SATELLITE PAYLOAD AND COMPONENTS TESTING

With instruments from Rohde & Schwarz

1

Application Brochure Version 02.00

ROHDE&SCHWARZ

Make ideas real

ROHDE & SCHWARZ HELPS ENGINEERS DEVELOP AND TEST SATELLITE TRANSPONDERS, MODULES AND COMPONENTS BY PROVIDING THE TEST AND MEASUREMENT SOLUTIONS THAT THE SATELLITE MARKET NEEDS.

CONTENTS

A paradigm change in test philosophy ► page 4

Group delay measurements

► page 6

Linearity and gain transfer measurements ▶ page 10

Noise power ratio (NPR)

► page 12

Signal quality measurements ► page 14

OFDM signal generation and analysis

► page 16

Spurious measurements

► page 18

Noise figure and gain measurements using the R&S[®]FS-SNS ► page 20

Noise figure measurements of amplifiers and mixers ► page 21

Testing in thermal vacuum chambers ► page 22

Digital interface testing

► page 24

RF measurements on payload components

▶ page 26

 ${\bf Rohde\,\&\,Schwarz}$ Satellite payload and components testing ${\bf 3}$

A PARADIGM CHANGE IN TEST PHILOSOPHY

Satellite communications systems must cover a diverse set of user requirements in direct broadcast, wireless communications and remote sensing applications for both commercial and government systems. These systems must operate reliably around the clock with multi-decade system longevity. They must be thoroughly tested to ensure a quality of service over the life cycle of the satellite.

Today's satellite systems need to be future-ready to be fully compatible with both existing cellular networks and emerging wireless technologies. The technology evolution from bent-pipe or digital transparent payloads to digital regenerative payloads to increase system capacity and flexibility are increasing testing complexity. Regenerative transponders include additional functions such as digital signal demodulation, baseband signal processing and switching and signal modulation. Satellite companies need to thoroughly test RF communications systems and components to ensure 24/7 operation with a high quality of service. On the other hand, satellite equipment manufactures need to reduce test time and cost while the total number of uplink and downlink beams is increasing. One digital stream of data on the uplink corresponds to multiple streams on the downlink.

These challenges require straightforward, fast and reproducible test and measurement solutions that provide high measurement performance and repeatability.

Rohde & Schwarz offers innovative RF and millimeterwave measurement solutions to help customers successfully design, develop and test satellite payloads, payload subsystems and components. These solutions meet customer needs in terms of performance, cost and schedule. RF test and measurement solutions for the most critical satellite payload and components measurements are introduced in the next sections.

High-level system components of a bent-pipe satellite payload channel (e.g. filters, amplifiers, frequency converters)

High-level system components of a regenerative payload channel

GROUP DELAY MEASUREMENTS

To characterize the quality of a transmission path in satellite communications, phase distortions are determined using group delay measurements.

Group delay measurements in transponder modules and frequency converters with spectrum analyzers and signal generators

The R&S[®]FSW spectrum analyzer and R&S[®]SMW200A signal generators can be used to measure absolute and relative group delay on satellite transponders, frequency converters and other components in a fast and straightforward way. In the multi-carrier group delay measurement approach, the signal generator transmits a multi-carrier continuous wave signal as the stimulus. The number of tones and the separation between them (aperture) can be changed to meet the requirements of the device under test. The R&S[®]FSW spectrum analyzer performs these measurements in two steps:

First step - reference calibration

The generator is connected directly to the analyzer, which determines the reference phase and amplitude of the individual carriers.

Second step - group delay and gain measurement

The DUT is connected and the analyzer precisely determines the group delay over the entire carrier frequency range from the phase difference between the reference signal and the multicarrier signal measured at the output of the DUT.

Group delay measurements with R&S®SMW-K61 and R&S®FSW-K17 multicarrier group delay measurement application

Group delay $\tau = \frac{-1}{360^\circ} \cdot \frac{\Delta \phi}{\Delta f}$

$$\begin{split} \text{Frequency shift } & \Delta f = f_1 - f_2 \\ \text{Phase shift } & \Delta \phi = (\phi_{1 \text{ out}} - \phi_{2 \text{ out}}) - (\phi_{1 \text{ in}} - \phi_{2 \text{ in}}) \end{split}$$

The multi-carrier approach offers the following advantages

- It is possible to measure absolute and relative group delay on wideband signals within milliseconds
- Signal averaging and smoothing improve the carrier-to-noise ratio to obtain valid results for high signal path losses
- Automatic compensation of Doppler effects for in-orbit measurements
- The relative group delay of frequency converters can be characterized with 1 ns measurement accuracy; no reference mixer or golden device is required
- ► 300 ps measurement accuracy for relative group delay in non-frequency-translating measurements

- Internal flexible generation of multi-carrier continuous wave (MCCW) signals and modulated signals; spacing and number of carriers can be configured on the R&S®SMW200A vector signal generator
- Deembedding function corrects the frequency response of cables and fixtures in the measurement setup
- Wideband signals with a low signal-to-noise ratio (SNR) can be measured with the R&S[®]FSW-K17S option that improves SNR and measurement speeds by analyzing subspans of the overall signal

Group delay on a bandpass filter. This figure shows how a bandpass filter adds more group delay at the band edges. In satellite communications systems, the relative group delay of the frequency converter or the transponder channels is critical when it comes to determining the amount of distortion at the band edges of each channel.

Using vector network analyzers (VNA) to measure group delay on frequency converters without LO access

Normally, group delay and relative phase measurements on frequency converting devices without LO access are only possible if the DUT has a highly stable internal LO. Phase and frequency deviations due to drift or noise considerably limit the accuracy and applicability of available methods. The two-tone technique from Rohde&Schwarz overcomes all these limitations.

By using a two-tone stimulus signal, the R&S°ZNA vector network analyzer can measure the phase difference between two signals, at the input and then at the output of the DUT. Comparable to the classic S-parameter technique, the group delay is calculated from the phase difference and the frequency offset. The frequency offset Δf between the two signals is the aperture. To measure the phase between two signals with different frequencies, Rohde & Schwarz has developed a unique frontend for the R&S°ZNA. For calibration, only an unknown through mixer

is required. This method is ideal for frequency converting DUTs with unstable LOs since the frequency and phase deviations of the DUT's internal LO can be in the range of the IF bandwidth (i.e. up to several MHz).

