R&S®ESSENTIALS MXO 5 Series OSCILLOSCOPE

Next generation oscilloscope: evolved for more challenges

Product Brochure Version 06.00

More at: www.rohde-schwarz.com/product/mxo5

ROHDE&SCHWARZ

Make ideas real

EVOLVED FOR MORE CHALLENGES GET THE BIG PICTURE AND ALL THE DETAILS

The MXO 5 series breakthrough oscilloscope technology speeds up understanding and testing of electronic systems. The MXO 5 series specifications stand out among oscilloscopes with impressive four and eight channel models.

4-channel model

8-channel model

 Fastest acquisitions with 4.5 million waveforms/s

 Highest precision of 12-bit ADC/18-bit HD resolutions

 Deep memory capture with 500 million points/channel

 Highest sensitivity with advanced digital trigger

15.6" Full HD touchscreen

Increased visibility with

WHY ENGINEERS LOVE ROHDE & SCHWARZ OSCILLOSCOPES?

- A trusted, global high-quality company with a long-standing commitment to customers and continuous technological innovation
- ► The newest oscilloscope portfolio from 60 MHz to 16 GHz
- In-house ASICs developed for the world's most responsive oscilloscopes
- ► Frontend technology development for pristine signal integrity
- ► 18-bit architecture with HD mode for the highest resolution
- ► Digital triggers for the world's most sensitive event isolation
- Superior user interface and front panel that streamlines workflows

WHY THE MXO 5 SERIES?

- Evolution in speed: Quick acquisitions with multiple channels, math functions and seamless spectrum measurements for minimal blind time with 21 ns rearm
- Unleash comprehensive spectrum analysis: Fast and pristine spectrum analysis and ability to run up to four analyses simultaneously
- ► Extensive memory capacity: Benefit from the deepest standard memory and up to 1 million waveform segments
- Precise in-event detection: Our digital trigger is flawless at 18-bit HD resolution with adjustable sensitivity for accurate triggering
- Uncompromised performance: A low noise floor and the largest vertical offset range of ±5 V at 0.5 mV/div for exceptional signal fidelity
- Setting new sensitivity standards: the industry most sensitive trigger down to 0.0001 div
- Leading trigger jitter performance: Best-in-class trigger jitter of less than 1 ps

CONTENTS

FEATURES AND BENEFITS

Compelling technology blocks page 4

MXO 5 capabilities ► page 6

Accelerated insights page 8

Capture even more time page 9

See signals accurately ► page 10

Trigger on every detail ► page 11

Fastest zone trigger ► page 12

Multispectral evolution page 14

Superior user experience > page 15

MXO 5 series at a glance ▶ page 16

Convenient access ► page 18

Intuitive user interface ► page 19

Adapting to your work style > page 20

Sustainable performance > page 21

Your go-to tool ▶ page 22

APPLICATIONS

Optimizing power sequencing ► page 23

Debugging power rails and switching characteristics

► page 24

Power analysis made easy ▶ page 25

Streamline your EMI debugging ▶ page 26

Logic analysis

page 27

Analyze serial buses with protocol innovation

page 28

Versatile integrated arbitrary waveform generator > page 30

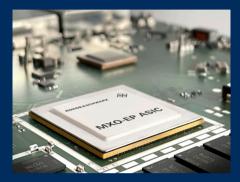
Frequency response analysis with Bode plot

page 31

PROBES AND ACCESSORIES

Extensive probe portfolio

► page 32


And there is so much more ...

► page 34

- 100 MHz to 2 GHz bandwidth
- Up to 5 Gsample/s sample rate
- 500 Mpoints per channel standard memory
- 12-bit ADC at all sample rates
- 18-bit architecture with HD mode
- Precise digital trigger

COMPELLING TECHNOLOGY BLOCKS EVOLVING ACCELERATED INSIGHT

The MXO 5 series oscilloscopes have cutting-edge technology for swift and precise results. Equipped with advanced custom technological and revolutionary features, these oscilloscopes are indispensable for insight into circuit behavior.

MXO-EP processing ASIC

See more of your signals, faster.

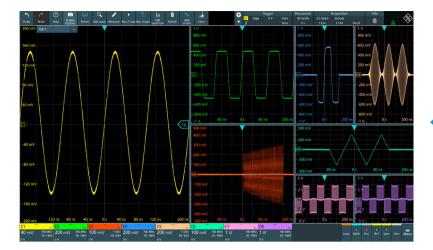
Every MXO 5 series comes with two MXO-EP (extreme performance) Rohde&Schwarz application-specific integrated circuits (ASIC). The MXO-EP ASIC architecture processes 400 Gbit/s for the world's fastest update rate of up to > 4.5 million acquisitions/s and a total of 18 million waveforms/s on multiple channels. See and capture more signals, faster and find rare signal anomalies quickly with the most responsive oscilloscope in the industry.

12-bit ADC, 18-bit vertical architecture

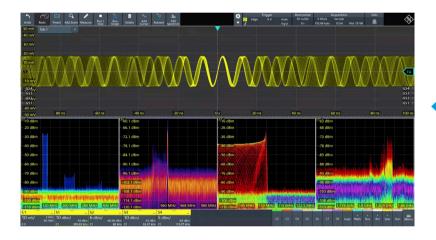
Measure your signals accurately.

The MXO 5 series has an incredibly low-noise signal path, powered by a channel-dedicated 12-bit ADC with no sample rate limitations. High definition mode (HD) enhances the vertical resolution to a remarkable 18 bit, ensuring unwavering accuracy in every measurement. With 10 effective number of bits (ENOB), ultra-low noise and a highly sensitive frontend, the offset voltage can be driven up to ± 5 V at the highest sensitivity. Get precise results and greater versatility.

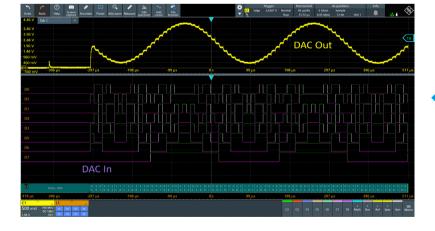
Responsive deep memory Capture more of your signals


MXO 5 series oscilloscopes come with the industry's deepest standard acquisition memory of 500 Mpoints per channel, for the highest sample rate capture of up to 200 ms of power up or power down sequences on eight channels. Get even longer recordings with the 1 Gpoints memory expansion.

Advanced digital triggering system Easily isolate subtle signal variations.


The MXO-EP ASIC incorporates advanced digital triggering to evaluate ADC samples in the acquisition path in real time. Trigger on small events with vertical divisions of less than 0.0001 that no other oscilloscope can isolate. Choose your own trigger hysteresis. Apply digital filters to suppress noise for the most precise triggering available. The implemented zone trigger retains ultra fast acquisition speed and versatility and can work across channel waveforms, spectra and math signals.

GET THE BIG PICTURE FASTER


$8 \times time domain$

See all traces with 500 Mpoints per channel

45 000 FFT/s to see all spectral events simultaneously

$4 \times$ protocol, $16 \times$ logic channels

8 analog and 16 digital channels available for protocol decoding with deep memory to record system behavior for decoding up to 4 protocols simultaneously

SEE SIGNAL DETAILS INSTANTLY

MXO 5 CAPABILITIES

POWER CONVERSION

Energy and power efficiency are critical to electronics design. Data centers, automotive electrification and renewable energy development are driving the growth of wide bandgap power semiconductors. To meet the next generation power research and development needs, the MXO 5 offers revolutionary power conversion testing performance and features.

Eight channels provide in-depth visibility of three-phase and sixphase motor drives and inverters. The MXO 5 supports up to eight active probes including concurrent high voltage differential and current probes. The 18-bit HD mode with digital trigger provides the ultimate resolution for accurate measurement and precise triggering.

The R&S[®]MXO5-K31 power analysis option enable quick and easy setup for harmonics and power quality measurements. The R&S[®]MXO-K36 frequency response analysis provides bode plot and control loop analysis capabilities on the oscilloscope.

POWER SEQUENCING AND INTEGRITY

All electronic circuits need to be power up and down at the right time with the proper power amplitude. Power sequencing can be complex and iterative. The MXO 5 can be used to concurrently observe up to eight analog channels and eight reference waveforms.

On top of the channel count, having enough memory is crucial to record over longer time periods and obtaining a large enough sample rate to observe small signal events. The MXO 5 comes with a standard 500 Mpoints.

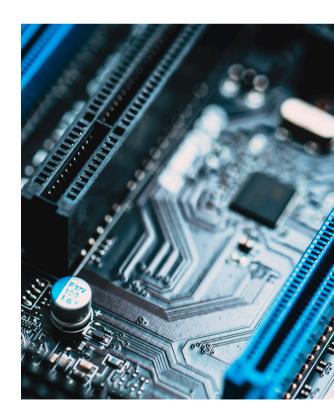
To measure power ripple and noise, the MXO 5 has 5 V offsets with maximum sensitivity of 0.5 mV/div. Even with a 10x passive probe, 50 V range DC signals at 5 mV/div can be observed with high precision. When combined with fast spectrum, the MXO 5 is ideal for finding EMI issues and revealing spectral components for faster noise source identification.

The R&S[®]MXO5-K550 option lets the MXO 5 decode the SPMI protocols widely used for IC power management.

AUTOMOTIVE ANALYSIS

The efficiency and drive power of electric motors and inverters are constantly evolving. Multiphase topologies require careful gate driver optimization. The eight channels in the MXO 5 can observe these PWM controlled gates. Tracked measurement functions and spectrum analysis can be visualized for insight into drive behavior.

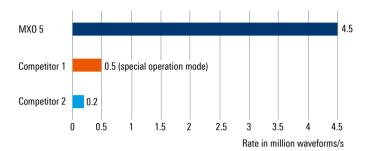
In-vehicle networks in autonomous and smart cars are evolving from electronic control units (ECU) to domain controller networks, where high-speed interconnections are crucial for camera, lidar, radar, sensors and various vehicle controls. The MXO 5 series has the ideal bandwidth and analysis depth to assess basic compliance requirements as well as automotive protocol trigger decoding.


 $R\&S^{\circ}MXO5\text{-}K550$ can decode 10BASE-T1S and 100BASE-T1 automotive buses.

SIGNAL INTEGRITY AND DEBUGGING

The MXO 5 waveform acquisition of rate up to > 4.5 million can be used for signal testing where error detection is critical. The MXO 5 has nearly no blind time and can detect rare and random events that other oscilloscopes miss. Most importantly, the MXO 5 can maintain the acquisition rate with up to four channels activated. Basic measurements and math functions are hardware accelerated.

MXO 5 delivers four hardware-accelerated spectrum channels. With up to 45000 FFT/s per channel, the instrument can perform up to 180000 FFT/s. Quickly test and debug harmonic, EMI or other applications that require superior spectrum capabilities. The zone trigger and spectrum sources work together to generate the insight needed to capture elusive spectral events.

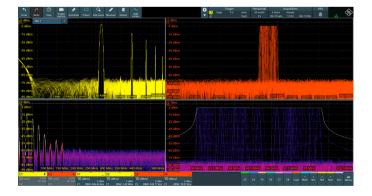

ACCELERATED INSIGHTS FIND SIGNAL ANOMALIES QUICKLY

- ▶ World's first 8-channel oscilloscope with over 4.5 million acquisitions/s to instantly reveal infrequent anomalies
- ▶ World's first 8-channel oscilloscope with 18 million waveforms/s across multiple channels
- ▶ Up to 90% real-time signal capture, signal processing with MXO-EP ASIC and dedicated PC system for responsive analysis

World's fastest update rate on eight channels

When running multiple channels with > 12-bit vertical resolution, competing oscilloscopes can struggle to keep up and the acquisition rate slows down. The oscilloscope is sluggish and has more blind time where it misses signal activity. All MXO 5 oscilloscopes processing paths include multiple MXO-EP (extreme performance) ASICs that minimize this effect.

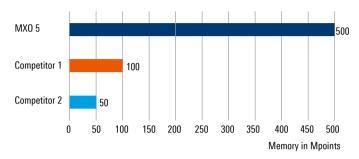
Real-time acquisition rate


Quickly and reliably detect sporadic signal faults

The high acquisition rate greatly improves the probability of finding rare and sporadic events that other oscilloscopes cannot. The MXO 5 can confidently capture all events even when the triggers are seemingly too close. With over 4.5 million waveforms/s, the MXO 5 series oscilloscope has the lowest blind time thanks to a trigger rearm of just 21 ns.

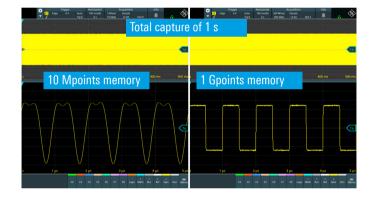
Fast measurements to quickly correlate statistical results, FFTs or cursor measurements on eight channels

Quickly increase statistical confidence in results. High update rates increase the likelihood of detecting and displaying all signal activity, enabling the MXO 5 to generate trustworthy statistical results based on a high number of waveforms in a short time.


CAPTURE EVEN MORE TIME DEEPEST STANDARD MEMORY ON EIGHT CHANNELS

- ▶ Industry's deepest memory of 500 Mpoints per channel (optional 1 Gpoints)
- ► Standard segmented memory (10 000 segments, optional 1 000 000 segments)
- ► Standard history mode (10 000 acquisitions, optional 1 000 000 acquisitions)

More channels need more memory


After bandwidth and sample rate, memory depth is one of the most important factors when handling a large range of troubleshooting tasks. More memory lets oscilloscopes retain the maximum sample rate and bandwidth even with slower timebase settings. With 500 Mpoints of acquisition memory standard on all eight channels, the MXO 5 series oscilloscope has up to five times the standard memory of other oscilloscopes in this class.

Standard memory per channel

Maintain fast sample rates with slow timebase settings

With limited memory, you often run into signal aliasing when capturing slow signals. The deep memory of the MXO 5 enables longer time to capture at the full sample rate. Even when observing slow events, the instrument retains enough of the sample rate to see the correct waveforms.

Standard segmented memory

Use the segmented memory to capture signals separated by inactivity. Examples include laser pulses, serial bus activity and RF pulses. The segmented memory of the MXO 5 series can capture signals over long observation periods of up to 10000 segments.

Standard history mode

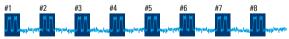
Press stop and use the history mode to see previously captured acquisitions. The history mode is always on. All measurement and analysis tools are available in the history mode, including serial bus decoding and automatic measurements.

Need even more memory?

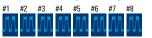
Need to capture even longer periods of time? The memory extension option activates 1 Gpoints (channels interleaved)for up to 1 000 000 segments and acquisitions.

Standard segmented memory

Protocol based signal with communications pauses


Single-shot acquisition

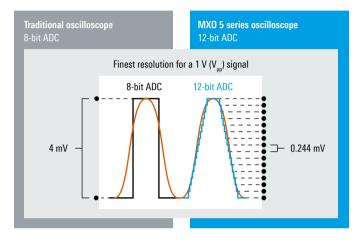
Conventional single-shot acquisition Missed acquisition due to limited memory


Acquisition of few pulses with many periods of inactivity

Acquisition using segmented memory

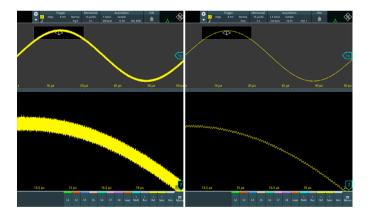
Acquisition of signal segments with activity

Analysis of each segment using the history function


Display and analysis of each signal element

SEE SIGNALS ACCURATELY LOWEST MEASUREMENT NOISE AND HIGHEST VERTICAL RESOLUTION ON EIGHT CHANNELS

- ▶ 12-bit ADC for high vertical resolution at all sample rates with no tradeoffs
- ► 18-bit architecture with HD mode
- $\blacktriangleright\,$ Low noise of 130 μV at 1 mV/div at full bandwidth of 2 GHz
- ► ENOB performance of > 10 bit
- $\blacktriangleright\,$ Industry's highest available offset range of ±5 V at 500 $\mu\text{V/div}$


12-bit ADC with 18-bit architecture for HD mode

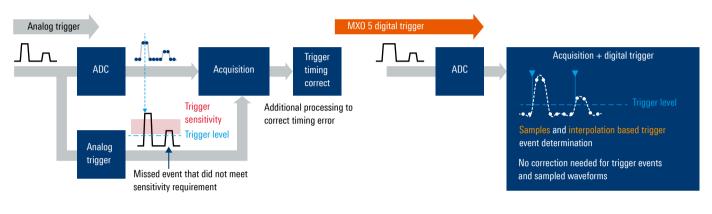
MXO 5 series oscilloscopes incorporate a 12-bit A/D converter on all input channels. The 4096 quantization levels deliver precise vertical resolution at all sampling rates for uncompromising capture of signal details. The 18-bit architecture with HD mode also enhances the ADC resolution. The MXO 5 series has up to eight channels with 12 bit precision and an uncompromised sampling rate.

