start frequency, 26.5 GHz sto	pp frequency,	AGC LOW DIST, 1	kHz measurement	bandwidth	
With correction switched off	56.1	185	356	1375	4263
With 4-port TOSM calibration	219	737	1420	5495	17048
				32988 ZNBT40 ⁴	102606
Measured sweep times in ms vers Number of measurement points	sus number o	f measurement po	ints ⁶ of the R&S [®] 401	32988 ZNBT40 ⁴ 1601	102606 5001
Measured sweep times in ms vers Number of measurement points	sus number o	f measurement po	ints ⁶ of the R&S [®]	32988 ZNBT40 ⁴	102606
Measured sweep times in ms vers Number of measurement points Sweep mode	sus number o 51 step	f measurement po 201 step	ints ⁶ of the R&S [®] / 401 step	32988 ZNBT40 ⁴ 1601 step	102606 5001
Measured sweep times in ms vers Number of measurement points Sweep mode 9 GHz start frequency, 10 GHz stop	sus number o 51 step frequency, AC	f measurement po 201 step GC AUTO, 500 kHz	ints ⁶ of the R&S [®] , 401 step measurement band	32988 ZNBT40 ⁴ 1601 step dwidth	102606 5001 step
Measured sweep times in ms vers Number of measurement points Sweep mode 9 GHz start frequency, 10 GHz stop With correction switched off	sus number o 51 step frequency, AC 3.0	f measurement po 201 step GC AUTO, 500 kHz 4.0	ints ⁶ of the R&S [®] , 401 step measurement banc 5.2	32988 ZNBT40 ⁴ 1601 step dwidth 11.9	102606 5001 step 31.6
Measured sweep times in ms vers Number of measurement points Sweep mode 9 GHz start frequency, 10 GHz stop With correction switched off With 4-port TOSM calibration	sus number o 51 step frequency, AC 3.0 7.9	f measurement po 201 step GC AUTO, 500 kHz 4.0 12.4	ints ⁶ of the R&S [®] , 401 step measurement band 5.2 18.4	32988 ZNBT40 ⁴ 1601 step dwidth 11.9 54.3	102606 5001 step 31.6 156
Measured sweep times in ms vers Number of measurement points Sweep mode 9 GHz start frequency, 10 GHz stop With correction switched off	sus number o 51 step frequency, AC 3.0	f measurement po 201 step GC AUTO, 500 kHz 4.0	ints ⁶ of the R&S [®] , 401 step measurement banc 5.2	32988 ZNBT40 ⁴ 1601 step dwidth 11.9	102606 5001 step 31.6
Measured sweep times in ms vers Number of measurement points Sweep mode 9 GHz start frequency, 10 GHz stop With correction switched off With 4-port TOSM calibration With 24-port TOSM calibration	sus number o 51 step frequency, AC 3.0 7.9 43.3	f measurement po 201 step GC AUTO, 500 kHz 4.0 12.4 87.4	ints ⁶ of the R&S [®] / 401 step measurement band 5.2 18.4 144	32988 ZNBT40 ⁴ 1601 step dwidth 11.9 54.3 482	102606 5001 step 31.6 156
Measured sweep times in ms vers Number of measurement points Sweep mode 9 GHz start frequency, 10 GHz stop With correction switched off With 4-port TOSM calibration With 24-port TOSM calibration 9 GHz start frequency, 10 GHz stop	sus number o 51 step frequency, AC 3.0 7.9 43.3 frequency, AC	f measurement po 201 step GC AUTO, 500 kHz 4.0 12.4 87.4 GC LOW DIST, 1 kH	ints ⁶ of the R&S [®] , 401 step measurement band 5.2 18.4 144 iz measurement ba	32988 ZNBT40 4 1601 step dwidth 11.9 54.3 482 indwidth	102606 5001 step 31.6 156 1541
Measured sweep times in ms vers Number of measurement points Sweep mode 9 GHz start frequency, 10 GHz stop With correction switched off With 4-port TOSM calibration With 24-port TOSM calibration 9 GHz start frequency, 10 GHz stop With correction switched off	sus number o 51 step frequency, AC 3.0 7.9 43.3 frequency, AC 48.8	f measurement po 201 step GC AUTO, 500 kHz 4.0 12.4 87.4 GC LOW DIST, 1 kH 176	ints ⁶ of the R&S [®] / 401 step measurement band 5.2 18.4 144 Hz measurement band 345	32988 ZNBT40 ⁴ 1601 step dwidth 11.9 54.3 482 indwidth 1362	102606 5001 step 31.6 156 1541 4241
Measured sweep times in ms vers Number of measurement points Sweep mode 9 GHz start frequency, 10 GHz stop With correction switched off With 4-port TOSM calibration With 24-port TOSM calibration 9 GHz start frequency, 10 GHz stop With correction switched off With 4-port TOSM calibration	sus number o 51 step frequency, AC 3.0 7.9 43.3 frequency, AC 48.8 191	f measurement po 201 step GC AUTO, 500 kHz 4.0 12.4 87.4 GC LOW DIST, 1 kH 176 700	ints ⁶ of the R&S [®] / 401 step measurement band 5.2 18.4 144 Hz measurement band 345 1377	32988 ZNBT40 4 1601 step dwidth 11.9 54.3 482 indwidth 1362 5443	102606 5001 step 31.6 156 1541 4241 16958
Measured sweep times in ms vers Number of measurement points Sweep mode 9 GHz start frequency, 10 GHz stop With correction switched off With 4-port TOSM calibration With 24-port TOSM calibration 9 GHz start frequency, 10 GHz stop With correction switched off	sus number o 51 step frequency, AC 3.0 7.9 43.3 frequency, AC 48.8	f measurement po 201 step GC AUTO, 500 kHz 4.0 12.4 87.4 GC LOW DIST, 1 kH 176	ints ⁶ of the R&S [®] / 401 step measurement band 5.2 18.4 144 Hz measurement band 345	32988 ZNBT40 ⁴ 1601 step dwidth 11.9 54.3 482 indwidth 1362	102606 5001 step 31.6 156 1541 4241
Measured sweep times in ms vers Number of measurement points Sweep mode 9 GHz start frequency, 10 GHz stop With correction switched off With 4-port TOSM calibration With 24-port TOSM calibration 9 GHz start frequency, 10 GHz stop With correction switched off With 4-port TOSM calibration With 24-port TOSM calibration	sus number o 51 step frequency, AC 3.0 7.9 43.3 frequency, AC 48.8 191 1135	f measurement po 201 step GC AUTO, 500 kHz 4.0 12.4 87.4 GC LOW DIST, 1 kH 176 700 4191	ints ⁶ of the R&S [®] / 401 step measurement band 5.2 18.4 144 dz measurement ba 345 1377 8257	32988 ZNBT40 ⁴ 1601 step dwidth 11.9 54.3 482 undwidth 1362 5443 32674	102606 5001 step 31.6 156 1541 4241 16958
Measured sweep times in ms vers Number of measurement points Sweep mode 9 GHz start frequency, 10 GHz stop With correction switched off With 4-port TOSM calibration With 24-port TOSM calibration 9 GHz start frequency, 10 GHz stop With correction switched off With 4-port TOSM calibration With 24-port TOSM calibration	sus number o 51 step frequency, AC 3.0 7.9 43.3 frequency, AC 48.8 191 1135	f measurement po 201 step GC AUTO, 500 kHz 4.0 12.4 87.4 GC LOW DIST, 1 kH 176 700 4191	ints ⁶ of the R&S [®] / 401 step measurement band 5.2 18.4 144 dz measurement ba 345 1377 8257	32988 ZNBT40 ⁴ 1601 step dwidth 11.9 54.3 482 undwidth 1362 5443 32674	102606 5001 step 31.6 156 1541 4241 16958
Measured sweep times in ms vers Number of measurement points Sweep mode 9 GHz start frequency, 10 GHz stop With correction switched off With 4-port TOSM calibration With 24-port TOSM calibration 9 GHz start frequency, 10 GHz stop With correction switched off With 4-port TOSM calibration With 24-port TOSM calibration With 24-port TOSM calibration	sus number o 51 step frequency, AC 3.0 7.9 43.3 frequency, AC 48.8 191 1135 frequency, AC	f measurement po 201 step GC AUTO, 500 kHz 4.0 12.4 87.4 GC LOW DIST, 1 kHz 176 700 4191 GC AUTO, 500 kHz	ints ⁶ of the R&S [®] / 401 step measurement band 5.2 18.4 144 Hz measurement band 345 1377 8257 measurement band	32988 ZNBT40 ⁴ 1601 step dwidth 11.9 54.3 482 undwidth 1362 5443 32674	102606 5001 step 31.6 156 1541 4241 16958 101955
Measured sweep times in ms vers Number of measurement points Sweep mode 9 GHz start frequency, 10 GHz stop With correction switched off With 4-port TOSM calibration With 24-port TOSM calibration 9 GHz start frequency, 10 GHz stop With correction switched off With 4-port TOSM calibration With 24-port TOSM calibration With 24-port TOSM calibration 1 MHz start frequency, 40 GHz stop With correction switched off	sus number o 51 step frequency, AC 3.0 7.9 43.3 frequency, AC 48.8 191 1135 frequency, AC 13.7	f measurement po 201 step GC AUTO, 500 kHz 4.0 12.4 87.4 GC LOW DIST, 1 kHz 176 700 4191 GC AUTO, 500 kHz 16.5	ints ⁶ of the R&S [®] / 401 step measurement band 5.2 18.4 144 Hz measurement band 345 1377 8257 measurement band 18.9	32988 ZNBT40 ⁴ 1601 step dwidth 11.9 54.3 482 undwidth 1362 5443 32674 dwidth 30.6	102606 5001 step 31.6 156 1541 4241 16958 101955 62.5
Measured sweep times in ms vers Number of measurement points Sweep mode 9 GHz start frequency, 10 GHz stop With correction switched off With 4-port TOSM calibration With 24-port TOSM calibration 9 GHz start frequency, 10 GHz stop With correction switched off With 4-port TOSM calibration With 24-port TOSM calibration 1 MHz start frequency, 40 GHz stop With correction switched off With 4-port TOSM calibration 1 MHz start frequency, 40 GHz stop With correction switched off With 4-port TOSM calibration With 24-port TOSM calibration	sus number o 51 step frequency, AQ 3.0 7.9 43.3 frequency, AQ 48.8 191 1135 frequency, AQ 13.7 50.0 295	f measurement po 201 step SC AUTO, 500 kHz 4.0 12.4 87.4 SC LOW DIST, 1 kH 176 700 4191 SC AUTO, 500 kHz 16.5 61.6 372	ints ⁶ of the R&S [®] / 401 step measurement band 5.2 18.4 144 Hz measurement band 345 1377 8257 measurement band 18.9 71.3 448	32988 ZNBT40 ⁴ 1601 step dwidth 11.9 54.3 482 undwidth 1362 5443 32674 dwidth 30.6 118 851	102606 5001 step 31.6 156 1541 4241 16958 101955 62.5 245
Measured sweep times in ms vers Number of measurement points Sweep mode 9 GHz start frequency, 10 GHz stop With correction switched off With 4-port TOSM calibration With 24-port TOSM calibration 9 GHz start frequency, 10 GHz stop With correction switched off With 4-port TOSM calibration With 24-port TOSM calibration 1 MHz start frequency, 40 GHz stop With correction switched off With 4-port TOSM calibration 1 MHz start frequency, 40 GHz stop With correction switched off With 4-port TOSM calibration With 24-port TOSM calibration	sus number o 51 step frequency, AQ 3.0 7.9 43.3 frequency, AQ 48.8 191 1135 frequency, AQ 13.7 50.0 295	f measurement po 201 step SC AUTO, 500 kHz 4.0 12.4 87.4 SC LOW DIST, 1 kH 176 700 4191 SC AUTO, 500 kHz 16.5 61.6 372	ints ⁶ of the R&S [®] / 401 step measurement band 5.2 18.4 144 Hz measurement band 345 1377 8257 measurement band 18.9 71.3 448	32988 ZNBT40 ⁴ 1601 step dwidth 11.9 54.3 482 undwidth 1362 5443 32674 dwidth 30.6 118 851	102606 5001 step 31.6 156 1541 4241 16958 101955 62.5 245
Measured sweep times in ms vers Number of measurement points Sweep mode 9 GHz start frequency, 10 GHz stop With correction switched off With 4-port TOSM calibration With 24-port TOSM calibration 9 GHz start frequency, 10 GHz stop With correction switched off With 4-port TOSM calibration With 24-port TOSM calibration 1 MHz start frequency, 40 GHz stop With correction switched off With 4-port TOSM calibration	sus number o 51 step frequency, AQ 3.0 7.9 43.3 frequency, AQ 48.8 191 1135 frequency, AQ 13.7 50.0 295	f measurement po 201 step SC AUTO, 500 kHz 4.0 12.4 87.4 SC LOW DIST, 1 kH 176 700 4191 SC AUTO, 500 kHz 16.5 61.6 372	ints ⁶ of the R&S [®] / 401 step measurement band 5.2 18.4 144 Hz measurement band 345 1377 8257 measurement band 18.9 71.3 448	32988 ZNBT40 ⁴ 1601 step dwidth 11.9 54.3 482 undwidth 1362 5443 32674 dwidth 30.6 118 851	102606 5001 step 31.6 156 1541 4241 16958 101955 62.5 245
Measured sweep times in ms vers Number of measurement points Sweep mode 9 GHz start frequency, 10 GHz stop With correction switched off With 4-port TOSM calibration With 24-port TOSM calibration 9 GHz start frequency, 10 GHz stop With correction switched off With 4-port TOSM calibration With 24-port TOSM calibration With 24-port TOSM calibration 1 MHz start frequency, 40 GHz stop With correction switched off With 4-port TOSM calibration With 24-port TOSM calibration With 24-port TOSM calibration With 24-port TOSM calibration With 24-port TOSM calibration	sus number o 51 step frequency, AQ 3.0 7.9 43.3 frequency, AQ 48.8 191 1135 frequency, AQ 13.7 50.0 295 frequency, AQ	f measurement po 201 step SC AUTO, 500 kHz 4.0 12.4 87.4 SC LOW DIST, 1 kH 176 700 4191 SC AUTO, 500 kHz 16.5 61.6 372 SC LOW DIST, 1 kH	ints ⁶ of the R&S [®] / 401 step measurement band 5.2 18.4 144 iz measurement band 345 1377 8257 measurement band 18.9 71.3 448 iz measurement band	32988 ZNBT40 ⁴ 1601 step dwidth 11.9 54.3 482 undwidth 1362 5443 32674 dwidth 30.6 118 851	102606 5001 step 31.6 156 1541 4241 16958 101955 62.5 245 2175