The new internal combiner simplifies measurement setups and the two signals no longer require an external connection. A two-port R&S[®]ZNA can now measure embedded LO converter group delay and intermodulation with an optional second source. Two independent LOs for the internal receivers allow RF/IF to be measured simultaneously with mixers. Measurement speeds are now twice that of a single LO, while trace noise is also reduced in conversion loss and group delay measurements.

In addition to group delay, the R&S[®]ZNA also calculates the relative phase and deviation from linear phase by integrating the group delay.

Simultaneous display of measurement results:

- Conversion loss (green)
- Group delay (blue)
- Relative phase (orange)
- Deviation from linear phase (red)

Test setup with network analyzer

Comparison of test setups for spectrum analyzer and network analyzer group delay measurements

LINEARITY AND GAIN TRANSFER **MEASUREMENTS**

RF engineers working with satellite communications systems need to characterize satellite transponders or components such as power amplifiers and frequency converters. Typical measurements include gain compression, AM/AM, AM/PM and distortion NPR/ACLR.

Linearity and gain transfer measurements with vector signal generators and spectrum analyzers

A combination of the R&S®SMW200A vector signal generator and the R&S[®]FSW vector signal analyzer equipped with the R&S®FSW-K18 option characterizes the DUT using real-world modulation and analysis.

The R&S[®]FSW-K18 controls the R&S[®]SMW200A and therefore knows the reference signal that is applied to the DUT. The results are derived with a single measurement that synchronizes the reference signal and the signal transmitted by the DUT.

The main advantages of this measurement approach are:

- Allows the device to be tested using both CW power sweep as a reference signal or a digitally modulated signal (with the bandwidth and crest factor for the intended application) to determine how the DUT will perform under real-world conditions
- ► Analysis bandwidth of up to 8.3 GHz enables measurement of amplified signals with wide bandwidths

- ► Direct digital predistortion (direct DPD) compensates memory effects and helps to get the best possible performance out of the DUT (R&S®FSW-K18D option)
- ► R&S[®]FSW-K18M allows users to directly derive and export memory polynomial coefficients for high performance DPD. The Hammerstein model is also included in R&S®FSW-K18M for real-time memory DPD with Rohde&Schwarz signal generators
- ► Polynomial/model-based DPD methods are supported with R&S®FSW-K18 and R&S®SMW-K541
- ► Parameter sweep provides 3D plots to quickly find the DUT's optimum operating point

Compact setup for characterizing two-port devices (e.g. amplifiers, frequency converters, transponders) with **B&S®SMW-K541 and B&S®FSW-K18**

MultiView 🎫 Spectru	ım 💌 Amplifier	×					•
Ref Level 17.54 dBm Att 27 dB Fre YIG Bypass EQUALIZER	Capture Time og 1.0 GHz Meas BW	500 µs TTS 198.4 160 MHz SRate	431676836 µs 200 MHz				
1 Magnitude Capture RF		O1 Clrw	2 Result Summary				
			Modulation Accuracy	Min	Current	Max	Unit 🔺
Ref. 17.544 dBm			Raw EVM	0.001		5.825	96
I shall be the second second	and the second	and a local second	Raw Model EVM	0.002	0.434	4.146	96
a haili dhili da ballin da birta	a a falla falla fa fa falla de la falla fall	nia sa kindan kindan Linda	Frequency Error		0.079		Hz
-10 ² dB in			Power	Min	Current	Max	Unit =
-20 dBm			Power In	-57.26	-3.00	2.29	dBm
-30 dBm			Power Out	-29.83	16.15	21.16	dBm
-40 dBm			Gain		19.15		dB
-50 dBm			Crest Factor Out		5.01		dB
-60 dBm			AM/AM Curve Width		0.009		Volt
0.0 s	50.0 µs/	500.0 µs	AM/PM Curve Width		0.138		• •
3 Spectrum FFT	01	Meas • 2 Mod • 3 Ref	4 AM/AM	low	high 1 C	Clrw 🛯 2 Mod	• IdealLine
-10 dBm			21 dBm				
-30 dBm	21		7 dBm				
-50 dBm			-7 d8m	And the second second			
-70 dBm			-21 d8m	and the second			
/90 dBm		man h	-35 dBm				
-100.0 MHz	20.0 MHz/	100.0 MHz	-63.0 dBm	7.0 dt	3m/		7.0 dBm
5 Time Domain	01	Meas • 2 Mod • 3 Ref	6 Phase Deviation vs In	put Po 📷	high 1 C	lrw • 2 Mod	 IdealLine
Armon March and an armon he wash	and a section of section	10000 - 0. A. 0 0 00.000	16 °				
a the A A and Anna and a half t	MAR CONTRACT AND C	ala ali con su la chi la chi an ha		A Third Depth where	ana ina manana an		
U				State of the state of the			
-0.5			-8 0				
-1 12.11 us	200.0 ps/	14.11 us	-16 °	5.2 d	3m/		4.0 dBm
12111 10	20010 113/	14.11 µ8		- 5.2 u	2007		no ubin

Complete characterization of two-port devices with one measurement.

3D plots (power/EVM/frequency) help you quickly identify the DUT's optimum operating point.

Gain transfer curve measurement (AM/AM) of an amplifier. For the curve above, a CW ramp sweep of the R&S®SMW200A digital baseband has been used as the stimulus. As expected, the AM/AM curve is a line. The curve on the right has been measured using a digitally modulated signal generated by the R&S®SMW200A. The AM/AM is a cloud-like curve; the line width is due to amplifier memory effects.

NOISE POWER RATIO (NPR)

Noise power ratio is an important standard RF payload test. NPR measurements are used to test the linearity of a RF transponder and simulate a Gaussian noise-like distribution of a multi-channel communications payload.

NPR measurements in transponders and components

NPR provides a measure of the intermodulation and noise floor of an RF output chain. The stimulus signal sent by the R&S[®]SMW200A signal generator can consist of multiple CW carriers with a notch. The deeper the notch at the output of the transponder or components, the fewer intermodulation products the device under test produces.

The R&S[®]SMW200A vector signal generator equipped with R&S[®]SMW-K61 option can be used to generate a multi-carrier continuous wave (MCCW) signal to simulate a wideband signal. A group of CW tones can be turned off to generate a notch with steep edges and maximum on/ off ratio of around 50 dB. Users can vary the position and width of the notch using a control menu. The R&S[®]FSW signal and spectrum analyzer measures the resulting notch depth after going through the DUT with a dedicated measurement function. The R&S[®]SMW200A can also generate AWGN or a modulated signal with notches instead of an MCCW signal. Notched modulated signals enable the simulation of real world conditions for a DUT.