HD mode improves noise no impact on sample rate

Vertical resolution enhancement averages adjacent samples and reduces the sample rate, leading to waveform issues such as aliasing. The MXO 5 HD mode in the hardware uses a moving average filter to remove aliasing. The HD samples are then fed into the triggering system, making high resolution, low noise signals available for precise triggering.

Low noise with vertical sensitivity down to 500 μ V/div

The MXO 5 series oscilloscope has outstanding sensitivity down to 500 μ V/div without any unexpected reductions in bandwidth. The offset of ±2 V on 50 Ω coupling and ±5 V on 1 M Ω coupling let you easily place the signal at the center of the screen to examine DC noise and ripple. The oscilloscope must have low noise levels to accurately quantify small signals.

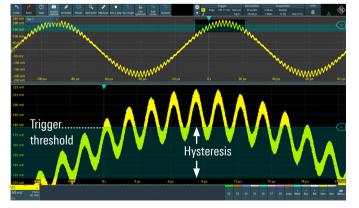


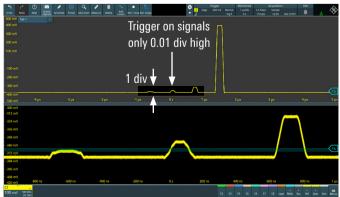
TRIGGER ON EVERY DETAIL HIGH PRECISION DIGITAL TRIGGER

- ▶ World's first 8-channel oscilloscope with trigger sensitivity down to 0.0001 vertical division
- ► World's first 8-channel oscilloscope with user adjustable trigger hysteresis
- ▶ World's fastest trigger rearm time of < 21 ns, capturing up to 99% of waveform
- ▶ Best-in-class trigger jitter of just 1 ps

Modern digital trigger

The MXO-EP ASIC uses the most advanced digital trigger system in the industry, patented by Rohde&Schwarz. Digital triggering implies a common path for the measurement signal and trigger as opposed to a split path for older analog trigger architecture.

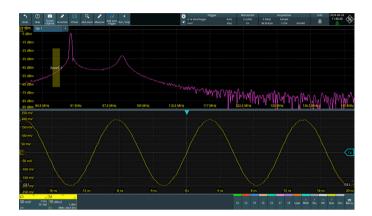



World's most sensitive and hysteresis-adjustable trigger

The MXO 5 series digital trigger is up to 10000 times more sensitive than competing trigger systems. Triggering sensitivity lets you isolate difficult-to-find, small physical layer anomalies in the presence of large signals, speeding up debugging and troubleshooting. You have full control of the trigger hysteresis settings for added flexibility with desired trigger noise suppression.

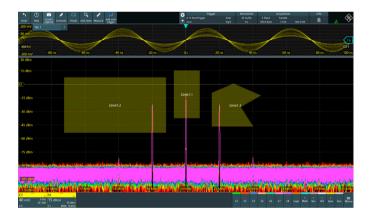
Adjustable digital trigger filters

The 18-bit HD mode on the trigger reduces measurement system noise. The digital trigger architecture makes it possible to adapt the trigger system cutoff frequency. Conventional oscilloscopes limit triggering on filtered waveforms, on the MXO 5 the same filter settings can be used for both the trigger signal and the measurement signal. As a result, noise on the trigger signal can be suppressed for more stable capture.



FASTEST ZONE TRIGGER VISUALIZE TRIGGER EVENT GRAPHICALLY

- ► Fastest zone trigger: 600 000 waveforms/s
- ► Draw a total of 32 zone areas: 4 zones with 8 zone areas each
- > Zone trigger across analog, spectrum and math sources
- ► Combine zone trigger with history and segmentation mode
- ► Compatible with FreeRun triggering


Easy trigger condition setup visually as standard feature

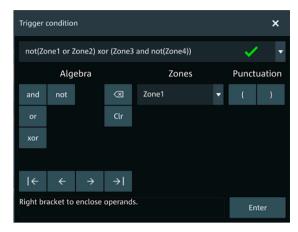
Designs are becoming more complex and predefined trigger conditions may no longer effectively capture needed events. The zone trigger on MXO series oscilloscopes can easily be drawn on signal diagrams to specify whether traces have to pass through defined areas to qualify. Simply activate the function on the toolbar and draw the area on an analog waveform, spectrum or even math to define complex trigger conditions.

Spectrum zone trigger

Rohde & Schwarz is the first in the industry to offer zone trigger capability for spectrum analysis. Starting with the R&S®RTO series, the MXO series has an even higher update rate for detecting spurious spectrum events. The responsive spectrum makes it ideal for EMI debugging. The fast zone trigger on the MXO series goes a step further and offers trigger capability across time, spectrum and even math waveforms.

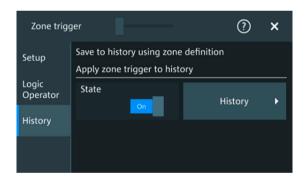
32 zone trigger areas across analog sources, spectrum and math

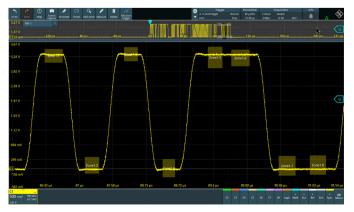
Graphically define 32 zone areas (4 zones with up to 8 areas each) on the screen. You can use the MXO series zone triggering for analog signals, math functions, spectra and zoom windows. Combine zone trigger with the oscillo-scope FreeRun trigger mode to capture signals as quickly as possible without looking for a hardware trigger event.


Zone trigg	ger				×
Setup	Zone1	Zone2	Zone3	•	+
Logic Operator History	Displa Area I	ay On Intersect	Sc Label	ource Char	nnel 1
	1.1	Must	-		AND 🔻
	1.2	Must not	-		AND
	1.3	Must not	-		AND
	1.4	Must not	-		AND
		Must not	-		AND
	1.6	Must not	-		AND
	1.7	Must not	-		AND
	1.8	Must	-		AND
		+Area	â		

First hardware accelerated zone trigger

Zone triggering complements traditional oscilloscope triggering to quickly and graphically isolate events. The MXO series zone trigger is implemented in the ASIC, the only hardware-accelerated solution and the fastest on the market with an update rate of 600 000 waveforms/s and less than 1.45 µs blind time between trigger events. The solution is up to 10 000x faster than competing zone triggering products. A more complex trigger setup with fast waveform acquisition is possible and increases the probability of isolating rare events without affecting responsiveness.

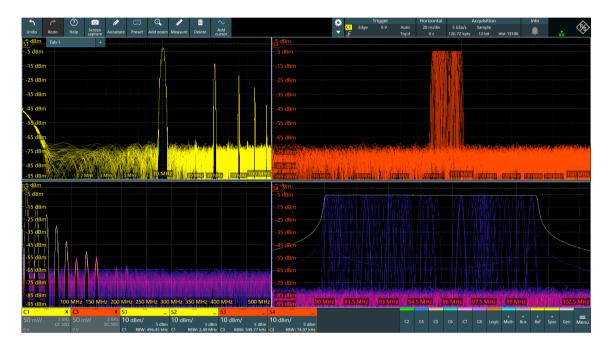

Complex HD trigger with zone logics


The MXO digital trigger can use the HD enhanced samples together with the zone trigger. Zones defined can also work across different sources. Logical definitions can enhance detection of required events.

Store zone trigger events in history

Apply zone triggering capability to history and segmentation mode and store only waveforms that match the zone trigger criteria in the oscilloscope memory. Very long time captures are possible when combined with the MXO series deep memory.

Use zone trigger on protocols to trigger on a specific packet sequence

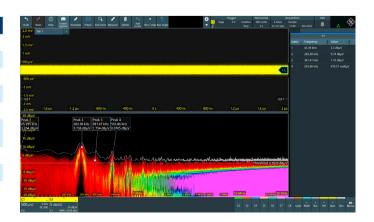

Power rail measurements with zone trigger to isolate power consumption events during RF transmissions

MULTISPECTRAL EVOLUTION PRISTINE RF MEASUREMENTS, NOW WITH MORE CAPABILITIES

- ▶ World's first 8-channel oscilloscope with 4 spectra and independent time and frequency control
- ▶ World's first 8-channel oscilloscope to achieve 45 000 FFT/s
- ► RF and time domain views with independent controls
- ► Industry best spectrum capabilities comes standard with each MX0 5

More RF insights into your measurements

Improve overall RF insights with up to four highly capable, simultaneous spectrum displays. The powerful MXO-EP ASIC architecture and additional processing capabilities give the oscilloscopes ultrafast 45000 FFT/s on up to four simultaneous spectrum displays.


Spectrum domain done right

The superior RF performance outshines all oscilloscopes in its class. The deep record length and spectral control independent of the time domain waveforms make RF analysis a breeze. The wide frequency range and low noise density generates a truly usable spectral trace for RF insight.

Peak list and max./min. hold traces and log-log scales

As with a spectrum analyzer, spectral traces are easy to configure along with navigation to presentations of various spectral results such as max. and min. hold, or even an average trace to clean up noise. The MXO 5 also has loglog scale presentations to help observe EMI related spectral events in wide frequency ranges.

RF characteristics	
Simultaneous spectrum	up to 4 possible
Spectrum update rate	45000 waveforms/s
Sensitivity/noise power density	–160 dBm (1 Hz) (meas.)
Noise figure	14 dB (meas.)
Dynamic range	106 dB (meas.)
Spurious-free dynamic range (SFDR)	65 dBc (meas.)
Second harmonic distortion	–60 dBc (meas.)
Third harmonic distortion	–59 dBc (meas.)

SUPERIOR USER EXPERIENCE TOOLBAR, ADVANCED USABILITY AND R&S®SmartGrid

Quick access to important tools

The toolbar 1 enables quick access to important tools. 28 different tools can be arranged with maximum flexibility. You can access all the settings with the main menu 2. Signal activators on the left of the main menu 3 can be used to activate the desired signals and give quick access to the analog channel, math functions, FFT, signal generator and serial bus setup. Almost all elements in the user interface (UI) are interactive and quickly open menu dialogs.

Touch screen enhances usability

The MXO 5 series user interface (UI) has a touch-screen. When there are too many elements in a waveform diagram, the oscilloscope's simple touch screen may cause you to select the wrong element. A pop-up selection 4 provides a list of interactive elements to help you select the right item. The large touch field design 5 for all instrument settings has enhanced capabilities. Pressing any part of a box will change a parameter value.

Configurable layout

The R&S[®]SmartGrid function ⁶ generates an individualized waveform layout. See the fundamental signal parameters in the signal icon ⁷. Then drag&drop waveforms and result tables into the desired location to change the waveform layout. Cursor labels can be adjusted to better indicate the measured results on the diagram ⁸. The tab display ⁹ also stores user settings and allows fast toggling to different layouts for easy reporting.


Minimized learning curve

Engineers can very quickly learn and master the MXO 5 series UI. Find any oscilloscope function you need by simply typing it into the search menu 10. Press the help button on the toolbar 11 to open the help menu that lists the functions and their SCPI commands.

MXO 5 Series AT A GLANCE

15.6" high resolution, multitouch display

- ► High resolution: 1920 × 1080 pixel (Full HD)
- ▶ Gesture support speeds up scaling and zooming
- ► Easy-to-see signal details

Interfaces on front side

- ► Three USB 3.0 ports
- MSO logic probes inputs

Active probe interfaces

- Support for over 30 Rohde & Schwarz current and voltage probes
- 50 Ω and 1 MΩ path enable support of an even wider range of passive and active probes, including ones from third parties

Intuitive front panel increases productivity

- Fast, direct access to primary instrument settings
- Quickly adjust settings with knobs and keys
- Sectional layout makes finding the right function easy

Integrated arbitrary waveform generator

- Two-channel 100 MHz arbitrary waveform generator
- Wide range of waveforms and modulation types
- Easy configuration of frequency, amplitude, offset and noise

Clear orientation with color-coded LEDs

- Color-coded keys and knobs for fast correlation with signal sources
- Indication of currently selected channel
- ► Simple election between fine/course adjustment

Connections pairs

- ► Five USB 3.0 host ports
- USB device port
- ► HDMI[™] DisplayPort[™] video output

CONVENIENT ACCESS EFFICIENT INSTRUMENT INFORMATION

Save results fast

Save waveforms in various file formats or download them via Ethernet or USB for later analysis with MATLAB[®] or Excel. Continuous acquisition, analysis and transmission to a PC is possible via Ethernet.

Documentation at the press of a button

Document your measurements quickly:

- Screenshots with waveforms and results
- Reports with screenshots and instrument setup
- Clear grid annotations for easy-to-read signal characteristics
- Color-coded annotation highlights signal anomalies
- Save waveforms and measurement results in binary, XML or CSV format available for signal analysis on a PC

Search Q	Search Q	Search Q	Search Q	Search Q	Search Q
∿ ‡ Vertical	∿‡ Vertikal	∿† Vertical	∿ 重直軸	∿ 수직	∿! 垂直
🛆 Horizontal	🔆 Horizontal	🔆 Horizontal	🔆 水平軸	🔆 수평	🗠 水平
🎢 Trigger	🥕 Trigger	🏂 Disparo	🌽 トリガ	🏂 트리거	▶ 触发
Acquisition	🔂 Erfassung	🔂 Adquisición	🖾 捕捉	🖾 획득	🖾 捕获
💉 Measurement	💉 Messung	📌 Medida	🎺 測定	💉 측정	** 测量
∱↓ Cursor	∱ Cursor	∕Ņ Cursor	☆ カーソル	☆ 커서	◇ 光标
ப் Spectrum	<u> </u>	<u>၂၂</u> ႔ Espectro	山 スペクトラム	Ju. 스펙트럼	山,频谱
f(x) Math	f(x) Math.	f(x) Mat	f(x) 演算	f(x) 연산	f(x) 运算
Apps	Apps	Apps	デプリ	앱스	Apps
<u> </u>	踁 Logik	踁 Lógico	薺 ロジック	严格 로직	医颈 逻辑
🔅 Settings	🔅 Einstellungen	🏟 Ajustes	🔅 設定	🌣 설정	🍄 设置
Save/recall	Speichern/Ab	Guardar/recu		저장/불러오기	□ 保存/调用
Keyboard Power	Tastatur Ein/Aus	Teclado Potencia	キーボード パワー	키보드 전원	建盘 电源
spec Gen Menu	+ Spek Gen <mark>Menü</mark>	+ Espec Gen <mark>Menú</mark>	・ ペクトラ発生器 メニュー	* 득 스스펙트럼 발생기 메뉴	* <u></u>

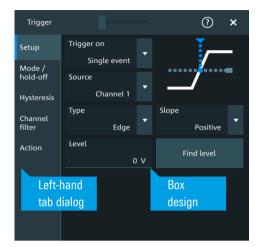
Remote control access: anytime, anywhere

Remotely control the oscilloscope and view the display on a PC or mobile device. View the same user interface as on the instrument itself. All oscilloscope functions are also available remotely via Ethernet or the USB-TMC interface. LabVIEW, VXI and Python instrument drivers are available.

