

Operating Manual

VECTOR NETWORK ANALYZER

ZVR / ZVRE / ZVRL

1127.8551.61/.62 1127.8551.51/.52 1127.8551.41

ZVC / ZVCE

1127.8600.60/.61/.62 1127.8600.50/.51/.52

ZVM

1127.8500.60

ZVK

1127.8651.60

Volume 1 Operating Manual consists of 2 volumes

Printed in the Federal Republic of Germany

Volume 1 Volume 2

Contents Contents Index

Data Sheet Supplements

Safety Instructions
Certificate of Quality
EC-Certificate of Conformity
Support Center Address
List of R&S Representatives

Safety Instructions
Certificate of Quality
EC-Certificate of Conformity
Support Center Address
List of R&S Representatives

Tab	bed Divider	Tab	bed Divider
1	Preparation for Use	1	Remote Control
2	Manual Operation	2	Maintenance and Troubleshooting
		3	Testing the Rated Specifications
		4	Annex A: Interfaces
		5	Annex B: List of Error Messages
		6	Annex C: List of Commands
		7	Annex D: Programming Examples
		8	Annex E: Emulations

Release Notes

Firmware Version 3.52

for ZVR/ZVRE/ZVRL/ZVC/ZVCE/ZVM/ZVK

1112.7990.39

Printed in the Federal Republic of Germany

Contents

G	General Information	1
	Manual for ZVR Family	1
	Update Procedure	1
	Initial Steps	1
	Documentation of Firmware Modifications	1
1	Firmware Update	2
	System Requirements	2
	Preparations for Update	2
	Contents of Firmware Update Kit	2
	Update Procedure	2
2	New Features, Improvements and Modifications	5
	New Features	5
	Improvements	6
	Modifications	6
3	Bug Fixes	7
4	Extensions to Operating Manual	8
5	New IEEE-Bus Commands	20
	Special Features	28

General Information

Manual for ZVR Family

The analyzers of the ZVR family are supplied with the following manual:

"Operating Manual – Vector Network Analyzer" ZVR/E/L, ZVC/E, ZVM, ZVK Order No. 1127.8700.xx-03-

where xx 11 (German) 12 (English)

13 (French)

19 (English, US letter format)

Update Procedure

The update instructions given in section 1 of this release note are to the latest state; any deviating instructions in the operating manual are to be ignored.

If you have received this document together with a new analyzer, you can skip section 1.

If you have received the document together with a firmware update kit or as a download together with a self-extracting archive file, you should read section 1.

Initial Steps

If you work with a ZVR analyzer for the first time, it is recommended to read the operating manual to familiarize yourself with the unit.

If you are already familiar with the instrument, this document informs you about new features.

Documentation of Firmware Modifications

This document covers firmware modifications that are not part of the current operating manual.

1 Firmware Update

System Requirements

None

Preparations for Update

No preparations are required.

Contents of Firmware Update Kit

The update kit comprises the following:

• Five 3.5"/1.44 Mbyte disks labelled as follows:

```
Disk 1: "V3.52 DISK 1"
Disk 2: "V3.52 DISK 2"
Disk 3: "V3.52 DISK 3"
Disk 4: "V3.52 DISK 4"
Disk 5: "V3.52 DISK 5"
```

This document

Update Procedure

1. If you have received a self-extracting archive file per e-mail or as a download a set of disks must first be created from the archive file.

Proceed as follows:

Check if you have received all files.

```
disk1.bin self extracting ZIP file, used to generate update disk 1
data2.cab packed contents of disk 2, automatically unpacked during FW update
data3.cab packed contents of disk 3, automatically unpacked during FW update
data4.cab packed contents of disk 4, automatically unpacked during FW update
data5.cab packed contents of disk 5, automatically unpacked during FW update
disk_d.bin this document packed
```

- ➤ Keep five DOS-formatted 3.5" / 1.44 Mbyte disks ready.
- > Label disks as follows:

```
V3.52 DISK 1
V3.52 DISK 2
V3.52 DISK 3
V3.52 DISK 4
V3.52 DISK 5
```

- Create a temporary directory on your PC (e.g. ZVRTEMP on C:\). For this you require about 3 Mbytes of free memory on your hard disk.
- Copy file disk1.bin to this temporary directory.
- Rename file disk1.bin to disk1.exe.

Execute disk1.exe, e.g. by using the following command sequence for Windows95/NT: <CTRL><ESC> - RUN – C:\ ZVRTEMP \DISK1 - <ENTER> (English version) or <CTRL><ESC> - AUSFÜHREN – C:\ ZVRTEMP \DISK1 - <ENTER> (German version).

The files are extracted.

Delete file disk1.exe in the temporary directory.
The temporary directory should contain the following files:

inst32i.ex	_isdel.exe	_setup.dll	_sys1.cab	_user1.cab
data.tag	data1.cab	lang.dat	layout.bin	os.dat
readme.txt	setup.exe	setup.ini	setup.ins	setup.lid

- Copy all files to update disk 1 (V3.52 DISK 1).
 Check if all files are on the disk with their correct names. In particular, the underscores ("_" as in " inst32iex ") are essential for a successful update.
- The contents of the other 4 disks are already in the format needed for the update. Files data2.cab,..., data5.cab must be copied to the corresponding disks DISK2, ..., DISK5.

The disks are now ready, and you can continue with section 2 "If you have received a firmware update kit on a disk ...".

Notes: If any error messages are output during creation of a disk, the installation process for the disk in question must be repeated. Before re-creating the disk, check if the write protection of the disk has been removed.

File disk_d.bin contains this document in pdf format. To unpack the document proceed as follows:

- Copy disk_d.bin to the temporary directory.
- > Rename the file to disk d.exe.
- Execute disk_d.exe, e.g. by using the following command sequence for Windows95/NT:

```
<CTRL><ESC> - RUN - C:\ZVRTEMP \DISK_D - <ENTER> (English version)
or<CTRL><ESC> - AUSFÜHREN - C:\ZVRTEMP \DISK_D - <ENTER> (German version)
```

2. If you have received a firmware update kit on a disk ...

You can load the firmware directly from the disk to your network analyzer.

- Insert the disk DISK 1 into the drive.
- \triangleright Press the **SETUP** key and change to the side menu by pressing \Rightarrow key.
- Press the FIRMWARE UPDATE softkey.
- Start the update by pressing the UPDATE softkey and follow the instructions on the analyzer display.

First, the contents of the update disks are copied to the hard disk of the instrument. Then the files are extracted and copied in the directories accordingly. After the extraction, the instrument is rebooted.

The firmware update is complete.

The previous firmware version may be restored using softkey **RESTORE**.

3. If problems occur during the firmware update ...

The new firmware can if necessary also be loaded under NT. This should be done only with an external keyboard and a mouse. Log-in has to be made using the ADMINISTRATOR function, and the device firmware closed.

Log in as administrator.

- Press key combination ALT SYSREQ to switch to NT screen if not yet displayed.
- Call up the NT task bar START SHUT DOWN.
- Select 'Close all programs and logon as different user'.
- Hold the SHIFT key down and press the OK key to leave the input window until the login window appears.
- Release the SHIFT key as soon as the login window appears.
- Now enter administrator as user name and 894129 as password.

Close the device firmware:

- Press the keys CTRL ALT DEL on the external keyboard simultaneously.
- Select the Task Manager.
- Select the Application Rohde&Schwarz ZVR NT Interface and terminate it with End Task.

Now the new firmware can be loaded:

- > Insert **DISK 1** into drive A:
- Start the installation with START RUN A:SETUP. You will be prompted to insert the remaining disks one after the other.

After loading the software, the operating system is rebooted. Then change back from **administrator** to instrument (password instrument) for the login. This is done in the same way as changing of login to administrator.

Note: If the firmware is installed in this way, the previous version cannot be restored.

2 New Features, Improvements and Modifications

New Features

Support of waveguide calibration:

For this purpose, two new softkeys were added to the menu CAL \rightarrow CAL KITS \rightarrow right side menu: WAVEGUIDE (position 6) and CUTOFF FREQUENCY (position 7)

Deinstallation of calibration kits:

A new softkey is available in the menu CAL \rightarrow CAL KITS: UNINSTALL KITS (position 10)

- New SCPI commands:
 - Reading out and modification of system error calibration and power calibration
 - Support of waveguide calibration
 - Query of electrical length, mechanical length and phase delay
- Support of additional, external devices:
 - Generator SML (Rohde & Schwarz)
 - Generator SMR30, SMR50, SMR60, SMR30B11, SMR50B11, SMR60B11 (Rohde & Schwarz)
 - Generator HP8648 A/B/C/D (Agilent)
 - Generator HP83650A (Agilent)
 - Power Meter NRP (Rohde & Schwarz)
 - Power Meter ML2438A (Anritsu)
 - Power Meter E4417A (Agilent)
 - Power Meter EPM-441A (Agilent)

-

1112.8050.52 5 E-17

Improvements

 When reading and writing system error correction data and level correction data in the REAL64 format, an error message is output.

Affected IEC/IEEE bus commands:

SENSe[1..4]:CORRection:DATA

SENSel1..4l:CORRection:POWer:DATA

SOURce[1..4]:POWer:CORRection:DATA

- If a waveguide calibration (WAVEGUIDE = ON) is performed via IEC/IEEE bus with a CUTOFF FREQUENCY that is higher than the START FREQUENCY, an error message is now output because this action is not permitted.
- Omission of unnecessary level calibration interpolation (improves performance especially during operation via the IEC/IEEE bus).
- The CALC:MARK:FUNC:RES? IEC/IEEE bus query now yields 10 significant marker points (previously only 6).
- Improvement of signal quality of R&S SMR generators (SMR20/27/30/40/50/60, SMR20/27/30/40/50/60B11) in TTL mode.
 (This requires an SMR firmware version ≥1.26.)
- Generators currently not used are switched to RF OFF. This prevents erroneous measurements and avoids disconnecting any cables.

Examples:

- During power calibration of the internal generator, any external generators connected to the instrument and set to REMOTE are switched to RF OFF.
- This applies analogously to the calibration of an external generator. In this case, the internal generator (and, if available, a second external generator connected and set to REMOTE) is switched to RF OFF.
- When a COMP/SOI/TOI, arbitrary or mixer measurement is switched off, the external generators used in the measurement are set to RF OFF.

Modifications

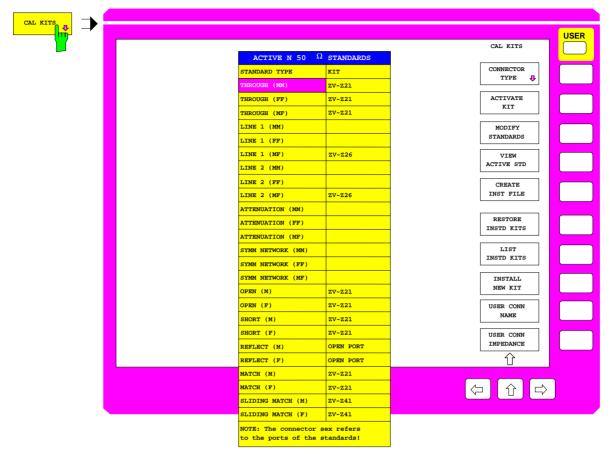
- New softkeys or softkeys shifted to another position in menu CAL → CAL KITS:
- Softkey USER CONN NAME now at position 9 of right side menu
- Softkey USER CONN IMPEDANCE now at position 10 of right side menu
- New softkey UNINSTALL KITS at position 10 of main menu
- New softkey WAVEGUIDE at position 6 of right side menu
- New softkey CUTOFF FREQUENCY at position 7 of right side menu

3 Bug Fixes

- In the ACTIVE xx STANDARDS table, the entries for the OPEN standards are again available when a calibration is performed.
- System error correction data sets generated with a version <3.50 can now be recalled again (RECALL).
- The power correction function has been improved:
- External power calibration is reliably activated with COMP/SOI/TOI measurements.
- An existing power calibration can be used again in power sweeps and in time sweeps.
- The normal user (logged on under the name "INSTRUMENT") has write access again to the directory AUTOKAL, so the AutoCal function works again.
- Commanding the OFFSET SHORT standards
 (SENSe[1..4]:CORRection:COLLect:ACQuire:OSHORT1 or OSHORT2) in case of waveguide
 calibration (WAVEGUIDE = ON) is possible again.
- Errors were corrected in the following SCPI commands:
- SENS:FUNC?
- SOURce:POWer:[LEVel]:[IMMediate]:CAMPlitude
- Softkeys that were not visible are now available again:
- Menu MEAS → USER DEF'D S-PARAMS: softkeys USER DEF'D S-PARAMS and USER DEF ACTIVE
- Menu CAL ightarrow START NEW CAL ightarrow FULL ONE PORT ightarrow BOTH PORTS: softkey 2.92 mm FEMALE
- Menu MEAS → WAVE QANTITY: softkey DRIVE PORT

4 Extensions to Operating Manual

Characteristics of Calibration Standards (Re section 2.15.1.3)


The MODIFY CAL KIT softkey opens a menu for the management of calibration kits for the individual connector families.

Exact knowledge of the calibration standards is a prerequisite for a accurate system-error calibration. More precisely, the calibration is based on the knowledge of those S-parameters of the standards which are assumed to be known for the applied calibration method. These S-parameters are derived from physical models which contain one or more parameters (such as the electrical length) depending on the type of standard.

In addition to these physical parameters, there are three description fields for each standard listing the assignment of the standard and further information for the user.

- 1. Standard type: The type depends on the kind of standard (e.g. open circuit, short circuit, through-connection) and the sex of the connectors. Example: THROUGH (MF) denotes a through-connection with a plug at one and a socket at the other port. The standard type determines the physical description model and therefore the parameters which can be edited. Up to four individual standards with different parameters can be defined for one standard type. Only one of them can be selected (active) at one time.
- 2. Calibration kit (KIT): A calibration kit is an assembly of real, physical calibration standards. Calibration kits are supplied by Rohde & Schwarz as an accessory for network analyzers. The parameters of the standards in a calibration kit are stored on a floppy disk which can be read in via the INSTALL NEW KIT softkey. Kits for coaxial connector families usually do not contain all possible standard types of these families but only a subset comprising the types which are most frequently used in coaxial technology. Calibration kits can be user-defined as well. Using the ACTIVATE KIT softkey, the standards of a calibration kit can be selected altogether by just one keystroke.
- 3. Serial number (SERIAL #): All standards of a calibration kit are factory-labelled with the same serial number so they can be assigned unambiguously to this kit. The serial number helps to avoid confusion between standards of the same type from different calibration kits which might have different physical parameters.

CAL CAL - CAL KITS submenu:

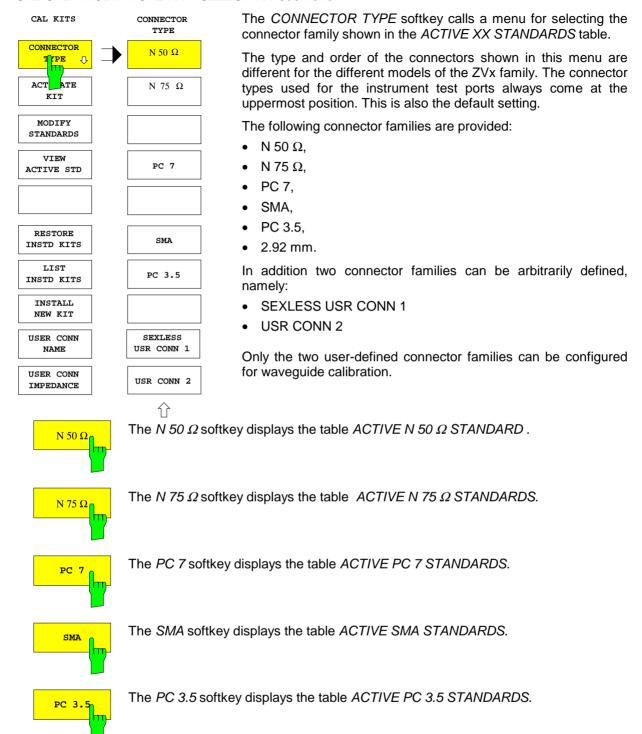
Selecting the connector families

After pressing the *CAL KITS* softkey, the *ACTIVE XX STANDARDS* selection table is displayed, where XX denotes the connector family selected. By default, the connector family of the test set ports is selected. The table gives an overview of the active standards of the connector family:

- The STANDARD TYPE column lists all standard types which are required for the calibration procedures of the respective type of instrument.
- The KIT column indicates to which calibration kit the currently selected physical standard belongs. By default, for standard types contained in the calibration kits offered by Rohde & Schwarz, the designation of the corresponding kit is also displayed. Although typical parameter values are pre-defined for these standards, the individual parameters for each calibration kit, which are supplied on a floppy, should be read in for the sake of maximum accuracy (see INSTALL NEW KIT softkey). The predefined standards without calibration kit assignment are assumed to be ideal.

The cursor can be used to select the standard type the softkeys MODIFY STANDARDS and VIEW ACTIVE STD refer to.

For polarized connector families, three types exist for each two-port standard, namely male/male (MM), female/female (FF), and male/female (MF). One-port standards are provided as male (M) and female (F). For non-polarized connectors, such as PC 7, all standards are contained only once in the table.


If a calibration method requires to measure two standards with the same polarity simultaneously, their characteristics are assumed to be identical. This applies, e.g., to the TOM-X calibration method if the *OPEN BOTH PORTS* measurement is performed.

The following types of standards are provided for the various types of network analyzers. Due to the restricted calibration facilities of the ZVRE, ZVCE and ZVRL compared to the ZVR, ZVC, ZVK and ZVM, a reduced set of standards is required only.

Table: Standard types for the network analyzers

ZVR, ZVC, ZVK, ZVM	ZVRE, ZVCE, ZVRL	
THROUGH	THROUGH	through-connection
LINE 1		line 1 for TRL calibration procedure
LINE 2		line 2 for TRL calibration procedure
ATTENUATION		unknown matched attenuator
SYMMETRIC NETWORK		unknown mismatched reflection-symmetric two-port standard
OPEN	OPEN	open circuit
SHORT	SHORT	short circuit
OFFSET SHORT	OFFSET SHORT	additional short circuit for waveguide calibration
REFLECT		unknown mismatched one-port standard
MATCH	MATCH	broadband termination
SLIDING MATCH	SLIDING MATCH	sliding load

CAL CAL - MODIFY CAL KIT - SELECT KIT submenu:

The SEXLESS USR CONN 1 softkey displays the table ACTIVE USER CONN 1 STANDARDS. The connector family SEXLESS USR CONN 1 which can be user-defined is not polarized (similar to PC 7) and particularly suited for non-coaxial cable systems such as microstrip.

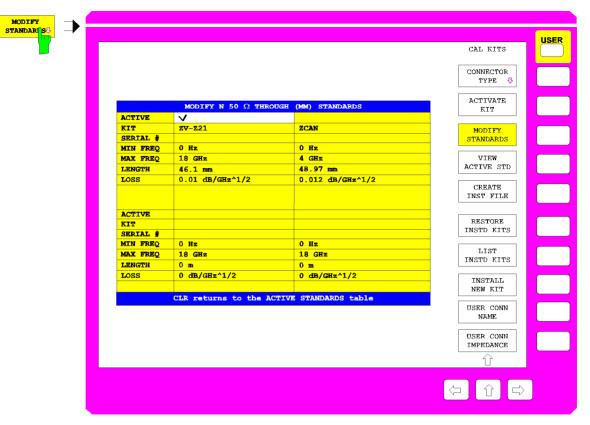
The two user-defined connector families SEXLESS USR CONN 1 and USR CONN 2 can also be used for waveguide calibration (refer to *WAVEGUIDE* softkey description). As waveguides are as a rule not polarized, SEXLESS USR CONN 1 is to be preferred to USR CONN 2.

The name of this connector family (USER CONN 1 by default) can be modified via the *USER CONN NAME* softkey.

The USR CONN 2 softkey displays the table ACTIVE USER CONN 2 STANDARDS. Unlike SEXLESS USR CONN 1, this user-defined connector family is polarized and therefore suited for the coaxial connectors that are not pre-defined in the CONNECTOR TYPE menu. The connector family USR CONN 2 can also be used for waveguide calibration.

The name of this connector family (USER CONN 2 by default) can be modified via the USER CONN NAME softkey.

CAL CAL - CAL KITS submenu:


The ACTIVATE KIT softkey displays the selection table ACTIVATE KIT.

ACTIVATE KIT
OPEN PORT
ZCAN
√ zv-z21
ZV-Z26
ZV-Z28
ZV-Z41

This table lists all calibration kit names defined for the connector family currently selected. All standards including the ones that are currently not active are considered.

The cursor keys move the cursor within the table. A kit is selected via the units prefix key. A checkmark displayed for a short time indicates that a kit has been selected.

All standards with the selected kit name are set active.

Modifying the standards

The MODIFY STANDARDS softkey calls the MODIFY XX YY STANDARDS table.

In the four quadrants of this table, the parameters of the four individual standards of a single type are displayed. The type is selected in the *ACTIVE XX STANDARDS* table. The parameters describe the physical model of this standard type. All displayed parameters can be edited, even if the corresponding standard is currently not set. The upper five parameters are available for all standard types, the remaining ones depend on the kind of model applied.

If a parameter in this table is changed, an asterisk (*) is appended to the calibration kit name (*KIT*) of the corresponding standard.

ACTIVE Standard active

A checkmark in the table row *ACTIVE* indicates which one of the individual standards is currently active. If a definite standard type, e.g. an OPEN (F), is measured in a calibration, the calibration algorithm uses the parameters of the active individual standard of this type.

KIT Designation of the calibration kit

The calibration kit name can be entered here. It comprises a maximum of 10 characters and appears in the ACTIVE XX STANDARDS table if the standard activated.

Some softkey functions access the calibration kit name as well. The standards with the same kit name can be activated altogether via ACTIVATE KIT. The softkey RESTORE INSTD KITS restores the original parameters of the calibration data sets which were installed from floppy disk. LIST INSTD KITS list all calibration data of a connector type installed from floppy disk.

An asterisk (*) as the last character of the kit name indicates that the preset values or the values installed from floppy of one or several parameters of the corresponding individual standard were changed. If an attempt is made to enter a calibration kit name which is already present twice (e.g. once in the original form and once labelled as user-defined, i.e. with an asterisk), an exclamation mark and an asterisk will be appended to the name.

SERIAL # Serial number of the standard

Besides the calibration kit name, the serial number (max. 15-digit) is a further individual attribute for the standards. It is used especially to distinguish standards from calibration kits of the same type. For the calibration kits offered by Rohde & Schwarz, the same serial number is used throughout the whole kit. This number is assigned to every single standard when the kit is installed. Standards purchased later as spare parts have another serial number of course.

MIN FREQ - minimum frequency of the standard

The sliding load, e.g., is a standard with minimum frequency since it can be used above 2 GHz only.

MAX FREQ - maximum frequency of the standard

For each standard, a maximum frequency is defined. The physical model described by the subsequent parameters is valid up to this maximum frequency.

LENGTH – electrical length of the standard

The electrical length of the standard can be entered for *OPEN, SHORT, OFFSET SHORT* (short with length offset), REFLECT, THROUGH, LINE 1 and LINE 2 and SYMMETRIC NETWORK. The default unit of the electrical length is mm. For REFLECT and SYMMETRIC NETWORK, the electrical length must be specified only if it causes a phase deviation of more than 90° from the assumed approximation (APPROX field) in the frequency range to be calibrated.

Note: For one-port standards, only the single length (length offset) is to be entered, too.

LOSS - losses

The losses of the standard are entered in this field. It is assumed that they are resistive line losses whose value (in dB) increases proportionally with the root of the frequency due to the skin effect. The attenuation is thus entered in units of dB/GHz. Losses are indicated only for *OPEN*, *SHORT*, *OFFSET SHORT* (short with length offset), *THROUGH* and *LINE*. For one-port standards, the total loss, i.e., the return loss must be entered.

C0... C3 – polynomial coefficients for parasitic capacitance

For *OPEN*, as well as for *REFLECT* and *SYMMETRIC NETWORK* with *APPROX* = *OPEN* selected, the parasitic capacitance at the open end of the line can be described by a third-order frequency polynomial. C0 denotes the constant part, C1 to C3 the polynomial coefficients of the corresponding powers of the frequency. The unit of the coefficient Cn is thus fF/GHz^n (n=0,..., 3).

For *REFLECT* and *SYMMETRIC NETWORK*, specification of the coefficients is required only if the latter cause a phase deviation of more than 90° from the assumed *OPEN* approximation in the frequency range to be calibrated.

L0... L3 – polynomial coefficients for parasitic inductance

For *OPEN*, as well as for *REFLECT* and *SYMMETRIC NETWORK* with *APPROX* = SHORT selected, the parasitic inductance can be described by a third-order frequency polynomial. L0 denotes the constant part, L1 to L3 the polynomial coefficients of the corresponding powers of the frequency. The unit of the coefficient Ln is thus pH/GHz^n (n=0,...,3).

For *REFLECT* and *SYMMETRIC NETWORK*, specification of the coefficients is required only if the latter cause a phase deviation of more than 90° from the assumed *SHORT* approximation in the frequency range to be calibrated.

APPROX - approximate modelling

When a reflection standard (*REFLECT*) or a reflection-symmetric network (*SYMMETRIC NETWORK*) is selected, it must be indicated, whether the unknown reflection coefficient can be approximately modelled as a short or an open circuit.

This information is required only to exclude a sign ambiguity when the reflection coefficient is determined implicitly. If the length offset or parasitic reactances cause a rotation of the phase of the unknown reflection coefficient of more than 90° with respect to the approximate phase (0° for *APPROX* = *OPEN*, 180° for *SHORT*), these parameters must be specified as well.

The VIEW ACTIVE STD softkey displays the ACTIVE XX YY table, where XX denotes the connector family and YY the standard type, e.g. ACTIVE N 50 Ω OPEN (F).

This table can not be edited. It shows the parameters of the currently active individual standard of the type that was selected in the *ACTIVE XX STANDARDS* table. If a certain standard type, e.g. an OPEN (F) is measured during a calibration, the calibration algorithm uses the parameters of the active individual standard of this type. For a description of the table rows refer to softkey *MODIFY STANDARDS*.

1112.8050.52 15 E-17

The CREATE INST FILE softkey creates an installation file for a calibration kit. This function is useful, e.g., if an updated installation file for the entire calibration kit is needed after exchange of an individual calibration standard, or if calibration kit data entered via MODIFY STANDARDS are to be transferred to other instruments. The SELECT KIT table shows all calibration kits of the connector type currently selected.

Once the desired kit has been selected and confirmed via the ENTER key, an input field for the path and name of the installation file is displayed. The default entries correspond to the current path for *SAVE / EDIT* and the name of the selected calibration kit with the extension *.chk. Upon entering the name the installation file is written to the specified directory.

To create an updated installation file for the entire calibration kit after exchanging an individual calibration standard, the file supplied with the replacement standard is installed first. During installation, only the data pertaining to this standard are overwritten in the corresponding calibration kit file. Afterwards, the desired file for the entire kit can be created via *CREATE INST FILE*.

To create an installation file for calibration kits from other manufacturers, the data describing the different standards is entered via MODIFY STANDARDS; the entire data is assigned to the same calibration kit. Afterwards, CREATE INST FILE is used to create the installation file.

The RESTORE INSTD KITS softkey resets the parameters of all standards to the values defined in the instrument firmware. Exceptions are calibration kits installed from floppy disk (or from another storage medium). Those are reset to their original state after the installation.

The softkey also activates the same standards which were active in the preset state. Besides that, the default values of the name and reference impedance of the connector families which can be user-defined (SEXLESS USR CONN 1 and USR CONN 2) are restored. This function is used to cancel all user entries, especially the ones made by mistake.

The LIST INSTD KITS softkey displays the INSTALLED CAL KITS table.

This table can not be edited. It shows all calibration kits which were installed from floppy disk (or from another storage medium) or which were generated by modifying an originally installed calibration kit. Preinstalled kits or kits generated by modification of an originally preinstalled kit are not listed.

INSTALLED CAL KITS				
CONNECTOR	KIT	SERIAL #		
Ν50Ω	ZV-Z21	123456/001		

CONNECTOR Connector family

The CONNECTOR column shows the connector family of the calibration kit.

The meaning of the two columns *KIT* and *SERIAL* # is as explained under softkey *MODIFY STANDARDS*. If the standards of a kit have different serial numbers *VARIOUS* is indicated in the *SERIAL* # column.

The INSTALL NEW KIT softkey allows the user to install calibration kits from a floppy disk or another storage medium.

If a floppy containing a single calibration kit file (this applies to all floppies provided with the calibration kits from Rohde & Schwarz) is inserted into the disk drive a message window indicating the connector type and the kit designation is displayed after a short time. In this window, installation of the new kit must be confirmed. The calibration kit is read in and a new message indicates that the installation was successfully completed.

If several calibration kit files (file extension *.ck) are stored on the floppy, or if no floppy is in the disk drive, the input field *EDIT CAL KIT PATH* is invoked where the path and file name of the desired calibration kit file can be entered. The further procedure is as described above.

The *UNINSTALL KITS* softkey allows the user to delete the user-installed calibration kits for a connector family.

User-installed calibration kits are meant to include calibration kits read in from a storage medium by means of the *INSTALL NEW KIT* function. They do not mean to include the preinstalled kits contained in the instrument firmware. Please note that this function deletes **all** user-installed calibration kits for the connector family selected in the *CONNECTOR TYPE* menu (e.g. PC 3.5).

To preserve particular user-installed calibration kits, they must first be saved by means of the CREATE INST FILE function.

The connector families SEXLESS USR CONN 1 and USR CONN 2 can also be configured for waveguide calibration by means of the WAVEGUIDE softkey. If this softkey is activated, the instrument takes into account the nonlinear relationship between the phase of the S-parameters and the frequency, which prevails in waveguides. This effect is also known as dispersion.

At the frequency f, the transmission phase φ , e.g. of a THROUGH or a LINE standard of the length I, is not governed by the relationship

$$\varphi = \frac{2\pi f}{c} \cdot l$$
 but by

$$\varphi = \frac{2\pi f}{c} \cdot l \cdot \sqrt{1 - \left(\frac{f_c}{f}\right)^2} \;,$$

where f_c is the cutoff frequency of the waveguide mode used (normally the basic mode).

When the *WAVEGUIDE* softkey is activated, the *CUTOFF FREQUENCY* softkey for entering the cutoff frequency is available too.

The OPEN standard is unsuitable with waveguide calibration because in this case it does not provide total reflection but radiates like an antenna. Therefore, if the WAVEGUIDE softkey is switched on, the OPEN standards are replaced by SHORTS (for standards table see CAL CAL - CAL KITS submenu). The latter must have a length offset different from the existing SHORTS and are for this reason referred to as OFFSET SHORTS. At frequencies at which the length difference between the SHORT and the OFFSET SHORT equals a multiple of $\lambda/2$, singularities occur since the shorts have identical reflection coefficients in this case. To avoid this, the length offset of the OFFSET SHORT should be selected to obtain a length difference of $\lambda/4$ between the SHORT and the OFFSET SHORT in the middle of the measurement frequency range. The associated reflection coefficients are then exactly opposite in phase. As the frequency range is normally not larger than the single-mode range of the waveguide, i.e. max. one octave, singularities do not occur at the range limits either if the length offset is selected as described.

The SHORT of a waveguide calibration kit is usually in the form of a plate, i.e. it has no electrical length. The effects of attenuation and leakage inductance can be neglected in practice. The OFFSET SHORT is in most cases realized by a SHORT to which a piece of line ($\lambda/4$) (shim) is added. The electrical length of this added line is entered as the length offset for the OFFSET SHORT. The effects of attenuation and leakage inductance can usually also be neglected for the OFFSET SHORT.

Note: The $\lambda/4$ line can also be used as a LINE standard, for example for TRL calibration.

The CUTOFF FREQUENCY softkey opens an input field for entering the cutoff frequency for the waveguide mode for which calibration is to be made. This is usually the basic mode of the waveguide.

The waveguide mode cannot propagate below the cutoff frequency, which means that system error correction is not possible below this point. The cutoff frequency, therefore, represents the minimum start frequency for measurement and calibration. If the start frequency of the calibration range is lower than the entered cutoff frequency (e.g. after a PRESET), an error message is output.

1112.8050.52 18 E-17

The USER CONN NAME softkey activates the entry of a name comprising up to 11 characters for the connector families SEXLESS USR CONN 1 and USR CONN 2. The name refers to the family selected in the CONNECTOR TYPE menu. In the title of the tables ACTIVE XX STANDARDS, MODIFY XX YY STANDARDS and ACTIVE XX YY, it replaces the character string XX. The name of the corresponding softkeys in the CONNECTOR TYPE submenu, however, can not be overwritten.

The default names are USER CONN 1 and USER CONN 2.

The USER CONN IMPEDANCE softkey activates the entry of the reference impedance for the connector SEXLESS USR CONN 1 or USR CONN 2. The impedance refers to the family selected in the CONNECTOR TYPE menu. The default value is 50 Ω .

Note: Only a constant reference impedance can be entered via this softkey. While the characteristic impedance of a waveguide is highly frequency-dependent, the conversion of reflection coefficients to impedances or the calculation of Z parameters in the waveguide are irrelevant in practice.

5 New IEEE-Bus Commands

CALCulate: MARKer Subsystem (Re section 3.6.3.5)

The CALCulate:MARKer subsystem controls the marker functions.

COMMAND	PARAMETER	UNIT	COMMENT
CALCulate<14>			
:MARKer<18>			
[:STATe]	<boolean></boolean>		
:AOFF			no query
:MODE	CONTinuous DISCrete		
:COUPled			
[:STATe]	<boolean></boolean>		
:X	<numeric_value></numeric_value>	HZ S DBM	
:MODE	ABS REL		
:Y?			query only
:FORMat	MLINear MDB PHASe		
	REAL IMAGinary SWR		
	GDELay MLPHase MDPHase COMPlex L C RLC		
:TRANsform	COMPLEX L C RLC		
:COMPlex	S SINV Z ZREL Y YREL		
:TRACe	CHDATA CHMEM		
:SEARch	ONDATA ON INVENT		
[:IMMediate]			no query
:NEXT			no query
:RIGHt			no query
:LEFT			no query
:TRACking	<boolean></boolean>		
:MAXimum			no query
:MINimum			no query
			no query
:FUNCtion	MAN Viscours I MINISSOURS I		
[:SELect]	MAXimum MINimum TARGet BFILter		
:BWIDth	<numeric_value></numeric_value>	DB	
:MODE	BPASs BSTop		
:QFACtor			
:SFACtor	<numeric_value>,<numeric_value></numeric_value></numeric_value>		
:TARGet	<numeric_value></numeric_value>	DBM DB	
:RESULT?		==::: ==	query only
:EDELay	TIME DISTance ELENgth OFF		1. 2.7,
:VALue?	·····= 3.0 · 333 === ··g 01 ·		query only
:DELTa			1. 2.7,
:STATe	<boolean></boolean>		
:REFerence	MARKER1 MARKER2		
	MARKER3 MARKER4		
	MARKER5 MARKER6		
	MARKER7 MARKER8 FIXed		

COMMAND	PARAMETER	UNIT	COMMENT
:RPOSition			
[:CARTesian]	<numeric_value>,<numeric_value></numeric_value></numeric_value>	HZ S DBM,DB	
POLar	<numeric_value>,<numeric_value>, <numeric_value></numeric_value></numeric_value></numeric_value>	HZ S DBM,DB, DB	
:PTPeak			
:STATe	<boolean></boolean>		
:RESult?	[ALL]		query only
:CENTer			no query
:STARt			no query
:STOP			no query
:REFerence			no query

CALCulate[1...4]:MARKer[1...8]:FUNCtion:EDELay

This command switches on or off the display of the electrical or the mechanical length or the phase delay. The suffix of MARKer has no meaning. The parameter information means the following:

ELENgth = electrical length
DISTance = mechanical length
TIME = phase delay

OFF = display switched off

Syntax: CALCulate[1...4]:MARKer[1...8]:FUNCtion:EDELay TIME | DISTance |

ELENgth | OFF

Example: "CALC:MARK:FUNC:EDEL TIME"

Features: *RST value: OFF

SCPI: device-specific

CALCulate[1...4]:MARKer[1...8]:FUNCtion:EDELay:VALue?

This command queries the value of the electrical or the mechanical length or the phase delay. The format of the return value must be selected beforehand with CALC:MARK:FUNC:EDEL. The suffix of MARKer has no meaning.

Syntax: CALCulate[1...4]:MARKer[1...8]:FUNCtion:EDELay:VALue?

Example: "CALC:MARK:FUNC:EDEL:VAL?"

Features: *RST value: --

SCPI: device-specific

This command is a query only and therefore has no *RST value.

SENSe:CORRection Subsystem (Re section 3.6.14.3)

The SENSe:CORRection subsystem controls the system error correction and the recording of the individual correction values.

:CORRection [:STATe]	
:DATA	
:DATA	
INTerpolate	
[:STATe] <boolean> :AKAL :SELect <string> :EXPort <string> no query</string></string></boolean>	
[:STATe] <boolean> :AKAL :SELect <string> :EXPort <string> no query</string></string></boolean>	
:AKAL :SELect	
:EXPort <string> no query</string>	
:EXPort <string> no query</string>	
:CLEar <string> no query</string>	
:REName <string>,<string> no query</string></string>	
:COLLect	
[:ACQuire] THRough OPEN1 OPEN2 OPEN12 SHORT1 SHORT2 MATCH1 MATCH2 MATCH12 NET ATT IMATCH12 REFL1 REFL2 SLIDE1 SLIDE2 SLIDE12 LINE1 LINE2 M102 O1M2 OSHORT1 OSHORT2 AKAL	
:METHod	
:SAVE :CONNection<1 2> N50FEMALE N50MALE N75FEMALE N75MALE PC7 SMAFEMALE SMAMALE PC35FEMALE PC292FEMALE PC292MALE UFEMALE1 UMALE1 UFEMALE2 UMALE2	
:CKIT N50 N75 SMA PC7 PC35 PC292 USER1 USER2	
:INSTall	
[SENSe<14>]	
:CORRection	
:CKIT	

COMMAND	PARAMETER	UNIT	COMMENT
:USER<1 2>	MMTHrough MFTHrough FFTHrough MMLINE1 MFLINE1 FFLINE1 MMLINE2 MFLINE2 FFLINE2 MMATten MFATten FFATten MMSNetwork MFSNetwork FFSNetwork MOPen FOPen MSHort FSHort OSHort FOSHort MOSHort MREFlect FREFlect MMTCh FMTCh MSMatch FSMatch[, <string>]</string>		
:SELect	<string></string>		
:IMPedance :WGUide	<numeric_value></numeric_value>	ОНМ	
[:STATe] :CFRequency	<numeric_value></numeric_value>	HZ	
:MMTHrough	<pre><string>, <string>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>,</numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></string></string></pre>	, , , HZ, HZ, m,	
:MFTHrough	<pre><string>, <string>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></string></string></pre>	, , HZ, HZ, m,	
:FFTHrough	<pre><string>, <string>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></string></string></pre>	, , HZ, HZ, m,	
:MMLINE<1 2>	<pre><string>, <string>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></string></string></pre>	, , HZ, HZ, m,	
:MFLINE<1 2>	<pre><string>, <string>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></string></string></pre>	, , HZ, HZ, m,	
:FFLINE<1 2>	<pre><string>, <string>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></string></string></pre>	, , HZ, HZ, m,	
:MMATten	<pre><string>, <string>, <numeric_value>, <numeric_value></numeric_value></numeric_value></string></string></pre>	, , HZ, HZ	
:MFATten	<string>, <string>, <numeric_value>, <numeric_value></numeric_value></numeric_value></string></string>	, , HZ, HZ	
:FFATten	<pre><string>, <string>, <numeric_value>, <numeric_value></numeric_value></numeric_value></string></string></pre>	, , HZ, HZ	

[SENSe[1...4]:]CORRection:CKIT:USER<1|2>:WGUIde[:STATe]

This command switches on or off waveguide calibration for the respective calibration kit.

The suffix of SENSe has no meaning.

Syntax: [SENSe[1...4]:]CORRection:CKIT:USER<1|2>:WGUide[:STATe] ON | OFF

Example: "CORR:CKIT:USER:WGU ON"

Features: *RST value: OFF

SCPI: device-specific

[SENSe[1...4]:]CORRection:CKIT:USER<1|2>:CFRequency

This command sets the cutoff frequency for the USER calibration kit.

Syntax: [SENSe[1...4]:]CORREction:CKIT:USER<1|2>: CFRequency <numeric_value>

Example: "CORR:CKIT:USER2:CFR 1 GHz

Features: *RST value: 0 Hz

SCPI: device-specific

[SENSe[1...4]:]CORRection:DATA

This command is used for reading and writing system error correction values. The data set contains a complex value (real and imaginary component) for each test point. The data can be transmitted either in ASCII format, or in binary REAL32 format. Transmission in REAL64 format is not possible.

The <string> parameter may assume the following values:

"SCORR1" Directivity, port 1
"SCORR2" Source match, port 1
"SCORR3" Reflection tracking, port 1

"SCORR4" Forward isolation
"SCORR5" Load match, port 1

"SCORR6" Forward transmission tracking

"SCORR7" Directivity, port 2
"SCORR8" Source match, port 2
"SCORR9" Reflection tracking, port 2

"SCORR10" Reverse isolation "SCORR11" Load match, port 2

"SCORR12" Reverse transmission tracking

"E11" to "E22" Elements of E matrix (15-term method)

"G11" to "G22" Elements of G matrix (7-term and 15-term methods)
"H11" to "H22" Elements of H matrix (7-term and 15-term methods)

"F11", "F21", "F12" Elements of F matrix (15-term method)

Syntax: [SENSe[1...4]:]CORRection:DATA <string>,<block> | <numeric_value>...

Example: "CORR:DATA "SCORR1", <block_data>"

Features: *RST value:

SCPI: device-specific

The table below shows the correction terms available for the calibration methods:

Calibration Method	Available Correction Terms
Trans Norm Forward Trans Norm Reverse	SCORR6 SCORR12
Trans Norm both Directions	SCORR6, SCORR12
Refl Norm P1 Refl Norm P2	SCORR3 SCORR9
Refl Norm both Ports	SCORR3, SCORR9
Trans+Refl Norm Forward Trans+Refl Norm Reverse	SCORR3, SCORR6 SCORR9, SCORR12
Trans+Refl Norm both Ports	SCORR3, SCORR6, SCORR9, SCORR12
Full One Port P1 Full One Port P2	SCORR1 to SCORR3 SCORR7 to SCORR9
Full One Port both Ports	SCORR1 to SCORR3, SCORR7 to SCORR9
One Path Two Port Forward One Path Two Port Reverse	SCORR1 to SCORR3, SCORR6 SCORR7 to SCORR9, SCORR12
TOM, TRM, TNA, TRL	G11 to G22 and H11, H12, H22 (H21 = 1); Gxx is normalized to H21
TOSM	SCORR1 to SCORR12
TOM-X	E11 to E22, G11 to G22, H11 to H22, F11, F21, F12

[SENSe[1...4]:]CORRection:POWer:DATA

This command is used for reading and writing power correction values for a receiver channel. The data can be transmitted either in ASCII format, or in binary REAL32 format. Transmission in REAL64 format is not possible.

The <string> parameter may assume the following values:

"B1" Correction data for wave b1 at port 1
"INPUTB1" Correction data for wave b1 at input b1
"B2" Correction data for wave b2 at port 2
"INPUTB2" Correction data for wave b2 at input b2

"IFREF" Correction data for reference input a1 on rear panel
"A1REF" Correction data for reference input a1 (ZVM and ZVK only)
"A2REF" Correction data for reference input a2 (ZVM and ZVK only)

Syntax: [SENSe[1...4]:]CORRection:POWer:DATA <string>,<block> | <numeric value>...

Example: "CORR:POW:DATA "B1", <block>"

Features: *RST value:

SCPI: device-specific

SOURce Subsystem (Re section 3.6.15)

COMMAND	PARAMETER	UNIT	COMMENT
SOURce<14>			
:POWer			
[:LEVel]			
[:IMMediate]			
[:AMPLitude]	<numeric_value></numeric_value>	DBM	
:CAMPlitude			
:A<1 2>	<numeric_value></numeric_value>	DBM	
:ESRC<1 2>	<numeric_value></numeric_value>	DBM	
:SLOPe	<numeric_value></numeric_value>	DB/GHZ	
:EXTernal<1 2>			
[:AMPLitude]	<numeric_value></numeric_value>	DBM	
:SLOPe	<numeric_value></numeric_value>	DB/GHZ	
:ALC			
[:STATe]	<boolean></boolean>		
:NLINear			
:COMP			
:RANGe			
:UPPer	<numeric_value></numeric_value>	dBm	
:LOWer	<numeric_value></numeric_value>	dBm	
:SOI			
:RANGe			
:UPPer	<numeric_value></numeric_value>	dBm	
:LOWer	<numeric_value></numeric_value>	dBm	
:TOI			
:RANGe			
:UPPer	<numeric_value></numeric_value>	dBm	
:LOWer	<numeric_value></numeric_value>	dBm	
:CENTer	<numeric_value></numeric_value>	dBm	
:SPAN	<numeric_value></numeric_value>	dB	
:STARt	<numeric_value></numeric_value>	dBm	
:STOP	<numeric_value></numeric_value>	dBm	
:CORRection			
:DATA	<string>, <block> <numeric_value></numeric_value></block></string>		
:EXT<1 2>	·		
:SWEep	<numeric_value>,</numeric_value>	HZ,	
·	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>, LIN LOG</numeric_value>	,	
:NREadings	<numeric_value></numeric_value>		
[:ACQuire]	A1 A2 ESRC1 ESRC2		no query
:LLISt	<numeric_value>,</numeric_value>	·	
	<numeric_value>,</numeric_value>	HZ,	
CTATE	<numeric_value></numeric_value>	dB	
:STATE	<boolean></boolean>		

COMMAND	PARAMETER	UNIT	COMMENT
:FREQuency			
[:CW]	<numeric_value></numeric_value>	HZ	
:FIXED	<numeric_value></numeric_value>	HZ	
:CONVersion			
:ARBitrary			
:IFRequency	<pre><numeric_value>, <numeric_value>, <numeric_value>, CW FIXed SWEep</numeric_value></numeric_value></numeric_value></pre>	, , HZ,	
:EFRequency<1 2>	<pre><boolean>, <numeric_value>, <numeric_value>, <numeric_value>, CW FIXed SWEep</numeric_value></numeric_value></numeric_value></boolean></pre>	, , , HZ,	
:NLINear			
:COMP	INT ESRC1 ESRC2		
:SOI	IESRC1 IESRC2 ESRC12		
:OFFSet	<numeric_value></numeric_value>	HZ	
:TOI	IESRC1 IESRC2 ESRC12		
:OFFSet	<numeric_value></numeric_value>	HZ	

SOURce[1...4]:POWer:CORRection:DATA

This command is used for reading and writing power correction values for a generator channel. The data can be transmitted either in ASCII format, or in binary REAL32 format. Transmission in REAL64 format is not possible.

The <string> parameter is used for selecting the correction data set as follows:

"A1" Generator output a1
"A2" Generator output a2
"ESRC1" External generator 1
"ESRC2" External generator 2

Syntax: SOURce[1...4]:POWer:CORRection:DATA <string>,

Example: "SOUR:POW:CORR:DATA "A1", <block>"

Features: *RST value:

SCPI: device-specific

6 Special Features

The format of the system error calibration (SFK) files and the calibration kit (CalKit) files was changed for version 3.50. The files from older firmware versions are therefore converted to the new data format. The change concerns files with the extension "CAC", "CA1" to "CA4", "CK", "CKD" and "DAT". The old files are not deleted but renamed, i.e. an additional extension – ".BC350" – is appended. For example, "FACTORY.CAC" is renamed to "FACTORY.CAC.BC350".

Note:

There is no conversion if version 3.50 is updated to version 3.52.

The new data format cannot be processed by older firmware versions.

The following procedure should be adopted, therefore, when restoring a previous firmware version (e.g. V 3.40):

- ightharpoonup Restore the old firmware version as usual by means of SETUP ightharpoonup FIRMWARE UPDATE ightharpoonup RESTORE.
- Terminate the firmware.
- In the Explorer, change to the "C:\R_S\INSTR\CAL" directory.
- Each file for which a file of identical name but with the additional extension ".BC350" exists, must be renamed, for example by appending the additional extension ".V350".
 For example, "N50.CKD" must be renamed to "N50.CKD.V350".

Note:

If a file with the name "CK_INST.DAT" exists, it must in any case be renamed to "CK INST.DAT.V350", no matter whether or not a file "CK INST.DAT.BC350" exists.

- All files with the additional extension ".BC350" must be renamed, i.e. the extension has to be removed.
 - For example, "N50.CKD.BC350" has to be renamed to "N50.CKD".
- ➤ Start the firmware by means of START → START INSTRUMENT.
 The SFK and CalKit files that were available prior to the update to version 3.50 or 3.52 are now fully available again. New files added through the version 3.50 or 3.52 update cannot be used however.

As an alternative to the above procedure, the complete "C:\R_S\INSTR\CAL" directory can be saved, for example under "C:\R_S\INSTR\CAL.BC350", before the update to version 3.50 or 3.52 is made. After restoring the old firmware version, this directory must be renamed to "C:\R_S\INSTR\CAL".