The advantages of this measurement method are:

- No previous calibration is needed to measure NPR notch depth up to 50 dB using flat signals over a 2 GHz bandwidth
- The test signal is easy to create and modify
- Easy read out of the results on the R&S[®]FSW analyzer

2 GHz wide multicarrier continuous wave (MCCW) signal generated with the R&S®SMW200A vector signal generator.

NPR measurements with R&S®SMW-K61 and R&S®FSW

NPR measurement with the R&S $^{\circ}\text{FSW}$ signal and spectrum analyzer.

		R 🖾 S R?	?	ÊO	NPR
MultiView ** Spe	octrum	2		·	Channel Bandwidth
Att 1 dB	SWT 41.9 ms (~378 ms) VBW 2	2 KHZ Ω kHz Mode Auto FET			
1 NPR				• 1Rm Clrw	
	Noteb 1		Notob 2		
	NOLCH I		NOTCH Z		Pec put
-20 dBm		Channel RW			Manual
-30 dBm					
	Notch 1				Res BW
-40-80m	PROVIDENT PROVIDENT	**************************************	Notch 2		Auto
-50 dBm					Sweep Time Manual
-60 dBm					
-70 dBm					
-80 aBm					
-90 dBm					
95 dom					Config
-100 dBm				\	
ww.				hu hu	Display
CF 500.0 MHz	1001 pts		7.5 MHz/	Span 75.0 MHz	1 Config
2 Result Summary					
Channel	Channel BW	Offset	Power Density		
1	72.000 MHz	0.000 Hz	-73.33 dBm/Hz		
Notch	3 200 MHz	12 200 MHz	-139.27 dBm / Hz	65.93 dB	┕∎╱ᢪ▤
2	3.200 MHz	12.200 MHz	-103.57 dBm/Hz	30.24 dB	Overview
			Meas	suring	21.09.2017 08:07:25

SIGNAL QUALITY MEASUREMENTS

Modulation accuracy and bit error rate (BER) measurements are necessary to verify the quality of satellite links during satellite integration as well as during in-orbit operation.

Modulation accuracy and BER measurements often involve analyzing the power and digital demodulation characteristics of carriers transmitted from an in-orbit satellite or a ground station at different frequencies. The error vector magnitude (EVM) is a key parameter in determining the quality of the regenerated signal inside the transponder.

Parameters such as EVM, BER, signal amplitude and phase are easy to monitor with the R&S[®]FSW-K70 vector signal analysis (VSA) option. The R&S[®]FSW-K70 VSA option determines the quality of the signal transmitted and/or received by the satellite by comparing it with an ideal reference signal. The R&S[®]FSW-K70 option calculates the reference signal from the signal transmitted by the DUT and the user settings such as modulation type and symbol rate.

The vector signal analyzer in the FSW-K70 option enables users to:

- Analyze digitally modulated single carrier signals with up to 8.3 GHz signal analysis bandwidth
- ► Analyze modulation
- Use predefined standard-specific settings for DVB-S2(X), DVB-S2X Annex E, DVB-RCS2
- ► Measure BER

In-orbit satellite carrier monitoring

Satellites can be quickly and accurately monitored using the setup shown in the figure. Depending on the ground station configuration and frequency band used, spectrum analyzers with different frequency ranges are available.

Troubleshooting interference in satellite links: carrier-in-carrier measurement

The carrier-in-carrier measurement is an example of how the VSA application helps to analyze and troubleshoot interference in satellite links: for example a wireless communications signal interfering with a signal transmitted by an operational ground station or when satellite ground stations interfere with one another. In this situation, the interferer and the victim work in the same frequency band and have the same modulation characteristics. Therefore, the quality of the wanted signal deteriorates but no interferer can be immediately detected when looking at the spectrum.

MSRA View 🍀 MSRA Master 🛛 Header 🛛 🗙 Payload	×			•
Ref Level 3.00 dBm Mod File 256APSK_116_180 SR Att 13 dB Freq 2.0 GHz Res Len 1440 Result R VIG Bypass SIG SIG SIG SIG SIG SIG	20.0 MHz ange # 1		SGL Sta	t Count 1
1 Const I/Q(Meas&Ref) 01M Clrw	2 Result Summary			
Analysis Interval: 47.275 µs - 119.275 µs	Analysis Interval:	47.275 µs -	119.275 µ	
		Current	Peak	Unit
	EVM RMS	0.83		
	Peak	11.71	11.71	
	MER RMS	41.64	41.64	dB
	Peak	18.63	18.63	dB
	Phase Error RMS	0.49	0.49	deg
	Peak	5.64	5.64	deg
17月1日日建築和加坡建造口日子17	Magnitude Error RMS	0.52	0.52	%
	Peak	7.09	7.09	%
	Carrier Frequency Error	80.01	80.01	HZ
	Symbol Rate Error	0.00	0.00	ppm
	Kilo L/O Offeat	-61 47	0.999 932	dB
	I/O Imbalance	-70 79	-70.79	dB
	Gain Imbalance	0.00	0.00	dB dB
	Quadrature Error	0.03	0.03	dea
	Amplitude Droop	0.000 007	0.000 007	dB/svm
	Power	-0.49	-0.49	dBm
-2.09 2.09				
3 Mag(Capture Buffer)	4 Symbols		(Heya	decimal
Applycic Interval: 47.275 up 110.275 up	Analysis Interval:	47 275 µs -	119 275 1	IS IS
Analysis interval. 47.275 ps 115.275 ps	+ 1 + 3 + 5	+7+9+11	+ 13 +	15
i taa islah di sebuduk kalada kalada bar dalah sebut 10,50 m akasal beru dalam di kerihan da sebuah sebuah se		50 70 13 38 3F 53	1 74 E5 03	34
	16 C4 48 55 45 99 93	84 A3 24 8E 14 24	L A9 42 B1	SE
	32 29 90 A2 60 77 51	87 63 3B 68 8F 73	3 5D 21 41	A5
	48 78 D4 92 08 4A 07	90 F7 C6 3C D5 2A	EA 57 FO	92
-40 dBm	64 AE 22 28 98 E0 18	26 AF 1A 7E 08 D2	24 EE DA	4D
	80 3C C9 64 CF 8C 32	52 96 85 5A 2D 35	5 FE D8 4F	C5
	96 B8 9F 99 48 AF 1F	79 31 BB C1 27 9F	85 9B 69	B1
-60 dBm	112 5F 0F 2A 52 48 04	46 BD 9F D5 80 03	DC 95 CD	02
	128 ED 36 2D EC 0D 1E	32 57 AD 14 62 6E	EA 3A DO	28
-80 dBm	144 37 D1 97 86 F4 EC	56 B4 17 BD 4C 08	72 48 72	-C1
±A1	160 C9 E3 65 BB 06 E4	FA 86 7D 72 C1 2E		0.3
		56 00 45 02 28 5F	00 61 03	AC
0 sym 1440 sym	192 75 49 DB E3 FA 40	i roj sci ici 83 2F 2L	UC5 1B 84	