Measurement accuracy

R&S[®]ZNBT8

This data is valid between +18 °C and +28 °C, provided the temperature has not varied by more than 1 °C since calibration. Validity of the data is conditional on the use of an R&S[®]ZV-Z270 calibration kit. This calibration kit is used to achieve the effective system data specified below. Frequency points, measurement bandwidth and sweep time have to be identical for measurement and calibration (no interpolation allowed). At limit branches the tighter value is applicable.

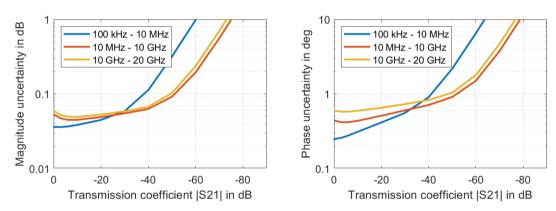
Uncertainty of transmiss	sion measurements	Magnitude	Phase
> 9 kHz to 100 kHz	+0 dB to -35 dB	0.07 dB	0.6°
	-35 dB to -50 dB	0.12 dB	1.0°
	-50 dB to -60 dB	0.32 dB	2.3°
> 100 kHz to 8.5 GHz	+0 dB to -35 dB	0.06 dB	0.6°
	-35 dB to -50 dB	0.09 dB	0.9°
	-50 dB to -60 dB	0.19 dB	1.5°


Specifications are based on a matched DUT, a measurement bandwidth of 10 Hz and a nominal source power of -10 dBm.

Uncertainty of transmission magnitude and transmission phase measurements for the R&S[®]ZNBT8 in the frequency range from 9 kHz to 8.5 GHz; analysis conditions: $S_{11} = S_{22} = 0$, calibrated power: –10 dBm, measured power: –10 dBm

Uncertainty of	Logarithmic		Linear	Linear	
reflection measurements	Reflection level	Magnitude	Phase	Reflection range	Magnitude
9 kHz to 2 GHz	0 dB	0.1 dB	0.6°	0 dB to -15 dB	0.010
	–15 dB	0.2 dB	1.5°	-15 dB to -25 dB	0.005
	–25 dB	0.7 dB	5.6°	-25 dB to -35 dB	0.005
> 2 GHz to 8.5 GHz	0 dB	0.1 dB	0.9°	0 dB to -15 dB	0.015
	–15 dB	0.3 dB	2.0°	-15 dB to -25 dB	0.007
	–25 dB	1.0 dB	7.5°	–25 dB	0.007

Specifications are based on an isolating DUT, a measurement bandwidth of 10 Hz and a nominal source power of –10 dBm.

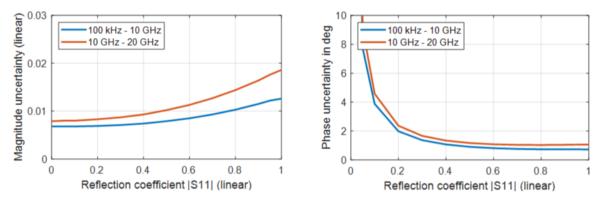

Uncertainty of reflection magnitude and reflection phase measurements for the R&S [®]ZNBT8 in the frequency range from 9 kHz to 8.5 GHz; analysis conditions: $S_{12} = S_{21} = 0$, calibrated power: –10 dBm, measured power: –10 dBm

R&S[®]ZNBT20

This data is valid between +18 °C and +28 °C, provided the temperature has not varied by more than 1 °C since calibration. Validity of the data is conditional on the use of an R&S[®]ZV-Z235 calibration kit. This calibration kit is used to achieve the effective system data specified below. Frequency points, measurement bandwidth and sweep time have to be identical for measurement and calibration (no interpolation allowed).

Uncertainty of transmission measurements		Magnitude	Phase	
100 kHz to 10 MHz	0 dB to -20 dB	0.04 dB	0.4°	
	-20 dB to -40 dB	0.11 dB	0.9°	
	-40 dB to -50 dB	0.32 dB	2.2°	
	-50 dB to -60 dB	0.98 dB	6.5°	
> 10 MHz to 10 GHz	0 dB to -20 dB	0.05 dB	0.5°	
	–20 dB to –40 dB	0.06 dB	0.7°	
	-40 dB to -50 dB	0.09 dB	0.9°	
	-50 dB to -60 dB	0.19 dB	1.5°	
> 10 GHz to 20 GHz	0 dB to -20 dB	0.05 dB	0.7°	
	-20 dB to -40 dB	0.07 dB	0.8°	
	-40 dB to -50 dB	0.10 dB	1.0°	
	-50 dB to -60 dB	0.24 dB	1.8°	

Specifications are based on a matched DUT, a measurement bandwidth of 10 Hz and a nominal source power of -10 dBm.

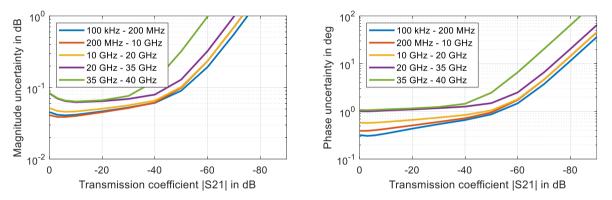


Typical uncertainty of transmission magnitude and transmission phase measurements for the R&S[®]ZNBT20 in the frequency range from 100 kHz to 20 GHz; analysis conditions: S₁₁ = S₂₂ = 0, calibrated power: –10 dBm, measured power: –10 dBm

Version 14.00, August 2024

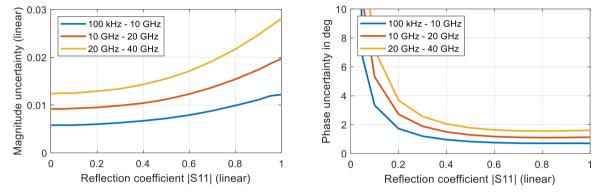
Uncertainty of	Logarithmic	rithmic			Linear	
reflection measurements	Reflection level	Magnitude	Phase	Reflection range	Magnitude	
100 kHz to 10 GHz	0 dB	0.10 dB	0.7°	0 dB to -15 dB	0.013	
	–15 dB	0.30 dB	2.0°	-15 dB to -25 dB	0.007	
	–25 dB	1.00 dB	7.7°	-25 dB to -35 dB	0.007	
> 10 GHz to 20 GHz	0 dB	0.20 dB	1.1°	0 dB to -15 dB	0.019	
	–15 dB	0.40 dB	2.4°	–15 dB to –25 dB	0.008	
	–25 dB	1.20 dB	9.1°	-25 dB to -35 dB	0.008	

Specifications are based on an isolating DUT, a measurement bandwidth of 10 Hz and a nominal source power of -10 dBm.


Uncertainty of reflection magnitude and reflection phase measurements for the R&S[®]ZNBT20 in the frequency range from 100 kHz to 20 GHz; analysis conditions: $S_{12} = S_{21} = 0$, calibrated power: -10 dBm, measured power: -10 dBm

R&S®ZNBT26 and R&S®ZNBT40

This data is valid between +18 °C and +28 °C, provided the temperature has not varied by more than 1 °C since calibration. Validity of the data is conditional on the use of an R&S[®]ZV-Z229 calibration kit. This calibration kit is used to achieve the effective system data specified below. Frequency points, measurement bandwidth and sweep time have to be identical for measurement and calibration (no interpolation allowed).


Uncertainty of transmissi	on measurements	Magnitude	Phase
100 kHz to 200 MHz	0 dB to -35 dB	0.06 dB	0.6°
	-35 dB to -50 dB	0.09 dB	0.9°
	-50 dB to -60 dB	0.19 dB	1.5°
> 200 MHz to 10 GHz	0 dB to -35 dB	0.06 dB	0.7°
	-35 dB to -50 dB	0.10 dB	1.0°
	-50 dB to -60 dB	0.23 dB	1.7°
> 10 GHz to 20 GHz	0 dB to -35 dB	0.06 dB	0.8°
	–35 dB to –50 dB	0.10 dB	1.1°
	-50 dB to -60 dB	0.24 dB	1.8°
> 20 GHz to 35 GHz	0 dB to -35 dB	0.07 dB	1.2°
	-35 dB to -50 dB	0.13 dB	1.5°
	-50 dB to -60 dB	0.32 dB	2.5°
> 35 GHz to 40 GHz	0 dB to -35 dB	0.10 dB	1.3°
	–35 dB to –50 dB	0.32 dB	2.5°
	-50 dB to -60 dB	0.98 dB	6.6°

Specifications are based on a matched DUT, a measurement bandwidth of 10 Hz and a nominal source power of -10 dBm.

Uncertainty of transmission magnitude and transmission phase measurements for the R&S[®]ZNBT26 and R&S[®]ZNBT40 in the frequency range from 100 kHz to 40 GHz; analysis conditions: $S_{11} = S_{22} = 0$, calibrated power: -10 dBm, measured power: -10 dBm

Uncertainty of	Logarithmic	nic		Linear	
reflection measurements	Reflection level	Magnitude	Phase	Reflection range	Magnitude
100 kHz to 10 GHz	0 dB	0.10 dB	0.7°	0 dB to -15 dB	0.012
	–15 dB	0.29 dB	1.7°	–15 dB to –25 dB	0.006
	–25 dB	0.88 dB	6.6°	-25 dB to -35 dB	0.006
> 10 GHz to 20 GHz	0 dB	0.17 dB	1.1°	0 dB to -15 dB	0.020
	–15 dB	0.48 dB	2.7°	–15 dB to –25 dB	0.010
	–25 dB	1.29 dB	11°	-25 dB to -35 dB	0.009
> 20 GHz to 40 GHz	0 dB	0.24 dB	1.6°	0 dB to -15 dB	0.028
	–15 dB	0.61 dB	3.7°	–15 dB to –25 dB	0.013
	–25 dB	1.81 dB	14°	-25 dB to -35 dB	0.013

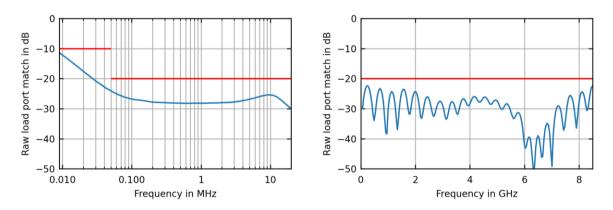
Uncertainty of reflection magnitude and reflection phase measurements for the R&S[®]ZNBT26 and R&S[®]ZNBT40 in the frequency range from 100 kHz to 40 GHz; analysis conditions: $S_{11} = S_{22} = 0$, calibrated power: -10 dBm, measured power: -10 dBm

Effective system data

This data is valid between +18 °C and +28 °C, provided the temperature has not varied by more than 1 K since calibration. Frequency points, measurement bandwidth and sweep time have to be identical for measurement and calibration (no interpolation allowed). The data is based on a measurement bandwidth of 10 Hz and a source power of –10 dBm.