Language selection

The MXO 5 series user interface supports multiple languages. Just a few seconds are needed to switch languages while the instrument is running. Available languages include English, German, Japanese, Korean, Chinese and Spanish. Searches will also work in different languages.

WebDAV support


You can easily access instrument data through the web distributed authoring and versioning (WebDAV) protocol to share, copy, move and edit files on the instrument through a web server. A WebDAV client can be a file transfer client or file manager like Dolphin or Nemo in Linux, Finder in Mac OS X and File Explorer in Windows. They are all capable of accessing the device through IP addresses or hostnames of devices.


INTUITIVE USER INTERFACE PLEASANT USER EXPERIENCE

Superior usability

Extensive user feedback, competitive comparisons and vast amounts of research into the latest user interface concepts outside of the test and measurement field helped in the development of the MXO 5 user interface:

- Navigate to anywhere from the pull-up menu in the lower left corner. Positioned close to the display area, you can minimize hand movement when switching between the two.
- Left-hand tab dialogs require small areas, magnifying the waveform view
- Anywhere-in-box touch allows you to activate a control by touching a large target area
- Signal icons make it easy to turn on/off sources and to adjust the R&S[®]SmartGrid layout
- Unique in the industry, the tool bar has quick access productive tools
- The toolbar space can be used to modify existing elements such as cursors, measurements and spectrum settings, or to quickly delete elements
- Fast one-touch access to trigger, horizontal, acquisition and info settings
- Select the Rohde&Schwarz icon to see current instrument details including LAN IP and firmware version
- ► UI consistent with the MXO 4, MXO 5, R&S®RTO6 and R&S®RTP oscilloscopes

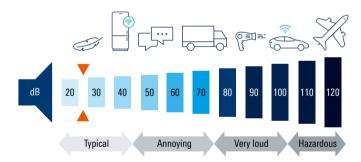
MXO 4

MXO 5

R&S®RT06

R&S®RTP

ADAPTING TO YOUR WORK STYLE SEAMLESSLY OPTIMIZED TO WORK ALONGSIDE YOU


Free up your bench

Space on lab benches is always tight. The optional R&S®MXO5-Z7 VESA mounting plate uses a commercial-off-the-shelf VESA mount. Float your oscilloscope above the bench to free up space. Weighing only 9 kg, it is the lightest in its class and can be used with standard VESA display monitor mounts.

Peace and quiet

Need a quiet space? Do loud instruments disturb others? Loud equipment? With an operating audible noise level of merely 25 dBA when 1 m from the instrument, the MXO 5 series sounds like a soft whisper. You might not even notice that it's turned on.

Removable M.2 memory

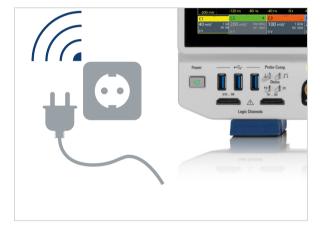

If security is a priority, there is no better method for protecting instrument information than physically storing it in a secure location. The MXO 5 series supports removable M.2 memory cards. When working in a secure lab, simply add M.2 drives and secure them as needed.

SUSTAINABLE PERFORMANCE KEEP POWER CONSUMPTION IN CHECK

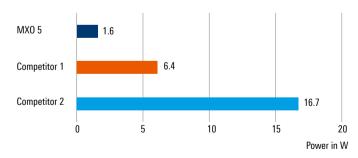
Reduce power consumption

Reducing power consumption is important now and in the future. The electrical power used over the lifecycle of an electronic device can make up 90% of its CO_2 footprint. Minimizing power consumption reduces an oscilloscope's environmental impact. Rising energy prices make reducing power consumption essential to long-term affordability.

Remotely turn on/off your Rohde & Schwarz oscilloscope


When working remotely, keeping the unit powered in the lab 24/7 can waste a lot of energy. While remote IP controlled socket power supplies are possible, most electronic equipment will only power up to a standby state with the main power switched on. The MXO 5 provides a convenient feature that allows it to be turned on automatically as soon as electric power is switched on. By simply connecting it into a smart socket system, you can enable the option of remotely turning on the device only when you intend to use it, while keeping it powered off at other times.

Maximum performance, minimum consumption


Compared previous oscilloscope generations ¹), the MXO 5 reduces standby consumption by a remarkable 40%. More impressive is that despite doubling the number of channels, enlarging the display, and exponentially increasing acquisition performance, typical power consumption remains almost unchanged²).

¹⁾ Evaluations performed with the R&S[®]HMC8015 power analyzer.

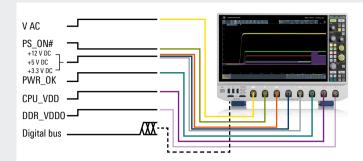
 $^{\scriptscriptstyle 2)}$ Compared with the R&S°RTE1024.

Standby power consumption

Bohde & Schwarz MXO 5 Series Oscilloscope 21

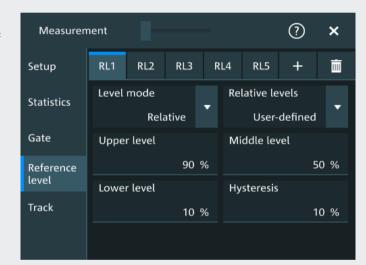
YOUR GO-TO TOOL READY FOR MANY USES

Germans like to say that with the right tools make work easy. The MXO 5 series has many tools and features that help you be more productive.


Math) ×	*	History	×	Curs	or	Measure
M1 M2 M3	M4 M5	M6 M7	7 M8 All	Available acq	5:	6404			
Math s	ummary Display	Operation	Source(s)	Current acq		-256	History	HD	Touch Lock
М1	On	+	C1, C2	Time:	14:13 47,14	1.667.540 s			LUCK
M2 M3	On a second	∆x/∆t Integral	C1 C1	Auto repeat		•	Preset	Auto- set	Clear

OPTIMIZING POWER SEQUENCING

Unparalleled power rail measurements


Do you need measure power sequencing for more than four power rails simultaneously? The MXO 5 series oscilloscope precisely measures power rail ramp up and ramp down. The oscilloscope's advanced capabilities can be used to correlate power sequencing events with other system activities. An additional 16 logic channels let you include key timing signals for further analysis. The deep memory feature ensures that the oscilloscope maintains sufficient bandwidth throughout sequences that last tens of milliseconds. Moreover, the R&S®SmartGrid function makes the arrangement of power rails easier to interpret and document.

Sampling rate	Duration (500 Mpoints)	Duration (1 Gpoints)
5 Gsample/s	100 ms	200 ms
500 Msample/s	1 s	2 s
5 Msample/s	100 s	200 s
8 ksample/s	60500 s	1 d 10 h 43 s

Flexible measurement setup

In power-related timing scenarios, delving into the specific details of where the measurement begins and ends is crucial. The MXO 5 incorporates configurable measurement reference levels and flexible gating functions for accurate measurements at the desired points. Such configurability enables precise analysis of bias voltage and gate thresholds and serves as a reliable reference for measurements.

DEBUGGING POWER RAILS AND SWITCHING CHARACTERISTICS

Accurately measure ripple and PARD

The MXO series excels in precise measurements of power noise and ripple. The low noise capability ensures accurate power integrity measurements, even at the millivolt level. The oscilloscope stands out with a fast update rate and the unique FreeRun triggering feature for quick identification of infrequent and worst-case ripple, as well as periodic and random disturbance (PARD) anomalies. The uncompromised automatic measurements of the MXO facilitate faster statistic correlation through rapid acquisition. The oscilloscopes also offer high offsets of ±5 V at the highest sensitivity, making them suitable for basic power integrity measurements even with 10x passive probes.

Characterizing power transistor switching behavior

Newer technologies in fast power MOSFET, IGBT and wide bandgap (WBG) devices require a closer look at transistor switching behavior to improve overall system efficiency with better timing control. The digital trigger in the MXO series enables precise triggering with hysteresis control that helps prevent false event detection. The ABR sequential trigger with 0 delay timing available between events also enables complex trigger setups that would not be possible without the digital trigger architecture. The 18-bit HD mode and the zone trigger give the MXO excellent event detection even in noisy environments.

Power rail characterization with high fidelity probes

The R&S®RT-ZPR probe is an excellent for accurate power rail characterization with high bandwidth, sensitivity, low noise and large offset compensation capabilities. A bandwidth of up to 2 GHz, sensitive down to a 1:1 attenuation ratio and low noise performance make the R&S®RT-ZPR probe ideal for precise ripple measurements. Combined with the probe's advanced frequency analysis capabilities, periodic and random disturbances (PARD) are effectively isolated. Furthermore, the probe has a high-precision, 18-bit DC voltmeter (R&S®ProbeMeter) for instant DC voltage readout, enhancing measurement accuracy.

Safety with isolation and high CMRR measurements

The R&S®RT-ZISO isolated probing system is designed for measurement challenges in high voltage and fast switching environments. The power-over-fiber architecture galvanically isolates the device under test (DUT) from the measurement setup for the highest common mode rejection ratio (CMRR) up to 1 GHz. The probe works seamlessly with the MXO series and is useful when characterizing high-side gate switching, where fast and high voltage transitions in the source node generate fast common signals. The probe can also be applied to high bandwidth current sensing over a series shunt resistor.

POWER ANALYSIS MADE EASY

Characterizing input power quality

Measuring AC circuit power quality can be tedious due to the numerous calculations required to determine the real, apparent and reactive power. An oscilloscope is ideal for this work because it provides a clear view of the wave-form characteristics between voltage and current, allowing engineers to quickly identify and resolve problems. The R&S®MXO5-K31 enables power quality measurements and provides concurrent analysis of three pairs of voltage and current sources.

Harmonic current analysis in line with standards

Different standards for limiting the harmonic current must be met in AC power supplies. Identifying distortion from harmonic content is tedious without a proper tool. The R&S®MXO5-K31 includes current harmonic analysis to help test in line with all common standards. You can setup three concurrent harmonic measurements.

R&S®MX05-K31 power analysis option

Power quality

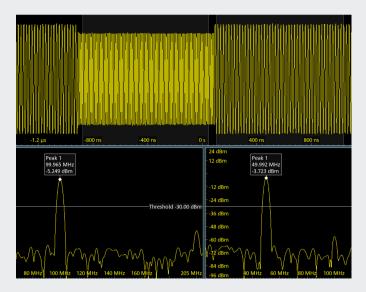
Current harmonics

active, apparent and reactive power, crest factor and phase angle THD RMS and fundamental functions, in line with EN6100-3-2 classes A, B, C, D, MIL-STD-1399 and RTCA DO-160

More analysis functions will be added in future.

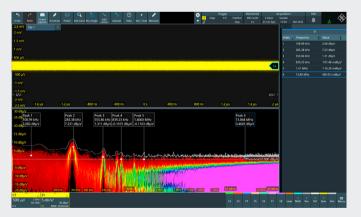
STREAMLINE YOUR EMI DEBUGGING

Effortless navigation in the frequency domain


Enjoy the familiar interface of a spectrum analyzer. The spectrum setup dialog provides basic controls such as start and stop frequency and resolution bandwidth, resembling those of a traditional spectrum analyzer. In spectrum mode, the time domain settings of the MXO 5 remain unaffected, ensuring easy navigation in the frequency domain. The maximum FFT capture bandwidth corresponds to the MXO 5 series bandwidth for a quick overview of all emissions from DC to 2 GHz.

Correlated time-frequency analysis with gated spectrum

With the gated spectrum function, restrict the spectrum analysis to a user-defined region of the captured timedomain signal. Excessive spectral emissions can be correlated to dedicated time periods in a signal. Typical applications include the correlation of unwanted emissions to fast switching edges in switched-mode power supplies or to data transfers on bus interfaces.


Ultra-fast spectrum acquisitions for spurious events

The spectrum analysis is equipped with max. hold, min. hold and average spectrum arithmetic to keep track of spectrum events that occur during the testing. These are important test receivers' functions and now come standard on the MXO 5 series.

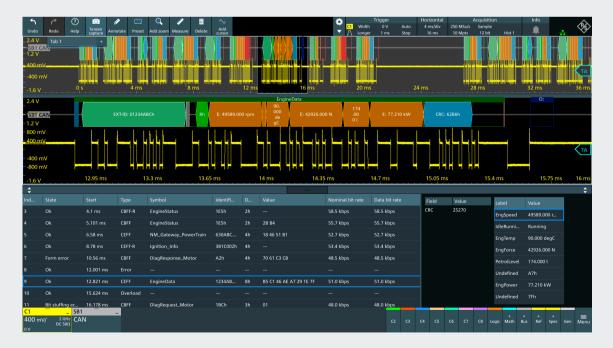
Perfect setup for EMI detection

Use the compact R&S®HZ-15 near-field probe set, designed specifically for EMI debugging of embedded designs. This probe set includes the most compact probe, which enables the capturing of near-field emissions from individual circuit lines. The R&S®HZ-15 covers the frequency range from 30 MHz to 3 GHz, with the ability to be used below 30 MHz, albeit with reduced sensitivity. The optional R&S®HZ-16 preamplifier offers a gain of 20 dB in the frequency range from 100 kHz to 3 GHz, providing higher sensitivity when needed.

LOGIC ANALYSIS

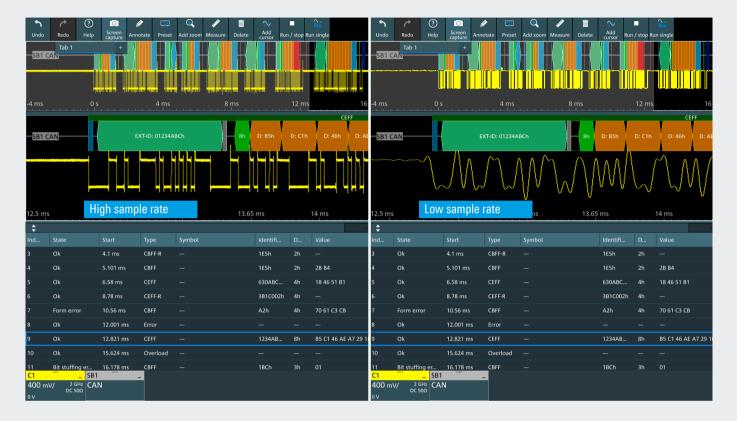
Built-in logic analysis

Every MXO 5 series oscilloscope comes equipped with MSO logic analysis capability. Just add MSO probes to get 16 digital channels. Use the MSO probes across different MXO 4 or MXO 5 oscilloscopes without the need for a software license.


See precise timing relationships

The oscilloscope logic channels run at 5 Gsample/s, delivering a high time resolution of 200 ps. With a substantial memory depth of 500 Mpoints per channel, this sampling rate remains consistent over a large range of time base settings Use logic triggering to isolate critical events like narrow glitches and specific pattern combinations

Analyze low-speed serial buses


In modern devices, high-speed interfaces often coexist with low-speed control or programming buses. Digital channels, available with the R&S®MXO5-B1 option, are tailored for precisely analyzing low-speed serial protocols such as SPI and I²C. Use analog or logic channels as sources for protocol trigger and decode with the serial bus options. By focusing on protocol details like start, address and data, gain deep insights into serial bus events. From built-in logic analysis to high-resolution signal capture and low-speed serial bus analysis.

ANALYZE SERIAL BUSES WITH PROTOCOL INNOVATION

Dual-path protocol analysis

Experience a breakthrough in protocol analysis with the MXO 5 series. Unlike conventional oscilloscopes, our dual-path protocol analysis revolutionizes the acquisition and decoding of protocol packets. Dual-path protocol analysis decouples instrument sample rates for the waveform path and automatically uses the required sample rate for the decoding path. Even with very slow sample rates or under-sampled waveforms, the protocol data is correctly decoded for decoding on alias waveforms and even longer capture times.