DVB-S2X signals use different modulation schemes for the payload and the header sections of the frame. The different modulations can be analyzed using the R&S®FSW multi-standard radio analyzer (MSRA) mode and the R&S®FSW-K70 option. With this configuration, the R&S®FSW demodulates the header and payload data of the DVB-S2X signal based on the same I/Q data and displays the performance parameters, constellation diagrams, etc. in separate windows. In this case, the payload uses 256APSK modulation and the header and pilot section a more robust QPSK modulation. This screenshot shows the payload tab.

The scenario is the same as in the screenshot above. This screenshot shows the header tab.

MSRA View 📫 MSRA Master	Header 🔍 🗙	Payload	×				•
Ref Level 3.00 dBm Att 13 dB Freq 2.0 GHz YIG Bypass PATTERN 1	Mod QPSK SR 20.0 Res Len 90	MHz					
1 Const I/Q(Meas&Ref)		O1M Clrw	2 Result Summa	ry			
Analysis Interval: 26	58.9125 µs - 273.4125	δµs	Analy	ysis Interval:	268.9125 µs -	273.4125 μ	5
					Current	Peak	Unit
			EVM	RMS	0.99	0.99	%
				Peak	1.95	1.95	%
			MER	RMS	40.09	40.09	dB
			Dhasa Casa	Peak	34.21	34.21	dB
			Phase Error	RM5	-1.01	0.42	deg
			Magnitude Error	DMS	-1.01	-1.01	ueg oz
			Magnitade Error	Peak	1.49	1 49	%
			Carrier Frequency	Error	807.41	807.41	Hz
			Symbol Rate Erro	r			ppm
			Rho		0.999 902	0.000 000	P P · · · ·
			I/Q Offset		-32.84	-32.84	dB
			I/Q Imbalance		-42.81	0.00	dB
			Gain Imbalance		-0.10	-0.10	dB
			Quadrature Error		0.52	0.52	deg
			Amplitude Droop		0.000 226	0.000 226	dB/sym
			Power		-1.88	-1.88	dBm
1.025		1.025					
-1.923		1.923					
3 Mag(Capture Buffer)		●1 Clrw	4 Symbols		200.0105	(Hexa	decimal)
Analysis Interval:	0.00 s - 2.00	ms AL	Analy	ysis Intervai:	268.9125 µs -	273.4125 µ	5
			+ 1 +	3 + 5 +	7 + 9 + 11 + 13	3 + 15 + 17	+ 19
						2 3 1 3 2	32
والتلافية والمارية أتتجر وتراجع والأور وتحتر والترافي الماري أرواها وحرورا التألية	والمراجع المراجع المتعادية والمتعادية المتعادية والمتعادية	destifies a state a finite i	40 1 0 1			2 7 2 7 2	1 3
l a realainteallaitean ann ann ann ann ann ann a	nan an		60 2 3 2	0 2 0 2	3 1 3 1 3 2	3 1 3 1 0	1 3
-40 dBm		+	80 2 3 2				
-60 dBm							
-80 dBm							
0 svm		40000 svm					
- o oym		loooo synn					

Multiview Spectrum Star Star					
Ref Level 0.00 dBm Mod 32APSK SR 15.0 MHz					
Att 10 dB Freq 1.0 GHz Res Len 800					
YIG Bypass					
1 Const I/Q(Meas&Ref) • 1M Clri	2 Result Summary				
- ¹		Current	Peak	Unit	
승규는 승규는 승규는 승규는 승규는 승규는 승규는 승규는 승규가 가지 않는 것이 없다. 이 가지 않는 것이 같이 하는 것이 같이 있는 것이 같이 있는 것이 없다. 이 가지 않는 것이 없는 것 않이	EVM BMS	10.06	12.78	%	
21 25	Peak	12.60	34.33	%	
State and the second	MER BMS	19.95	17.87	dB	
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Peak	17.99	9.29	dB	
	Phase Error RMS	7.98	8.26	dea	
(A) 25 (A) (A)	Peak	-28.31	33,90	dea	
2012 - 147 - 147 - 146 - 349	Magnitude Error RMS	6.95	10.59		=
1 Dr 15 12 Dr	Peak	11.79	33.18		
	Carrier Frequency Error	43.98	-80.42	Hz	
	Symbol Rate Error			ppm	
	Rho	0.989 992	0.983 942		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I/Q Offset	-52.78	-42.00	dB	
	I/Q Imbalance	-43.11	-40.36	dB	
- · · · · · · · · · · · · · · · · · · ·	Gain Imbalance	0.06	0.15	dB	
0.440	Quadrature Error	0.69	1.09	deg	
-2.442 2.44	Z Amplitude Broop	-0 000 05	0 000 966	dB/eum	-
5 Spec(Meas, Error)			○1M A	∖vg o 2E A	vg
at the set of the set	A the Andrewson of the Alternation of the				
-30 d8	A first the day and index on the state of the				
- usabla					
-40 dB disable	Do Ballowiddi				
-50 d8					
and a second sec	WWWWWWWWWW				
-70 dB					
-80 dB					
-90 dB					
-100 dB					
100 00					
-110 dB					
-110 d8					
-110 dB				30 M	Hz
-110 dB				30 M	1Hz

This screenshot shows an example of an interference scenario. The wanted signal is a DVB-S2 32APSK modulated signal with a 15 Msymbol/s sample rate. The interfering GSM signal has a -20 dB/5 MHz level/frequency offset with respect to the wanted signal. The result summary shows that the wanted signal has an increased EVM. The error spectrum (blue) shows a higher error level where the interfering GSM signal is located in spectrum.