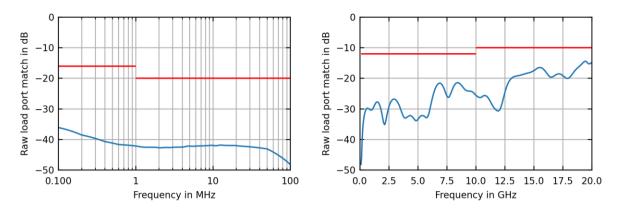
R&S [®] ZNBT8, calibrated using R&S [®] ZV-Z270	9 kHz to 100 kHz	100 kHz to 4.5 GHz	4.5 GHz to 8.5 GHz
Directivity	≥ 46 dB	≥ 45 dB	≥ 40 dB
Source match	≥ 41 dB	≥ 40 dB	≥ 36 dB
Load match	≥ 44 dB	≥ 45 dB	≥ 40 dB
Reflection tracking	≤ 0.02 dB	≤ 0.02 dB	≤ 0.05 dB
Transmission tracking	≤ 0.028 dB	≤ 0.018 dB	≤ 0.09 dB

R&S [®] ZNBT20, calibrated using R&S [®] ZN-Z235	100 kHz to 10 GHz	10 GHz to 20 GHz
Directivity	≥ 46 dB	≥ 43 dB
Source match	≥ 43 dB	≥ 38 dB
Load match	≥ 45 dB	≥ 42 dB
Reflection tracking	≤ 0.05 dB	≤ 0.05 dB
Transmission tracking	≤ 0.03 dB	≤ 0.03 dB

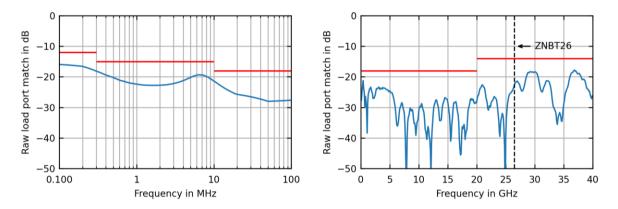

R&S [®] ZNBT26,	10 MHz to 700 MHz	700 MHz to 24 GHz	24 GHz to 26.5 GHz
calibrated using R&S [®] ZV-Z229			
Directivity	≥ 33 dB	≥ 38 dB	≥ 33 dB
Source match	≥ 30 dB	≥ 36 dB	≥ 30 dB
Load match	≥ 33 dB	≥ 38 dB	≥ 33 dB
Reflection tracking	≤ 0.2 dB	≤ 0.1 dB	≤ 0.2 dB
Transmission tracking	≤ 0.2 dB	≤ 0.1 dB	≤ 0.2 dB
For an R&S®ZV-Z229 calibration	kit that has been characterize	ed with a DAkkS-accredited calib	ration, the following data is valid:
R&S [®] ZNBT26,	100 kHz to 4 GHz	4 GHz to 20 GHz	20 GHz to 26.5 GHz
calibrated using R&S®ZV-Z229			
Directivity	≥ 42 dB	≥ 38 dB	≥ 36 dB
Source match	≥ 38 dB	≥ 35 dB	≥ 33 dB
Load match	≥ 42 dB	≥ 38 dB	≥ 36 dB
Reflection tracking	≤ 0.05 dB	≤ 0.05 dB	≤ 0.08 dB
Transmission tracking	≤ 0.02 dB	≤ 0.03 dB	≤ 0.06 dB

R&S [®] ZNBT40, calibrated using R&S [®] ZV-Z229	10 MHz to 700 MHz	700 MHz to 24 GHz	24 GHz to 40 GHz
Directivity	≥ 33 dB	≥ 38 dB	≥ 33 dB
Source match	≥ 30 dB	≥ 36 dB	≥ 30 dB
Load match	≥ 33 dB	≥ 38 dB	≥ 33 dB
Reflection tracking	≤ 0.2 dB	≤ 0.1 dB	≤ 0.2 dB
Transmission tracking	≤ 0.2 dB	≤ 0.1 dB	≤ 0.2 dB
For an R&S®ZV-Z229 calibration I	kit that has been characterized wi	th a DAkkS-accredited calibration	, the following data is valid:
R&S [®] ZNBT40,	100 kHz to 4 GHz	4 GHz to 20 GHz	20 GHz to 40 GHz
calibrated using R&S [®] ZV-Z229			
Directivity	≥ 42 dB	≥ 38 dB	≥ 36 dB
Source match	≥ 38 dB	≥ 35 dB	≥ 33 dB
Load match	≥ 42 dB	≥ 38 dB	≥ 36 dB
Reflection tracking	≤ 0.05 dB	≤ 0.05 dB	≤ 0.08 dB
Transmission tracking	≤ 0.02 dB	≤ 0.03 dB	≤ 0.06 dB

Factory-calibrated system data


Data is valid between +18 °C and +28 °C. The data is based on a measurement bandwidth of 1 kHz and a source power of -10 dBm.

		specified	typical
Directivity	9 kHz to 50 kHz	≥ 20 dB	35 dB
	50 kHz to 10 GHz	≥ 30 dB	50 dB
	10 GHz to 20 GHz	≥ 25 dB	35 dB
	20 GHz to 35 GHz	≥ 20 dB	35 dB
	35 GHz to 40 GHz	≥ 15 dB	30 dB
Source match	9 kHz to 50 kHz	≥ 20 dB	35 dB
	50 kHz to 10 GHz	≥ 30 dB	50 dB
	10 GHz to 20 GHz	≥ 25 dB	35 dB
	20 GHz to 35 GHz	≥ 20 dB	35 dB
	35 GHz to 40 GHz	≥ 15 dB	30 dB
Reflection tracking	9 kHz to 40 GHz	≤ 0.5 dB	0.1 dB
Transmission tracking	9 kHz to 40 GHz	≤ 0.5 dB ⁸	0.1 dB
Load match			
R&S [®] ZNBT8	9 kHz to 50 kHz	≥ 10 dB	15 dB
	50 kHz to 8.5 GHz	≥ 20 dB	25 dB
R&S [®] ZNBT20	100 kHz to 1 MHz	≥ 16 dB	30 dB
	1 MHz to 100 MHz	≥ 20 dB	35 dB
	100 MHz to 10 GHz	≥ 12 dB	16 dB
	10 GHz to 20 GHz	≥ 10 dB	14 dB
R&S [®] ZNBT26	100 kHz to 300 kHz	≥ 12 dB	15 dB
	300 kHz to 10 MHz	≥ 15 dB	18 dB
	10 MHz to 20 GHz	≥ 18 dB	22 dB
	20 GHz to 26.5 GHz	≥ 14 dB	18 dB
R&S [®] ZNBT40	100 kHz to 300 kHz	≥ 12 dB	15 dB
	300 kHz to 10 MHz	≥ 15 dB	18 dB
	10 MHz to 20 GHz	≥ 18 dB	22 dB
	20 GHz to 40 GHz	≥ 14 dB	18 dB



Measured raw load port match versus frequency for the R&S[®]ZNBT8

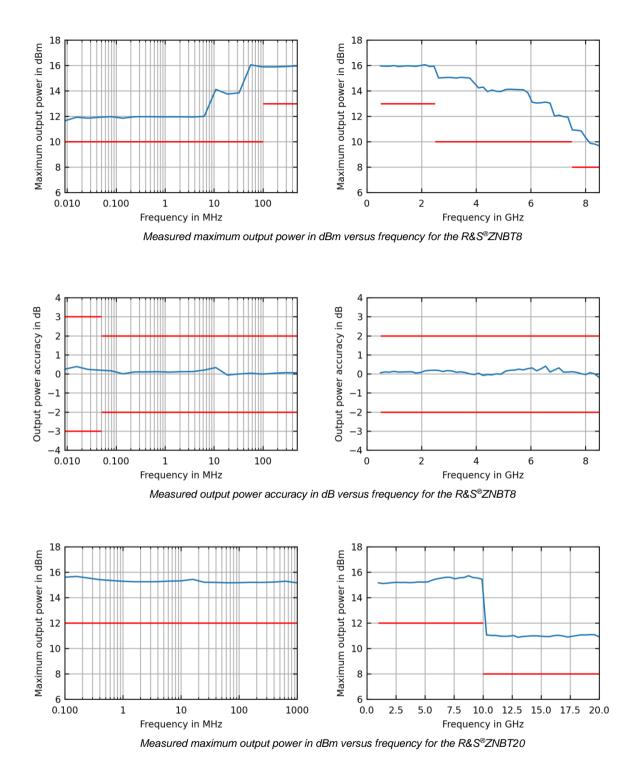
⁸ Below 200 kHz, factory-calibrated transmission tracking of the R&S[®]ZNBT20, R&S[®]ZNBT26 and R&S[®]ZNBT40 is ≤ 0.7 dB.

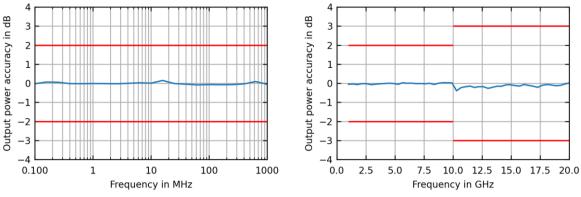
Measured raw load port match versus frequency for the R&S®ZNBT20

Measured raw load port match versus frequency for the R&S®ZNBT26 and R&S®ZNBT40

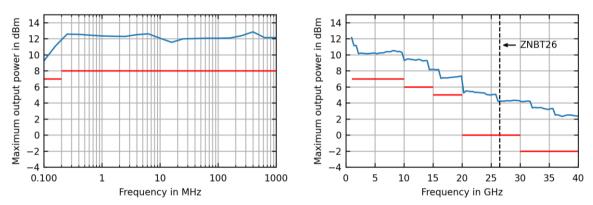
Trace stability		IF bandwidth	specified	typical
Trace noise magnitude (RMS)		ii banamatii	Speemea	typiour
R&S [®] ZNBT8	at 0 dBm source power, 0 dB refle	ection		
	100 kHz to 100 MHz	10 kHz	≤ 0.004 dB	0.001 dB
	100 MHz to 8.5 GHz	10 kHz	≤ 0.004 dB	0.002 dB
R&S [®] ZNBT20	at 0 dBm source power, 0 dB refle	-	= 0.00 T GB	0.002 08
	100 kHz to 300 kHz	10 kHz	≤ 0.006 dB	0.002 dB
	300 kHz to 20 GHz	10 kHz	≤ 0.004 dB ⁹	0.001 dB
R&S [®] ZNBT26	at 0 dBm source power, 0 dB refle	ection		
	100 kHz to 300 kHz	10 kHz	≤ 0.008 dB	0.002 dB
	300 kHz to 20 GHz	10 kHz	≤ 0.004 dB ⁹	0.002 dB
	20 GHz to 26.5 GHz	10 kHz	≤ 0.006 dB	0.003 dB
R&S [®] ZNBT40	at 0 dBm source power, 0 dB refle	ection		
	100 kHz to 300 kHz	10 kHz	≤ 0.008 dB	0.002 dB
	300 kHz to 20 GHz	10 kHz	≤ 0.004 dB ⁹	0.002 dB
	20 GHz to 35 GHz	10 kHz	≤ 0.006 dB	0.003 dB
	35 GHz to 40 GHz	10 kHz	≤ 0.008 dB	0.005 dB
Frace noise phase (RMS)	I			
R&S [®] ZNBT8	at 0 dBm source power, 0 dB refle	ection		
	100 kHz to 100 MHz	10 kHz	≤ 0.035°	0.005°
	100 MHz to 8.5 GHz	10 kHz	≤ 0.035°	0.020°
R&S [®] ZNBT20	at 0 dBm source power, 0 dB refle	ection		·
	100 kHz to 300 kHz	10 kHz	≤ 0.050°	0.015°
	300 kHz to 20 GHz	10 kHz	≤ 0.035° ⁹	0.01°
R&S [®] ZNBT26	at 0 dBm source power, 0 dB refle	ection		
	100 kHz to 300 kHz	10 kHz	≤ 0.07°	0.02°
	300 kHz to 20 GHz	10 kHz	≤ 0.035° ⁹	0.015°
	20 GHz to 26.5 GHz	10 kHz	≤ 0.05°	0.02°
R&S [®] ZNBT40	at 0 dBm source power, 0 dB refle	ection		
	100 kHz to 300 kHz	10 kHz	≤ 0.07°	0.02°
	300 kHz to 20 GHz	10 kHz	≤ 0.035° ⁹	0.015°
	20 GHz to 35 GHz	10 kHz	≤ 0.05°	0.02°
	35 GHz to 40 GHz	10 kHz	≤ 0.08°	0.04°
Temperature dependence	at 0 dB transmission or reflection			measured
	9 kHz to 4.5 GHz	magnitude		0.01 dB/K
		phase		0.15°/K
	4.5 GHz to 20 GHz	magnitude		0.04 dB/K
		phase		0.80°/K
	20 GHz to 40 GHz	magnitude		0.08 dB/K
		phase		1.60°/K

 $^{^{9}\,}$ $\,$ From 1.5 MHz to 2.5 MHz, trace noise magnitude and phase may exceed the specified value.