Capture more data packets with deep memory

Our deep memory can capture more packets. A memory depth of up to 1 Gpoints lets the MXO 5 series capture extended time periods where cause and effect may be some distance apart. Every signal detail remains time-correlated with packet content for fast and efficient debugging.

Ind	State	Start	Туре	Symbol	Identifi	D	Value	Nominal bit rate	Data bit rate	Field	Value	Label	Value
3	Ok	4.1 ms	CBFF-R	EngineStatus	1E5h			58.5 kbps	58.5 kbps	CRC	25270	EngSpeed	49589.000 r
4	Ok	5.101 ms	CBFF	EngineStatus	1E5h		2B B4	55.7 kbps	55.7 kbps			IdleRunni	Running
5	Ok	6.58 ms	CEFF	NM_Gateway_PowerTrain	630ABC	4h	18 46 51 B1	52.7 kbps	52.7 kbps			EngTemp	- 90.000 degC
6	Ok	8.78 ms	CEFF-R	Ignition_Info	3B1C002h	4h		53.4 kbps	53.4 kbps			EngForce	42926.000 N
7	Form error	10.56 ms	CBFF	DiagResponse_Motor	A2h	4h	70 61 C3 CB	48.5 kbps	48.5 kbps			PetrolLevel	174.000 l
8	Ok	12.001 ms	Error									Undefined	A7h
9	Ok	12.821 ms	CEFF	EngineData	1234AB	8h	B5 C1 46 AE A7 29 1E 7F	51.0 kbps	51.0 kbps			EngPower	77.210 kW
10	Ok	15.624 ms	Overload									Undefined	7Fh
11	Bit stuffing er	16.178 ms	CBFF	DiagRequest_Motor	1BCh	3h	01	48.0 kbps	48.0 kbps				

Customized display

Condense or expand the decoded layer with the vertical and horizontal control knobs or the intuitive touchscreen. Overlay the decoded bus on the captured signal and/or display it in a separate window for greater flexibility.

Unleash the power of protocol analysis innovation with MXO 5 series oscilloscopes. Experience dual-path protocol analysis, capture more packets with deep memory, and customize your display to enhance your analysis workflow. Stay ahead of the curve and optimize your serial bus analysis capabilities today.

Ind	State	Start	Address type	Address	RW bit	Value	Data rate
61	Ok	-2.155 ms	7 bit	1Eh	Write	17 FD	286.500 kbps
62	Ok	-2.028 ms	7 bit	38h	Read	5E 4C 82	286.800 kbps
63	Ok	-1.862 ms	7 bit	2Ah	Write		287.200 kbps
64	Ok	-1.793 ms	7 bit	2Ah	Read	EB 56 DB B7	286.500 kbps
65	Ok	-1.155 ms	7 bit	1Eh	Write	17 FD	286.500 kbps
66	Ok	-1.028 ms	7 bit	38h	Read	5E 4C 82	286.800 kbps
67	Ok	-862.326 μs	7 bit	2Ah	Write		287.200 kbps
68	Ok	-792.772 μs	7 bit	2Ah	Read	EB 56 DB B7	286.500 kbps
69	Ok	-155.289 μs	7 bit	1Eh	Write	17 FD	286.500 kbps
70	Ok	-28.046 µs	7 bit	38h	Read	5E 4C 82	286.800 kbps
	Ok	137.675 μs	7 bit	2Ah	Write		287.200 kbps
72	Ok	207.228 μs	7 bit	2Ah	Read	EB 56 DB B7	286.500 kbps
	Ok	844.71 μs	7 bit	1Eh	Write	17 FD	286.500 kbps
74	Ok	971.953 μs	7 bit	38h	Read	5E 4C 82	286.800 kbps
	Ok	1.138 ms	7 bit	2Ah	Write	5E	287.200 kbps
Ind	Value	Ack start	Ack bit				
1	EBh	268.271 μs	Ack				
2	56h	301.195 μs	Ack				
	DBh	334.149 μs	Ack				
	B7h	367.148 μs	Nack				

Trigger and decode packages

Option	Description	Buses
R&S®MXO5-K510	low speed serial buses	I ² C/SPI/RS-232/RS-422/RS-485/UART/QUAD-SPI
R&S®MXO5-K520	automotive buses	CAN/CAN FD/CAN XL/LIN
R&S®MXO4-K530	aerospace protocol	ARINC
R&S®MXO5-K550	MIPI low speed protocols	SPMI
R&S®MXO5-K560	automotive Ethernet buses	10BASE-T1S/100BASE-T1

VERSATILE INTEGRATED ARBITRARY WAVEFORM GENERATOR

Integrated two-channel waveform generator

Get fully the integrated two-channel 100 MHz arbitrary waveform generator with the R&S®MXO5-B6 option. This compact and configurable solution offers exceptional versatility for various applications, from hardware prototyping to classroom usage. With a sampling rate of 625 Msample/s and 16-bit resolution, the generator delivers reliable performance and precise control as a function or modulation generator.

Wide range of waveforms and modulation types

Stimulate your device under test with a diverse range of waveforms. Choose from sine, square/pulse, ramp, triangle, sine cardinal (sinc), arbitrary and noise waveforms. Easily customize the frequency, amplitude, offset and noise parameters for each waveform, tailoring the stimulus to your specific needs. Get integrated arbitrary waveform generation capabilities. Take advantage of the modulation feature to explore advanced signal variations.

Arbitrary waveform generator specifications	
Analog output	2 channels
Bandwidth	1 mHz to 100 MHz
Amplitude	high impedance: 20 mV to 10 V (peak-to-peak), 50 Ω: 10 mV to 5 V (peak-to-peak)
Arbitrary waveform length	1 sample to 312.5 Msample
Sample rate	625 Msample/s
Vertical resolution	16 bit
Operating modes	 function and arbitrary waveform generator (DC, sine, square/pulse, triangle, ramp, inverse ramp, sinc, arbitrary) modulation (AM, FM, FSK, PWM) frequency sweep noise

FREQUENCY RESPONSE ANALYSIS WITH BODE PLOT

Low-frequency response analysis made easy

Quickly perform low-frequency response analysis with the R&S®MXO5-K36 frequency response analysis (FRA) option. Easily characterize the frequency response of various electronic devices, including passive filters and amplifier circuits. Precisely measure the control loop response (CLR) and power supply rejection ratio (PSRR) in switch mode power supplies.

The FRA option leverages the oscilloscope's built-in waveform generator to create stimulus signals from 10 mHz to 100 MHz. By measuring the stimulus signal to output signal ratio for the device under test at each test frequency, the oscilloscope accurately plots logarithmic gain and phase for valuable insights into your device's behavior.

Enhanced features and functionality

Amplitude profile for improved SNR

The R&S[®]MXO5-K36 has user-configurable profiles of the amplitude output level from the generator. This feature optimizes the signal-to-noise ratio (SNR) at different frequency ranges, ensuring high-quality CLR and PSRR measurements.

Improved resolution and markers support

Adjust resolution and sweep time to your specific requirements with user-configurable points per decade. Markers on the traces conveniently correlate with table entries, making it easy to determine phase and gain margin with the auto placement function.

Parallel display of time domain

Gain deeper insights by monitoring the time domain alongside the frequency domain. Identify distortion and errors in measurements caused by the injected signal, which may be difficult to detect with just the Bode plot.

Measurement result table

Quickly access comprehensive information about each measured point, including frequency, gain and phase shift with the measurement result table. Save screenshots, table results, or both to a USB device for reporting and efficient documentation.

Calibration and setup

FRA has a calibration capability to help optimize measurement setups for greater accuracy when passive probes are used. The calibration data can be saved for future setup for repetitive measurements.

Broad probe portfolio for accurate characterization

Choose the right probes for accurate CLR and PSRR characterization. The low-noise R&S®RT-ZP1X 38 MHz bandwidth 1:1 passive probe is recommended for the MXO 5 series oscilloscope. The probe minimizes attenuation errors and delivers the best SNR, even at low peak-to-peak amplitudes of V_{in} and V_{out} .

R&S®MX05-K36 frequency response analysis option	
Note: R&S [®] MXO5-B6 is a prerequisite for FRA applications.	
Frequency range	10 mHz to 100 MHz
Amplitude mode	fixed or amplitude profile
Amplitude level	10 mV to 10 V into high Z; 5 mV to 5 V into 50 Ω
Test points	10 points to 500 points per decade

EXTENSIVE PROBE PORTFOLIO THE RIGHT PROBE FOR THE YOUR MEASUREMENT

MXO 5 oscilloscope comes standard with one 700 MHz passive probe for each channel. Choose from a comprehensive portfolio of high-quality passive and active probes from Rohde&Schwarz for other probe needs

Complete portfolio for power measurements

The portfolio of dedicated probes for power measurements includes active and passive probes for the different voltage and current ranges – from μ A to kA and from μ V to kV. Dedicated power rail probes detect even small and sporadic distortions on DC power rails. High voltage differential probes allow isolated floating measurements.

High-voltage differential probes

The R&S®RT-ZHD series high voltage differential probes provide excellent common mode rejection ratio (CMRR) for a broad frequency with 200 MHz bandwidth and can safely measure up to 6000 V peak voltage. Low noise makes it an ideal probe for switching power analysis with ground reference.

R&S®ProbeMeter and micro button for easy control

Our active probes feature a micro button, cleverly located on the probe tip, assign various functions to the micro button, such as run/stop, autoset, and adjust offset, enabling direct control of the oscilloscope right from the probe itself.

Most Rohde & Schwarz active probes come with the R&S[®]ProbeMeter to take precision to a whole new level. The probes impressive accuracy of 0.1% ensures reliable and trustworthy measurements. When Rohde & Schwarz designs a probe, thermal drifts, filters and usability are usually the best overall. Make measurements a breeze and get precise results with confidence.

Rohde & Schwarz has a comprehensive probe portfolio to meet every probing need.

Passive probes included as standard (38 MHz to 700 MHz) R&S®RT-ZP11, R&S®RT-ZP1X

Passive probes come standard with every Rohde&Schwarz oscilloscope. They are low cost, general purpose probes for a broad range of applications.

Passive broadband probes (8 GHz) R&S®RT-ZZ80

These are an economical vet powerful alternative to active probes for measuring high speed signals on low impedance lines. They feature extremely low input capacitance, very low noise and high linearity.

Active single-ended broadband probes (1 GHz to 6 GHz) R&S°RT-ZS10L, R&S°RT-ZS10E, R&S°RT-ZS10, R&S°RT-ZS20, R&S°RT-ZS30, R&S°RT-ZS60

A very high dynamic range and exceptionally low offset and gain errors combined with the right accessories make these probes ideal for Rohde & Schwarz oscilloscopes.

Active differential broadband probes (1 GHz to 4.5 GHz) R&S®RT-ZD10, R&S®RT-ZD20, R&S®RT-ZD30, R&S®RT-ZD40 and R&S®RT-ZA15 external attenuator

A flat frequency response and high input impedance with low input capacitance permit precise measurements on differential signals while maintaining a low load on the DUT. The CMMR for the entire probe bandwidth has high interference immunity.

Modular broadband probes (1.5 GHz to 16 GHz) R&S®RT-ZM15, R&S®RT-ZM30, R&S®RT-ZM60, R&S°RT-ZM90, R&S°RT-ZM130, R&S°RT-ZM160 Current probing requirements need a technically sophisticated, yet easyto-handle solution. The various probing solutions meet the demands for high probe bandwidths and dynamic range along with the need for low capacitive load.

Power rail probes (2 GHz and 4 GHz) R&S®RT-ZPR20, R&S®RT-ZPR40 Wide bandwidth, high sensitivity, very low noise and extra-large DC offset make these probes an excellent tool for characterizing power rails. The integrated high-precision DC voltmeter (R&S[®]ProbeMeter) provides instantaneous DC voltage readout.

High voltage probes (100 MHz to 400 MHz; ±750 V to ±6000 V) R&S®RT-ZH03, R&S®RT-ZH10, R&S®RT-ZH11, R&S®RT-ZD01, R&S®RT-ZHD07, R&S®RT-ZHD15, R&S®RT-ZHD16, R&S®RT-ZHD60

Current probes (20 kHz to 120 MHz; ±1 mA to ±2000 A) R&S®RT-ZC02, R&S®RT-ZC03, R&S®RT-ZC05B, R&S®RT-ZC10, R&S®RT-ZC10B, R&S®RT-ZC15B, R&S°RT-ZC20, R&S°RT-ZC20B, R&S°RT-ZC30, R&S®RT-ZC31

The Rohde&Schwarz portfolio of high voltage probes includes passive single-ended and active differential probes for voltages up to 6000 V (peak). Different models allow measurements in up to CAT IV environments. Differential probes provide exceptional common mode rejection over a wide bandwidth.

Rohde & Schwarz current probes enable accurate, non-intrusive measurements of DC and AC currents. Different models are available to measure currents in the range from 1 mA to 2000 A with a bandwidth of up to 120 MHz, Current probes are available with the Rohde & Schwarz probe interface or a BNC connector for an external power supply.

EMC near-field probes (30 MHz to 3 GHz) R&S®HZ-15, R&S®HZ-17

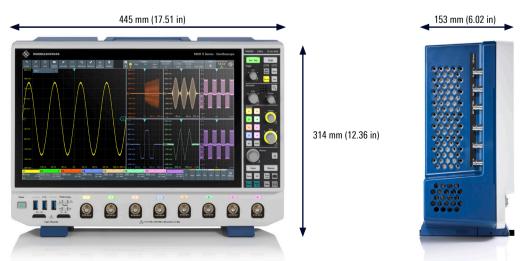
Powerful E and H near-field probes for the frequency range from 30 MHz to 3 GHz with an optional preamplifier expand the application range of the MXO 5 series oscilloscope to include EMI debugging.

AND THERE IS SO MUCH MORE ... AN OSCILLOSCOPE THAT EVOLVES FOR YOUR NEEDS

Grows with your needs: easy software based upgrades

The MXO 5 series adapts as your needs evolve. Simply install the necessary software licenses, bandwidth upgrade, triggering and decoding of serial protocols, memory expansion or the frequency response analysis option. The waveform generator is built-in, just activate it with a software license. The MSO logic analysis just requires activation of the logic probes. The bandwidth can be upgraded to 2 GHz with a software license for very easy retrofits.

Regular firmware updates


Regular firmware updates add new functionality to the MXO 5 series oscilloscopes. Download the latest firmware version at www.rohde-schwarz.com. Use a USB storage device or LAN connection for installation.

Safe transport and easy rack mounting

An extensive selection of storage and transportation accessories means the MXO 5 series oscilloscopes are always fully protected and easy to transport. The rackmount kit allows easy installation of the oscilloscope in integrated environments.

Accessories	
Front cover	R&S®MXO5-Z1
Soft case	R&S®MXO5-Z3
Transit case, with trolley function	R&S®MXO5-Z4
VESA mounting interface	R&S®MXO5-Z7
19" rackmount kit	R&S®ZZA-MXO5

THE MXO SERIES

... See the big picture with all the small details ...