Contents

Pre	Preparation for Use		
1.1	Introduction		1.1
1.2	Legend for Front and	I Rear View	1.1
	1.2.1 Front View ZVR	, ZVK and ZVM	1.1
		ew ZVR	
		ew ZVK, ZVM	
	1.2.2 Rear View ZVR	, ZVK and ZVM	1.15
1.3	Start-Up		1.20
	1.3.1 Unpacking the I	nstrument	1.20
	1.3.2 Instrument Setu	p	1.20
	1.3.2.1 Stand-a	lone Operation	1.20
	1.3.2.2 19" Rac	k Installation	1.21
	1.3.3 EMI Protection I	Measures	1.21
	1.3.4 Connecting to A	C Power	1.21
	1.3.5 AC Power Line	Fuses	1.21
	1.3.6 Battery-Powered	d Memory	1.22
1.4	Controller Function .		1.23
1.5	Connecting a Mouse		1.25
1.6	Connecting an Exter	nal Keyboard	1.25
1.7	Connecting an Exter	nal Monitor	1.26
1.8	Connecting an Outpu	ut Device	1.28
1.9	Connecting a CD-RO	M Drive	1.35
1.10	Firmware Update		1.37
1.11	Installing Windows N	IT Software	1.38
1.12	Options		1.39
	1.12.1 Option FSE-B17	7 – Third IEC/IEEE Interface	1.39
	1.12.1.1	Installing the software	1.39
	1.12.1.2	Operation	
	1.12.2 Option FSE-B16	6 – Ethernet Adapter	
	1.12.2.1	Hardware Installation	
	1.12.2.2	Software Installation	
	1.12.2.3	Operation	1.48

2	Man	ual Operation	2.1
	2.1	Introduction: Measurement Examples and Processing of Measured Values	2.1
		2.1.1 Transmission Measurements – Measurement of Gain and Loss	2.2
		2.1.1.1 Measurement Task	
		2.1.1.2 Connection of the DUT	
		2.1.1.3 Preset	2.2
		2.1.1.4 Setting the Analyzer	2.3
		2.1.1.5 Instrument Calibration	
		2.1.1.6 Performing the Measurement	
		2.1.1.7 Output of Measurement Results	
		2.1.2 Reflection Measurements	
		2.1.2.1 Measurement Task	
		2.1.2.2 Connection of the DUT	
		2.1.2.3 Preset	
		2.1.2.4 Setting the Analyzer	
		2.1.2.6 Performing the Measurement	
		2.1.3 Filter Measurements – Measurements of Bandwidth, Q Factor and Shape Factor	
		2.1.3.1 Measurement Task	
		2.1.3.2 Reset, Setting and Calibration of the Instrument	
		2.1.3.3 Measurement of the Filter Parameters	
		2.1.4 Processing of Measured Values	2.22
	2.2	Menu Overview	2.25
		2.2.1 SYSTEM Key Group	2.25
		2.2.2 COPY Key Group	2.29
		2.2.3 MEMORY Key Group	2.30
		2.2.4 USER Key	2.32
		2.2.5 SWEEP Key Group	2.33
		2.2.6 MARKER Key Group	2.35
		2.2.7 LINES Key Group	2.37
		2.2.8 RESPONSE Key Group	2.38
		2.2.9 CAL Key Group	2.41
	2.3	Basic Steps of Operation	2.48
		2.3.1 Screen	2.48
		2.3.1.1 The Diagram Area	2.49
		2.3.1.2 The Softkey Area	2.59
		2.3.2 Subdivision of Screen - Display Modes	2.60
		2.3.2.1 Single Channel	2.60
		2.3.2.2 Dual Channel Overlay Overlay	2.61
		2.3.2.3 Dual Channel Split	
		2.3.2.4 Quad Channel Overlay	
		2.3.2.5 Quad Channel Dual Split	2.62

		2.3.2.6 Quad Channel Quad Split	
	233	Diagrams	
		2.3.3.1 Cartesian Diagrams	
		2.3.3.2 Polar Diagrams	
		2.3.3.3 Smith Charts	
		2.3.3.4 Inverted Smith Charts	
		2.3.3.5 Charter Diagrams	
	2.3.4	Display Windows	2.73
		2.3.4.1 Message Fields	2.73
		2.3.4.2 Markers and Marker Info Lists	2.73
		2.3.4.3 System Messages	2.76
		2.3.4.4 Scale Reference Fields	2.77
	2.3.5	Calling and Changing the Menus	2.79
	2.3.6	Setting the Parameters	2.81
		2.3.6.1 Numeric Keypad – DATA ENTRY Key Group	2.81
		2.3.6.2 Roll-key and Cursor Keys	2.82
		2.3.6.3 Selection of Parameters	2.83
		2.3.6.4 Editing of Numeric Parameters	
		2.3.6.4.1 Editing With External Keyboard	
	227	2.3.6.4.2 Editing with Auxiliary Line Editor	
		Setting the Step size - STEP Key	
		Mouse and External Keyboard Control	
	2.3.9	2.3.9.1 External Keyboard	
		2.3.9.1 External Reyboard	
		2.3.9.3 Mouse Control of Display Elements	
2.4	Gene	eral Configuration – SYSTEM Key Group	
		Selection of the Operating Mode – <i>MODE</i> Key	
	2.4.1		
		2.4.1.1 Time Domain Transformation (Option ZVR-B2)	
		2.4.1.1.2 Selecting the Gate	
		2.4.1.1.3 Selecting the Transformation Type	
		2.4.1.1.4 Defining the frequency grid	
		2.4.1.1.5 Scaling the Abscissa	
		2.4.1.1.6 Positioning the Gate	
		2.4.1.3 Measurements on Frequency-Converting DUTs (Option ZVR-B4)	
		2.4.1.3.1 Harmonics Measurements	
		2.4.1.3.2 Mixer Measurements	
		2.4.1.3.3 Arbitrary Frequency Conversion	
		2.4.1.4 Nonlinear Measurements (Option ZVR-B5)	
		2.4.1.4.1 Compression Point Measurement	
		2.4.1.4.2 Measurement of the 2 nd and 3 rd Order Interc. Point (SOI, TOI)	
		2.4.1.5 Sweep Modes	
		2.4.1.6 Reference Channel Ports (Option ZVR-B6)	
	0.4.0	2.4.1.7 Fast Measurement (FAST MODE)	
	2.4.2	Preliminary Setup and Interface Configuration – SETUP Key	
		2.4.2.1 Programming the Interface Configuration and Time	. 2.142

		2.4.2.1.1 2.4.2.1.2	IEC Bus Address Selection	
		2.4.2.1.3	Serial Interface Configuration	
		2.4.2.1.4	Setting Date and Time	2.147
		2.4.2.1.5	Connecting the External Monitor	
		2.4.2.1.6	Indication of the Automatic System Error Calibration eference Oscillator	
			irmware Options	
			nctions	
	243		and Measurement Parameters – INFO Key	
	2.4.0		Versions	
			Configuration and Options	
			essages	
2.5	Meas	urement Documer	ntation – COPY Key Group	2.155
	2.5.1	Printing Data – CC	PYKey	2.155
	2.5.2	Printing Configurat	ion – SETTING Key	2.157
		2.5.2.1 Selection of	of Displayed Elements	2.158
			of Data Medium	
		2.5.2.3 Selection of	of Hardcopy Format	2.159
		2.5.2.4 Entry of Co	omment Text	2.160
		2.5.2.5 Color Setti	ngs	2.161
			and Configuration of the Output Device	
		2.5.2.7 Selection of	f Line Style	2.164
2.6		_	ata Sets – <i>MEMORY</i> Key Group	
	2.6.1	Configuration of M	emory - CONFIG Key	2.167
	2.6.2	Saving Data Sets -	- SAVE Key	2.169
		•	he Data Set for Storage	
			he Data Subset for Storage	
		2.6.2.3 Configurat	ion of ASCII Files	2.173
	2.6.3	Recalling Data Set	s - RECALL Key	2.177
		2.6.3.1 Selecting t	he Data Set to be Recalled	2.178
		2.6.3.2 Selecting [Data Subsets to be Recalled	2.180
2.7	Swite	chover to Manual C	peration and Default Setup – STATUS Group	2.182
	2.7.1	Switchover to Man	ual Operation – LOCAL Key	2.182
	2.7.2	Default Setup – PF	RESET Key	2.183
2.8	Macr	os – USER Key		2.185
	2.8.1	Fundamentals		2.185
	2.8.2	Starting Macros		2.186
	2.8.3	Defining Macros		2.187
2.9	Defin	ing the Sweep Rar	nge – STIMULUS Key Group	2.189
2.10	Swee	p Setup – <i>SWEEP</i>	Key Group	2.191
	2.10.	Settings for the Sw	reep Variable – SWEEP Key	2.191
		2.10.1.1	Single Point Measurement	

	2.10.1.2	Defining the grid	
	2.10.1.3	Defining the Number of Points	
	2.10.1.4	Setting the Trigger Mode	
	2.10.1.5	Automatic or Manual Setting of the Sweep Time	
	2.10.1.6	Coupling of Display Channels	
	2.10.1.7	Miscellaneous Settings	2.205
	2.10.2Starting a Nev	w Sweep – RESTART Key	2.206
	•	Sweep Parameters – SOURCE Key	
	2.10.4Setting the Av	veraging Function and the Receiver Bandwidth – AVG Key	2.212
2.11	The Marker Function	ons – MARKER Key Group	2.215
	2.11.1 Main Markers	- MARKER Key	2.215
	2.11.1.1	Switching on and Moving Markers	2.217
	2.11.1.2	Conversion of the Marker Value	
	2.11.1.3	Format of the Marker Value	2.219
	2.11.1.4	Info list and Interpolation	2.222
	2.11.2Marker Searc	h Functions – SEARCH Key	2.223
	2.11.3Delta Markers	s – DELTA Key	2.227
	2.11.4Marker Assign	nment Functions – = MKR Key	2.229
2.12	Display and Limit L	ines – LINES Key Group	2.231
	2.12.1 Display Lines	– LINES Key	2.231
	2.12.2Limit Lines –	LIMITS Key	2.233
	2.12.2.1	Selecting and Switching On Limit Lines	2.234
	2.12.2.2	Defining a Limit Line in a Circular Diagram	2.236
	2.12.2.3	Defining a Limit Line in a Cartesian Diagram	2.238
	2.12.2.4	Moving a Limit Line	2.242
	2.12.2.5	Display and Limit Check	2.244
2.13	Selection of Displa	y Channel – <i>CHANNEL</i> Group	2.245
2.14	Configuring of Mea	asured-Value Display – <i>RESPONSE</i> Key Group	2.247
		ne Measured Quantity – <i>MEAS</i> Key	
	2.14.1.1	Measurement of S-Parameters	2.248
	2.14.1.2	Measuring Wave Quantities	
	2.14.1.3	Measuring Ratios of Wave Quantities	
	2.14.1.4	Measurement of Two-Port Z or Y Parameters	
	2.14.1.5	Converting the Measured Quantity	
	2.14.1.6	Measurement of Stability Factors	
	2.14.1.7	Measuring DC Voltage	
	2.14.2Formatting of	the Measured Quantity – FORMAT Key	
	2.14.3 Scaling of the	Test Diagram – SCALE Key	2.272
	2.14.4 Selection of the	ne Test Diagram – <i>DIAGRAM</i> Key	2.277
	2.14.4.1	Defining the Cartesian Segmentation of the y Axis	2.279
	2.14.4.2	Defining the Polar Radial Segmentation	2.283
	2.14.5 Configuration	of the Screen – DISPLAY Key	2.285
	2.14.5.1	Defining the Number and Arrangement of the Display Cha	annels2.285

	2.14.5.2	Expansion of Diagrams to Maximum Screen Format	
	2.14.5.3	Configuring the Graphic Elements of the Display	. 2.287
	2.14.6Operations with Tr	aces – TRACE Key	. 2.292
2.15	Correction of System E	rrors – <i>CAL</i> Key Group	. 2.298
	2.15.1 Calibration – CAL	Key	. 2.298
	2.15.1.1	System Error Calibration	. 2.299
	2.15.1.1.1	Performing a System-Error Calibration	. 2.300
		a)Specification of the Connectors at the Test Ports	
		b)System-Error Calibration Procedure	
	2.15.1.1.2	Full Two-port Calibration (ZVR, ZVC, ZVK and ZVM)	
		a)TOM Calibration Procedure	
		b)TRM Calibration Procedure	
		c)TRL Calibration Procedure	. 2.309
		d)TNA calibration procedure	. 2.311
		e)TOSM calibration procedure	. 2.312
		f)TOM-X calibration procedure	. 2.314
		g)AutoKal fundamental calibration	. 2.315
	2.15.1.1.3	Full two-port calibration (ZVRE, ZVCE)	. 2.317
		a)TOSM calibration	. 2.318
		b)AutoKal Fundamental Calibration	. 2.320
		Automatic Two-port Transfer Calibration	
	2.15.1.1.5	Full One-port Calibr. (ZVR, ZVRE; ZVC, ZVCE, ZVK, ZVM)	. 2.324
		Full One-port Calibration (ZVRL)	
	2.15.1.1.7	Unidir. Two-port Calibr. (ZVR, ZVRE, ZVC, ZVCE, ZVK, ZVM).	. 2.328
		Unidirectional Two-port Calibration (ZVRL)	
	2.15.1.1.9	AutoKal Fundamental Calibration (ZVRL)	. 2.332
	2.15.1.1.1	ONormalization Calibr. (ZVR, ZVRE, ZVC, ZVCE, ZVK, ZVM)	. 2.333
		a)Transmission Normalization	
		b)Reflection Normalization	
		c)Combined Transmission and Reflection Normalization	
	2.15.1.1.1	1Normalization Calibration (ZVRL)	
		a)Transmission Normalization	
		b)Reflection Normalization	
		c)Combined Transmission and Reflection Normalization	
	2.15.1.2	Auxiliary Functions for System Error Calibration	. 2.341
	2.15.1.3	Characteristics of Calibration Standards	. 2.343
	2.15.1.4	Power Calibration (Option ZVR-B7)	. 2.355
	2.15.2Entry of Offset Par	rameters – OFFSET Kev	. 2.371

ZVx Figures

Figures

Fig.	1-1	Front view ZVR	3; 1.10
Fig.	1-1	Front view ZVK, ZVM	1.12
Fig.	1-2	Rear View	3; 1.18
Fig.	2-1	Measurement display screen with an autoscaled trace	2.5
Fig.	2-2	Measurement display screen after manual scaling	2.7
Fig.	2-3	Display of magnitude in cartesian coordinates	2.9
Fig.	2-4	Display of phase in cartesian coordinates	2.10
Fig.	2-5	Display of magnitude in cartesian coordinates	2.14
Fig.	2-6	Display of phase in cartesian coordinates	2.15
Fig.	2-7	Display of the reflection coefficient in the Smith diagram	2.16
Fig.	2-8	Determination of the 3 dB bandwidth of a bandpass	2.19
Fig.	2-9	Determination of the Q-factor	2.20
Fig.	2-10	Shape factor 60 dB/3 dB	2.21
Fig.	2-11	Process. sequence of measured values for a ZVR display channel in bidirect. operation.	2.22
Fig.	2-12	General setup of the screen	2.48
Fig.	2-13	Diagram area	2.49
Fig.	2-14	Linear, Cartesian diagram	2.64
Fig.	2-15	Cartesian diagram with two segments on the abscissa and ordinate (single channel), each with limit lines and FAIL message	2.65
Fig.	2-16	Logarithmic Cartesian diagram with symmetric subdivision for pos. and neg. values	2.67
Fig.	2-17	Linear polar diagram (single channel)	2.68
Fig.	2-18	Lin./ log. polar diagram with 2 segments (Single Channel)	2.70
Fig.	2-19	Smith chart	2.71
Fig.	2-20	Example of a charter diagram	2.72
Fig.	2-21	Configuration of mixer measurements - DEF MIXER MEAS menu	2.119
Fig.	2-22	Configuration of system frequencies	2.123
Fig.	2-23	Setting general parameters of the instrument	2.142
Fig.	2-24	Setting the parameters for external interfaces	2.144
Fig.	2-25	Enabling firmware options	2.149
Fig.	2-26	System messages	2.154
Fig.	2-27	Configuration of the output device	2.162
Fig.	2-28	File and storage media management	2.167
Fig.	2-29	Saving data sets	2.169
Fig.	2-30	Selecting the data set for storage	2.172
Fig.	2-31	Recalling data sets	2.178

Fig.	2-32 Selecting partial data sets to be recalled	2.180
Fig.	2-33 Editing the segment list	2.194
Fig.	2-34 Selection of limit lines	2.234
Fig.	2-35 Defining a limit line in a Cartesian diagram	2.239
Fig.	2-36 Defining the Cartesian Segmentation of the y Axis	2.280
Fig.	2-37 Defining the Polar Radial Segmentation	2.283
Fig.	2-38 Setting the screen colors	2.288
Fig.	2-39 Menu CONFIG AUTOKAL	2.322
Fig.	2-40 Selecting the connector families	2.344
Fig.	2-41 Modifying the standards	2.348
Fig.	2-42 Entry of a frequency-dependent calibration factor	2.366
Fig.	2-43 Entry of a frequency-dependent loss	2.370

ZVx Tables

Tables

Table 1-1	Factory settings for DEVICE 1 and 2 in the HARDCOPY-DEVICE SETTIN	GS menu 1.29
Table 2-1	Overview of the most important PRESET settings	2.1
Table 2-2	Relationship between file extensions and contents of partial data sets	2.166
Table 2-3	PRESET settings	2.183
Table 2-4	Input parameters of the START, STOP, CENTER and SPAN key	2.189

Index

Note:

All softkeys are listed with their names. The page numbers 2.xxx refer to the detailed description of the softkeys in chapter 2. Generally, the number of the page in chapter 3 containing the equivalent remote control command is given in addition.

A list of softkeys and equivalent remote control commands or command sequences is given in section 3.9.

Annex C contains a list of all remote control commands.

=	
= MKR (key)	2.229
0	
09 (key)	2.81
1	
1 Hz,, 10 kHz (softkeys)2.219, 2.26	. 2.214, 3.77 2, 3.31, 3.40
5	
51,, 1601 (softkeys)	2.199, 3.113
Α	
a1 INPUT POWER CAL	
a1, , b2	2.253, 3.107
macro	2.182
Abscissa scaling time domain transformation	2 113
ACCEPT POSITION	
Accessories ZVC, ZVCE	5 52
ZVR, ZVRE, ZVRL	
ACTIVATE KIT	
ACTIVE XX STANDARDS (selection table)	
ACTIVE XX YY (menu table)	2.350
ADD CONSTANT	
Administrator identification	
Admittance	
absolute	
normalized	
reference	
serial	
terminating	
ALL MARKER OFF	
Amplitude offsetAnalyzer Monitor	2.312
Connector	1 25
Aperture	
group delay	2 267
APPEND NEW	
APPEND NEW	
APPLY CAL 2.307, 2.308	, 2.310, 3.93
APPLY CAL (FULL ONE PORT)	2.326, 3.93
APPLY CAL (FULL ONE PORT, ZVRL)	2.328, 3.93
APPLY CAL (ONE PATH, ZVR)	2.330, 3.93
APPLY CAL (ONE PATH, ZVRL)	
APPLY CAL (REFL NORM, ZVR)	
APPLY CAL (REFL NORM, ZVRL)	
APPLY CAL (TNA)	
APPLY CAL (TOM-X)	2.315, 3.93

APPLY CAL (TOSM)	2.313, 3.93
APPLY CAL (TOSM, ZVRE)	2.319, 3.93
APPLY CAL (TRANS AND REFL NORM, Z\	/R)
	2.337, 3.93
APPLY CAL (TRANS AND REFL NORM, Z\	
ADDLY OAL (TDANO NODA) 71(D)	
APPLY CAL (TRANS NORM, ZVR)	2.334, 3.93
APPLY CAL (TRANS NORM, ZVRL)	2.338, 3.93
APPLY CAL(TNA)	
ARBITRARY	
ARBITRARY (mixer measurements)	2.123, 3.104
ARBITRARY GATE SHAPE	
ARBITRARY SIDELOBES	
ARBITRARY SYST FREQ (mixer measurem2.12	nents) A 3 10A 3 121
ARBITRARY SYSTEM FREQUENCIES (sel	4, 3.104, 3.12 1 lection table)
ASCII	
ASCII file	
create	2 173
define output format	
ASCII FILES	
ATTEN	
Attenuator	
AUTO LENGTH (OFFICET)	1.44
AUTO LENGTH (OFFSET)	2.373, 3.97
AUTO RECALL	2.179
indicate	2 1 4 0
AUTOKAL CONNECTED	2.140
AUTOKAL FUNDAM TAL (7/05)	
AUTOKAL FUNDAM TAL (ZVRE)	3.93
AUTOKAL FUNDAM TAL (ZVRL)	2.332, 3.93
AUTOSCALE	
Auxiliary line editor	
AVERAGE	2.212, 3.76
AVERAGE RESTART	2.213, 3.76
Averaging	
Averaging factor	
AVG (key)	
AVG FACTOR	2.213, 3.76
AVG TYPE SWEEP POINT	2.213, 3.77
В	
b1/a1, b2/a2	2.256, 3.107
BACK (key)	
Bandfilter measurements	
BANDFILTER MODE	2.224. 3.33
BANDPASS	
Band-pass filter	
BANDPASS LOWPASS	2 108 3 41
BANDSTOP	
Band-stop filter	
BNC connector	
BOTH PORTS	
DO 1111 OINTO	2.024, 0.90

BOTH PORTS (REFL NORM, ZVR)	2.335, 3.93	COLORS	2.287
BRIGHTNESS		COLORS (selection table)	2.289
Broadband termination	2.304	COM PORT 1	2.144, 3.136, 3.137
_		COM PORT 2	
C		COM PORTS (selection table)	2.144
_		COM1/2 interface	
C	2.221, 2.268, 3.22	Combined normalization	
CAL	2.176, 3.54	Combined normalization (ZVRL	
CAL (key group)	2.298	Commands	.)
CAL (key)	2.298		2.45
CAL a1 POWER			3.17
CAL a2 POWER		COMMENT CHANNEL 1,, 4	-
CAL b1 INPUT POWER		Common commands	
CAL b1 POWER		COMP POINT INP/OUTP (com	
CAL EXT SRC1 POWER			
CAL EXT SRC1 FOWER		COMPLEX	2.266, 3.22
		COMPLEX CONVERS	2.176, 2.261, 3.40, 3.54
CAL INTERPOL		COMPLEX MAGN/PHASE	2.232, 3.25
CAL KITS	3.93	COMPRESS POINT	
CALEXT SRC 1 POWER		COMPRESS SOI TOI	
Calibration	2.298	2.126, 3.106	3 3 107 3 117 3 118 3 122
full one-port	2.327	Compression point	
full two-port	2.305		
full two-port (ZVRE)			2.127
fundamental (ZVRL)		CONFIG (key)	
interpolation		CONFIG DISPLAY	2.287
normalization (ZVR)		Configuration	
		save	2.165
normalization (ZVRL)		Connector family	2.300
offset		CONNECTOR TYPE	2.346
receiver power calibration		CONTINUOUS SWEEP	
system error		CONV GAIN b1/a1	· ·
unidirectional two-port (ZVR)	2.328	CONV GAIN b2/a1	
unidirectional two-port (ZVRL)	2.331	CONV GAIN	
Calibration kit	2.343		
Calibration mode		CONV GAIN b2/Pa1	2.250
Calibration procedure		Conversion	
TNA			2.50
TOM		Conversion gain	2.256
		Copy	
TOM-X		file	2.168
TOSM		COPY	2.168, 3.65
TOSM (ZVRE)		COPY LINE	2.235
TRL		COPY MEM TRACE	
TRM	2.307	COPY SCREEN	
Calibration standard	2.301	COPY TABLE	
Calibration test menu	2.301	COPY TRACE	
CENTER (key)	2.189, 3.103, 3.118		2.136, 3.38
CENTER = MARKER		Correction	
Center value			2.90
CENTER X		Coupled channels	
CENTER Y	,	COUPLED CHANNELS	
		COUPLED MARKERS	2.218, 3.30
CH1 - CH4 (keys)		CREATE INST FILE	2.351
CH1CH4 (keys)	3.63	Crosstalk errors	2.314
Channel		Cursor (key)	2.82
display		Cursor key	
dual overlay	2.61		2.82
dual split	2.61	CUTOFF FREQUENCY	_
information	2.50	CUTOFF FREQUENCY	2.353
quad dual split		D	
quad overlay		ט	
quad split		DATA ENTRY FIELD	2 280
		DATA ENTRY OPAQUE	
representation			2.290
single		Data entry windows	
CHARTER		_	2.95
Charter diagram		Data set	
CHIRP transformation	2.107	creation	2.177
CHK VALUE SETTINGS (compression	n point)2.129	partial	2.172
CHK VALUE SETTINGS (intercept po	• /		2.177
CLEAR ALL MESSAGES			2.169
CLEAR MEM #		DATA SET CLEAR	
CLEAR MESSAGE		DATA SET CLEAR (RECALL).	
CLR (key)		DATA SET CLEAR ALL	
COLOR ON/OFF		DATA SET CLEAR ALL (RECA	
Colors	2.28/	DATA SET LIST	

DATA SET LIST (RECALL)2.179	Diagram	
DATA SET LIST/CONTENTS (RECALL) (selection table)	Cartesian	•
	Charter	·
DATA SET LIST/CONTENTS (SAVE) (selection table)	expand	
	inverted Smith	
DATA TO MEMORY2.292, 3.141 Date	logarithmicpolar diagram	
input2.147	segmented	
DATE2.147, 3.137	Smith	
DB CARTESIAN	smoothing	•
B MAG AND PHASE 2.174, 2.221, 3.31, 3.53	DIAGRAM (key)	
#B MAGNITUDE2.220, 3.31	Directory	
DB POLAR2.282, 3.46	create	2.168
DC MEAS INPUT 12.264	rename	
DC MEAS INPUT 22.264	Disable	
DEC SEP2.175, 3.53	operation	2.93
Decimal separator2.175	DISABLE ALL ITEMS (RECALL)	2.181, 3.7
DEF ARBITRARY (mixer measurements)	DISABLE ALL ITEMS (SAVE)	2.172, 3.7
	Diskette	
DEF CART SEGMENTS2.279	format	
DEF COMP PNT MEAS	Display	
2.128, 3.106, 3.107, 3.117, 3.118, 3.122	brightness	
DEF MIXER MEAS2.119, 3.105	colors	
DEF POLAR SEGMENTS2.283	conversion	
DEF SOI MEAS2.133, 3.106, 3.107, 3.122 DEF SRC 1 PCAL SWEEP2.369	formatting	
DEF SRC 1 PCAL SWEEP2.369 DEF SRC 2 PCAL SWEEP2.369	information on the diagram	
DEF SWEEP SEGMENTS2.194, 3.110	marker info list	
DEF TIME GATE2.100	referencesaturation	
DEF TOI MEAS2.133, 3.106, 3.107, 3.122	scale reference	
DEF TRANSF TYPE2.106	scaling	
DEF TRIGGER2.100	sweep position	
DEF X-AXIS2.113, 3.42	sweep range	
DEFAULT CONFIG (RECALL)	DISPLAY (key)	
DEFAULT CONFIG (SAVE)	Display channels	
DEFAULT POSITION2.290	coupling	
Default setup2.183	Display line	
DEFAULT STEP SIZE2.95	DISPLAY OBJECTS (selection table)	2.28
DEFAULT VAL AND CHK SETTINGS OF SECOND /	Display windows	
THIRD ORDER INTERCEPT POINT MEASUREMENT	DISPLAYED DATA	2.176, 3.54
(table)2.135	Displays	
DEFAULT VALUES AND CHECK SETTINGS OF	mouse control	2.90
COMPRESSION POINT MEASUREMENT (table)2.129	DIVIDED X AXIS	
DEFINE B'DFILTER2.225, 3.33	Documentation	
DEFINE CIRCLE	DOMAIN TIME FREQ	•
DEFINE MACRO	DOMAIN TIME FREQUENCY	3.40
DEFINE MATH2.296, 3.38	DRIVE PORT PORT1/PORT2	0.050.000.00
DEFINE PAUSE		
DEFINE RATIO	DUAL CHAN OVERLAY	
DEFINE RATIO (selection table)	DUAL CHAN SPLIT	2.200, 3.43
DEFINE S-PARAMETERS (selection table)2.250	E	
DEL ACTIVE POINT2.367	_	
DEL ACTIVE I OINT (EDIT POWER LOSS LIST)2.371	EDIT CAL KIT PATH (menu table)	2.352
DEL ACTIVE SECTION2.240	EDIT COMMENT	2.171, 3.7
DEL ACTIVE SEGMENT	EDIT DIELECTRIC	
DEL ALL POINTS2.367	EDIT DIELECTRIC (OFFSET)	
DEL ALL POINTS (EDIT POWER LOSS LIST)2.370	EDIT DIELECTRIC (selection table)	
DEL ALL SECTIONS2.240	EDIT NAME	
DEL ALL SEGMENTS 2.197, 2.281, 3.111	EDIT NAME (RECALL)	
Delay time2.202	EDIT NAME (SAVE)	
DELÁY TIME (OFFSET)2.372, 3.96	EDIT PATH (BECALL)	
Delete	EDIT PATH (RECALL)	
file2.168	EDIT PATH (SAVE)	
DELETE 2.168, 3.66, 3.68	EDIT POWER LOSS LIST	·
DELETE MACRO2.188	EDIT RTC TRIG TIME EDIT SWEEP TIME	
DELTA (key)2.227	EDIT SWEEP TIME	
Delta marker2.58	EDIT TITLE	
Delta markers	Editing Editing	2.29
DELTA OFF	parameter	288 20
DEVICE SETTINGS (selection table)2.162	ELECTRICAL LENGTH	

ELECTRICAL LENGTH (OFFSET)	•	F	
Electrostatic discharge	1.20		0.40
Enable		Fast Fourier transformation	
Front panel keys		Fast Mode	
ENABLE ALL ITEMS (RECALL)		FAST MODE	
ENABLE ALL ITEMS (SAVE)		FFT CHIRP	2.107, 3.41
ENABLE NEW OPTION		File	0.400
Enhancement label	2.53	copy	
ARB	2.123	delete	
AVG	2.212	rename	
CA?	2.299	SORT	
CAI	2.299	FILE MANAGEMENT (selection tabl	e)2.167
CAL		Filter measurement measurement example	0.45
CMP			2.17
EXT		Filtering frequency range	2 106
FST			2.100
H=2		Firmware Options enable	2 140
H=3		FIRMWARE OPTIONS	
HLD		FIRMWARE OPTIONS (selection tal	
list of all		FIRMWARE VERSIONS	
MAT		FIRMWARE VERSIONS (selection t	
MIX		FIXED IF (mixer measurements)	
PC		FIXED LO (mixer measurements)	
PC(x)		FIXED POS STIMULUS	
PC?		FIXED POS X VAL	
PCi		FIXED POS Y VAL	*
PCo		FIXED RF (mixer measurements)	· ·
SMO		Format	2.121, 3.100
SOI		ASCII	2 173
TIM		FORMAT	
TOI		FORMAT (key)	*
TRF RTC		FORMAT DISK	
TRG EXT		Formatting	
TRG LIN		complex	
TRG MAN		display	
TRG TIM		imaginary part	
ENTER (key)		magnitude	
ENTER PASSWORD		phase	
ENTER TEXT	2. 160, 3.36	real part	
Entry abort	2.04	FORWARD	
		Fourier transformation, fast	
activate		FREE RUN	
correction		FREQ OFFS OF 2ND SRC (SOI)	
terminate ENTRY LINE1/LINE2		FREQ OFFS OF 2ND SRC (TOI)	
Error messages, list		Frequency	- , -
Ethernet Adapter	300 AIIIICA D	base	2.117
EXP (key)		equation	
EXPAND		fixed	2.121
EXR SRC CONFIG		sweep	
EXT LEVEL CONTROL		FREQUENCY	
EXT REF FREQUENCY		FREQUENCY APERTURE	
EXT SOURCES CONFIG (selection table)	· ·	FREQUENCY CONVERS	2.117, 3.104
EXT SRC 1 POWER		FREQUENCY SWEEP	
EXT SRC 1 SLOPE	·	Front panel	, -
EXT SRC 2 POWER	·	keyboard emulation	2.2
EXT SRC 2 POWER CAL		FTP	
EXT SRC 2 SLOPE		operation	
EXT SRC CONFIG	· ·	FULL	
EXT SRC CONFIG		FULL ONE PORT	
EXT SRC CONFIG (mixer measurement)		FULL PAGE	
EXT SRC CONFIG (mixer measurement) EXT SRC1 (compression point)		FULL TWO PORT	
EXT SRC1 (compression point) EXT SRC1 EXT SRC2 (S0I)		FULL TWO PORT (ZVRE)	2.317
EXT SRC1 EXT SRC2 (301)		Fuse	
EXT SRC1 EXT SRC2 (101)EXT SRC2 (compression point)			
Ext SRC2 (compression point) Ext Trigger	2. 101, 3. 122	G	
input	Δ 22	Cha (hana)	2.2
EXTERNAL		G/n (key)	
EXTERNAL (Trigger)	·	Gain factor	
External generator		Gate (time domain)	
		GATE SPAN	
		GATE SPAN2	. 100, 2.114, 3.21, 3.42

GATE START 2	.105, 2.114, 3.20, 3.41	Input reflection coefficient	2.248
GATE STOP 2	.105, 2.114, 3.20, 3.42	INS NEW POINT	
Generator power calibration	2.355	INS NEW POINT (EDIT POWER L	OSS LIST) 2.371
GOTO POINT # (EDIT POWER LOS	SS LIST)2.371	INS NEW SECTION	*
GOTO POINT # (SENSOR CAL FAC	CTOR) 2.367	INS NEW SEGMENT	
GOTO SECTION #	2 240	Insertion loss	
GOTO SEGMENT #		INSTALL NEW KIT	
GPIB ADDRESS		INSTALLED CAL KITS (menu tabl	
		INSTALLED CAL KITS (Mentitable INSTALLED COMPONENTS (sele	
Graphic elements			
Grid		INSTALLED OPTIONS (selection t	
harmonic		Instrument model	
linear		INT SRC (compression point)	
logarithmic		INT SRC EXT SRC1 (SOI)	
user-defined	2.193	INT SRC EXT SRC1 (TOI)	
GRID		INT SRC EXT SRC2 (SOI)	2.137, 3.122
GRID ANNOTATION	2.282	INT SRC EXT SRC2 (TOI)	
Grid points		INT SRC1 (compression point)	3.122
for time-domain transformation	2.108	INTC POINT INP/OUTP (SOI)	
Group delay		INTC POINT INP/OUTP (TOÍ)	
GROUP DÉLAY2		Intercept	2.126
	,,,	Intercept measurement (2 nd /3 rd order)	2 132
H		Interface	see Anney A
		printer	
Handshake protocol		Interface configuration	
hardware	2.1 <i>4</i> 5	S .	2.141
software	2.146	Interfaces	
Hardcopy		IEC/IEEE bus	
comments	2 160	RS-232-C	
CODY		Interpolation	
format		INVERTED SMITH	
		ISOLATION YES/NO (TOSM)	2.313
output device		ISOLATION YES/NO (TOSM, ZVF	RE) 2.319
position		ITEMS TO RECALL (selection table	le) 2.181
screen		ITEMS TO SAVE (selection table).	
HARDCOPY DEVICE		(**************************************	
Hardware		K	
HARDWARE+OPTIONS			
Harmonic Grid	2.108	k/m (key)	2.81
Header line	2.49	KEEP FREQ STEP WIDTH	
HOLD (key)	2.93	KEEP STOP FREQ	2.110, 3.41
		Key	•
		COPY (hardcopy)	
		Key group	
IEC/IEEE bus		CHANNEL	2 245
address	2.142	LINES	
commands and related softkeys.	3.160	Keyboard	
device messages		connector	4.24
interface			A.24
interface messages		Keyboard, external	4.05
interfaces		connection	
		K-FACTOR	3.107
set address			
IF = BASE FREQ (mixer measureme		L	
IF BANDWIDTH		1	2 221 2 260 2 22
IF-Filter		L	2.221, 2.200, 3.22
IMAGINARY2		LED message	2.2
IMMEDIATE		REMOTE	3.2
Impedance		Length	
serial	2.261	electrical	2.269
terminating	2.261	Length offset	
IMPULSE STĔP		Level error	2.298
INFO (Key)		Limit check	
Information		LIMIT CHECK	
channel	2.50	Limit line	
test parameter		cartesian diagram	
•		circle diagram	
Information line	2.50	copy	
Input	404		
a1 EXT IN		move	
BLANK		select	
Ext Trigger	A.23	LIMITS (key)	
LEVEL	A.23	LIN CARTESIAN	
PORT BIAS 1 / 2	A.23	LIN MAG AND PHASE	
REF IN	A.23	LIN MAGNITUDE	
INPUT	2.252 3.107	LIN POLAR	2.282, 3.46

LIN SWEEP	2.193, 3.104, 3.113	MATCH P1 OPEN P2	
Lin/Log		MATCH PORT 12.306, 2.3	
display		MATCH PORT 1 (FULL ONE PORT)	
LINE		MATCH PORT 1 (FULL ONE PORT, ZVRL).	
LINE 1		MATCH PORT 1 (ONE PATH, ZVR)	
LINE 2		MATCH PORT 1 (ONE PATH, ZVRL)	
LINE SECTIONS (selection table)	2.239	MATCH PORT 1 (TOSM)	
Line style		MATCH PORT 1 (TOSM, ZVRE)	
selection of		MATCH PORT 22.306, 2.3	
LINE STYLE CHn		MATCH PORT 2 (FULL ONE PORT)	
LINE STYLE MEM TRACE		MATCH PORT 2 (ONE PATH, ZVR)	
LINES (key)		MATCH PORT 2 (TOSM)	
LIST INSTD KITS		MATCH PORT 2 (TOSM, ZVRE)	
LO = BASE FREQ (mixer measurem		MATH	
LO EXT SRC1/SRC2 (mixer measure	∍ments) 2.120, 3.105	MATH DATA/MEM	
LOAD STATE	3.67	MATH DATA+MEM	2.295
LOCAL (key)	2.182	MATH DATA-MEM	
LOCK ALL		MATH DATAxMEM	2.295
LOCK DATA		MATH MEM/DATA	
LOG CARTESIAN	2.278, 3.46	MATH USER DEF´D	
LOG POLAR		MAX = MARKER	
LOG SWEEP	2.193, 3.104, 3.113	MAX MODE	2.224, 3.33
Login	1.23	MAX VALUE	2.274, 3.49
Login (NT controller)	1.23	MAXIMUM FLATNESS	2.102, 3.21
Logo	2.53, 2.290	MEAS (key)	2.247
LÕGO	2.290	MEAS FRÉQ SUM/DIFF (SOI)	2.134, 3.107
Logout	1.23	MEAS SIDEB LSB USB (TOI)	
LŎW FIRST SIDELOBE		Measured diagram	,
LOWER LEFT		scaling	2.272
LOWER RIGHT		Measured quantity	
LOWPASS DC S-PARAM		conversion	2.261
LPT		diagram	
interface	A 22	formatting	
		manipulating mathematically	
M		storing	
		Measurement	
M/μ (key)	2.81	direct input signal	2 252
Macro		ratio	
abort	2.182	save	
definition	2.187	Measurement example	2. 700
start	2.185	filter measurement	2 17
MACRO 17	2.186	transmission measurement	
MACRO TITLE	2.188	Measuring diagram	
MAGNITUDE	2.266, 3.22	Measuring diagram Measuring Instruments	2.00
MAGNITUDE (OFFSET)	2.372, 3.98	ZVC, ZVCE	5.50
Maintenance	4.1		
MAKE DIRECTORY	2.168, 3.67	ZVR, ZVRE, ZVRL MECHANICAL LENGTH	
MANUAL (trigger)	2.202		
Manual control		MECHANICAL LENGTH (OFFSET)	
switchover	2.182	MECHANICAL LENGTH (OFFSET)	
MANUAL STEP SIZE		MEM 1, , MEM 8	2.294
MANUAL TRIGGER		Memory	4.00
Marker		battery-powered	
active		configuration	2.167
display of active value		Menu	0.70
formatting		arrows	
Lists		call	
marker position		change keys	
marker value		Message windows	2.73
reference		Messages	
representation		acknowledgement	2.76
•		MICROSOFT NET	
symbols MARKER (key group)		operation	
MARKER (key group) MARKER 1		MIDDLE = MARKER	
MARKER CONT/DISCR		MIDDLE VAL/DELTA LIM	2.241
		MIN = MARKER	2.230
MARKER CONVERS		MIN MODE	2.224, 3.33
MARKER DATA/MEM	-	MIN VALUE	2.274, 3.49
MARKER INFO		MIXER MEAS	2.119, 3.104
Marker info list	*	Mode	•
MATCH BOTH PORTS (TOM-X)		Delta marker	2.228
MATCH BOTH PORTS (TOSM)		external measurement	
MATCH BOTH PORTS (TOSM, ZVR	' <i>∟)</i> 2.319, 3.92	fast mode	

frequency sweep	2.138	OPEN PORT 2 (FULL ONE PORT)	2.325, 3.92
frequency-converting measurements	2.117	OPEN PORT 2 (ONE PATH, ZVR)	2.330, 3.92
mixer measurements	2.119	OPEN PORT 2 (REFL NORM, ZVR)	2.335, 3.92
power sweep	2.139	OPEN PORT 2 (TOSM)	2.313, 3.92
reference mixer	2.140	OPEN PORT 2 (TOSM, ZVRE)	2.318, 3.92
segmented sweep	2.194	OPEN PORT 2 (TRANS AND REFL NORI	M, ZVR)
single point measurement	2.192		2.337, 3.92
time sweep	2.139	OPERAND X (selection table)	2.296
MODE (key)		Operating mode	
MODEL TYPE (selection table)	2.151, 2.152	time domain	
MODIFY CAL KIT	2.343	Operational site	
MODIFY STANDARDS		OPERATOR X (selection table)	2.297
MODIFY XX YY STANDARDS (selection	table)2.348	Option	
Module		external measurements, ZVR-B25	
information on	2.152	frequency-converting measurements, .	ZVR-B4 2.117
Monitor		FSE-B16 - Ethernet Adapter	
connection	1.26	nonlinear measurements, ZVR-B5	
Mouse		reference mixer	
connection		reference mixer, ZVR-B6	
connector		Time Domain Transformation, ZVR-B2	
operation	2.95	OPTIONS	2.149
Mouse control		Output	
display elements		a1 EXT OUT	
MOVE LINE	2.232, 2.242	REF OUT	
N		TRIGGER	
N		Output reflection coefficient	
N 50 Ω	2 346 3 93	Output unit	3.148
N 50 Ω FEMALE2	· ·	Р	
N 50 Ω MALE		P	
N 75 Ω		PAE	2.264
N 75 Ω FEMALE		PAGE DOWN (DATA SET LIST)	
N 75 Ω MALE		PAGE DOWN (FILE MANAGEMENT)	
network operating system	2.302, 3.33	PAGE DOWN (RECALL)	
FTP	1 54	PAGE UP (DATA SET LIST)	2.171
MICROSOFT NET		PAGE UP (FILE MANAGEMENT)	2.168
NOVELL NETWARE		PAGE UP (RECALL)	
TCP/IP		Parameter	
NO PROFILING		editing	2.88, 2.90
NORMAL (key)	·	selection	2.83
NORMAL GATE		Parameters	2.204
NORMAL PROFILE	· ·	coupled	2.204
NOVELL NETWARE		Parasitic capacitance	2.350
operation	1.48	Parasitic inductance	2.350
NT controller		Password	
NUMBER OF POINTS		Windows NT	
NUMBER OF READINGS	2.368, 3.120	Path	
NUMBER OF SWEEPS		PC 3.5	
NUMBER OF TABLE ROWS	2.198	PC 3.5 FEMALE	·
		PC 3.5 MALE	
0		PC 7	2.346, 3.93
05505T (I)	0.074	PC Monitor	
OFFSET (key)		Connector	
Offset quantities		PEAK TO PEAK	2.228, 3.36
ONE PATH TWO PORT		Performance Test Report	
Open		(ZVR, ZVRE, ZVRL)	
OPEN BOTH PORTS	,	ZVC, ZVCE	
OPEN P1 MATCH P2	·	PERIODIC TIMER	
OPEN PORT 1		PHASE2.220,	
OPEN PORT 1 (FULL ONE PORT, ZVP)	,	PHASE (OFFSET)	
OPEN PORT 1 (FULL ONE PORT, ZVRL)		Phase delay	
OPEN PORT 1 (ONE PATH, ZVR)		PHASE DELAY	
OPEN PORT 1 (ONE PATH, ZVRL) OPEN PORT 1 (PEEL NORM ZVR)	· ·	Phase offset	
OPEN PORT 1 (REFL NORM, ZVR) OPEN PORT 1 (REEL NORM, ZVRL)		PHASE UNWRAP	2.269, 3.22
OPEN PORT 1 (REFL NORM, ZVRL)		Plotter	
OPEN PORT 1 (TOSM)	·	connection	
OPEN PORT 1 (TOSM, ZVRE) OPEN PORT 1 (TRANS AND PEEL NOR		POINTS/DEC	
OPEN PORT 1 (TRANS AND REFL NOR		Polar diagram	
OPEN PORT 1 /TRANS AND REEL NOR	· ·	PORT 1 (DEEL MORM 700)	
OPEN PORT 1 (TRANS AND REFL NOR		PORT 1 (REFL NORM, ZVR)	
OPEN PORT 2		PORT 1 CONNECTOR	
OI LIVI OINI Z	2.000, 3.32	PORT 2	2.324, 3.93

PORT 2 (REFL NORM, ZVR)		REFLECT PORT 2	· · ·
PORT1/PORT2		Reflection coefficient	
POWER		Reflection normalization (ZVR)	2.334
Power added efficiency		Reflection normalization (ZVRL).	
Power loss list		Remote control2.12	· ·
POWER LOSS LIST (selection table)		ABORt	
POWER MTR CONFIG2.3	, ,	CALCulate	
POWER MTR CONFIG (selection table)		DIAGnostic	
POWER MTR TYPE (selection table)		DISPlay	
POWER SWEEP	·	FORMat	
		НСОРу	
Preset		indication	
PRESET (key)	3.139	INITiate	
Printer		INPut	
connection	1.28, A.22	INSTrument	
Probe Power		instrument model	
connector		MMEMory	
Processing of measured values	2.22	OUTPut	
0		SENSe	
Q		set transmission parameters	
QUAD CHAN DUAL SPLIT	2 286 3 45	SOURce	
QUAD CHAN OVERLAY		STATus	
QUAD CHAN QUAD SPLIT		switching on	
Quality factor	·	SYSTem	
QUALITY FACTOR		TRACe	
QUALITITACTON	2.220, 3.34	TRIGger	3.144
R		Remote Control	
•		PROGram	3.74
Rack		Rename	
installation	1.21	directory	2.168
RADIUS2.	.237, 2.276, 3.27	file	2.168
Rated specifications		RENAME	2.168, 3.67
generator (ZVC, ZVCE)	5.53	REPEAT PREV CAL	2.341
generator (ZVR)		Reset	
measuring instruments	5.1, 5.52	instrument	2.183
receiver (ZVC, ZVCE)	5.58	RESET COLORS	2.289
test sequence (ZVC, ZVCE)	5.53	RESET OFFSETS	2.372
test sequence (ZVR, ZVRE, ZVRL)	5.2	RESPONSE (key group)	
test set (ZVC, ZVCE)	5.63	RESTART (key)	2.206
test set (ZVR, ZVRE, ZVRL)	5.14	RESTORE INSTD KITS	
testing	5.1	RESUME CAL	
-		REVERSE	
	5.9	RF = BASE FREQ (mixer measu	rements)2.120, 3.105
	5.65	RJ45 (star topology)	1.44
	5.17	RLC ELEMENTS	2.221
RATIO 2.2	255, 2.258, 3.107	Rohde & Schwarz logo	2.53
REAL 2.220, 2	2.266, 3.22, 3.31	Rollkey	
REAL AND IMAGINARY2.	.174, 2.221, 3.31	functions	2.82
REAL TIME CLOCK	2.202, 3.144	RS-232-C	
Real-time clock	2.202	interface	A.5
Recall			
data set	2.177	S	
RECALL (key)	2.177	C	2 2 4 0 2 2 6 4 2 2 4 2 4 6
RECALL DATA SET (selection table)	2.178	S	
Receiver power calibration		S11 REFL PORT1	·
RECORD ON/OFF		S12 TRANS REV	·
Reduction factor (wave velocity)		S21 TRANS FWD	·
REF VAL = MARKER		S22 REFL PORT2	· ·
Reference	,	SATURATION	2.288
external	2.148	Save	0.405
Reference admittance		configuration	
Reference circle		data set	
REFERENCE EXT/INT		measurement	
Reference line	·	SAVE (key)	
REFERENCE MIXER	·	SAVE DATA SET (selection table	
REFERENCE POSITION		SCALE (key)	
Reference value		Scale Reference Fields	
REFERENCE VALUE		SCALE/DIV	· · · · · · · · · · · · · · · · · · ·
REFL NORM (ZVR)		Scaling	
REFL NORM (ZVRL)		abscissa	
REFLECT PORT 1		automatic	
	.555, 2.555, 5.55	circular	2.71

display	2.52, 2.53	SET DIELECTRIC (OFFSET)	2.373, 3.97
ordinate	2.66	SET DIELECTRIC (selection table)	2.270
radial		SET FREQS LOWPASS	2.109
reference value		SET PATH	3.65
SCPI-standard		SET PATH A	
block data		\ (RECALL)	
boolean parameters		\((SAVE)	
command line		\ (SETTING) SET PATH C	2.159
commandsdevice-independent commands		\ (RECALL)	2 170
device-independent commands		l (SAVE)	
introduction		\ (SETTING)	
key words		SET Z0	
numerical values		SETTINGS DEVICE 1, 2	
parameters		Settling time	
queries		SETTLING TIME (compression point)	
strings		SETTLING TIME (SOI)	
syntax elements		SETTLING TIME (TOÍ)	
text parameters	3.13	Setup	2.141
SCPI-status register	3.149	general	2.142
IST flag		SETUP (key)	
service request enable register		SEXLESS USR CONN 1	
status byte		SEXLESS USR CONN1	
SCR. MODE ON/OFF		SHAPE FACT 60 dB / 3 dB	
SCR. SAVER ON OFF		SHAPE FACT 60 dB / 6 dB	·
SCR. SAVER ON/OFF		Shape factor	
SCR. SAVER TIME		SHORT PORT 1	
Screendiagram area		SHORT PORT 1 (FULL ONE PORT) SHORT PORT 1 (FULL ONE PORT, ZV.	
diagram area		SHORT PORT 1 (POLL ONE PORT, 2V) SHORT PORT 1 (ONE PATH, ZVR)	,
setup softkey area		SHORT PORT 1 (ONE PATH, ZVR.)	
subdivision		SHORT PORT 1 (TOSM, ZVRE)	2 319 3 92
SEARCH		SHORT PORT 2	
SEARCH ← NEXT		SHORT PORT 2 (FULL ONE PORT)	
SEARCH (key)		SHORT PORT 2 (ONE PATH, ZVR)	
SEARCH NEXT		SHORT PORT 2 (TOSM, ZVRE)	
SEARCH NEXT	·	SHOW DATA	
SECOND HARMONIC		SHOW LINE	2.232, 2.244
SEG SWEEP		SHOW MATH	2.293, 3.38
Segment list (sweep)		SHOW MEM	
Segmentation	2.279	Sign (key)	
Cartesian	2.279	SINGLE CHANNEL	2.285, 3.45
radial	2.283	SINGLE POINT	
SEGMENTED CARTESIAN		Single point measurement	
SEGMENTED POLAR		SINGLE SWEEP	
SEL BAND (mixer measurements)		SIZE X	
SEL ITEMS TO COPY		SIZE Y	
SEL ITEMS TO RECALL	,	SLIDE 1 (FULL ONE PORT, ZVRL) SLIDE PORT 12.307,	2.328
SEL ITEMS TO SAVE	·	•	
SELECT KIT		SLIDE PORT 1 (FULL ONE PORT) SLIDE PORT 1 (ONE PATH, ZVR)	·
SELECT LINE SELECT MACRO		SLIDE PORT 1 (ONE PATH, ZVR.)	
SELECT MACKO		SLIDE PORT 1 (TOSM, ZVRE)	
SELECT OBJECTSELECT (selection table)		SLIDE PORT 22.307,	
SELECT ODSECT (Selection table) SELECT QUADRANT		SLIDE PORT 2 (FULL ONE PORT)	
SELECT UNIT		SLIDE PORT 2 (ONE PATH, ZVR)	
SELECT UNIT (selection table)		SLIDE PORT 2 (TOSM, ZVRE)	
Selection table	2.200	Sliding load	
position	2.289	SLOPE	
SELFTEST (selection table)		Slope factor	2.208
SENSOR A CAL FACTOR		SLOPE POS/NEG	
SENSOR A CAL FACTOR LIST (selectio	on table)2.367	SMA	
SENSOR B CAL FACTOR LIST (selectio	,	SMA FEMALE	2.302, 3.93
SENSOR LABEL		SMA MALE	
Serial admittance	2.261	SMITH	2.284, 3.46
Serial impedance	2.261	Smith chart	
Serial interface		inverted	
configuration	2.144	Smoothing	
SERVICE		SMOOTHING	
Service request		SMOOTHING APERTURE	
SET COLOR		SMOOTHING function	2.176
SET DIELECTRIC	2 270		

Softkey		SWEEP DIR FWD/REV	2.205, 3.113
ENABLE DEV1 / DEV2	2.163	Sweep direction	2.205
GENERAL SETUP		Sweep line	
MONITOR CONNECTED	2.147	Sweep modes	
SETTINGS DEVICE 1/2	2.162	Sweep segments	
Softkey		SWEEP SEGMENTS (selection table)	2.195
display	2.59	SWEEP START/HOLD	2.205
EXT SRC CONFIG	2.130	Sweep time	2.203
IEC/IEEE bus	2.59	automatic setting	2.203
menu	2.59	manual setting	2.203
related IEC/IEEE-bus commands	3.160	SWEEP TIME AUTO/MAN	2.203, 3.112
Softkey TRANS NORM (ZVRL)	2.338	SWEEP TYPE	2.138, 3.107
SOI	2.132, 3.107	switch-on test	4.2
SORT MODE	2.168	SWR2.22	
SOURCE (key)	2.207	SYMMETRIC NETWORK	2.311
Span	2.189	SYSTEM (key group)	2.97
SPAN (key)	3.103, 3.119	System error	
SPAN (key)		System error calibration	
SPAN = MARKER		System messages	
SRC POWER MAX LIMIT (compression p		SYSTEM MESSAGES	
2.		System-error correction	2.213
SRC POWER MAX LIMIT (SOI)		T	
SRC POWER MAX LIMIT (TOI)		Т	
SRC POWER MIN LIMIT (compression p	,	Table	
2.		operation	2 85
SRC POWER MIN LIMIT (SOI)		scrolling	
SRC POWER MIN LIMIT (TOI)	2.133	TAKE CAL SWEEP	
SRQ		TARGET MODE	•
indication		Target search mode	
Stability factor		TCP/IP	
Standby		operation	1.53
Standing wave ratio		Terminating admittance	
START (key)2.189, 3		Terminating impedance	
START = MARKER		Test parameter	
START AUTOKAL		information	2.50
START NEW CAL		Test Sequence	
START NEW POWER CAL		ZVC, ZVCE	5.53
START POWER CAL		ZVR, ZVRE, ZVRL	
Start value		Testing the Rated Specifications	
Start-Up		Thick Ethernet	
Status registers		Thin Ethernet	1.43
Status reporting service request		THIRD HARMONIC	2.118, 3.104
Status reporting system		THROUGH (ONE PATH, ZVR)	2.330, 3.92
error queue query		THROUGH (ONE PATH, ZVRL)	2.332, 3.92
parallel poll		THROUGH (TNA)	2.311, 3.92
queries		THROUGH (TOM)	2.306, 3.92
reset valuesserial poll		THROUGH (TOM-X)	2.314, 3.92
use		THROUGH (TOSM)	
STEEP EDGES		THROUGH (TOSM, ZVRE)	
STEEP FALLOFF		THROUGH (TRANS AND REFL NORM,	,
STEEPEST EDGES		THROUGH (TRANS AND REFL NORM,	•
STEP (key)	•	THROUGH (TRANS NORM, ZVR)	
STEP APERTURE		THROUGH (TRANS NORM, ZVRL)	
STEP ATT a1		THROUGH (TRL)	
STEP ATT a1 AND a2		THROUGH (TRM)	2.308, 3.92
STEP ATT a2		Time	
STEP ATT b1	· ·	input	
STEP ATT b2		TIME	
STEP SIZE		Time domain	
Stepsize		TIME DOMAIN	
settings	2.94	TIME GATE	· ·
STIMULUS (key group)		Time sweep	
STOP (key)2.		TIME SWEEP	•
STOP = MARKER		TINT	
Stop value	·	TITLE	
SUPER COMPACT		Title line	·
SUPERCOMPACT		TNA	
Sweep		Toloropeo bond	•
indikator	2.57	Tolerance band	
SWEEP (key group)		Tolerance circlesTOM	
SWFFP (key)	2 191	1 OIVI	2.305, 3.93

TOM-X	2.314. 3.93
TOSM	
TOSM (ZVRE)	2.318, 3.93
TOUCHSTONE	
Trace	
TRACE (key)	2.292
TRACE MATH function	
Tracking	
TRACKINGTRANS AND REFL NORM (ZVR)	2 226 2 02
TRANS AND REFL NORM (ZVR)	2 340 3 03
TRANS FWD REFL P1 (ZVR)	
TRANS FWD REFL P21	3.93
TRANS NORM (ZVR)	2.333, 3.93
TRANS REV RÈFL P2 (ZVR)	2.337
Transmission coefficient	
Transmission measurement	
measurement example	2.2
Transmission normalization (ZVR)	2.333
Transmission normalization (ZVRL)	2.338
TRC COLOR AUTO INC	2.161, 3.59
TRIGGER DELAY Trigger mode	2.202, 3.145
external	
free-running measuement	
internal	2 201
manual	
TRIGGER SWEEP/POINT	2.202. 3.145
TRL	2.309. 3.93
TRM	2.307, 3.93
TWO PORT NORM	3.93
TWO PORT NORM (ZVR)	2.337
Two-tone signal	2.126
U	
UNCAL	0.00
ONCAL	3.98
UNINSTALL KITS	2.352
UNINSTALL KITS Unit (key)	2.352 2.81
UNINSTALL KITS Unit (key) UNLOCK	2.352 2.81 2.93
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES	2.352 2.81 2.93 2.154
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT	2.352 2.81 2.93 2.154 2.160, 3.60
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT UPPER LIM/LOWER LIM	2.352 2.81 2.93 2.154 2.160, 3.60 2.241, 3.26
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT UPPER LIM/LOWER LIM UPPER RIGHT	
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT UPPER LIM/LOWER LIM UPPER RIGHT USE CURSOR	
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT UPPER LIM/LOWER LIM UPPER RIGHT USE CURSOR USE LINE STYLE	
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT UPPER LIM/LOWER LIM UPPER RIGHT USE CURSOR USE LINE STYLE USE MARKER 2.237	2.352 2.81 2.154 2.160, 3.60 2.241, 3.26 2.160, 3.60 2.237, 2.240 2.164 7, 2.241, 2.242
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT UPPER LIM/LOWER LIM UPPER RIGHT USE CURSOR USE LINE STYLE	
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT UPPER LIM/LOWER LIM UPPER RIGHT USE CURSOR USE LINE STYLE USE MARKER	
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT UPPER LIM/LOWER LIM UPPER RIGHT USE CURSOR USE LINE STYLE USE MARKER USE MARKER USE POWER LOSS LIST. USE SENSOR A/B. USER	
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT UPPER LIM/LOWER LIM UPPER RIGHT USE CURSOR USE LINE STYLE USE MARKER USE MIN STEP WIDTH USE POWER LOSS LIST USE SENSOR A/B User interface	
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT UPPER LIMLOWER LIM UPPER RIGHT USE CURSOR USE LINE STYLE USE MARKER	
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT UPPER LIM/LOWER LIM UPPER RIGHT USE CURSOR USE LINE STYLE USE MARKER USE MIN STEP WIDTH USE POWER LOSS LIST USE SENSOR A/B User interface USER (key) USER CONN IMPEDANCE	
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT UPPER LIMLOWER LIM UPPER RIGHT USE CURSOR USE LINE STYLE USE MARKER USE MIN STEP WIDTH USE POWER LOSS LIST USE SENSOR A/B USER (key) USER CONN IMPEDANCE USER CONN NAME	
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT UPPER LIMLOWER LIM UPPER RIGHT USE CURSOR USE LINE STYLE USE MARKER	
UNINSTALL KITS	
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT UPPER LIM/LOWER LIM UPPER RIGHT USE CURSOR USE LINE STYLE USE MARKER 2.237 USE MIN STEP WIDTH USE POWER LOSS LIST USE SENSOR A/B USER (key) USER CONN IMPEDANCE USER CONN IMPEDANCE USER DEF 'D S-PARAMS USER PORT A USER PORT B USER PORT B 2.1 USER PORTS (selection table)	
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT UPPER LIM/LOWER LIM UPPER RIGHT USE CURSOR USE LINE STYLE USE MARKER 2.237 USE MIN STEP WIDTH USE POWER LOSS LIST USE SENSOR A/B USER (key) USER CONN IMPEDANCE USER CONN IMPEDANCE USER DEF 'D S-PARAMS USER PORT A USER PORT B USER PORT B 2.1 USER PORTS (selection table)	
UNINSTALL KITS	

Windows NT
^
X DB COMP POINT (compression point) 2.129, 3.107 X GRID LIN/LOG 2.198, 3.113 X OFFSET 2.243 X POSITION 2.290 x1 (key) 2.81 X-AXIS DISTANCE 2.113, 3.42 X-AXIS DISTANCE/2 2.114, 3.42 X-AXIS TIME 2.113, 3.42
Υ
Y
Z
Z
Δ
1 REF = FIXED POS
u
u1-FACTOR3.107 u2-FACTOR3.107

Supplement A to Operating Manual ZVRL, ZVRE, ZVCE, ZVR, ZVC, ZVM and ZVK Vector Network Analyzer

Note the following corrections to the data sheet PD 757.1802.24 number 05/00 and to the data sheet PD 757.5543.22 number 11/00

Data sheet PD 757.1802.24 (ZVRL, ZVRE, ZVCE, ZVR, ZVC) number 05/00

Crosstalk between measurement channels with total reflection at test ports page 10 (values for 75 Ω models and the ZVC/E models with SWR bridges are 6 dB higher) **ZVRE and ZVR: Accuracy of transmission measurements** page 11
< 0.2 dB or <1° for 300 kHz to 20 MHz (ZVR)</p> Linearity above 40 kHz (referred to -10 dBm) page 13 −15 dBm to −25 <u>dBm</u> (ZVR/E/L).....< 0.6 dB -15 dBm to -25 dBm (ZVC/E).....< 0.8 dB **Harmonics** page 13 At -10 dBm source power ZVCE, ZVC above 600 MHz.....< -30 dBc RMS noise level (50 W, without options) page 13 With 75 Ω models and the ZVC/E models with SWR bridges the noise level is higher by 6 dB. Match ZVCE, ZVC page 13 (without system error correction) Passive SWR bridges, 50 Ω 40 kHz ... 10 MHz > 10 dB 10 MHz ... 100 MHz > 16 dB PORT BIAS 1/2 (inputs) page 14 DC MEAS INPUTS DC 1/2 (DC measurement inputs) page 14 Voltage range-10 V ...+10 V

Increased Output Power for Port 1 option				page 16
Max. nominal output power				
ZVCE, ZVC with SWR bridges 20 kHz to 2 GHz 2 GHz to 6 GHz 6 GHz to 8 GHz	PORT1 +6 dBm +4 dBm +1 dBm	OUTP +13 dE +11 dE +11 dE	3m <u>3m</u>	
ZVCE, ZVC with couplers 20 kHz to 2 GHz 2 GHz to 6 GHz 6 GHz to 8 GHz	+10 dBm +8 dBm +5 dBm	+13 dE +11 dE +11 dE	<u>3m</u>	
Power linearity				page 16
ZVCE, ZVC with SWR bridges (referred to 0 d	Bm)			
20 kHz to 2 GHz	+6 dBm to –9 d		< 0,4 dB < 0,8 dB	
2 GHz to 6 GHz	+4 dBm to -9 d	dBm	< 0,4 dB < 0,8 dB	
6 GHz to 8 GHz	<u>+1 dBm</u> to –9 d –9 dBm to –17	dBm	< 0,4 dB < 0,8 dB	
ZVCE, ZVC with couplers (referred to 0 dBm)				
20 kHz to <u>2 GHz</u>	+10 dBm to -5	dBm	< 0,4 dB	
	-5 dBm to -15	dBm	< 0,8 dB	
2 GHz to 6 GHz	<u>+8 dBm</u> to –5 d	dBm	< 0,4 dB	
	−5 dBm to −15		< 0,8 dB	
6 GHz to 8 GHz	<u>+5 dBm</u> to –5 d		< 0,4 dB	
	–5 dBm to –15	dBm	< 0,8 dB	
Harmonics At max. output power				page 16
20 kHz to 4 GHz				
At output powers +3 dBm and 0 dBm the specifications are cancelled				
At output power 10 dB less than max. output p	<u>ower</u>			<u>< -30 dBc</u>
Spurious				page 16
>300 kHz from carrier				< -40 dBc

Data sheet PD 757.5543.22 (ZVM, ZVK) number 11/00

Dynamic range (without system error correctio	n,				page 8
without optional attenuator)		ZVM	ZVM	ZVK	ZVK
at IF bandwidth of		10 Hz	10 kHz	10 Hz	10 kHz
up to <u>150 MHz</u>		.> 75 dB	> 45 dB	> 70 dB	> 40 dB
150 MHz to 500 MHz		. <u>> 105 dB</u>	> 75 dB	> 100 dB	> 70 dB
ZVK uncertainty of transmission measurement	ents				page 8
after system error correction					
28 GHz to 40 GHz					
for -10 dB to -25 dB				<u>0,2</u>	<u>dB</u> or 3°
ZVM Output power - Linearity (referred to -10	dBm)				page 9
above 150 MHz up to 14 GHz in temperature ra	ange 20 °C to	26 °C			
for +15 dB to -10 dB					. <0,4 dB
ZVK Output power - Linearity (referred to -10	dBm)				page 9
above 150 MHz in temperature range 20 °C to 2	26 °C				
for +10 dB to +5 dB					. <u><0,6 dB</u>
for +5 dB to -10 dB					. <0,4 dB
Harmonics					Seite 9
At maximum nominal source power	ZVM	ZV	K		
up to 10 GHz	< -20 dBc	< -20	dBc		
10 GHz to 20 GHz	< -15 dBc	< -15	dBc		
Spurious					page 9
>300 kHz from carrier					
ZVM up to 16 GHz					< -35 dBc
ZVM above 16 GHz				<u>≤</u>	< -30 dBc
ZVK up to 16 GHz					< -35 dBc
ZVK above 16 GHz				<u><</u>	< -30 dBc
DMC resides lessed at IE householded 40 LIE					
RMS noise level at IF bandwidth 10 Hz					page 9
up to 500 MHz				<u><</u>	<u>-10 aBm</u>
PORT BIAS 4/2 /DC bigs impute for DODT 4/0\					nors 44
PORT BIAS 1/2 (DC bias inputs for PORT 1/2)					page 14
Input impedance					<u>10 kΩ</u>

Important Hints before Operation:

For all instruments:

- The directory C:\R_S\INSTR and its subdirectories are reserved for system software. Never modify this directory in any way, otherwise the functioning of the instrument will be impaired.
- Aborting a hardcopy is not possible when printout is in progress. Print jobs in the queue can be
 deleted before printout has been started by pressing the HARDCOPY START key until the
 message "Hardcopy in progress. Abort?" is displayed. The length of the queue is two jobs.
- To avoid damage of electronic components of the DUT and the analyzer, the operational site
 must be protected against electrostatic discharge.