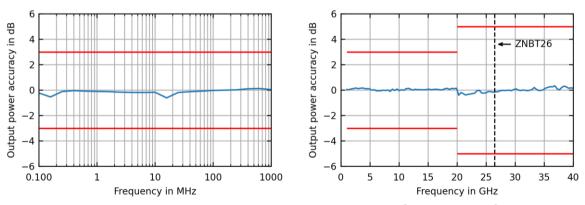

Test port output


Data is valid from +18 °C to +28 °C.

Power range		specified	typical		
R&S [®] ZNBT8	without R&S [®] ZNBT8-B21/-B22/-B2	23/-B24/-B25/-B26 extended power			
	9 kHz to 100 MHz	-55 dBm to +10 dBm	up to +12 dBm		
	100 MHz to 2.5 GHz	-55 dBm to +13 dBm	up to +15 dBm		
	2.5 GHz to 7.5 GHz	-55 dBm to +10 dBm	up to +13 dBm		
	7.5 GHz to 8.5 GHz	-55 dBm to +8 dBm	up to +12 dBm		
	with R&S [®] ZNBT8-B21/-B22/-B23/-				
	9 kHz to 100 kHz	-75 dBm to +10 dBm	up to +12 dBm		
	100 kHz to 100 MHz	-85 dBm to +10 dBm	up to +12 dBm		
	100 MHz to 2.5 GHz	-85 dBm to +13 dBm	up to +15 dBm		
	2.5 GHz to 7.5 GHz	-85 dBm to +10 dBm	up to +13 dBm		
	7.5 GHz to 8.5 GHz	-85 dBm to +8 dBm	up to +12 dBm		
R&S [®] ZNBT20	without R&S [®] ZNBT20-B21/-B22/-E				
	100 kHz to 10 GHz	-30 dBm to +12 dBm	up to +15 dBm		
	10 GHz to 20 GHz	-30 dBm to +8 dBm	up to +11 dBm		
	with R&S [®] ZNBT20-B21/-B22/-B23				
	100 kHz to 10 GHz	-60 dBm to +12 dBm	up to +15 dBm		
	10 GHz to 20 GHz	-60 dBm to +8 dBm	up to +11 dBm		
R&S [®] ZNBT26	without R&S®ZNBT26-B21/-B22/-E				
Ras ZINDIZO	100 kHz to 200 kHz	-30 dBm to +7 dBm	up to +10 dBm		
	200 kHz to 1 GHz	-30 dBm to +8 dBm	up to +11 dBm		
	1 GHz to 10 GHz	-30 dBm to +7 dBm	up to ± 10 dBm		
	10 GHz to 15 GHz	-30 dBm to +6 dBm	up to +8 dBm		
	15 GHz to 20 GHz	-30 dBm to +5 dBm	up to +7 dBm		
	20 GHz to 26.5 GHz -30 dBm to 0 dBm up to +4 dBm with R&S [®] ZNBT26-B21/-B22/-B23/-B24/-B25/-B26 extended power range option				
	100 kHz to 200 kHz	-60 dBm to +7 dBm	up to +10 dBm		
	200 kHz to 1 GHz	-60 dBm to +8 dBm	up to +11 dBm		
	1 GHz to 10 GHz	-60 dBm to +7 dBm	up to +10 dBm		
	10 GHz to 15 GHz	-60 dBm to +6 dBm	up to +8 dBm		
	15 GHz to 20 GHz	-60 dBm to +5 dBm	up to +7 dBm		
	20 GHz to 26.5 GHz	-60 dBm to 0 dBm	up to +4 dBm		
R&S [®] ZNBT40	without R&S [®] ZNBT40-B21/-B22/-E	323/-B24/-B25/-B26 extended powe	er range option		
	100 kHz to 200 kHz	-30 dBm to +7 dBm	up to +10 dBm		
	200 kHz to 1 GHz	-30 dBm to +8 dBm	up to +11 dBm		
	1 GHz to 10 GHz	-30 dBm to +7 dBm	up to +10 dBm		
	10 GHz to 15 GHz	-30 dBm to +6 dBm	up to +8 dBm		
	15 GHz to 20 GHz	-30 dBm to +5 dBm	up to +7 dBm		
	20 GHz to 30 GHz	-30 dBm to 0 dBm	up to +4 dBm		
	30 GHz to 40 GHz	-30 dBm to -2 dBm	up to +2 dBm		
	with R&S [®] ZNBT40-B21/-B22/-B23/-B24/-B25/-B26 extended power range option				
	100 kHz to 200 kHz	-60 dBm to +7 dBm	up to +10 dBm		
	200 kHz to 1 GHz	-60 dBm to +8 dBm	up to +11 dBm		
	1 GHz to 10 GHz	-60 dBm to +7 dBm	up to +10 dBm		
	10 GHz to 15 GHz	-60 dBm to +6 dBm	up to +8 dBm		
	15 GHz to 20 GHz	-60 dBm to +5 dBm	up to +7 dBm		
	20 GHz to 30 GHz	-60 dBm to 0 dBm	up to +4 dBm		
	30 GHz to 40 GHz	-60 dBm to -2 dBm	up to +2 dBm		


Power accuracy					
R&S [®] ZNBT8	source power –10 dBm				
	9 kHz to 50 kHz	≤ 3 dB			
	50 kHz to 8.5 GHz	≤ 2 dB			
R&S [®] ZNBT20	source power –10 dBm				
	100 kHz to 10 GHz	≤ 2 dB			
	10 GHz to 20 GHz	≤ 3 dB			
R&S [®] ZNBT26	source power –10 dBm				
	100 kHz to 20 GHz	≤ 3 dB			
	20 GHz to 26.5 GHz	≤ 5 dB			
R&S [®] ZNBT40	source power –10 dBm				
	100 kHz to 20 GHz	≤ 3 dB			
	20 GHz to 40 GHz	≤ 5 dB			
Power linearity					
R&S [®] ZNBT8	referenced to -10 dBm				
	source power ≥ –55 dBm				
	100 kHz to 8.5 GHz	≤ 1 dB			
	source power < -55 dBm				
	100 kHz to 8.5 GHz	≤ 2 dB			
R&S [®] ZNBT20	referenced to -10 dBm				
	source power ≥ –30 dBm				
	10 MHz to 20 GHz	≤ 1 dB			
	source power < -30 dBm				
	10 MHz to 20 GHz	≤ 2 dB			
R&S [®] ZNBT26	referenced to -10 dBm				
	source power ≥ –60 dBm				
	10 MHz to 15 GHz	≤ 1 dB			
	15 GHz to 26.5 GHz	≤ 1.5 dB			
R&S [®] ZNBT40	referenced to -10 dBm				
	source power ≥ –60 dBm				
	10 MHz to 15 GHz	≤ 1 dB			
	15 GHz to 40 GHz	≤ 1.5 dB			
Power resolution		0.01 dB			

Harmonics		specified	typical	
R&S [®] ZNBT8	at 0 dBm	at 0 dBm		
	20 kHz to 100 MHz	≤ –20 dBc	-30 dBc	
	100 MHz to 8.5 GHz	≤ –25 dBc	-35 dBc	
R&S [®] ZNBT20	at 0 dBm			
	100 kHz to 10 MHz	≤ –15 dBc	-25 dBc	
	10 MHz to 100 MHz	≤ –20 dBc	-30 dBc	
	100 MHz to 20 GHz	≤ –25 dBc	-35 dBc	
R&S [®] ZNBT26	at 0 dBm			
	100 kHz to 10 MHz	≤ –15 dBc	-30 dBc	
	10 MHz to 100 MHz	≤ –20 dBc	-35 dBc	
	100 MHz to 10 GHz	≤ –22 dBc	-30 dBc	
	10 GHz to 15 GHz	≤ –18 dBc	–25 dBc	
	at –5 dBm			
	15 GHz to 18 GHz	≤ –18 dBc	-25 dBc	
	18 GHz to 26.5 GHz	≤ –14 dBc	-20 dBc	
R&S [®] ZNBT40	at 0 dBm			
	100 kHz to 10 MHz	≤ –15 dBc	-30 dBc	
	10 MHz to 100 MHz	≤ –20 dBc	–35 dBc	
	100 MHz to 10 GHz	≤ –22 dBc	-30 dBc	
	10 GHz to 15 GHz	≤ –18 dBc	–25 dBc	
	at –5 dBm	·		
	15 GHz to 18 GHz	≤ –18 dBc	–25 dBc	
	18 GHz to 40 GHz	≤ –14 dBc	-20 dBc	



Measured output power accuracy in dB versus frequency for the R&S®ZNBT20

Measured maximum output power in dBm versus frequency for the R&S®ZNBT26 and R&S®ZNBT40

Measured output power accuracy in dB versus frequency for the R&S®ZNBT26 and R&S®ZNBT40

Test port input

Match	without system error correction		
	R&S [®] ZNBT8		
	9 kHz to 50 kHz	> 10 dB	
	50 kHz to 8.5 GHz	> 20 dB	
	R&S®ZNBT20		
	100 kHz to 1 MHz	> 16 dB	
	1 MHz to 100 MHz	> 20 dB	
	100 MHz to 10 GHz	> 12 dB	
	10 GHz to 20 GHz	> 10 dB	
	R&S [®] ZNBT26		
	100 kHz to 300 kHz	> 12 dB	
	300 kHz to 10 MHz	> 15 dB	
	10 MHz to 20 GHz	> 18 dB	
	20 GHz to 26.5 GHz	> 15 dB	
	R&S [®] ZNBT40		
	100 kHz to 300 kHz	> 12 dB	
		> 15 dB	
	300 kHz to 10 MHz		
	10 MHz to 20 GHz	> 18 dB	
Movimum nominal insut laval	20 GHz to 40 GHz	> 15 dB	
Maximum nominal input level		+13 dBm (nom.)	
Power measurement accuracy	R&S [®] ZNBT8		
at –10 dBm without power calibration	9 kHz to 100 kHz	< 2 dB	
	100 kHz to 8.5 GHz	< 1 dB	
	R&S [®] ZNBT20	= 10	
	100 kHz to 20 GHz	< 1 dB ¹⁰	
	R&S [®] ZNBT26		
	100 kHz to 20 GHz	< 1 dB ¹⁰	
	20 GHz to 26.5 GHz	< 1.5 dB	
	R&S®ZNBT40		
	100 kHz to 20 GHz	< 1 dB ¹⁰	
	20 GHz to 40 GHz	< 1.5 dB	
Receiver linearity	R&S [®] ZNBT8		
referenced to –10 dBm	for +20 dB to +10 dB		
	9 kHz to 7.5 GHz	< 0.2 dB	
	for +18 dB to +10 dB		
	7.5 GHz to 8.5 GHz	< 0.2 dB	
	for +10 dB to -40 dB		
	9 kHz to 8.5 GHz	< 0.1 dB	
	R&S®ZNBT20		
	for +20 dB to +10 dB		
	100 kHz to 10 GHz	< 0.3 dB	
	for +18 dB to +10 dB		
	10 GHz to 20 GHz	< 0.3 dB	
	for +10 dB to -40 dB		
	100 kHz to 20 GHz	< 0.1 dB	
	R&S [®] ZNBT26		
	for +15 dB to +10 dB		
	100 kHz to 20 GHz	< 0.2 dB	
	for +10 dB to -40 dB		
	100 kHz to 26.5 GHz	< 0.1 dB	
	R&S [®] ZNBT40		
	for +15 dB to +10 dB		
	100 kHz to 20 CHz	< 0.2 dB	
	100 kHz to 20 GHz	< 0.2 dB	
	for +10 dB to -40 dB		
Damage level		< 0.2 dB < 0.1 dB +27 dBm	

 $^{^{\}rm 10}\,$ Below 200 kHz, power measurement accuracy is < 1.5 dB.