OSCILLOSCOPE PORTFOLIO

	R&S®RTH1000	R&S®RTC1000	R&S®RTB2000	R&S®RTM3000
Vertical system				
Bandwidth ¹⁾	60/100/200/350/500 MHz	50/70/100/200/300 MHz	70/100/200/300 MHz	100/200/350/500 MHz/1 GHz
Number of channels	2 plus DMM/4	2	2/4	2/4
Vertical resolution; system architecture	10 bit; 16 bit	8 bit; 16 bit	10 bit; 16 bit	10 bit; 16 bit
V/div, 1 MΩ	2 mV to 100 V	1 mV to 10 V	1 mV to 5 V	500 μV to 10 V
V/div, 50 Ω	-	0	10	500 μV to 1 V
Digital channels	8	8	16	16
Horizontal system Sampling rate per channel (in Gsample/s)	1.25 (4-channel model);2.5 (2-channel model);5 (all channels interleaved)	1; 2 (2 channels interleaved)	1.25; 2.5 (2 channels interleaved)	2.5; 5 (2 channels interleaved)
Maximum memory (per channel; 1 channel active)	125 kpoints (4-channel model); 250 kpoints (2-channel model); 500 kpoints	1 Mpoints; 2 Mpoints	10 Mpoints; 20 Mpoints	40 Mpoints; 80 Mpoints
Segmented memory	standard, 50 Mpoints	-	option, 320 Mpoints	option, 400 Mpoints
Acquisition rate (in waveforms/s)	50 000	10 000	50 000 (300 000 in fast seg- mented memory mode ²⁾	64000 (2000000 in fast segmented memory mode ²⁾)
Trigger				
Types Sensitivity	digital	analog -	analog at 1 mV/div: > 2 div	analog at 1 mV/div: > 2 div
Analysis				
Mask test	tolerance mask	tolerance mask	tolerance mask	tolerance mask
•	tolerance mask elementary	tolerance mask elementary	tolerance mask basic (math on math)	tolerance mask basic (math on math)
Mask test				
Mask test Mathematics Serial protocols triggering	elementary I²C, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN, CAN FD,	elementary I²C, SPI, UART/RS-232/RS-422/	basic (math on math) I ² C, SPI, UART/RS-232/RS-422/	basic (math on math) I ² C, SPI, UART/RS-232/RS-422/RS-485,
Mask test Mathematics Serial protocols triggering and decoding ¹⁾	elementary PC, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN, CAN FD, SENT high-resolution frequency counter, advanced spectrum analysis, harmonics analysis,	elementary I ² C, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN digital voltmeter (DVM), com- ponent tester, fast Fourier trans-	basic (math on math) I ² C, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN digital voltmeter (DVM), fast Fourier transform (FFT),	basic (math on math) I ² C, SPI, UART/RS-232/RS-422/RS-485, CAN, LIN, I ² S, MIL-STD-1553, ARINC 429 power, digital voltmeter (DVM), spectrum analysis
Mask test Mathematics Serial protocols triggering and decoding ¹⁾	elementary I ² C, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN, CAN FD, SENT high-resolution frequency counter, advanced spectrum analysis, harmonics analysis, user scripting	elementary I ² C, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN digital voltmeter (DVM), com- ponent tester, fast Fourier trans- form (FFT) –	basic (math on math) I ² C, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN digital voltmeter (DVM), fast Fourier transform (FFT), frequency response analysis	basic (math on math) I ² C, SPI, UART/RS-232/RS-422/RS-485, CAN, LIN, I ² S, MIL-STD-1553, ARINC 429 power, digital voltmeter (DVM), spectrum analysis and spectrogram, frequency response analysis
Mask test Mathematics Serial protocols triggering and decoding ¹⁾ Applications ^{1), 2)} Compliance testing ^{1), 2)} Display and operation	elementary I ² C, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN, CAN FD, SENT high-resolution frequency counter, advanced spectrum analysis, harmonics analysis, user scripting	elementary I ² C, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN digital voltmeter (DVM), com- ponent tester, fast Fourier trans- form (FFT)	basic (math on math) I ² C, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN digital voltmeter (DVM), fast Fourier transform (FFT), frequency response analysis	basic (math on math) I ² C, SPI, UART/RS-232/RS-422/RS-485, CAN, LIN, I ² S, MIL-STD-1553, ARINC 429 power, digital voltmeter (DVM), spectrum analysis and spectrogram, frequency response analysis
Mask test Mathematics Serial protocols triggering and decoding ¹) Applications ^{1), 2)}	 elementary I²C, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN, CAN FD, SENT high-resolution frequency counter, advanced spectrum analysis, harmonics analysis, user scripting - 7" touchscreen, 	elementary I ² C, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN digital voltmeter (DVM), com- ponent tester, fast Fourier trans- form (FFT) – 6.5",	basic (math on math) I ² C, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN digital voltmeter (DVM), fast Fourier transform (FFT), frequency response analysis – 10.1" touchscreen,	basic (math on math) I ² C, SPI, UART/RS-232/RS-422/RS-485, CAN, LIN, I ² S, MIL-STD-1553, ARINC 429 power, digital voltmeter (DVM), spectrum analysis and spectrogram, frequency response analysis – 10.1" touchscreen,
Mask test Mathematics Serial protocols triggering and decoding ¹) Applications ^{1), 2)} Compliance testing ^{1), 2)} Display and operation Size and resolution	 elementary I²C, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN, CAN FD, SENT high-resolution frequency counter, advanced spectrum analysis, harmonics analysis, user scripting - 7" touchscreen, 	elementary I ² C, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN digital voltmeter (DVM), com- ponent tester, fast Fourier trans- form (FFT) – 6.5",	basic (math on math) I ² C, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN digital voltmeter (DVM), fast Fourier transform (FFT), frequency response analysis – 10.1" touchscreen,	basic (math on math) I ² C, SPI, UART/RS-232/RS-422/RS-485, CAN, LIN, I ² S, MIL-STD-1553, ARINC 429 power, digital voltmeter (DVM), spectrum analysis and spectrogram, frequency response analysis – 10.1" touchscreen,
Mask test Mathematics Serial protocols triggering and decoding ¹) Applications ^{1), 2)} Compliance testing ^{1), 2)} Display and operation Size and resolution General data Dimensions in mm	 elementary I²C, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN, CAN FD, SENT high-resolution frequency counter, advanced spectrum analysis, harmonics analysis, user scripting - 7" touchscreen, 800 × 480 pixel 	elementary I ² C, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN digital voltmeter (DVM), com- ponent tester, fast Fourier trans- form (FFT) - 6.5", 640 × 480 pixel	basic (math on math) I ² C, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN digital voltmeter (DVM), fast Fourier transform (FFT), frequency response analysis - 10.1" touchscreen, 1280 × 800 pixel	basic (math on math) I ² C, SPI, UART/RS-232/RS-422/RS-485, CAN, LIN, I ² S, MIL-STD-1553, ARINC 429 power, digital voltmeter (DVM), spectrum analysis and spectrogram, frequency response analysis - 10.1" touchscreen, 1280 × 800 pixel

¹⁾ Upgradeable.

²⁾ Requires an option.

MXO 4	MXO 5/MXO 5C	R&S®RT06	R&S®RTP
200/350/500 MHz/1/1.5 GHz	100/200/350/500 MHz/1/2 GHz	600 MHz/1/2/3/4/6 GHz	4/6/8/13/16 GHz
4		4	4
4	4/8	4	4
12 bit; 18 bit	12 bit; 18 bit	8 bit; 16 bit	8 bit; 16 bit
500 µV to 10 V	500 µV to 10 V	1 mV to 10 V (HD mode: 500 µV to 10 V)	
500 μV to 1 V	500 μV to 1 V	1 mV to 1 V (HD mode: 500 µV to 1 V)	2 mV to 1 V (HD mode: 1 mV to 1 V)
16	16	16	16
10	10	10	10
2.5; 5 (2 channels interleaved)	5 on 4 channels; 2.5 on 8 channels (2 channels interleaved)	10; 20 (2 channels interleaved in 4 GHz and 6 GHz model)	20; 40 (2 channels interleaved)
standard: 400 Mpoints; max. upgrade: 800 Mpoints ²⁾	standard: 500 Mpoints max. upgrade: 1 Gpoints ²⁾	standard: 200 Mpoints/800 Mpoints; max. upgrade: 1 Gpoints/2 Gpoints	standard: 100 Mpoints/400 Mpoints; max. upgrade: 3 Gpoints
standard: 10000 segments; option: 1000000 segments	standard: 10000 segments; option: 1000000 segments	standard	standard
> 4 500 000	> 4500 000 on 4 channels	1 000 000 (2 500 000 in ultra-segmented memory mode)	750 000 (3 200 000 in ultra-segmented memory mode)
advanced (includes zone trigger), digital trigger (15 trigger types)	advanced (includes zone trigger), digital trigger (15 trigger types)	advanced (includes zone trigger), digital trigger (15 trigger types), high speed serial pattern trigger including 5 Gbps clock data recovery (CDR) ²⁾	advanced (includes zone trigger), digital trigger (14 trigger types) with real-time deembedding ²), high speed serial pattern trig- ger including 8/16 Gbps clock data recovery (CDR) ²)
0.0001 div, across full bandwidth, user controllable	0.0001 div, across full bandwidth, user controllable	0.0001 div, across full bandwidth, user controllable	0.0001 div, across full bandwidth, user controllable
		user configurable, hardware based	user configurable, hardware based
advanced (formula editor)	advanced (formula editor)	advanced (formula editor, Python interface)	advanced (formula editor, Python interface)
I²C, SPI, UART/RS-232/RS-422/ RS-485, CAN, CAN FD, CAN XL, LIN, SPMI, 10BASE-T1S, ARINC, SPMI, QUAD-SPI	I ² C, SPI, UART/RS-232/RS-422/ RS-485, CAN, CAN FD, CAN XL, LIN, SPMI, 10BASE-T1S, 100BASE-T1, ARINC, SPMI, QUAD-SPI	I ² C, SPI, UART/RS-232/RS-422/RS-485, CAN, LIN, I ² S, MIL-STD-1553, ARINC 429, FlexRay [™] , CAN FD, MIPI RFFE, USB 2.0/HSIC, MDIO, 8b10b, Ethernet, Manchester, NRZ, SENT, MIPI D-PHY, SpaceWire, MIPI M-PHY/UniPro, CXPI, USB 3.1 Gen 1, USB-SSIC, PCIe 1.1/2.0, USB Power Delivery, Automotive Ethernet 100/1000BASE-T1	I ² C, SPI, UART/RS-232/RS-422/RS-485, SENT, CAN, LIN, CAN FD, MIL-STD-1553, ARINC 429, SpaceWire, USB 2.0/HSIC/PD, USB 3.1 Gen 1/Gen 2/SSIC, PCIe 1.1/2.0/3.0, 8b10b, MIPI RFFE, MIPI D/M-PHY/UniPro, Automotive Ethernet 100/1000BASE-T1, Ethernet 10/100BASE-TX, MDIO, Manchester, NRZ
power, digital voltmeter (DVM), frequency response analysis	power, digital voltmeter (DVM), frequency response analysis	power, advanced spectrum analysis and spectrogram, jitter and noise decomposition, clock data recovery (CDR), I/Q data and RF analysis (R&S®VSE), deembedding, embedding, equalization, PAM-N, TDR/TDT analysis, advanced eye diagram	advanced spectrum analysis and spectrogram, jitter and noise decomposition, real-time deembedding, embedding, equalization, PAM-N, TDR/TDT analysis, I/Q data and RF analysis (R&S®VSE), advanced eye diagram
-		see specifications (PD 5216.1640.22)	see specifications (PD 3683.5616.22)
13.3" touchscreen, 1920 × 1080 pixel (Full HD)	for MXO 5 only: 15.6" touchscreen, 1920 × 1080 pixel (Full HD)	15.6" touchscreen, 1920 × 1080 pixel (Full HD)	13.3" touchscreen, 1920 × 1080 pixel (Full HD)
414 × 279 × 162	MXO 5: 445 × 314 × 154 MXO 5C: 445 × 105 × 405	450 × 315 × 204	441 × 285 × 316
6	MXO 5: 9 MXO 5C: 8.7	10.7	18
-	-	-	-

SPECIFICATIONS OF BASE UNIT

Vertical system: analog channels		
Input channels		4 channels or 8 channels
Input impedance		50 $\Omega \pm 1.5\%$, 1 M $\Omega \pm 1\%$ 12 pF (meas.)
analog bandwidth (–3 dB)	4-channel instrument	
	at 50 Ω input impedance	
	MXO 54	≥ 350 MHz
	MXO 54 with -B245 option	≥ 500 MHz
	MXO 54 with -B2410 option	≥ 1 GHz
	MXO 54 with -B2420 option	≥ 2 GHz
	at 1 M Ω input impedance	
	MXO 54	≥ 350 MHz (meas.)
	MXO 54 with -B245 option	\geq 500 MHz (meas.)
	MXO 54 with -B2410 option	\geq 700 MHz (meas.) ¹⁾
	MXO 54 with -B2420 option	\geq 700 MHz (meas.) ¹⁾
	8-channel instrument	
	at 50 Ω input impedance	
	MXO 58	≥ 100 MHz
	MXO 58 with -B282 option	≥ 200 MHz
	MXO 58 with -B283 option	≥ 350 MHz
	MXO 58 with -B285 option	≥ 500 MHz
		≥ 1 GHz
	MXO 58 with -B2810 option MXO 58 with -B2820 option	\geq 2 GHz ²
		2 Z GHZ ⁻⁷
	at 1 MΩ input impedance	> 100 MUT (mass)
	MXO 58	≥ 100 MHz (meas.)
	MXO 58 with -B282 option	≥ 200 MHz
	MXO 58 with -B283 option	≥ 350 MHz
	MXO 58 with -B285 option	≥ 500 MHz (meas.)
	MXO 58 with -B2810 option	\geq 700 MHz (meas.) ¹⁾
	MXO 58 with -B2820 option	≥ 700 MHz (meas.) ¹⁾
dditional bandwidth filters available up to astrument bandwidth		1 GHz, 500/350/200/100/50/20 MHz (meas.)
ise/fall time (calculated)	10% to 90% at 50 Ω	
	4-channel instrument	
	MXO 54	< 1.75 ns
	MXO 54 with -B245 option	< 700 ps
	MXO 54 with -B2410 option	< 350 ps
	MXO 54 with -B2420 option	< 175 ps
	8-channel instrument	
	MXO 58	< 3.5 ns
	MXO 58 with -B282 option	< 1.75 ns
	MXO 58 with -B283 option	< 1 ns
	MXO 58 with -B285 option	< 700 ps
	MXO 58 with -B2810 option	< 350 ps
		< 175 ps ²⁾ (interleaved),
	MXO 58 with -B2820 option	< 350 ps (non-interleaved)
ffective number of bits (meas.)	at 50 Ω , 50 mV/div, with HD mode and di	igital filters, 10 MHz sine signal with 80% full-scale
	10 MHz	10.0
	20 MHz	9.6
	100 MHz	8.7
	200 MHz	8.2
	300 MHz	7.9
	500 MHz	7.6
	1 GHz	7.0
	T UTIZ	12 bit,
/ertical resolution		18 bit for high definition (HD) mode

 $^{\scriptscriptstyle 1)}~$ With R&S*RT-ZP11 passive probe.