OFDM SIGNAL GENERATION AND ANALYSIS

Develop, test and measure custom OFDM signals, precisely tailored to any application requirement.

OFDM signal generation

Many modern communications standards use orthogonal frequency division multiplexing (OFDM) as their underlying modulation. The R&S®SMW-K114 OFDM signal generation option is ideal for generating custom OFDM based waveforms.

The R&S[®]SMW-K114 OFDM signal generation option supports up to two different cyclic prefix (CP) lengths per signal, and discrete Fourier transform spread OFDM (DFT-s OFDM) on data allocations. It also allows the completely flexible allocation of pilot and data using BPSK, QPSK and QAM modulations up to 256 for pseudo random noise or pre-defined data sequences, as well as user-defined custom I/Q sequences.

R&S[®]SMW-K114 also supports the generation of filtered OFDM (f-OFDM), universal filtered multi-carrier (UFMC), filter band multi-carrier (FBMC) and generalized frequency division multiplexing (GFDM) signals. Custom signal filtering, as well as the placement of notches in the OFDM signal for NPR measurements are also possible with the option.

Preview of the allocation time plan.

General settings for custom OFDM signal generation.

OFDM signal analysis

The R&S[®]FSW-K96 OFDM signal analysis option enables the R&S[®]FSW signal and spectrum analyzer to demodulate and analyze custom OFDM and DFT-s-OFDM (SC-FDMA) signals with a known FFT size and cyclic prefix (CP). Synchronization can be done with either the CP or a preamble sequence (training sequence).

Even complex OFDM based communications standards can be analyzed with the R&S[®]FSW-K96 option. However, the real selling point is freedom it allows during configuration and the setting of measurement parameters.

The configuration file defining the signal and allocation structure can be exported directly from the R&S[®]SMW-K114 OFDM signal generation option for a quick and simple start.

User-definable OFDM parameters include:

- Sampling rate, FFT size, capture time, result length
- Cyclic prefix length: two different cyclic prefix lengths are supported per signal configuration
- Preamble structure
- Pilot and data carriers
- ► Fixed constellation points per pilot sample
- Different modulation formats for data carriers

Configuration file definition made easy using the built-in file wizard.

- Symbol ID and bitstream result
- Burst recognition
- Channel estimation and equalization using phase, timing and level tracking
- ► Cyclic delay shift
- ► FFT shift
- Transform precoding

Analyzing a custom OFDM signal with 100 MHz occupied bandwidth.

SPURIOUS MEASUREMENTS

Searching for spurious emissions with spectrum analyzers is an essential measurement when designing, verifying and manufacturing RF and microwave devices.

Transmitter and receiver devices in satellite applications have to fulfill very stringent spurious emissions limits. This implies searching for very low level spurs over a wide frequency range. In general, a narrow resolution bandwidth (RBW) is required to make the measurements with high sensitivity. The tradeoff is a much longer measurement time. Even when working with fast spectrum analyzers with FFT filters, a spur search may take several hours or even days.

A new spurious search algorithm automates and speeds up spurious measurements.

The R&S[®]FSW-K50 spurious measurement application detects and identifies spurs using an innovative three-step approach. An initial fast sweep is used to determine the optimum RBW. A second sweep is performed to detect possible spurs. A final high-speed search around each known spur frequency determines whether the peak is a real spur, a noise artifact or an internal analyzer spur. In the last step, the RBW can be further reduced to satisfy signal-to-noise requirements.

Spectral overview and noise floor estimation	Spur detection	Spot search
 Estimated measurement time Segment table with best fit RBWs 	 Pass/fail spurious detection limit Preliminary spurious table 	 Pass/fail Final spurious table RBW optimized if needed

MultiV	ultiView 🗰 Spectrum 🛛 Spurious 🔸 🗙										•	
RefLev	f Level 0.00 dBm Spur Search Wide RBW 0 Hz Freq 21.500000000 GHz Meas Time (~min, 10 spurs)											L
1 Spectr	Spectral Overview											
-10 dBm												
-30 dBm	Wide Search Settings								• • • • • • • • • • • • • • • • • • •			
-70 dBm		Range 1	Range 2	Range 3	Range 4	Range 5	Range 6	Range 7				
-90.dBm	Range Start	0 Hz	2 GHz	6.75 GHz	10.75 GHz	15 GHz	21.5 GHz	32.25 GHz				
0.0 Hz	Range Stop	2 GHz	6.75 GHz	10.75 GHz	15 GHz	21.5 GHz	32.25 GHz	43 GHz		- 12	43.0 GH	IZ
2 Spuric	Spur Detection Threshold Start	-140 dBm	-130 dBm	-120 dBm	-110 dBm	-100 dBm	-100 dBm	-100 dBm			●1 Clrw	E
-10 dBm -20 dBm	Spur Detection Threshold Stop	-140 dBm	-130 dBm	-120 dBm	-110 dBm	-100 dBm	-100 dBm	-100 dBm				
-30 dBm -40 dBm	Limit Offset to Detection Threshold	0 dB	0 dB	0 dB	0 dB	0 dB	0 dB	0 dB		15		
-50 dBm	Peak Excursion	3 dB	3 dB	3 dB	3 dB	3 dB	3 dB	3 dB		- 12		
-60 dBm	Minimum Spur SNR	10 dB	10 dB	10 dB	10 dB	10 dB	10 dB	10 dB		- 12		
-70 dBm	Maximum Final RBW	100 kHz	100 kHz	100 kHz	100 kHz	100 kHz	100 kHz	100 kHz		_ 12		
-80 dBm	Auto RBW	On	On	On	On	On	On	On				
-90 dBm	RBW	Auto	Auto	Auto	Auto	Auto	Auto	Auto				
1 0.0 Hz	Number of FFT Averages	2	2	2	2	2	2	2		7	43.0 GH	łz
3 Spuric	Ref Level	0 dBm	0 dBm	0 dBm	0 dBm	0 dBm	0 dBm	0 dBm				
	RF Attenuation	10 dB	10 dB	10 dB	10 dB	10 dB	10 dB	10 dB				
Fre	Preamp	Off	Off	Off	Off	Off	Off	Off	iment Stop	_	Spur ID	
	•											
	Insert Range to the Left	Insert F to the	Range Right	Delete Range		Clear Ranges						
	Use Selection for All Ranges	Load R	anges	Save Ran	ges				Show Segment Table			

Measurement settings for a wide spurious search. Configurable parameters for each frequency range under investigation. The R&S[®]FSW-K50 offers many advantages compared with traditional spurious measurement applications:

- Spurious searches that are around 30 times faster than existing spectrum analyzer spurious searches, especially at low RBWs
- RBW automatically calculated based on the maximum allowed spur level and required signal-to-noise ratio (SNR)
- Two different measurement modes: a wide search measurement for unknown spurious scenarios and a directed search measurement at specific frequencies

Spurious measurement application results screen.