Windows NT

Caution:

The drivers and programs used under Windows NT are adapted to the measuring instrument. In order to prevent the instrument functions from damage, the settings should only be modified as described below. Existing software may only be modified using update software released by Rohde&Schwarz. Additionally only programs authorized by Rohde&Schwarz for use on the ZVx may be run on the instrument.

Do not power down during booting. Such a switch-off may lead to corruption of the hard disk files.

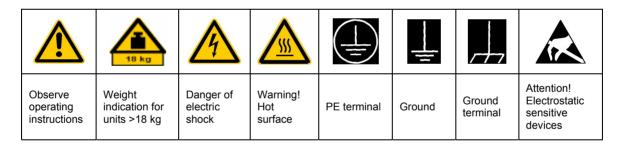
Removable Harddisk FSE-B18

When using the Removable Harddisk, FSE-B18, please observe the following:

- Always keep your Removable Harddisk in the plastic case included in this package.
- Do not drop your Removable Harddisk.
- Do not expose it to moisture, to extreme temperatures, or to a strong magnetic field.
- Do not squeeze the external cover of the Removable Harddisk.
- Do not affix additional labels.
- Do not remove the existing label or write anything on to it.

Patent Information This product contains technology licensed by Marconi Instruments LTD. under US patents 4609881 and 4870384 and under corresponding patents in Germany and elsewhere. Please note the safety instructions on the next sheet!

Before putting the product into operation for the first time, make sure to read the following


Safety Instructions

Rohde & Schwarz makes every effort to keep the safety standard of its products up to date and to offer its customers the highest possible degree of safety. Our products and the auxiliary equipment required for them are designed and tested in accordance with the relevant safety standards. Compliance with these standards is continuously monitored by our quality assurance system. This product has been designed and tested in accordance with the EC Certificate of Conformity and has left the manufacturer's plant in a condition fully complying with safety standards. To maintain this condition and to ensure safe operation, observe all instructions and warnings provided in this manual. If you have any questions regarding these safety instructions, Rohde & Schwarz will be happy to answer them.

Furthermore, it is your responsibility to use the product in an appropriate manner. This product is designed for use solely in industrial and laboratory environments or in the field and must not be used in any way that may cause personal injury or property damage. You are responsible if the product is used for an intention other than its designated purpose or in disregard of the manufacturer's instructions. The manufacturer shall assume no responsibility for such use of the product.

The product is used for its designated purpose if it is used in accordance with its operating manual and within its performance limits (see data sheet, documentation, the following safety instructions). Using the products requires technical skills and knowledge of English. It is therefore essential that the products be used exclusively by skilled and specialized staff or thoroughly trained personnel with the required skills. If personal safety gear is required for using Rohde & Schwarz products, this will be indicated at the appropriate place in the product documentation.

Symbols and safety labels

10	\oplus		~	}	
Supply voltage ON/OFF	Standby indication	Direct current (DC)	Alternating current (AC)	Direct/alternating current (DC/AC)	Device fully protected by double/reinforced insulation

Observing the safety instructions will help prevent personal injury or damage of any kind caused by dangerous situations. Therefore, carefully read through and adhere to the following safety instructions before putting the product into operation. It is also absolutely essential to observe the additional safety instructions on personal safety that appear in other parts of the documentation. In these safety instructions, the word "product" refers to all merchandise sold and distributed by Rohde & Schwarz, including instruments, systems and all accessories.

Tags and their meaning

DANGER This tag indicates a safety hazard with a high potential of risk for the

user that can result in death or serious injuries.

WARNING This tag indicates a safety hazard with a medium potential of risk for the

user that can result in death or serious injuries.

CAUTION This tag indicates a safety hazard with a low potential of risk for the user

that can result in slight or minor injuries.

ATTENTION This tag indicates the possibility of incorrect use that can cause damage

to the product.

NOTE This tag indicates a situation where the user should pay special attention

to operating the product but which does not lead to damage.

These tags are in accordance with the standard definition for civil applications in the European Economic Area. Definitions that deviate from the standard definition may also exist. It is therefore essential to make sure that the tags described here are always used only in connection with the associated documentation and the associated product. The use of tags in connection with unassociated products or unassociated documentation can result in misinterpretations and thus contribute to personal injury or material damage.

Basic safety instructions

- 1. The product may be operated only under the operating conditions and in the positions specified by the manufacturer. Its ventilation must not be obstructed during operation. Unless otherwise specified, the following requirements apply to Rohde & Schwarz products: prescribed operating position is always with the housing floor facing down, IP protection 2X, pollution severity 2, overvoltage category 2, use only in enclosed spaces, max. operation altitude max. 2000 m. Unless specified otherwise in the data sheet, a tolerance of ±10% shall apply to the nominal voltage and of ±5% to the nominal frequency.
- 2. Applicable local or national safety regulations and rules for the prevention of accidents must be observed in all work performed. The product may be opened only by authorized, specially trained personnel. Prior to performing any work on the product or opening the product, the
- product must be disconnected from the supply network. Any adjustments, replacements of parts, maintenance or repair must be carried out only by technical personnel authorized by Rohde & Schwarz. Only original parts may be used for replacing parts relevant to safety (e.g. power switches, power transformers, fuses). A safety test must always be performed after parts relevant to safety have been replaced (visual inspection, PE conductor test, insulation resistance measurement, leakage current measurement, functional test).
- As with all industrially manufactured goods, the use of substances that induce an allergic reaction (allergens, e.g. nickel) such as aluminum cannot be generally excluded. If you develop an allergic reaction (such as a skin rash, frequent sneezing, red eyes or respiratory difficulties), consult a physician immediately to determine the cause.

- 4. If products/components are mechanically and/or thermically processed in a manner that goes beyond their intended use, hazardous substances (heavy-metal dust such as lead, beryllium, nickel) may be released. For this reason, the product may only be disassembled, e.g. for disposal purposes, by specially trained personnel. Improper disassembly may be hazardous to your health. National waste disposal regulations must be observed.
- 5. If handling the product yields hazardous substances or fuels that must be disposed of in a special way, e.g. coolants or engine oils that must be replenished regularly, the safety instructions of the manufacturer of the hazardous substances or fuels and the applicable regional waste disposal regulations must be observed. Also observe the relevant safety instructions in the product documentation.
- 6. Depending on the function, certain products such as RF radio equipment can produce an elevated level of electromagnetic radiation. Considering that unborn life requires increased protection, pregnant women should be protected by appropriate measures. Persons with pacemakers may also be endangered by electromagnetic radiation. The employer is required to assess workplaces where there is a special risk of exposure to radiation and, if necessary, take measures to avert the danger.
- 7. Operating the products requires special training and intense concentration. Make certain that persons who use the products are physically, mentally and emotionally fit enough to handle operating the products; otherwise injuries or material damage may occur. It is the responsibility of the employer to select suitable personnel for operating the products.
- 8. Prior to switching on the product, it must be ensured that the nominal voltage setting on the product matches the nominal voltage of the AC supply network. If a different voltage is to be set, the power fuse of the product may have to be changed accordingly.
- In the case of products of safety class I with movable power cord and connector, operation is permitted only on sockets with earthing contact and protective earth connection.

- 10. Intentionally breaking the protective earth connection either in the feed line or in the product itself is not permitted. Doing so can result in the danger of an electric shock from the product. If extension cords or connector strips are implemented, they must be checked on a regular basis to ensure that they are safe to use.
- 11. If the product has no power switch for disconnection from the AC supply, the plug of the connecting cable is regarded as the disconnecting device. In such cases, it must be ensured that the power plug is easily reachable and accessible at all times (length of connecting cable approx. 2 m). Functional or electronic switches are not suitable for providing disconnection from the AC supply. If products without power switches are integrated in racks or systems, a disconnecting device must be provided at the system level.
- 12. Never use the product if the power cable is damaged. By taking appropriate safety measures and carefully laying the power cable, ensure that the cable cannot be damaged and that no one can be hurt by e.g. tripping over the cable or suffering an electric shock.
- 13. The product may be operated only from TN/TT supply networks fused with max. 16 A.
- 14. Do not insert the plug into sockets that are dusty or dirty. Insert the plug firmly and all the way into the socket. Otherwise this can result in sparks, fire and/or injuries.
- 15. Do not overload any sockets, extension cords or connector strips; doing so can cause fire or electric shocks.
- For measurements in circuits with voltages V_{rms} > 30 V, suitable measures (e.g. appropriate measuring equipment, fusing, current limiting, electrical separation, insulation) should be taken to avoid any hazards.
- 17. Ensure that the connections with information technology equipment comply with IEC 950/EN 60950.
- 18. Never remove the cover or part of the housing while you are operating the product. This will expose circuits and components and can lead to injuries, fire or damage to the product.

- 19. If a product is to be permanently installed, the connection between the PE terminal on site and the product's PE conductor must be made first before any other connection is made. The product may be installed and connected only by a skilled electrician.
- 20. For permanently installed equipment without built-in fuses, circuit breakers or similar protective devices, the supply circuit must be fused in such a way that suitable protection is provided for users and products.
- 21. Do not insert any objects into the openings in the housing that are not designed for this purpose. Never pour any liquids onto or into the housing. This can cause short circuits inside the product and/or electric shocks, fire or injuries.
- 22. Use suitable overvoltage protection to ensure that no overvoltage (such as that caused by a thunderstorm) can reach the product. Otherwise the operating personnel will be endangered by electric shocks.
- 23. Rohde & Schwarz products are not protected against penetration of water, unless otherwise specified (see also safety instruction 1.). If this is not taken into account, there exists the danger of electric shock or damage to the product, which can also lead to personal injury.
- 24. Never use the product under conditions in which condensation has formed or can form in or on the product, e.g. if the product was moved from a cold to a warm environment.
- 25. Do not close any slots or openings on the product, since they are necessary for ventilation and prevent the product from overheating. Do not place the product on soft surfaces such as sofas or rugs or inside a closed housing, unless this is well ventilated.
- 26. Do not place the product on heatgenerating devices such as radiators or fan heaters. The temperature of the environment must not exceed the maximum temperature specified in the data sheet.
- 27. Batteries and storage batteries must not be exposed to high temperatures or fire. Keep batteries and storage batteries away from children. If batteries or storage batteries are improperly replaced, this can cause an explosion (warning: lithium cells). Replace the battery or storage battery only with the

- matching Rohde & Schwarz type (see spare parts list). Batteries and storage batteries are hazardous waste. Dispose of them only in specially marked containers. Observe local regulations regarding waste disposal. Do not short-circuit batteries or storage batteries.
- 28. Please be aware that in the event of a fire, toxic substances (gases, liquids etc.) that may be hazardous to your health may escape from the product.
- 29. Please be aware of the weight of the product. Be careful when moving it; otherwise you may injure your back or other parts of your body.
- 30. Do not place the product on surfaces, vehicles, cabinets or tables that for reasons of weight or stability are unsuitable for this purpose. Always follow the manufacturer's installation instructions when installing the product and fastening it to objects or structures (e.g. walls and shelves).
- 31. Handles on the products are designed exclusively for personnel to hold or carry the product. It is therefore not permissible to use handles for fastening the product to or on means of transport such as cranes, fork lifts, wagons, etc. The user is responsible for securely fastening the products to or on the means of transport and for observing the safety regulations of the manufacturer of the means of transport. Noncompliance can result in personal injury or material damage.
- 32. If you use the product in a vehicle, it is the sole responsibility of the driver to drive the vehicle safely. Adequately secure the product in the vehicle to prevent injuries or other damage in the event of an accident. Never use the product in a moving vehicle if doing so could distract the driver of the vehicle. The driver is always responsible for the safety of the vehicle; the manufacturer assumes no responsibility for accidents or collisions.
- 33. If a laser product (e.g. a CD/DVD drive) is integrated in a Rohde & Schwarz product, do not use any other settings or functions than those described in the documentation. Otherwise this may be hazardous to your health, since the laser beam can cause irreversible damage to your eyes. Never try to take such products apart, and never look into the laser beam.

Por favor lea imprescindiblemente antes de la primera puesta en funcionamiento las siguientes informaciones de seguridad

Informaciones de seguridad

Es el principio de Rohde & Schwarz de tener a sus productos siempre al día con los estandards de seguridad y de ofrecer a sus clientes el máximo grado de seguridad. Nuestros productos y todos los equipos adicionales son siempre fabricados y examinados según las normas de seguridad vigentes. Nuestra sección de gestión de la seguridad de calidad controla constantemente que sean cumplidas estas normas. Este producto ha sido fabricado y examinado según el comprobante de conformidad adjunto según las normas de la CE y ha salido de nuestra planta en estado impecable según los estandards técnicos de seguridad. Para poder preservar este estado y garantizar un funcionamiento libre de peligros, deberá el usuario atenerse a todas las informaciones, informaciones de seguridad y notas de alerta. Rohde&Schwarz está siempre a su disposición en caso de que tengan preguntas referentes a estas informaciones de seguridad.

Además queda en la responsabilidad del usuario utilizar el producto en la forma debida. Este producto solamente fue elaborado para ser utilizado en la indústria y el laboratorio o para fines de campo y de ninguna manera deberá ser utilizado de modo que alguna persona/cosa pueda ser dañada. El uso del producto fuera de sus fines definidos o despreciando las informaciones de seguridad del fabricante queda en la responsabilidad del usuario. El fabricante no se hace en ninguna forma responsable de consecuencias a causa del maluso del producto.

Se parte del uso correcto del producto para los fines definidos si el producto es utilizado dentro de las instrucciones del correspondiente manual del uso y dentro del margen de rendimiento definido (ver hoja de datos, documentación, informaciones de seguridad que siguen). El uso de los productos hace necesarios conocimientos profundos y el conocimiento del idioma inglés. Por eso se deberá tener en cuenta de exclusivamente autorizar para el uso de los productos a personas péritas o debidamente minuciosamente instruidas con los conocimientos citados. Si fuera necesaria indumentaria de seguridad para el uso de productos de R&S, encontrará la información debida en la documentación del producto en el capítulo correspondiente.

Símbolos y definiciones de seguridad

<u>^</u>	18 kg	A					
Ver manual de instrucciones del uso	Informaciones para maquinaria con uns peso de > 18kg	Peligro de golpe de corriente	¡Advertencia! Superficie caliente	Conexión a conductor protector	Conexión a tierra	Conexión a masa conductora	¡Cuidado! Elementos de construción con peligro de carga electroestática

10	(l)	===	\sim	\sim	
potencia EN MARCHA/PARADA	Indicación Stand-by	Corriente continua DC	Corriente alterna AC	Corriente continua/alterna DC/AC	El aparato está protegido en su totalidad por un aislamiento de doble refuerzo

Tener en cuenta las informaciones de seguridad sirve para tratar de evitar daños y peligros de toda clase. Es necesario de que se lean las siguientes informaciones de seguridad concienzudamente y se tengan en cuenta debidamente antes de la puesta en funcionamiento del producto. También deberán ser tenidas en cuenta las informaciones para la protección de personas que encontrarán en otro capítulo de esta documentación y que también son obligatorias de seguir. En las informaciones de seguridad actuales hemos juntado todos los objetos vendidos por Rohde&Schwarz bajo la denominación de "producto", entre ellos también aparatos, instalaciones así como toda clase de accesorios.

Palabras de señal y su significado

PELIGRO Indica un punto de peligro con gran potencial de riesgo para el

ususario.Punto de peligro que puede llevar hasta la muerte o graves

heridas.

ADVERTENCIA Indica un punto de peligro con un protencial de riesgo mediano para el

usuario. Punto de peligro que puede llevar hasta la muerte o graves

heridas .

ATENCIÓN Indica un punto de peligro con un protencial de riesgo pequeño para el

usuario. Punto de peligro que puede llevar hasta heridas leves o

pequeñas

CUIDADO Indica la posibilidad de utilizar mal el producto y a consecuencia

dañarlo.

INFORMACIÓN Indica una situación en la que deberían seguirse las instrucciones en el

uso del producto, pero que no consecuentemente deben de llevar a un

daño del mismo.

Las palabras de señal corresponden a la definición habitual para aplicaciones civiles en el ámbito de la comunidad económica europea. Pueden existir definiciones diferentes a esta definición. Por eso se debera tener en cuenta que las palabras de señal aquí descritas sean utilizadas siempre solamente en combinación con la correspondiente documentación y solamente en combinación con el producto correspondiente. La utilización de las palabras de señal en combinación con productos o documentaciones que no les correspondan puede llevar a malinterpretaciones y tener por consecuencia daños en personas u objetos.

Informaciones de seguridad elementales

- El producto solamente debe ser utilizado según lo indicado por el fabricante referente a la situación y posición de funcionamiento sin que se obstruya la ventilación. Si no se convino de otra manera, es para los productos R&S válido lo que sigue: como posición de funcionamiento se define principialmente la posición con el suelo de la caja para abajo , modo de protección IP 2X, grado de suciedad 2, categoría de sobrecarga eléctrica 2, utilizar solamente en estancias interiores, utilización hasta 2000 m sobre el nivel del mar.
 - A menos que se especifique otra cosa en la hoja de datos, se aplicará una tolerancia de ±10% sobre el voltaje nominal y de ±5% sobre la frecuencia nominal.
- 2. En todos los trabajos deberán ser tenidas en cuenta las normas locales de seguridad de trabajo y de prevención de accidentes. El producto solamente debe de ser abierto por personal périto autorizado. Antes de efectuar trabajos en el producto o abrirlo deberá este ser desconectado de la corriente. El ajuste. el cambio de partes, la manutención y la reparación deberán ser solamente efectuadas por electricistas autorizados por R&S. Si se reponen partes con importancia para los aspectos de seguridad (por ejemplo el enchufe. los transformadores o los fusibles), solamente podrán ser sustituidos por partes originales. Despues de cada recambio de partes elementales para la seguridad deberá ser efectuado un control de

- seguridad (control a primera vista, control de conductor protector, medición de resistencia de aislamiento, medición de medición de la corriente conductora, control de funcionamiento).
- 3. Como en todo producto de fabricación industrial no puede ser excluido en general de que se produzcan al usarlo elementos que puedan generar alergias, los llamados elementos alergénicos (por ejemplo el níquel). Si se producieran en el trato con productos R&S reacciones alérgicas, como por ejemplo urticaria, estornudos frecuentes, irritación de la conjuntiva o dificultades al respirar, se deberá consultar inmediatamente a un médico para averigurar los motivos de estas reacciones.
- 4. Si productos / elementos de construcción son tratados fuera del funcionamiento definido de forma mecánica o térmica, pueden generarse elementos peligrosos (polvos de sustancia de metales pesados como por ejemplo plomo, berilio, níquel). La partición elemental del producto, como por ejemplo sucede en el tratamiento de materias residuales, debe de ser efectuada solamente por personal especializado para estos tratamientos. La partición elemental efectuada inadecuadamente puede generar daños para la salud. Se deben tener en cuenta las directivas nacionales referentes al tratamiento de materias residuales.
- 5. En el caso de que se produjeran agentes de peligro o combustibles en la aplicación del producto que debieran de ser transferidos a un tratamiento de materias residuales, como por ejemplo agentes refrigerantes que deben ser repuestos en periodos definidos, o aceites para motores, deberan ser tenidas en cuenta las prescripciones de seguridad del fabricante de estos agentes de peligro o combustibles y las regulaciones regionales para el tratamiento de materias residuales. Cuiden también de tener en cuenta en caso dado las prescripciones de seguridad especiales en la descripción del producto.
- 6. Ciertos productos, como por ejemplo las instalaciones de radiación HF, pueden a causa de su función natural, emitir una radiación electromagnética aumentada. En vista a la protección de la vida en desarrollo deberían ser protegidas personas embarazadas debidamente. También las personas con un bypass pueden correr

- peligro a causa de la radiación electromagnética. El empresario está comprometido a valorar y señalar areas de trabajo en las que se corra un riesgo de exposición a radiaciones aumentadas de riesgo aumentado para evitar riesgos.
- 7. La utilización de los productos requiere instrucciones especiales y una alta concentración en el manejo. Debe de ponerse por seguro de que las personas que manejen los productos estén a la altura de los requerimientos necesarios referente a sus aptitudes físicas, psíquicas y emocionales, ya que de otra manera no se pueden excluir lesiones o daños de objetos. El empresario lleva la responsabilidad de seleccionar el personal usuario apto para el manejo de los productos.
- 8. Antes de la puesta en marcha del producto se deberá tener por seguro de que la tensión preseleccionada en el producto equivalga a la del la red de distribución. Si es necesario cambiar la preselección de la tensión también se deberán en caso dabo cambiar los fusibles correspondientes del prodcuto.
- Productos de la clase de seguridad I con alimentación móvil y enchufe individual de producto solamente deberán ser conectados para el funcionamiento a tomas de corriente de contacto de seguridad y con conductor protector conectado.
- 10. Queda prohibida toda clase de interrupción intencionada del conductor protector, tanto en la toma de corriente como en el mismo producto ya que puede tener como consecuencia el peligro de golpe de corriente por el producto. Si se utilizaran cables o enchufes de extensión se deberá poner al seguro, que es controlado su estado técnico de seguridad.
- 11. Si el producto no está equipado con un interruptor para desconectarlo de la red, se deberá considerar el enchufe del cable de distribución como interruptor. En estos casos deberá asegurar de que el enchufe sea de fácil acceso y nabejo (medida del cable de distribución aproximadamente 2 m). Los interruptores de función o electrónicos no son aptos para el corte de la red eléctrica. Si los productos sin interruptor están integrados en construciones o instalaciones, se deberá instalar el interruptor al nivel de la instalación.

- 12. No utilice nunca el producto si está dañado el cable eléctrico. Asegure a través de las medidas de protección y de instalación adecuadas de que el cable de eléctrico no pueda ser dañado o de que nadie pueda ser dañado por él, por ejemplo al tropezar o por un golpe de corriente.
- 13. Solamente está permitido el funcionamiento en redes de distribución TN/TT aseguradas con fusibles de como máximo 16 A.
- 14. Nunca conecte el enchufe en tomas de corriente sucias o llenas de polvo. Introduzca el enchufe por completo y fuertemente en la toma de corriente. Si no tiene en consideración estas indicaciones se arriesga a que se originen chispas, fuego y/o heridas.
- 15. No sobrecargue las tomas de corriente, los cables de extensión o los enchufes de extensión ya que esto pudiera causar fuego o golpes de corriente.
- 16. En las mediciones en circuitos de corriente con una tensión de entrada de Ueff > 30 V se deberá tomar las precauciones debidas para impedir cualquier peligro (por ejemplo medios de medición adecuados, seguros, limitación de tensión, corte protector, aislamiento etc.).
- En caso de conexión con aparatos de la técnica informática se deberá tener en cuenta que estos cumplan los requisitos de la EC950/EN60950.
- 18. Nunca abra la tapa o parte de ella si el producto está en funcionamiento. Esto pone a descubierto los cables y componentes eléctricos y puede causar heridas, fuego o daños en el producto.
- 19. Si un producto es instalado fijamente en un lugar, se deberá primero conectar el conductor protector fijo con el conductor protector del aparato antes de hacer cualquier otra conexión. La instalación y la conexión deberán ser efecutadas por un electricista especializado.

- 20. En caso de que los productos que son instalados fijamente en un lugar sean sin protector implementado, autointerruptor o similares objetos de protección, deberá la toma de corriente estar protegida de manera que los productos o los usuarios estén suficientemente protegidos.
- 21. Por favor, no introduzca ningún objeto que no esté destinado a ello en los orificios de la caja del aparato. No vierta nunca ninguna clase de líquidos sobre o en la caja. Esto puede producir corto circuitos en el producto y/o puede causar golpes de corriente, fuego o heridas.
- 22. Asegúrese con la protección adecuada de que no pueda originarse en el producto una sobrecarga por ejemplo a causa de una tormenta. Si no se verá el personal que lo utilice expuesto al peligro de un golpe de corriente.
- 23. Los productos R&S no están protegidos contra el agua si no es que exista otra indicación, ver también punto 1. Si no se tiene en cuenta esto se arriesga el peligro de golpe de corriente o de daños en el producto lo cual también puede llevar al peligro de personas.
- 24. No utilice el producto bajo condiciones en las que pueda producirse y se hayan producido líquidos de condensación en o dentro del producto como por ejemplo cuando se desplaza el producto de un lugar frío a un lugar caliente.
- 25. Por favor no cierre ninguna ranura u orificio del producto, ya que estas son necesarias para la ventilación e impiden que el producto se caliente demasiado. No pongan el producto encima de materiales blandos como por ejemplo sofás o alfombras o dentro de una caja cerrada, si esta no está suficientemente ventilada.
- 26. No ponga el producto sobre aparatos que produzcan calor, como por ejemplo radiadores o calentadores. La temperatura ambiental no debe superar la temperatura máxima especificada en la hoja de datos.

- 27. Baterías y acumuladores no deben de ser expuestos a temperaturas altas o al fuego. Guardar baterías v acumuladores fuera del alcance de los niños. Si las baterías o los acumuladores no son cambiados con la debida atención existirá peligro de explosión (atención celulas de Litio). Cambiar las baterías o los acumuladores solamente por los del tipo R&S correspondiente (ver lista de piezas de recambio). Baterías y acumuladores son deshechos problemáticos. Por favor tirenlos en los recipientes especiales para este fín. Por favor tengan en cuenta las prescripciones nacionales de cada país referente al tratamiento de deshechos. Nunca sometan las baterías o acumuladores a un corto circuito.
- 28. Tengan en consideración de que en caso de un incendio pueden escaparse gases tóxicos del producto, que pueden causar daños a la salud.
- 29. Por favor tengan en cuenta que en caso de un incendio pueden desprenderse del producto agentes venenosos (gases, líquidos etc.) que pueden generar daños a la salud.
- 30. No sitúe el producto encima de superficies, vehículos, estantes o mesas, que por sus características de peso o de estabilidad no sean aptas para él. Siga siempre las instrucciones de instalación del fabricante cuando instale y asegure el producto en objetos o estructuras (por ejemplo paredes y estantes).

- 31. Las asas instaladas en los productos sirven solamente de ayuda para el manejo que solamente está previsto para personas. Por eso no está permitido utilizar las asas para la sujecion en o sobre medios de transporte como por ejemplo grúas, carretillas elevadoras de horquilla, carros etc. El usuario es responsable de que los productos sean sujetados de forma segura a los medios de transporte y de que las prescripciones de seguridad del fabricante de los medios de transporte sean tenidas en cuenta. En caso de que no se tengan en cuenta pueden causarse daños en personas y objetos.
- 32. Si llega a utilizar el producto dentro de un vehículo, queda en la responsabilidad absoluta del conductor que conducir el vehículo de manera segura. Asegure el producto dentro del vehículo debidamente para evitar en caso de un accidente las lesiones u otra clase de daños. No utilice nunca el producto dentro de un vehículo en movimiento si esto pudiera distraer al conductor. Siempre queda en la responsabilidad absoluta del conductor la seguridad del vehículo y el fabricante no asumirá ninguna clase de responsabilidad por accidentes o colisiones.
- 33. Dado el caso de que esté integrado un producto de laser en un producto R&S (por ejemplo CD/DVD-ROM) no utilice otras instalaciones o funciones que las descritas en la documentación. De otra manera pondrá en peligro su salud, ya que el rayo laser puede dañar irreversiblemente sus ojos. Nunca trate de descomponer estos productos. Nunca mire dentro del rayo laser.

1171.0000.42-02.00 página 5

Certificate No.: 2000-05, page 1

This is to certify that:

quipment type	Stock No.	Designation
VC VCE	127.8600.60/.61/.62 127.8600.50/.51/.52	Vector Network Analyzer
VK	127.8651.60	
VM	127.8500.60	
VR	127.8551.61/.62	
VRE	127.8551.51/.52/.55	
VRL	127.8551.41	
VM VR VRE	127.8500.60 127.8551.61/.62 127.8551.51/.52/.55	

complies with the provisions of the Directive of the Council of the European Union on the approximation of the laws of the Member States

- relating to electrical equipment for use within defined voltage limits (73/23/EEC revised by 93/68/EEC)
- relating to electromagnetic compatibility (89/336/EEC revised by 91/263/EEC, 92/31/EEC, 93/68/EEC)

Conformity is proven by compliance with the following standards:

EN61010-1: 1993 + A2: 1995

EN55011: 1998 + A1: 1999, Klasse B

EN61000-3-2: 1995 + A1: 1998 + A2: 1998 + A14: 2000

EN61000-3-3: 1995 EN50082-2: 1995

Affixing the EC conformity mark as from 2000

ROHDE & SCHWARZ GmbH & Co. KG Mühldorfstr. 15, D-81671 München

Munich, 2001-01-30 Central Quality Management FS-QZ / Becker

Certificate No.: 2000-05, page 2

This is to certify that:

Equipment type	Stock No.	Designation
ZVK-B21	1128.1409.11	Attenuator for Generator Port 1
ZVK-B22	1128.1409.21	Attenuator for Generator Port 2
ZVK-B23	1128.1409.12	Attenuator for Receiver Port 1
ZVK-B24	1128.1409.22	Attenuator for Receiver Port 2
ZVM-B21	1128.1009.11	Attenuator for Generator Port 1
ZVM-B22	1128.1009.21	Attenuator for Generator Port 2
ZVM-B23	1128.1009.12	Attenuator for Receiver Port 1
ZVM-B24	1128.1009.22	Attenuator for Receiver Port 2
ZVR-B1	1044.0625.02	Autokal, Automatic Calibration System
ZVR-B2	1044.1009.02	Time Domain
ZVR-B8	1086.0000.02	3-Port Adapter
ZVR-B10	1106.6495.xx	Increased Output Power at Port 1
ZVR-B14	1106.7510.02/.03	4-Port Adapter
ZVR-B21	1044.0025.11	Attenuator for Generator Port 1
ZVR-B22	1044.0025.21	Attenuator for Generator Port 2
ZVR-B23	1044.0025.12/.31	Attenuator for Receiver Port 1
ZVR-B24	1044.0025.22/.42	Attenuator for Receiver Port 2
ZVR-B26	1106.8600.07	Extra Inputs 4 Port
FSE-B16	1073.5973.02/.03	Ethernet Interface
FSE-B17	1066.4017.02	Second IEC BUS Interface

complies with the provisions of the Directive of the Council of the European Union on the approximation of the laws of the Member States

- relating to electrical equipment for use within defined voltage limits (73/23/EEC revised by 93/68/EEC)
- relating to electromagnetic compatibility (89/336/EEC revised by 91/263/EEC, 92/31/EEC, 93/68/EEC)

Conformity is proven by compliance with the following standards:

EN61010-1:1993 + A2:1995

EN55011: 1998 + A1: 1999, Klasse B

EN61000-3-2: 1995 + A1: 1998 + A2: 1998 + A14: 2000

EN61000-3-3 : 1995 EN50082-2 : 1995

Affixing the EC conformity mark as from 2000

ROHDE & SCHWARZ GmbH & Co. KG Mühldorfstr. 15, D-81671 München

Munich, 2001-01-30 Central Quality Management FS-QZ / Becker

1127.8600.01-2- CE E-2

ZVx Front View

1 Preparation for Use

1.1 Introduction

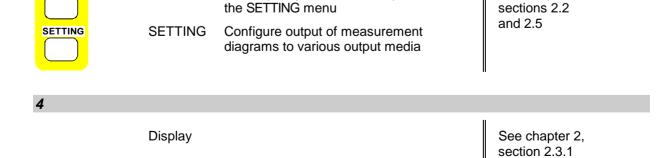
The following chapter describes the position of the controls and sockets of a network analyzer of the ZVR family via the views of the front and rear panels. It shows step by step how the instrument is started and set up. The chapter also describes how a mouse, an external keyboard and a printer can be connected.

1.2 Legend for Front and Rear View

Printer and plotter setup

COPY

1.2.1 Front View ZVR, ZVK and ZVM


1.2.1.1 Front View ZVR

1			
	3 1/2" flopp	y disk drive	
2 SYSTEM			
MODE SETUP INFO	Initial instru MODE SETUP INFO	Select operating mode Define default settings and interface configurations Information on version number of hardware and firmware, installed options and recorded system messages	See chapter 2, section 2.2 and section 2.4
0.000			

3 COPY

COPY

COPY

Start a print job with the setup defined in

See chapter 2,

Front View ZVx

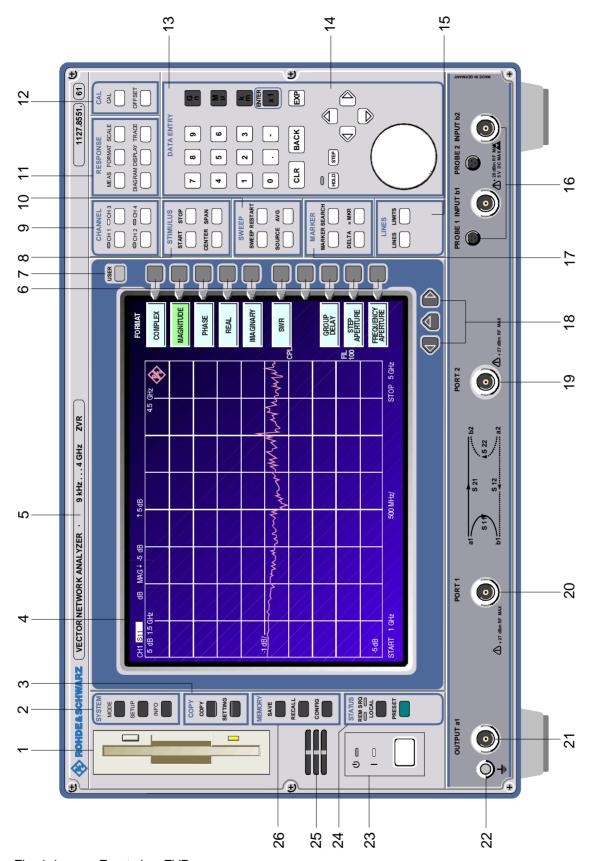


Fig. 1-1 Front view ZVR

ZVx Front View

5 Designation, frequency range and Order No. Of device: e. g. ZVR 9 kHz ... 4 GHz 1127.8551.61 6 Softkeys See chapter 2, sections 2.3.1.2 and 2.3.4 **USER** See chapter 2, Writing keyboard macros USER section 2.8 **STIMULUS** STIMULUS Setting the sweep limits See chapter 2, section 2.9 START STOP **START** start frequency **STOP** stop frequency CENTER SPAN CENTER center frequency **SPAN** sweep width **CHANNEL** CHANNEL Selecting the active display channel which is indicated See chapter 2, by the corresponding LED. section 2.13 CH1 CH3 LEDs signal the selected channels. CH 2 CH 4 **SWEEP** SWEEP See chapter 2, Entry of sweep parameters sections 2.2 SWEEP RESTART **SWEEP** Define sweep settings and 2.10 RESTART Start a new sweep SOURCE AVG SOURCE Set fixed parameters AVG Set receiver bandwidth for the

measurement and select averaging mode

Front View ZVx

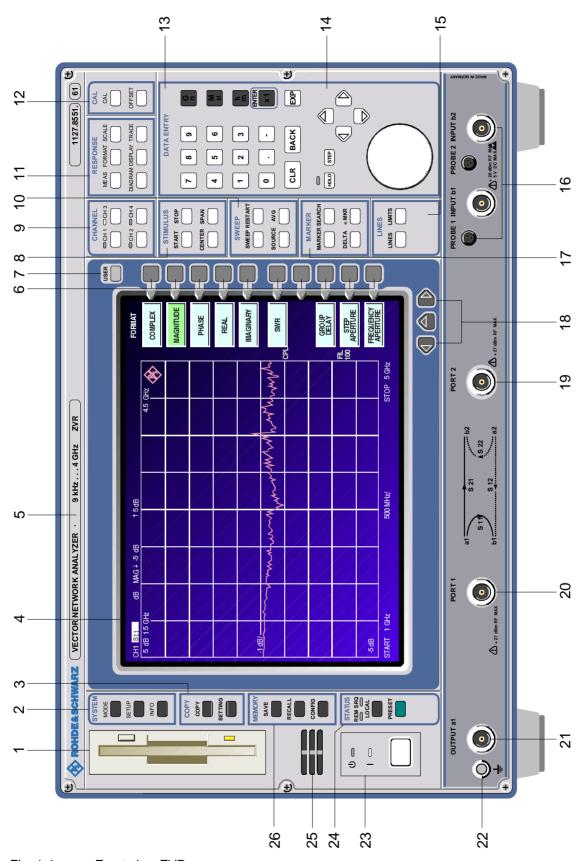
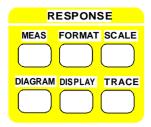



Fig. 1-1 Front view ZVR

ZVx Front View

11 RESPONSE

Configuration of result display

MEAS Select measurement unit FORMAT Format measurement unit

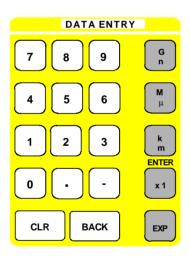
SCALE Select scale of measurement diagram

DIAGRAM Select the result diagram
DISPLAY Configure the display

TRACE Measure using the trace display

See chapter 2, sections 2.2 and 2.14

12 CAL


Correction of system errors

CAL Calibrate

OFFSET Enter offset values

See chapter 2, sections 2.2 and 2.15

13 DATA ENTRY

Keypad for entering data

0 to 9 Enter numerals

Enter decimal point

Change sign

CLR - Close entry field (if no entry was made or the entry was not completed,

the original setting is retained)

- Clear a new (started) entry

 Close the message window (with status and error messages or

warnings)

BACK Clear the last character entered

The units prefix key closes the entry and define the multiplication factor for

 $\begin{array}{ll} \textbf{M} & \text{the basic unit. For dimensionless or} \\ \mu & \text{alphanumeric entries the units prefix} \\ \end{array}$

k keys have the validity 1 and assume the function of the ENTER key. G/n switches over between different table

levels (sub-tables)
Append an exponent

EXP

x 1

See chapter 2, section 2.3.6

Front View ZVx

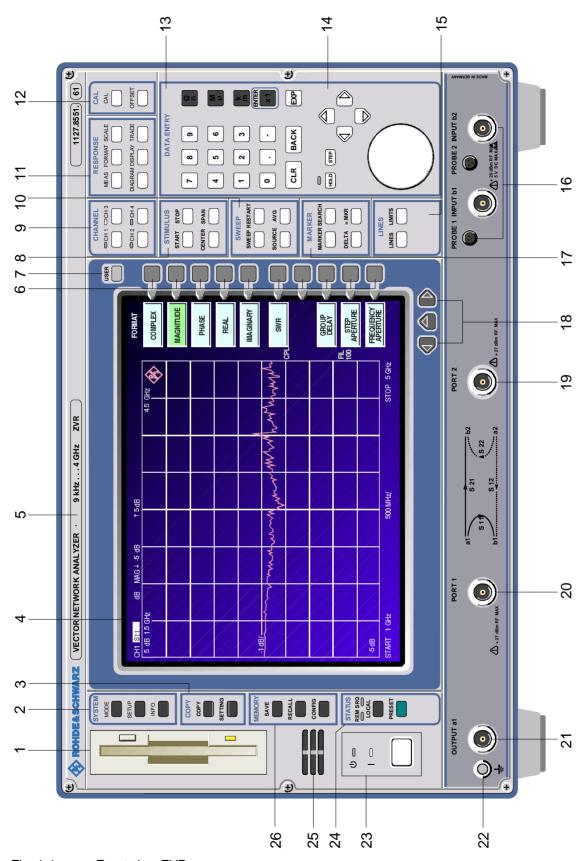
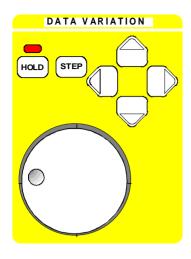



Fig. 1-1 Front view ZVR

ZVx Front View

14 DATA VARIATION

Keys for varying data and cursor movement

HOLD Disable control elements or overall

instrument control.

LED signals the hold condition.

STEP Set step size for the cursor keys or

rollkey.

Cursor keys - Move cursor within the entry fields

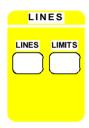
and tables

Vary entered value

- Define the direction of movement for

the rollkey

Rollkey – Vary entered value

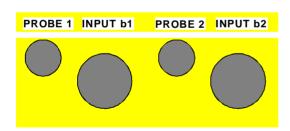

- Move markers and limits

Select characters in the help line editor

Move cursors in the tables

See chapter 2, section 2.3.6, 2.3.7, 2.3.8

15 LINES



Setting evaluation lines and tolerance limits

LINES Evaluation lines
LIMITS Tolerance limits

See chapter 2, sections 2.2 and 2.12

16

Additional receiver input (N-sockets INPUT b1 and INPUT b2)

Probes supply connectors PROBE 1 and PROBE 2

available with option ZVR-B25, "External measurements" See chapter 2.4.1.2 (External Measurements) and Appendix A Front View ZVx

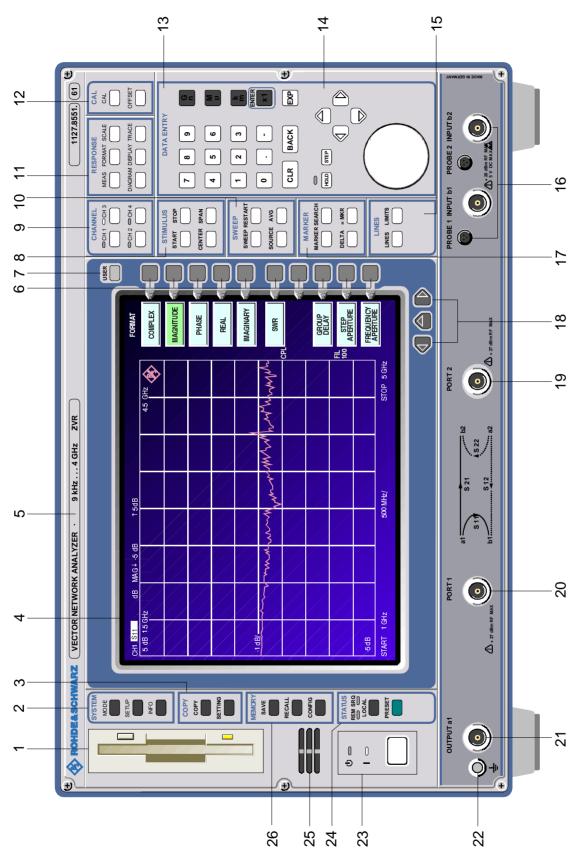


Fig. 1-1 Front view ZVR

ZVx Front View

17 MARKER

Selecting and setting markers

MARKER Select and set main markers

SEARCH Marker search functions

DELTA Select and set the delta markers

= MKR Take over the active marker position for

sweep setting or scaling

See chapter 2, sections 2.2 and 2.11

18

Menu change keys

Call main menu

Change to left menu

Change to right menu

See chapter 2, section 2.3.5

19 **PORT2**

PORT 2

Measurement port 2

See sections 2.14.1, section 2.15.2

20 PORT1

PORT 1

Measurement port 1

See sections 2.14.1, section 2.15.2

21 OUTPUT a1

OUTPUT a1

Additional generator output (N-socket) , available with option ZVR-B25, "External measurements"

See section 2.4.1.2, 2.14.1

22

Ground connector.

Front View ZVx

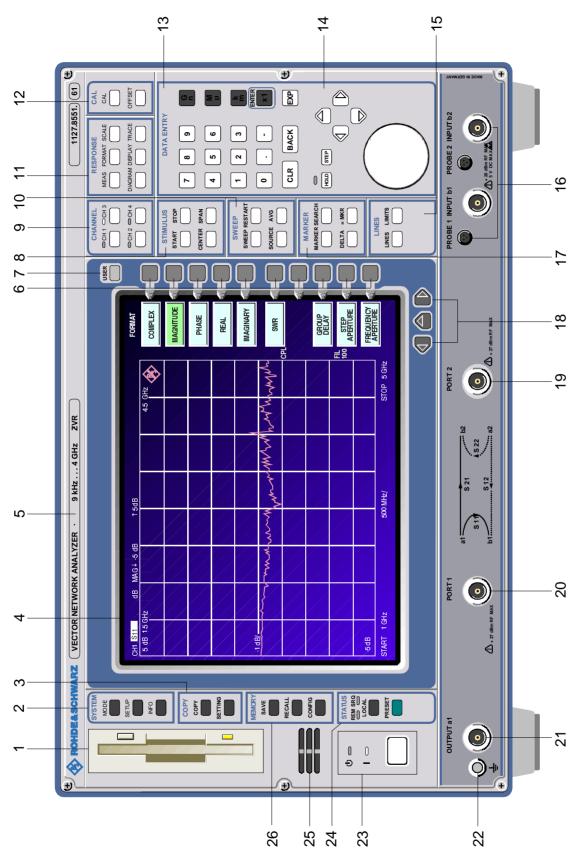
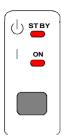



Fig. 1-1 Front view ZVR

ZVx Front View

23

ON/STANDBY

LED STBY

Switch

Indicates that the instrument is in the standby mode

Warning:

In the standby mode the instrument is connected to the AC supply.

LED ON

Indicates that the instrument is powered.

See chapter 1, section 1.3.5

24 STATUS

Keys for remote/manual control

LOCAL Switch from remote to manual control

The SRQ LED signals that the instrument sends a service request on IEC/IEEE bus. The REM LED signals that the instrument

is remote-controlled.

PRESET Reset default setup

See chapter 2, section 2.7 and chapter 3, section 3.3

25

Internal loudspeaker

26 MEMORY

Storage and loading device settings, data management

SAVE Store device settings RECALL Load device settings

CONFIG Management of data on floppy and hard

disk

See chapter 2, sections 2.2 and 2.6

1043.0009.50 1.11 E-9

Front View ZVx

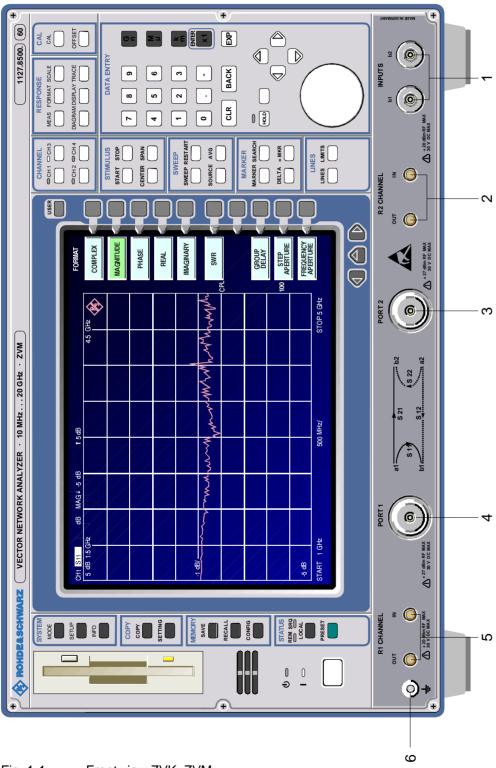


Fig. 1-1 Front view ZVK, ZVM

ZVx Front View

1.2.1.2 Front View ZVK, ZVM

The control elements correspond to those of ZVR with the exception of the connectors. For this reason, only the connectors of ZVK and ZVM are described.

1 INPUTS

o1 b2

Additional receiver inputs (N-sockets b1 and b2)

See chapter 2.4.1.2 Ext. Measurements and Appendix A

2 R2 CHANNEL

OUT IN

Accessibility to the reference channel of measurement port 2.

3 PORT 2

PORT 2

Measurement port 2

See chapter 2.14.1 and 2.15.2

4 PORT 1

PORT 1

Measurement port 1

See chapter 2.14.1 and 2.15.2

5 R1 CHANNEL

OUT IN

Accessibility to the reference channel of measurement port 1.

Ground connector.