 $^{2)}\,$ 2 GHz analog bandwidth in interleave mode with 5 Gsample/s real-time sampling rate.

vertical system: a	inalog channels								
Input sensitivity			at 50 Ω				0.5 mV/div entire anal- sensitivitie	og bandwidth su	oported for all input
				0.5 mV/div to 10 V/div,					
			at 1 MΩ	2				og bandwidth su	oported for all input
DC gain accuracy	gain accuracy		offset a	nd position set t	to 0 V, after self-alig	Inment			
			input	sensitivity > 5 n	nV/div		±1% full s	cale	
			input	sensitivity ≤ 5 n	nV/div to ≥ 1 mV/di	V	$\pm 1.5\%$ full	scale	
			input	sensitivity 500 µ	uV/div		±2.5% full	scale	
Input coupling			at 50 Ω				DC		
			at 1 MΩ	<u>)</u>			DC, AC (>	7 Hz)	
Maximum input voltage			at 50 Ω				5 V (RMS),	P	
			at 1 MΩ	<u>)</u>				S), 400 V (V _p), 20 dB/decade to	5 V (RMS) above
								S), 1650 V (V _p),	
							300 V (RM		
			at 1 MΩ	9 with R&S®RT-Z	P11 passive probe		for derating and details, see R&S [®] RT-Zxx Standard Probes specifications (PD 3607.3851.22)		
Position range							±5 div	001.22)	
Offset range at 50 ()		input se	ensitivity			10 UIV		
enourunge at out				NV/div to 3 V/div	/		±(15 V – input sensitivity × position)		
				//div to < 120 m				out sensitivity \times p	
				V/div to < 33 m				out sensitivity × p	
Offset range at 1 M	Ω		input se	ensitivity					
			800 m	nV/div to 10 V/d	iv		±200 V		
			80 mV/div to < 800 mV/div			±50 V			
			0.5 mV/div to < 80 mV/div			\pm (5 V – input sensitivity × position)			
Offset accuracy							±(0.35% × net offset + 0.5 mV + 0.1 div × input sensitivity); (net offset = offset – position × input sensit		
			after ad	equate suppres	sion of measureme	nt			
DC measurement a	ccuracy		noise using high definition (HD) mode or wave-			±(DC gain offset accu		ng – net offset +	
same input sensitiv	l isolation (each char ity)	inel at	input frequency inside instrument bandwidth		> 60 dB (1	:1000)			
RMS noise floor ³⁾									
At 50 Ω (meas.)	Input sensitivity			h (–3 dB)	050 144	500		1.011	0.011
	0.5 mV/div	100 MH	Z	200 MHz	350 MHz		MHz	1 GHz	2 GHz
	1 mV/div	19 μV 24 μV		26 μV 33 μV	33 μV 42 μV	39 51		66 μV 85 μV	111 μV 141 μV
	2 mV/div	24 μV 25 μV		35 μV 35 μV	42 μV	53		89 μV	146 μV
	2 1110/010	20 U V		50 µ V	ΨΨΨ	55			
	5 mV/div			46 uV	59 uV	71	JV	116 uV	182 uV
	5 mV/div 10 mV/div	34 μV		46 μV 89 μV	59 μV 115 μV	71 138		116 μV 226 μV	182 μV 350 μV
				46 μV 89 μV 181 μV	59 μV 115 μV 233 μV	138	μV	116 μV 226 μV 461 μV	182 μV 350 μV 713 μV
	10 mV/div	34 μV 66 μV		89 µV	115 µV		μV μV	226 µV	350 µV
	10 mV/div 20 mV/div	34 μV 66 μV 134 μV		89 μV 181 μV	115 μV 233 μV	138 280 677	μV μV	226 μV 461 μV	350 μV 713 μV
	10 mV/div 20 mV/div 50 mV/div	34 μV 66 μV 134 μV 324 μV	/	89 μV 181 μV 436 μV	115 μV 233 μV 563 μV	138 280 677 1.20	μV μV μV	226 μV 461 μV 1.12 mV	350 μV 713 μV 1.78 mV
	10 mV/div 20 mV/div 50 mV/div 100 mV/div	34 μV 66 μV 134 μV 324 μV 610 μV		89 μV 181 μV 436 μV 815 μV	115 μV 233 μV 563 μV 1.05 mV	138 280 677 1.20 2.60	μV μV μV δ mV	226 μV 461 μV 1.12 mV 2.08 mV	350 μV 713 μV 1.78 mV 3.25 mV
	10 mV/div 20 mV/div 50 mV/div 100 mV/div 200 mV/div 500 mV/div 1 V/div	34 μV 66 μV 134 μV 324 μV 610 μV 1.26 mV 4.21 mV	/ /	89 μV 181 μV 436 μV 815 μV 1.69 mV 5.54 mV 9.20 mV	115 μV 233 μV 563 μV 1.05 mV 2.17 mV 6.94 mV 11.71 mV	138 280 677 1.20 2.60 8.2 14.0	μV μV δ mV) mV I mV 2 mV	226 µV 461 µV 1.12 mV 2.08 mV 4.31 mV 12.93 mV 22.57 mV	350 μV 713 μV 1.78 mV 3.25 mV 6.74 mV 18.63 mV 32.89 mV
	10 mV/div 20 mV/div 50 mV/div 100 mV/div 200 mV/div 500 mV/div 1 V/div 2 V/div	34 μV 66 μV 134 μV 324 μV 610 μV 1.26 mV 4.21 mV 6.88 mV 11.45 m	/ / V	89 μV 181 μV 436 μV 815 μV 1.69 mV 5.54 mV 9.20 mV 15.21 mV	115 μV 233 μV 563 μV 1.05 mV 2.17 mV 6.94 mV 11.71 mV 19.45 mV	138 280 677 1.20 2.60 8.2 14.0 23.1	μV μV δ mV 0 mV 1 mV 02 mV 21 mV	226 μV 461 μV 1.12 mV 2.08 mV 4.31 mV 12.93 mV 22.57 mV 37.85 mV	350 μV 713 μV 1.78 mV 3.25 mV 6.74 mV 18.63 mV 32.89 mV 54.59 mV
	10 mV/div 20 mV/div 50 mV/div 100 mV/div 200 mV/div 500 mV/div 1 V/div 2 V/div 3 V/div	34 µV 66 µV 134 µV 324 µV 610 µV 1.26 mV 4.21 mV 6.88 mV 11.45 m	/ / /V	89 μV 181 μV 436 μV 815 μV 1.69 mV 5.54 mV 9.20 mV 15.21 mV 20.78 mV	115 μV 233 μV 563 μV 1.05 mV 2.17 mV 6.94 mV 11.71 mV	138 280 677 1.20 2.60 8.2 14.0 23.1	μV μV δ mV) mV I mV 2 mV	226 µV 461 µV 1.12 mV 2.08 mV 4.31 mV 12.93 mV 22.57 mV	350 μV 713 μV 1.78 mV 3.25 mV 6.74 mV 18.63 mV 32.89 mV
At 1 MΩ (meas.)	10 mV/div 20 mV/div 50 mV/div 100 mV/div 200 mV/div 500 mV/div 1 V/div 2 V/div	34 µV 66 µV 134 µV 324 µV 610 µV 1.26 mV 4.21 mV 6.88 mV 11.45 m 15.77 m Analog	/ / IV IV bandwidt	89 μV 181 μV 436 μV 815 μV 1.69 mV 5.54 mV 9.20 mV 15.21 mV 20.78 mV h (-3 dB)	115 μV 233 μV 563 μV 1.05 mV 2.17 mV 6.94 mV 11.71 mV 19.45 mV 26.54 mV	138 280 677 1.20 2.60 8.2 14. 23.3 31.	μV μV δ mV 0 mV 1 mV 22 mV 21 mV 71 mV	226 μV 461 μV 1.12 mV 2.08 mV 4.31 mV 12.93 mV 22.57 mV 37.85 mV 51.80 mV	350 μV 713 μV 1.78 mV 3.25 mV 6.74 mV 18.63 mV 32.89 mV 54.59 mV
At 1 MΩ (meas.)	10 mV/div 20 mV/div 50 mV/div 200 mV/div 200 mV/div 500 mV/div 1 V/div 2 V/div 3 V/div Input sensitivity	34 µV 66 µV 134 µV 324 µV 610 µV 1.26 mV 4.21 mV 6.88 mV 11.45 m 15.77 m Analog 100 MH	/ / IV IV bandwidt	89 μV 181 μV 436 μV 815 μV 1.69 mV 5.54 mV 9.20 mV 15.21 mV 20.78 mV h (-3 dB) 200 MHz	115 μV 233 μV 563 μV 1.05 mV 2.17 mV 6.94 mV 11.71 mV 19.45 mV 26.54 mV	138 280 677 1.20 2.60 8.2 14.0 23.1 31.1 500	μV μV δ mV 0 mV 1 mV 21 mV 21 mV 71 mV MHz	226 µV 461 µV 1.12 mV 2.08 mV 4.31 mV 12.93 mV 22.57 mV 37.85 mV 51.80 mV	350 μV 713 μV 1.78 mV 3.25 mV 6.74 mV 18.63 mV 32.89 mV 54.59 mV
At 1 MΩ (meas.)	 10 mV/div 20 mV/div 50 mV/div 100 mV/div 200 mV/div 500 mV/div 1 V/div 2 V/div 3 V/div Input sensitivity 0.5 mV/div 	34 μV 66 μV 134 μV 324 μV 610 μV 1.26 mV 4.21 mV 6.88 mV 11.45 m 15.77 m Analog 100 MH 35 μV	/ / IV IV bandwidt	89 μV 181 μV 436 μV 815 μV 1.69 mV 5.54 mV 9.20 mV 15.21 mV 20.78 mV h (-3 dB) 200 MHz 40 μV	115 μV 233 μV 563 μV 1.05 mV 2.17 mV 6.94 mV 11.71 mV 19.45 mV 26.54 mV 350 MHz 46 μV	138 280 677 1.20 2.60 8.2 14.0 23.3 31. 500 54	μV μV ωV δ mV 0 mV 1 mV 21 mV 21 mV 71 mV MHz μV	226 μV 461 μV 1.12 mV 2.08 mV 4.31 mV 12.93 mV 22.57 mV 37.85 mV 51.80 mV 700 MHz 85 μV	350 μV 713 μV 1.78 mV 3.25 mV 6.74 mV 18.63 mV 32.89 mV 54.59 mV
At 1 MΩ (meas.)	 10 mV/div 20 mV/div 50 mV/div 100 mV/div 200 mV/div 500 mV/div 1 V/div 2 V/div 3 V/div Input sensitivity 0.5 mV/div 1 mV/div 	34 µV 66 µV 134 µV 324 µV 610 µV 1.26 mV 4.21 mV 6.88 mV 11.45 m 15.77 m Analog 100 MH 35 µV 36 µV	/ / IV IV bandwidt	89 μV 181 μV 436 μV 815 μV 1.69 mV 5.54 mV 9.20 mV 15.21 mV 20.78 mV h (-3 dB) 200 MHz 40 μV 42 μV	115 μV 233 μV 563 μV 1.05 mV 2.17 mV 6.94 mV 11.71 mV 19.45 mV 26.54 mV 350 MHz 46 μV 49 μV	138 280 677 1.2 2.6 8.2 14. 23. 31. 500 54 57	μV μV δ mV 0 mV 1 mV 21 mV 21 mV 21 mV 71 mV MHz μV	226 μV 461 μV 1.12 mV 2.08 mV 4.31 mV 12.93 mV 22.57 mV 37.85 mV 51.80 mV 700 MHz 85 μV 89 μV	350 μV 713 μV 1.78 mV 3.25 mV 6.74 mV 18.63 mV 32.89 mV 54.59 mV
At 1 MΩ (meas.)	 10 mV/div 20 mV/div 50 mV/div 100 mV/div 200 mV/div 500 mV/div 1 V/div 2 V/div 3 V/div Input sensitivity 0.5 mV/div 1 mV/div 2 mV/div 	34 μV 66 μV 134 μV 324 μV 610 μV 1.26 mV 4.21 mV 6.88 mV 11.45 m 15.77 m Analog 100 MH 35 μV 36 μV 38 μV	/ / IV IV bandwidt	89 μV 181 μV 436 μV 815 μV 1.69 mV 5.54 mV 9.20 mV 15.21 mV 20.78 mV h (-3 dB) 200 MHz 40 μV 42 μV 45 μV	115 μV 233 μV 563 μV 1.05 mV 2.17 mV 6.94 mV 11.71 mV 19.45 mV 26.54 mV 350 MHz 46 μV 49 μV 54 μV	138 280 677 1.2 2.6 8.2 14. 23.3 31. 500 54 57 64	μV μV δ mV 0 mV 1 mV 21 mV 21 mV 21 mV 71 mV MHz μV μV	226 μV 461 μV 1.12 mV 2.08 mV 4.31 mV 12.93 mV 22.57 mV 37.85 mV 51.80 mV 700 MHz 85 μV 89 μV 101 μV	350 μV 713 μV 1.78 mV 3.25 mV 6.74 mV 18.63 mV 32.89 mV 54.59 mV
At 1 MΩ (meas.)	 10 mV/div 20 mV/div 50 mV/div 100 mV/div 200 mV/div 500 mV/div 1 V/div 2 V/div 3 V/div Input sensitivity 0.5 mV/div 1 mV/div 	34 µV 66 µV 134 µV 324 µV 610 µV 1.26 mV 4.21 mV 6.88 mV 11.45 m 15.77 m Analog 100 MH 35 µV 36 µV	/ / IV IV bandwidt	89 μV 181 μV 436 μV 815 μV 1.69 mV 5.54 mV 9.20 mV 15.21 mV 20.78 mV h (-3 dB) 200 MHz 40 μV 42 μV	115 μV 233 μV 563 μV 1.05 mV 2.17 mV 6.94 mV 11.71 mV 19.45 mV 26.54 mV 350 MHz 46 μV 49 μV	138 280 677 1.2 2.6 8.2 14. 23. 31. 500 54 57	μV μV δ mV 0 mV 1 mV 21 mV 21 mV 21 mV 21 mV 21 mV 41	226 μV 461 μV 1.12 mV 2.08 mV 4.31 mV 12.93 mV 22.57 mV 37.85 mV 51.80 mV 700 MHz 85 μV 89 μV	350 μV 713 μV 1.78 mV 3.25 mV 6.74 mV 18.63 mV 32.89 mV 54.59 mV

 $^{\rm 3)}~$ HD mode active for bandwidth \leq 500 MHz.

50 mV/div	297 µV	401 µV	592 µV	719 µV	1.08 mV
100 mV/div	678 μV	892 µV	1.25 mV	1.47 mV	2.16 mV
200 mV/div	1.21 mV	1.62 mV	2.33 mV	2.77 mV	4.09 mV
500 mV/div	2.88 mV	3.88 mV	5.68 mV	6.76 mV	10.01 mV
1 V/div	6.11 mV	8.08 mV	11.54 mV	13.56 mV	18.51 mV
2 V/div	11.42 mV	15.20 mV	22.04 mV	25.98 mV	35.39 mV
5 V/div	29.10 mV	38.75 mV	56.46 mV	66.60 mV	90.40 mV
10 V/div	44.33 mV	58.62 mV	85.77 mV	101.12 mV	137.86 mV

Vertical system: digital channels		
Input channels		16 logic channels (D0 to D15)
Arrangement of input channels		arranged in two logic probes with 8 channels each, assignment of the logic probes to the channels (D0 to D7 and D8 to D15) is displayed on the probe
Input impedance		100 k Ω \pm 2 % \parallel ~4 pF (meas.) at probe tips
Maximum input frequency	signal with minimum input voltage swing and hysteresis setting: normal	400 MHz (meas.)
Maximum input voltage		$\pm 40 \vee (V_p)$
Minimum input voltage swing		500 mV (V _{pp}) (meas.)
Threshold groups		D0 to D3, D4 to D7, D8 to D11 and D12 to D15
Threshold level	range	±8 V in 25 mV steps
	predefined	CMOS 5.0 V, CMOS 3.3 V, CMOS 2.5 V, TTL, ECL, PECL, LVPECL
Threshold accuracy	threshold level between ±4 V	±(100 mV + 3% of threshold setting)
Comparator hysteresis		normal, robust, maximum
Horizontal system		
Timebase range		selectable between 200 ps/div and 10000 s/div time per div settable to any value within range
Deskew range (channel deskew)	between analog channels	±20 ms
	between digital channels	±100 ns
Reference position		0% to 100% of measurement display area
Horizontal position range (trigger offset range)	max.	+(memory depth/current sampling rate)
	min.	–5000 s
Modes		normal
Channel-to-channel skew	between analog channels	< 100 ps (meas.)
	between digital channels	< 500 ps (meas.)
Timebase accuracy	after delivery/calibration, at +23°C	±0.2 ppm
Delta time accuracy	during calibration interval corresponds to time error between two edges on same acquisition and channel; signal ampli- tude greater than five divisions, measurement threshold set to 50%, vertical gain 10 mV/div or greater; rise time lower than four sample peri- ods; waveform acquired in real-time mode	±1 ppm ±(0.20/real-time sampling rate + timebase accuracy × reading) (peak) (meas.)
Acquisition system		
Sampling rate	analog channels (real time)	max. 5 Gsample/s on 4 channels, max. 2.5 Gsample/s on 8 channels
	analog channels (interpolated)	max. 5 Tsample/s
	digital channels	max. 5 Gsample/s on each channel
Waveform acquisition rate	max.	> 4500000 waveforms/s
Trigger rearm time	min.	< 21 ns
Memory depth ⁴⁾	standard	
	analog channels only	 with 8 active channels: max. 500 Mpoints (single capture) with 4 active channels: max. 500 Mpoints (run continuous) max. 500 Mpoints (single capture and run continuous)

