MXO 4 SERIES OSCILLOSCOPE versus Keysight InfiniiVision HD3

The MXO 4 provides accelerated insight with the latest technologies, including 12-bit ADC with up to 18 bit of resolution, 400 Mpoints standard memory and the industry's fastest update rate of 4.5 million waveforms/s. Capture signal details that no other oscilloscope sees.

Benefit	MXO 4 features
See more signal details faster. Find signal anomalies quickly.	Unparalleled update rate of 4.5 million wave- forms/s and the industry's fastest trigger rearm time of < 21 ns.
See and measure signals accurately	Measurements, math and spectrum are performed directly on waveform data for accuracy. Use HD mode to see even more details with enhanced 18-bit vertical resolution.
Capture more time	With ultra-deep 400 Mpoint standard memory and optional 800 Mpoint memory, capture long dura- tions at higher sample rates/higher bandwidths.
Get insight quicker	Hardware-acceleration of all math operators and spectrum for faster and more accurate insight.

	놂쒭무
酸熱	
想的	

....

Parameter	MXO 4 series	Keysight InfiniiVision HD3			
Acquisition system					
Bandwidth	200/350/500 MHz, 1 GHz, 1.5 GHz (all upgradeable to 1.5 GHz)	200/350/500 MHz, 1 GHz (all upgradeable to 1 GHz)			
Maximum real-time sampling rate	5.0 Gsample/s	3.2 Gsample/s			
Maximum standard memory depth	400 Mpoints; 800 Mpoints (optionally, interleaved)	20 Mpoints; 100 Mpoints			
ADC/maximum resolution	12 bit/18 bit	14 bit/16 bit			
Noise ► 1 mV/div, 500 MHz, 50 Ω ► 1 mV/div, 500 MHz, 1 MΩ Waveform update rate	0.54% of full scale 0.53% of full scale 4500000 waveforms/s	0.44% of full scale 1.2% of full scale 1 300 000 waveforms/s			
Maximum offset (0 to 100 mV/div)	±5 V	±1.5 V			
Channel-to-channel isolation	≥ 60 dB (1:1000)	(1:100)			
Timebase accuracy	±0.2 ppm	±1.6 ppm			
Waveform math and measurements					
Waveform math Number of maths Equation editor available Channel speed (C1 + C2) 	up to 5 • 2.3 million operations/s at 20 ns/div	up to 4 - 0.000003 operations/s at 20 ns/div			
Measurements directly on wave- form data?	•; using all samples	 -; forced accuracy and update restrictions 			
Probes and hardware options					
Standard passive probes	700 MHz	500 MHz			
Arbitrary function generator	2 channels, 100 MHz, 16-bit resolution, ARB length: 40 Mpoints	1 channels, 100 MHz, 14-bit resolution, ARB memory: 0.008 Mpoints			
MSO	16 channels, 5 Gsample/s, 400 Mpoints per channel	16 channels, 1.6 Gsample/s, 20 Mpoint memory			
Mechanical data					
Display	13.3" Full HD (1920 × 1080 pixel)	12.1" VGA (1080 × 800 pixel)			
Maximum power	210 W	275 W			
Dimensions (W \times H \times D)	41.4 mm × 27.9 mm × 16.2 cm	33.5 mm × 26.2 mm × 16.8 cm			

Bigger, pixel-rich display, R&S®SmartGrid flexibility

Enjoy more area, pixels and greater grid flexibility; only with MXO 4 oscilloscopes.

Display area of MXO 4 versus InfiniiVision HD3

MXO 4:

Measure with confidence and accuracy

- Provides measurements, math and FFTs with waveform data from all acquired samples
- Results are always highly accurate; no forced user trade offs between speed and accuracy

Rohde & Schwarz GmbH & Co. KG

www.rohde-schwarz.com | www.rohde-schwarz.com/support | www.training.rohde-schwarz.com R&S* is a registered trademark of Rohde & Schwarz | Trade names are trademarks of the owners MXO 4 Series Oscilloscope PD 3673.1476.32 | Version 01.01 | November 2024 (sk) Data without tolerance limits is not binding | Subject to change © 2024 Rohde & Schwarz | 81671 Munich, Germany

MXO 4 display features

- ► 13.3" high resolution, 1920 × 1080 pixel, Full HD display
- Configurable toolbar (including undo and redo buttons) for fast access to functions
- Fast custom layouts with R&S[®]SmartGrid user interface

InfiniiVision HD3: Compromised math and measurement accuracy

- Uses a technique common to low-cost oscilloscopes with reduced processing power
- Measurements, math and FFTs based on a reduced set of data; this forces users to trade off accuracy for update rates

100 mV/ 2 5.00 V/	100 mV/ -26.95 mV (+)	÷.		20 GSa/s 20 kpts	🔔 2 📕 🗸		195 uV 🖂 🗠
							400.195 n
		6	_				
		A					
1\$		/ \					
							-199,805
							-299,805 (
2.0							
M1 = C1 +	C2						
-101 - 01 +	52						
		NM W					273.047 n
м							73.0466 n -26.9534 r
when work and a second	wanter water						-10-41 W -226.953
							-326.953 r -626.953 r
-250.0 ns -200.0 ns -150.0 ns	-100.0 ns -50.00 ns	0.0 s	50.00 ns	100.0 ns	150.0 ns	200.0 ns	250.0 ns

Advantages of the MXO 4 versus Keysight InfiniiVision HD3

1.5 × Bandwidth (1.5 GHz versus 1 GHz)

Bandwidth

Memory

20 × More memory (400 Mpoints versus 20 Mpoints)

More waveforms 4 X Maximum vertical resolution (18 bit versus 16 bit)

3 × Faster capture rate

2 ×

 $> 3 \times$

Offset

Display area