Rear View ZVx

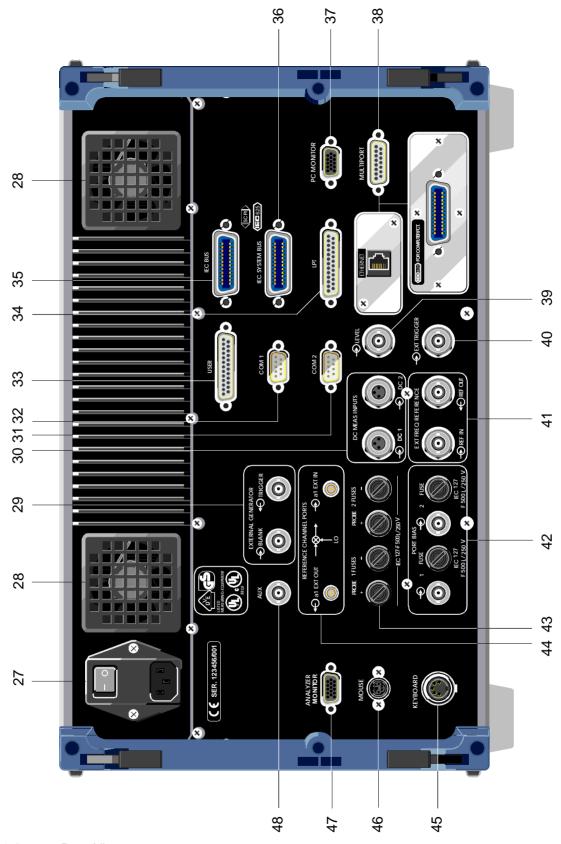


Fig. 1-2 Rear View

ZVx Rear View

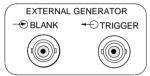
1.2.2 Rear View ZVR, ZVK and ZVM

27

Power switch

Fuse holder

AC supply connector


See chapter 1, sections 1.3.4 and 1.3.5

28

Power supply fans

See chapter 1, section 1.3.2.1

29 EXTERNAL GENERATOR

Connectors for external generator control

BLANK (input)
TRIGGER (output)

See Appendix A

30 DC MEAS INPUTS

Inputs for DC-voltage measurement

31 COM2

Serial interface 2 (9-contact, female; COM2)

See chapter 1, section 1.6 and Appendix A

32 COM1

Serial interface 1 (9-contact, female; COM1)

See chapter 1, section 1.6 and Appendix A

33 USER

User interface with configurable inputs and outputs

See Appendix A

Rear View ZVx

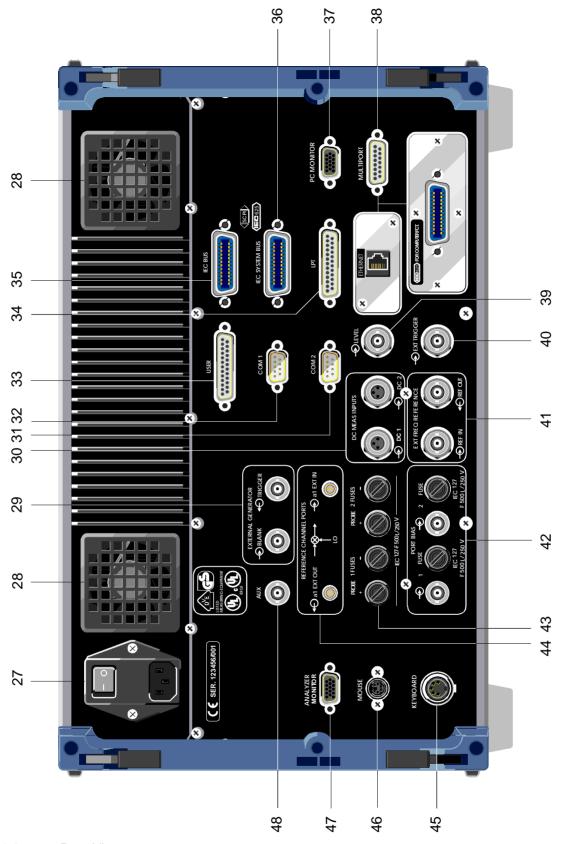
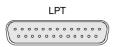
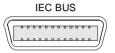



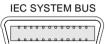
Fig. 1-2 Rear View

ZVx Rear View


34 LPT

Parallel interface (printer interface, Centronics-compatible)

See chapter 1, section 1.6 and Appendix A


35 IEC1

IEC/IEEE-bus connector 1

See chapter 1, section 1.6 and Appendix A

36 IEC2

IEC/IEEE-bus connector 2

See chapter 1, section 1.6 and Appendix A

37 PC MONITOR

Connector for external VGA monitor

See Appendix A

38

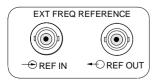
Inputs or outputs for options, e.g. ethernet and multiport adapter (or cover plates for retrofitting digital interfaces)

See chapter 1.7

39 LEVEL

Input for external level control

See Appendix A


40 EXT TRIGGER

Input for external trigger

See chapter 2, section 2.10.1.4 and Appendix A

41 EXT FREQ REFERENCE

REF IN: Input for external

reference (1 to 16 MHz)

REF OUT: 10-MHz output

See chapter 2.4.2.2 and Appendix A

1043.0009.50 1.17 E-9

Rear View ZVx

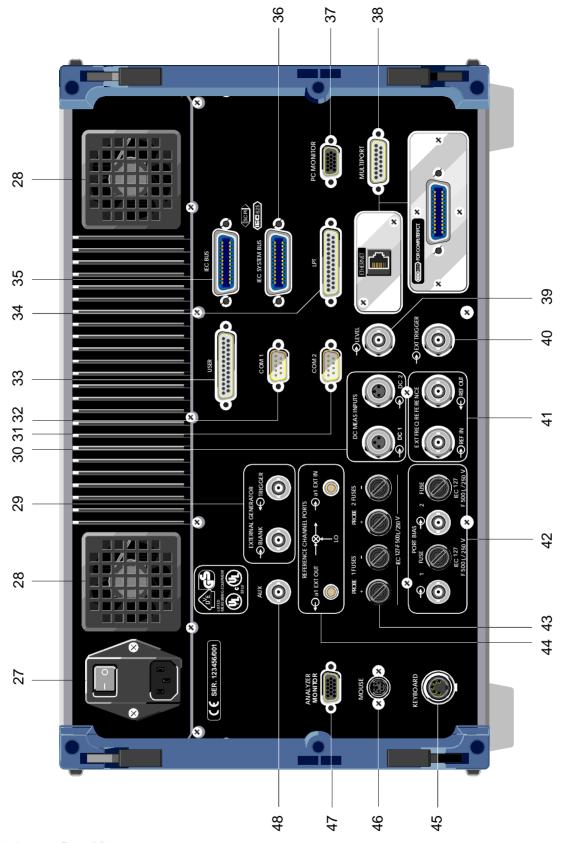
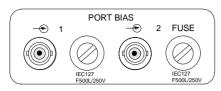
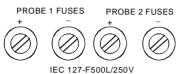



Fig. 1-2 Rear View

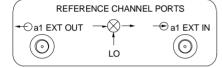
ZVx Rear View


42

Power supply fuses for high-impedance probes 1 and 2 (supply outputs at the front)

See Append. A

43



(not for ZVK and ZVM)

DC input for active probes connected to port 1 and 2 and associated fuses (with the use of an active test set)

See Append. A

44 EXTERNAL REF MIXER

Connectors for external mixer

a1 EXT OUT: RF output signal to ext.

Ref. mixer

LO: Must be externally

provided

a1 EXT IN: IF input signal from

ext. Ref. mixer

See chapter 2.4.1.6 and Appendix A

45 KEYBOARD

Connector for external keyboard

See chapter 1, section 1.5 and Appendix A

46 MOUSE

Connector for mouse

See chapter 1, section 1.4 and Appendix A

47 ANALYZER MONITOR

Connector for external monitor

See Append. A

48 AUX

For future extensions

Start-Up ZVx

1.3 Start-Up

Important Note:

Before turning the instrument on, it must be observed that the following conditions are fulfilled:

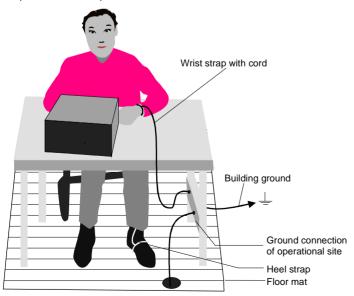
- instrument covers are in place and all fasteners are tightened,
- fan openings are free from obstructions,
- signal levels at the input connectors are all within specified maximums,
- signal outputs are correctly connected and not overloaded.

Non-observance may cause damage to the instrument .

1.3.1 Unpacking the Instrument

After the instrument has been removed from its packaging, please insure that all deliverable items are present as follows:

- Vector network analyzer (ZVR, ZVRE, ZVRL, ZVC, ZVCE, ZVM or ZVK)
- · AC power cable, keyboard, mouse
- · Operating manual


Now check the instrument for visible mechanical damage. If damage is present, promptly inform the delivery firm that delivered the instrument. In case damage is found, retain the carton and the packing materials.

Equipment returned or sent in for repair must be packed in the original packing or in packing with electrostatic protection.

1.3.2 Instrument Setup

1.3.2.1 Stand-alone Operation

The network analyzer is designed for use under general laboratory conditions. The ambient conditions required at the operational site are as follows:

- The ambient temperature must be in the range of + 5 ... + 45 °C.
- All fan openings must be unobstructed and the air flow at the rear panel and at the side-panel perforations must not be obstructed. The distance to the wall should be at least 10 cm.
- The mounting surface should be flat.
- To avoid damage of electronic components of the DUT and the analyzer, the operational site must be protected against electrostatic discharge.

ZVx Start-Up

1.3.2.2 19" Rack Installation

Important Note:

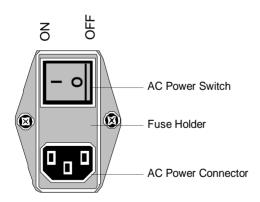
For rack installation, insure that the air flow at the side-panel perforations and the air exhaust at the rear panel is not obstructed.

The instrument may be mounted in a 19" rack by using the rack adapter kit ZZA-95 (order number: 396.4911.00). The installation instructions are included in the adapter kit.

1.3.3 EMI Protection Measures

In order to prevent electromagnetic interference (EMI), the instrument may be operated only when all covers are correctly in place. Only adequately shielded signal and control cables may be used (see recommended accessories).

1.3.4 Connecting to AC Power


The network analyzer is equipped with an AC voltage selection feature and will automatically set itself according to the applied AC voltage (range: 90 V to 132 V(AC) and 180 V to 265 V(AC), 47 Hz to 440 Hz). The AC power connector is located on the rear panel (see below).

Connect the network analyzer to the AC power source using the AC power cable delivered with the instrument.

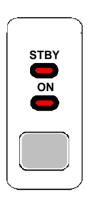
1.3.5 AC Power Line Fuses

The network analyzer is protected by two fuses as specified on the power supply name-plate. The fuses are located in a removable fuse holder which is located between the AC power switch and the AC power connector (see below).

AC power switch on the rear panel

Power On/Off

Depress the AC Power Switch to the desired position ON/OFF.


After turn-on (position *ON*), the instrument is in the ready state *(STANDBY)* or in operation dependent upon the position of the *ON/STANDBY* switch located on the instrument front panel (see below).

Note: The AC power switch may remain ON continuously. Switching to OFF is only required when the instrument must be completely removed from the AC power source.

Switching to OFF (position OFF) removes all instrument circuitry from the AC power source.

Start-Up ZVx

ON/STANDBY switch on the front panel

Caution:

In standby mode, the AC power voltage is present within the instrument.

Standby

> ON/STANDBY switch is not depressed.

The yellow LED (STANDBY) is illuminated. The DC power supply is supplied with power.

Operation

> ON/STANDBY is depressed.

The green LED (ON) is illuminated. The instrument is ready for operation. All modules within the instrument are supplied with power.

1.3.6 Battery-Powered Memory

The network analyzer is equipped with a battery-powered read/write memory (CMOS-RAM) where instrument settings are saved at power-off. After each power-on, the network analyzer is reloaded with the operational parameters which were active just prior to the last power-off (STANDBY or AC power OFF).

A lithium battery is used to supply power to the CMOS-RAM. When the battery is depleted (expected life is approx. 5 years), any data stored in CMOS-RAM will be lost. In this case, the factory standard setup is loaded at turn-on. Changing batteries requires opening of the instrument and is described in the service manual.

1.4 Controller Function

Caution:

- The drivers used in the integrated controller function are adapted to the measuring instrument. Only the settings described below should be resorted to. The existing driver software should be modified only with the update software released by Rohde&Schwarz.
- Do not power down during booting. Such a switch-off may lead to corruption of the hard disk files.

The instrument possesses an integrated Windows-NT controller. The user can switch between the measurement screen and the controller screen. When an external monitor is connected, the measurement function and the controller function can be displayed simultaneously (see section "Connecting an External Monitor"). The controller function is automatically booted on instrument power-up.

Windows NT operation is described in the supplied manual or in the online help of Windows NT.

Login

Windows NT requires a login window in which the user is asked to identify himself by entering his name and password. An autologin comes as standard in the instrument, ie the login is performed automatically in the background. The user name used for this is "instrument" and the password is also "instrument" (in small letters).

To login under another name, call up the logout window in the task bar with START - SHUT DOWN. Mark the item "Close all programs and log on as a different user?" in the window and click YES while holding the SHIFT key down until the login window is displayed to enter the user identification. The password should be entered in the correct syntax including low-case and upper-case characters.

Administrator identification

Some of the installations (eg CD-ROM drive) described below are possible only under the administrator login. This is indicated in the relevant window.

The administrator is an identification prescribed by Windows NT which in particular allows system settings which are disabled for the standard user.

The password for the administrator is 894129 for the instrument.

After an installation under the administrator identification, the "Service Pack X" of Windows NT is to be re-installed, see section "Installation of Windows NT Software".

On the power-up following an installation under the administrator identification, the NT login window is displayed (no autologin). The user name "Administrator" is indicated in the window. This entry is to be replaced by "instrument" and then "instrument" as password entered. An autologin is then possible.

Changeover between measurement screen and controller screen

To call up the controller screen use key combination <ALT><SYSREQ> (US keyboard).

To return to the measurement screen, activate the window "Rohde & Schwarz ZVR NT Interface" on the controller.

Logout

The instrument can be switched off (standby mode). Logging out of Windows NT is not necessary.

1043.0009.50 1.23 E-9

Controller Function ZVx

Additional Software

The following program packages were successfully tested for their compliance with the measuring instruments software:

- > ZVR-K9 software for virtual transformation networks
- > FileShredder for secure deletion of files from hard disk
- > Symantec Norton AntiVirus virus protection software

1043.0009.50 1.24 E-9

1.5 Connecting a Mouse

Caution:

The mouse may only be connected when the instrument is switched off (STANDBY). Otherwise, correct operation of the mouse and instrument cannot be guaranteed.

The instrument has the facility to simplify operation by connecting a mouse to the rear-panel PS/2-mouse connector (MOUSE) for .

MOUSE

During measurement operation, softkeys, tables and data input fields may also be controlled via the mouse. For computer function, the mouse has the usual functions.

The control functions for the mouse during measurement operation are described in Chapter 2 in the section "Mouse Operations". Appendix E contains a list in which the screen display elements for mouse control of the corresponding soft keys and push buttons of the instrument are described. Appendix A contains the interface description.

After connection the mouse is automatically recognized. Special settings such as mouse cursor speed etc., can be performed in the Windows NT menu START - SETTINGS - CONTROL PANEL - MOUSE.

1.6 Connecting an External Keyboard

Caution:

The keyboard may only be connected when the instrument is switched off (STANDBY). Otherwise, correct operation of the keyboard cannot be guaranteed.

The instrument is fitted with a rear-panel 5-contact DIN connector (KEYBOARD) for the connection of an external PC keyboard.

During measurement operations, the keyboard simplifies the input of commentary text, filenames, etc. For computer function, the keyboard has the usual functions.

Appendix E contains a list which describes the assignment of the instrument front-panel key functions to the key codes of the external keyboard as well as special key combinations used for quick operations. Appendix A contains the interface description.

After connection the keyboard is automatically recognized. The default setting is for the US keyboard. Special settings such as repetitional rate etc. can be performed in Windows NT menu START - SETTINGS - CONTROL PANEL - KEYBOARD.

1.7 Connecting an External Monitor

Caution:

The monitor may only be connected when the instrument is switched off (STANDBY). Otherwise, the monitor may be damaged.

Do not modify the screen driver (display type) since this would disturb instrument operation.

Notes:

- When connecting the monitor to the PC MONITOR connector, the display of controller function can be adapted to the external screen (eg higher resolution) in the NT menu START-SETTING CONTROL PANEL DISPLAY PROPERTIES.
- CHIPS (setting = both) should not be modified since otherwise switching between the external monitor and the instrument screen is not possible.

The instrument is fitted with a rear-panel connector PC MONITOR or ANALYZER MONITOR for the connection of an external monitor.

With an external monitor it is possible to have an enlarged display of the measurement screen (ANALYZER MONITOR connector) or of the controller screen (PC MONITOR connector). The measuring instrument and the Windows NT controller can be operated in parallel. The mouse and the keyboard are allocated to only one mode.

Display of the measurement screen - Connection to ANALYZER MONITOR connector

Connection

After connecting the external monitor the measurement screen is displayed on both the external monitor and the instrument. Further settings are not necessary.

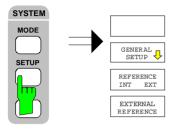
Operation

The instrument is operated as usual via its softkeys, the mouse and keyboard, etc...

Toggle between measurement screen and controller screen

Key combination <ALT><SYSREQ> is used to call up the controller. After call up, the mouse and keyboard are allocated to the controller function.

By activating the window "Rohde & Schwarz ZVR NT Interface "the user returns to the measurement screen and the mouse and keyboard are allocated to this screen.


1043.0009.50 1.26 E-9

Display of the controller screen - Connection to PC MONITOR connector

Connection

After connecting the monitor external monitor operation should be selected.

Setting is performed in the SYSTEM SETUP-GENERAL SETUP menu (key group: SYSTEM, see in Chapter 2, the section "Presettings and Interface Configuration"):

Call SETUP-GENERAL SETUP menu

Press the SETUP key in the SYSTEM field.
The SETUP menu is opened.

> Press the GENERAL SETUP softkey.

The GENERAL SETUP submenu is opened and the current settings of the instrument parameters are displayed on the screen in the form of tables.

Selecting the external monitor mode

➤ Press the MONITOR CONNECTED softkey.

The softkey is in color to indicate that the external monitor mode is activated. The external monitor displays the controller screen.

Operation

The controller function is operated as usual with the mouse and keyboard. The measuring instrument (displayed on the instrument screen) can be operated with both the softkeys and keys of the instrument.

Toggle between screens

By activating (clicking) the window "R&S Analyzer Interface" at the controller the mouse and keyboard are allocated to the measurement screen. The mouse and keyboard are allocated to the controller when the window is deactivated.

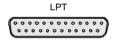
1.8 **Connecting an Output Device**

Caution:

The output device may be connected only when the instrument is switched off (STANDBY)

Note:

- The installation of some printer drivers is possible only under the administrator identification (see section "Controller Function").
- After the installation, the "Service Pack X" of Windows NT is to be re-installed, see "New Installation of Windows NT Software".
- To ensure that the instrument performs an autologin, the user identification is to be reset to "instrument" after the next power-up, see section "Controller Function".


The instrument provides an option for connecting up to three different output devices to allow printing a hard copy of the display screen.

The interfaces can also be used for printing in the controller mode. The output formats "WMF" (Windows Metafile) and "Clipboard" are preset. A large number of output devices can be connected under Windows NT after installing suitable printer drivers.

The output devices supported by the instrument can be found in the selection box DEVICE/LANGUAGE in the COPY -SETTINGS DEVICE1/2 menu (see in Chapter 2, the section "Documentation of Measurement Results"). To print out via the COM interface, the latter must be assigned the controller function in the SETUP - GENERAL SETUP menu (owner = OS).

Appendix A contains the interface description of the connectors.

The interface connectors are located on the rear panel:

After connection of the output device to the appropriate interface connector, the configuration of the interface as well as the output device must be entered and the output device must be assigned to the interface.

1. Configuration of the interface

LPT1 Interface LPT1 cannot be configured.

> An external CM-ROM drive can be connected to this interface. If this Note:

interface is allocated, one of the serial interfaces can be used for the printout.

COM1/COM2 The configuration of serial interfaces COM1 and COM2 can be performed in the Windows NT menu START - SETTINGS - CONTROL PANEL - PORTS. The parameters COM PORTS BAUDRATE, BITS, PARITY, STOPBITS, HW/SW-HANDSHAKE determine the transmission parameters of the interface They must agree with the specifications of the output device (see the operating manual for the output device). To print out via the COM interface, the latter must first be assigned the controller function in the SETUP - GENERAL SETUP menu (owner = OS).

Note: Allocation of the instrument (Owner = Instrument) in the menu SETUP - GENERAL SETUP makes the interfaces available for remote control. The settings made in the menu SETUP -GENERAL SETUP overwrite the settings in the NT menu.

However, settings in the Windows NT menu do not overwrite those of the SETUP menu. This means that the settings are only valid as long as the interfaces are allocated to the controller.

2. Selection and installation of the printer driver

The selection and installation of the printer driver, the assignment to the interface and the setting of most of the printer-specific parameters (eg paper size) is performed under Windows NT in the START - SETTINGS - PRINTER menu.

3. Configuration of the connected output device

The configuration of the connected output device and the assignment to the interface takes place in the *HARDCOPY DEVICE–SETTINGS DEVICE1/2* menu (key group: *COPY*, see in Chapter 2, the section "Selection and Configuration of the Output Device"). The configuration of up to two output devices (DEVICE1 and DEVICE2) may be entered, of which, at least one must be activated for printing.

- The parameter DEVICE/LANGUAGE determines which output device is to be used.
- The parameter PRINT TO FILE determines if the output is in the form of a file.
- The parameter ORIENTATION sets the page format to horizontal or vertical (portrait).

Selecting the type of printer automatically sets the parameters *PRINT TO FILE* and *ORIENTATION* to values which correspond to a standard mode with this output device. Other printer-dependent parameters such as *FORMFEED*, *PAPERFEED* etc., can be modified under Windows NT in the printer properties window (START/SETTINGS/PRINTER/SETTINGS/....).

Table 1-1 shows the standard factory settings for the two output devices.

The factory settings of DEVICE 1 correspond to output format "WMF" (Windows Metafile), printing is performed in a file. WMF is a common format which is used for the import of hardcopies (eg measurement windows) to other Windows applications that support this format (eg WinWord).

The factory setting of DEVICE 2 is "Clipboard". In this setting the printout is copied to the Windows NT clipboard. Most of Windows applications support the clipboard. The clipboard content can be directly inserted in a document via EDIT - PASTE.

Table 1-1 Factory settings for *DEVICE 1* and *DEVICE 2* in the *HARDCOPY-DEVICE SETTINGS* menu.

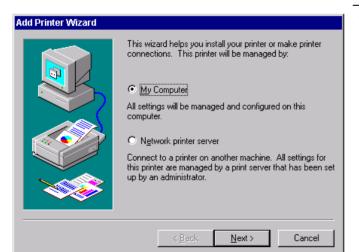
Parameter	Parameter Name	DEVICE 1 Settings	DEVICE 2 Settings
Output Device	DEVICE/LANGUAGE	WINDOWS METAFILE	CLIPBOARD
Output	PRINT TO FILE	YES	
Paper Format	ORIENTATION		

In the following example, a HP DeskJet 660C printer is connected to interface LPT1 and configured as *DEVICE*2 of the instrument to output hardcopies of the measurement screen.

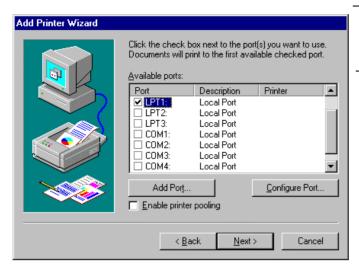
Switch off device.

Connect printer to interface LPT1.

Switch on device.

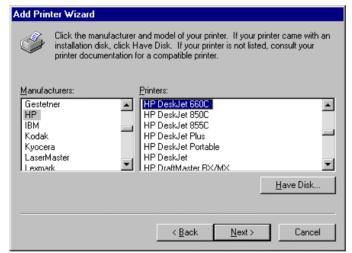

Select printer driver under Windows NT

- Press key combination <ALT> <SYSREQ> The Windows NT screen is displayed.
- ➤ In the Start menu press first "Setting" and then "Printers".


The printer window is opened.

Double-click symbol "Add Printer".
The "Add Printer Wizard" window is opened. This window leads through the following printer driver installation.

Click first "My computer" and then "Next".
The available ports are displayed.

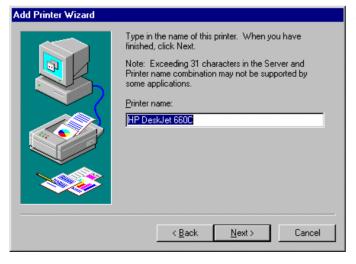


> Select LPT1 port.

The selection is marked by a tick.

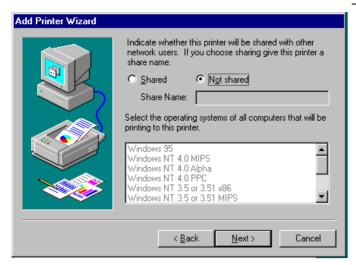
Click "Next".

The available printer drivers are displayed. The left-hand selection table indicates the manufacturers and the right-hand one the available printer drivers.


Mark "HP" in selection table "Manufacturers" and "HP DeskJet 660C" in selection table "Printers".

Note: If the desired type of output device is not shown in this list, it means that it is not supported by

Windows NT.


➤ Click "Next".

The entry field for the printer name is displayed.

The printer name can be modified in the entry field "Printer name" (max. 60 characters).

If one or more printers are already installed, a query is displayed in this window to ask if the printer last installed as default printer should be selected for the Windows NT applications (Do you want your Windows-based programs to use this printer as default printer?) "No" is preset.

Click "Next".

A query is displayed for providing the printer in the network. This query is irrelevant when installing a local printer. The answer "Not shared" is preset.

Click "Next".

The window for starting a test page is displayed. The test page is for checking if the installation was successful.

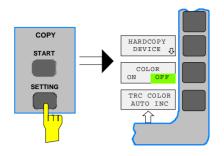
- > Switch on printer.
- Click Yes (recommended)".
- > Click "Finish".

A test page is printed out if the installation was successful.

If the test page is not printed out or not completely, the Windows NT online help offers troubleshooting instructions under the entry "Printer Trouble Shooting".

Note:

If after clicking "Finish" the user is asked to specify the path for the printer driver, this printer installation should be performed under the administrator identification (see section "Controller Function".

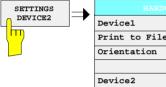

The instrument has to be configured with this printer for the printout of the measurement screen.

Configuring HP DeskJet 660C.

Click button "Rohde & Schrwarz ZVR NT Interface".

The measurement screen is displayed.

1043.0009.50 1.32 E-9


Press the SETTINGS key in the COPY field.

The SETTING menu is opened.

> Press the HARDCOPY DEVICE softkey.

The HARDCOPY DEVICE submenu is opened and the current settings of the two possible output devices are displayed on the screen in the form of tables.

Print to File

Orientation

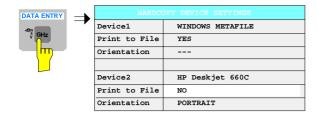
Device1 WINDOWS METAFILE

Print to File YES

Orientation --
Device2 CLIPBOARD

> Press SETTING DEVICE2.

Line *DEVICE2* is marked with the selection bar.


HARDCOPY DEVICE SETTINGS				
Devicel	WINDOWS METAFILE			
Print to File	YES	DEVICE		
Orientation		227102		
		√CLIPBOARD		
Device2	CLIPBOARD	WINDOWS METAFILE		
Print to File		ENHANCED METAFILE		
Orientation		BITMAP FILE		
		HP DeskJet 660C		

> Press one of the unit keys.

The selection box *DEVICE* is displayed on the screen. The current selection is marked by a tick and highlighted by the selection bar.

➤ Press cursor key ⋃ until the entry HP DeskJet 600C is highlighted by the selection bar.

Press one of the unit keys.

The selection box *DEVICE* is closed and *HP DeskJet 660C* is entered in line *DEVICE*2.

Note:

Selecting the type of printer automatically sets the parameters PRINT TO FILE and ORIENTATION to values which correspond to a standard mode with this output device. Other printer-dependent parameters such as PAPERSIZE, can be modified under Windows NT in the printer properties window (START/SETTINGS/PRINTER/SETTINGS)..

Switch on printer.

➤ Press ENABLE softkey until *DEV2* is marked on the second softkey line.

Printing can then be started with the START key in the *HARDCOPY* menu.

Return to main menu

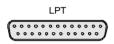
> Press the menu key several times.

Note: After the installation, the "Service Pack X" of Windows NT is to be reinstalled, see "New Installation of

Windows NT Software".

1.9 Connecting a CD-ROM Drive

Caution:


The CD-ROM may only be connected when the instrument is switched off (STANDBY). If this is not observed correct operation of the CD-ROM and the instrument cannot be guaranteed.

Notes:

The installation of a CD-ROM is possible only under the administrator identification (see section "Controller Function").

- After the installation, the "Service Pack X" of Windows NT is to be re-installed, see "New Installation of Windows NT Software".
- To ensure that the instrument performs an autologin, the user identification is to be reset to "instrument" after the next power-up, see section "Controller Function",

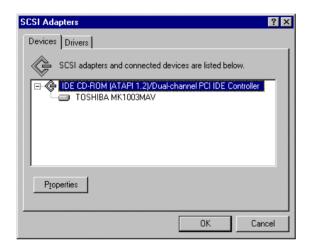
The instrument is fitted with a rear-panel interface LPT1 for the connection of a CD-ROM drive.

The following CD-ROM drives are supported:

- MICROSOLUTIONS BACKPACK External CD-ROM.
- FREECOM IQ DRIVE
- ADAPTEC Parallel SCSI Adapter + SCSI CD-ROM

After connection, the CD-ROM drive is to be installed under Windows NT.

Switch off device. Connect CD-ROM drive to interface LPT1 of the instrument and to AC power source. Switch on device.

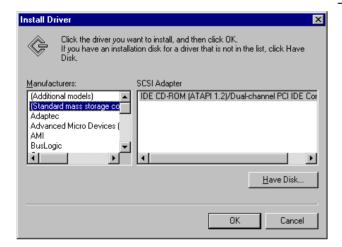

Administrator identification

- Press key combination <ALT> <SYSREQ> The Windows NT screen is displayed.
- ➤ Call the logout window with "Shut Down" in the "Start" menu.

- Mark entry "Shut down and log on as a different user".
- Press Shift key and click button "Yes" at the same time.

The login window is displayed.

➤ Enter "administrator" under "name" and "894129" under "password", confirm entry with "OK".


Select driver under Windows NT

➤ In the Start menu press first "Setting" and then "Control Panel".

The system control window is opened.

- Double-click symbol "SCSI Adapters".
 The "SCSI Adapters" window is opened.
- Click "Driver" index card and then button "Add".

The list of installed drivers is displayed.

> Click "Have Disk".

This window leads through the following installation.

Note: After the installation, the "Service Pack X" of Windows NT is to be re-installed, see "New Installation of Windows NT Software".

1.10 Firmware Update

The installation of a new firmware version can be performed using the built-in diskette drive and does not require opening the spectrum analyzer. The firmware update kit contains several diskettes. The installation program is called up in the SYSTEM - SETUP menu.

Call SETUP-GENERAL SETUP menu > Press the SETUP key in the SYSTEM field. The SETUP menu is opened. > Change to the right-hand menu using the menu key. | Press the FIRMWARE UPDATE softkey. The submenu is opened. | Press the UPDATE softkey. The installation program starts and leads the user through the remaining steps of the update.

The installation can be cancelled.

➤ Press the *RESTORE* softkey.

The previous firmware version is restored.

1.11 Installing Windows NT Software

The driver software and the system settings of Windows NT are exactly adapted to the measurement functions of the instrument. Correct operation of the instrument can therefore be guaranteed only if the software and hardware used is released or offered by Rohde & Schwarz.

The use of other software or hardware may cause malfunctioning or failures in the functions of the instrument.

A current list of released software can be obtained from your nearest Rohde&Schwarz agency (see list of addresses).

After each software installation requiring the administrator identification, it is necessary to re-install the "Service Pack X" of Windows NT (also with administrator identification; see section "Controller Function"):

Re-installing Service Pack X

➤ In the Start menu press first "Setting" and then "Run".

The entry window is opened.

➤ Enter "C:\SPX\I386\UPDATE" into the command line and start installation with "OK".

The following window leads through the installation.

1.12 Options

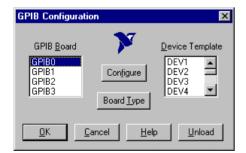
1.12.1 Option FSE-B17 – Third IEC/IEEE Interface

Notes:

- The installation of option FSE-B17 is possible only under the administrator identification (see section "Controller Function").
- After the installation, the "Service Pack X" of Windows NT is to be re-installed, see "New Installation of Windows NT Software".
- To ensure that the instrument performs an autologin, the user identification is to be reset to "instrument" after the next power-up, see section "Controller Function".

Besides the instrument external devices can also be controlled via the IEC/IEEE bus using the optional 3rd bus interface FSE-B17 and the computer function for instrument. The interface software permits IEC/IEEE-bus commands to be included in user programs. The installation instructions are enclosed with the option.

1.12.1.1 Installing the software

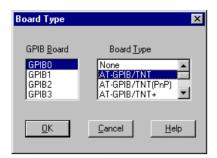

The operating software is already installed and need not be loaded from the driver diskettes which serve as backup diskettes.

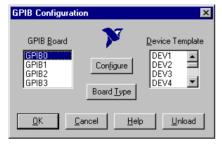
The driver must be loaded on the start-up of Windows NT. To do this, enter the type of board, configure the board and enter the parameters for the connected equipment. If the option is factory fitted, all this has been done in the factory.

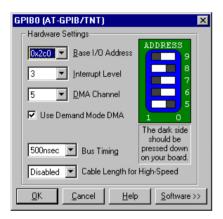
The following parameters may not be changed after selection on configuration of the board:

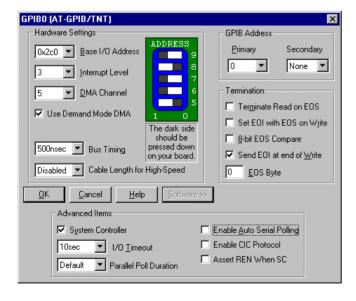
Board TypeAT-GPIB/TNT
Base I/O Address02C0h
Interrupt Level3
DMA Channel5
Enable Auto Serial Polling No

For further parameters, refer to manual for the board.


Selecting the board type


- Click "Start" in the task bar.
- ➤ Click consecutively "Settings", "Control Panel" and "GPIB" in this sequence.


The "GPIB Configuration" menu for selecting the board type and configuring the board is opened.


Click button "Board Type".

The "Board Type" menu for selecting the board type is opened.

- ➤ Mark "GPIB0" in the "GPIB Board" list.
- Mark "AT-GPIB/TNT" in the "Board Type" list
- Confirm the selection with "OK".

The "GPIB Configuration" menu is displayed again.

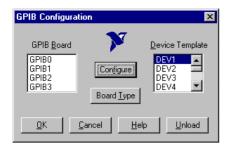
> Click button "Configure".

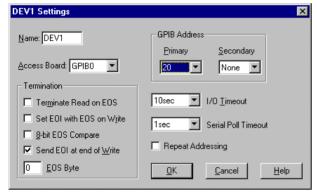
The "GPIB0 (AT-GPIB/TNT)" menu for configuring the board is opened.

Configuring the board

- Set "3" in the "Interrupt Level" list.
- > Click button "Software".

The menu is extended.


- Deactivate (= no tick) "Enable Auto Serial Polling" in the "Advanced Items" field.
- Quit the menu with "OK".


The "GPIB Configuration" menu is displayed again.

Note:

The settings of the following parameters should not be no longer modified.

```
Board Type ... AT-GPIB/TNT
Base I/O Address ...... 02C0h
Interrupt Level ...... 3
DMA Channel ..... 5
Enable Auto Serial Polling .. No
```


Setting the parameters for the connected equipment

Mark the instrument in the "Device Template" list and confirm selection with "OK".

The "DEV.. Settings" menu is opened.

> Perform the settings for the selected unit in the "DEV.. Settings" menu.

The logic name for the instrument is preset with DEV1 and address 20. See board manual for further units.

Note:

when assigning logic names to connected equipment note that these names do not correspond to the directory names under DOS.

> Terminate setting with "OK".

The query asking if the GPIB software should be re-started is displayed.

> Select "No".

Re-start controller with Start-Restart in the task bar.

After the controller has been re-started, the settings for the GPIB interface are effective.

Note:

After the installation, the "Service Pack X" of Windows NT is to be reinstalled, see "New Installation of Windows NT Software".

Use of DOS Programs

When using DOS programs, driver GPIB-NT.COM should be loaded. For this to take place, the line device=C:\PROGRA~1\NATION~1\GPIB\NI488\DosWin16\Gpib-nt.com has to be activated in the file C:\WINNT\SYSTEM32\CONFIG.NT. If the option is factory fitted, this line will have been entered in the factory.

1.12.1.2 Operation

The second IEC/IEEE-bus interface corresponds physically to that of the instrument (see appendix A). If the instrument is to be controlled via the IEC/IEEE bus, a bus cable must be plugged to both bus connectors.

The interface can be driven under DOS/WINDOWS3.1/95/NT by user-written software. The handling of IEC/IEEE-bus commands in user programs is described in the manual for the card.

The files are in directory C:\Program Files\National Instrument\GPIB\NI488.

1043.0009.50 1.42 E-9

1.12.2 Option FSE-B16 – Ethernet Adapter

With the option Ethernet Adapter FSE-B16, the device can be connected to an Ethernet-LAN (local area network). It is possible to transmit data via the network and to use the network printer. The adapter operates with a 10 MHz Ethernet in line with standards IEEE 802.3 10Base2 (Thin Ethernet, CheaperNet, BNC-Net) (B16 model 03) or 10Base5 (Thick Ethernet) (B16 model 02).

1.12.2.1 Hardware Installation

Caution:

Prior to installation contact the network administrator, especially in case of complex LAN installations since mistakes in cabling might have influence the whole network.

If the adapter is installed at the factory, it is preconfigured. In case of retrofitting, refer to the installation instructions. The hardware settings must not be modified since the functions of the device could otherwise be impaired.

The following parameters are factory-set:

I/O Addr. 300, IRO 5, MEM D0000

The connection with the network depends on the connectors used in the network.

BNC (Thin Ethernet, CheaperNet; FSE-B16 Var. 03)

Connection

The device is looped into the LAN segment via rear-panel 2 BNC connectors.

If a cable is not connected to one of the BNC connectors, this BNC connector has to be terminated with 50 Ohm. BNC T connectors must not be used.

Network traffic

Note that the network traffic is disturbed if a segment is interrupted.

Requirements

Thin Ethernet segment requirements have to be complied with:

- maximum segment length of 185 m
- minimum distance between the connectors of 0.5 m
- maximum of 30 connectors per segment.

If components that comply with enhanced requirements are exclusively used (Ethernet Adapter FSE-B16 complies with the enhanced requirements):

- maximum length of segment of 300 m
- maximum number of connectors of 100

With repeaters used:

- maximum total length of the network of 900 m containing a
- maximum of 3 segments
- maximum of two repeaters between two connectors

AUI (Thick Ethernet; FSE-B16 Var. 02)

Connection	The device is connected to the LAN segment using a transceiver
	cable (DB-15 AUI connector, not part of the equipment supplied)
	which is connected to the rear panel and to the transceiver.

Network traffic

The connection does not conflict with the network traffic. The device can also be disconnected from the network without any problems but make sure that data are not being transmitted.

Requirements

The Thick Ethernet segment requirements have to be taken into account.

- The maximum segment length should be 500 m and the
- distance between the connectors should at least be 2.5 m.
- A maximum of 100 connectors may be used in a segment.

With repeaters used,

- the total length of the network must not be more than 2500 m containing
- a maximum of 3 segments.
- There should be no more than two repeaters between two connectors.

If other network components are used, these conditions may vary.

RJ45 (UTP, 10BaseT, Western Connector; FSE-B16 Var. 04)

Connection	The device is connected to the LAN segment using a RJ45 cable (not part of the equipment supplied) which is connected to the rear panel and to the network hub of the LAN segment.		
Network traffic	This connection does not conflict with the network traffic. The device can also be disconnected from the network without any problems but make sure that data are not being transmitted.		
Doguiromento	Since P M5 is not a bus but a star topology no special requirements		

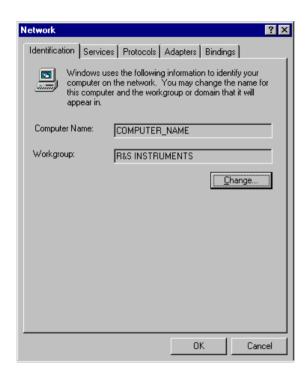
Requirements

Since RJ45 is not a bus but a star topology no special requirements have to be taken into account for the connection.

The LAN requirements should be considered in the installation.

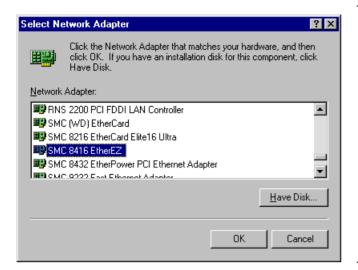
1.12.2.2 Software Installation

Data transmission within the network is by means of data blocks, the so-called packets. Besides user data other information, the so-called protocol data (transmitter, receiver, type of data, order) are transmitted. The drivers corresponding to the protocol have to be installed to process protocol information. A network operating system is required for network services (data transmission, directory services, printing in the network) and thus has to be installed.


Calling up Configuration Menu for Network Settings

- ➤ Click "Start" in the task bar.
- Click consecutively "Settings", "Control Panel" and "Network".

The "Network" configuration menu for network settings is opened.


Registering the Identification

Note: It is important for the computer name to be unique in the network..

- > Select "Identification".
- Confirm computer and workgroup names with "OK" or enter new names in submenu "Change".

Installation and Configuration of the Driver for the Network Adapter

- Select "Adapter".
- Click "Add" and mark network driver "SMC 8416 EtherEZ" and select with "OK".

The query "Files.." is displayed.

> Answer it by clicking "Continue".

The "SMCEthernet Card Setup" window is displayed.

Close the window with "OK".

Some files are copied and the network adapter is displayed under "Network Adapters".

The entry "MS Loopback Adapter" refers to a driver which ensures instrument control and should not be modified.

Note: The network adapter settings must not be modified since this may cause problems to the instrument.

Installation of Network Protocols

Note: The network administrator knows which protocols are to be used...

- ➤ Select "Protocol".
- Click "Add", mark the desired protocol and select with "OK".

This operation has to be performed several times when several protocols are selected.

Execute the installation by clicking "Continue".

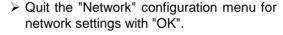
Note: If a protocol requires further settings, they can be performed with "Properties" after marking the corresponding entry. If further settings are not possible, this field is gray.

Installation of Network Services

To utilize the resources of the network it is necessary to install the corresponding services.

Note: The network administrator knows which services are to be used.

- ➤ Select "Services".
- Click "Add", mark the desired service and select with "OK".


This operation has to be performed several times when several services are selected.

Some services are pre-installed and can be cleared with "Remove" if they are not needed.

> Execute the installation by clicking "Continue".

Note: If a service requires further settings, they can be performed with "Properties" after marking the corresponding entry. If further settings are not possible, this field is gray.

Terminating the Installation

The settings are checked and processed. Missing information is gueried.

Answer the query "You must shutdown..." with "Yes".

The settings are valid after computer restart.

Note: After the installation, the "Service Pack X" of Windows NT is to be reinstalled, see "New Installation of Windows NT Software".

1043.0009.50 1.47 E-9

Examples of Configurations

Network	Protocols	Services	Notes
NOVELL Netware	NWLink IPX/SPX Compatible Transport	Client Service for NetWare	The "Frame Type" used under "Protocols - Properties" should be set.
IP networks (FTP, TELNET, WWW, GOPHER, etc.)	TCP/IP Protocol	Simple TCP/IP Services	An "IP Address" unambiguous in the network should be set under "Protocols - Properties".
MICROSOFT network	NetBEUI Protocol or TCP/IP Protocol	Workstation Server	A name unambiguous in the network should be registered under "Identification - Computer Name".

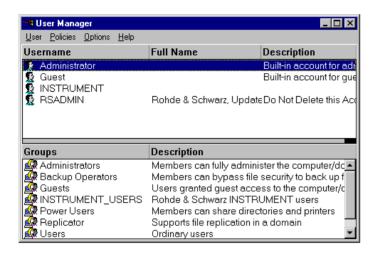
1.12.2.3 Operation

After installing the network operating system it is possible to transfer data between the device and other computers and to use printers in the network. A precondition for network operation is the authorization to use network resources. Resources may be access to the file directories of other computers or the use of a central printer. The network or server administrator will grant the authorizations. The network name of the resource and the corresponding authorization are required. Passwords protect the resources against improper use. A user name is normally assigned to every authorized user. The user also has a password. Resources may then be assigned to the user. The type of access, i.e. whether data are only read or also written as well as a shared access to data has to be defined. Other types are possible depending on the network operating system.

NOVELL

Operating system NETWARE from NOVELL is as server-supported system. Data transfer between the individual workstations is not possible. Data transfer is between workstation computers and a central computer, the server. This server provides storage capacity and the connection to the network printers. Like under DOS, the data on a server are organized in directories and are offered to the workstation as virtual drives. A virtual drive on a workstation is like a hard disk and data can be processed accordingly. This is called drive mapping. Also network printers can be addressed as normal printers.

Network operating system NOVELL is available in two forms: NETWARE 3 and NETWARE 4 NDS. In the previous version NETWARE 3, each server manages its own resources itself and is independent. A user has to be managed separately on each server. For NOVELL 4 NDS, all resources are managed in the NDS (NOVELL DIRECTORY SERVICE). The user only has to log in once and gains access to the resources released for him. The individual resources and the user are managed as objects in a hierarchical tree (NDS TREE). The position of the object in the tree is called CONTEXT for NETWARE and must be known in order to access the resources.

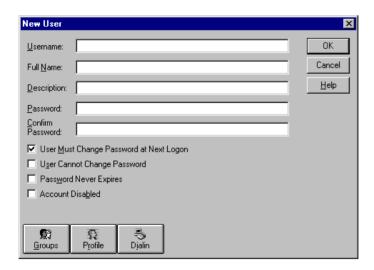

MICROSOFT

For MICROSOFT, data can be transferred between workstations (peer-to-peer) but also between workstations and servers. The servers can provide access to individual files as well as the connection to network printers. Like under DOS, the data on a server are organized in directories and are offered to the workstation as virtual drives. A virtual drive on a workstation is like a hard disk and data can be processed accordingly. This is called drive mapping. Also network printers can be addressed as normal printers. A connection to DOS, WINDOWS FOR WORKGROUPS, WINDOWS 95, WINDOWS NT is possible.

Installing a user

After the network software has been installed, the instrument logs with an error message during the next start-up since there is no user "Instrument" (= user identification for NT autologin) in the network. It is therefore necessary to install a user which should be the same for Windows NT and for the network. The network administrator is responsible for the installation of new users in the network.

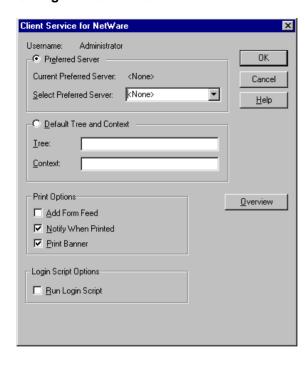
Note: The installation of new users is possible only under the administrator identification (see section "Controller Function").



- > Click "Start" in the task bar.
- Click consecutively "Programs" "Administrative Tools (Common)" and "User Manager".

The "User Manager" menu is opened.

Click "User" and select "New User".
The menu "New User" for entering user


data is opened.

➤ Fill in the lines "Username", "Password" and "Confirm Password" and confirm the entry with OK.

The user data should correspond to the network settings.

Only NOVELL network: Configure NOVELL Client

- Click "Start" in the task bar.
- Click consecutively "Settings", "Control Panel", "CSNW".

NOVELL 3.x

- Click "Preferred Server".
- Under "Select Preferred Server" select the NOVELL server for which the user has been installed.

NOVELL 4.x

- > Click "Default Tree and Context" .
- ➤ Enter the NDS Tree under "Tree" and, under "Context", the hierarchical path for which the user has been installed.

Note: These specifications can be obtained from the network administrator.

Login in the Network

Network login is automatically performed with the operating system login. A prerequisite is that the user name and the password are the same under Windows NT and in the network.

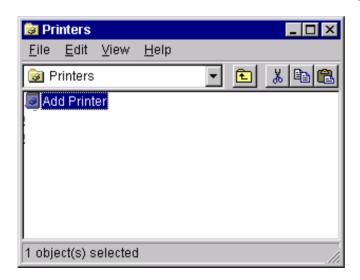
Use of Network Drives

- Click "Start" in the task bar.
- Click consecutively "Programs" and "Windows NT Explorer".
- Click "Network" line in the "All Directories" list.

A list of available network drives is displayed.

- Click "Tools" and "Map Network Drive".
 In the list "Shared Directories:" the network paths available in the network are displayed.
- Mark the desired network path.

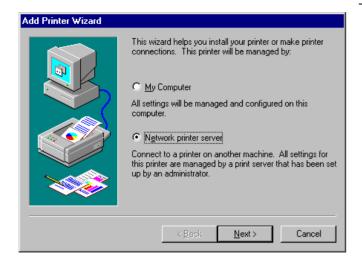
- > Select the drive under "Drive:"
- Activate "Reconnect at Logon:" if the link is to be automatically established at each unit start.
- Connect the network path to the selected drive with "OK".


The user name and the password are queried. The drive is then displayed in the "All Directories" list of Explorer.

Note: Only drives for which an authorization is available may be connected.

Disconnect link:

- Click "Tools" and "Disconnect Network Drive" in Explorer.
- Select under "Drive:" the drive whose connection is to be removed.
- Disconnect link with "OK". The query should be answered with "Yes".


Printing on a Network Printer

Select printer driver under Windows NT

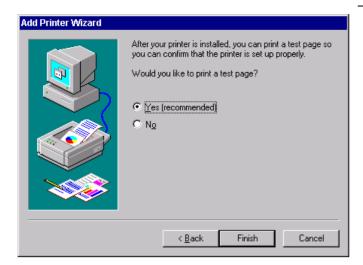
- Press key combination <ALT> <SYSREQ> The Windows NT screen is displayed.
- ➤ In the Start menu press first "Setting" and then "Printers".

The printer window is opened.

Double-click line "Add Printer".


The "Add Printer Wizard" window is opened. This window leads through the following printer driver installation.

Click first "Network Printer Source" and then "Next".


The list of available network printers is displayed.

Mark the printer and select with "OK".

The available printer drivers are displayed. The left-hand selection table indicates the manufacturers and the right-hand one the available printer drivers.

Mark the manufacturer in selection table "Manufacturers" and then the printer driver in selection table "Printers".

Click "Next".

The window for starting a test page is displayed. The test print is for checking if the installation was successful.

- Switch on printer.
- Click Yes (recommended)".
- Click "Finish".

A test page is printed out if the installation was successful.

If the test page is not printed out or not completely, the Windows NT online help offers troubleshooting instructions under the entry "Printer Trouble Shooting".

The instrument has to be configured with this printer for the printout of the measurement screen. This configuration is described in this chapter in the section "Connecting an Output Device".

Server Function

With the server function data can be provided on the instrument for use in other computers. This is possible only in the MICROSOFT network. The server function is released after network installation as standard. If this is not required, it should be deactivated, see "Installation of Network Services".

The availability of instrument data in the network is controlled by releases. The release is a property of a file or of a directory. To grant a release, the object is to be marked in "Windows NT Explorer" and pressed by the right-hand mouse key. The release is performed under Properties -> Sharing by selecting "Shared As". Other computers can then access these objects with the names allocated under "Share Name". The online help gives further information on the network operation.

TCP/IP

The TCP/IP protocol allows files to be transmitted between different computer systems. A program running on both computers is required to control the data transfer. The same operating or file system need not be used by the two partners. A file transfer is possible between DOS/WINDOWS and UNIX, for example. One partner has to be configured as host the other as client or vice versa. The system performing several processes at the same time (UNIX) will normally be the host. The usual file transfer program used for TCP/IP is FTP (File Transfer Protocol). An FTP host is installed as standard on most of the UNIX systems.

After installing the TCP/IP services, a terminal link can be established with "Start" - "Programs" - "Accessories" - "Telnet" or a data transmission with FTP using "Start" - "Run" "ftp" - "OK". Thus, all controller systems can be accessed which support these universal protocols (UNIX, VMS, ...).

Further information is given in the NT online help which can be called up with "Help".

FTP

For a complete description of the functions and commands see the FTP documentation.

Establishing a connection

> Click "Start" and then "Run" in the task bar.

The program is started with the DOS command

FTF

The following command sets up the connection:

OPEN <xx.xx.xx.xx>

xx.xx.xx = IP address, e.g. 89.0.0.13

File transmission

To transmit a file to the target system, the following command is used:

PUT <file name>

file name = name of file e.g. DATA.TXT.

To call a file from the target system, the following command is used:

GET<file name>

file name = name of file e.g. SETTING.DAT.

TYPE B

allows the transmission of files in the BINARY format, no conversion is performed.

TYPE A

allows the transmission of files in the ASCII format. Thus, control characters are converted so that the text files can be read on the target system, too.

Examples:

PUT C:\AUTOEXEC.BAT

sends the ${\tt AUTOEXEC}$. ${\tt BAT}$ file to the target system.

LCD DATA

changes to subdirectory DATA in the computer function.

CD SETTING

changes to the subdirectory SETTING on the target system.

Changing directories

The command

LCD <path>

changes the directory as the corresponding DOS command.

LDIR

lists the directory.

These commands refer to the computer function of the instrument. If the 'L' preceding the commands is omitted, they apply to the target system.

2 Manual Operation

2.1 Introduction: Measurement Examples and Processing of Measured Values

This section describes typical measuring tasks for a network analyzer. Each step is explained in detail using an analyzer of the ZVR family so that the instrument can be immediately used without the need for learning all of the available functions.

The described measurement tasks are:

- Transmission measurement of magnitude and phase,
- · Reflection measurement of magnitude and phase,
- Measurement of bandwidth, Q factor and shape factor of a filter.

The measurements are described systematically as listed below:

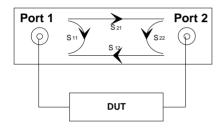
- Measurement task,
- Connection of the DUT,
- · Reset of the instrument (Preset),
- · Setting the instrument,
- Performance of a calibration (if required),
- · Performance of the measurement.

All of the subsequent measurement examples assume the standard settings for the network analyzer. These are set by pressing the *PRESET* key in the *STATUS* key field (denoted in the following as *STATUS PRESET* key). The most important standard settings are listed in Table 2-1.

Table 2-1 Overview of the most important PRESET settings

Parameter	Standard setting
Output level	–10 dBm
Frequency range Start	9 kHz (ZVR,ZVRE,ZVRL with passive bridges)
	300 kHz (ZVR,ZVRE,ZVRL with active bridges)
	20 kHz (ZVC,ZVCE)
Stop	4 GHz (ZVR,ZVRE, ZVRL)
	8 GHz (ZVC,ZVCE)
Sweep variable	Frequency
Split screen	Single Channel
Diagram	Smith Diagram
Display	CH1 S11; CH2 S21; CH3 S12; CH4 S22
	(ZVRL: CH1 S11; CH2 S21; CH3 S21; CH4 S11)
IF bandwidth	10 kHz
Number of test points	401
Sweep time	automatic

2.1.1 Transmission Measurements – Measurement of Gain and Loss


2.1.1.1 Measurement Task

The transmission measurement measures the characteristic of the insertion loss or the gain factor of a DUT in relation to the frequency.

The insertion loss/gain of a DUT is the ratio of the amplitude of the output signal to the amplitude of the input signal.

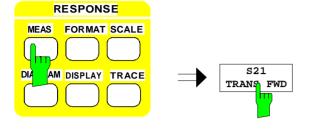
In this example, the magnitude and phase of a DUT of 2.17 to 2.27 GHz are represented in a cartesian or polar diagram which is then printed out.

2.1.1.2 Connection of the DUT

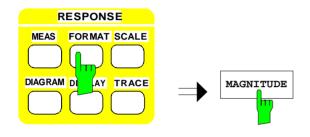
Connect the DUT

Connect the input of the DUT to PORT 1 and the output to PORT 2.

2.1.1.3 Preset

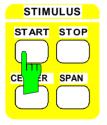


Reset the instrument


- > Press the STATUS PRESET key.
- Confirm preset OK.

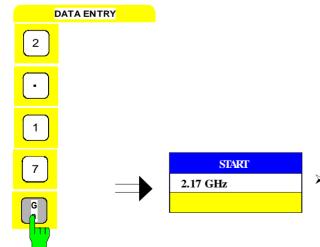
2.1.1.4 Setting the Analyzer

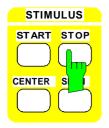
Following *PRESET*, channel 1 performs a S_{11} mesurement and represents it in the Smith diagram. The transmission measurement described in this example is to be represented in various diagrams.



- Set measurement type (S21, or forward transmission)
- > Press RESPONSE MEAS key.
- Press S21 TRANS FWD softkey in the MEAS menu (denoted in the following as the RESPONSE MEAS - S21 TRANS FWD softkey).

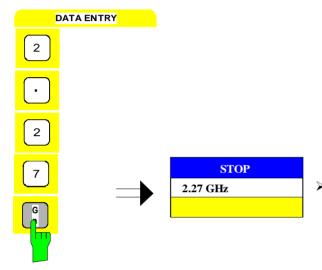
- 2. Set format of representation (magnitude)
- Press RESPONSE FORMAT key.
- Press RESPONSE FORMAT MAGNITUDE softkey.


By default (following *PRESET*), the "magnitude" diagram is a Cartesian diagram with 10 dB/Div.


3. Specify desired frequency range for the display

Set start frequency

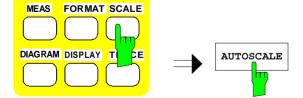
Press STIMULUS START key. The data entry field is opened.



➤ Enter 2.17 via the numeric keypad and terminate the entry using the G/n key.

Set stop frequency

➤ Press STIMULUS STOP key. The data entry field is opened.



➤ Enter 2.27 via the numeric keypad and terminate the entry using the G/n key.

4. Positioning the trace in the diagram

a) Automatic positioning

Autoscale means that the trace is automatically fitted in the diagram. This is achieved by positioning the reference line in the center of the diagram and setting the reference value and SCALE/DIV such that the complete curve appears in the diagram (see Fig. 2-1).

RESPONSE

- Press RESPONSE SCALE key.
- Press RESPONSE SCALE AUTOSCALE softkey.