⁴⁾ The maximum available memory depth depends on the bit resolution of the acquired data and, therefore, on the acquisition system settings such as decimation mode, use of waveform arithmetics or high definition (HD) mode. Interleave channels of the MXO 58 are on C1 and C5, C2 and C6, C3 and C7 as well as C4 and C8. For the MXO 54, all 4 channels run with 5 Gsample/s and maximum bandwidth.

	digital channels only (MSO)	 with 16 digital channels: max. 500 Mpoints (single capture) with 8 digital channels: max. 500 Mpoints (run continuous)
	mix analog and digital	with 2 analog and 8 digital channels: ► max. 500 Mpoints (single capture) ► max. 250 Mpoints (run continuous)
	with R&S®MXO5-B110 memory option 1 Gpoints	
	analog channels only	 with 4 active channels: max. 1 Gpoints (single capture) with 2 active channels: max. 1 Gpoints (run continuous)
	digital channels only (MSO)	with 8 digital channels: ▶ max. 1 Gpoints (single capture) ▶ max. 500 Mpoints (run continuous)
	mix analog and digital	with 2 analog and 8 digital channels: ▶ max. 500 Mpoints (single capture) ▶ max. 250 Mpoints (run continuous)
	math	
	with 1 active math	max. 87.5 Mpoints
	with 2 active math	max. 42.5 Mpoints
	with 2 active math	max. 20 Mpoints
	with 2 active math	max. 10 Mpoints
Acquisition modes	sample	middle sample in decimation interval
	peak detect	largest and smallest sample in decimation interval
	average	average value of samples in decimation interval
	number of averaged waveforms	2 to 16777215
	envelope	envelope of acquired waveforms
Sampling modes	real-time mode	max. sampling rate set by digitizer
	interpolated time	enhancement of sampling resolution by interpo- lation; max. sampling rate is 5 Tsample/s
Interpolation modes		linear, sin(x)/x, sample&hold
Fast segmentation mode	continuous recording of waveforms in acquisition	memory without interruption due to visualization
	max. real-time waveform acquisition rate	> 4600000 waveforms/s
	min. blind time between consecutive acquisitions	< 21 ns

High definition mode				
General description	The high definition mode increases the bit resolution of the waveform signal by using digital filter- ing, leading to reduced noise. Because of the digital trigger concept of the MXO 5, signals with increased numeric resolution are used as the input for triggering.			
Numeric resolution	bandwidth, at 5 Gsample/s	bit resolution		
	1 kHz to 10 MHz	18 bit		
	100 MHz	16 bit		
	200 MHz	15 bit		
	500 MHz	14 bit		
Real-time sampling rate	all models	max. 2.5 Gsample/s on 4 channels, max. 1.25 Gsample/s on 8 channels		

Trigg		C 1		am
IIIuu	GL	ъ v	- 1	юш

Trigger sources		analog channels (C1 to C8), digital channels (D0 to D15), trigger input, line trigger, serial bus
Trigger level range		±5 div from center of screen
Trigger modes		auto, normal, single, n single
Trigger sensitivity		0.0001 div, from DC to instrument bandwidth for all vertical scales, user adjustable
Trigger jitter	full-scale sine wave of frequency set to –3 dB bandwidth	< 1 ps (RMS) (meas.)
Coupling mode	standard	same as selected channel
	HF reject	cutoff frequency selectable from 1 kHz to 500 MHz
	LF reject	attenuates frequencies < 50 kHz

Trigger system					
Trigger hysteresis	modes	auto (default setting) or manual			
	adjustment resolution	0.0001 div, from DC to instrument bandwidth for all vertical scales			
Holdoff range	time	100 ns to 10 s, fixed and random			
Main trigger modes					
Edge	triggers on specified edge (positive	e, negative or either) and level			
Glitch	triggers on glitches of positive, neg width	gative or either polarity that are shorter or longer than specified			
	glitch width	200 ps to 1000 s			
Width	triggers on positive or negative pul- outside a specified range	se of specified width; width can be shorter, longer, inside or			
	pulse width	200 ps to 1000 s			
Runt		ive or either polarity that crosses one threshold but fails to cross g the first one again; runt pulse width can be arbitrary, shorter, d range			
	runt pulse width	200 ps to 1000 s			
Window	triggers when signal enters or exits or outside the voltage range for a s	a specified voltage range; triggers also when signal stays inside period of time			
Timeout	triggers when signal stays high, low	w or unchanged for a specified period of time			
	timeout	0 ps to 1000 s			
Interval	triggers when time between two co longer, inside or outside a specified	onsecutive edges of same slope (positive or negative) is shorter, I range			
	interval time	200 ps to 1000 s			
Slew rate		a signal edge to toggle between user-defined upper and lower ide or outside a specified range; edge slope may be positive,			
	toggle time	0 ps to 1000 s			
Setup & hold		ne violations between clock and data present on any two input may be specified by the user in the range from –100 s to 100 s at least 200 ps wide			
Pattern	_	n (and, nand, or, nor) of the input channels stays true for a period			
State	triggers when a logical combination (positive, negative or either) in one	n (and, nand, or, nor) of the input channels stays true at a slope selected channel			
Advanced trigger modes					
Zone trigger	triggers on user-defined zones drav	wn on the display			
	source	acquired waveforms (input channels), math waveforms (including power analysis wave- forms), spectrum waveforms			
	number of zones/areas	up to 4 zones with up to 8 areas each			
	area shapes	polygons with up to 16 points			
	area types	must intersect, must not intersect			
	combination of zones	logical combination of zones of multiple sources using Boolean expressions			
	trigger compatibility	requires sequence trigger A ▷ zone trigger where primary A condition can be: edge, glitch, width, runt, window, timeout, interval, slew rate, state, pattern			
Sequence trigger (A/B/R trigger)		triggers on B event after occurrence of A event; delay condition after A event specified as time interval; an optional R event resets the trigger sequence to A			
	trigger sources	analog channels (C1 to C8)			
	A event	edge, glitch, width, runt, window, timeout, interval, slew rate			
	B event	edge, glitch, width, runt, window, timeout, interval, slew rate			
	R event	edge, glitch, width, runt, window, timeout, interval, slew rate			
Serial bus trigger	optional	see dedicated triggering and decoding options			
Trigger input	input impedance	50 Ω (meas.) or 1 MΩ (meas.) 11 pF (meas.)			
	max. input voltage at 50 Ω	30 V (V _p)			
	max. input voltage at 1 $\ensuremath{M\Omega}$	300 V ($\overset{\circ}{M}$ MS), 400 V (V_p), derates at 20 dB/decade to 5 V (RMS) above 250 kHz			
	trigger level	±5 V			

Trigger system				
	sensitivity			
	input frequency ≤ 500 MHz	300 mV (V _{pp}) (meas.)		
	input coupling	AC, DC (50 Ω and 1 M $\Omega)$		
	trigger filter	HF reject (attenuates > 50 kHz), LF reject (attenuates < 50 kHz), noise reject		
	trigger modes	edge (positive, negative or either)		
Trigger output	functionality	A pulse is generated for each event triggering signal acquisition.		
	output voltage	0 V to 5 V (nom.) at high impedance; 0 V to 2.5 V (nom.) at 50 Ω		
	pulse width	selectable between 16 ns and 50 ms		
	pulse polarity	low active or high active		
	output delay	depends on trigger settings		

Spectrum analysis				
General description	Spectrum analysis allows up to four signal analysis in the frequency domain.			
Spectrum	sources	channel 1 to channel 8		
	setup parameters	center frequency, frequency span, resolution bandwidth (automatic or manual), gate position, gate width, vertical scaling, vertical position		
	scaling	dBm, dBV, dBµV, V (RMS)		
	span	1 Hz to 1.8 GHz ⁵⁾		
	resolution bandwidth (RBW)	$(span/4) \ge RBW \ge (span/6000)$		
	windows	flat top, Hanning, Hamming, Blackman, rectan- gular, Kaiser Bessel, Gaussian		
	trace types	normal, max. hold, min. hold, average		
	max. real-time waveform acquisition rate	> 40 000 waveforms/s		
Gate	delimits the display region used for spectrum analysis			
Peak list	The values in the peak list are also shown in the diagram to allow easy correlation.			

RF characteristics			
Sensitivity/noise density	at 1 GHz (measurement of the power spectral density at 1 GHz at input sensitivity 2 mV/div, corresponding to –30 dBm input range of the oscilloscope, using spectrum analysis with center frequency 1 GHz, span 500 kHz, RBW 3 kHz)	–160 dBm (1 Hz) (meas.)	
Noise figure	at 1 GHz (calculated based on the noise power density above)	14 dB (meas.)	
Dynamic range	measured for a 1 GHz input carrier with level -3 dBm at input of oscilloscope, using spec- trum analysis with center frequency 1 GHz, span 2 MHz, RBW 400 Hz at +20 MHz from center frequency	106 dB (meas.)	
Absolute amplitude accuracy	0 Hz to 1.2 GHz	±1 dB (meas.)	
Spurious-free dynamic range (excluding harmonics)	measured for a 250 MHz input carrier with level –3 dBm at input sensitivity 50 mV/div, using spectrum analysis with center frequency 900 MHz, span 1.8 GHz, RBW 300 kHz	67 dBc (meas.)	
Second harmonic distortion	measured for a 250 MHz input carrier with level –3 dBm at input sensitivity 50 mV/div, using spectrum analysis with center frequency 900 MHz, span 1.8 GHz, RBW 300 kHz	–65 dBc (meas.)	
Third harmonic distortion	measured for a 250 MHz input carrier with level –3 dBm at input sensitivity 50 mV/div, using spectrum analysis with center frequency 900 MHz, span 1.8 GHz, RBW 300 kHz	–49 dBc (meas.)	

 $^{\scriptscriptstyle 5)}\,$ The stop frequency depends on the analog bandwidth of the instrument.

-

Automatic measurements	measurements on acquired waveforms (input channels), math waveforms, reference waveforms	amplitude, high, low, maximum, minimum, peak-to-peak, mean, RMS, sigma, positive over- shoot, negative overshoot, area, rise time, fall time, positive pulse width, negative pulse width, period, frequency, positive duty cycle, nega- tive duty cycle, delay, phase, burst width, pulse count, edge count, pulse train, positive switch- ing, negative switching, cycle area, cycle mean, cycle RMS, cycle sigma, setup, hold, setup/hold time, setup/hold ratio, slew rate rising, slew rate falling, delay to trigger	
	gate	delimits the display region evaluated for auto- matic measurements	
	reference levels	user-configurable vertical levels define support structures for automatic measurements	
	statistics	displays maximum, minimum, mean, standard deviation and measurement count for each auto- matic measurement	
	number of active measurements	24	
Cursor measurements	available cursors	up to four cursor sets on screen, each set with two horizontal and two vertical cursors	
	target waveforms	acquired waveforms (input channels), math waveforms, reference waveforms, XY diagrams	
	operating modes	vertical measurements, horizontal measure- ments, or both; vertical cursors either set manually or locked to waveform	
Waveform math			
General features	number of math equations	up to 8	
	number of reference waveforms	up to 8	
	sources	channel 1 to 8, math waveforms 1 to 8, reference waveforms 1 to 8	
Functions	operators	add, subtract, multiply, divide, absolute value, square, square root, integrate, differentiate, log, log_e , log_2 , reciprocal, invert, lowpass, highpass, rescale (a · x + b)	
	filters	lowpass, highpass	
	filter types	Gaussian, rectangular	
	gate	delimits the display region used for waveform math	
Digital voltmeter			
Accuracy		related to channel settings of voltmeter source	
Measurements		DC, DC RMS, AC RMS	
Sources	MXO 54	C1, C2, C3, C4	
	MXO 58	C1, C2, C3, C4, C5, C6, C7, C8	
Number of measurements		up to 4	
Resolution		up to 6 digits	
Bandwidth		up to 20 MHz	
Display characteristics			
Diagram types	Yt, zoom, spectrum		
Display configuration (waveform layout)	The display area can be split into separate diagram areas by dragging and dropping signal icons. Each diagram can hold any number of signals. Diagrams can be stacked on top of each other and later accessed via dynamic tabs (Tab 1, etc.)		
Signal icons	individual vertical and acquisition settings.	Each active waveform is represented by a signal icon on the signal bar; the signal icon displays the individual vertical and acquisition settings.	
Toolbar		Enables quick access to important tools; allows to set the most common parameters directly in a simple menu and gives access to more detailed parameters in the main menu. User-defined selec-	

Display characteristics	
Diagram layout	The grid, crosshair, axis labeling and diagram labeling can be switched on and off separately.
Persistence	50 ms to 50 s, or infinite
Zoom	vertical and horizontal; touch interface simplifies resize and drag operations on zoom window
Signal colors (waveform coding)	predefined or user-defined color tables for persistence display
5 . 5.	

History and segmented memory				
Acquisition memory	automatic	_	gment size and sample rate	
	manual		segment size and sample rate	
Memory segmentation	function	memory segments for t	•	
	number of segments	record length	segments ⁶⁾ (up to)	
		1 kpoints	1 048 575	
		2 kpoints	524287	
		5 kpoints	262143	
		10 kpoints	131071	
		20 kpoints	65535	
		50 kpoints	32767	
		100 kpoints	16383	
		200 kpoints	9361	
		500 kpoints	4095	
		1 Mpoints	2113	
		2 Mpoints	1056	
		5 Mpoints	427	
		10 Mpoints	213	
		20 Mpoints	106	
		50 Mpoints	41	
		100 Mpoints	20	
		200 Mpoints	9	
		500 Mpoints	3	
		1 Gpoints	1	
	Segmentation is available for analysis.	or all analog and logic channe	ls, protocol decoding and spectrum	
Fast-segmented mode	0	continuous recording of waveforms in acquisition memory without interruption due to visualization; for blind time between consecutive acquisitions, see Acquisition system		
History mode	function	The history mode is an past acquisitions in the	always-on function and provides access to segmented memory.	
	timestamp resolution	1 ns		
	history player	, ,	replays the recorded waveforms; repetition possible; adjustable speed; manual switching to next/previous segment; numerical segment number input	
	analyze options		verage all segments, envelope all segment	
Miscellaneous				
Remote control	web interface		peration of the instrument's touch interface	

Remote control	web interface	full operation of the instrument's touch interface, keys and multifunction wheel via web browser
	VNC	control of the instrument through virtual network computing
	SCPI	standard instrument programming interface through VISA
	WebDAV	support for the web distributed authoring and versioning (WebDAV) protocol, which provides secure access through an application proxy
Languages	available languages for the user interface	English, German, French, Simplified Chinese, Traditional Chinese, Japanese, Russian, Spanish, Italian, Portuguese, Korean, Czech, Polish
	online help on the instrument	English

⁶ With R&S®MXO5-B110 memory option. The maximum number of segments depends on the number of active channels and the bit resolution of the acquired data and, therefore, on the acquisition system settings such as decimation mode, use of waveform arithmetics or high definition (HD) mode. The maximum number of segments without the R&S®MXO5-B110 memory option is limited to 10 000.