MultiView	= Spec	trum 💌	Spurious	x				
Ref Level	-73.14 dl	Bm Spur Search Meas BW	wide 15 MHz	SRate 18 MHz	Freq 7.999160	638 GHz		SGL
1 Spectral Ov	rview							●1 Clrw
-99 dam Marija 111 dem		in an a the second s		Antikli (¹14) (1 14)	elisiy diraktir diraktir (Mahayara)	hydd yn ffisiglang i'r	uidraged an Annie Marydel Menneth de	and the second
1.0 GHz			32001 pts		2.55 GHz/			26.5 GHz
2 Spurious De	etection S	pectrum		_				O1 Clrw
-90 dBm	eck		PASS					
-90 dbm								
-105 dBm								
-110 dBm								a national statilized line
-115 dBm	. for and di	the second second		a constantino da cons	المربوب فبقلني والمنافع	the state of the s	A Distantion of a state of the billing of the billi	Alignities, plantations
	A CONTRACTOR		and the state of t		and the second second second	1. AND SAME	Address of the second s	
-130 dBm								
10 GHz			22001 pts		2 55 CHz/		3	26 5 CHz
2 Spurious De	staction T	abla	32001 pts		2.33 01127			20.3 0112
a apunous De	etecuorri	abie				_		
Frequen	cy	Power	Delta to Limit	RBW	Segment Start		Segment Stop	Spur ID
1.495998	55 GHz	-107.19 dBm	-12.19 dB	3.39 kH		GHz	3.65017118 GHz	
1.4979986	81 GHz	-107.63 dBm	-12.63 dB	3.39 kH	z 1	GHz	3.65017118 GHz	
1.4999988	12 GHz	-107.13 dBm	-12.13 dB	3.39 kH	z 1	GHz	3.65017118 GHz	\$3
1.5019989	43 GHz	-107.69 dBm	-12.69 dB	3.39 kH	z 1	GHz	3.65017118 GHz	S4
1.5040014	08 GHz	-107.48 dBm	-12.48 dB	3.39 kH	z 1	GHz	3.65017118 GHz	S5
7.9999991.	55 GHz	-97.00 dBm	-2.00 dB	7.507 kH		GHZ	15 GHz	

Zoom of a spot search. The RBW around the spur is reduced to lower the noise floor and fulfill the SNR requirement set by the user and determine whether the peak is a real spur.

NOISE FIGURE AND GAIN MEASURE-MENTS USING THE R&S®FS-SNS

The R&S[®]FS-SNS smart noise source enables simple and accurate noise figure and gain measurements by automatically loading necessary setup parameters and taking environmental temperatures into account. Measurement uncertainty is automatically calculated and displayed on the result screen.

R&S®FS-SNS smart noise source key facts

- Frequency range up to 18 GHz, 26.5 GHz, 40 GHz, 55 GHz or 67 GHz
- Supported by the R&S°FSW, R&S°FSV3000, R&S°FSVA3000, R&S°FPL1000 signal and spectrum analyzers, the R&S°FSWP phase noise analyzer and VCO tester and the R&S°ZNL vector network analyzer
- Automatic loading of the ENR table
- ENR uncertainty and reflection coefficients table for automatic uncertainty calculation
- Automatic temperature readout for improved accuracy

Noise figure and gain measurements with a spectrum analyzer

An excess noise ratio (ENR) source with a well-defined (white) noise for the DUT input is needed for noise figure and gain measurements with a spectrum analyzer. The Y factor is the ratio of noise power at the DUT output with and without this added noise. This is used to calculate the noise contributed by the DUT, its noise figure and gain.

Although output signal characteristics for a noise source in the specified frequency range approximates white noise, there is still a slight frequency response and temperature dependency. To eliminate this deviation from ideal behavior, noise sources come with written tables indicating the ENR behavior of the noise source based on frequency

FS-SNS26

Noise figure and gain measurement with R&S[®]FSx-K30 application firmware. In addition to the result table and the noise figure traces, the calculated gain and Y factor uncertainty can also be displayed.

and temperature. The correction values must be manually transferred to the noise figure measurement software. The R&S°FS-SNS smart noise source eliminates the time consuming and error prone step by including electronic ENR and environmental temperature tables in the spectrum analyzer calculations.

R&S[®]FS-SNS smart noise source is connected to the analyzer with a 7-pin cable as a power supply and control interface. An adapter cable is supplied for instruments without the necessary connector. When connected to a spectrum analyzer with the R&S[®]FSx-K30 noise figure measurement firmware, the instrument automatically sets all the parameters.

R&S®FS-SNS for simple and accurate noise figure and gain measurements.

NOISE FIGURE MEASUREMENTS OF AMPLIFIERS AND MIXERS

The R&S[®]ZNA-K30 option can analyze noise figures for amplifiers, converters and T/R modules. Hardware options can be added to further improve this function and stimulate high gain amplifiers with very low levels and accurately measure low gain/low noise figure LNAs.

Single connection device characterization

Instead of a noise source to determine a noise figure, the R&S[®]ZNA directly measures absolute noise power on the source and receive sides, providing the signal-tonoise ratios at the DUT input and output. Absolute power level calibration and system error correction are applied. Instrument calibration with a manual calibration kit, a calibration unit and a power sensor requires no extra equipment and an external noise source is unnecessary. The convenient calibrate all function can cover the entire setup. The DUT (amplifier, converter, T/R module) needs to be connected only once for full device characterization, including (conversion) gain/loss, intermodulation distortion, compression and group delay. The GUI displays the hardware components in the measurement path as graphic elements und helps configure all the details. Users can see all relevant settings at a glance.