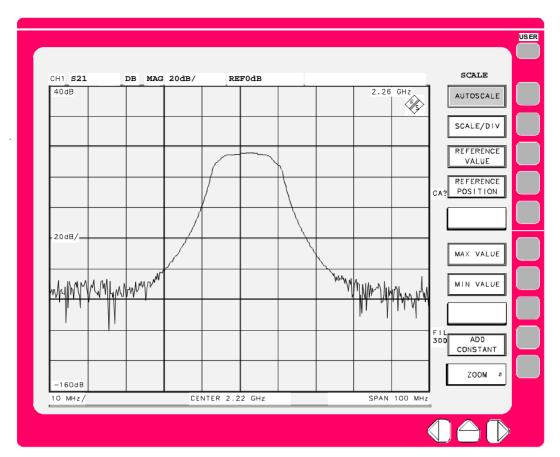


Fig. 2-1 Measurement display screen with an autoscaled trace

RESPONSE

DIAGRAM DISPLAY T

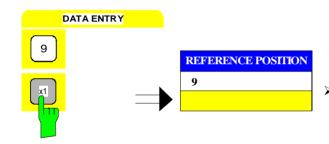
FORMAT SCALE

MEAS

Alternative

b) Manual positioning

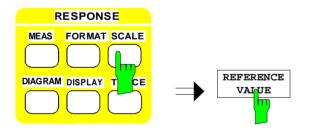
Enter the following values.


- Reference position 9
- Reference value -5 dB
- Scaling 10 dB / DIV

Set reference position

The 2nd horizontal diagram line from the top is to coincide with the reference line.

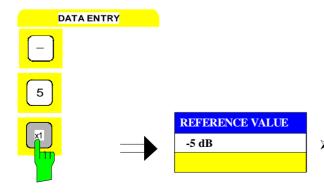
- Press RESPONSE SCALE key.
- Press RESPONSE SCALE REFERENCE POSITION softkey.


The data entry field for the reference position is opened.

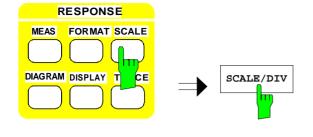
REFERENCE

POSITION

➤ Enter 9 via the numeric keypad and terminate the entry using the x1 key.

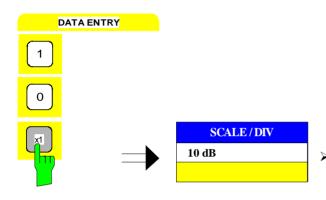


Set reference value


The reference value is to be equal to -5 dB.

- Press RESPONSE SCALE key in the key field.
- Press RESPONSE SCALE REFERENCE VALUE softkey.

The data entry field for the reference value is opened.


➤ Enter -5 via the numeric keypad and terminate the entry using the x1 key.

Set scaling

The distance between the scaling lines is to be equal to 10 dB.

- > Press RESPONSE SCALE key.
- Press RESPONSE SCALE SCALE/DIV key. The data entry field for the scaling is opened.

➤ Enter 10 via the numeric keypad and terminate the entry using the x1 key.

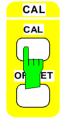
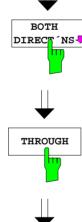



Figure 2-2 Measurement display screen after manual scaling


2.1.1.5 Instrument Calibration

The analyzer calibration menu offers selection of various system error corrections. A simple and fast method is the normalization calibration which calibrates the frequency response of the test setup. (Refer to Section 2.15 for further information on various calibration methods).

1. Replace DUT by through-connection.

APPLY CAL

2. Start calibration

- Press CAL CAL key. A system error correction with request of all additional information required is thus started.
- ➤ Press CAL CAL START NEW CAL softkey.
- Press CAL CAL START NEW CAL TRANS NORM softkey.
- Press CAL CAL START NEW CAL TRANS NORM - BOTH DIRECT'NS softkey.
- Press CAL CAL START NEW CAL TRANS NORM - BOTH DIRECT'NS - THROUGH softkey.
- Press CAL CAL START NEW CAL TRANS NORM - BOTH DIRECT'NS - APPLY CAL softkey.

The measurement is thus terminated, calculation of the correction values is started and the system error correction is switched on.

2.1.1.6 Performing the Measurement

- 1. Remove through-connection.
- 2. Connect DUT.
- 3. If necessary: repeat trace positioning (cf. 2.1.1.4, Setting the Analyzer).
- 4. Display of magnitude in cartesian coordinates
- > Press RESPONSE FORMAT key.
- Press RESPONSE FORMAT MAGNITUDE softkey.

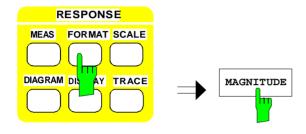
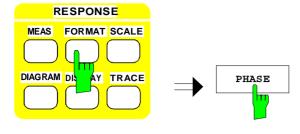



Fig. 2-3 Display of magnitude in cartesian coordinates

5. Display of phase in cartesian coordinates

- > Press RESPONSE FORMAT key.
- Press RESPONSE FORMAT PHASE softkey.

By default (following *STATUS PRESET*), the phase is represented in cartesian coordinates with a specified range of -225° to +225°.

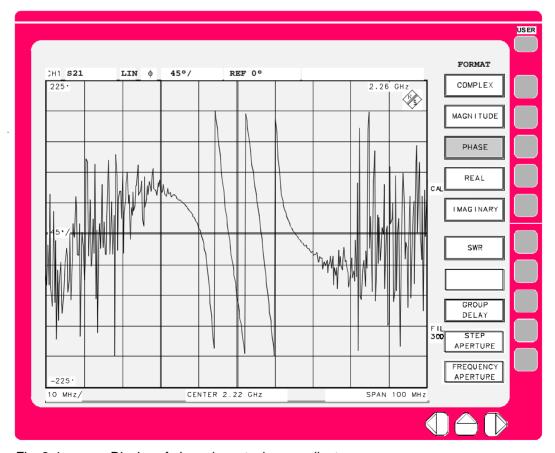
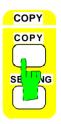



Fig. 2-4 Display of phase in cartesian coordinates

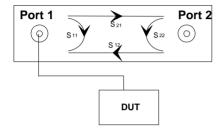
2.1.1.7 Output of Measurement Results

By default (following *STATUS PRESET*), a printer driver for a plotter with HPGL capability and connection to the IEC bus (address 4) is active.

1. Start printing

- Connect plotter to the IEC bus.
- > Press COPY COPY key.

Apart from being output to a printer or plotter, screen displays may also be stored to disc in order to be further processed on a PC or be merged in documents. All modifications of printer or plotter default settings are made in the COPY SETTINGS menu (Section 2.5.2).


2.1.2 Reflection Measurements

2.1.2.1 Measurement Task

The reflection coefficient is the complex ratio between the wave quantity reflected from the input of a DUT and the wave quantity of the signal propagating towards this input. The logarithmic inverse of the magnitude of the reflection coefficient is also called matching and is ≥ 0 for passive DUTs.

This example illustrates how magnitude and phase of a DUT's reflection coefficient in the frequency range between 2.17 GHz and 2.27 GHz can be represented in Cartesian coordinates or in a Smith diagram.

2.1.2.2 Connection of the DUT

Connect the DUT

Connect the port of the DUT to be measured to PORT 1 of the network analyzer. Channel 1 is active.

2.1.2.3 Preset

Reset the instrument.

- > Press STATUS PRESET key.
- Confirm preset OK.

2.1.2.4 Setting the Analyzer

With standard settings, channel 1 performs a S11 measurement and displays it in a Smith diagram. The reflection measurement in this examples is to be represented in various diagrams. For Steps 1 to 3 see transmission measurement, Section 2.1.1.4, Steps 2 to 5.

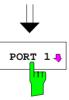
- 1. Set display format (magnitude).
- 2. Specify desired frequency range
- 3. Positioning the measuring curve
 Automatic and manual positioning

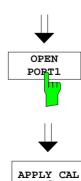
2.1.2.5 Instrument Calibration

The analyzer calibration menu offers selection of various methods for a system error correction. A simple and fast method is the normalization calibration which calibrates the frequency response of the bridge and transmission lines, if fitted. (Refer to Section 2.15 for further information on calibration methods).

1. Unscrew DUT and provide test port with open

Caution:


Note that the physical data of the open standard used must be entered previously via CAL CAL-MODIFY CAL KIT).


2. Start calibration

- Press CAL CAL key. A system error correction with request of all additional information required is thus started.
- ➤ Press CAL CAL START NEW CAL softkey.
- Press CAL CAL START NEW CAL REFL NORM softkey
- Press CAL CAL START NEW CAL REFL NORM - PORT1 softkey.
- Press CAL CAL START NEW CAL REFL NORM - PORT1 - OPEN PORT1 softkey.
- Press CAL CAL START NEW CAL REFL NORM - PORT1 - APPLY CAL softkey. The measurement is thus terminated, calculation of the correction values is started and the system error correction is switched on.

1043.0009.50 2.13 E-13

2.1.2.6 Performing the Measurement

- 1. Remove open circuit.
- 2. Connect DUT
- 3. If necessary: repeat trace positioning, (see Section 2.1.2.4).
- 4. Display of magnitude in cartesian coordinates

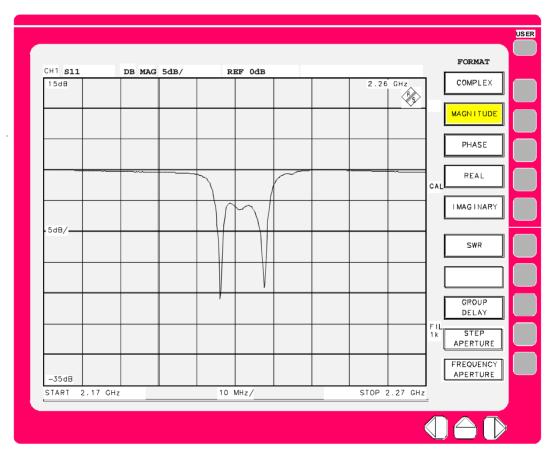


Fig. 2-5 Display of magnitude in cartesian coordinates

1043.0009.50 2.14 E-13

5. Display of phase in cartesian coordinates

see Section 2.1.1, transmission measurement With standard settings, the "phase" is represented in cartesian coordinates with a specified range of -225° to +225°.

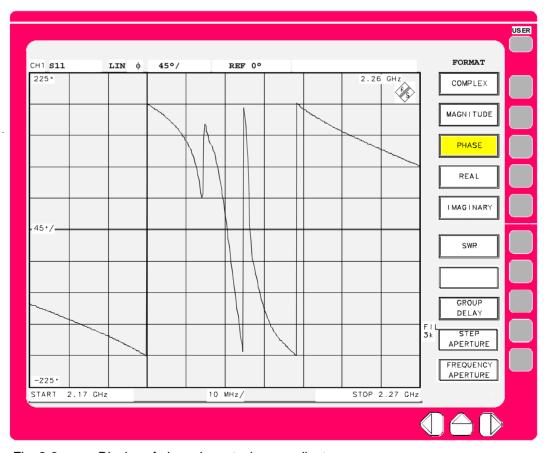
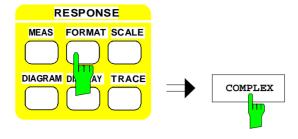



Fig. 2-6 Display of phase in cartesian coordinates

- 6. Display of the reflection coefficient in the Smith diagram
- > Press RESPONSE FORMAT key.
- Press RESPONSE FORMAT COMPLEX softkey.

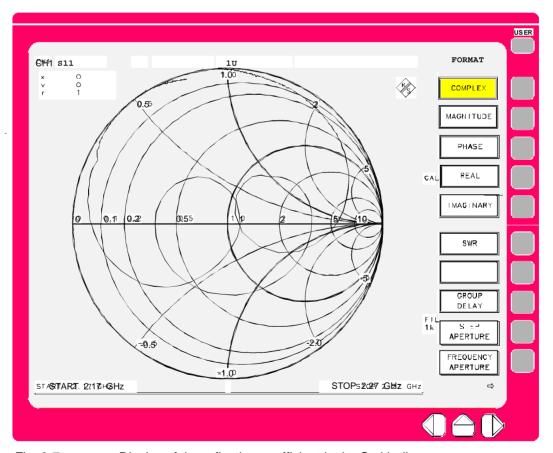


Fig. 2-7 Display of the reflection coefficient in the Smith diagram

1043.0009.50 2.16 E-13

ZVx Filter Measurements

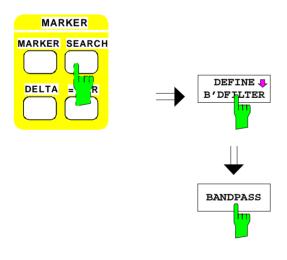
2.1.3 Filter Measurements – Measurements of Bandwidth, Q Factor and Shape Factor

2.1.3.1 Measurement Task

The parameters bandwidth, Q factor and shape factor characterize a bandpass or bandstop filter and can be measured automatically by the network analyzer.

The **bandwidth** represents the frequency difference between two points of the same attenuation (often 3 dB) of the passband curve.

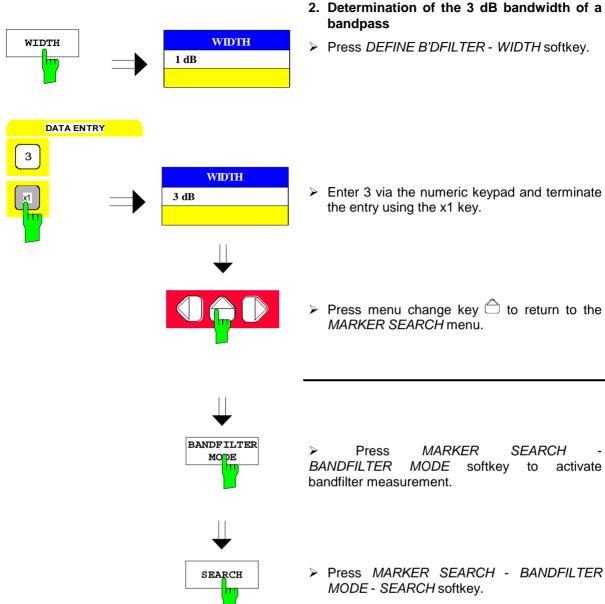
The **Q** factor of bandpass or bandstop filter is defined as the ratio between the center frequency and the 3 dB bandwidth.


The **shape factor** represents the ratio between the bandwidth (3 or 6 dB) in the passband and the bandwidth in the stopband (60 dB) and is a measure for the steepness of the filter skirt.

This example shows how to measure a bandpass. A bandstop is measured analogously.

2.1.3.2 Reset, Setting and Calibration of the Instrument

Before starting the measurement, the instrument must be set and calibrated as for the transmission measurement (see Section 2.1.1, transmission measurement, Sections 2.1.1.2 to 2.1.1.5).


2.1.3.3 Measurement of the Filter Parameters

- 1. Bandpass selection
- Press MARKER SEARCH key.
- Press MARKER SEARCH DEFINE B'DFILTER softkey.
- Press MARKER SEARCH DEFINE B'DFILTER - BANDPASS softkey.

1043.0009.50 2.17 E-13

Filter Measurements **ZV**x

Two auxiliary markers are now displayed on the trace at the determined bandwidth points, one marker at the determined center frequency. The corresponding bandwidth is marker-info indicated in the line (see Fig. 2-8).

ZVx Filter Measurements

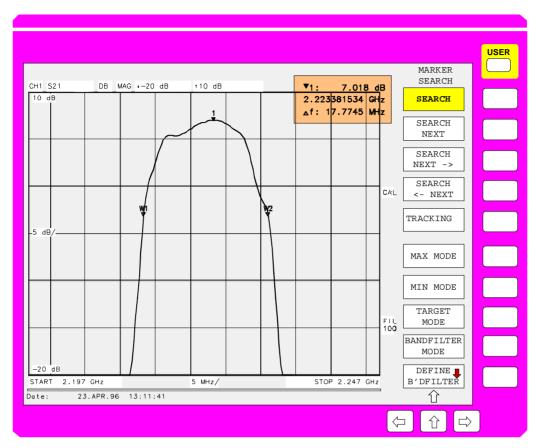


Fig. 2-8 Determination of the 3 dB bandwidth of a bandpass

Filter Measurements **ZV**x

DEFINE 🚚 > Press **MARKER SEARCH DEFINE** B'DFLTER B'DFILTER softkey. QUALITY Press MARKER SEARCH -**DEFINE** FACTOR B'DFILTER - QUALITY FACTOR softkey. The filter quality is indicated in the marker-info line. Press menu change key to return to the MARKER SEARCH menu. Press MARKER SEARCH - SEARCH softkey. SEARCH

Two auxiliary markers appear at the the 3 dB bandwidth points and one marker at the center frequency.

The quality factor is displayed (see Fig. 2-9).

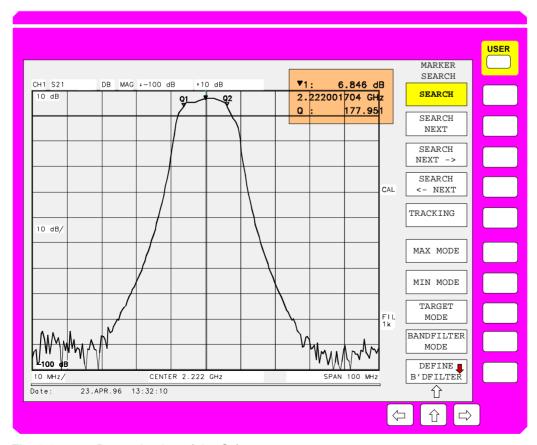
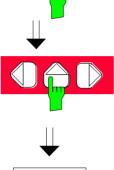


Fig. 2-9 Determination of the Q-factor


ZVx Filter Measurements

4. Shape factor 60 dB/3 dB

The shape factor is a measure for the filter skirt selectivity. It is calculated from the 60-dB and 3 dB bandwidths according to the formula

Shape factor 60 dBB/3 dB = Δf 60 dB / Δf 3 dB.

Press MARKER SEARCH - DEFINE B'DFILTER - SHAPEFACT. 60dB/3dB softkey.

SEARCH

SHAPEFACT

60dB¶3dB

▶ Press menu change key to return to the MARKER SEARCH menu.

Press MARKER SEARCH - SEARCH softkey.
The measurement result of the shape factor is

The measurement result of the shape factor is indicated in the marker-info line. (see Fig. 2-10).

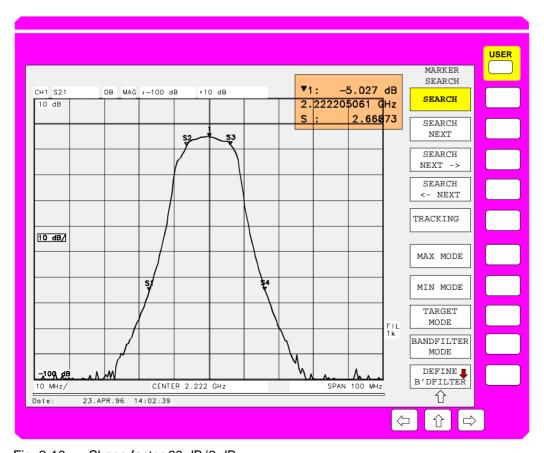


Fig. 2-10 Shape factor 60 dB/3 dB

2.1.4 Processing of Measured Values

The numbers in brackets in the text refer to Fig. 2-11 which shows the processing sequence of measured values of a ZVR display channel in bidirectional operation. Note that for reasons of clarity the diagram does not contain any recursive measurement sequences which arise, e.g., in compression and intercept point measurements. However, these higher-level test loops are based on the single measurements described in the following.

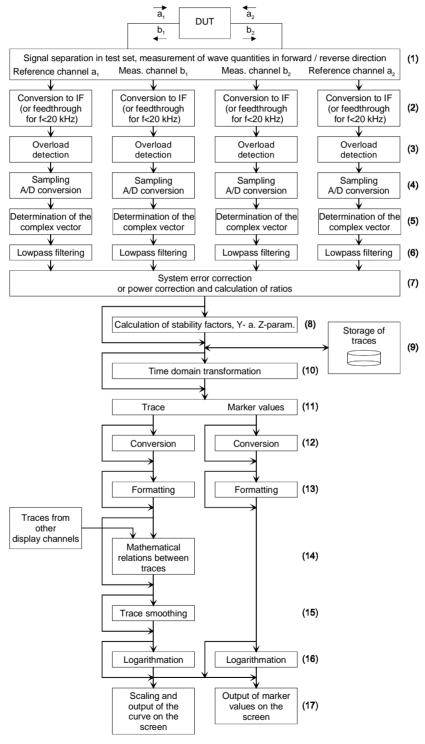


Fig. 2-11 Processing sequence of measured values for a ZVR display channel in bidirectional operation

Scattering parameters (S-parameters in short) are defined as ratios of the wave quantities. The following equation applies to a two-port DUT:

$$S_{11} := \frac{b_1}{a_1}$$
 $S_{21} := \frac{b_2}{a_1}$ $S_{12} := \frac{b_1}{a_2}$ $S_{22} := \frac{b_2}{a_2}$

The wave quantities in the numerator $-b_1$ and b_2 – are coupled out in the network analyzer test set (1) and converted in separate receive channels to an intermediate frequency (2). These receive channels are referred to as measurement channels. The parameters in the denominator a_1 and a_2 are obtained from the so-called reference channels on models ZVR, ZVC, ZVK and ZVM. On ZVRE and ZVCE, however, a_1 and a_2 are measured on the same physical receive channel, the assignment being dependent on the through direction of the RF switch. On the unidirectional model ZVRL, there is only reference channel a_1 . Each receive channel is subject to an analog overload detection (3). If the signal level is too high, a message appears on the screen. The receive channels are sampled synchronously in parallel and A/D-converted (4).

In the first digital processing stage the amplitude and phase of each wave quantity, i.e. complex vectors, are determined by downconversion to 0 Hz (5). The absolute phase of a wave quantity depends on the random IF phase at the beginning of sampling, it changes for each sweep. The phase difference of two wave quantities, which is given by the DUT, however, is independent of the sampling. The complex vectors of wave quantities are lowpass-filtered (6) in the signal processor, the bandwidth can be set via AVG - IF BANDWIDTH.

In the subsequent stage, the parameter selected by the user in the MEAS menu is formed from the wave quantities and cleared from systematic errors (7). Wave quantities (menu MEAS - WAVE QUANTITY) and quotients of wave quantities (menu MEAS - RATIO) are only power-corrected, i.e. the amplitude value is multiplied by a correction factor. For S-parameters, however, a system error correction is performed. For the corrected value of one S-parameter, the vector values of all measured wave quantities are used . In case of full two-port calibration, e.g. according to the TOM method, these are the four wave quantities measured in the forward and reverse direction, summing up to 8 values in total.

If a stability factor is selected as measured quantity in the menu *MEAS*, it is calculated from the complex values of all the four system-error corrected two-port S-parameters (8). The four parameters are determined in the system-error correction stage (7) of the current display channel.

The power- or system-corrected measured values can be stored (menu *TRACE*) (9)). Storage immediately after correction has the advantage that the subsequent processing steps can also be applied to stored traces as required by the user, which allows flexible handling of these data.

The next stage, which is only available with Option ZVR-B2, allows the transformation of S-parameters to the time domain (10). The transformation result is still a complex S-parameter irrespective of whether it is displayed in the time domain or (after transforming it back) again in the frequency domain.

If the conversion or formatting selected for the markers (softkeys *NORMAL – MARKER CONVERS* and *MARKER FORMAT*) differs from the conversion or formatting of the trace, the processing chain of the display channel is divided into two parallel branches (11).

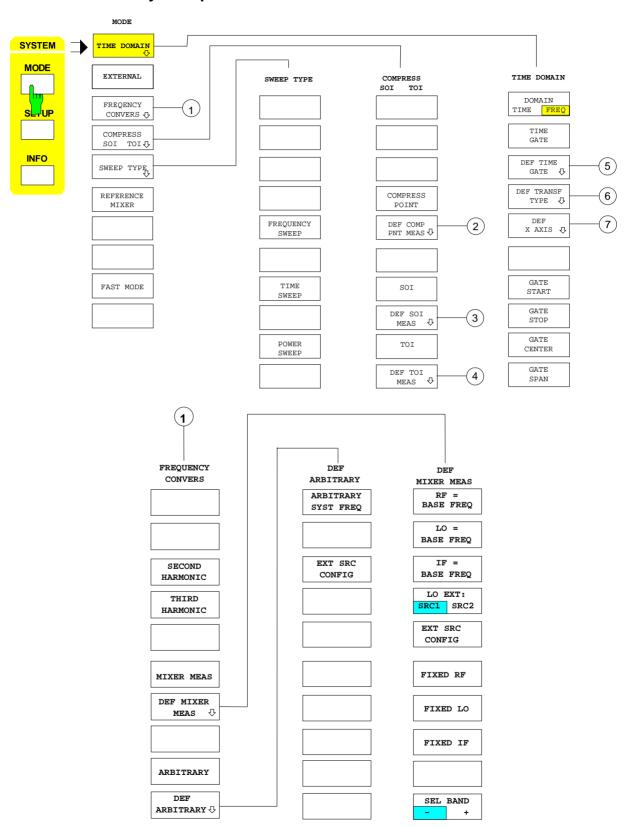
Menu COMPLEX CONVERS or NORMAL - MARKER CONVERS allows optional conversion of the complex S-parameters to other complex quantities (12). The inversion of the complex value as well as the normalized or absolute impedance or admittance can be selected here.

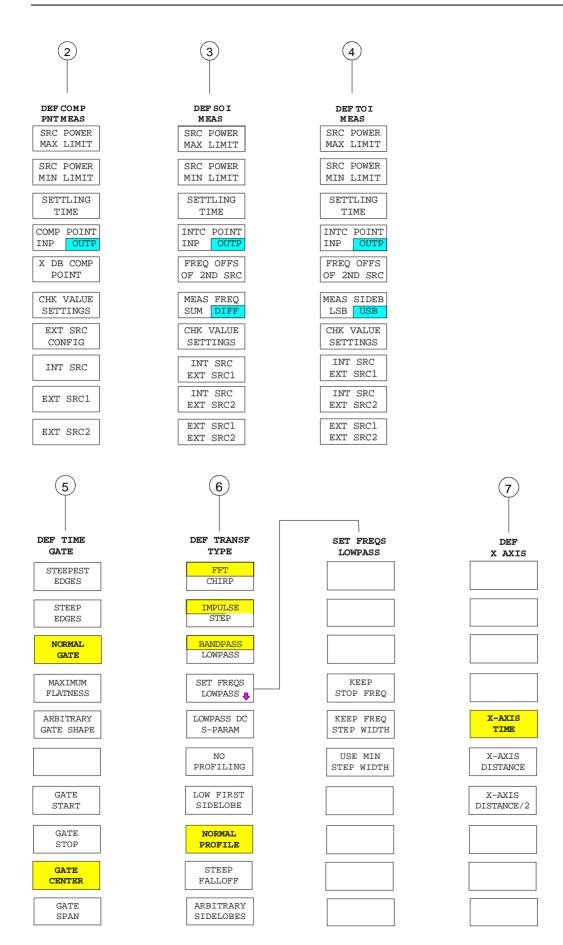
The S-parameter or ratio of wave quantities which is complex up to this stage can be either retained or converted to a scalar value. This conversion is referred to as formatting (13) and can be selected in the FORMAT or NORMAL - MARKER FORMAT menu. For wave quantities or conversion gains (MEAS – RATIO – CONV GAIN...), due to the already mentioned random phase, only magnitude formatting (FORMAT - MAGNITUDE) is available. In addition to the general mathematical formattings magnitude and phase or real and imaginary part, there are other formats with special relevance to the high frequencies, for example standing wave ratio and group delay. To calculate the latter the phases of two sweep points separated by a predefined frequency spacing (the so-called aperture) are used. It is even possible to select the aperture independent of the current test-point grid. If complex conversion to an absolute impedance or admittance is selected, the imaginary part of these quantities can be converted

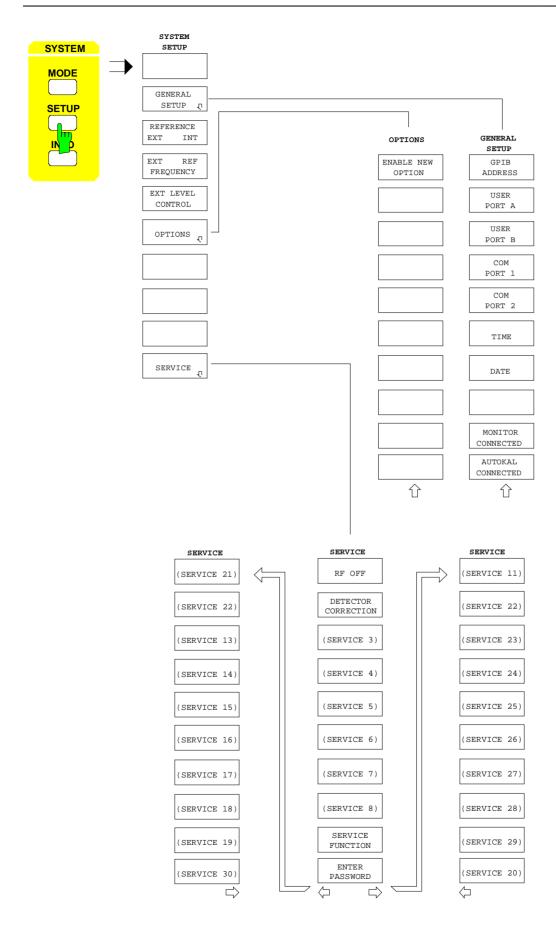
to the corresponding inductance or capacitance. If the DUT is a line, it is possible to determine its phase delay and its electrical or mechanical length from the phase difference between the first and the last sweep point.

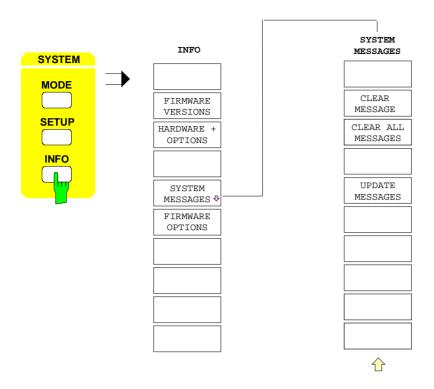
After formatting a mathematical relation between the trace and stored data or current measured values from other display channels (*TRACE – SHOW MATH*) can be defined (14). For this the sweep points of the traces must coincide. Stored traces are adapted to the conversion and formatting of the current display channel. Measured values from other display channels must be compatible with the current channel (scalar/complex and same unit).

The trace can be optionally smoothed (TRACE - SMOOTHING menu, 15).

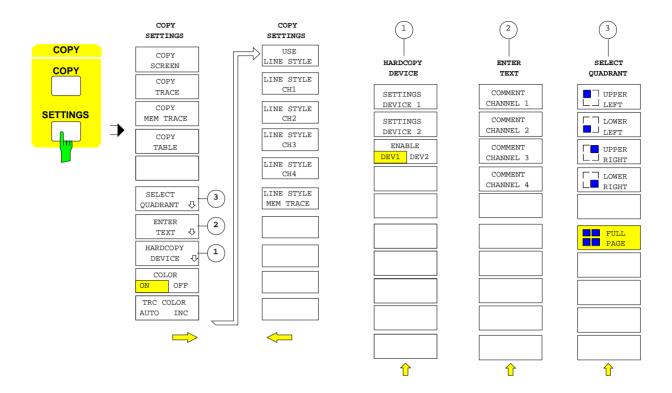

In the following processing step, the measured values are adapted to the diagram selected in the *DIAGRAM* menu. If it is a linear Cartesian or complex diagram, the values are simply fed through. If, however, scalar values are displayed on logarithmic Cartesian diagrams (logarithmic or dB grid in y direction), the values have to be logarithmized. Accordingly, logarithmation of the magnitude is required for displaying complex values in logarithmic polar diagrams (radial logarithmic or dB grid).

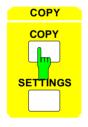

If the conversion and formatting is identical for the markers and for the trace, the marker values are taken from the trace data, otherwise from the separate marker processing path.

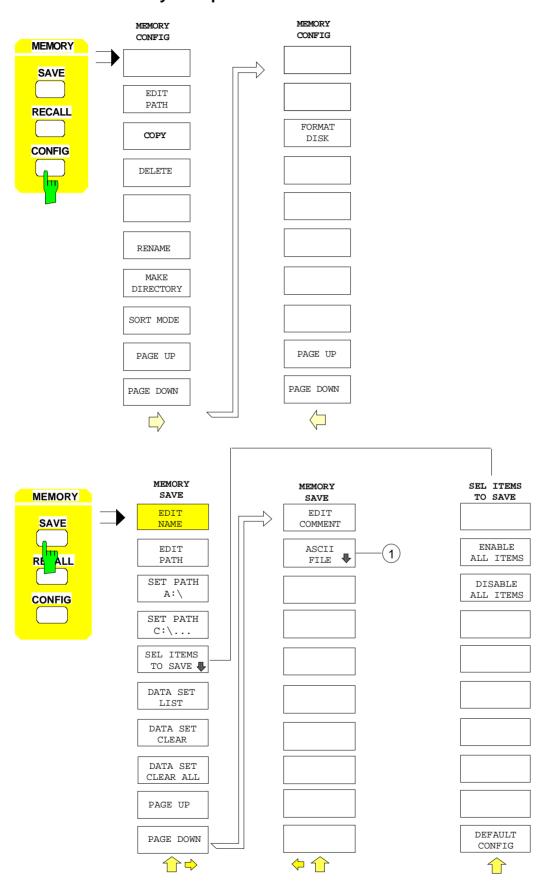

Finally, the trace is scaled to the display range selected in the SCALE menu and displayed on the screen together with the markers (17).

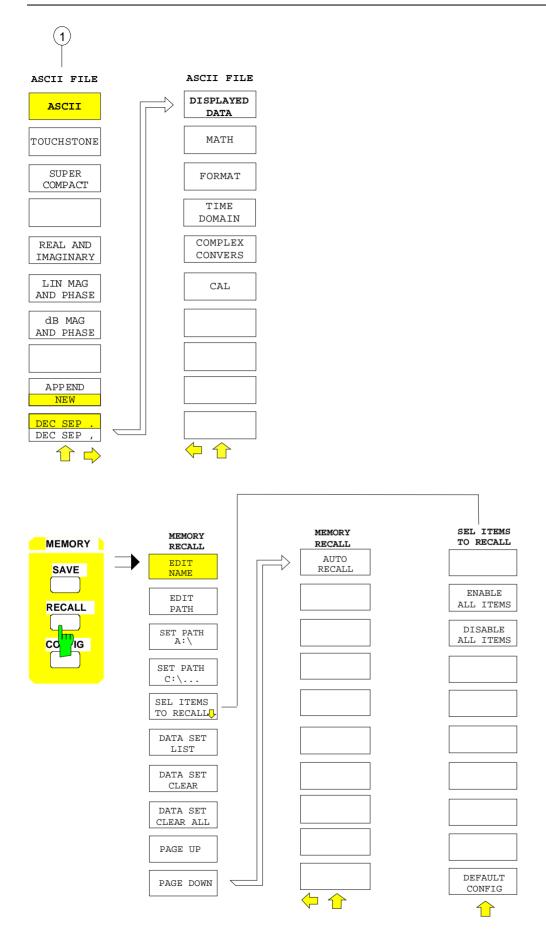

2.2 Menu Overview

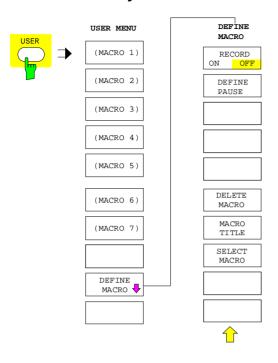
2.2.1 SYSTEM Key Group



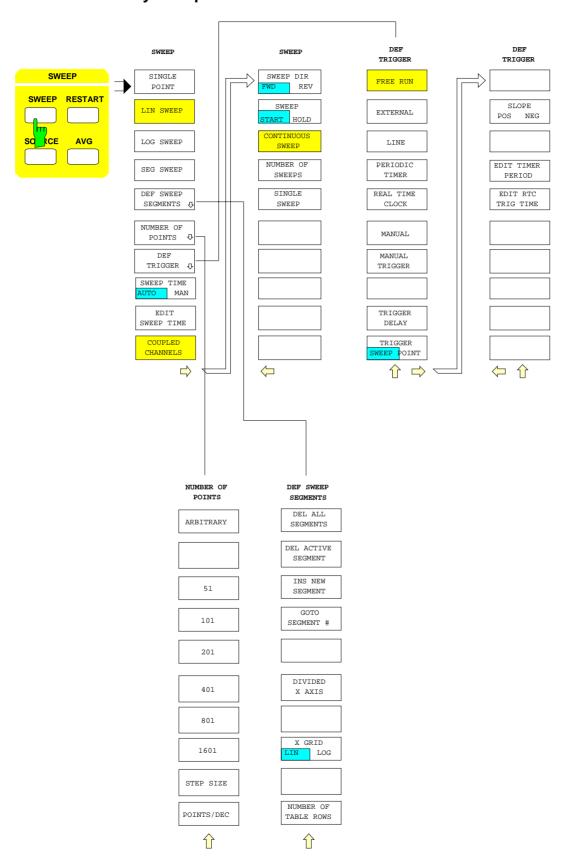


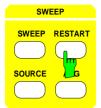

2.2.2 COPY Key Group



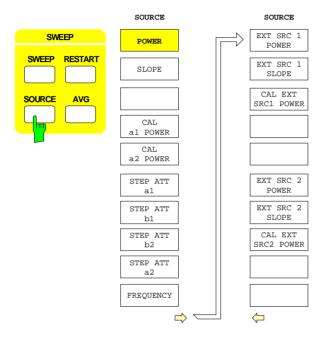

This key has no softkey menu assigned.

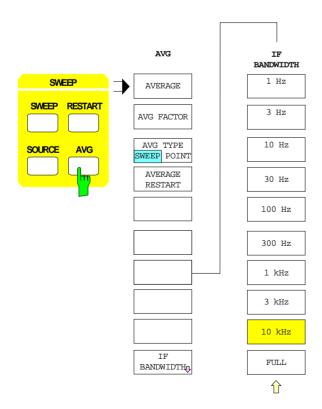
2.2.3 MEMORY Key Group

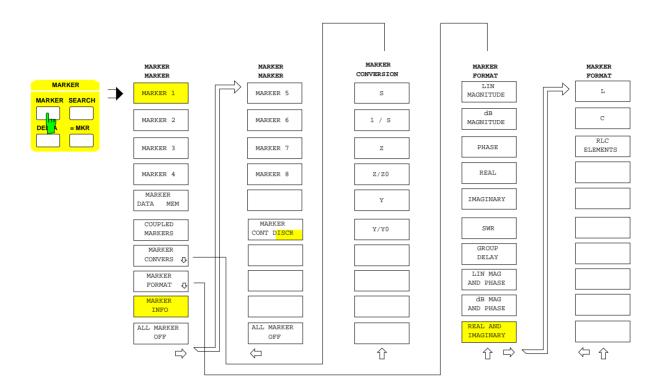


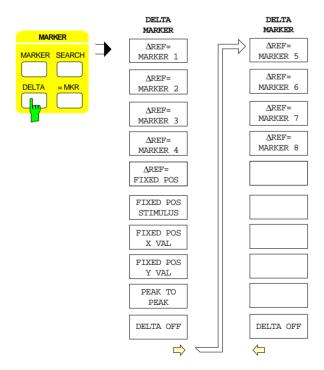


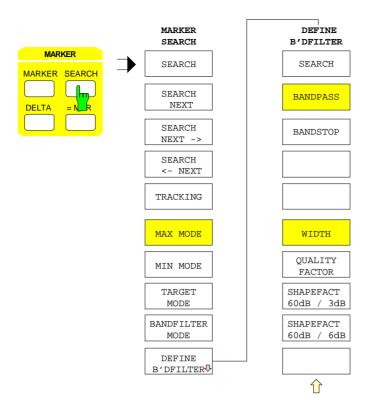
2.2.4 **USER** Key

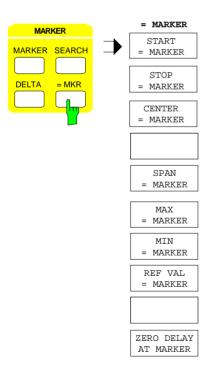



2.2.5 SWEEP Key Group

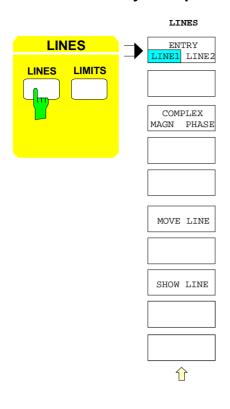


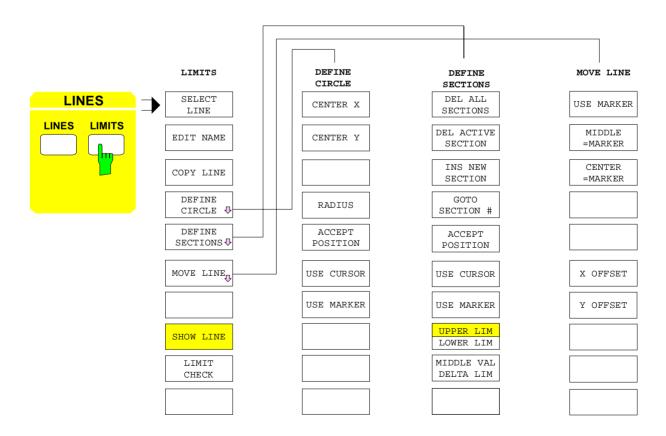

This key has no softkey menu assigned.

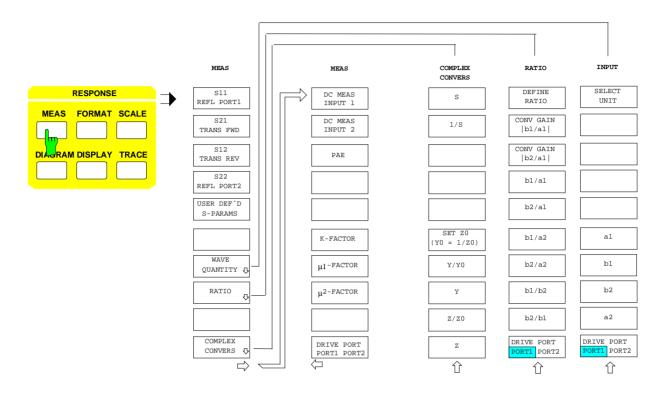


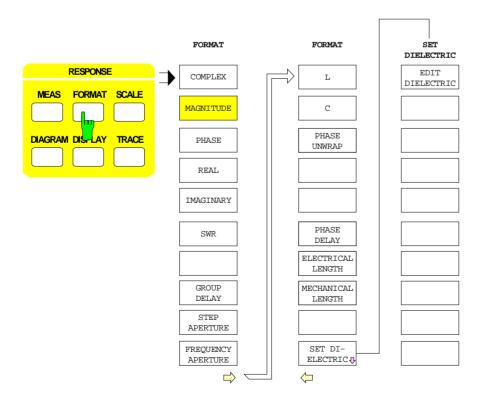


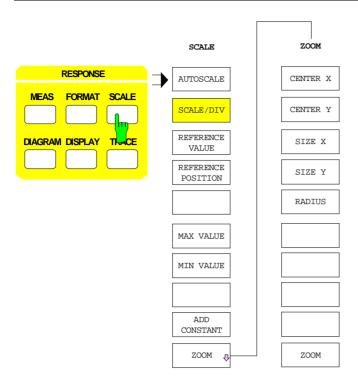
2.2.6 MARKER Key Group

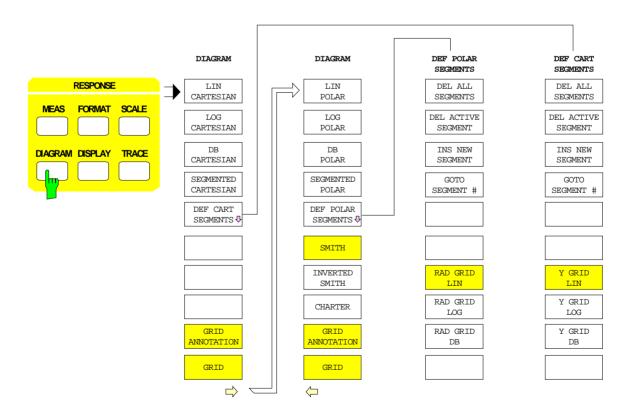


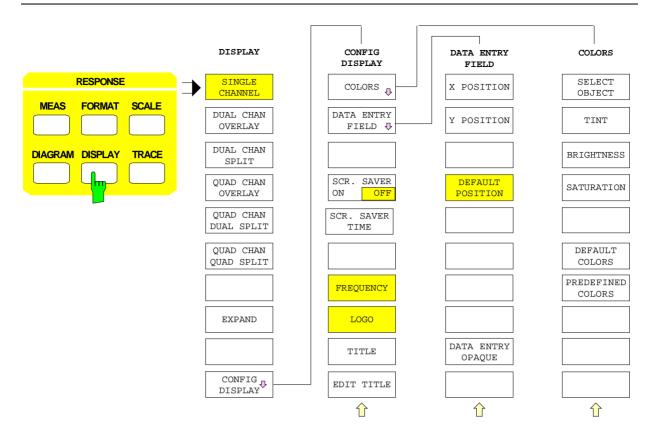


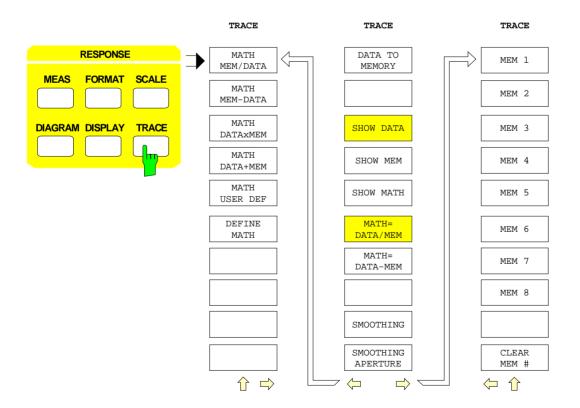


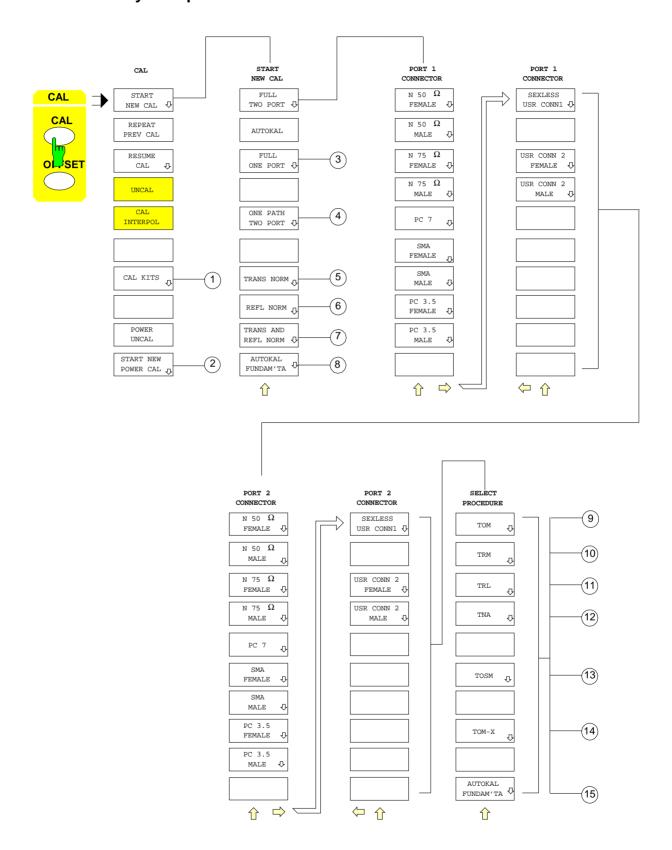

2.2.7 LINES Key Group

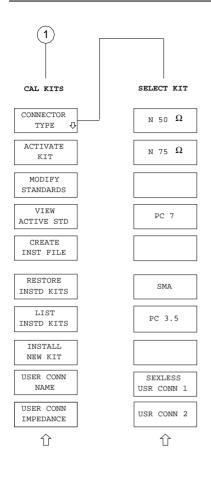


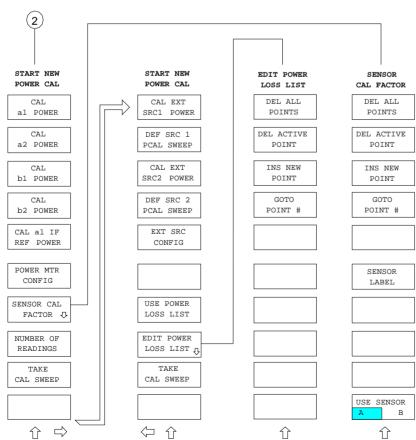


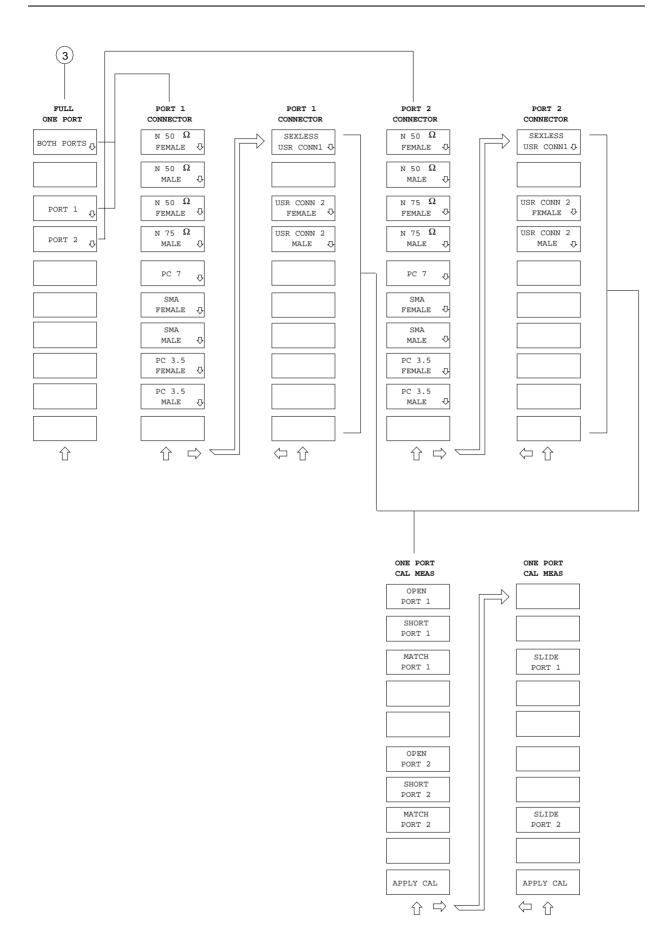

2.2.8 RESPONSE Key Group

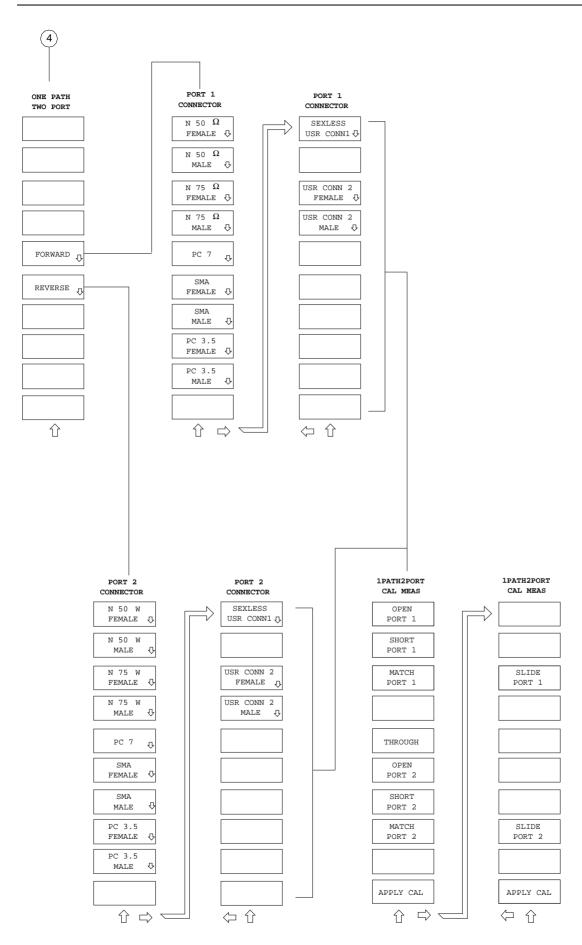


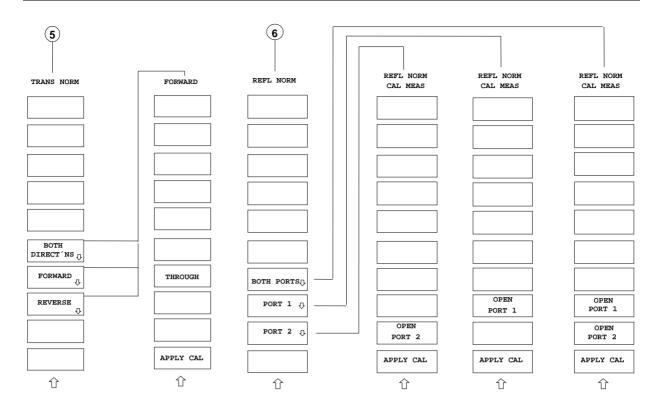


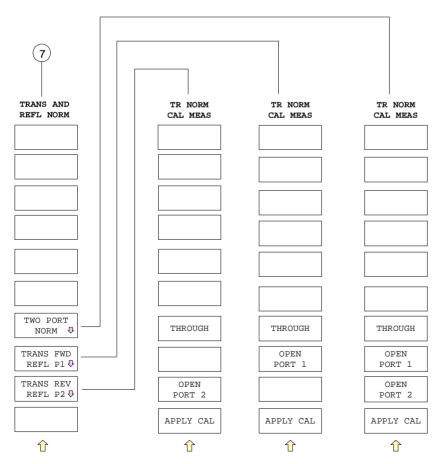


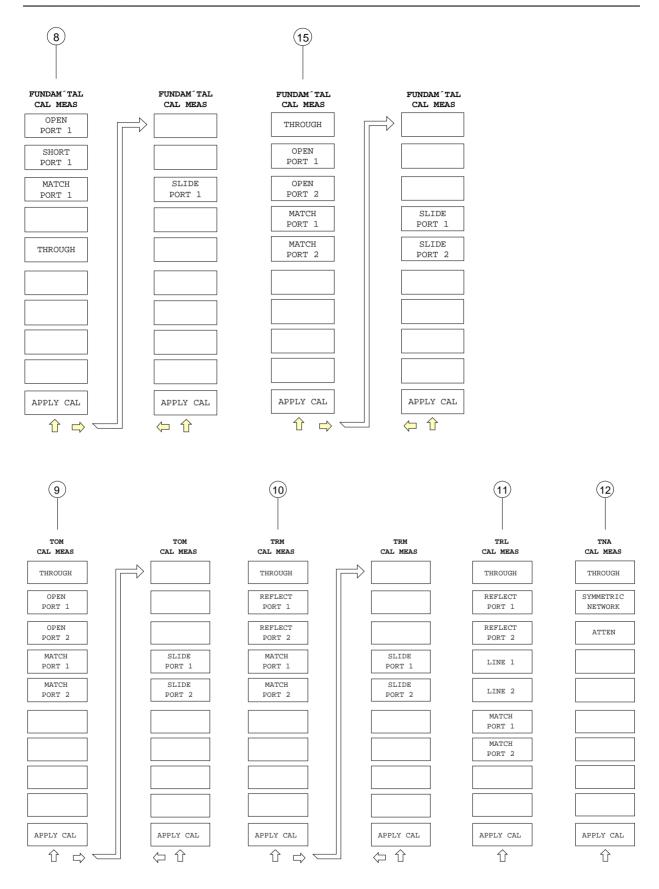


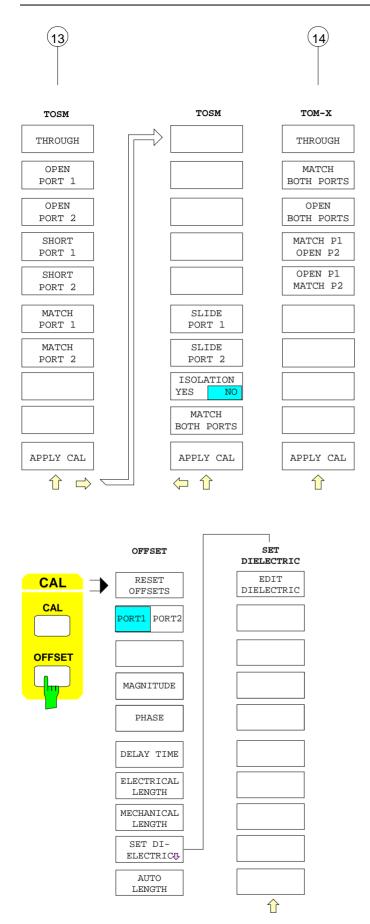



2.2.9 CAL Key Group









2.3 Basic Steps of Operation

Manual operation of the network analyzer is by means of keys and softkey menus. Device and test parameters can either be set directly via softkeys with switching function or by entering values into the fields or tables. If required, windows can be superimposed on the screen.