Noise level 11	R&S [®] ZNBT8	
at 1 kHz measurement bandwidth,	9 kHz to 50 kHz	< –115 dBm (1 Hz)
normalized to 1 Hz	50 kHz to 50 MHz	< –120 dBm (1 Hz)
	50 MHz to 4 GHz	< –130 dBm (1 Hz)
	4 GHz to 6.5 GHz	< –125 dBm (1 Hz)
	6.5 GHz to 8.5 GHz	< –120 dBm (1 Hz)
	R&S [®] ZNBT20	
	100 kHz to 1 MHz	< –105 dBm (1Hz)
	1 MHz to 10 MHz	< –115 dBm (1Hz)
	10 MHz to 15 GHz	< –120 dBm (1Hz)
	15 GHz to 20 GHz	< –118 dBm (1Hz)
	R&S [®] ZNBT26	
	100 kHz to 300 kHz	< –110 dBm (1 Hz)
	300 kHz to 1 MHz	< –115 dBm (1 Hz)
	1 MHz to 5 GHz	< –120 dBm (1 Hz)
	5 GHz to 20 GHz	< –118 dBm (1 Hz)
	20 GHz to 26.5 GHz	< –115 dBm (1 Hz)
	R&S [®] ZNBT40	
	100 kHz to 300 kHz	< –110 dBm (1 Hz)
	300 kHz to 1 MHz	< –115 dBm (1 Hz)
	1 MHz to 5 GHz	< –120 dBm (1 Hz)
	5 GHz to 20 GHz	< –118 dBm (1 Hz)
	20 GHz to 35 GHz	< –115 dBm (1 Hz)
	35 GHz to 40 GHz	< –105 dBm (1 Hz)

Additional front panel connectors

USB	(two) universal serial bus host connectors for connecting USB devices (USB 2.0);	
	two additional USB connectors on rear panel	

Display

Screen	4.83 cm (1.9") diagonal electronic paper display
Resolution	144 × 128 pixel

¹¹ The noise level is defined as the RMS value of the specified noise floor. Below 700 kHz, the R&S[®]ZNBT20, R&S[®]ZNBT26 and R&S[®]ZNBT40 may exhibit spurious signals that exceed the specified noise level.

Rear panel connectors

LAN	local area network connector, 8-pin, RJ-45, 1 Gbit/s	
USB host	(two) universal serial bus host connectors for connecting USB devices (USB 3.0);	
	two additional USB connectors on front panel	
USB device	universal serial bus client connector for remote control of VNA (USB 3.0)	

REF IN	input for external frequency reference signal	
Connector type	BNC, female	
Input frequency range	1 MHz to 20 MHz, in 1 MHz steps	
Maximum permissible deviation	1 kHz	
Input power	-10 dBm to +15 dBm	
Input impedance	50 Ω	

REF OUT	output for external frequency reference signal	
Connector type		BNC, female
Output frequency		10 MHz
Output power		+9 dBm ± 4 dB at 50 Ω

MONITOR (DVI-D)	DVI-D connector (for external monitor, single link)
MONITOR (DisplayPort)	DisplayPort connector (for external monitor, version 1.1a)

USER CONTROL	several control and trigger signals, 25-pin D-Sub, 3.3 V TTL, for controlling external generators, for limit checks, sweep signals, etc.	
CHANNEL BIT 0 to CHANNEL BIT 3	pin 8 to pin 11 (outputs)	channel-specific, user-configurable bits
CHANNEL BIT 4 to CHANNEL BIT 7	pin 16 to pin 19 (outputs)	channel-specific, user-configurable bits
DRIVE PORT 1 to DRIVE PORT 4	pin 16 to pin 19 (outputs)	indicates drive ports (can alternatively be used for channel bits 4 to 7)
PASS 1 and PASS 2	pin 13 and pin 14 (outputs)	pass/fail results of limit checks
BUSY	pin 4 (output)	measurements running
READY FOR TRIGGER	pin 6 (output)	ready for trigger
EXT GEN TRIGGER	pin 21 (output)	control signal for external generator
EXT GEN BLANK	pin 22 (input)	handshake signal from external generator
EXTERNAL TRIGGER	pin 2 (input)	first trigger input for analyzer, 5 V tolerant
EXTERNAL TRIGGER 2	pin 25 (input)	second trigger input for analyzer, 5 V tolerant

EXT TRIG IN	trigger input for analyzer	
Connector type		BNC, female
TTL signal	edge-triggered or level-triggered	3 V, 5 V tolerant
Polarity	selectable	positive or negative
Minimum pulse width		1 µs
Input impedance		> 10 kΩ

EXT TRIG OUT	trigger output of analyzer	
Connector type		BNC, female
Logic high		3.3 V (nom.)

Options

R&S[®]ZNBT-B4

Precision reference frequency			
Static frequency accuracy		(time since last adjustment × aging rate) + temperature drift + calibration accuracy	
Aging per year	with R&S [®] ZNBT-B4 precision frequency reference option	±1 × 10 ⁻⁷	
Temperature drift (+5 °C to +40 °C)	with R&S [®] ZNBT-B4 precision frequency reference option	±1 × 10 ⁻⁸	
Achievable initial calibration accuracy	with R&S [®] ZNBT-B4 precision frequency reference option	±5 × 10 ⁻⁸	

R&S[®]ZNBT-B10

GPIB interface	remote control interface in line with IEEE-488, IEC 60625; 24-pin

R&S[®]ZNBT-B12

Device control	
DIRECT CTRL interface	direct control bus output

R&S®ZNBT8/ZNBT20/ZNBT26/ZNBT40-B21/-B22/-B23/-B24/-B25/-B26

Data is valid from +18 °C to +28 °C.

		specified	typical
Extended power range			
Frequency range	R&S [®] ZNBT8-B21/-B22/-B23/-B24/-B25/ -B26	9 kHz to 8.5 GHz	
	R&S [®] ZNBT20-B21/-B22/-B23/-B24/-B25/ -B26	100 kHz to 20 GHz	
	R&S [®] ZNBT26-B21/-B22/-B23/-B24/-B25/ -B26	100 kHz to 26.5 GHz	
	R&S [®] ZNBT40-B21/-B22/-B23/-B24/-B25/ -B26	100 kHz to 40 GHz	
Power range			
R&S [®] ZNBT8	9 kHz to 100 kHz	-75 dBm to +10 dBm	up to +12 dBm
	100 kHz to 100 MHz	-85 dBm to +10 dBm	up to +12 dBm
	100 MHz to 2.5 GHz	-85 dBm to +13 dBm	up to +15 dBm
	2.5 GHz to 7.5 GHz	-85 dBm to +10 dBm	up to +13 dBm
	7.5 GHz to 8.5 GHz	-85 dBm to +8 dBm	up to +12 dBm
R&S [®] ZNBT20	100 kHz to 10 GHz	-60 dBm to +12 dBm	up to +15 dBm
	10 GHz to 20 GHz	-60 dBm to +8 dBm	up to +11 dBm
R&S [®] ZNBT26	100 kHz to 200 kHz	-60 dBm to +7 dBm	up to +10 dBm
	200 kHz to 1 GHz	-60 dBm to +8 dBm	up to +11 dBm
	1 GHz to 10 GHz	-60 dBm to +7 dBm	up to +10 dBm
	10 GHz to 15 GHz	-60 dBm to +6 dBm	up to +8 dBm
	15 GHz to 20 GHz	-60 dBm to +5 dBm	up to +7 dBm
	20 GHz to 26.5 GHz	-60 dBm to +2 dBm	up to +5 dBm
R&S [®] ZNBT40	100 kHz to 200 kHz	-60 dBm to +7 dBm	up to +10 dBm
	200 kHz to 1 GHz	-60 dBm to +8 dBm	up to +11 dBm
	1 GHz to 10 GHz	-60 dBm to +7 dBm	up to +10 dBm
	10 GHz to 15 GHz	-60 dBm to +6 dBm	up to +8 dBm
	15 GHz to 20 GHz	-60 dBm to +5 dBm	up to +7 dBm
	20 GHz to 30 GHz	-60 dBm to +2 dBm	up to +5 dBm
	30 GHz to 40 GHz	-60 dBm to 0 dBm	up to +4 dBm

R&S[®]ZNBT-B81

Data is valid from +18 °C to +28 °C and at a maximum measurement bandwidth of 10 kHz.

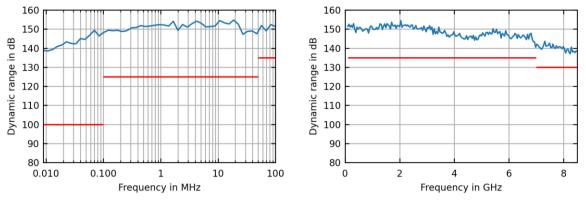
DC inputs		
Number of ports		4
Connector type		BNC, female
Voltage range		±20 V, ±3 V, ±0.3 V
Measurement accuracy	±20 V	1 % of reading + 0.01 V
	±3 V	1 % of reading + 0.001 V
	±0.3 V	1 % of reading ± 0.001 V
Input impedance		≥ 1 MΩ
Damage voltage		30 V

R&S[®]ZNBT8-B108 to R&S[®]ZNBT8-B124, R&S[®]ZNBT20/ZNBT26/ZNBT40-B112 to R&S[®]ZNBT20/ZNBT26/ZNBT40-B124

For additional ports, the specifications of paragraphs Measurement range, Measurement speed, Measurement accuracy, Effective system data, Factory-calibrated system data, Test port output and Test port input are valid in an analogous way.

R&S[®]ZNBT8-B361 to R&S[®]ZNBT8-B366

Receiver step attenuators


Frequency range	R&S [®] ZNBT8-B361,	9 kHz to 8.5 GHz
	R&S [®] ZNBT8-B362,	
	R&S [®] ZNBT8-B363,	
	R&S [®] ZNBT8-B364,	
	R&S [®] ZNBT8-B365,	
	R&S [®] ZNBT8-B366	
Attenuation		0 dB to 30 dB, in 10 dB steps

R&S®ZNBT8-B504/-B508/-B512/-B516/-B520/-B524

Data is valid from +18 °C to +28 °C.

Extended dynamic range		specified	typical	
Power range	without R&S [®] ZNBT8-B21/-B22/-B	23/-B24/-B25/-B26 extended po	wer range option	
	9 kHz to 2 MHz	-55 dBm to +8 dBm		
	2 MHz to 6.5 GHz	-55 dBm to +10 dBn	า	
	6.5 GHz to 7.5 GHz	-55 dBm to +8 dBm		
	7.5 GHz to 8.5 GHz	-55 dBm to +4 dBm		
	with R&S [®] ZNBT8-B21/-B22/-B23/	with R&S [®] ZNBT8-B21/-B22/-B23/-B24/-B25/-B26 extended power range option		
	9 kHz to 100 kHz	-75 dBm to +8 dBm		
	100 kHz to 2 MHz	-85 dBm to +8 dBm		
	2 MHz to 6.5 GHz	-85 dBm to +10 dBn	า	
	6.5 GHz to 7.5 GHz	-85 dBm to +8 dBm		
	7.5 GHz to 8.5 GHz	-85 dBm to +4 dBm		
Dynamic range 12	9 kHz to 100 kHz	≥ 100 dB	110 dB	
	100 kHz to 50 MHz	≥ 125 dB	135 dB	
	50 MHz to 7 GHz	≥ 135 dB	145 dB	
	7 GHz to 8.5 GHz	≥ 130 dB	140 dB	

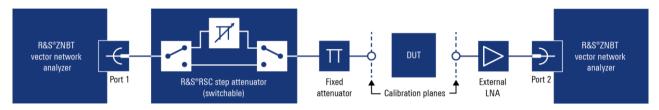
¹² The dynamic range is defined as the difference between the actual maximum source power and the RMS value of the data trace of the transmission magnitude, which is produced by noise and crosstalk with the test ports short-circuited. The specification applies at 10 Hz measurement bandwidth, without system error correction. The dynamic range can be increased by using a measurement bandwidth of 1 Hz. Crosstalk does not limit the dynamic range. Dynamic range for test port pairs where the receiving port is fitted with R&S[®]ZNBT8-B5xx option. If the source port is fitted with R&S[®]ZNBT8-B5xx option and the receiving port is not, the values are reduced by up to 10 dB.

