

R&S®RTP-K136/137 8/16 GBPS ADVANCED EYE ANALYSIS Get your results faster.

- The advanced eye analysis option allows users to generate eye diagrams quickly and offers comprehensive tools for in-depth analysis
- ► For serial data interfaces with embedded clock signals, it features user-configurable clock data recovery that is built into the R&S®RTP oscilloscope trigger hardware

The perfect choice for

High speed interface characterization	System design debugging	Key specifications	Hardware clock data recovery (HW-CDR)
		Nominal bit rate	21 kbps to 8/16 Gbps
		Bandwidth	1/500 to 1/3000 of the nominal bit rate
Eye diagram measurements	Mask and histogram testing	Source	Analog channels, differential channels
		Display	Display recovered clock as a math signal
		Others	Combinable with real-time deembedding

Your benefit	Features	
Continuously running clock data recovery as part of trigger hardware	 User-configurable nominal bit rate and tracking bandwidth Selectable serial standards for configuration Automated bit rate estimation 	
Live eye diagram for long-term monitoring and detection of rare faults and interferers	 > 400 000 unit intervals/s Continuously trigger and display overlay of individual bits Apply hardware accelerated masks and histograms 	
From quick insights to in-depth results	 Three steps to an eye diagram (select source, select serial standard, set state to "ON") Use gates, qualifying signals and bit pattern filters to focus analysis Eye stripe function to navigate between mask test violations and coupled zoom to investigate details Choose from 18 automated eye measurements Select a mask from a standard mask library 	

Live eye diagram - fast, continuous acquisition and overlay of single bits

Test configuration for 5 Gbps data signal: CDR trigger; 50 ps/div horizontal scaling to acquire one bit at a time.

200 μs

Fastest signal integrity debugging

- ▶ Fast glance on jitter and noise due to > 400 000 unit intervals/s
- ► Detects rare interferers, e.g. crosstalk between adjacent components
- Allows long-term monitoring over hours and days
- ► Use masks and histograms

HW-CDR as part of the R&S®RTP oscilloscope trigger system

Advanced eye diagram - acquisition of bit stream and overlay of HW-CDR sliced bits

Test configuration for a 5 Gbps data signal: CDR trigger; 20 μ s/div horizontal scaling to acquire 1 million sequential bits.

In-depth signal integrity characterization

► Analyze the data eye based on the bitstream length defined in interface standards, e.g. USB 3.2 Gen1: 1 mil. UIs

200 µs

- ► Characterization of transmitter output (TX) and signal path, e.g. data dependent jitter and noise
- ► Display and perform further analysis on HW-CDR signal (math signal)
- ► Advanced configuration of eye diagram (display, gate, bit pattern, etc.)
- Eye stripe function to navigate between mask test violations in the coupled zoom
- ► Apply automated eye measurements

Ordering details	
Description	Item
16 GHz high-performance oscilloscope	R&S®RTP164B
8 Gbps advanced eye analysis option	R&S®RTP-K136
16 Gbps advanced eye analysis option	R&S®RTP-K137

Rohde & Schwarz GmbH & Co. KG (www.rohde-schwarz.com)

Rohde & Schwarz customer support (www.rohde-schwarz.com/support) Rohde & Schwarz training (www.training.rohde-schwarz.com) R&S[®] is a registered trademark of Rohde & Schwarz GmbH & Co. KG | PD 3683.9328.32 | Version 01.00 | January 2023 (gs) Trade names are trademarks of the owners | R&S[®]RTP-K136/137 8/16 Gbps advanced eye analysis | Data without tolerance limits is not binding Subject to change | © 2023 Rohde & Schwarz GmbH & Co. KG | 81671 Munich, Germany