After switching on the instrument the setting of the measurement active prior to the last switch-off is restored (exception: another instrument configuration has been selected via AUTO RECALL in the MEMORY RECALL menu). Measurement results and settings of device parameters are displayed on the screen.

2.3.1 Screen

The screen informs continuously on the results and parameters of the selected measuring functions. The display of test results and the softkey labelling depend on the selected measurement function.

The test results are output in up to four channels that can be displayed at the same time.

Different types of diagrams (Cartesian diagrams with linear and/or logarithmic axis division and various circle diagrams such as polar diagrams, Smith charts, inverted Smith charts and charter diagrams) can be selected in each display channel. Moreover, the channels can be arranged in different ways on the screen. The measuring diagrams of 1 to 4 channels can be displayed overlaid or separately, the stimulus parameters of the individual channels can be coupled or decoupled.

The general layout of the screen is explained in Fig. 2-12 using the display of a Cartesian diagram as an example.

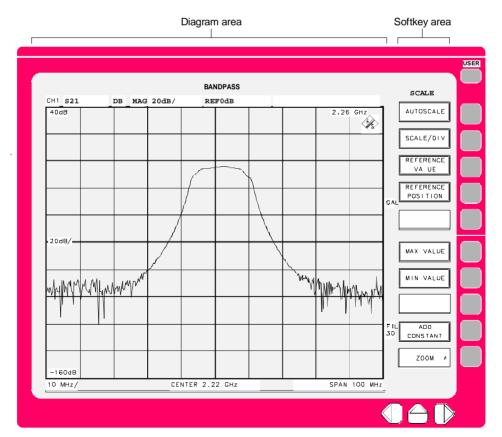


Fig. 2-12 General setup of the screen

The screen is subdivided into two areas:

Diagram area This area contains the measuring diagrams and other measured-value

information as well as the parameters and status information which are important for the analysis of the results. In addition, message fields, entry

windows and tables are shown in this area.

Softkey area The instrument functions which can be selected via the softkeys are displayed

in this area.

2.3.1.1 The Diagram Area

The general setup of the diagram area is illustrated in Fig. 2-13.

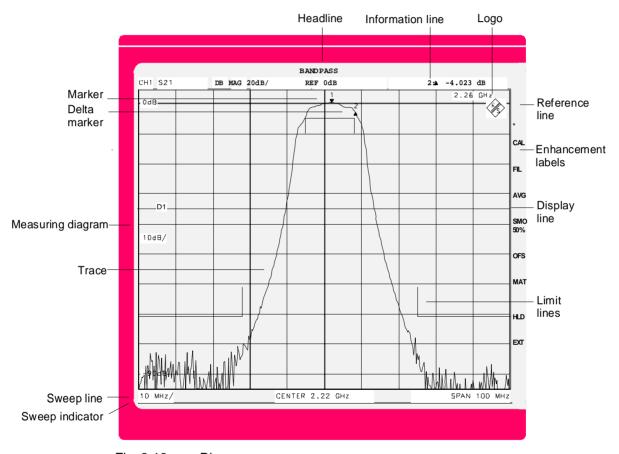


Fig. 2-13 Diagram area

Headline

Bandpass

The headline contains the user-defined labelling of a measurement. The title may be entered in the *RESPONSE DISPLAY-CONFIG DISPLAY* menu and displayed or removed. If the title is removed, this area of the screen is used for measuring diagrams.

Information line

CH2 S21 dB MAG 20 dB/ REF 0 dB σ 2: -9.384 dB

The information line offers additional information on the diagram either in all or in a few of its eight fields. The following information is given from the left to the right:

CH1 Active channel.

CH1 to CH4 may be indicated. Channel-specific entries such as the selected test parameter or the scaling of the measuring diagram are with reference to the active channel.

S21 Selected test parameter in active channel.

The following test parameters are possible:

- S-parameters, e.g. S11, S21, S12 or S22
- Other ratios of wave quantities, e.g. b1/a1, b2/a1, b2/Pa1 (conversion gain)
- Wave quantities, eg a1, a2, b1, b2
- absolute or normalized two-port Z or Y parameters such as Z11, Y11, Z11/Z0, Y11/Y0
- DC voltage test inputs and derived quantities, eg DC1, DC2, PAE
- Stability factors, eg K, μ1, μ2

If required, this field additionally indicates, whether a stored trace ('Mem Trace' or 'Math Trace', see below) is displayed in addition to the currently displayed trace. In these cases, xM is added to the entry in the parameter field. M is the abbreviation for 'Mem Trace'. The variable x indicates the kind of link between the data trace and the stored trace:

- & Simultaneous display of 'DataTrace' and 'Mem Trace'.
- Display of the sum of 'DataTrace' and 'Mem Trace'.
- Display of the difference of 'DataTrace' and 'Mem Trace'.
- * Display of the product of 'DataTrace' minus 'Mem Trace'.
- / Display of the ratio of 'DataTrace' and 'Mem Trace'.
- # Display of a user-defined link of 'DataTrace' and one or more 'Mem Traces'.
- Z/Z0 Conversion selected in active channel (in the example: none).

The conversion describes the calculation for converting the selected complex (vector) test parameter into another complex parameter:

1/S inverse scattering parameter

Z impedance

Z/Z0 normalized impedance

Y admittance

Y/Y0 normalized admittance

The S-parameters is often further processed without conversion. In this case, the information field remains empty.

Information line (continued)

dB Logarithmation in active channel

This field indicates whether the formatted parameter (see next field below) is displayed as linear parameter (LIN) or if a logarithmic value is calculated prior to display. In the case of logarithmic values the ordinate scaling can be selected to be logarithmic (LOG) or linear (dB).

Subdivision of screen ZVx

Information line (continued)

MAG Formatting the test parameter in the active channel

Cartesian diagram:

The format display indicates whether the selected test parameter of the active channel is converted into a scalar component and if so in which one. The following components are possible:

MAG magnitudeφ phaseRe real quantityIm imaginary quantity

SWR standing wave ratio (special)

DLY group delay

L inductance (only for conversion of Y or Z)
C capacitance (only for conversion of Y or Z)

CMP compression point
SOI 2nd-order intercept point
TOI 3rd-order intercept point

If a complex test parameter is displayed in a complex circle diagram, the field remains empty.

20 dB/ Scaling of measuring diagram in active channel

The values indicated in this and in the following field depend on the input mode for scaling.

With linear division of the ordinate or the radial axis, i.e. without logarithmation (LIN) or with logarithmation in dB, scaling can be entered via the SCALE / DIV, REFERENCE VALUE softkeys or REFERENCE POSITION. In the following, this is called SCALE / DIV entry. As an alternative, entry via MIN and MAX VALUE is also possible (in brief: MIN / MAX entry). Only the MIN / MAX entry is possible for logarithmic or segmented division as well as in the Smith chart or charter diagram.

Cartesian diagram:

With SCALE / DIV entry the value offset between two adjacent horizontal grid lines followed by a slash is displayed in the first scaling field. In case of MIN / MAX entry, the smallest ordinate value of the diagram is displayed and marked by a preceding downward arrow, eg \downarrow -180°.

Polar diagram:

With SCALE / DIV entry the formatting field indicates the radial spacing between two adjacent scaling circles. A slash is inserted behind the numeric value and the unit.

If, with MIN / MAX entry, the amplitude value of the diagram center is different from zero (possible only with logarithmic or segmented polar diagrams), the value of MIN VALUE is displayed here. If the value is zero, the field remains empty.

Smith chart:

No entry, since the center value of the Smith chart is always zero.

Information line (continued)

REF 0 dB

Scaling of measuring diagram in active channel

Cartesian diagram:

In case of the SCALE / DIV entry, the ordinate value of the reference line (reference value) is output in the second scaling field behind REF, in case of MIN / MAX entry the highest ordinate value of the diagram is displayed after an upward arrow.

Polar diagram:

The radius of the reference circle is output behind REF for SCALE / DIV entry. For MIN / MAX entry the diagram radius with a preceding upward arrow is displayed.

Smith chart:

The radius of the diagram is output after an upward arrow.

 σ_2 : -9.384 dB

Current measured value of the active marker or delta marker

This information field remains empty when 4 windows are displayed simultaneously (QUAD CHANNEL QUAD SPLIT). The marker value is displayed in the diagram instead.

Logo

(covered by the marker info list in the example) A company's logo (default: R&S logo) can be inserted into or removed from the display and printout via the RESPONSE-DISPLAY-CONFIG DISPLAY menu.

Enhancement labels

Enhancement labels indicate important instrument settings, which essentially influence the measurement and which are not immediately obvious when viewing the measured values.

MAC

A macro is recorded

(USER – DEFINE MACRO – RECORD function in ON position).

GAT

A gate is active during measurement in the time domain (SYSTEM MODE – TIME DOMAIN – TIME GATE function is active).

WND

During transformation to the time domain the measurement data in the frequency range are weighted with a window function (SYSTEM MODE – TIME DOMAIN – DEF TRANSF TYPE – NO PROFILING function not active).

EXT

Receiver inputs INPUT b1 and INPUT b2 are active (ZVRx, ZVCx: SYSTEM MODE – EXTERNAL mode, only with option ZVR-B25)

- H=2 Receive frequency is the second harmonic of generator signal (mode: SYSTEM MODE-FREQ CONVERS-SECOND HARMONIC).
- H=3 (alternatively) The receive frequency is the third harmonic of the generator signal (mode: SYSTEM MODE-FREQ CONVERS-THIRD HARMONIC).
- (alternatively) The mixer measurement is switched on (mode SYSTEM MODE-FREQ CONVERS-MIXER MEAS).

Subdivision of screen ZVx

Enhancement labels (continued)

ARB (alternatively) The arbitrary frequency conversion is activated (mode: SYSTEM MODE-FREQ CONVERS-ARBITRARY).

- CMP The compression point measurement is activated (mode: SYSTEM MODE-COMP SOI TOI-COMPRESS POINT).
- (alternatively) The measurement of the second-order intercept point is activated. (mode: SYSTEM MODE COMP SOI TOI SOI).
- TOI (alternatively) The measurement of the third-order intercept point is activated (mode: SYSTEM MODE-COMP SOI TOI-TOI).
- The FAST MODE is active (mode: SYSTEM MODE-FAST MODE).
- The system error correction is activated (CAL CAL UNCAL function not active).
- (alternatively) The system error correction is activated and system error correction data are interpolated (CAL CAL-INTERPOL function active).
- CA? (alternatively) The system error correction is activated (function *CAL CAL UNCAL* not active), but the generator level does not correspond with the level of the calibration (does not apply to ZVK, ZVM with *FULL ONE PORT* or *Txx* calibration and change of attenuation of generator step attenuator).
- ADD A constant is added to the scalar measurement value or to the magnitude of the complex measured value (function RESPONSE SCALE ADD CONSTANT active).
- OFS The measurement with length, amplitude or phase offset \neq 0 is active (entry via CAL OFFSET).
- PC Power correction is activated. Beneath PC, a maximum of 4 lines indicate the wave quantities which are subject to power correction (CAL a2/a21 CAL POWER UNCAL function is not active).
- b1/b2/b12 The display a1I appears when only one receiver level correction is active for wave quantity a_1 ; accordingly for a_2 .

E1, E2 or E12 indicates that valid power correction data is available for one or both external signal generators. However, the display goes off when the associated generator is being operated in a range which is not, or not completely, covered by the correction data.

pci (alternatively) The power correction is switched on with interpolation performed versus frequency. A frequency interpolation is not displayed for external generator.

b1/b2/b12 E1/E2/E12

1043.0009.50 2.54 E-13

PCO a1/a1I a2/a21 b1/b2/b12 E1/E2/E12 (alternatively) The power correction with offset is switched on, ie, the rated value of a generator level calibration was modified subsequent to calibration. A calibration offset is not displayed for external generators.

Subdivision of screen ZVx

Enhancement labels (continued)

a2/a21 (alternatively) The level correction is switched on, but the rated value of the level was not attained at all test points during the calibration, or the level offset is so large that the setting range of a generator is exceeded.

b1/b2/b12
E1/E2/E12

The display channels are coupled (SWEEP SWEEP-COUPLED CHANNELS function is active).

The sweep is interrupted (SWEEP SWEEP-CONT HOLD function is in HOLD position).

TRG The measurement is triggered, ie the trigger source is indicated in the line below. Possible trigger sources are (see Section 2.10.1.3):

EXT external source

LIN zero crossing of the ac voltage

TIM internal clock source with settable period length

RTC real-time clock MAN manual trigger

(SWEEP-SWEEP-DEF TRIGGER – FREEE RUN is not active)

AVG Averaging is switched on. Beneath AVG, the averaging factor (SWEEP AVG - AVG FACTOR function) is indicated (SWEEP AVG-AVERAGE function is active).

Beneath FIL, the IF bandwidth of the receiver is indicated 10k (SWEEP AVG- IF BANDWIDTH function).

The trace is smoothed. Beneath SMO, the smoothing aperture

20% (RESPONSE TRACE-SMOOTHING APERTURE function) is indicated (RESPONSE TRACE-SMOOTHING function is active).

MAT À mathematical linkage is switched on

(RESPONSE TRACE-SHOW MATH function is active).

With mouse control, a double click on one of the fields causes switchover to the softkey menu which allows for modification of the respective setting.

Reference line

The reference line/circle marks the location of the reference value for each channel. With MIN/MAX entry, with segmented axis as well as with Smith charts and charter diagrams there is no reference line/circle. In Cartesian diagrams, the reference line is marked by a triangle. The reference value is output after this triangle.

Display lines

A display line is an auxiliary line that can be shifted. It is a like a ruler. Display lines facilitate the analysis of the trace. Horizontal display lines with associated current ordinate value are provided in Cartesian diagrams. The display lines are radial or circular in circle diagrams (see Section 2.12.1, Display Lines).

Limit lines

A limit line is a special help line that can be configured by the user. An automatic check is made whether the limit line is violated for the current trace (see Section 2.12.2, Limit Lines).

SPAN 100 MHz

Sweep indicator

The sweep indicator is a progress bar at the lower edge of the screen showing the current state of the sweep. This is particularly useful for slow sweeps or for the representation of measured values in circle diagrams.

Independent of the number of displayed channels there is one sweep indicator only. If several display channels are measured uncoupled, ie one after the other, the corresponding sweep indicator is displayed for each channel. The colour of the sweep indicator depends on the colour of the trace to be measured. For coupled channels, the sweep indicator has the colour of the active channel.

The sweep indicator can be displayed or removed in the *RESPONSE DISPLAY-CONFIG DISPLAY* menu. With zoomed diagram display, the sweep indicator (bar) continues to show the complete sweep between start and stop frequency instead of only the section of the sweep which is inside the zoom range.

The sweep indicator operates like a progress bar, ie a coloured bar is shown from left to right according to the current sweep position. The sweep indicator is not labelled.

Sweep line

10 MHz/ CENTER 2.23 GHz

The sweep line indicates the limits of the sweep range. It is indicated below the diagram for all diagram types. Three types of indication are possible:

- Indication of the START and STOP values. The increment between two grid lines is shown in the center.
- Indication of the CENTER and SPAN values. The step size between two grid lines is shown at the beginning of the line (left).
- Indication of the value of the sweep variable for SINGLE POINT measurement.

The readout of the increment between two grid lines is omitted in circle diagrams.

Note:

In the power sweep mode, the displayed sweep range applies to the test port that supplies the stimulus for the test parameter in the active display channel (for example PORT 1 for S_{11}). For the sweep range, any generator power calibration or attenuation of the generator step attenuators that may be active is taken into account.

Subdivision of screen ZVx

Measuring diagram

The measuring diagram is displayed in the diagram area of the screen. Different types of diagram may be selected (see Section 2.14.4, *RESPONSE DIAGRAM* menu):

- Cartesian diagrams with linear and/or logarithmic scaling and
- various circle diagrams such as

polar diagrams with linear or logarithmic radial scaling,

Smith charts.

inverted Smith charts and

charter diagrams.

Within Cartesian diagrams, the spacing of horizontal lines (SCALE / DIV) is given in the middle (left). The top and bottom lines in the grid are labelled. Circle diagrams are not labelled – exception: Smith charts and charter diagrams. In the power sweep and time sweep modes, the CW frequency is indicated at the bottom left.

Measuring curve

Three different types of traces can be displayed (see Section 2.14.6, *RESPONSE TRACE* menu):

- Data Trace

The Data Trace represents the current measured data.

Memory Trace

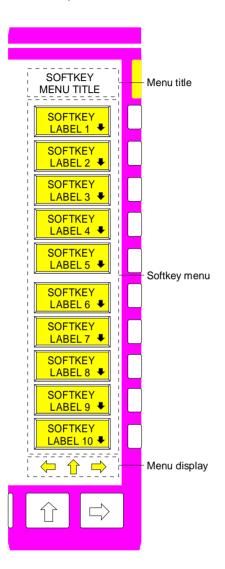
The Memory Trace is a stored data trace. The colour of the Memory Trace can be different from the colours of the data or Math Traces. It is, however, the same for all four display channels.

- Math Trace

As an alternative to the Data Trace, the arithmetical linking of the Data Trace and the Memory Trace can be output. The Math Trace has the same colour as the Data Trace but is marked by the enhancement label MAT.

Delta marker

In the delta mode, the difference between stimulus and response values of markers compared to a so-called reference marker is determined (see Section 2.3.4.2, Marker Info Lists, and Section 2.11.3, Delta Markers).


Marker

Markers are used to read out measured values (see Section 2.3.4.2, Marker Info Lists, and Section 2.11.1, Marker).

1043.0009.50 2.58 E-13

2.3.1.2 The Softkey Area

The softkey area is subdivided into the menu title, the actual softkey menu and the menu display.

The menu title is displayed above the 10 softkeys.

The softkey labelling and function depends on the respective menu.

The softkeys call up submenus, open entry windows or make a 1-out-of-N selection (see Sections 2.3.4 and 2.3.5).

Softkeys are masked out if the functionality which they represent is not available. A distinction has to be made between two cases:

- If an instrument function is optional, and if this option is not fitted, the associated softkey is masked out.
- If the instrument function is not available temporarily due to the reaming settings, the softkey is displayed without the 3D frame (softkey is displayed "flat").

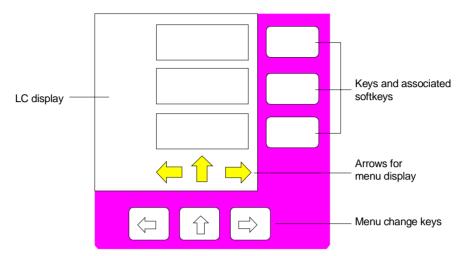
The softkeys are masked out with IEC/IEEE-bus control and during processing of a macro.

The menu display facilitates the orientation within the menu structure (see Section 2.3.5)

Depending on the associated functionality a coloured underlaid softkey or part of softkey has the following meaning:

Green: The corresponding instrument function is switched on.

Red: Selection table or entry field is active.

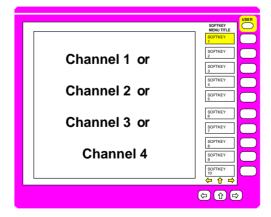


The corresponding instrument function has two states, "MAGN" and "PHASE" in this example. The active state is underlaid (MAGN).

Subdivision of screen ZVx

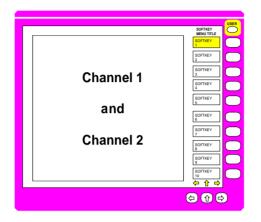
The menu display comprises three arrows which indicate the corresponding direction to be used to move within the menu tree. Arrows \Leftarrow and \Rightarrow are displayed only if a right or left side menu is available. Arrow \uparrow is displayed in submenus only and indicates that a higher menu level can be accessed.

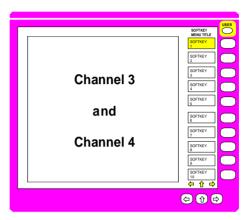
The arrows of the menu display are assigned to the menu change keys on the front panel below the softkey bar:


2.3.2 Subdivision of Screen - Display Modes

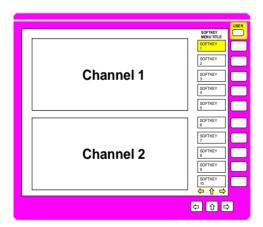
The measuring diagrams assigned to the four display channels (CH1 to CH4) can be displayed on the screen individually ('Single Channel') or in pairs of two ('Dual Channel') or all the four of them simultaneously ('Quad Channel'). Besides, they can either be displayed superimposed ('Overlay') or separated in different areas of the screen ('Split'). In addition, the displayed charts can be set to maximum size such that the labelling and softkeys are cancelled (Expand mode).

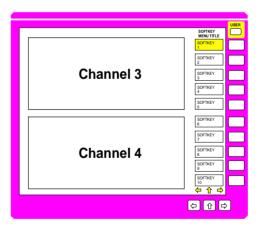
These corresponding settings are made in the RESPONSE DISPLAY menu.


2.3.2.1 Single Channel


Only one of the four channels is displayed on the entire screen. This channel is the active channel. It is selected using the four keys *CH1* to *CH4* in the *CHANNEL* key field.

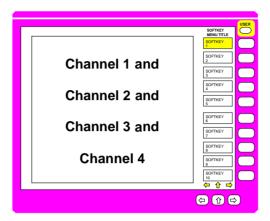
2.3.2.2 Dual Channel Overlay Overlay


Apart from the active channel, an additional channel is displayed. The channels are assigned to each other in pairs of two. Either channel 1 and channel 2 or, alternatively, channel 3 and channel 4 can be displayed simultaneously. In this setting either both forward scattering parameters or both reverse scattering parameters can be measured simultaneously. The diagrams of both channels are superimposed ('Overlay'). An information line is available for each channel. Decoupled channels also have their own sweep line. The lowest line is assigned to the channel with the highest number.

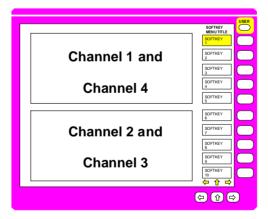


2.3.2.3 Dual Channel Split

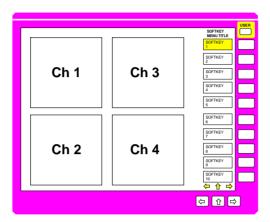
Two separate diagrams are displayed. Here, too, either channel 1 and channel 2 or channel 3 and channel 4 are displayed together. The channel with the lower number is displayed in the upper half of the screen, the other channel in the lower half.



Subdivision of screen ZVx


2.3.2.4 Quad Channel Overlay

The diagrams for all of the four channels are superimposed. Four information lines are arranged one on top of other with the order from top to bottom corresponding to the channel numbers. With decoupled channels, the sweep lines are arranged in the same way.


2.3.2.5 Quad Channel Dual Split

All of the four channels are displayed simultaneously, channels 1 and 4 overlaid in the upper half of the screen and channels 2 and 3 in the lower half. In this setting both reflection parameters and both transmission parameters can be displayed together in one diagram.

2.3.2.6 Quad Channel Quad Split

All of the four channels are displayed in separate sections. Channel 1 is displayed in the upper left quarter, channel 2 in the lower left quarter, channel 3 in the upper right quarter and channel 4 in the lower right quarter of the screen. The four S-parameters are arranged to correspond exactly to those in the two-port matrix.

2.3.2.7 Full Screen – Expand Mode

In this display mode, the diagram(s) is (are) expanded to maximum screen size. All labelings, enhancement labels, softkeys as well as the sweep indicator are omitted. Full screen is particularly suitable with fixed settings such as those used in production environments (see Section 2.14.5, RESPONSE DISPLAY menu).

Diagrams ZVx

2.3.3 Diagrams

The network analyzer offers various types of diagram for selection:

Cartesian diagrams

with linear and/or logarithmic scaling,

• Circle diagrams

- polar diagrams,
- Smith charts,
- inverted Smith charts and
- charter diagram.

The type of diagram is selected in the RESPONSE DIAGRAM menu.

2.3.3.1 Cartesian Diagrams

A number of Cartesian diagrams may be selected.

- Abscissa (x-axis) with linear or logarithmic scaling
- Ordinate (y-axis) with linear or logarithmic scaling
- Division of the abscissa or ordinate into one, two or three segments which can be subject to linear or logarithmic scaling.

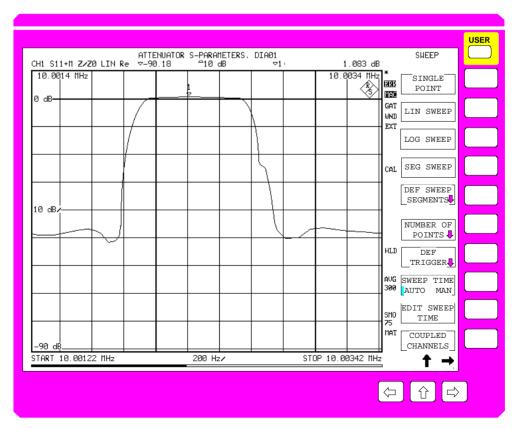


Fig. 2-14 Linear, Cartesian diagram

ZVx Diagrams

Abscissa scaling

The START and STOP or CENTER and SPAN keys in the STIMULUS key field specify the subdivision of the abscissa.

The axis labelling can be masked out for each channel, individually (*RESPONSE DIAGRAM - GRID ANNOTATION* softkey).

Linear abscissa division

The abscissa is scaled automatically depending on the sweep range selected. There is no fixed tenth-division scale (cf. ordinate scaling).

If start and stop values are entered, the intelligent grid can select between 5 and 15 grid lines.

If the center value is entered, the complete grid is arranged symmetrically around the center value. This makes the evaluation of filter adjustments, for example, easier.

Logarithmic abscissa division

The abscissa is divided into decades, each decade being divided **logarithmically** with the grid lines 1, 2, 3, 4, 5, 6, 7, 8 and 9. If the abscissa comprises more than 4 decades, the division scheme 1-2-4-6-8 is applied.

If the abscissa scale to be displayed comprises less than two octaves, the instrument automatically switches back to linear abscissa division.

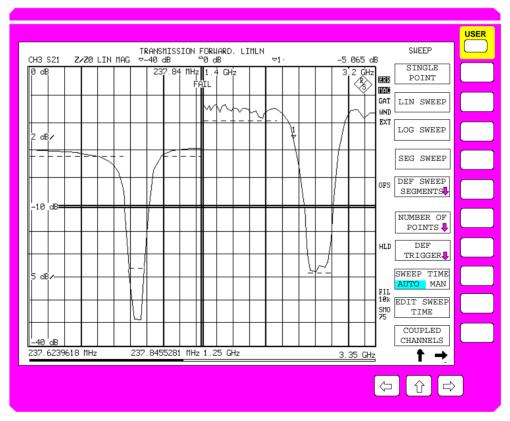


Fig. 2-15 Cartesian diagram with two segments on the abscissa and ordinate (single channel), each with limit lines and FAIL message

Diagrams ZVx

Segmented abscissa

For a segmented sweep with up to three non-overlapping segments, these segments can be separated graphically.

In this display mode, all segments are of equal width whereas the swept range may differ in size. The segments may be scaled linearly or logarithmically (see Section 2.10, "Sweep Settings").

Ordinate scaling

The subdivision of the ordinate is specified in the RESPONSE DIAGRAM and RESPONSE SCALE menus.

Similar to the abscissa, the axis labelling can be masked out for each channel, individually (*RESPONSE DIAGRAM - GRID ANNOTATION* softkey).

Linear scaling of the ordinate

The linear scaling of the ordinate can be specified in two different ways in the *RESPONSE SCALE* menu.

- The **tenth-division scale** which is defined using the *SCALE/DIV*, *REFERENCE VALUE* and *REFERENCE POSITION* softkeys. The graphic distance between two grid lines inside the diagram is always 1/10th of the diagram height. One of the grid lines, the reference line is emphasized by a red triangle. The *REFERENCE POSITION* softkey allows for continuously setting the position of the reference line between 0 (lower edge of diagram) and 10 (upper edge of diagram) units of the grid. Shifting the reference line causes the complete y-grid to be shifted, ie the distance between the top and the bottom line of the grid and the edge of the diagram is not necessarily 1/10th of the diagram height.
- The flexible ordinate scaling which is defined by the maximum and minimum limit value of the diagram (MAX VALUE and MIN VALUE softkeys). Between five and fifteen lines are generated in a 1-2-5 grid. The position of this grid can be arbitrary concerning the maximum and minimum values of the diagram, ie it has no defined distance to the edges of the diagram.

Logarithmic scaling of the ordinate

The logarithmic ordinate scaling is defined in the *RESPONSE SCALE* menu using the *MAX VALUE* and *MIN VALUE* softkeys.

The logarithmic grid consists of a division into decades, each decade being divided **logarithmically** with 2, 3, 4, 5, 6, 7, 8 and 9. If the ordinate comprises more than 4 decades, the division scheme 1-2-4-6-8 is applied.

ZVx Diagrams

The logarithm function assigns real values to positive numbers, only. In order to allow for the representation of negative values and values with alternating signs in a logarithmic scale, the diagram is subdivided into an upper and a lower half. Logarithms of positive values are displayed in the upper half of the diagram, as usual. For negative values, the absolute value is taken and the logarithm of the absolute value is entered in the lower half of the diagram (mirror-symmetric to the positive values) Thus, except for zero, all real numbers can be represented in a logarithmic scale.

If the ordinate scale to be displayed is less than two octaves, the instrument switches back to linear ordinate scaling, automatically.

The limit of the logarithm at the origin (y tends to 0) is $-\infty$ (infinite). The gap around the symmetry axis of the diagram symbolizes the domain on the real ordinate axis, which contains negative, infinite logarithms.

The upper-edge of the upper half of the diagram, and the lower-edge of the lower half of the diagram are defined by MAX VALUE and the negative MAX VALUE.

The lower-edge of the upper half of the diagram, and the upper-edge of the lower half of the diagram (which are adjoined at the above-mentioned symmetry axis) are defined by MIN VALUE and the negative MIN VALUE.

Fig. 2-16 Logarithmic Cartesian diagram with symmetric subdivision for positive and negative values

Diagrams ZVx

Segmented ordinate

Similar to the abscissa, the ordinate can be graphically subdivided into up to three segments.

In this display mode, all segments are of equal width, whereas the swept range may differ in size.

Unlike for the segmentation of the abscissa, however, the values of the borders of adjacent segments have to coincide, ie there must be no gaps between the segments. The segments can be scaled linearly or logarithmically.

The setting is made in the RESPONSE DIAGRAM menu.

2.3.3.2 Polar Diagrams

A large variety of polar diagrams is offered for selection.

- · Diagrams with linear radial division,
- · Diagrams with logarithmic radial division,
- Subdivision of the radial axis in a maximum of two segments which in turn can be subdivided linearly or logarithmically.

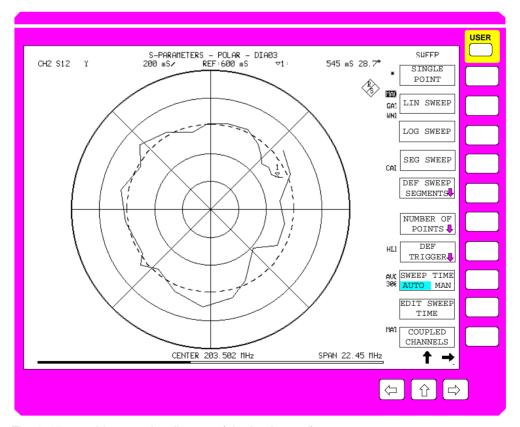


Fig. 2-17 Linear polar diagram (single channel)

ZVx Diagrams

Radial Scaling

The radial axis is not labelled. The scaling is indicated in the information line.

Linear radial axis

The linear, radial scaling can be defined in the RESPONSE SCALE menu in two different ways...

- The **fifth-division scale** which is defined using the *SCALE/DIV*, *REFERENCE VALUE* and *REFERENCE POSITION* softkeys. The graphic distance between two grid circles inside the diagram is always 1/5th of the diagram radius. One of the circles, the reference circle is bold. The *REFERENCE POSITION* softkey allows for continuously setting the position of the reference circle between 0 (center of diagram) and 5 (outermost circle of diagram) units of the grid. Shifting the reference circle causes the complete radial grid to be shifted.
- The MAX VALUE softkey defines the maximum amplitude value to be displayed in the diagram, that is the value of the outermost circle. The lower limit (MIN VALUE) is always zero, since it is the center of the polar diagram. The flexible radial division generates between three and eight circles in a 1-2-5 grid. Similar to the fifth-division scale, the position of this grid may be arbitrary relative to the diagram center.

Logarithmic radial axis

The logarithmic radial scaling is defined using the MAX VALUE and MIN VALUE softkeys in the RESPONSE SCALE menu.

In contrast to the linear polar diagram, this scaling requires definition of a lower limit value in order to fix the value of the interior edge of the polar diagram. Though the interior (circular) edge has graphically shrunk to a point in the drawing, its value must be defined in order to determine the number of decades.

The logarithmic grid is divided into decades, each decade being divided **logarithmically** with 2, 3, 4, 5, 6, 7, 8 and 9. If the radial axis comprises one decade only, the division scheme 1-2-4-6-8 is applied.

As the absolute value of a complex number is always ≥ 0 , an extension of the logarithm to negative values is not provided for polar diagrams.

Diagrams ZVx

Segmented radial axis

Analogous to the ordinate of a Cartesian diagram, the radial axis of a polar diagram can be graphically subdivided into two segments.

In this display mode, both (circular) segments are of equal width, whereas the swept range may differ in size.

The MIN- and MAX values indicated in the information line always refer to the maximum value of the exterior segment and to the minimum value of the interior segment. The minimum value of the exterior segment and the maximum value of the internal segment are always identical in order to prevent gaps or overlaps in the representation of the trace. These values are indicated in an individual info window, the scaling info window (see Section 2.3.4.5, Scaling Info Window). The segments can be scaled linearly or logarithmically.

For radial circle segments, there is no linear fifth-division scale with reference circle with radial segments. For the flexible, linear grid, the number of grid lines is reduced to 2 to 5. If one segment covers more than one decade in logarithmic scaling, the division scheme 1-2-4-6 is applied.

The setting is made in the RESPONSE DIAGRAM menu.

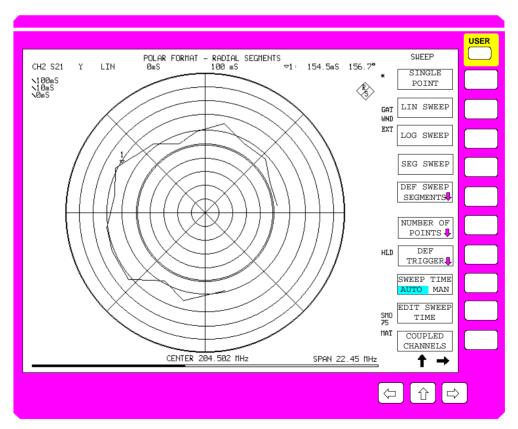


Fig. 2-18 Lin./ log. polar diagram with 2 segments (Single Channel)

ZVx Diagrams

Circular scaling

Circular scaling of the polar diagrams means the subdivision of the full circle of the diagram into sectors (ie the circle is sliced like a pie). Circular scaling is particularly suited for approximately reading off the phase of a measured complex value. Eight 'spokes' are drawn in all at a distance of 45° from each other and starting with 0°. All spokes are drawn from the center of the polar diagram to the periphery of the circle.

2.3.3.3 Smith Charts

In its basic state, the normal Smith chart, ie the interior of the unit circle of the reflection-coefficient plane, is drawn with the correspondingly labelled scaling lines. Smith chart scaling lines are circles of constant real part or circle segments of constant imaginary part of the impedance. A simple rescaling, where the matching point is kept as a center and the radius is arbitrarily chosen, is possible for Smith charts as well as for polar diagrams. In this case, labelling scaling lines is omitted. Apart from that, any circular sectors with arbitrary center can be marked and handled using the zoom function.

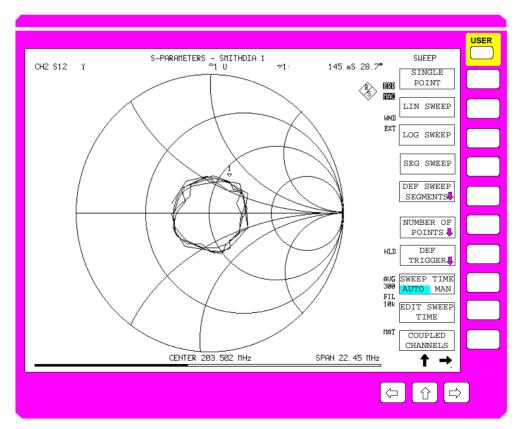


Fig. 2-19 Smith chart

Diagrams ZVx

2.3.3.4 Inverted Smith Charts

The same specifications which apply to the non-inverted Smith chart are valid for inverted diagram. The significant difference is that, instead of the impedance plane, the inverted impedance plane, ie the admittance plane is conformally mapped into the reflection-coefficient plane. Thus, compared to the ordinary Smith chart, the inverted Smith chart is a point-symmetric representation with respect to the matching point. The scaling lines are circles of constant conductance and circular segments of constant susceptance. Like the Smith chart, the inverted Smith chart allows the representation of circular zoom sectors of the passive and/or active domain with arbitrary center and radius.

2.3.3.5 Charter Diagrams

The charter diagram like the basic state of the Smith chart represents the interior of the unit circle of the reflection-coefficient plane, ie the complete passive range. Unlike the Smith diagram, the charter diagram is fixed, ie zooming even around the center, is not possible.

All specifications which apply to the Smith chart are valid for the charter diagram. The significant difference is that, instead of lines with constant real or imaginary parts of the impedance plane, circles with constant magnitude or radial lines with constant phase are conformally mapped into the reflection-coefficient plane. Thus, a charter diagram looks different from a Smith chart.

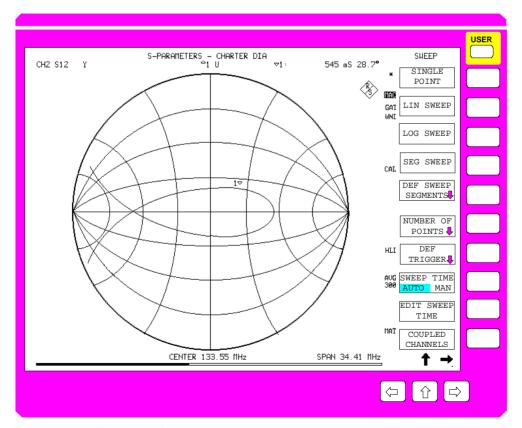


Fig. 2-20 Example of a charter diagram

2.3.4 Display Windows

Display windows are located inside the measuring diagram and display primarily measured values. In general, display windows do not allow any user entries. Exceptions are fields for confirming actions and yes/no-decisions required after some system messages.

The following windows are displayed:

Message fields

The message fields read out messages, e.g., results of the Limit Check (PASS/FAIL).

Marker info list

The marker info list indicates the positions of the markers/delta markers switched on.

Line info list

The line info list indicates the positions of the display lines switched on.

System messages

System messages read out warnings and error messages.

· Scaling info field

The scaling info fields indicate the scaling of the two segments of the radial axis with segmented polar diagrams and the three zoom parameters with zoomed Smith charts.

Note:

In contrast to the display windows, data entry windows are provided for definition of numeric and alphanumeric instrument parameters. Data entry windows are described in Section 2.3.6, "Setting the Parameters".

2.3.4.1 Message Fields

Message windows provide notes on measurement runs or internal states of the instrument. These notes are no error messages, which are indicated as system messages.

Independent of the type of diagram and its arrangement the message fields are displayed in the upper half of the corresponding diagram. They appear on the screen and cannot be shifted by the user. They can be masked out by pressing any key.

Pass/Fail info windows are message fields which indicate the result of the LIMIT CHECK.

2.3.4.2 Markers and Marker Info Lists

Markers are used to read out measurement values. The marker info list contains the positions, i.e., the stimulus and response values of the markers/delta markers switched on. Marker symbols represent the markers on the trace and in the marker lists.

"Normal" markers are represented by triangles with their peak facing down. The peak coincides with the trace. The labeling (marker number) is positioned above the marker symbol. A filled triangle symbolizes the active marker.

Display Windows ZVx

switched on delta marker

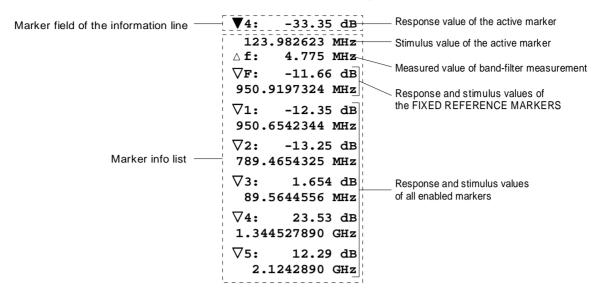
active delta marker

Delta markers are represented by triangles with their peak facing upward. Again, the peak of the triangle points to the test point. Delta markers are labeled below the marker symbol. Similar to active markers, a filled triangle symbolizes an active delta marker.

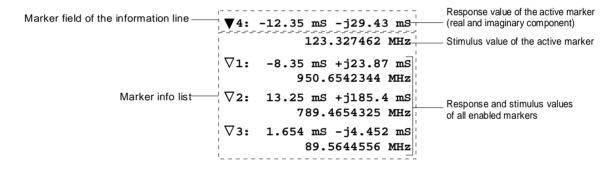
switched on temporary marker

active marker Apart from markers and delta markers there are temporary markers which are used, e.g., for the analysis of shape-factor measurements etc. The symbols of temporary markers are the same as those of the markers, however, they are labeled with letters ("S" for shape-factor measurement in the example).

A separate marker info list exists for each channel. Consequently, two lists are displayed in Dual-Split mode and four marker info lists with Quad-Split mode. With overlay displays, the marker info list of the active channel is output, only. The space available for the marker info list may not be sufficient in all of the SPLIT SCREEN modes such that parts of the list may be indicated, only. Display of the complete list may be achieved by switchover to another display mode, if required.


The marker info list is switched on and off in the MARKER MARKER menu.

The response value of the active marker is indicated in the so-called marker field of the information line. The marker info list is displayed just below the marker field. The marker info list contains the following information:


- The top line indicates the stimulus value of the active marker. In Quad Split mode and in Expand mode, the information line contains no marker field. The response value of the active marker appears at the beginning of the marker info list, instead.
- The next line indicates the result of band-filter measurements (e.g., bandwidth measurement).
- The subsequent lines contain the stimulus and response values of all enabled markers, sorted in ascending order. If the FIXED REFERENCE MARKER has been activated in the MARKER DELTA menu, it precedes the other delta markers.

The way the marker values are displayed in the information line and in the marker info list depends on the marker formatting (scalar or complex).

Example of the representation of marker values with scalar formatting:

Example of the representation of marker values with complex formatting:

Display Windows ZVx

2.3.4.3 System Messages

System messages are displayed if instrument settings occur which are erroneous or which require a decision to be taken by the user. The message field can be located at various positions:

- General messages which are not directly related to the measurement, appear in the center of the screen.
- Messages on the measurement being performed are centered in the diagram of the corresponding channel.
- System messages can be shifted on the screen using the mouse.

If a system message is displayed, all operations are interrupted (e.g., edit jobs in an entry window, table, movement of the axis cursor for zooming diagrams, etc.). The operations are continued after the system message has been deleted.

The headline of the window indicates the type of error: WARNING, ERROR or SYSTEM MESSAGE.

There are two types of system messages:

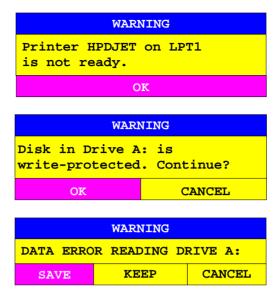
Message without action field

These system messages contain only arbitrary information. They hint at events which are of interest for the user but do not affect the measurement or functioning of the instrument.

They are deleted either automatically after a predefined time has passed (3 seconds) or upon any keystroke or mouse click.

Example:

WARNING NUMBER OF POINTS is too low for selected sweep time.


Message with action field

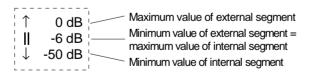
These system messages require a decision to be taken by the user. They are not deleted until any action has been selected. Deletion of the message initiates the action selected and appropriate measures to be taken. The action field consists of one (OK), two (OK/CANCEL) or three (arbitrary) buttons.

The user may select one of the buttons using the cursor keys and initiate the associated action by means of the units prefix keys. The CLR key is used to acknowledge the message without releasing any action.

The buttons may be selected by the mouse, if connected.

Examples:

Some system messages are directly produced by the instrument hardware and therefore not displayed in separate windows. Examples are the overload message which indicates the level at one of the instrument connectors is too high (CAUTION: OVERLOAD ON PORT1) or the message indicating that there is no external reference source (CAUTION: REFERENCE UNLOCKED). These messages are displayed in the middle of the left display margin, without a window but in red typeface. They won't disappear until the error is corrected.


2.3.4.4 Scale Reference Fields

A scale reference field is always shown in the upper left edge of the diagram, if segmented polar diagrams or zoomed Smith charts (also zoomed inverted Smith charts) are displayed. This field contains the scaling of the two segments of the radial axis in case of segmented polar diagrams or three zoom parameters for zoomed Smith charts.

An individual scale reference exists for each channel such that a maximum of four different reference fields (with Quad-Channel-Quad-Split display) are displayed. With overlay display, the scale reference field of the active channel is displayed, only.

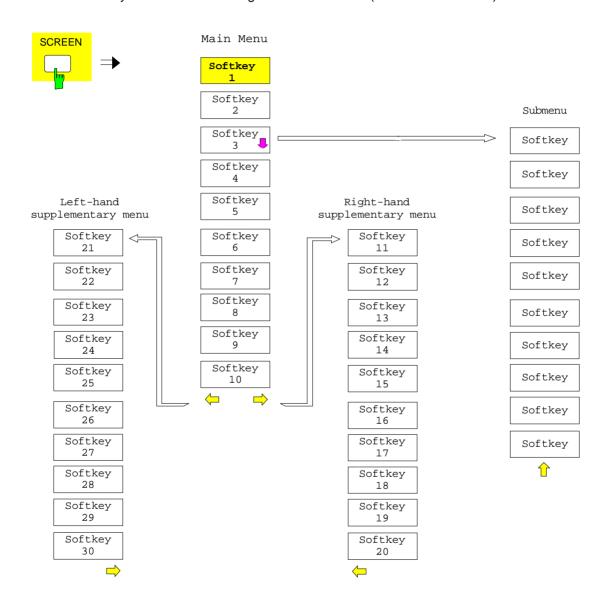
Scale reference field in segmented polar diagrams

The segmented polar diagram consists of an interior and an exterior segment. Thus, the scale reference field consists of three lines:

Display Windows ZVx

Scale reference field in zoomed Smith chart

The zooming area in a Smith chart is defined by specification of a circular section (the zoom circle) by means of circle center and radius. The scaling info field thus consists of three lines:


- The first line contains the title "x", followed by the x-coordinate of the center of the zoom circle (which is equal to the real component of the complex reflection coefficient).
- The second line contains the title "y", followed by the ycoordinate of the center of the zoom circle (which is equal to the imaginary component of the complex reflection coefficient).
- The third line contains the title "r" followed by the radius of the zoom circle.

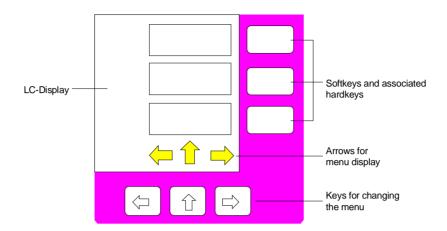
All of the three values are calculated by the scaling algorithms of the Smith chart and entered in the scale reference field. The zoom parameters are converted into diagram coordinates and not displayed as a percentage of the diagram width (as with entry of the zoom circle by the user). The zoom parameters are dimensionless.

2.3.5 Calling and Changing the Menus

The operation of the network analyzer is menu-controlled via keys and softkeys. Various softkey menus are displayed depending on the instrument status. The individual menus constitute the so-called menu tree. The top menu (the root of the menu tree) is always called by means of a keystroke. Each softkey menu consists of max. 30 softkeys, 10 softkeys being arranged in a main menu, 10 in a left-hand supplementary menu and 10 in a right-hand supplementary menu. Empty supplementary menus are not displayed. Arrows at the lower edge of the softkey area indicate whether a supplementary menu can be entered or not.

The individual softkeys allows for branching into further menus (so-called submenus):

The menu arrows at the lower edge of the softkeys make it easier for the user to "navigate" through the menu tree.



These arrows indicate that this menu has a left-hand and a right-hand supplementary menu.

This arrow indicates that this menu was called from a higher-order menu.

The arrows are assigned to the menu change keys on the front panel below the softkey line, which allow for switching between the main menu and the supplementary menus and submenus:

The menu change keys have the following functions:

These keys are pressed to call the left-hand and right-hand supplementary menus.

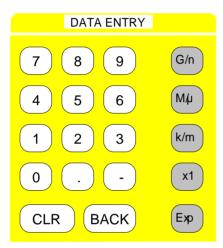
This key is pressed to return to the higher-order menu which is located one hierarchy level above in the menu tree, i.e. the menu from where the current submenu was called up. In several submenus, the command is automatically returned to the higher-order menu when a softkey is pressed.

The right-hand supplementary menu cannot be called up directly from the left-hand supplementary menu and vice versa, it is necessary to go via the main menu.

Submenus are always called up by a softkey.

The labelling of all softkeys which call a submenu includes a \downarrow arrow.

The menu arrows can be selected directly via a mouse click, if connected.


2.3.6 Setting the Parameters

Parameters are set either by simple selection (selection parameters) or by alphanumeric entries in data entry windows.

The numeric keypad on the front panel, an external keyboard (optional), a roll-key and the cursor keys are provided for the entry of instrument parameters in an entry window or in a table.

The external keyboard is optional. If it is not fitted, the auxiliary line editor is called automatically for entry of alphanumeric parameters. The auxiliary line editor provides for selection of individual letters and a number of special characters which are copied into the actual entry window.

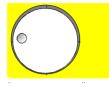
2.3.6.1 Numeric Keypad – DATA ENTRY Key Group

The *DATA ENTRY* block is provided for entry of numeric parameters. It contains the following keys:

- Number keys 0...9
- Decimal point Inserts a decimal point "." at the cursor position.
- Sign key
 Changes the sign of the mantissa or exponent of a numeric parameter.

A "-" is inserted at the cursor position in case of an alphanumeric parameter.

Units prefix keys (G/n, M/µ, k/m and x1)
 Provide the numeric value entered with the selected unit and terminate the entry.


The units prefix keys are all assigned the dimension "1" for dimensionless quantities or for level entries (e.g., in dB). The units prefix keys thus assume the function of an *ENTER* key. The same applies for an alphanumeric entry.

The units prefix keys are also used to open and close selection fields in tables (sub-tables).

- Exponent key (EXP)
 Adds an exponent (E-xx) to the end of the numeric entry.
- Clear/ Entry off key (CLR)
 The CLR key is assigned various functions:
 - Aborts the entry before it has been terminated.
 - Deletes the complete entry string just being entered with numeric entry. This is easier than using the BACK key.
 - Deletes system messages.
- Backspace key (BACK)
 - Deletes the character left to the cursor with numeric entry.
 - Allows for toggling between the current and the previous values subsequent or prior to entry (UNDO function).

2.3.6.2 Roll-key and Cursor Keys

The roll-key and the cursor keys are arranged below the numeric keypad.

The roll-key has various functions.

 For entry, the instrument parameter is incremented (turning clockwise) or decremented (turning counter-clockwise) by a defined step size.

The step size may be equal to or smaller (e.g., 1/10) than the step size being defined for the cursor keys (see description of the *STEP* key).

- In tables, the roll-key can be used to shift the cursor horizontally or vertically when no entry window is open. The direction (horizontal/vertical) is switched over using the cursor keys.
- Selection of the individual letters with the auxiliary line editor.
- Shifting of markers, display lines, limit lines etc. on the screen.

The roll-key provides an acceleration algorithm, i.e., the variation step size increases with increasing rotational speed.

The cursor keys shift the cursor to the wanted position in a table.

The cursor keys \bigcirc and \bigcirc shift the cursor to the wanted position in the (alpha)numeric editing line.

The cursor keys igtharpoonup and igtharpoonup

- increase or decrease the instrument parameter by the selected step size with numeric entry.
- allow for toggling between the editing line and the auxiliary line editor with alphanumeric entry.

2.3.6.3 Selection of Parameters

The selection of parameters and their settings is effected by means of a key, a softkey or in a table depending on the hierarchical level of the menu they are assigned to.

Selection via key

Most keys of the network analyzer are used to enter menus where the selection and the settings are made. Few settings can be made directly by means of a keystroke, only.

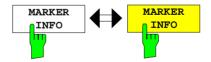
Example: channel selection

> Press CHANNEL CH1 key

Channel 1 is active and is displayed on the screen. The LED above the key is lit and indicates the selection.

Selection via softkey

In most cases the selection is made by pressing the respective softkey. There are various alternatives of making the selection:

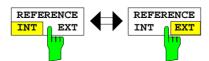

1. The softkey is active or inactive.

Example:

switching on or off the display of the marker info list

- > Press MARKER MARKER key.
- Press MARKER MARKER MARKER INFO softkey.

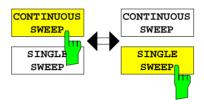
Each time the softkey is pressed, the marker info list is switched on or off. If the softkey is active (= marker info list on), it is illuminated.



2. The softkey acts like a toggle switch, each pressing changes the active selection.

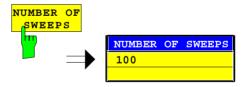
Example: Selection of the reference (internal or external)

- Press the SYSTEM SETUP key.
- Press SYSTEM SETUP REFERENCE INT/EXT softkey.


With each pressing, the checkmark on the softkey changes from INT (internal reference) to EXT (external reference) and vice versa. When in the active setting the softkey menu item is illuminated

Various softkeys act like selection switches. Only one softkey may be active at a time. Example: sweep setting

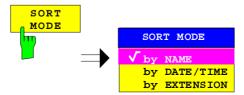
- > Press the SWEEP SWEEP key.
- > Press menu-change key .
- > Select the SWEEP SWEEP CONTINOUS SWEEP softkey.


The continuous sweep is thus set. The *CONTINOUS SWEEP* softkey is colored (factory-set: green). The second alternative, a series of n sweeps according to the trigger definition, can be selected via the *SINGLE SWEEP* softkey in the same menu. Only one of the two softkeys can be active at a time, the softkeys thus act like selection switches.

 The softkey is used to select the parameter, the setting is made in an alphanumeric data entry window. Example: SWEEP COUNT parameter

- > Press the SWEEP SWEEP key.
- Press the menu-change key .
- Select the SWEEP SWEEP SWEEP COUNT softkey.

The window for entering the number of sweeps for the SINGLE SWEEP mode is opened. The softkey is colored (factory-set: red). (Data entry is described in the next section).



The softkey selects the parameter, the setting is made in a selection table.

5. The softkey selects the parameter, Example: Selection of the sorting criteria of a file list

- Press the MEMORY CONFIG key.
- ➤ Press the MEMORY CONFIG SORT MODE softkey.

A selection table is displayed. The softkey is colored (factory-set: red). (operation see below)

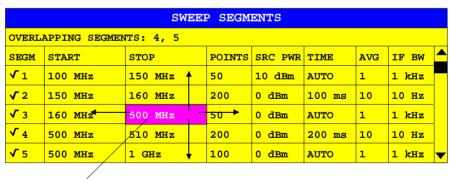
Selection in a table

The network analyzer uses numerous tables for display and configuration of instrument parameters.