Calibration features and settings

The potential for increased uncertainty from very low stimulus power and high measurement power may conflict with test accuracy requirements, especially with high gain converters. The main GUI includes essential parameters guiding users easily to the best settings for manual configuration. Correction algorithms used in system error correction provide accurate and reliable results.

Interactive and semi-automatic configuration of optimal test parameters and R&S[®]ZNA hardware in the Quickset dialog

Quickset - the fast and intuitive way to optimal settings

The powerful Quickset dialog is a valuable addition to the main configuration GUI: it interactively guides users to the optimal setup, based on the estimated DUT characteristics such as the approximate noise figure and gain along with the desired noise figure trace noise. The R&S[®]ZNA calculates parameters such as the measurement time and source power and displays the recommended optimum hardware configuration.

🍫 Setup	Ch1	•		• •	×
Driving Port	Cal Plane Cal Plan	10 Did Preamp	Receiving Port Port 2	Setup S-Params	4
40 dB Combiner Port	-50 dBm	Config Att 0 dB 🔻		Intermod.	عر
None 🔻 🖲				Amplifier Compression	عر
				Spectrum	٩
Sween Time Start Freque	ncu Ston Frequency Num	her of Points Base Power	_	Noise Figure	مر
Lin Freq 9 GHz	13 GHz 11 401	-10 dBm			
Noise Bandwidth Noise Det Me	as Time Gain Det Meas Time Meas an	d Cal Settings			
2 MHz 10 ms	🛙 🔽 10 ms 🔢 🗹 Quickse	t Advanced Settings C			
Reset Cal & Meas Pr Overview Setti	ort Copy To ings	New Copy To New Apply	🗸 ок 🗙 с	Cancel 🥐 H	telp

GUI for easy noise figure measurement configurations.

TESTING IN THERMAL VACUUM CHAMBERS

Satellite payload qualification requires performance testing using a thermal vacuum chamber (TVAC) to simulate the environment and temperature extremes of space.

Commercial off-the-shelf test and measurement equipment is not capable of working under TVAC conditions. Spectrum analyzers, vector network analyzers, signal generators, etc. have to remain outside the TVAC and require long cables to interface to the DUT inside the chamber.

Cables, adapters and switches in the test setup will drift as the temperature changes in the TVAC. The calibration performed in the chamber at a different temperature is no longer valid. After moving cables and changing temperatures,

regular recalibration is necessary to ensure accurate measurements. The calibration procedure inside the TVAC is especially challenging because the operator cannot access inside the chamber when the vacuum is applied.

Rohde & Schwarz has developed calibration accessories to help maintain accurate measurements on the uplink and downlink reference plane. One is an inline calibration module to enable a calibration update inside the TVAC after cabling and temperature changes and another is a power meter to monitor the uplink and downlink power at the test coupler.

Vector network analyzer multiport calibration in TVAC

The R&S[®]ZN-Z33 (model .03) automatic calibration units are designed to operate inside the TVAC and are permanently connected between the test setup cables and the DUT, which allows recalibration whenever necessary.

A basic (multiport) calibration with through connections is only needed once for environmental conditions. For temperature runs under vacuum conditions, the inline calibration units support remote controlled re-calibration with the DUT in place.

The R&S[®]ZN-Z33 automatic calibration units are connected to the R&S[®]ZN-Z30 controller via a CAN bus. Control of the R&S[®]ZN-Z30 CAN bus network and R&S[®]ZN-Z32 and R&S[®]ZN-Z33 calibration units is integrated in the firmware.

Measurement setup

The control of the R&S[®]ZN-Z30 CAN bus network and of the R&S[®]ZN-Z32 and R&S[®]ZN-Z33 calibration units is integrated in the R&S[®]SMARTerCal concept of the R&S[®]ZNA for seamless remote control calibration and in situ re-calibration. The inline R&S[®]ZN-Z33 calibration unit operates up to 40 GHz and can also be TVAC compatible.

Special R&S®NRP33SN-V/R&S®NRP67SN-V three-path diode power sensor for use in a TVAC environment.

They are automatically detected for easy integration in the user interface.

A single controller supports up to 48 inline calibration modules, making it ideal for multiport DUTs. Distances up to 20 m are possible. The setup enables simple plug&play configuration. The extended feature range enables correction for auxiliary components such as adapters and splitters and enables mixer measurements.

The main advantages of this solution are:

- The R&S[®]ZN-Z33 automatic calibration unit is characterized over the temperature range from –30°C and +80°C in the factory to work in vacuum conditions
- The R&S[®]ZN-Z33 has low insertion loss (typ.1.5 dB at 1 GHz, 5 dB at 40 GHz) and high effective directivity (typ. 38 dB between 700 MHz and 20 GHz)

- Compact setup for multiport testing: one R&S[®]ZN-Z30 controller supports up to 48 calibration units
- Flatness power calibration (included in R&S[®]SMARTerCal) is possible during base calibration
- Plug&play configuration
- Accurate stimulation power even in TVAC
- Correct for auxiliary components, (de-)embedding
- Converter testing

Power measurements

General power measurements inside the TVAC (under TVAC conditions) are possible with Rohde & Schwarz TVAC power test heads. The R&S®NRP33SN-V and R&S®NRP67SN-V power sensors have been especially designed for TVACs and comply with the European Space Agency (ESA) norms. R&S®NRP33SN-V and R&S®NRP67SN-V power sensors cover the satellite communications frequency range up to 33 GHz and 67 GHz for fast, highly accurate power measurements over a dynamic range of up to 93 dB, independent of signal bandwidth and modulation type. The power sensors can be easily controlled from outside the chamber via a power over Ethernet LAN connection.

The measurement setup and calibration procedure can be simplified by connecting the sensors directly to the input or output of the satellite inside the chamber, eliminating the need for long RF cables while improving measurement accuracy by measuring close to the DUT. Rohde & Schwarz TVAC cables, special LAN feedthroughs from the inside to the outside of the chamber, are made of vacuum friendly materials that have been baked long enough to eliminate VOC and other contaminants.

The Rohde & Schwarz calibration unit and power sensor are connected directly to the payload in the TVAC

Distance: 10 m to 25 m

DIGITAL INTERFACE TESTING

The data communications between different systems and components within a satellite is crucial for a mission and has to be ensured under all conditions.

The different instruments and modules within the payload and between the payload and the satellite platform are interconnected via digital data and communications bus systems. State-of-the-art systems use protocols such as SpaceWire for this task.