Input and output		
Front		
Channel inputs		BNC; for details, see Vertical system
	probe interface	auto detection of passive probes,
	probe interface	Rohde&Schwarz active probe interface
Trigger input		BNC; for details, see Trigger system
	probe interface	auto detection of passive probes
Waveform generator outputs (requires R&S®MXO5-B6 option)		BNC; for details, see R&S®MXO5-B6, waveform generator, demo lugs and GND lug
Digital channel inputs	D15 to D8, D7 to D0	interface for R&S®RT-ZL04 logic probe
Probe compensation output	signal shape	rectangle, $V_{low} = 0 V$, $V_{high} = 3.3 V$ amplitude 3.3 V (V_{pp}) ± 5% (meas.)
	frequency	1 kHz ± 1% (meas.)
USB interfaces		3 × USB 3.1 Gen 1 ports, type A plug
Rear		
Trigger out		BNC; for details, see Trigger system
USB interface		1 × USB 3.1 Gen 1 port, type B plug
Reference input	connector	BNC
	impedance	50 Ω (nom.)
	input frequency	10 MHz (±20 ppm)
	sensitivity	≥ -10 dBm into 50 Ω , ≤ 10 dBm at 10 MHz
Reference output	connector	BNC
	impedance	50 Ω (nom.)
	output signal	10 MHz (specified with timebase accuracy), 8 dBm (nom.)
Security slot		for standard Kensington style lock
VESA mount	via R&S®MXO5-Z7 VESA adapter	VESA compatibility mounting interface, 100 mm × 100 mm pattern size, according FDMI MIS-D, up to 14 kg with M4x10 screws
Right side		
Ground jack		connected to ground
USB interfaces		2 × USB 3.1 Gen 1 ports, type A plug
LAN interface		RJ-45 connector, supports 10/100/1000BASE-T
External monitor interface		HDMI™ 2.0 and DisplayPort++ 1.3, output of oscilloscope display

The terms HDMI and HDMI High-Definition Multimedia Interface, and the HDMI Logo are trademarks or registered trademarks of HDMI Licensing, LLC in the United States and other countries.

General data		
Display	type	15.6" LC TFT color display with capacitive
Diopidy		touchscreen
Temperature	resolution	1920 × 1080 pixel (Full HD)
Temperature range	operating temperature range	0°C to +50°C
	storage temperature range	-40°C to +70°C
	g	in line with MIL-PRF-28800F section 4.5.5.1.1.1 class 3 tailored to +45°C for operation
Climatic resistance	damp heat	+25°C/+50°C at 85% relative humidity cyclic, in line with IEC60068-2-30
Altitude		
Operating		up to 3000 m above sea level
Nonoperating		up to 4600 m above sea level
Mechanical resistance		Ellate 160 lla men 1.0 met EE lla
Vibration	sinusoidal	5 Hz to 150 Hz, max. 1.8 g at 55 Hz; 0.5 g from 55 Hz to 150 Hz, in line with EN 60068-2-6
		10 Hz to 55 Hz, in line with MIL-PRF-28800F, section 4.5.5.3.2, class 3
	random	8 Hz to 500 Hz, acceleration 1.2 g (RMS), in line with EN 60068-2-64
		5 Hz to 500 Hz, acceleration 2.058 g (RMS), in line with MIL-PRF-28800F, section 4.5.5.3.1, class 3
Shock		40 g shock spectrum, in line with MIL-STD-810G, method no. 516.6, procedure l
		30 g functional shock, half sine, duration 11 ms, in line with MIL-PRF-28800F, section 4.5.5.4.1
Electromagnetic compatibility (EMC)		
RF emissions		in line with CISPR 11/EN55011 group 1, class A (for a shielded test setup); the instrument com- plies with the emission requirements stipulated by EN55011, EN61326-1 and EN61326-2-1 class A, making the instrument suitable for use in industrial environments
Immunity		in line with IEC/EN61326-1 table 2, immunity test requirements for industrial environment ⁷⁾
Certifications		VDE, _c CSA _{us} , KC
Calibration interval		1 year
Power supply		1001/1-0401/- 400/-
AC supply		100 V to 240 V ± 10% at 50 Hz to 60 Hz and 400 Hz ± 5%, max. 4 A to 2.5 A, in line with MIL-PRF 28800F, section 3.5
Power consumption	standby mode	1.6 W
	all channels on, without probes	180 W (typ.)
	max.	360 W
Safety		in line with IEC61010-1, IEC61010-2-030, CAN/CSA-C22.2 no. 61010-1, UL 61010-1, CAN/CSA C22.2 no. 61010-2-030
Mechanical data		
Dimensions	$W \times H \times D$	445 mm × 314 mm × 153 mm (17.51 in × 12.36 in × 6.02 in)
Weight	without options, nominal	9.0 kg (19.85 lb)
Rackmount height	with R&S [®] ZZA-MXO5 rackmount kit	8 HU

 $^{7)}~$ Test criterion is displayed noise level within ±1 div for an input sensitivity of 5 mV/div.

ORDERING INFORMATION

Designation	Туре	Order No.
MXO 5 series, base models		
Dscilloscope, 350 MHz, 4 channels	MXO 54	1802.1008K04
Dscilloscope, 100 MHz, 8 channels	MXO 58	1802.1008K08
Base unit (including standard accessories: 700 MHz passive probe (10:1) per channel, accessories ba	ag, quick start guide, po	wer cord)
Choose your bandwidth upgrade		
Jpgrade of MXO 54 to 500 MHz bandwidth	R&S®MXO5-B245	1802.0676.02
Jpgrade of MXO 54 to 1 GHz bandwidth	R&S®MXO5-B2410	1802.0682.02
Jpgrade of MXO 54 to 2 GHz bandwidth	R&S®MXO5-B2420	1802.0699.02
Jpgrade of MXO 58 to 200 MHz bandwidth	R&S®MXO5-B282	1802.0701.02
Jpgrade of MXO 58 to 350 MHz bandwidth	R&S®MXO5-B283	1802.0718.02
Jpgrade of MXO 58 to 500 MHz bandwidth	R&S®MXO5-B285	1802.0724.02
Jpgrade of MXO 58 to 1 GHz bandwidth	R&S®MXO5-B2810	1802.0730.02
Jpgrade of MXO 58 to 2 GHz bandwidth	R&S®MXO5-B2820	1802.0747.02
Choose your options		
Nixed signal option, for MXO 5 series with 16 digital channels	R&S®MXO5-B1	1802.0660.02
Arbitrary waveform generator, 100 MHz, 2 analog channels	R&S®MXO5-B6	1802.0753.02
Additional M.2 SSD	R&S®MXO5-B19	1803.0205.02
Memory option 1 Gpoints	R&S®MXO5-B110	1803.0211.02
Power analysis	R&S®MXO5-K31	1802.0799.02
Frequency response analysis	R&S®MXO5-K36	1802.1943.02
ow speed serial triggering and decoding (I ² C/SPI/QuadSPI/UART/RS-232/RS-422/RS-485)	R&S®MXO5-K510	1802.1243.02
Automotive serial triggering and decoding (CAN/CAN FD/CAN XL/LIN)	R&S®MXO5-K520	1802.1920.02
Aerospace protocols decoding (ARINC 429)	R&S°MXO5-K530	1802.1266.02
VIPI low speed protocols (SPMI)	R&S°MXO5-K550	1802.1282.02
Automotive Ethernet protocols (10BASE-T1S, 100BASE-T1)	R&S°MXO5-K560	1802.1250.02
Application bundle, consists of the following options:	R&S®MXO5-PK1	1902 0257 02
R&S®MXO5-B6, R&S®MXO5-K31, R&S®MXO5-K36, R&S®MXO5-K510, R&S®MXO5-K520	Nas Wixus-FKT	1803.0257.02
Choose your additional probes		
Single-ended passive probes		
700 MHz, 10 MΩ, 10:1, 400 V, 9.5 pF, 2.5 mm	R&S®RT-ZP11	1803.0005.02
500 MHz, 10 MΩ, 10:1, 400 V, 9.5 pF, 2.5 mm	R&S®RT-ZP10	1409.7550.00
500 MHz, 10 MΩ, 10:1, 300 V, 10 pF, 5 mm	R&S®RT-ZP05S	1333.2401.02
38 MHz, 1 MΩ, 1:1, 55 V, 39 pF, 2.5 mm	R&S®RT-ZP1X	1333.1370.02
Active broadband probes: single-ended		
1.0 GHz, 10:1, 1 MΩ, BNC interface	R&S®RT-ZS10L	1333.0815.02
1.0 GHz, active, 1 MΩ, Rohde&Schwarz probe interface	R&S®RT-ZS10E	1418.7007.02
1.0 GHz, active, 1 M Ω , R&S [®] ProbeMeter, micro button, Rohde&Schwarz probe interface	R&S®RT-ZS10	1410.4080.02
1.5 GHz, active, 1 M Ω , R&S [®] ProbeMeter, micro button, Rohde&Schwarz probe interface	R&S®RT-ZS20	1410.3502.02
Active broadband probes: differential		
1.0 GHz, active, differential, 1 MΩ, R&S [®] ProbeMeter, micro button, incl. 10:1 external attenuator, 1 MΩ, 60 V DC, 42.4 V AC (peak), Rohde&Schwarz probe interface	R&S®RT-ZD10	1410.4715.02
1.5 GHz, active, differential, 1 M Ω , R&S°ProbeMeter, micro button, Rohde&Schwarz probe interface	R&S®RT-ZD20	1410.4409.02
Modular broadband probes		
Probe amplifier module, 1.5 GHz, 10:1 or 2:1, 400 kΩ (differential mode), 200 kΩ (single-ended	R&S®RT-ZM15	1800.4700.02
node) Praha amplifiar madula, 2 CUz, 10:1 ar 2:1, 400 kO (differential mada), 200 kO (single anded mada)		
^p robe amplifier module, 3 GHz, 10:1 or 2:1, 400 kΩ (differential mode), 200 kΩ (single-ended mode) Power rail probe	R&S®RT-ZM30	1419.3005.02
•	R&S®RT-ZPR20	1800.5006.02
2.0 GHz, 1:1, 50 kΩ, ±0.85 V, ±60 V offset, Rohde&Schwarz probe interface	HAS HI-ZENZU	1000.0000.02
High voltage probes: passive		1222 0072 02
250 MHz, 100:1, 100 MΩ, 850 V, 6.5 pF	R&S®RT-ZH03	1333.0873.02
100 MHz 1001 50 MO 1000 V 7.5 55	DOCODT 71110	
400 MHz, 100:1, 50 MΩ, 1000 V, 7.5 pF 400 MHz, 1000:1, 50 MΩ, 1000 V, 7.5 pF	R&S®RT-ZH10 R&S®RT-ZH11	1409.7720.02 1409.7737.02

Designation	Туре	Order No.
ligh voltage probes: differential		
200 MHz, 250:1/25:1, 5 MΩ, 750 V (peak), 300 V CAT III, Rohde&Schwarz probe interface	R&S®RT-ZHD07	1800.2307.02
100 MHz, 500:1/50:1, 10 MQ, 1500 V (peak), 1000 V CAT III, Rohde & Schwarz probe interface	R&S®RT-ZHD15	1800.2107.02
200 MHz, 500:1/50:1, 10 MQ, 1500 V (peak), 1000 V CAT III, Rohde & Schwarz probe interface	R&S®RT-ZHD16	1800.2207.02
100 MHz, 1000:1/100:1, 40 M Ω , 6000 V (peak), 1000 V CAT III, Rohde&Schwarz probe interface	R&S®RT-ZHD60	1800.2007.02
Current probes		
20 kHz, AC/DC, 0.01 V/A and 0.001 V/A, ± 200 A and ± 2000 A, BNC interface	R&S®RT-ZC02	1333.0850.02
100 kHz, AC/DC, 0.1 V/A, 30 A, BNC interface	R&S®RT-ZC03	1333.0844.02
2 MHz, AC/DC, 0.01 V/A, 500 A (RMS), Rohde&Schwarz probe interface	R&S®RT-ZC05B	1409.8204.02
10 MHz, AC/DC, 0.01 V/A, 150 A (RMS), BNC interface	R&S®RT-ZC10	1409.7750K02
10 MHz, AC/DC, 0.01 V/A, 150 A (RMS), Rohde&Schwarz probe interface	R&S®RT-ZC10B	1409.8210.02
50 MHz, AC/DC, 0.1 V/A, 30 A (RMS), Rohde&Schwarz probe interface	R&S®RT-ZC15B	1409.8227.02
100 MHz, AC/DC, 0.1 V/A, 30 A (RMS), BNC interface	R&S®RT-ZC20	1409.7766K02
100 MHz, AC/DC, 0.1 V/A, 30 A (RMS), Rohde&Schwarz probe interface	R&S®RT-ZC20B	1409.8233.02
120 MHz, AC/DC, 1 V/A, 5 A (RMS), BNC interface	R&S®RT-ZC30	1409.7772K02
EMC near-field probe		
Probe set for E and H near-field measurements, 30 MHz to 3 GHz	R&S®HZ-15	1147.2736.02
Logic probe ¹⁾		
400 MHz logic probe, 8 channels	R&S®RT-ZL04	1333.0721.02
Probe accessories		
Accessory set for R&S®RT-ZP11 passive probe (2.5 mm probe tip)	R&S®RT-ZA1	1409.7566.00
Probe power supply for R&S®RT-ZC10/-ZC20/-ZC30	R&S®RT-ZA13	1409.7789.02
External attenuator 10:1, 2.0 GHz, 1.3 pF, 60 V DC, 42.4 V AC (peak), for R&S®RT-ZD20/-ZD30 probes	R&S®RT-ZA15	1410.4744.02
Probe pouch for the logic probes	R&S®RT-ZA19	1335.7875.02
Power deskew and calibration test fixture	R&S®RT-ZF20	1800.0004.02
3D positioner with central tensioning knob for easy clamping and positioning of probes span width: 200 mm, clamping range: 15 mm)	R&S®RT-ZA1P	1326.3641.02
Bipod probe positioner	R&S®RT-ZA29	1801.4803.02
Choose your accessories		
Rackmount kit, for MXO 5 series with 8 HU	R&S®ZZA-MXO5	1802.3181.02
Front cover	R&S®MXO5-Z1	1803.0240.02
Soft case (W × H × D: 550 mm × 300 mm × 340 mm)	R&S®MXO5-Z3	1803.0228.02
Fransit case (W × H × D: 613 mm × 478 mm × 337 mm)	R&S®MXO5-Z4	1803.0234.02
/ESA adapter	R&S®MXO5-Z7	1803.0457.02
/ESA mount (compatible with standard 100 mm $ imes$ 100 mm pattern)	Choose industry standa FDMI MIS-D, up to 14 I	ard mounts according to kg with M4x10 screws

¹⁾ The R&S®MXO5-B1 mixed signal option contains two R&S®RT-ZL04 logic probes.

Service at Rohde & Schwarz You're in great hands

- ► Worldwide
- Local and personalized
- Customized and flexible
- Uncompromising quality
 Long-term dependability

- Long-term dependabilit

Rohde & Schwarz

The Rohde&Schwarz technology group is among the trailblazers when it comes to paving the way for a safer and connected world with its leading solutions in test&measurement, technology systems and networks&cybersecurity. Founded 90 years ago, the group is a reliable partner for industry and government customers around the globe. The independent company is headquartered in Munich, Germany and has an extensive sales and service network with locations in more than 70 countries.

www.rohde-schwarz.com

Sustainable product design

- ► Environmental compatibility and eco-footprint
- Energy efficiency and low emissions
- ► Longevity and optimized total cost of ownership

Certified Quality Management

Certified Environmental Management

Rohde & Schwarz training

www.training.rohde-schwarz.com

Rohde & Schwarz customer support

www.rohde-schwarz.com/support

R&S[®] is a registered trademark of Rohde & Schwarz Trade names are trademarks of the owners PD 3683.8196.12 | Version 06.00 | July 2024 (sk) MXO 5 Series Oscilloscope Data without tolerance limits is not binding | Subject to change © 2023 - 2024 Rohde & Schwarz | 81671 Munich, Germany