Measured dynamic range in dB versus frequency for the R&S®ZNBT8 with option R&S®ZNBT8-B5xx

Test port input			
Match	without system error correction	without system error correction	
	9 kHz to 50 kHz	≥ 10 dB	
	50 kHz to 8.5 GHz	≥ 18 dB	
Maximum nominal input level		+10 dBm	
Receiver linearity	for +18 dB to +10 dB		
referenced to -10 dBm	9 kHz to 7.5 GHz	≤ 0.2 dB	
	for +14 dB to +10 dB		
	7.5 GHz to 8.5 GHz	≤ 0.2 dB	
	for +10 dB to -40 dB		
	9 kHz to 8.5 GHz	≤ 0.1 dB	
Noise level 13	9 kHz to 50 kHz	≤ –125 dBm (1 Hz)	
at 1 kHz measurement bandwidth, normalized to 1 Hz	50 kHz to 50 MHz	≤ –130 dBm (1 Hz)	
	50 MHz to 7 GHz	≤ –140 dBm (1 Hz)	
	7 GHz to 8.5 GHz	≤ –130 dBm (1 Hz)	

Trace stability			specified	typical
Trace noise magnitude (RMS)	at 0 dBm	IF bandwidth		
	source power,			
	0 dB reflection			
	100 kHz to	10 kHz	≤ 0.005 dB	0.001 dB
	100 MHz			
	100 MHz to	10 kHz	≤ 0.005 dB	0.002 dB
	8.5 GHz			

R&S[®]ZNBT-K27


Internal pulsed source		
Source switch	settable pulse period	3 µs to 67 s, in 1 µs steps
	settable pulse width ¹⁴	3 µs to 67 s, in 1 µs steps
	fall time (90 % to 10 %)	200 ns (nom.)
	rise time (10 % to 90 %)	1 µs (nom.)
	on/off ratio	80 dB (nom.)
	level accuracy of high level	add 2 dB (nom.) to specification of
		instrument
	port to port delay	up to 1 µs (nom.)
	trigger delay (external trigger)	up to 6 µs (nom.)

 $^{^{\}rm 13}$ The noise level is defined as the RMS value of the specified noise floor.

 $^{^{14}}$ The accuracy of the output pulse width is 2 μs (nom.).

R&S[®]ZNBT-K30

Noise figure measurement		
Recommended setup and options	 R&S[®]ZNBT and diode power sensor (e.g. R&S[®]NRP40S), see Ordering information and step attenuator (e.g. R&S[®]RSC), see Ordering information and external low noise amplifier (LNA) ¹⁵, optional: switchable and test cables, see Ordering information and fixed attenuators: 3 dB, 6 dB, 10 dB, etc. 	
Noise level of test port input	see section Test port input	

Recommended setup for R&S[®]ZNBT-K30 noise figure measurements

R&S[®]ZNBT-K980¹⁶

Health and utilization monit	toring service (HUMS)	
Interfaces	protocols and interfaces supported for data readout and display	 SNMP (v1, v2c, v3) REST (JSON) SCPI device web
Services	information provided	 device information (model, serial number, BIOS, date, time, system, HUMS and software information) user-defined information tags (e.g. for asset management) equipment information (hardware, options, software, licenses) system operating status instrument security information service related information (due dates etc.) mass storage related information instrument utilization data device history (event log)

R&S[®]ZNBT-Z14

Handler I/O (external)	several control and trigger signals, 36-pin Centronics connector, 3.3 V TTL, for controlling external devices, limit checks, sweep signals, etc.					
Keysight handler interface compatibility	type 3					
Input signals	pin 2, pin 18	3.3 V TTL, 5 V tolerant				
Output signals	pin 3 to pin 17, pin 19 to pin 21,	3.3 V TTL, 5 V tolerant				
	pin 30 to pin 34, pin 36					
Input/output signals	pin 22 to pin 29	3.3 V TTL, 5 V tolerant				
+5 V output	pin 35	+5 V, max. 100 mA				
Response time of write strobe signal	pin 32	1 µs				
Pulse width	Pulse width					
Write strobe signal	pin 32	1 µs				
External trigger signal	pin 18	> 1 µs				
Sweep end signal	pin 34	> 10 µs				

¹⁵ Contact your local Rohde & Schwarz sales office for more information.

¹⁶ See application note under www.rohde-schwarz.com/appnote/GFM336 for more information. For use with common available asset management tools.

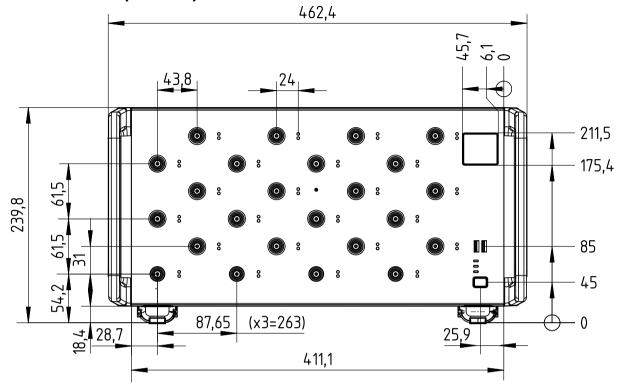
R&S[®]ZNBT-USY

For instruments with R&S[®]ZNBT-USY installed, the sweep times will be updated to the sweep times stated in section "Measurement speed". After installing R&S[®]ZNBT-USY the sweep mode "swept" is no longer available.

If R&S[®]ZNBT-USY is installed in the R&S[®]ZNBT20 model with order number 1332.9002.24, the following specifications change to:

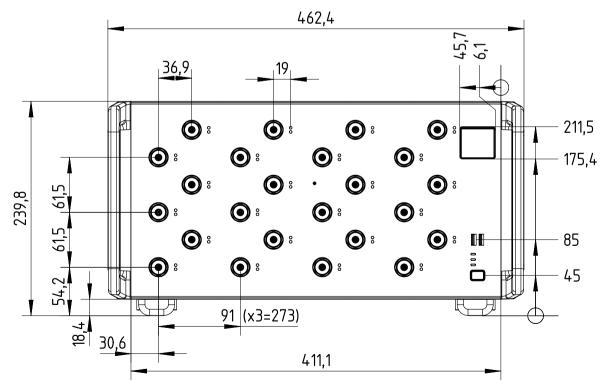
Harmonics		specified	typical
	at 0 dBm		
	100 kHz to 10 GHz	≤ –22 dBc	-40 dBc
	10 GHz to 15 GHz	≤ –20 dBc	-30 dBc
	at –5 dBm		
	15 GHz to 20 GHz	≤ –20 dBc	-30 dBc

Number of measurement points	51	201	401	1601	5001
Sweep mode	step	step	step	step	step
9 GHz start frequency, 10 GHz stop fre	quency, AGC AL	ITO, 500 kHz mea	surement bandwid	łth	
With correction switched off	3.0	3.9	5.2	11.9	31.6
With 4-port TOSM calibration	7.7	12.3	18.7	54.3	156
With 24-port TOSM calibration	43.2	87.5	143	478	1538
With 4-port TOSM calibration					
9 GHz start frequency, 10 GHz stop fre With correction switched off	quency, AGC LO 48.8	W DIST, 1 kHz m 176	easurement bandy 345	vidth 1362	4241
With 4-port TOSM calibration	190	699	1376	5442	16958
With 24-port TOSM calibration	1135	4190	8258	32676	101959
·					
1 MHz start frequency, 20 GHz stop fre	quency, AGC AL	JTO, 500 kHz mea	surement bandwid	dth	
With correction switched off	8.7	10.6	12.7	24.2	56.2
With 4-port TOSM calibration	30.5	38	46.4	92.6	220
With 24-port TOSM calibration	179	238	305	705	2025
·					
1 MHz start frequency, 20 GHz stop fre	quency, AGC LC	W DIST, 1 kHz m	easurement band	width	
With correction switched off	52.8	182	351	1374	4270
With 4-port TOSM calibration	208	724	1399	5491	17077
With 24-port TOSM calibration	1244	4347	8405	32982	102791

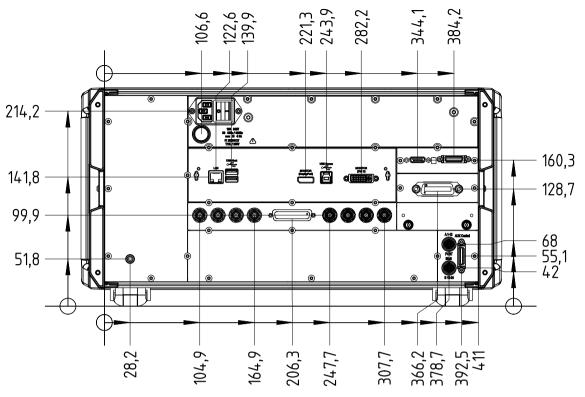

¹⁷ Sweep time is to be understood as cycle time; static frequency accuracy of the instrument applies; measured with LPW11 controller.

General data

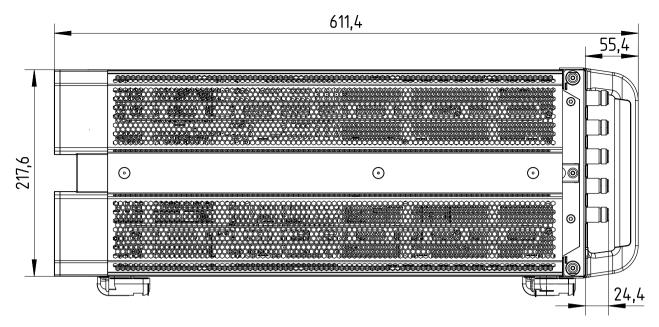
Temperature loading		in line with IEC 60068-2-1 and			
		IEC 60068-2-2			
	operating temperature range	+5 °C to +40 °C			
Descent hand	storage temperature range	-20 °C to +60 °C			
Damp heat		+40 °C at 85 % rel. humidity,			
Although		in line with IEC 60068-2-30			
Altitude	operating environment	max. 2000 m			
	storage environment	max. 4500 m			
Mechanical resistance	vibration, sinusoidal	5 Hz to 55 Hz,			
		0.15 mm amplitude constant,			
		55 Hz to 150 Hz, 0.5 g constant,			
	vibration random	in line with IEC 60068-2-6			
	vibration, random	8 Hz to 500 Hz,			
		acceleration 1.2 g (RMS), in line with IEC 60068-2-64			
	shoeld				
	shock	40 g shock spectrum,			
		in line with MIL-STD-810E,			
Colibration interval		method 516.4, procedure I			
Calibration interval	PE omission	1 year			
EMC	RF emission	in line with CISPR 11/EN 55011 group 1			
		class A (for a shielded test setup);			
		instrument complies with the emission requirements stipulated by EN 55011 and			
		EN 61326-1 class A; This means that the			
		instrument is suitable for use in industrial			
		environments.			
	immunity	in line with EMC Directive 2014/30/EU,			
	ininitumity	including: IEC/EN 61326-1 (immunity test			
		e			
		requirement for industrial environment			
		IEC/EN 61326-1 table 2), IEC/EN 61326-2-1, IEC/EN 61000-3-2,			
		IEC/EN 61326-2-1, IEC/EN 61000-3-2,			
Safety		in line with IEC 61010-1, EN 61010-1 and			
Salety		UL 61010-1,			
		CAN/CSA-C22.2 No. 61010-1			
Power supply		100 V to 240 V at			
Fower supply					
		50 Hz to 60 Hz and 400 Hz,			
Dower concumption		max. 10 A to 4.2 A (respectively)			
Power consumption	R&S [®] ZNBT8	may 1000 W/ 100 W/ (nom)			
	with 4 ports	max. 1000 W, 199 W (nom.)			
	with 8 ports	max. 1000 W, 267 W (nom.)			
	with 12 ports	max. 1000 W, 357 W (nom.)			
	with 16 ports	max. 1000 W, 432 W (nom.)			
	with 20 ports	max. 1000 W, 522 W (nom.)			
	with 24 ports	max. 1000 W, 586 W (nom.)			
	R&S [®] ZNBT20				
	with 8 ports	max. 1000 W, 335 W (nom.)			
	with 12 ports	max. 1000 W, 426 W (nom.)			
	with 16 ports	max. 1000 W, 521 W (nom.)			
	with 20 ports	max. 1000 W, 637 W (nom.)			
	with 24 ports max. 1000 W, 732 W (nom.)				
	R&S [®] ZNBT26/R&S [®] ZNBT40				
	with 8 ports	max. 1000 W, 335 W (nom.)			
	with 12 ports	max. 1000 W, 426 W (nom.)			
	with 16 ports	max. 1000 W, 521 W (nom.)			
	with 20 ports	max. 1000 W, 637 W (nom.)			
	with 24 ports	max. 1000 W, 732 W (nom.)			