The R&S®RTP and R&S®RTO6 oscilloscopes easily decode and debug the different bus standards, offering a wide range of functions to verify the performance of a DUT:

- Trigger and decode options for standardized and proprietary bus systems such as SpaceWire and 8b/10b-based SpaceFibre
- ► A unique time and frequency zone trigger

- Easy correlation between different events simplifies system troubleshooting
- Excellent signal fidelity with up to 16-bit vertical resolution
- Compact format with fully integrated multi-domain test solution including frequency, protocol and logic analysis functionality
- Integrated arbitrary waveform and pattern generator for device control and stimulus

SpaceWire architecture

Two SpaceWire routers are used to provide connectivity between the different instruments and modules in the satellite.

Downlink telemetry

Equipped with the R&S®RTP-K65 option, the R&S®RTP easily decodes and debugs the SpaceWire serial protocol.

Debug test setup with a four-channel R&S®RTP oscilloscope

Each R&S®RTP channel measures a different domain (RF link, DC power supply, datacom buses) and correlates the measurement results.

Selection of commonly used trigger and decode options for digital interface testing on satellites											
Option	Serial standard	Application	Decode	Decode table	Trigger	Label support	Symbolic T&D	Search			
R&S®RTP-K1	I²C/SPI	Embedded	•	•	•	•		•			
R&S®RTP-K2	UART/RS-232/422/485	Embedded	•	•	•						
R&S®RTP-K3	CAN/LIN (CAN-dbc)	Automotive, industrial	•	•	•	•	•	•			
R&S®RTP-K6	MIL-STD-1553	Aerospace	•	•	•	•		•			
R&S®RTP-K7	ARINC 429	Aerospace	•	•	•	•		•			
R&S®RTP-K9	CAN-FD (CAN-dbc)	Automotive	•	•	•	•	•	•			
R&S®RTP-K50	Manchester, NRZ	Configurable	•	•	•						
R&S®RTP-K52	8b10b	Embedded	•	•	•			•			
R&S®RTP-K65	SpaceWire	Aerospace	•	•	•	•		•			

RF MEASUREMENTS ON PAYLOAD COMPONENTS

WITH THE R&S®ZNA VECTOR NETWORK ANALYZER

R&S®ZNA key features

- Extremely high sensitivity
- Unparalleled measurement speed
- ► Frequency range up to 67 GHz
- ► Up to eight independent receivers
- ► Four internal, phase coherent sources

- Two internal LO sources
- ► Four pulse generators and four pulse modulators
- Internal combiner
- Comprehensive trigger and synchronization capabilities

MIXER/CONVERTER MEASUREMENT

- ► Conversion loss
- Noise figure

Phase measurements

without reference mixers

- Input/output matching
- RF/LO crosstalk
- Compression/intermodulation
- Group delay

ANTENNA MEASUREMENT

- Matching
- Antenna characterization
- RCS measurements
- Direct IF access with 1 GHz bandwidth
- Comprehensive trigger and synchronization capabilities
- Supports mmW measurements up to 1100 GHz
- Reverse frequency sweep

R&S[®]ZNA VECTOR NETWORK ANALYZER

AMPLIFIER MEASUREMENT

- Delay, gain
- Input/output matching
- Intermodulation
- Compression
-
- Noise figure
 Harmonic distortion
- Pulsed measurements
- Absolute power
- Ansolate how

FILTER MEASUREMENT

- Passband and stopband attenuation
- ► Ripples
- Steepness
- Delay

- Matching
- Bandwidth
- Q-factor
- TDR tuning

WITH THE R&S®SMW200A VECTOR SIGNAL GENERATOR

R&S®SMW200A key features

- Frequency range up to 67 GHz
- Up to 2 GHz I/Q modulation bandwidth (in RF) with internal baseband
- 4 GHz signal bandwith available with R&S[®]SMW-K555 bandwidth extension
- Optional second RF path up to 44 GHz

AMPLIFIERS (R&S®SMW200A AND R&S®FSW)

- ► Gain and gain compression
- AM/AM, AM/PM, compression
- Modeling and digital predistortion
- ► EVM

- In/out power, ACLR, NPR
- Noise figureFrequency response
 - measurement and correction
- Group delay, intermodulation

WITH THE R&S[®]FSW SIGNAL AND SPECTRUM ANALYZER R&S[®]FSW key features

- Frequency range up to 90 GHz and up to 500 GHz with external harmonic mixers
- ► Up to 8.3 GHz internal analysis bandwidth
- ▶ 800 MHz real-time analysis bandwidth

MIXERS/FREQUENCY CONVERTERS (R&S®SMW200A AND R&S®FSW)

- Conversion loss
- Compression
- ► AM/AM, AM/PM
- Spurious
- Noise figure
- Frequency response measurement and correction
- ► Group delay

R&S®SMW200A SIGNAL GENERATOR

R&S[®]FSW

SIGNAL AND SPECTRUM ANALYZER

FILTERS (R&S®SMW200A AND R&S®FSW)

- Passband and stopband attenuation
- Magnitude and phase
- Frequency response measurement and correction
- Group delay

OSCILLATORS/SYNTHESIZERS (R&S®FSW)

- Phase noise
- Spurious
- Output power

Service that adds value

- ► Worldwide
- Local and personalized
- Customized and flexible
 Uncompromising quality
- Long-term dependability

Rohde & Schwarz

The Rohde&Schwarz technology group is among the trailblazers when it comes to paving the way for a safer and connected world with its leading solutions in test&measurement, technology systems and networks&cybersecurity. Founded more than 85 years ago, the group is a reliable partner for industry and government customers around the globe. The independent company is headquartered in Munich, Germany and has an extensive sales and service network with locations in more than 70 countries.

www.rohde-schwarz.com

Sustainable product design

- Environmental compatibility and eco-footprint
- Energy efficiency and low emissions
- ► Longevity and optimized total cost of ownership

Certified Quality Management

Certified Environmental Management

Rohde & Schwarz training

www.training.rohde-schwarz.com

Rohde & Schwarz customer support

www.rohde-schwarz.com/support

R&S[®] is a registered trademark of Rohde & Schwarz GmbH & Co. KG Trade names are trademarks of the owners PD 5215.2120.92 | Version 02.00 | September 2022 (ch) Satellite payload and components testing Data without tolerance limits is not binding | Subject to change © 2017 - 2022 Rohde & Schwarz GmbH & Co. KG | 81671 Munich, Germany