The tables differ considerably in the number of lines, columns and inscriptions. The basic steps of operation for the selection and setting of parameters are, however, the same for all tables. Shown below is the typical entry of parameters into a table using a sweep segment list as an example.

Note:

Most of the tables are coupled to a softkey menu which provides further functions for editing table entries such as deletion of tables, copying of lines or columns, marking of table elements, restoring default states.


The definition of individual tables and the operation of particular editing functions can be looked up in the description of the corresponding softkey menu.

1. Activating the table

If the menu has only one table, the latter is activated automatically subsequent to calling this menu in most cases and the marking cursor is positioned to the top field of the left column.

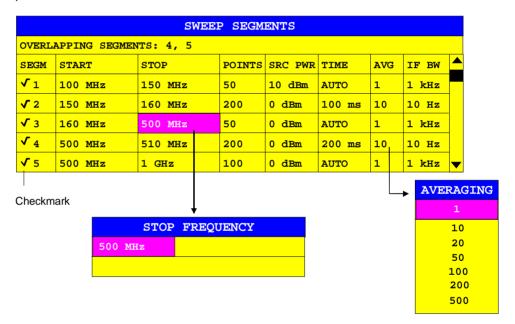
If the menu contains various tables, the table of interest must be selected using the softkey which is labeled with the title of the table.

2. Selection of the parameter

Selection bar

Selection of the parameter (or the setting) is made using the marking cursor

Press the cursor keys to move to the wanted field.


or

➤ Rotate the roll-key until the wanted field is marked. The cursor keys are used to specify the direction of the roll-key movement (horizontal or vertical)

When shifting the cursor, elements may be skipped which can not be edited. Table elements, which can not be selected are indicated by a different color.

The selected parameter can be edited the way described below:

3. Editing the marked parameter

a) Toggling between two states

If an element of a table can be switched on and off only, the units prefix keys are used to toggle between these two states.

- \triangleright Press one of the units prefix keys. The table element is switched on and provided with a checkmark. (\vee).
- Press one of the units prefix keys once more. The table element is switched off.

b) Opening a data entry window If a table entry consists of an (alpha-) numeric value, selection of the latter causes the corresponding entry window to be opened.

Note:

For numeric or alphanumeric instrument parameters, the editing operation may be started by entering any number or letter on the front panel or on the external keyboard. In this case, the data entry window is opened automatically.

c) Opening a selection table

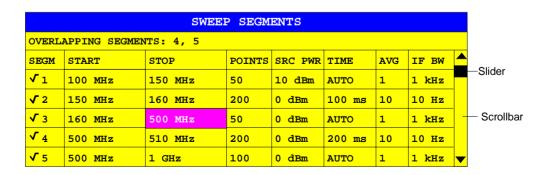
If a table entry may have various states (e.g., colors from a color pallet, fixed filter bandwidths, etc.), a table indicating all possible states is displayed with selection. The current state is and marked by a checkmark and by the cursor.

- > Set the cursor to the desired setting.
- ▶ Press one of the units prefix keys. The setting is switched on and marked (√). The selection table closes and the value is transferred to the original table. The cursor is positioned automatically on the next table element.

Abortion of entry

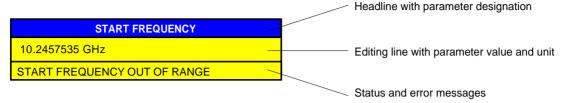
> Press the CLR key.

The current entry/selection is aborted and the original setting is restored.


Scrolling

Some tables contain more entries than can be displayed on one screen page. In this case, a **scrollbar** is displayed at the right margin of the table, whose slider shows the current position in the text.

Actuate the PAGE UP or PAGE DOWN softkeys.
The table is paged forward or back by one page.


 \triangleright Press cursor key \bigcirc or \bigcirc .

The table is scrolled up or down by one line.

2.3.6.4 Editing of Numeric Parameters

The entry of numeric values is always made in a data entry window, which is displayed automatically after selection of the parameter.

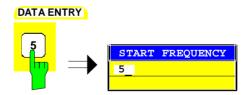
The headline indicates the name of the instrument parameter, which has been selected. The entry is made in the editing line. Subsequent to calling the entry window, the current parameter value including the unit is displayed left-justified in the editing line. Status and error messages which refer to the current entry are displayed in the third and (optionally) fourth line.

Note: Entry windows may be represented transparent (cf. RESPONSE DISPLAY menu)

Entry of a numeric value

➤ Call data entry window (cf. selection of parameters)
The editing line indicates the current value

Example: start frequency (frequency-sweep mode)

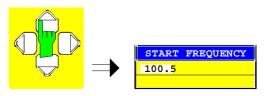

Entry via number keys

> Press a number key.

The previous value is deleted. The number is displayed in the editing line with the cursor then positioned to the right of the number.

> Enter further numbers, correspondingly.

Example:

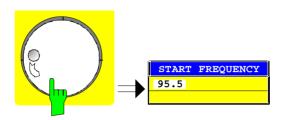


Entry via cursor keys

ightharpoonup Press the cursor $\stackrel{\frown}{\bigcirc}$ or $\stackrel{\frown}{\bigcirc}$ until obtaining the required value.

The parameter is incremented or decremented by the step size which has been set in the *STEP* menu.

Example:


Entry via roll-key

> Rotate the roll-key until reaching the required value.

The parameter is varied by the step size which was set in the STEP menu for this parameter. The variation step size increases with increasing rotational speed.

Turning the roll-key clockwise increments the value, turning it counterclockwise decrements the value.

Example:

Terminating the entry

> Press one of the units prefix keys or the ×1-key.

The unit is entered in the entry window and the new setting is accepted by the instrument.

A few data entry windows close automatically whereas others like the entry window for the start frequency remain open even after termination of the entry. They can be closed by pressing the *CLR* key.

Example:

If an error occurs, a corresponding error message is displayed in the status line of the entry window, e.g., "Out of range", "Value adjusted", etc. In this case, the new value is not accepted for the instrument setting.

Correcting the entry

Deleting an entry

- ➤ Position the cursor beside the digit which is to be deleted using the cursor keys

 □
- Press the BACK key. The entry left to the cursor is deleted.
- Enter new numbers. The number is inserted to the left of the cursor, the other numbers are shifted right.
 If the maximum amount of characters for the mantissa or the exponent has been entered, no further entry is possible (no horizontal scrolling).

Restoring the original value

 \triangleright Press the cursor \bigcirc or \bigcirc

or

> press the BACK key.

For numerous parameters, the data administration of the instrument stores the previously valid parameter value in addition to the current value. The BACK key/the cursor keys or can be used to toggle between these two values. This applies for terminated entries as long as the data entry window is displayed. Any characters positioned to the right of the cursor when it overflows will be lost.

Aborting the entry

> Press the CLR key.

The original parameter value is restored. The new entry is deleted.

> Press CLR key again.

The entry window is closed, the original value remains active.

or

Press any key or any softkey (even the softkey which has opened the entry window).

The entry is aborted and the entry window is closed. The original value remains active.

➤ An auxiliary line editor or an external keyboard (optional) are provided for the entry of alphanumeric instrument parameters .

The roll-key and the exponent key have no function with alphanumeric entry. All units prefix keys assume the function of an ENTER key.

The entry is always made in a data entry window which is displayed automatically upon selection of the parameter. The editing line comprises 60 characters. Up to 256 characters may be entered. If a text exceeds 60 characters the contents is shifted automatically 20 characters left or right when the left or right margin of the editing line is touched by the cursor.

2.3.6.4.1 Editing With External Keyboard

COMMENT CHANNEL 1	
BANDPASS-FILTER TEST 23A	Entry line
-	Message line

Entry of text

> Select parameter.

The data entry is active automatically upon calling the data entry window. The cursor is positioned at the beginning of the previous entry.

- ➤ Press the required character on the keyboard. The character is inserted prior to the cursor.
- > Enter further characters

Correcting the entry

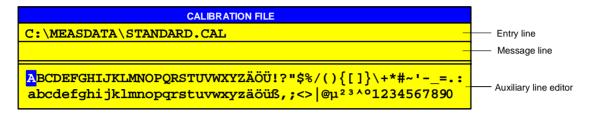
Delete the entry using the DELETE key or BACKSPACE key.

Terminating the entry

Press the ENTER key of the external keyboard The data entry window is closed and the new value is accepted for the instrument.

Aborting the entry

> Press the **CLR** key on the front panel


or

> any softkey.

The data entry window is closed, the original value is retained.

2.3.6.4.2 Editing with Auxiliary Line Editor

If the external keyboard is not fitted, the auxiliary line editor is called automatically with entry of alphanumeric parameters. The auxiliary line editor is an extension of the alphanumeric entry window. It contains the complete alphabet with uppercase and lowercase letters as well as special characters in two lines of 52 characters, each. Individual letters and a series of special characters can be selected in the auxiliary line editor and copied into the entry line.

The cursor keys \bigcirc and \bigcirc toggle between entry in the editing line and selection in the auxiliary line editor.

Entry of text

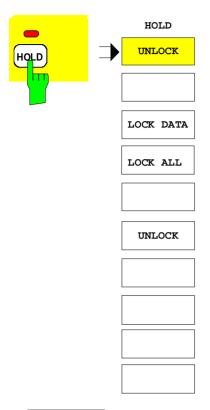
- > Select parameter.
 - The data entry is active automatically upon calling the data entry window. The cursor is positioned on the left in the editing line.
- Position the cursor in the auxiliary line editor using the cursor key.

The cursor marks the first letter of the editor.

- ➤ Locate the cursor on the character which is to be entered into the editing line using the cursor keys
 and .
- Press one the units prefix keys.
 The character is entered in the editing line.

Correcting the entry

- \succ Locate the cursor in the editing line using the cursor key $\stackrel{\frown}{\Box}$.
- ➤ Position the cursor after the character which is to be deleted using the cursor keys
 and .
- Press the BACK key.
 The entry left to the cursor is deleted.


Terminating the entry

- \triangleright Locate the cursor in the editing line using the cursor key $\stackrel{\triangle}{=}$.
- Press any units prefix key.
 The data entry window is closed, the new entry is accepted by the instrument.

Aborting the entry

Press the CLR key.
The data entry window is closed, the previous entry is retained.

2.3.7 Disabling the Control Elements - HOLD Key

The functions of the *HOLD* menu disable either a subset of the control elements or the complete instrument control in order to prevent parameters from being changed by mistake.

The LED above the *HOLD* key indicates that the disable function has been activated.

Control can be enabled again by successively pressing the two *UNLOCK* softkeys in any order.

Instrument control is also enabled again when the instrument is switched off. This ensures that it can be operated normally when it is switched on again.

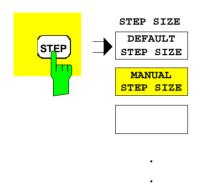
There are two *UNLOCK* softkeys in the *HOLD* menu. Successively pressing them in any order will enable instrument control again. The LED above the *HOLD* key then goes out.

If a mouse is connected to the instrument, it can be used to click on the two *UNLOCK* softkeys one after the other.

The LOCK DATA softkey disables the roll-key and the increment functions of the cursor keys \bigcirc and \bigcirc on the front panel and external keyboard.

The LOCK ALL softkey disables the complete front panel (including the PRESET key and roll-key), the mouse and all keys of the external keyboard. It is then not possible to exit the HOLD menu.

The only control elements which are not disabled are the two *UNLOCK* softkeys. They are used to enable instrument control.


2.3.8 Setting the Step size - STEP Key

The value of many of the numeric instrument parameters can be incremented or decremented in steps in a data entry window with the cursor keys (\bigcirc or \bigcirc) or the roll-key.

The step size used by the cursor keys can be specified in the *STEP* menu, whereby a different step size can be defined for each of the variable parameters.

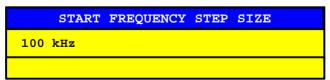
Note:

- It is not possible to set the step size by all of the numeric parameters.
- An extended STEP menu is available by some parameters. The extra functions are described by the respective parameter.
- Setting the step size has no effect on the roll-key (the resolution of the roll-key is higher than that of the step size function).

The STEP key opens the STEP menu for entry of the step size.

The step size of an instrument parameter can only be varied when this parameter is being edited in an entry window.

The *STEP* menu is disabled if no instrument parameter is being varied or if the parameter being edited does not support step size variation (as is the case by all of the alphanumeric parameters). The system message is displayed:


The message window can be closed via CLR or an arbitrary units prefix key.

The *STEP* menu is closed after a successful entry or if the *DEFAULT STEP SIZE* softkey is pressed. The previously active menu is shown.

The MANUAL STEP SIZE softkey opens an entry window for definition of the step size of the active parameter. The name of the parameter whose step size is to be varied is displayed in the headline of the entry window:

Example:

The step size is no longer coupled to other instrument parameters. It remains constant until a new value is entered or until the *DEFAULT STEP SIZE* function is activated.

The *DEFAULT STEP SIZE* softkey sets the step size of the active instrument parameter automatically, i.e. the step size depends on other parameters and is automatically varied whenever these parameters are changed.

Example:

The step size of the CENTER frequency depends on the selected span.

2.3.9 Mouse and External Keyboard Control

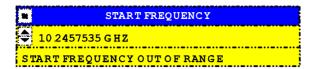
2.3.9.1 External Keyboard

After an external keyboard has been connected to the instrument, additional characters for entry are available (letters and special characters). It is permitted to use the front panel keys and the external keyboard at the same time. The number, cursor and sign keys on the external keyboard have the same effect as the corresponding front panel keys. A few keys of the external keyboard provide an extended functionality for the entry windows and tables.

The assignment of external keyboard keys to the corresponding front panel keys is shown in Appendix E.

2.3.9.2 Mouse Control of Data Entry Windows and Tables

If a mouse is connected, additional functions are provided in the entry windows and tables. To operate these additional functions, additional buttons are displayed.


Essentially, all definitions which have been made for entry windows and tables also apply for mouse control. Note, however, the following deviations:

• The so-called close button is displayed in the left margin of the headline and some tables. Selecting this button via the mouse aborts the entry and closes the entry window. Any changes made are discarded. This corresponds to the function of the *CLR* key with manual control.

Tables which are coupled to a softkey menu cannot be explicitly closed and therefore do not have a close button. They can only be closed by changing menus.

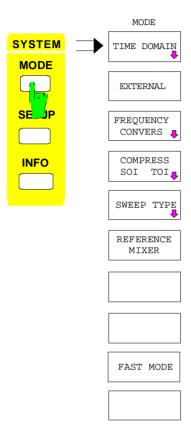
- In numeric entry windows, two buttons () are displayed in the left margin of the editing line. Simply clicking the buttons increments or decrements the parameter. This corresponds to the function of the keys) / or the roll-key with manual control.
- The cursor is positioned in the editing line by clicking a character with the mouse.
- A table entry is selected by clicking it with the mouse. Double-clicking a table entry either opens a
 data entry window or a selection list, or allows the entry to be toggled.
- A character in the letter field of the auxiliary line editor can be selected by a single click of the mouse.
 A double click copies the character from the letter field into the editing line.
- To scroll the visible lines of a table: click the scrollbar, keep the mouse button pressed down, and slide the mouse.
- Open entry windows and tables can be moved across the complete screen using the mouse; they
 must not, however, be superimposed on the softkey area. Moving is performed by clicking the
 headline and sliding the mouse while the mouse button is being pressed.

Example: Numeric entry window with mouse control

2.3.9.3 Mouse Control of Display Elements

All display and control elements (enhancement labels, softkeys, function labels, display and limit lines, etc.) which are displayed on the instrument's screen can be controlled with a mouse.

Exactly one softkey or hard key is assigned to each display element. Double-clicking an element opens the corresponding menu.


Many display elements are channel-dependent, e. g. all entries in the information line. If display elements of an inactive channel are clicked, the instrument also changes channels, i.e. the inactive channel becomes the active channel.

The assignment of softkeys/keys to display elements is shown in Appendix E.

2.4 General Configuration – SYSTEM Key Group

2.4.1 Selection of the Operating Mode – *MODE* Key

SYSTEM MODE menu:

The *MODE* key opens the menu for setting the measuring mode of the network analyzer (NWA). Some of the modes require the installation of options.

The MODE key is selected for

- configuration of the time domain transformation (TIME DOMAIN).
- · switching between internal and external mode,
- configuration of frequency-converting measurements,
- configuration of compression and intercept point measurements (COMPRESS SOI TOI).
- selection of the sweep type,
- switch-on/off of reference mixer mode,
- switch-on/off of fast mode.

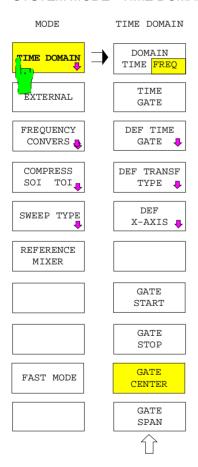
These operating modes partly exclude each other. The respective operating mode can be switched on/off with the softkeys in the *MODE* menu or a submenu can be called up with the softkeys in the *MODE* menu to configure and activate/deactivate an operating mode. In the latter case the softkeys both have a 1-out-of-N select function but also a switch-on/off function to activate an operating mode, ie the corresponding operating mode is deactivated again by pressing the active softkey.

In the default state

- the measurements are carried out in the frequency domain without time domain gating,
- the internal test set is used to perform the measurement,
- the generator and receiver sections assume the fundamental frequency,
- · compression and intercept measurements are switched off,
- the sweep carried out is a frequency sweep,
- the reference mixer mode is switched off,
- the measurements are carried out at ordinary speed.

2.4.1.1 Time Domain Transformation (Option ZVR-B2)

Time domain transformation is used for the display of measured values in the time domain. The data measured in the frequency range are transformed to the time domain using inverse FFT (fast Fourier transform). This type of representation is particularly informative and easy to interpret.


Either the impulse response or the step response, ie the response of the DUT to a pulse or to a step function, can be generated. This allows the position in time or space of impedance steps or faults to be easily determined. They can be suppressed with the aid of gates, ie filters in the time domain. Shape, position and width of the gates can be set by the user.

A particularly powerful tool is the subsequent retransformation to the frequency range of the response filtered in the time domain. Thus transitions, multiple reflection or crosstalk, which can make the frequency-domain response completely unrecognizable, can be almost entirely suppressed in the time domain. After filtering, the response can be represented in the frequency domain free from distortions.

Important:

All parameters and functions of time domain transformation can be set independently for the display channels CH1 to CH4 even if the channels are coupled (SWEEP SWEEP - COUPLED CHANNELS). This simplifies simultaneous display of time and frequency domain measurements using different types of transformation, parameters and gate functions.

SYSTEM MODE - TIME DOMAIN submenu:

The *TIME DOMAIN* softkey opens the submenu for switching on/off and configuring the time-domain transformation mode. A prerequisite is that Time Domain option ZVR-B2 is installed.

The following actions can be performed:

- Switchover between frequency and time domain (DOMAIN TIME FREQ).
- switching on and off the time gate,
- defining the shape and position of the gate in the time domain (DEF TIME GATE),
- selecting the transformation type (DEF TRANSF TYPE).
- changing the x-axis scale (DEF X-AXIS),
- positioning the gate on the x-axis (GATE START, GATE STOP, GATE CENTER, GATE SPAN).

When the TIME DOMAIN menu is called up, the auxiliary lines for editing position and width of the gates are automatically activated and the gate can be shifted by varying the center frequency (GATE CENTER). Before the menu is called, the gate is switched off (the TIME GATE softkey is grey).

2.4.1.1.1 Switchover between Frequency and Time Domain

SYSTEM MODE - TIME DOMAIN submenu:

The DOMAIN TIME FREQ softkey permits switchover between frequency and time domain.

The frequency domain is the default setting (after PRESET).

Switch-on of the time domain is signalled by the enhancement label *TIM* (short form for TIME). The time is then entered using the STIMULUS keys (*START*, *STOP*, *CENTER*, *SPAN*).

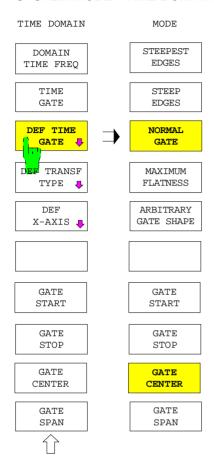
2.4.1.1.2 Selecting the Gate

The ideal gate for filtering in the time-domain would be a gate with infinitely steep edges and without sidelobes, ie a perfectly square gate. This could only be obtained, if the values were measured in an infinitely wide frequency range.

The network analyzer can only measure in a limited frequency range (eg 9 kHz to 4 GHz). As a result the gate is distorted after transformation to the time domain, which is shown by a finite edge steepness and ringing in the passband and stopband range.

The following gates available for selection offer different compromises between edge steepness and sidelobe.

SYSTEM MODE - TIME DOMAIN submenu:



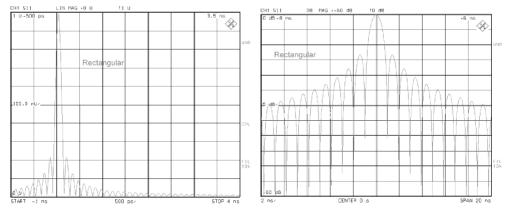
The *TIME GATE* softkey switches on a (time domain) gate (default status is off = no gate). When a gate is active, the enhancement label GAT (short form of GATE) is displayed. If a gate is switched on while values measured in the frequency domain are displayed, the message FREQUENCY DOMAIN DATA WILL BE TIME GATED is displayed to avoid a misinterpretation of time-filtered data (which might appear unusual) in the frequency domain.

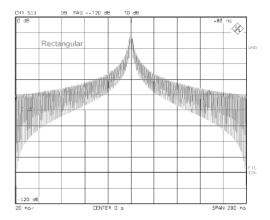
Note:

For frequency-domain measurements with the gate switched on, the frequency sweep data is transformed to the time domain and multiplied with the gate function and then retransformed to the frequency domain. This processing method allows the usual display of a complex quantity depending on the frequency. However, the transmitting function of the DUT is only determined in the gate width.

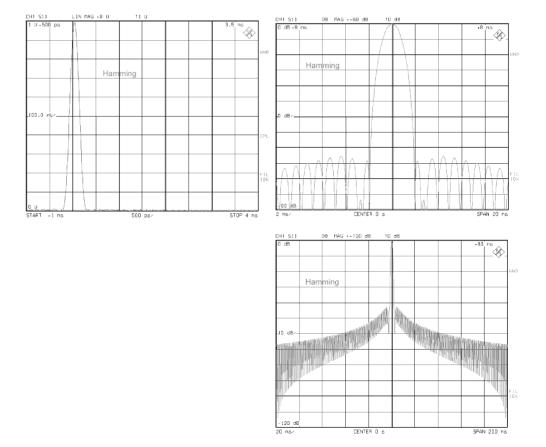
SYSTEM MODE - TIME DOMAIN - DEF TIME GATE submenu:

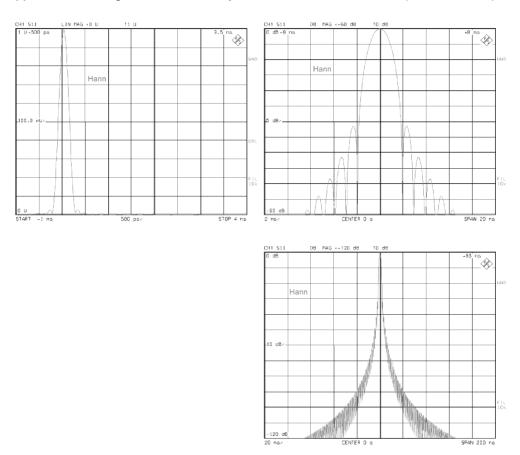
The *DEF TIME GATE* softkey opens the submenu for configuring the time domain gate:


- The first five softkeys of this submenu serve for changing the gate shape.
- The next 4 softkeys determine the position of the gate on the time axis.

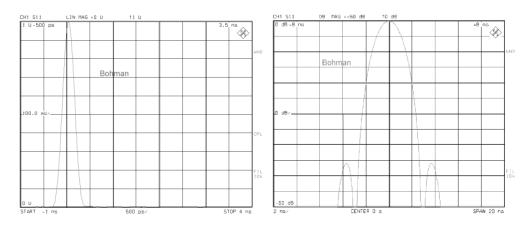

The set functions and values remain stored when the submenu is quit and can thus be used unchanged when the submenu is recalled.

The STEEPEST EDGES softkey switches on the gate (rectangle) with the steepest edges. It has the shortest rise time. This means on the other hand that high ringing occurs in the passband and stopband and that the spectrum shows high sidelobes (13 dB).

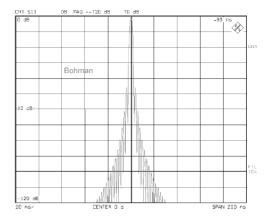

This gate should be used whenever relatively small distortions must be filtered out in the immediate vicinity of the useful signal (in the time domain) and if demands on amplitude accuracy are only moderate.


The STEEP EDGES softkey switches on a gate (R.W. Hamming) with less steep edges than the rectangle gate (STEEPEST EDGES). Ringing is considerably reduced as against that of the rectangle gate; the same applies to the height of the sidelobes (43 dB) in the spectrum.

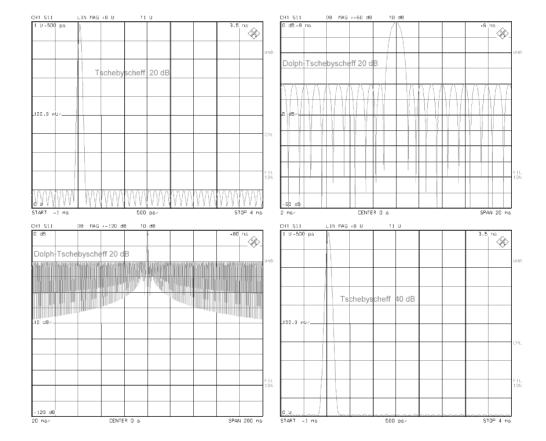
1043.0009.50 2.101 E-13

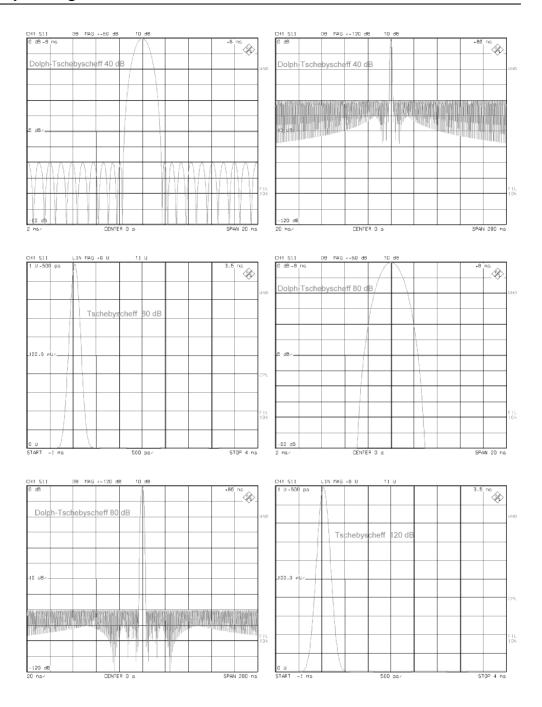


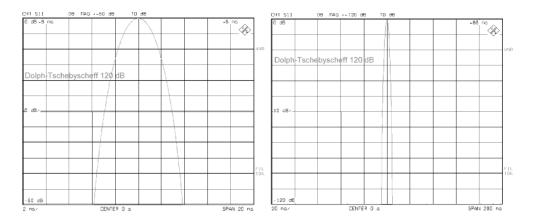
The NORMAL GATE softkey switches on a gate (Julius von Hann) of even flatter edges. This gate represents a good compromise between edge steepness and ringing at moderate sidelobe suppression (31 dB). It is recommended for most applications. This gate is automatically selected in the default state (after PRESET).



The *MAXIMUM FLATNESS* softkey switches on a gate (Bohman) of extremely flat edges. The highest sidelobe in the spectrum is 46 dB.




1043.0009.50 2.102 E-13



ARBITRARY
GATE SHAPE

The ARBITRARY GATE SHAPE softkey switches on a gate (Dolph-Chebishev) for which the suppression of the sidelobes can be user-selected. Values between 10 dB and 120 dB are permissible. Gates with low sidelobes have a wider main lobe than gates with relatively high sidelobes.

As for all other gates, the optimum solution depends on the specific measurement task. In general, a compromise must be found between either high time resolution or good signal suppression in the time domain, or between either low sidelobes or a narrow main lobe in the frequency domain.

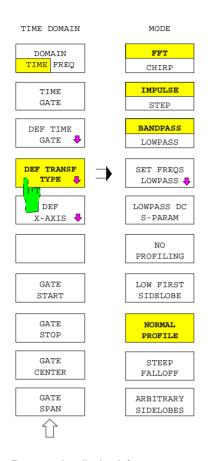
The position of the gate is marked on the screen by means of three vertical lines. The beginning of the gate (GATE START) is identified by a small arrow pointing towards the right, the center of the gate (GATE CENTER) by a small circle and the end of the gate (GATE STOP) by an arrow pointing to the left. Normally, the end of the gate will be located after its beginning (with respect to time and position). In this case the gate acts as a bandpass filter, ie reflections outside the gate are suppressed.

However, the beginning of the gate can also be positioned after its end (so that the GATE SPAN becomes negative). In this case the gate acts as a bandstop filter.

The GATE START softkey opens the field for entering the start time of the gate.

The GATE STOP softkey opens the field for entering the stop time of the gate.

The GATE CENTER softkey opens the field for entering the center time of the gate.


When the *DEF TIME GATE* submenu is called up, the auxiliary lines for editing the position and width of the gate are automatically activated so that the gate can be directly shifted by changing the center time (*GATE CENTER*).

The GATE SPAN softkey opens the field for entering the gate width.

2.4.1.1.3 Selecting the Transformation Type

SYSTEM MODE - TIME DOMAIN - DEF TRANSF TYPE submenu:

The *DEF TRANSF TYPE* softkey opens the submenu where the transformation type can be selected:

 With the first three softkeys two types of time-domain transformation (FFT CHIRP), impulse response or step response (IMPULSE STEP) and bandpass or lowpass transformation (BANDPASS LOWPASS) can be selected.

Any of the eight selectable combinations is permissible but not all of them are useful. (Step response is not very useful in the bandpass mode).

- In the lowpass mode, a harmonic grid is required. This can be generated by means of the function SET FREQS LOWPASS. The value for the S-parameter at zero frequency (LOWPASS DC S-PARAM) can be defined in addition.
- The lower five softkeys serve for filtering (also called weighting, profiling or windowing) the frequency-domain data.

The set functions and values remain stored when the submenu is quit so that they can be re-used when the menu is recalled.

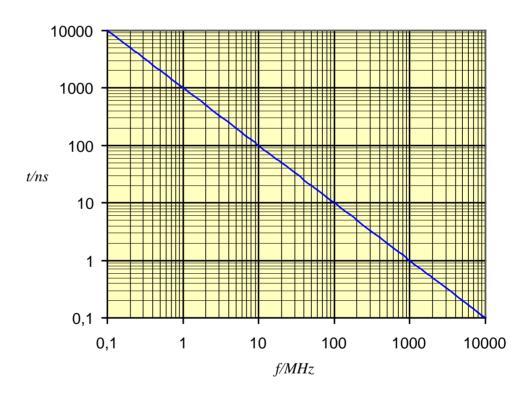
Due to the limited frequency range of the network analyzer (eg 20 kHz to 8 GHz in ZVC), not ideal (infinitely narrow Dirac) pulses but $\sin(x)/x$ pulses of finite width and ringing are obtained in the time domain.

When the frequency-domain data are filtered, which essentially means that the spectral components in the vicinity of the START and STOP frequencies are attenuated, the effect on the time-domain pulses (and analogously on the time-domain steps) can be modified. The pulse width or the height of ringing (sidelobes) can be changed. In practise, it is necessary to find an optimum compromise between the two characteristics for each application.

Various filters are available, ranging from NO PROFILING (corresp. to a rectangle filter), LOW FIRST SIDELOBE (Hamming), NORMAL PROFILE (Hann), STEEP FALLOFF (Bohman) to ARBITRARY SIDELOBES (Dolph-Chebishev).

The effect of each of these filters on the time-domain pulses are illustrated by the measurement diagrams inserted after the descriptions of the softkeys (see below). Basically, one can choose between narrow impulses with relatively high sidelobes (NO PROFILING or ARBITRARY SIDELOBES = 10 dB) or pulses which are wider and show very small sidelobes (eg STEEP FALLOFF or ARBITRARY SIDELOBES = 120 dB). A compromise well suited for most applications is NORMAL PROFILE (filter function according to Julius von Hann).

The FFT CHIRP softkey toggles between FFT (fast Fourier transform) and chirp transformation.


The advantage of FFT is that computation is faster than with the CHIRP transformation (by about a factor of 2). However, with FFT all measured values are equidistantly spaced over the ambiguity range (= reciprocal step width of the frequency points) in the time domain. For this reason the number of displayed values is reduced when a span narrower than the ambiguity range is displayed.

With CHIRP transformation, however, any time span can be used, and all measured values are displayed inside the (arbitrarily selectable) span. The CHIRP transformation is therefore more flexible but not as fast as the FFT.

CHIRP is the default setting.

The relationship between step width f in the frequency domain and ambiguity range t in the time domain or between frequency span f in the frequency domain and the rough (pulse) width t (corresponding to the time resolution) in the time domain is shown in the following diagram.

The *IMPULSE STEP* softkey toggles between impulse response (IMPULSE) and step response (STEP).

- In the first case the response of the DUT to excitation with a short pulse is displayed. This representation is very clear and easy to interpret.
- In the second case the response of the system to excitation with a step function
 which in principle can be interpreted as the integral of the impulse response is
 displayed. The step response is particularly suitable for visualizing variations of
 the line impedances. To represent the step response, the LOWPASS mode (see
 next softkey) and not the BANDPASS mode should be used to avoid the DC
 component of the step response to be suppressed.

IMPULSE is the default setting.

The BANDPASS LOWPASS softkey toggles between the BANDPASS and LOWPASS modes.

- In the bandpass mode, arbitrary frequency steps can be used which makes operation very simple.
- In the lowpass mode, a specific frequency grid (harmonic grid) must be used. It is characterized by a START frequency which is an integer multiple of the frequency step width (see next softkey). This is the only case where the DC-component and the image spectrum at negative frequencies can be additionally used for the transformation. As a result a frequency span slightly larger than twice the span of the bandpass mode is obtained and thus the resolution in the time domain is enhanced by about a factor of 2.

BANDPASS is the default setting.

2.4.1.1.4 Defining the frequency grid

With the aid of the following submenu the frequency grid can be defined so that the START frequency f_{START} is equal to the frequency step width Δf . This is called a harmonic grid.

Definition:

The condition for a harmonic grid is $\mathbf{f}_{START} = \Delta \mathbf{f}$.

(The following generalized definition is often used: START frequency f_{START} should be an integer multiple of the frequency step width Δf , ie $f_{START} = n \cdot \Delta f$ where n is an integer. For network analyzers of the ZVR family the stricter definition with n = 1 is used.)

Example 1: Number of points = 1000 START frequency = 1 MHz STOP frequency = 1 GHz

In this example all frequency points are integer multiples of 1 MHz. The frequency step width is 1 MHz and corresponds exactly to the START frequency. This represents a harmonic grid in the sense of the (strict) definition given above.

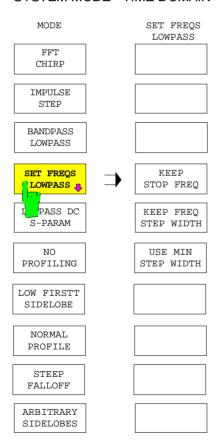
If, however, the following grid is selected (frequency shifted by 1 GHz compared to that of example 1),

Example 2: Number of points = 1000 START frequency = 1.001 GHz STOP frequency = 2 GHz

the above-mentioned strict condition for a harmonic grid is not met because the frequency step width (here also 1 MHz) is not equal to the START frequency.

1043.0009.50 2.108 E-13

Three methods are offered for automatic generation of a harmonic grid from a non-harmonic one. In all cases the number of frequency points ([SWEEP] NUMBER OF POINTS) remains unchanged.


- 1. The START frequency is changed but the STOP frequency is kept (KEEP STOP FREQ). This yields the following result for Example 2: START = 2 MHz and STOP = 2 GHz.
- 2. Both the START and STOP frequencies are changed but the step width is kept (*KEEP FREQ STEP WIDTH*). Result for Example 2: START = 1 MHz and STOP = 1 GHz.
- 3. Frequency step width, START and STOP frequency are changed. The lowest possible START frequency and the lowest possible number of frequency points are set (*USE MIN STEP WIDTH*). Result for a Network Analyzer ZVC with a minimum START frequency of 20 kHz, and for Example 2: START = 20 kHz and STOP = 20 MHz.

In some cases a harmonic grid cannot be obtained under the desired conditions:

Example 3: Number of points = 1000 START frequency = 100 kHz STOP frequency = 1 MHz

In example 3, the *KEEP STOP FREQ* softkey should set the START frequency to 1 kHz. This may not be possible for some analyzer models and configurations (eg for a ZVC with a minimum frequency of 20 kHz). In such cases the analyzer outputs a warning to this effect.

SYSTEM MODE - TIME DOMAIN - DEF TRANSF TYPE - SET FREQS LOWPASS submenu

The SET FREQS LOWPASS softkey opens the submenu for determining the harmonic frequency grid required for the lowpass mode: A harmonic grid can be obtained in different ways:

- The START frequency is changed, the STOP frequency remains the same (KEEP STOP FREQ).
- START and STOP frequency are changed, the frequency step width remains the same (KEEP FREQ STEP WIDTH)
- START and STOP frequency and the frequency step width are changed. The START frequency and step width are minimized (USE MIN STEP WIDTH).

The KEEP STOP FREQ sets a harmonic frequency grid; the number of frequencies and the STOP frequency remain unchanged. To obtain a harmonic grid, the START frequency and thus the frequency step width are suitably modified (as far as possible). If this is not possible (see explanations above), a message is displayed to this effect.

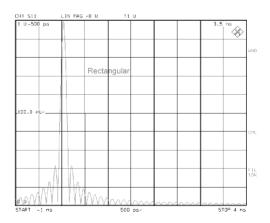
This method is recommended for most applications.

The KEEP FREQ STEP WIDTH sets a harmonic frequency grid; the number of frequencies and the step width remain unchanged. To obtain a harmonic grid, the START and STOP frequencies are suitably modified (as far as possible). If this is not possible (see explanations above), a message is displayed to this effect.

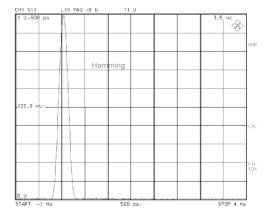
The USE MIN STEP WIDTH sets the harmonic frequency grid with a minimum step width. This is always possible.

For measurements with high accuracy requirements, a system error calibration should be performed after setting the harmonic grid (enhancement label CAL is on during measurements in the LOWPASS mode).

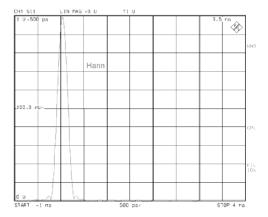
SYSTEM MODE - TIME DOMAIN - DEF TRANSF TYPE submenu:


Softkey *LOWPASS DC S-PARAM* enters a (measured or estimated) S-parameter of the DUT, which is valid at zero frequency. This parameter is required to obtain a correct amplitude offset for the step response in the lowpass mode.

The standard setting for this value is 1. This means full transmission ($S_{21}=S_{12}=1$) when measuring transmission or total reflection with phase zero corresponding to an open circuit ($S_{11}=S_{22}=1$) when measuring reflection.

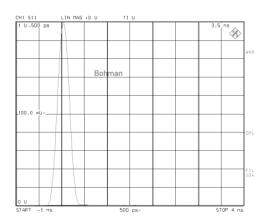

Softkey NO PROFILING leaves the frequency domain data as measured by the network analyzer.

This corresponds to a rectangular filtering of (fictitious) data of an originally infinitely wide frequency range. As a consequence, relatively narrow pulses are obtained in the time domain but with considerable ringing (sidelobes).

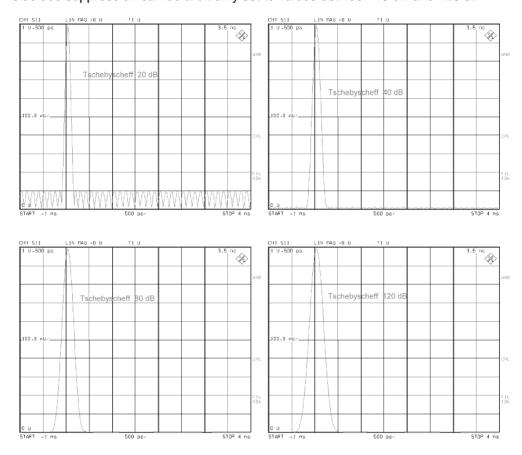


The LOW FIRST SIDELOBE softkey activates a Hamming filter. This filter especially suppresses the first sidelobe and is therefore particularly suitable for the detection of closely spaced faults.

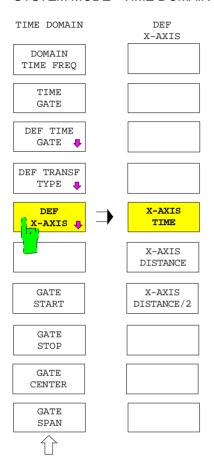
PROFILE


The NORMAL PROFILE softkey activates the Hann filter also called Hanning. This is a good compromise between pulse width and sidelobe suppression.

This filter is recommended for general applications.


The STEEP FALLOFF softkey activates a Bohman filter which causes a particularly steep roll-off of sidelobes. This filter is especially suitable when a far off but relatively low reflection occurs besides a large reflection.

1043.0009.50 2.111 E-13



The ARBITRARY SIDELOBES softkey activates a Chebichev filter. In this case the sidelobe suppression can be arbitrarily set to values between 10 dB and 120 dB.

2.4.1.1.5 Scaling the Abscissa

SYSTEM MODE - TIME DOMAIN - DEF TRANSF TYPE submenu:

The *DEF X-AXIS* softkey opens the submenu for scaling the abscissa. Scaling parameters are

- delay time (X-AXIS TIME),
- distance (X-AXIS DISTANCE),
- half the distance (X-AXIS DISTANCE),

The set scale is stored when the submenu is quit.

The X-AXIS TIME softkey scales the abscissa with respect to the delay time.

This is the default setting.

The *X-AXIS DISTANCE* softkey scales the abscissa with respect to the distance. This is particularly useful when measuring electrical lengths via the transmission.

With transmission measurements in air, a delay time of 1 ns corresponds to a distance of approx. 299.7 mm (corresponding to the velocity of light of c \approx 299.7 mm/ns). A pulse delayed by 1 ns is therefore displayed at the position 299.7 mm.

With other transmission media, the effect of the dielectric on the velocity of light can be taken into account with the aid of the *SET DIELECTRIC* table. For example, compared to the vacuum, the velocity of light is divided by two in a medium with a permittivity of ε =4. In this case a pulse delayed by 1 ns should be about at the position 149.9 mm.

The X-AXIS DISTANCE/2 softkey scales the abscissa with respect to half the distance. This is particularly suitable for displaying the distance in the case of reflection measurements.

When measuring the reflection (for instance on an open ended cable), the pulse travels through the cable twice before it is received, ie to the end of the cable where it is reflected and then back again. The delay time therefore corresponds to twice the cable length. For reflection measurements, the delay in a line (filled with air) of 299.7 mm length is therefore 2 ns (instead of 1 ns as for transmission measurements). With X-AXIS DISTANCE selected, the pulse delayed by 2 ns would be displayed at 599.4 mm. This scaling (X-AXIS DISTANCE/2) should be selected to obtain the desired distance of 299.7 mm.

2.4.1.1.6 Positioning the Gate

The position of the gate is marked on the screen by means of three vertical lines. The beginning of the gate (GATE START) is identified by a small arrow pointing towards the right, the center of the gate (GATE CENTER) by a small circle and the end of the gate (GATE STOP) by an arrow pointing to the left. Normally, the end of the gate will be located after its beginning (with respect to time and space). In this case the gate acts as a bandpass filter, ie reflections outside the gate are suppressed.

However, the beginning of the gate can also be positioned after its end (so that the GATE SPAN becomes negative). In this case the gate acts as a bandstop filter.

SYSTEM MODE - TIME DOMAIN:

The GATE START softkey opens the field for entering the start time of the gate.

The *GATE STOP* softkey opens the field for entering the stop time of the gate.

The GATE CENTER softkey opens the field for entering the center time of the gate.

When the TIME DOMAIN menu is called up this function is automatically activated so that the position of the gate can be shifted directly.

The GATE SPAN softkey opens the field for entering the gate width.

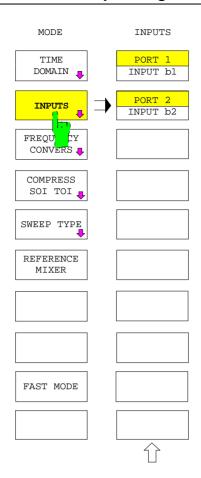
1043.0009.50 2.114 E-13

2.4.1.2 External Measurements

SYSTEM MODE menu:

The *EXTERNAL* softkey activates the external measuring mode. It is available on models ZVR, ZVRE, ZVRL, ZVC and ZVCE. Option ZVR-B25 External Measurements is installed.

The default setting of this softkey is disabled. *EXTERNAL* active is indicated by the enhancement label EXT.


The effects of the *EXTERNAL* softkey are global, i.e. valid for all display channels (also see *SWEEP - COUPLED CHANNELS*).

In the *EXTERNAL* mode, the internal test set (PORT 1 and PORT 2 females), the bridges of which have a model-dependent lower cutoff frequency, is bypassed. Therefore the entire frequency range of the generator and the receiver (from 10 Hz to 4 GHz for ZVR, ZVRE and ZVRL; from 20 kHz to 8 GHz for ZVC and ZVCE) may be used. The output of the test signal source is switched to the OUTPUT a1 socket, INPUT b1 and INPUT b2 are available for inputs.

Since only the outgoing wave a is available with OUTPUT a1, only the forward parameters S_{11} and S_{21} can be measured in the external mode. It is, however, possible to redefine the latter via the *MEAS - USER DEF'D S PARAMS* menu in order to offer utmost flexibility for the user with configuration of an external test setup. Note that the definition of S-parameters as in the table *USER DEFINED S-PARAMETERS* is valid for external operation.

Switching the external operating mode on and off results in different operating ranges for the frequency and level of the internal signal source. If the frequency or the level settings are adapted to the new range, a message will be displayed.

1043.0009.50 2.115 E-13

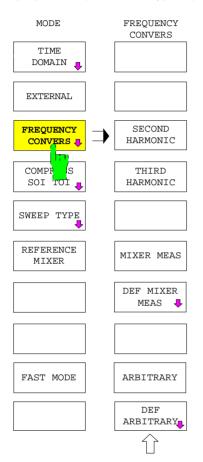
On a ZVK and ZVM, the INPUTS softkey appears in place of the EXTERNAL softkey provided at least one receiver attenuator is installed.

In the INPUTS menu, the user can select for each receiver attenuators installed whether the signal to be measured is to be fed via the test port or the INPUT connector. Similar to option ZVR-B25 (see softkey EXTERNAL), this allows external signal separating devices (eg couplers) to be connected. However, this does not entail a frequency extension.

If at least one of the INPUT connectors is active, this is indicated by the EXT status.

It should be noted that in contrast to ZVRx and ZVCx, ZVK and ZVM do not automatically adopt the user-defined S-parameters when an INPUT is activated. For user-defined S-parameters, the USER DEF ACTIVE softkey in the menu MEAS-USER DEF D S-PARAMS is used.

The softkey *PORT 1 INPUT b1* serves for switching between the test port PORT 1 and the connector INPUT b1 as input for the wave quantity. This softkey is available only if option ZVM-B23/ZVK-B23 (receiver attenuator for ZVM/ZVK PORT 1) is installed.



The softkey PORT 2 INPUT b2 serves for switching between the test port PORT 2 and the connector INPUT b2 as input for the wave quantity. This softkey is available only if option ZVM-B24/ZVK-B24 (receiver attenuator for ZVM/ZVK PORT 2) is installed.

2.4.1.3 Measurements on Frequency-Converting DUTs (Option ZVR-B4)

The option ZVR-B4, "Mixer Measurements" enables measurements on frequency-converting components such as mixers or multipliers.

SYSTEM MODE - FREQUENCY CONVERS submenu:

The FREQUENCY CONVERS softkey opens the submenu that activates, deactivates and configures frequency-converting measurements. The type of the frequency conversion is defined relative to a **base frequency**.

In a frequency sweep (SWEEP TYPE - FREQUENCY SWEEP), the base frequency and its sweep range is set via the STIMULUS key block or the SWEEP - DEF SWEEP LIST softkey.

If, however, SWEEP TYPE - POWER SWEEP or TIME SWEEP is active, the base frequency is defined as a constant parameter via the SWEEP SOURCE - FREQUENCY softkey.

- The measurement of the second and third harmonic is selected directly, i.e. without any configuration setting.
- Mixer measurements are defined in a special submenu (DEF MIXER MEAS).
- Another submenu is provided for configuration of general frequency-converting measurements (ARBITRARY) allowing for test setups which may for example contain several mixer stages, multipliers or dividers (DEF ARBITRARY).

Notes:

- In the frequency-converting mode, the S parameters are not defined and the ratios of measured wave quantities are ill-defined unless the numerator and denominator waves have the same frequency. This is because the ZVx analyzer family's measurement and reference channels can only be tuned to a single, common receive frequency. For general frequency-converting measurements, CONV GAIN b1/Pa1 or CONV GAIN b2/Pa1 are available as a universal quantity referred to a reference. For conversion gain, there is a measured wave quantity in the numerator; the denominator, however, is not a measured quantity but the nominal generator power of the analyzer. When a frequency-converting measurement is activated, CONV GAIN b2/Pa1 is automatically selected as the measured quantity.
- External conversion is required if any rational quantity associated with waves of different frequencies has to be measured (see section 2.4.1.6).
- It is best to perform power calibration at the source port and load port to obtain an accurate measurement of the conversion gain or loss. An appropriate test-point grid should be selected for this calibration procedure (CAL CAL - START POWER CAL, see section 2.15.1.4).
- The frequency-converting mode supports the usual applications where the generator and receive frequencies differ and some special measurement tasks. S parameters can be measured, for example, if the generator and receive frequencies are the same, and an external generator that supplies an auxiliary signal can also be controlled. Even if CONV GAIN b2/Pa1 is automatically set

after activating the frequency-converting mode, the whole range of quantities can be selected with the MEAS key. Even a system-error correction can be activated in the ARBITRARY mode. It is the user who decides whether a selected quantity is useful or not in the current setting.

- If MIXER MEAS or ARBITRARY is activated, the new frequency ranges are subjected to permissibility checks after any entry which modifies the frequency range of the internal or of an external signal source or of the receiver. Likewise, a check is made to determine whether the new generator covers the frequency range set for it after an external generator type has been modified in the EXT SRC CONFIG table. If the network analyzer detects overranging, the frequency-converting measurement is turned off automatically and an appropriate warning is displayed. If the user edits the DEF MIXER MEAS or DEF ARBITRARY menus without activating the associated frequencyconverting mode, only warnings are displayed (on quitting the menu in the case of DEF ARBITRARY).
- With decoupled display channels (SWEEP SWEEP COUPLED CHANNELS deactivated), frequency conversion can be individually defined for each channel.
- Frequency-converting modes can only be activated if an intercept measurement is not being performed at the same time.

2.4.1.3.1 Harmonics Measurements

SYSTEM MODE - FREQUENCY CONVERS submenu:

The SECOND HARMONIC softkey activates the measurement of the second harmonic of the internal signal source. This mode is indicated by the enhancement label H=2.

The *THIRD HARMONIC* softkey activates the measurement of the third harmonic of the internal signal source. This mode is indicated by the enhancement label H = 3.

In both cases the frequency of the internal signal source serves as the base frequency (see page 2.117). The receiver frequency is twice or three times the base frequency. If the allowed frequency range of the receiver is exceeded in the harmonic measurement mode, the base frequency is reduced as much as necessary.

Higher-order harmonics can be measured in the ARBITRARY mode.

Note:

- To measure the efficiency of a multiplier, connect the input of the DUT to the source port and its output to the load port of the analyzer. Select MEAS – RATIO - CONV GAIN b2/Pa1 as a test parameter.
- To measure harmonics suppression of a signal, apply the signal to the load port (receiver input) and measure the fundamental wave (eg MEAS – WAVE QUANTITY – b2). Store the trace with TRACE – DATA TO MEMORY and select the mathematical linkage (SHOW MATH) for display (active function: MATH = DATA/MEM). Start the harmonics measurement. The suppression of the harmonic in question will be displayed directly.

1043.0009.50 2.118 E-13

2.4.1.3.2 Mixer Measurements

SYSTEM MODE - FREQUENCY CONVERS submenu:

The softkey MIXER MEAS activates the mixer measurement mode. This operating mode is indicated by the enhancement label MIX.

This measurement mode can be configured via the *DEF MIXER MEAS* menu.

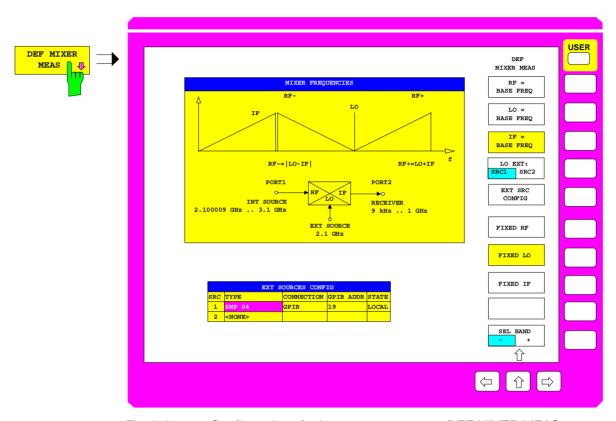


Fig. 2-21 Configuration of mixer measurements - DEF MIXER MEAS menu

The *DEF MIXER MEAS* softkey calls the menu provided for configuration of mixer measurements.

In contrast to the general frequency conversion (see below, softkey *DEF ARBITRARY*), the test setup can not be freely selected but is predefined:

- The internal signal generator supplies the RF signal,
- an external source serves as local oscillator (LO),
- The intermediate frequency (IF), which results from the difference between the RF frequency and the local oscillator frequency, is measured.

Mixer measurements can be performed in internal and external mode.

Each one of the three mixer frequencies RF, LO and IF can be declared as the base frequency. A sweep will then be performed according to the setting in the STIMULUS key group or the active sweep list. One of the two remaining frequencies is maintained at a user-definable constant value. The other one results from the correlation IF = |RF - LO|. A graph is provided to help the user in his choice of one of the two bands in those cases where the sign is ambiguous (for an example, see Fig. 2-21 where RF is calculated from IF and LO).

SYSTEM MODE - FREQUENCY CONVERS - DEF MIXER MEAS submenu:

The $RF = BASE\ FREQ$, $LO = BASE\ FREQ$ and $IF = BASE\ FREQ$ softkeys specify which one of the three mixer frequencies should serve as a base frequency (see page 2.117).

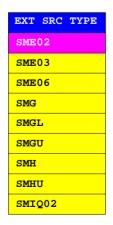
If a mixer frequency which was previously defined as fixed (see below, softkeys FIXED RF, FIXED LO, and FIXED IF) is set to be the base frequency, the analyzer sets another mixer signal to a fixed frequency.

- In general, the LO frequency is set to a fixed value (*FIXED LO*).
- However, when FIXED LO is active and the frequency of the local oscillator is set to be the base frequency (LO = BASE FREQ is selected), the system switches to FIXED IF.

The LO: EXT SRC1 SRC2 softkey selects one of the two external signal sources SRC1 or SRC2 as local oscillator. SRC1 is the default setting.

The EXT SRC CONFIG softkey activates the EXT SOURCES CONFIG table.