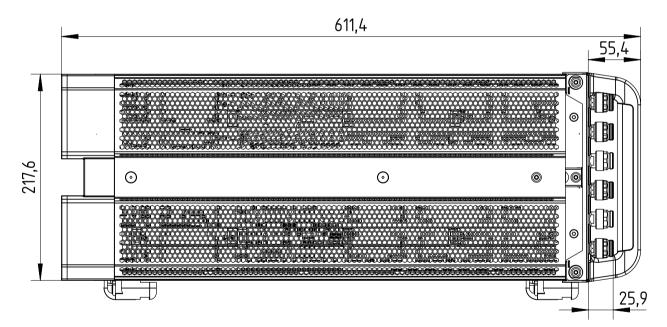

Version 14.00, August 2024


Dimensions	W × H × D	463 mm × 240 mm × 612 mm				
		(18.2 in × 9.4 in × 24.1 in)				
Weight	R&S [®] ZNBT8	R&S [®] ZNBT8				
-	with 4 ports	22 kg (48.5 lb) (nom.)				
	with 8 ports	24 kg (52.9 lb) (nom.)				
	with 12 ports	29 kg (63.9 lb) (nom.)				
	with 16 ports	31 kg (68.3 lb) (nom.)				
	with 20 ports	36 kg (79.4 lb) (nom.)				
	with 24 ports	38 kg (83.8 lb) (nom.)				
	R&S [®] ZNBT20/R&S [®] ZNBT26/R	&S [®] ZNBT40				
	with 8 ports	27 kg (59.5 lb) (nom.)				
	with 12 ports	34 kg (75 lb) (nom.)				
	with 16 ports	36 kg (79.4 lb) (nom.)				
	with 20 ports	43 kg (94.8 lb) (nom.)				
	with 24 ports	45 kg (99.2 lb) (nom.)				
Shipping weight	R&S [®] ZNBT8					
	with 4 ports	28 kg (61.7 lb) (nom.)				
	with 8 ports	30 kg (66.1 lb) (nom.)				
	with 12 ports	35 kg (77.2 lb) (nom.)				
	with 16 ports	37 kg (81.6 lb) (nom.)				
	with 20 ports	42 kg (92.6 lb) (nom.)				
	with 24 ports	44 kg (97.0 lb) (nom.)				
	R&S [®] ZNBT20/R&S [®] ZNBT26/R	R&S [®] ZNBT20/R&S [®] ZNBT26/R&S [®] ZNBT40				
	with 8 ports	33 kg (72.8 lb) (nom.)				
	with 12 ports	40 kg (88.2 lb) (nom.)				
	with 16 ports	42 kg (92.6 lb) (nom.)				
	with 20 ports	49 kg (108.0 lb) (nom.)				
	with 24 ports	51 kg (112.4 lb) (nom.)				



Dimensions (in mm)


Front view of the R&S[®]ZNBT8



Rear view of the R&S®ZNBT8, R&S®ZNBT20, R&S®ZNBT26 and R&S®ZNBT40

Side view of the R&S[®]ZNBT8

Side view of the R&S[®]ZNBT20, R&S[®]ZNBT26 and R&S[®]ZNBT40

Ordering information

Designation	Туре	Retrofit ¹⁸	On site 19	Order No.
Base unit	D. 0. 00			
Vector network analyzer, 4 ports, 8.5 GHz, N ²⁰	R&S®ZNBT8			1318.7006.24
Vector network analyzer, 8 ports, 20 GHz, 3.5 mm ²⁰	R&S®ZNBT20			1332.9002.64
Vector network analyzer, 8 ports, 26.5 GHz, 2.92 mm ²⁰	R&S®ZNBT26			1332.9002.34
Vector network analyzer, 8 ports, 40 GHz, 2.92 mm ²⁰	R&S [®] ZNBT40			1332.9002.44
Options				
Additional ports				
R&S®ZNBT8				4040 4000 00
Additional ports 5 to 8	R&S [®] ZNBT8-B108	•		1319.4200.02
Additional ports 9 to 12	R&S [®] ZNBT8-B112 R&S [®] ZNBT8-B116	•		1319.4217.02
Additional ports 13 to 16		•		1319.4223.02
Additional ports 17 to 20	R&S [®] ZNBT8-B120 R&S [®] ZNBT8-B124	•		1319.4230.02
Additional ports 21 to 24	R&3-2IND16-D124	•		1319.4240.02
R&S [®] ZNBT20				4000 0440 00
Additional ports 9 to 12	R&S [®] ZNBT20B112 R&S [®] ZNBT20B116	•		1338.2116.02
Additional ports 13 to 16		•		1338.2122.02
Additional ports 17 to 20 Additional ports 21 to 24	R&S [®] ZNBT20B120 R&S [®] ZNBT20B124	•		1338.2139.02 1338.2145.02
R&S [®] ZNBT26	Raj-LINB120B124	•		1330.2145.02
Additional ports 9 to 12	R&S [®] ZNBT26B112	-		1222 0454 24
	R&S [®] ZNBT26B112	•		1332.9454.34
Additional ports 13 to 16	R&S [®] ZNBT26B120	•		1332.9460.34
Additional ports 17 to 20	R&S [®] ZNBT26B120 R&S [®] ZNBT26B124	•		1332.9302.34 1332.9319.34
Additional ports 21 to 24 R&S [®] ZNBT40	R&3-2IND120D124	•		1332.9319.34
				4000 0454 44
Additional ports 9 to 12	R&S®ZNBT40B112	•		1332.9454.44
Additional ports 13 to 16	R&S®ZNBT40B116	•		1332.9460.44
Additional ports 17 to 20	R&S [®] ZNBT40B120 R&S [®] ZNBT40B124	•		1332.9302.44
Additional ports 21 to 24	R&3-2IND140D124	•		1332.9319.44
Extended power range R&S [®] ZNBT8				
Ports 1 to 4				1319.4252.02
Ports 5 to 8	R&S [®] ZNBT8-B21 R&S [®] ZNBT8-B22	•		1319.4252.02
Ports 9 to 12	R&S [®] ZNBT8-B23	•		1319.4269.02
Ports 13 to 16	R&S [®] ZNBT8-B24	•		1319.4275.02
	R&S [®] ZNBT8-B25	•		1319.4281.02
Ports 17 to 20 Ports 21 to 24	R&S [®] ZNBT8-B26	•		1319.4298.02
R&S [®] ZNBT20	Rad ZIND 16-B20	•		1319.4300.02
Ports 1 to 4	R&S [®] ZNBT20-B21			1332.9348.02
Ports 5 to 8	R&S®ZNBT20-B21 R&S®ZNBT20-B22	•		1332.9354.02
Ports 9 to 12	R&S®ZNBT20-B22 R&S®ZNBT20-B23	•		1332.9354.02
Ports 13 to 16	R&S*ZNBT20-B23 R&S®ZNBT20-B24			1332.9300.02
Ports 17 to 20	R&S*ZNBT20-B24 R&S®ZNBT20-B25	•		1332.9383.02
	R&S®ZNBT20-B25			
Ports 21 to 24 R&S [®] ZNBT26	Rad ZINDI 20-B20	•		1332.9390.02
				1000 0040 04
Ports 1 to 4	R&S [®] ZNBT26-B21	•		1332.9348.34
Ports 5 to 8	R&S [®] ZNBT26-B22	•		
Ports 9 to 12	R&S [®] ZNBT26-B23	•		1332.9360.34
Ports 13 to 16	R&S [®] ZNBT26-B24	•		1332.9377.34
Ports 17 to 20	R&S [®] ZNBT26-B25	•		1332.9383.34
Dorto 21 to 24		•		1332.9390.34
Ports 21 to 24	R&S [®] ZNBT26-B26			
R&S [®] ZNBT40	-			4000 00 40 44
R&S [®] ZNBT40 Ports 1 to 4	R&S [®] ZNBT40-B21	•		
R&S [®] ZNBT40 Ports 1 to 4 Ports 5 to 8	R&S [®] ZNBT40-B21 R&S [®] ZNBT40-B22	•		1332.9354.44
R&S [®] ZNBT40 Ports 1 to 4 Ports 5 to 8 Ports 9 to 12	R&S [®] ZNBT40-B21 R&S [®] ZNBT40-B22 R&S [®] ZNBT40-B23	•		1332.9354.44 1332.9360.44
R&S [®] ZNBT40 Ports 1 to 4 Ports 5 to 8	R&S [®] ZNBT40-B21 R&S [®] ZNBT40-B22	•		1332.9348.44 1332.9354.44 1332.9360.44 1332.9377.44 1332.9383.44

¹⁸ Option may also be ordered later, upgrade in service.

¹⁹ Option may be installed by the user on site.

²⁰ External monitor, mouse and keyboard or external touchscreen required for manual operation.

Designation	Туре	Retrofit 18	On site 19	Order No.
Receiver step attenuators for R&S [®] ZNBT8				
Ports 1 to 4	R&S [®] ZNBT8-B361	•		1319.4317.02
Ports 5 to 8	R&S [®] ZNBT8-B362	•		1319.4323.02
Ports 9 to 12	R&S [®] ZNBT8-B363	•		1319.4330.02
Ports 13 to 16	R&S [®] ZNBT8-B364	•		1319.4346.02
Ports 17 to 20	R&S [®] ZNBT8-B365	•		1319.4352.02
Ports 21 to 24	R&S [®] ZNBT8-B366	•		1319.4369.02
Extended dynamic range ²¹ for R&S [®] ZNBT8				
Ports 1 to 4	R&S [®] ZNBT8-B504			1332.8335.02
Ports 5 to 8	R&S [®] ZNBT8-B508	•		1332.8341.02
Ports 9 to 12	R&S [®] ZNBT8-B512	•		1332.8358.02
Ports 13 to 16	R&S [®] ZNBT8-B516	•		1332.8364.02
Ports 17 to 20	R&S [®] ZNBT8-B520	•		1332.8370.02
Ports 21 to 24	R&S [®] ZNBT8-B524	•		1332.8387.02
Precision frequency reference (OCXO)	R&S [®] ZNBT-B4	•		1332.9477.02
GPIB interface	R&S [®] ZNBT-B10	•	•	1332.9483.02
Device control	R&S [®] ZNBT-B12	•	•	1332.9490.02
Additional removable HDDs and SSDs		•	•	1002.0400.02
Additional removable hard disk,	R&S [®] ZNBT-B19	•	•	1332.9283.10
Windows Embedded Standard 7 (32 bit),		•	•	1002.0200.10
for R&S [®] ZNBT8 with LPW10				
Additional removable hard disk,	R&S [®] ZNBT-B19	•	•	1332.9283.1
Windows Embedded Standard 7 (64 bit),		•	•	1002.0200.1
for R&S [®] ZNBT8/R&S [®] ZNBT20 with LPW11				
Additional removable SSD.	R&S [®] ZNBT-B19	•	•	1332.9283.12
Windows 10 IoT Enterprise 2016 LTSB (64 bit),		•	•	1002.0200.12
for R&S [®] ZNBT8/R&S [®] ZNBT20/R&S [®] ZNBT26/R&S [®] ZNBT40				
Additional removable SSD,	R&S [®] ZNBT-B19	•	•	1332.9283.13
Windows 10 IoT Enterprise 2021 LTSC (64 bit),		•	•	1002.0200.1
for R&S [®] ZNBT8/R&S [®] ZNBT20/R&S [®] ZNBT26/R&S [®] ZNBT40				
DC inputs	R&S [®] ZNBT-B81			1332.9502.02
Time domain analysis	R&S [®] ZNBT-K2	•	-	1318.8425.02
	R&S [®] ZNBT-K3		•	
Distance-to-fault (DTF) measurement		•	•	1350.5063.02
Extended time domain analysis	R&S [®] ZNBT-K20	•	•	1319.4400.02
Frequency conversion ²²	R&S [®] ZNBT-K4	•	•	1318.8431.02
Intermodulation measurements ²³	R&S [®] ZNBT-K14	•	•	1318.8448.02
10 MHz receiver bandwidth	R&S [®] ZNBT-K17	•	•	1318.8454.02
1 mHz frequency resolution	R&S [®] ZNBT-K19	•	•	1319.4000.02
Pulsed source	R&S [®] ZNBT-K27	•	•	1328.8840.02
Noise figure measurement	R&S [®] ZNBT-K30	•	•	1332.8406.02
SNP assistant	R&S [®] ZNBT-K100	•	•	1338.9340.02
EaZy deembedding (EZD)	R&S [®] ZNBT-K210	•	•	1328.8634.02
In-situ deembedding (ISD)	R&S [®] ZNBT-K220	•		1328.8640.02
Smart fixture deembedding (SFD)	R&S [®] ZNBT-K230	•		1328.8657.02
Delta-L 4.0 PCB characterization	R&S [®] ZNBT-K231	•		1328.8663.02
Health and utilization monitoring service (HUMS)	R&S [®] ZNBT-K980	•	•	1338.8989.02
Handler I/O (external) for R&S [®] ZNBT	R&S [®] ZNBT-Z14	•	•	1326.6640.05
External RFFE GPIO interface	R&S [®] ZN-Z15	•	•	1325.5905.02
External RFFE GPIO interface incl. voltage/current measurement	R&S [®] ZN-Z15	•	•	1325.5905.0
Rackmount kit	R&S [®] ZZA-KN5	•	•	1175.3040.0
Direct control cable	R&S [®] ZN-B121	•	•	1323.9290.0
Upgrade kit		-		
Synthesizer upgrade kit ²⁴ for R&S [®] ZNBT	R&S [®] ZNBT-USY	•		1328.8857.02

²¹ The R&S[®]ZNBT8-B504/-B508/-B512/-B516/-B520/-B524 options cannot be combined with the R&S[®]ZNBT8-B361/-B362/-B363/-B364/-B365/-B366 and replace the corresponding R&S[®]ZNBT8-B108/-B112/-B116/-B120/-B124 options.

²² Second internal source is included in R&S[®]ZNBTxx-B112 or R&S[®]ZNBT8-B512 options.

²³ Requires R&S[®]ZNBT-K4 option.

²⁴ The R&S[®]ZNBT-USY requires firmware version 3.72 or higher and Windows 10. For upgrade kits, contact your local Rohde & Schwarz sales office. R&S[®]ZNBT-USY cannot be installed in the R&S[®]ZNBT20 model with order number 1332.9002.24 and serial number < 101025.</p>

Designation	Туре	Order No.
Recommended calibration accessories		
Calibration kits for manual calibration – economy		
Calibration kit, 0 Hz to 18 GHz, N (f)	R&S [®] ZN-Z170	1328.8163.03
Calibration kit, 0 Hz to 26.5 GHz, 3.5 mm (f)	R&S [®] ZN-Z135	1328.8157.03
Calibration kit, 0 Hz to 40 GHz, 2.92 mm (f)	R&S [®] ZN-Z129	1328.8140.03
Calibration kit, 0 Hz to 43.5 GHz, 2.92 mm (f)	R&S [®] ZN-Z129E	1328.8170.03
Calibration kits for manual calibration – high-end		
Calibration kit, 0 Hz to 18 GHz, N, 50 Ω	R&S [®] ZV-Z270	5011.6536.02
Calibration kit, 0 Hz to 26.5 GHz, 3.5 mm	R&S [®] ZN-Z235	1336.8500.02
Calibration kit, 0 Hz to 43.5 GHz, 2.92 mm	R&S [®] ZN-Z229	1336.7004.02
Calibration kit, 0 Hz to 50 GHz, 2.4 mm	R&S [®] ZN-Z224	1339.5002.02
Calibration units for automatic calibration – economy	1	1
Calibration unit, 5 kHz to 4.5 GHz, 2-port ²⁵	R&S [®] ZN-ZE104	1350.8040.04
Calibration unit, 5 kHz to 9 GHz, 2-port ²⁵	R&S [®] ZN-ZE109	1350.8040.09
Calibration unit, 5 kHz to 26.5 GHz, 2-port ²⁵	R&S [®] ZN-ZE126	1350.8040.26
Calibration unit, 100 kHz to 8.5 GHz, 4 ports, SMA (f)	R&S [®] ZN-Z153	1319.6178.34
Calibration unit, 100 kHz to 8.5 GHz, 6 ports, SMA (f)	R&S [®] ZN-Z152	1319.6003.36
Calibration unit, 100 kHz to 8.5 GHz, 6 ports, SMA (f)	R&S [®] ZN-Z154	1319.5120.02
Additional ports 7 to 12, SMA (f)	R&S [®] ZNZ154-B22	1319.5136.22
Additional ports 13 to 18, SMA (f)	R&S [®] ZNZ154-B32	1319.5136.32
Additional ports 19 to 24, SMA (f)	R&S [®] ZNZ154-B32	1319.5136.42
Calibration units for automatic calibration – high-end	1100 LINE 104-D42	1010.0100.42
Calibration unit, 100 kHz to 8.5 GHz, 2 ports, N (f)	R&S [®] ZN-Z51	1319.5507.72
Calibration unit, 100 kHz to 8.5 GHz, 4 ports, N (f)	R&S [®] ZN-Z51	1319.5507.74
Calibration unit, 100 kHz to 8.5 GHz, 2 ports, 3.5 mm (f)	R&S [®] ZN-Z51	1319.5507.32
	R&S [®] ZN-Z51	
Calibration unit, 100 kHz to 8.5 GHz, 4 ports, 3.5 mm (f)	R&S [®] ZN-Z51 R&S [®] ZN-Z50	1319.5507.34
Calibration unit, 9 kHz to 9 GHz, 2 ports, 3.5 mm (f)		1335.6904.30
Calibration unit, 9 kHz to 26.5 GHz, 2 ports, 3.5 mm (f)	R&S [®] ZN-Z50	1335.6904.32
Calibration unit, 100 kHz to 26.5 GHz, 4 ports, 3.5 mm (f)	R&S [®] ZN-Z52	1335.6991.30
Calibration unit, 100 kHz to 26.5 GHz, 2 ports, 3.5 mm (f)	R&S [®] ZN-Z53	1335.7046.32
Calibration unit, 100 kHz to 18 GHz, 2 ports, N (f)	R&S [®] ZN-Z53	1335.7046.72
Calibration unit, 9 kHz to 40 GHz, 2 ports, 2.92 mm (f), characterized to 43.5 GHz	R&S [®] ZN-Z54	1335.7117.92
Calibration unit, 9 kHz to 50 GHz, 2 ports, 2.4 mm (f)	R&S [®] ZN-Z55	1335.7181.42
Inline calibration units for automatic calibration		
CAN bus controller for inline calibration units	R&S [®] ZN-Z30	1328.7609.02
Inline calibration unit, 10 MHz to 8.5 GHz	R&S [®] ZN-Z32	1328.7638.02
Inline calibration unit, 10 MHz to 40 GHz, characterized to 43.5 GHz	R&S [®] ZN-Z33	1328.7644.02
Inline calibration unit, 10 MHz to 40 GHz, for TVAC, characterized to 43.5 GHz	R&S [®] ZN-Z33	1328.7644.03
Thermal insulator, 2.92 mm	R&S [®] ZN-Z391	1350.8504.02
Switch matrices		
Switch matrix, 10 MHz to 8.5 GHz, 2 VNA ports to 6 test ports	R&S [®] ZN-Z84	1319.4500.02
Additional test ports 7 to 12, 2 VNA ports to 12 test ports	R&S [®] ZN-Z84-B22	1319.4969.22
Additional test ports 13 to 18, 2 VNA ports to 18 test ports	R&S [®] ZN-Z84-B32	1319.4969.32
Additional test ports 19 to 24, 2 VNA ports to 24 test ports	R&S [®] ZN-Z84-B42	1319.4969.42
Additional test ports 7 to 12, 4 VNA ports to 12 test ports	R&S [®] ZN-Z84-B24	1319.4969.24
Additional test ports 13 to 18, 4 VNA ports to 18 test ports	R&S [®] ZN-Z84-B34	1319.4969.34
Additional test ports 19 to 24, 4 VNA ports to 24 test ports	R&S [®] ZN-Z84-B44	1319.4969.44
Switch matrix, 100 MHz to 26.5 GHz, 2 VNA ports to 6 test ports	R&S [®] ZN-Z86	1351.2216.02
Additional test ports 7 to 12, 2 VNA ports to 12 test ports	R&S [®] ZN-Z86-B22	1351.2900.22
Additional test ports 13 to 18, 2 VNA ports to 18 test ports ²⁶	R&S [®] ZN-Z86-B32	1351.2900.32
Additional test ports 19 to 24, 2 VNA ports to 24 test ports ²⁷	R&S [®] ZN-Z86-B42	1351.2900.42
	R&S [®] ZN-Z86-B24	1351.2900.24
		1001.2000.24
Additional test ports 7 to 12, 4 VNA ports to 12 test ports		1351 2000 24
	R&S [®] ZN-Z86-B34 R&S [®] ZN-Z86-B44	1351.2900.34 1351.2900.44

 $^{^{25}}$ Various port options available, see R&S $^{\odot}$ ZN-ZE1xx specifications (PD 3683.5597.22).

²⁶ Requires R&S[®]ZN-Z86-B22.

²⁸ Requires R&S[®]ZN-Z86-B24.

²⁷ Requires R&S[®]ZN-Z86-B32.

²⁹ Requires R&S[®]ZN-Z86-B34.

Switch matrix, 100 MHz to 26.5 GHz, with additional RF access	R&S [®] ZN-Z86X	1351.2222.02
Additional test ports 1 to 12, 2 or 4 VNA ports	R&S [®] ZNZ86X-B24	1351.2222.24
Additional test ports 1 to 24, 2 or 4 VNA ports	R&S [®] ZNZ86X-B44	1351.2222.44
Semi-rigid cable set for R&S [®] ZNB, 2.92 mm (f) to 2.92 mm (m),	R&S [®] ZN-ZB26	1328.8911.03
2 or 4 R&S [®] ZNB ports to R&S [®] ZN-Z86X, benchtop operation		

Warranty		
Base unit		3 years
All other items ³⁰		1 year
Options		
Extended warranty, one year	R&S [®] WE1	Contact your local
Extended warranty, two years	R&S [®] WE2	Rohde & Schwarz
Extended warranty with calibration coverage, one year	R&S [®] CW1	sales office.
Extended warranty with calibration coverage, two years	R&S [®] CW2	
Extended warranty with accredited calibration coverage, one year	R&S [®] AW1	
Extended warranty with accredited calibration coverage, two years	R&S [®] AW2	

Extended warranty with a term of one and two years (WE1 and WE2)

Repairs carried out during the contract term are free of charge ³¹. Necessary calibration and adjustments carried out during repairs are also covered.

Extended warranty with calibration coverage (CW1 and CW2)

Enhance your extended warranty by adding calibration coverage at a package price. This package ensures that your Rohde & Schwarz product is regularly calibrated, inspected and maintained during the term of the contract. It includes all repairs ³¹ and calibration at the recommended intervals as well as any calibration carried out during repairs or option upgrades.

Extended warranty with accredited calibration (AW1 and AW2)

Enhance your extended warranty by adding accredited calibration coverage at a package price. This package ensures that your Rohde & Schwarz product is regularly calibrated under accreditation, inspected and maintained during the term of the contract. It includes all repairs ³¹ and accredited calibration at the recommended intervals as well as any accredited calibration carried out during repairs or option upgrades.

³⁰ For options that are installed, the remaining base unit warranty applies if longer than 1 year. Exception: all batteries have a 1 year warranty.

³¹ Excluding defects caused by incorrect operation or handling and force majeure. Wear-and-tear parts are not included.

Service at Rohde & Schwarz You're in great hands

- Customized and flexible
 Uncompromising quality
 Long-term dependability

Rohde & Schwarz

The Rohde&Schwarz technology group is among the trailblazers when it comes to paving the way for a safer and connected world with its leading solutions in test&measurement, technology systems and networks&cybersecurity. Founded 90 years ago, the group is a reliable partner for industry and government customers around the globe. The independent company is headquartered in Munich, Germany and has an extensive sales and service network with locations in more than 70 countries.

www.rohde-schwarz.com

Sustainable product design

- Environmental compatibility and eco-footprint
- ► Energy efficiency and low emissions
- ► Longevity and optimized total cost of ownership

Certified Quality Management ISO 9001

Certified Environmental Management ISO 14001

Rohde & Schwarz training

www.training.rohde-schwarz.com

Rohde & Schwarz customer support

www.rohde-schwarz.com/support

R&S° is a registered trademark of Rohde&Schwarz Trade names are trademarks of the owners PD 3606.9727.22 | Version 14.00 | August 2024 (ch) R&S°ZNBT Vector Network Analyzer Data without tolerance limits is not binding | Subject to change © 2014 - 2024 Rohde & Schwarz | 81671 Munich, Germany