EXT SOURCES CONFIG					
SRC	TYPE	CONNECTION	GPIB ADDR	STATE	
1	SMP 04	GPIB	19	LOCAL	
2	<none></none>				


The EXT SOURCES CONFIG table configures the external source. The table is displayed on calling the DEFINE MIXER MEAS menu and has five columns, four of which can be edited:

SRC – number of the external generator (can not be edited)

TYPE - generator type

The *TYPE* field specifies the type of external generator used. The default type is <*NONE*> denoting that the external generator is configured manually. In this case the softkeys *LO* = *BASE FREQ*, *FIXED RF* and *FIXED IF* can not be used.

The EXT SRC TYPE selection table is displayed when the field is edited.

CONNECTION - Remote control mode of the external source

The default mode for all generator types except < NONE > is CONNECTION = GPIB. That means, if the generator is remote-controlled (STATE = REMOTE), the frequency and signal level is set via IEEE-bus before each test point.

In addition, some generator types are equipped with the accelerated mode GPIB + TTL. In this mode, the generator first receives a list of all frequency points (with level information) to be set during the sweep. This list is transferred via IEEE-bus. When the sweep is performed, the only thing to do is to switch the generator from one point to the next by means of a TTL control signal. For this hardware handshake, the signals BLANK and TRIGGER at the rear of the analyzer (see Annex A.11) must be connected with the sockets of the same name of the external generator. Newer generators contain these signals in a multi-point connector. CONNECTION = GPIB + TTL can be used for one of the two external generators only.

GPIB ADDR - IEEE-bus address of the external source

In this column the IEEE-bus address of the external source is set (in the range between 0 and 31). The address must be unique, i.e. two devices with the same address must not be connected to the IEEE-bus.

STATE - Switching the remote control on and off

The STATE field is used to toggle between manual (LOCAL) and remote control (REMOTE) of the instrument. In operating modes with swept LO, STATE = REMOTE must be set. The default setting, which can be restored by means of PRESET, is LOCAL.

Note: A swept external source which is part of an active measurement configuration can not be set to the LOCAL state.

SYSTEM MODE - FREQUENCY CONVERS - DEF MIXER MEAS submenu:

The FIXED RF, FIXED LO and FIXED IF softkeys keep the corresponding mixer frequency at a constant value and activate an entry field for this frequency value. All three softkeys act on the same frequency value. The default setting is FIXED LO active, the smallest possible frequency of the currently selected external source serving as fixed frequency.

1043.0009.50 2.121 E-13

The SEL BAND softkey selects the band for the third mixer frequency in cases where the sign is ambiguous. The default setting is "-".

As soon as two of the three mixer frequencies have been defined by assigning the base frequency (softkeys RF, LO, $IF = BASE\ FREQ$) and the fixed frequency (softkeys $FIXED\ RF$, LO, IF), the third frequency is given by the formula IF = |RF - LO|. Resolving the absolute value might, however, imply a sign ambiguity.

A graph which illustrates the relative position of the three mixer frequencies makes it easier to choose the desired band (see Fig. 2-20) if the third frequency is ambiguous. Bands containing the frequency 0 Hz appear as "folded" around the origin in the graph and can not be selected. Analogously, bands which exceed the allowed frequency range can not be selected either. Such bands are labeled as "not available". If only one of the two bands is not available, the other one is selected automatically and the state of the softkey is fixed. If the frequencies are such that none of the bands is available, the softkey can not be used.

1043.0009.50 2.122 E-13

2.4.1.3.3 Arbitrary Frequency Conversion

SYSTEM MODE - FREQUENCY CONVERS submenu:

The ARBITRARY softkey activates the frequency configuration defined via DEF ARBITRARY. The enhancement label ARB is displayed whenever this operating mode is active.

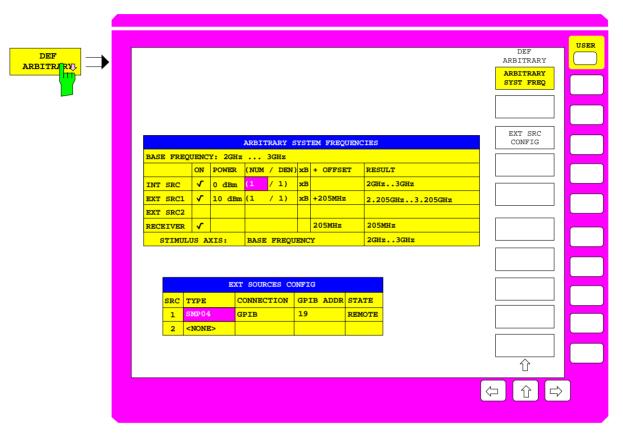


Fig. 2-22 Configuration of system frequencies

The DEF ARBITRARY softkey calls the ARBITRARY SYSTEM FREQUENCIES table.

The table allows to describe complex test setups, which contain various mixers (including harmonic mixers), frequency multipliers or dividers. The frequency of the internal signal source, of the receiver or of up to two external sources can be derived from the base frequency (named B in this case) using a user-definable linear equation.

Note: When editing the frequency equations, make sure that the configuration corresponds to the physical test setup. Otherwise no signal will be received.

System-error correction can be activated in the ARBITRARY mode (CAL - UNCAL softkey). This is important when S parameters are to be measured and an auxiliary signal is required. For example, the user may perform a simultaneous sweep with a frequency-offset external generator to operate the DUT in its large-signal range. Furthermore, it is possible to select whether the system-error correction data is to be interpolated or not ($CAL - CAL\ INTERPOL$ softkey). It should be noted that systemerror correction gives spurious results if the generator and receive frequencies are not the same.

In the *DEF ARBITRARY* menu the base frequency B may be selected outside the limits which usually apply to the network analyzer even when *ARBITRARY* is active. However, the frequency limits for the internal and external sources and for the receiver must be observed (cf. description of the *FREQUENCY CONVERS* menu). In contrast to the mixer measurement, external sources that are activated in the *ARBITRARY SYSTEM FREQUENCIES* table (ticked in the ON column) should always be remote-controllable, i.e. *STATE = REMOTE* has to be set in the *EXT SOURCES CONFIG* table.

Together with the EXT SOURCES CONFIG table, the ARBITRARY SYSTEM FREQUENCIES table and two softkeys for switching over between the two tables are displayed.

SYSTEM MODE - FREQUENCY CONVERS - ARBITRARY SYST FREQ Submenu:

The ARBITRARY SYST FREQ softkey selects the ARBITRARY SYSTEM FREQUENCIES table for editing purposes. This is the default setting when the menu is called.

This table allows to define all four frequencies f (internal source, external sources 1 and 2 and receiver) via the coefficients of a linear equation of the type

 $f_i = (NUM_i / DEN_i) \times \text{base frequency } B + OFFSET_i, \qquad i = 1 \dots 4$

The first line in the table displays the base frequency (*BASE FREQUENCY*). This frequency is defined by means of the *START / STOP* or *CENTER / SPAN* key of the *STIMULUS* keypad. If frequency axis segmentation has been activated with *SWEEP SWEEP – SEG SWEEP*, this is indicated by the additional entry SEGMENTED. If the base frequency is to be a CW signal, the setting is performed via *SWEEP SWEEP – SINGLE POINT* and *STIMULUS CENTER* (frequency value).

The lines *INT SRC, EXT SRC 1, EXT SRC 2* and *RECEIVER* following the table header are used to configure the system frequency, which is derived from the *BASE FREQUENCY* with the aid of the above formula. The resulting sweep range is displayed in the *RESULT* field.

The last line, *STIMULUS AXIS*, allows a system frequency other than the base frequency to be selected for scaling the sweep axis of the measurement diagram. A table of admissible system frequencies can be opened via the center field of this line. This table contains at least the entries *BASE FREQUENCY* (= default setting) and *RECEIVER*. Furthermore, the system frequency activated in the corresponding *ON* field is offered.

Note:

All frequency entries for STIMULUS and MARKER are always referred to the base frequency (BASE FREQUENCY) - even if something else is selected as the STIMULUS AXIS. In the latter case, an appropriate message is displayed in the frequency entry field.

The ARBITRARY SYSTEM FREQUENCIES table contains the following columns (all but the first and the last (RESULT) can be edited):

1043.0009.50 2.124 E-13

System frequency

The first column indicates the system frequency. Either the internal source (INT SRC), external sources (EXT SRC) 1 and 2, receiver (RECEIVER) can be configured.

ON - on/off switch for the external sources

A checkmark indicates the switched-on state. All three sources can be switched on or off. The receiver remains always switched on. If an external source is switched on, *ARBITRARY* can be activated only if the source was configured as *REMOTE* in the *EXT SOURCES CONFIG* list.

POWER - source power

The output power of the signal source can be set in the *POWER* column. Usually – i.e. without generator power calibration – the power can be varied in the same way as via the softkeys *SOURCE – POWER* (for the internal source) or *SOURCE – EXT SRC 1, 2 POWER* (for external sources).

If a generator power calibration of the internal waves a_1 or a_2 is active, however, the field is coupled with the softkeys *CAL a1 POWER* or *CAL a2 POWER* in the menus *SOURCE* and *CAL – START NEW POWER CAL*. Analogously, if power calibration of an external source is active, the field is coupled with the softkeys *CAL EXT SRC 1/2 POWER* in the same menus. The receiver power can not be set.

NUM – numerator

Integer numerator of the multiplier for the base frequency.

DEN – denominator

Integer denominator of the multiplier for the base frequency.

xB - on/off switch for the linear term in the equation

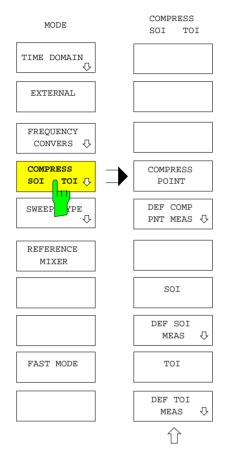
In the *on* state, the multiplier defined by *NUM/DEN* is multiplied by the base frequency B and added to the *OFFSET*. If *MODE – SWEEP TYPE – FREQUENCY SWEEP* is switched on, the base frequency B and therefore the derived system frequency is swept. In the *off* state of xB, the term proportional to B is dropped and the constant *OFFSET* is effective only (CW mode).

OFFSET – additive frequency offset

Each system frequency can be shifted by means of an individual, constant offset frequency with positive or negative sign. If the xB field is deactivated, the system frequency in question is in the CW mode.

RESULT – resulting frequency range

This field can not be edited. For a frequency sweep it indicates the sweep range for the corresponding system frequency defined by the linear equation; otherwise, it contains the corresponding CW frequency. As only positive frequencies can occur in practice, the analyzer always returns the absolute value of the result of the equation.


The EXT SRC CONFIG softkey selects the EXT SOURCES CONFIG table for editing purposes.

The description of the FREQUENCY CONVERS - DEF MIXER MEAS softkey explains how to handle this table.

1043.0009.50 2.125 E-13

2.4.1.4 Nonlinear Measurements (Option ZVR-B5)

SYSTEM MODE - COMPRESS SOI TOI submenu:

The COMPRESS SOI TOI softkey opens the menu providing operating modes used to determine quantities describing the nonlinear features of a DUT. These operating modes require the option "Nonlinear Measurements" (ZVR-B5).

- The X-dB compression point (COMPRESS POINT) represents the signal level at which the S-parameter or ratio selected as a measured quantity has been reduced by X dB compared to its small-signal value due to a increasing saturation of the DUT. It corresponds to the upper limit of the level range where behavior of the DUT can be considered as linear (with an allowed deviation of X dB at maximum, softkeys COMPRESS POINT and DEF COMP PNT MEAS).
- When a two-tone signal is applied to a DUT, the nth order intercept is defined as the level at which the nth order intermodulation product generated by the DUT and the fundamental waves are at the same level. In practice the 3rd order intercept point is of particular importance. It describes intermodulation products located close to the fundamental waves (e.g. in an adjacent channel). The 3rd order intercept is also referred to as TOI or IP3.

The NWA can be also used to determine the SOI (= second order intercept) or IP2. At least one external generator is required to determine the SOI or TOI (softkeys SOI, TOI, DEF SOI/TOI MEAS).

Notes:

- Nonlinear measurements can be activated only in a frequency sweep (SYSTEM MODE SWEEP TYPE - FREQUENCY SWEEP) and if no frequency-conversion mode is switched on.
- Compression point and intercept measurements are both based upon iterative algorithms where a
 primary quantity is measured at several generator levels and receiver frequencies. For the
 compression point measurement, the primary quantity is the S-parameter or a ratio (MEAS RATIO
 menu). For the intercept measurement, an absolute level, i.e. a wave quantity (MEAS INPUT
 menu), is measured.
- Even for a non-linear measurement the active system error or power correction is still applied to the primary measured quantity. This is of crucial importance for the accuracy of compression point and intercept measurements because level deviations of the sources used and of the receivers have a direct impact on the result. Especially for the intercept measurement where both generator signals must be combined before the input of the DUT by means of the level adder or coupler, it is recommendable to perform a power calibration (CAL CAL START POWER CAL) at the reference planes of the DUT before starting the measurement.
- The measurement algorithms check whether the behavior of the DUT corresponds to the model the measured nonlinear quantity is based on. They validate, e.g., whether an increase of the input level causes compression at all or whether the level of the 3rd order intermodulation product shows a cubic behavior. If one of these plausibility checks fails, a specific default value is returned. To be recognizable at a glance, default values differ much from realistic measurement values (≥ 100 dBm or ≤ -100 dBm). The failure of a plausibility check is not necessarily due to the DUT, it may be as well due to errors in the test setup or in the calibration. A list of possible default values can be retrieved by

means of the CHK VALUE SETTINGS softkey in the DEF COMP PNT MEAS and DEF SOI / TOI MEAS menus. The different checks may be activated or deactivated individually.

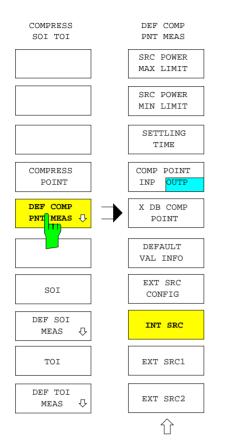
- For nonlinear measurements, one is restricted to the electronically adjustable level range of the internal signal generators. Step attenuators are not automatically set.
- As the number of single measurements at each point of the sweep is not known a priori, the sweep time can not be set, i.e. the softkeys SWEEP – SWEEP TIME AUTO MAN and EDIT SWEEP TIME can not be used. If a sweep time has been set manually before a nonlinear measurement mode is switched on, SWEEP TIME AUTO is selected and a message is displayed.
- For de-coupled channels (SWEEP SWEEP COUPLED CHANNELS off), the nonlinear mode can be configured for each channel individually.

2.4.1.4.1 Compression Point Measurement

SYSTEM MODE - COMPRESS SOI TOI submenu:

The COMPRESS POINT softkey switches the compression point measurement on. The parameters are set in the DEF COMP PNT MEAS menu. The enhancement label CMP indicates that the compression point measurement is active. The compression point measurement can be interpreted as a special formatting of the quantity it is based on. Therefore, CMP is displayed in the format field of the information line.

The compression point can be determined for S-parameters and ratios only. If the current measured quantity is a wave quantity, S₂₁ is selected automatically.


The algorithm for the compression point performs several steps at each sweep point:

- The selected S-parameter or ratio is first measured at the lowest allowed generator level (which can be set via DEF COMP PNT MEAS – SRC POWER MIN LIMIT). This defines the small-signal value of the measured S-parameter or ratio.
- Next, the measurement is performed at the largest allowed generator level (DEF COMP PNT MEAS SRC POWER MAX LIMIT). It is checked whether the compression compared to the small-signal value (specified via DEF COMP PNT MEAS X DB COMP POINT) can be reached at all.
- 3. In the following the compression point is searched by means of iterative interval division. The iteration is stopped when the compression value has been found or after a maximum of 50 cycles without sufficient convergence.
- 4. After determination of the compression point a last test is made in order to exclude that the receiver of the network analyzer itself caused the compression.

In case that the compression point to be measured is referred to the input of the DUT, the generator level itself is indicated as a measured quantity. If it is referred to the output of the DUT, it is first multiplied by the S-parameter or ratio measured at the compression point.

1043.0009.50 2.127 E-13

SYSTEM MODE - COMP SOI TOI - DEF COMP PNT MEAS submenu:

The *DEF COMP PNT MEAS* softkey opens the submenu for setting the parameters which define compression point measurements.

- An upper or lower limit of the source power may be imposed (SRC POWER MAX/MIN LIMIT) in order to protect devices which are sensitive to high levels and limit the search range.
- For each single measurement, a delay time (SETTLING TIME) may be inserted between the setting of the generator and the beginning of the data acquisition.
- The compression point measured can be referred to either the input or to the output level of the DUT (COMP POINT INP/OUTP).
- The compression point (X DB COMP POINT) may be entered.
- The measurement procedure for determining the compression point involves plausibility checks which guarantee a correct result. If an error occurs, default values are returned. A list of all default values with possible causes can be displayed (CHK VALUE SETTINGS) and the checks can be activated or deactivated individually.
- The measurement can be performed with the internal source (INT SRC) as well as with one of the two external sources (EXT SRC1/2). External sources may be configured by means of the EXT SRC CONFIG table.

The SRC POWER MAX LIMIT softkey activates the entry of the maximum generator power to be applied for the compression point measurement. This is useful, e.g., in order to protect sensitive DUTs.

The default value is the maximum available power of the used signal source. If another source is selected, the previous value is maintained if possible.

The SRC POWER MIN LIMIT softkey activates the entry of the minimum generator power to be applied for the compression point measurement.

The default value is the minimum available power of the used signal source. If another source is selected, the previous value is maintained if possible.

Note:

In the SRC POWER MAX/MIN LIMIT entry field, the generator powers at the test ports are displayed with the current attenuation of the generator step attenuators taken into account. If power calibration is active for a port, one of the generator power values refers to the reference plane of calibration, the other value is the uncalibrated nominal power of the other port and is marked UNCAL.

The SETTLING TIME softkey activates the entry of a delay time which is inserted into each single measurement between the setting of the generator and the beginning of data acquisition.

Thus it can be guaranteed that a DUT with a large time constant nevertheless has a sufficient settling time. The total sweep time for a compression point measurement can not be preset manually since the number of single measurements required can not be anticipated.

The COMP POINT INP OUTP softkey determines whether the compression point measurement refers to the input (INP) or output level (OUTP) of the DUT. In the default setting, OUTP is active.

The *X DB COMP POINT* softkey activates the entry of the compression value (in dB) to be measured. The default value is 1 dB compression.

The CHK VALUE SETTINGS softkey opens the DEFAULT VALUES AND CHECK SETTINGS OF COMPRESSION POINT MEASUREMENT table.

The measurement procedure for determining the compression point involves various plausibility checks which guarantee that the measurement is performed correctly. If one of the check fails, e.g. because the compression desired could not be reached, a default value is returned. The VALUE column of the DEFAULT VALUES AND CHECK SETTINGS OF COMPRESSION POINT MEASUREMENT table lists all possible default values; the cause for each value is described in the CAUSE column. Both columns can not be edited.

With one exception (internal error of the network analyzer), each check can be switched on or off individually. A checkmark in the editable column *CHK* indicates that the corresponding check is switched on. All checks are switched on by default.

DEFAU	DEFAULT VALUES AND CHECK SETTINGS OF COMPRESSION POINT MEASUREMENT			
VALUE	CAUSE	CHK		
160 dBm	max power range limit reached (power cal only)	V		
150 dBm	min power range limit reached (power cal only)	V		
• • •	•••			

1043.0009.50 2.129 E-13

The following default values are defined:

1. 160 dBm: max power range limit reached (power cal only)

If the generator is power-calibrated, the desired level and therefore the input value of *SRC POWER MAX LIMIT* is no longer restricted to the actual maximum level of the generator, because an additional amplifier might be connected. The default value of 160 dBm indicates that the power defined via *SRC POWER MAX LIMIT* can not be reached at the reference plane of the power calibration even at maximum generator level.

2. 150 dBm: min power range limit reached (power cal only)

Analogous to 1., if the power defined via SRC POWER MIN LIMIT can not be reached even at minimum generator level.

3. 120 dBm: maximum number of iterations reached

Under normal conditions the compression point is found after less than 20 iteration cycles. If the compression is unstable, e.g. because of noise or other level variations, the iteration algorithm does not converge. In this case, the iteration is stopped after 50 cycles.

4. 110 dBm: receiver compression

If the DUT exhibits only small compression (or none), or if the output level is very high, the compression point of the receiver might be determined instead of the compression point of the DUT. To prevent this the true signal level at the receiver input (behind the attenuator) is checked after determination of the compression point. If this true signal level exceeds a definite threshold, the default value 110 dBm is returned. In this case it is often sufficient to increase the attenuation value of the receiver step attenuator. Alternatively, an attenuator pad may be connected after the DUT. However, this means that a previously performed receiver power calibration becomes invalid.

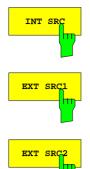
5. 100 dBm: compression not reached within source power limits

This default value is displayed if the maximum generator level specified via *SRC POWER MAX LIMIT* is not high enough to reach the specified compression. A possible remedy is to increase the value of *SRC POWER MAX LIMIT*, to reduce the attenuation of the generator signal, to measure in the external mode (*MODE - EXTERNAL* active), or to use an external generator with higher output power.

6. -100 dBm: external source error

When an external generator is used, this default value indicates an error in the IEEE-bus communication with the generator.

7. <-100 dBm: instrument error


Default values smaller than -100 dBm indicate an internal error of the network analyzer. This check can not be switched off.

If the softkey *CHK VALUE SETTINGS* is pressed while the compression point measurement is active, the measurement diagram is re-scaled such that the whole range of possible default values is visible. To return to the display of the actually measured values, automatic scaling (*RESPONSE SCALE – AUTOSCALE*) can be used, which does not take the default values into account in this particular case.

The EXT SRC CONFIG softkey activates the table of the same name that configures the external sources, see page 2.120. Note that for a compression point measurement, the CONNECTION field setting of the used source is fixed to GPIB.

1043.0009.50 2.130 E-13

The INT SRC, EXT SRC1 and EXT SRC2 softkeys select the signal source used for the compression point measurement. The internal source (INT SRC) is selected in the default setting.

It is recommended to use an external signal source if the expected compression point is higher than 0 dBm input level of the DUT (7 dBm in the external mode). Selection of one of the external sources causes the *EXT SOURCES CONFIG* table to be displayed on the screen (see page 2.120). An external source can be selected only if its *TYPE* is not set to *<NONE>*.

1043.0009.50 2.131 E-13

2.4.1.4.2 Measurement of the 2nd and 3rd Order Intercept Point (SOI, TOI)

SYSTEM MODE - COMPRESS SOI TOI submenu:

The SOI and TOI softkeys switch on the measurement of the 2^{nd} and 3^{rd} order intercept, respectively, using the parameters set in the DEF SOI MEAS and DEF TOI MEAS menus. The enhancement labels SOI or TOI are displayed in this measurement mode. The intercept measurement can be considered as a special formatting. Therefore SOI or TOI is displayed in the format field of the info line.

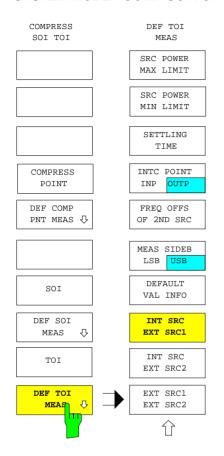
To determine an intercept point the level of a received wave quantity, i.e. b_1 or b_2 , must be measured. If the current measured quantity is an S-parameter or a ratio, b_2 is automatically selected.

The search algorithm for the intercept performs several steps at each sweep point:

- 1. For both generator signals, the highest allowed level is first set via *DEF SOI MEAS SRC POWER MAX LIMIT*. The analyzer checks whether the fundamental wave amplitudes are really equal.
- 2. Next, the level of the selected intermodulation product is measured. This level must be clearly above the current noise level.
- 3. The analyzer also checks whether the DUT shows compression. To this end the level of the fundamental wave is reduced by a definite amount in dB, the receiver signal must go down by the same amount. If not, the level reduction is repeated until the compression vanishes or until the minimum generator level is reached.
- 4. For the last level reduction performed in step 3, i.e. for operation without compression, the intermodulation product must show a quadratic (SOI) or cubic (TOI) behavior. Its level must decrease by the double or triple amount in dB.
- A last test is made in order to exclude that the receiver of the network analyzer itself caused the measured intermodulation product.

In case that the intercept to be measured is referred to the input of the DUT, it can be calculated from the measured levels of fundamental wave (P_{go}) and the intermodulation product (P_{io}) at the output and the known fundamental wave level P_{gi} at the input (values in dB):

$$SOI = P_{ao} - P_{io} + P_{ai}$$


$$TOI = (P_{ao} - P_{io}) / 2 + P_{ai}$$

If the intercept is referred to the output, the corresponding equations read:

$$SOI = 2P_{go} - P_{io}$$

$$TOI = (3P_{go} - P_{io}) / 2$$

SYSTEM MODE - COMP SOI TOI - DEF SOI MEAS submenu:

The *DEF SOI MEAS* softkey and *DEF TOI MEAS* open submenus for the setting of the parameters that define the second and third order intercept measurement.

- An upper or lower limit may be imposed to the power of the signal source in order to protect devices which are sensitive to high levels and to limit the search range (SRC POWER MAX/MIN LIMIT).
- At each single measurement, a delay time (SETTLING TIME)
 may be inserted between the setting of the generators and the
 beginning of the acquisition of the measurement value.
- The measured intercept refers either to the input or to the output level (INTC POINT INP / INTC POINT OUTP) of the DUT.
- The first signal source is swept over the base frequency range, the second source differs from the first by a userdefinable frequency offset (FREQ OFFS OF 2ND SRC).
- In the SOI measurement it is possible to specify whether the sum or the difference frequency of both generator signals should be measured (MEAS FREQ SUM / DIFF).
- In the TOI measurement it is possible to specify whether the lower (lower side band, LSB) or the upper intermodulation product (upper side band, USB) should be measured (MEAS SIDEB LSB/USB.
- The measurement procedure for determining the intercept point involves plausibility checks which guarantee a correct result. If an error occurs, default values are returned. A list of all default values with possible causes can be displayed (CHK VALUE SETTINGS) and the checks can be activated or deactivated individually.
- The fundamental wave signals can be supplied either by the internal source and one of the two external sources (INT SRC /EXT SRC1/2) or by the two external sources (EXT SRC1 / EXT SRC2).

The SRC POWER MAX LIMIT softkey activates the entry of the maximum generator power applied for the measurement of the intercept. This can be used to protect devices which are sensitive to high powers.

The default value is the highest possible power selectable for both sources. If another source is selected, the previous value is maintained if possible.

The SRC POWER MIN LIMIT softkey activates the entry of the minimum generator level applied for the measurement of the intercept.

The default value is the lowest possible power selectable for both sources. If another source is selected, the previous value is maintained if possible.

Note:

- In the SRC POWER MAX / MIN LIMIT entry field, the generator powers at the test ports are displayed with the current attenuation of the generator step attenuators taken into account. If power calibration is active for a port, one of the generator power values refers to the reference plane of calibration, the other value is the uncalibrated nominal power of the other port and is marked UNCAL.
- In the case of some DUTs it may be difficult to set the search range with SRC POWER MAX / MIN LIMIT so that no default values are needed to generate the trace. So, it is only over a very limited level range that the DUT conforms to the model on which definition of the intercept point is based. If, for example, there is no cubic relationship between the amplitudes of the fundamental waves and those of the 3rd-order intermodulation products, measurement of the TOI is not meaningful.

The SETTLING TIME softkey activates the entry of a delay time which will be inserted into each single measurement between the setting of the signal sources and the beginning of the data acquisition.

In this way, it can be guaranteed that a DUT with a large time constant still has sufficient settling time. For an intercept measurement, the total sweep time can not be entered manually since the number of single measurements required can not be anticipated.

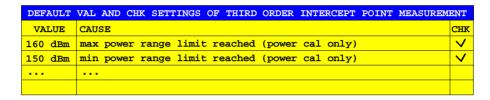
The *INTC POINT INP/OUTP* softkey defines whether the intercept point measurement refers to the input *(INP)* or output level *(OUTP)* of the DUT. In the default setting, *OUTP* is active.

The FREQ OFFS OF 2ND SRC softkey activates the entry of the frequency offset of the second source relative to the first one. The first source sweeps over the defined frequency range, the second one with a constant relative frequency offset.

The MEAS SIDEB LSB USB softkey (in the DEF TOI MEAS menu) defines whether the lower (LSB) or the upper (USB) intermodulation product – referred to the fundamental waves – is to be measured.

The MEAS FREQ SUM DIFF softkey (in the DEF SOI MEAS menu) defines whether the sum (SUM) or the difference (DIFF) frequency of the two signal sources is measured.

Note that with *DIFF* set, the intermodulation product is at a constant frequency which is smaller than the frequency of the two sources, but that both fundamental waves must be measured to determine the intercept (see above, *SOI* softkey). Consequently, the network analyzer must cover the current sweep range of both generators.


The measurement procedure for determining the intercept point involves various plausibility checks which guarantee that the measurement is performed correctly. If one of the check fails, e.g. because the intermodulation product is below the noise level, a default value is returned. The VALUE column of the DEFAULT VALUES AND CHECK SETTINGS OF COMPRESSION POINT MEASUREMENT table lists all possible default values; the cause for each value is described in the CAUSE column. Both columns can not be edited.

The CHK VALUE SETTINGS settings opens the DEFAULT VAL AND CHK SETTINGS OF SECOND / THIRD ORDER INTERCEPT POINT MEASUREMENT table.

The measurement procedure for determining the intercept point involves various plausibility checks which guarantee that the measurement is performed correctly. If one of the check fails, e.g. because the intermodulation product is below the noise level, a default value is returned. The VALUE column of the DEFAULT VALUES AND CHECK SETTINGS OF COMPRESSION POINT MEASUREMENT table lists all possible default values; the cause for each value is described in the CAUSE column. Both columns can not be edited.

With one exception (internal error of the network analyzer), each check can be switched on or off individually. A checkmark in the editable column *CHK* indicates that the corresponding check is switched on. All checks are switched on by default.

The following default values are defined:

1. 160 dBm: max power range limit reached (power cal only)

If at least one of the generators is power-calibrated, its desired level and therefore the input value of *SRC POWER MAX LIMIT* is no longer restricted to the actual maximum level of the generator, because an additional amplifier might be connected. The default value of 160 dBm indicates that the power defined via *SRC POWER MAX LIMIT* can not be reached at the reference plane of the power calibration even at maximum generator level.

150 dBm: min power range limit reached (power cal only) Analogous to 1., if the power defined via SRC POWER MIN LIMIT can not be reached even at minimum generator level.

3. 140 dBm: fundamental levels are not equal

This default value indicates that the levels of the two fundamental waves measured by the receiver are sigificantly different. In most cases, the remedy is a power calibration behind the summation point of the generator signals, i.e. at the input of the DUT.

1043.0009.50 2.135 E-13

4. 130 dBm: intermodulation product is below noise level at max. source power

At each sweep point, the current noise limit for the intermodulation product is determined by switching off one of the two generators and measuring several times at the intermodulation frequency. If the intermodulation level generated with maximum generator power (*SRC POWER MAX LIMIT*) is not clearly above this noise limit, either the intermodulation signal is too low, or the noise limit is too high. In order to increase the intermodulation level, the maximum generator power can be increased via *SRC POWER MAX LIMIT*. If this is not possible, generators providing a higher output power can be used. It is also possible that the attenuation in the signal path (e.g. in the signal adder or in the receiver attenuator) is too high. Note that the intermodulation power increases with the square (SOI) or third power (TOI) of the level of the fundamental waves so that even a small enhancement of the generator power might increase the intermodulation level by a considerable amount. To reduce the receiver noise the IF bandwidth can be reduced (*SWEEP AVG – IF BANDWIDTH*).

120 dBm: no square / cubic relationship between intermodulation and fundam. levels

If the intermodulation level is not reduced by the expected double (SOI) or triple (TOI) amount in dB on lowering the level of the fundamental waves, the default value 120 dBm is returned. This indicates either that the dynamic range for the intermodulation signal is restricted due to the noise (see 4. for possible remedies) or that the nonlinear behavior of the DUT is not compatible with the model applied for the definition of the intercept point. In the latter case the calculation of SOI / TOI doesn't make sense.

6. 110 dBm: receiver intermodulation

If the DUT shows only small or no intermodulation, or if the output level is very high, the intermodulation product of the receiver might be determined instead of the one of the DUT. The intermodulation level of the receiver can be calculated from its known SOI / TOI and the actual signal level at the receiver input (behind the attenuator). If the measured intermodulation signal level does not clearly exceed the receiver's own intermodulation, the default value 110 dBm is returned. In this case it is often sufficient to increase the attenuation value of the receiver attenuator. Alternatively, an attenuator pad may be connected behind the DUT. However, this means that a previously performed receiver power calibration becomes invalid.

7. 100 dBm: source power limits do not allow for compression-free measurement

Starting from the maximum allowed generator power (SRC POWER MAX LIMIT) the fundamental wave amplitudes are reduced step by step until the compression vanishes. If the minimum generator power (SRC POWER MIN LIMIT) is reached before a measurement without compression is possible, the default value 100 dBm is returned. A remedy can be to reduce the minimum generator level SRC POWER MIN LIMIT, to increase the attenuation of the generator signal, or to use generators which can provide a lower output power.

8. -100 dBm: external source error

If an external generator is used, this default value indicates an error in the IEEE-bus communication with the generator. This check can not be switched off.

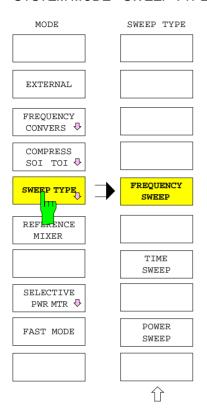
9. <-100 dBm: instrument error

Default values smaller than $-100~\mathrm{dBm}$ indicate an internal error of the network analyzer.

If the softkey CHK VALUE SETTINGS is pressed while the intercept measurement is active, the measurement diagram is re-scaled such that the whole range of possible default values is visible. To return to the display of the actually measured values, automatic scaling (RESPONSE SCALE – AUTOSCALE) can be used, which does not take the default values into account in this particular case.

The INT SRC EXT SRC1, INT SRC EXT SRC2 and EXT SRC1 EXT SRC2 softkeys select the two signal sources used for the intercept measurement. In the default setting, the internal source is combined with the external source 1 (INT SRC EXT SRC1).

The first source sweeps over the actual range, the frequency of the second source differs from it by a constant, positive offset defined via FREQ OFFS OF 2ND SRC.



At the same time, the *EXT SOURCES CONFIG* table (see page 2.120) is displayed. Note that for an intercept measurement, the setting of the CONNECTION field of the sources used is fixed to *GPIB*. An external source can be selected only if its *TYPE* is not set to *<NONE>*.

1043.0009.50 2.137 E-13

2.4.1.5 Sweep Modes

SYSTEM MODE - SWEEP TYPE submenu:

The SWEEP TYPE softkey opens the submenu for selecting the sweep variable. Possible sweep variables are sweeping frequency, time and power of the internal signal source. FREQUENCY SWEEP is the default setting.

The sweep range is set in the *STIMULUS* key group via the *START*, *STOP*, *CENTER* and *SPAN* keys or via *SWEEP* - *SWEEP* - *DEF SWEEP LIST*. The functions which are accessible with the SWEEP key only affect the swept variable. The two parameters which are not swept as well as other parameters which remain constant during the sweep are set via the SOURCE key.

The settings of the STIMULUS and SWEEP key groups, the stimuli of the markers as well as formatting, logarithmation and scaling of the test parameter are stored separately for the three sweep modes. For example, a change from *FREQUENCY SWEEP* to *TIME SWEEP* and back again causes the original set of parameters to be active again independent of the settings made in the time sweep.

With decoupled channels (SWEEP - SWEEP - COUPLED CHANNELS switched off) the sweep mode can be defined individually for each channel.

The FREQUENCY SWEEP softkey activates the frequency sweep mode.

1043.0009.50 2.138 E-13

The TIME SWEEP softkey activates the time sweep operating mode

The STIMULUS STOP, CENTER and SPAN keys can be used to enter the sweep range. The measurement is started immediately and is repeated cyclically after completion of the time interval. A special field is opened for the entry of times. This entry field is divided in three sections for hours: minutes: seconds and looks like a one-row, three-column table:

Any values can be entered in each column. The entered values are then automatically converted into hours: minutes: seconds

In the time sweep mode, the CW frequency is displayed in addition at the bottom left in the diagram area of the screen.

Notes:

- If the SWEEP SWEEP DEF TRIGGER TRIGGER SWEEP POINT softkey is in the POINT position, it is switched to SWEEP and a message is displayed.
- Compression and intercept point measurements cannot be performed in the TIME SWEEP mode. If one of these modes is active when the time sweep is switched on, it is automatically deactivated and a message is displayed.

The POWER SWEEP softkey activates the power sweep mode.

The level of the internal source is always swept even in test configurations with external sources.

If a generator level calibration is active, *STIMULUS START* and *STOP* can also be selected outside the normal level range. If the maximum setting range of the internal source is exceeded, however, the enhancement label PC? is displayed.

If option ZVR-B10 ("High Power") is fitted, the sweep power is referred to PORT 1. Depending on the instrument model the level at port 2 is 10 dB to 13 dB lower.

In the power sweep mode, the CW frequency is displayed in addition at the bottom left in the diagram area of the screen.

Note:

Compression and intercept point measurements cannot be performed in the POWER SWEEP mode. If one of these modes is active when the power sweep is switched on, it is automatically deactivated and a message is displayed.

1043.0009.50 2.139 E-13

2.4.1.6 Reference Channel Ports (Option ZVR-B6)

SYSTEM MODE menu:

The REFERENCE MIXER softkey activates the reference mixer operating mode. This requires the reference channel option (ZVR-B6) to be installed.

In the reference mixer mode, the reference wave parameter a which is normally routed internally is applied to the a1 EXT OUT socket on the rear panel. This is particularly useful for frequency-converting DUTs, such as mixers.

Suppose that the RF input of a known reference mixer, which is provided with the same LO signal as the mixer to be measured, is connected to a1 EXT OUT. If the IF signal obtained is applied again to the analyzer via the a1 EXT IN socket, a reference signal at the IF is available with the wave parameter a . The ratio of test and reference channel can then be used as a measure for the deviation of the DUT from the reference mixer.

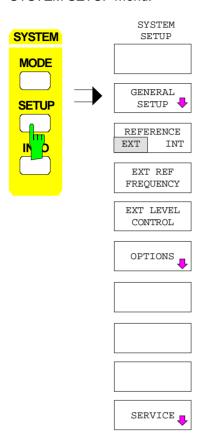
a1 EXT OUT and a1 EXT IN may be used for fundamental wave measurements, too. For example, a large difference of the electrical length between test and reference channel can be compensated by using a longer connecting cable.

Option ZVR-B6 is not available for ZVK and ZVM. Instead, the signal path of reference wave a1 can be disconnected between connectors R1 CHANNEL OUT and R1 CHANNEL IN. In the same way, the reference wave a2 can be accessed between the connectors R2 CHANNEL OUT and R2 CHANNEL IN.

2.4.1.7 Fast Measurement (FAST MODE)

SYSTEM MODE menu:

The FAST MODE softkey activates the fast measuring mode. In this mode, the enhancement label FST is displayed.


The amount of time saved compared to the normal mode increases as the IF bandwidth increases and can exceed 40% for unidirectional measurements at maximum IF bandwidth (SWEEP AVG - IF BANDWIDTH - FULL). The measuring accuracy and dynamic range however decrease in FAST MODE (see data sheet).

The relative savings in time decrease considerably with receive frequencies below 100 kHz because additional internal wait times occur in both modes and FAST mode. The IF bandwidth is automatically set to FULL when FAST MODE is switched on. It can however thereafter be changed.

ZVx Configuration

2.4.2 Preliminary Setup and Interface Configuration – SETUP Key

SYSTEM SETUP menu:

The SETUP key opens the menu for configuration of the instrument.

This menu contains the basic configurations for the measurement hardware applicable in all instrument modes as well as the interface configuration and features for setting date and time.

With the *SERVICE* softkey located in the menu on the right side of the display screen, special setup functions are provided which, although not necessary in normal use, are useful in instrument service.

Configuration ZVx

2.4.2.1 Programming the Interface Configuration and Time

The *GENERAL SETUP* soft key branches to a sub-menu in which the basic setup of general instrument parameters may be performed. The current settings are displayed in tabular form on the display screen where they may then be edited.

Note:

Interface LPT cannot be configured. If the option FSE-B15, computer function, is installed, LPT can be used for printing in both the measurement instrument mode and the DOS mode. However, it can only be used for one mode at a time.

SYSTEM SETUP menu:

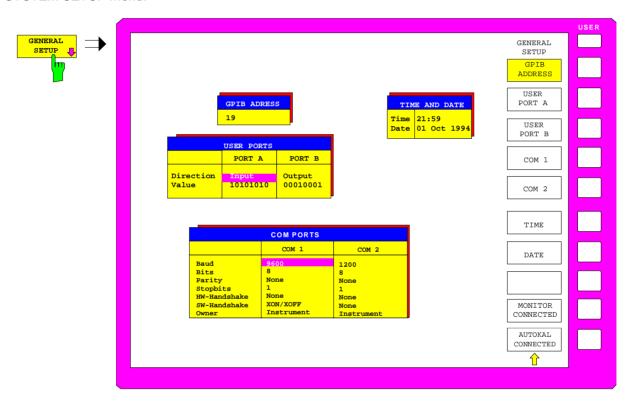


Fig. 2-23 Setting general parameters of the instrument

2.4.2.1.1 IEC Bus Address Selection

SYSTEM SETUP-GENERAL SETUP submenu:

The GPIB ADDRESS softkey activates the entry of the IEC Bus address.

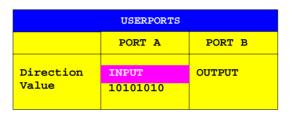
Permitted addresses are 0 to 30. The default setting is address no. 20.

ZVx Configuration

2.4.2.1.2 User Port Configuration

The instrument provides two parallel interfaces, each of which is 8 bits wide. Over these ports, arbitrary bit patterns can be output or input. The interfaces are designated *USER PORT A* and *USER PORT B*.

SYSTEM SETUP-GENERAL SETUP submenu:



The USER PORT A and USER PORT B softkeys activate the columns PORT A and PORT B, respectively, in the USERPORTS table for entry of the parameters for both of the parallel interfaces in the instrument. Because the two interfaces are configured in the same manner, how to configure an interface is described in the following using USER PORT A.

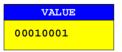
The following parameters need to be configured in the table:

Direction Direction of data transmission

Value Indication/entry of current value

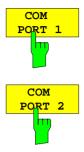
Direction - Direction of data transmission

The *DIRECTION* parameter determines in which direction the interface transmits data.


INPUT read operationOUTPUT write operation

Value - Indication/Entry of current value

The *VALUE* parameter shows the current value of the data at the port for data input as well as for data output. The displayed data is in binary format with the least significant bit (LSB) on the right.


If the port is configured as an *OUTPUT* then, the displayed value can be edited. Data entry must also be in binary format (i.e., only the digits 0 and 1 are accepted).

Configuration ZVx

2.4.2.1.3 Serial Interface Configuration

SYSTEM SETUP-GENERAL SETUP submenu:

The COM PORT 1 and COM PORT 2 softkeys activate the columns COM1 and COM2, respectively, for entry of the serial interface parameters. Since the two interfaces are configured in the same manner, how to configure an interface is described in the following using COM PORT 1.

The following parameters need to be configured in the table:

Baud ratedata transmission rateBitsnumber of data bitsParitybit parity checkStopbitsnumber of stop bits

HW-Handshake hardware handshake protocolSW-Handshake software handshake protocol

Owner assignment to the measuring instrument or computer

Protocol transmission protocol

COM PORTS					
	COM 1	COM 2			
Baud Bits Parity Stopbits HW-Handshake SW-Handshake Owner Protocol	9600 8 None 1 None XON/XOFF Instrument Remote	1200 8 None 1 None None Instrument Remote			

Fig. 2-24 Setting the parameters for external interfaces

Note: A serial interface (COM1 or COM2) cannot be used for

another purpose if a mouse is connected to it.

Baud - Data transmission rate

Allowed are the indicated values between 110 and 19200 baud. The default setting is 9600 baud.

ZVx Configuration

Bits - Number of data bits per word

For the transmission of text without German umlauts (Ä, ä, Ü, ü, Ö, ö) and special characters, 7 bits are adequate. For binary data as well as text with special characters or umlauts, 8 bits must be selected (default setting).

Parity - Bit parity check

NONE no parity check (default setting)

EVEN even parity checkODD odd parity check

Stopbits - Number of stop bits

Available are 0, 1 and 2. The default setting is 1 stop bit.

HW-Handshake - Hardware handshake protocol

The integrity of data transmission can be improved through the use of a hardware handshake protocol which effectively prevents uncontrolled transmission of data and the resulting possible loss of data bytes. In the hardware handshaking procedure, additional interface lines are used to transmit acknowledge signals with which the data transmission can be controlled and, if necessary, stopped until the receiver is ready to receive data again.

A prerequisite for handshaking is, however, that the interface lines (DTR and RTS) are provided between sender and receiver. For a simple, 3-wire connection, this is not the case and hardware handshake cannot be realized here.

Default setting is NONE.

Configuration ZVx

SW-Handshake - Software handshake protocol

Besides the hardware handshake procedure using interface lines, it is also possible to achieve the same effect by using a software handshake protocol. Here, control bytes are transmitted in addition to the normal data bytes. These control bytes can be used, as necessary, to stop data transmission until the receiver is ready to receive data again.

In contrast to hardware handshaking, software handshaking can be realized even for a simple, 3-wire connection.

One limitation is, however, present in software handshaking. Software handshaking cannot be used for the transmission of binary data since, the control characters XON and XOFF require bit combinations that are also used for binary data transmission.

Default setting is NONE.

Owner - Assignment of the interface

When the processor option FSE-B15 is installed, the serial interface can be assigned alternatively to the instrument measurement section, the DOS section or to both sections of the instrument.

If the interface is assigned to only one section of the instrument, it is not available to the other section.

INSTRUMENT

The interface is assigned to the instrument measurement section. Outputs to the interface from DOS are not possible and, so to say, land nowhere.

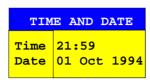
DOS

The interface is assigned to the DOS section. It cannot be used by the instrument measurement section. This means that hardcopy or remote control of the instrument via the interface is not possible. An attempt to start a print job via interface results in an error message. The *PROTOCOL* parameter has no meaning in this mode.

INSTR AND DOS The interface is allocated to both instrument sections. It may be used alternately by each section. This means that a hardcopy job from the measurement section and a data transfer from DOS are not possible at the same time. This would lead to a mixing of the data streams.

> The set interface parameters, with the exception of PROTOCOL, are valid for both instrument sections. The PROTOCOL parameter is only of interest for the measurement section.

Note: DOS programs cannot independently recognize changed interface parameter settings.


ZVx Configuration

2.4.2.1.4 Setting Date and Time

SYSTEM SETUP-GENERAL SETUP submenu:

The *TIME* softkey activates the entry of time for the internal real-time clock . In the corresponding dialog box, the time is partitioned into two input fields so that hours and minutes can be entered independently.

The *DATE* softkey activates the entry of the date of the internal real-time clock. In the corresponding dialog box, the date is partitioned into 3 input fields so that day, month and year can be input separately.

For the selection of the month, pressing a units key opens a list of abbreviations wherein the desired month can be selected.

2.4.2.1.5 Connecting the External Monitor

Submenu SYSTEM SETUP-GENERAL SETUP:

Softkey *MONITOR CONNECTED* informs the unit that an external monitor is available at PC MONITOR connector.

The external monitor displays the Windows NT screen.

Configuration ZVx

2.4.2.1.6 Indication of the Automatic System Error Calibration

SYSTEM SETUP-GENERAL SETUP submenu:

The switched-on *AUTOKAL CONNECTED* softkey indicates to the network analyzer whether the automatic calibration standard for option ZVR-B1, AutoKal, is connected. Option ZVR-B1 and thus *AUTOKAL CONNECTED* softkey is available for all models except ZVRL, ZVK and ZVM.

When AUTOKAL CONNECTED is switched on, the softkeys AUTOKAL and AUTOKAL FUNDAM'TAL are displayed in the CAL menu. As the automatic calibration standard is connected via USER PORT B, editing of the corresponding column in table USER PORTS is no longer possible. On switching on AUTOKAL CONNECTED, the automatic calibration standard is initialized via USER PORT B.

2.4.2.2 External Reference Oscillator

SYSTEM SETUP menu:

The REFERENCE EXT/INT softkey switches between internal and external source of the reference frequency. The signal of an external reference source is fed in via the rear panel connector REF IN. The voltage must be between 0.1 V and 3 V (RMS). The frequency can be set via the EXT REF FREQUENCY softkey. If no appropriate signal is applied to REF IN while the external reference frequency is activated, the error message CAUTION: REFERENCE UNLOCKED is displayed on the screen.

The EXT REF FREQUENCY softkey activates the entry of the frequency of the external source. This frequency can be set between 1 MHz and 15 MHz in multiples of 1 MHz:

The *EXT LEVEL CONTROL* softkey switches the level control by an external signal applied to the rear panel connector *LEVEL* on or off.

In the external level control mode, the input voltage of the external signal (permissible range 0 V to 10 V) determines the power of the internal source (signal switched off to maximum power). The relation between both quantities is non-linear. External level control is an alternative to manual entry of the internal signal level via the SWEEP – SOURCE – POWER softkey.

In the frequency range below 150 MHz, a suitable attenuation value (see SWEEP – SOURCE menu) may be set with external level control, too.

ZVx Configuration

2.4.2.3 Enabling Firmware Options

SYSTEM SETUP menu:

The *OPTIONS* softkey opens a submenu for entering keywords for new firmware options (Application Firmware Modules). Options which are already available are indicated in a table that is opened when the menu is called.

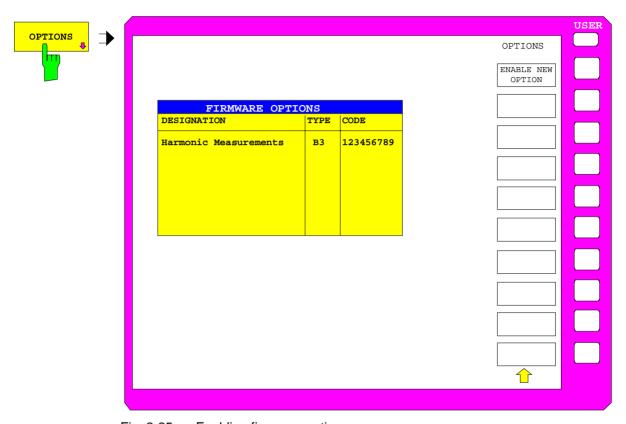


Fig. 2-25 Enabling firmware options

The ENABLE NEW OPTION soft key activates the entry of a keyword for a firmware option.

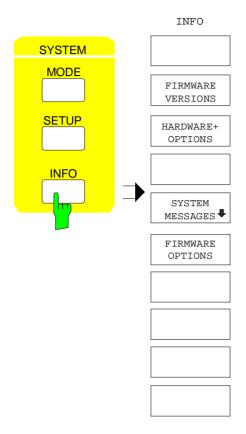
One or several keywords may be specified in the entry field. When a valid keyword is entered, the message OPTION KEY OK appears in the info line and the option is written into the FIRMWARE OPTIONS table.

The FIRMWARE OPTIONS table can also be displayed using the FIRMWARE OPTIONS softkey in the INFO menu.

If a keyword is invalid the message OPTION KEY INVALID is displayed in the info line.

Configuration ZVx

2.4.2.4 Service Functions



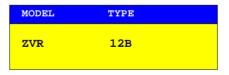
The SERVICE submenu contains a number of service functions that are described in detail in the service manual. If not applied properly, these functions may cause malfunctions in the instrument. Therefore they are protected by a keyword which can be entered via the ENTER PASSWORD softkey.

The *ENTER PASSWORD* softkey activates the entry of a password which gives access to the service functions.

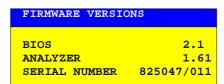
2.4.3 Instrument Status and Measurement Parameters – INFO Key

The *INFO* key is used to request general information concerning the instrument. These include:

- the firmware version,
- · the names of installed hardware options,
- modification level of the individual modules,
- a list of generated system messages.
- a list of installed firmware options.


2.4.3.1 Firmware Versions

SYSTEM INFO menu:



The FIRMWARE VERSIONS softkey opens three tables, which provide the following information:

• Table MODEL TYPE displays the exact instrument model and type.

 In the FIRMWARE VERSIONS table, the version of each software component installed in the instrument is listed. The versions of programmable logic devices are also included if the firmware version number of the device can be determined.

2.4.3.2 Hardware Configuration and Options

SYSTEM INFO menu:

The HARDWARE+OPTIONS softkey opens two tables where the modules (INSTALLED COMPONENTS) and options (INSTALLED OPTIONS) installed in the instrument are listed.

• Similar to the function *FIRMWARE VERSIONS*, the table *MODEL TYPE* lists the instrument model and type:

MODEL	TYPE	
ZVR	12B	

• The INSTALLED COMPONENTS table consists of four columns:

COMPONENT name of module

MODEL INDEX model number of the module

MODIF INDEX modification index of the module

HW CODE code for optional fitting of module components

The table lists only the modules which are actually present in the instrument, i.e., the modules which were identified by the module recognition software.

INSTALLED COMPONENTS	Model	Index	Modif	Index	HW	Code
Main CPU						
Graphics Board						
I/O-Board						
Measurement Control Unit						
Converter A						
Converter B						
Synthesizer						
Local						
Source						
Output Stage						
Frontend						
Testset						

The FIRMWARE OPTIONS softkey opens a table listing the installed firmware options.

The FIRMWARE OPTIONS table contains three columns:

DESIGNATION name of the firmware option TYPE short type designation

CODE enabling code

FIRMWARE OPTIONS				
DESIGNATION	TYPE	CODE		
Mixer Measurements	в4	123456		

New firmware options can be enabled via the *ENABLE NEW OPTIONS* softkey (SYSTEM SETUP menu, see section 2.4.2.3).

2.4.3.3 System Messages

The SYSTEM MESSAGES softkey opens a submenu including a table in which the generated system messages are displayed. The most recent messages are at the top of the list. The following information is presented:

NO Device specific three digit error code

MESSAGE Brief description of the reason for the message COMPONENT Hardware messages: name of the affected module

Software messages: if needed, the name of the affected software components

DATE/TIME Date and time of occurrence of the message

The system messages are displayed in various colors:

Red error message The message has occurred since the last call to the SYSTEM MESSAGES menu,

Black error message The message was already present at the last call.

SYSTEM INFO menu:

Fig. 2-26 System messages

SYSTEM INFO-SYSTEM MESSAGES submenu:

The CLEAR MESSAGE softkey deletes the message just selected.

All subsequent messages are shifted automatically one line upwards so that no empty lines exist. When the last message has been deleted, the selection bar also disappears.

The CLEAR ALL MESSAGES softkey deletes all messages.

The *UPDATE MESSAGES* softkey causes all newly arrived messages to be entered at the top of the table. At this time, all messages previously indicated as "new" are displayed as "old" messages.

2.5 Measurement Documentation – *COPY* Key Group

2.5.1 Printing Data – COPY Key

The instrument uses the printer function of Windows NT to output hardcopies. Any printer supported by Windows NT can be used. In addition, the instrument permits data output in the usual data formats WMF, EWMF and BMP which enable hardcopies to be directly inserted into other documents. Network printers can be used if the instrument is connected to a network.

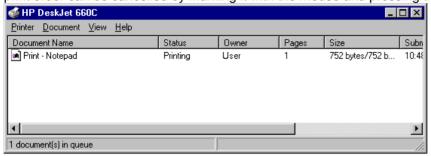
To be able to reproduce all the characters of a WMF printout that has been inserted into a MS Windows program (e.g. Word), the MS Linedraw font must be installed on the PC. The file linedraw.ttf is to be found in the instrument-internal directory C:\WINNT\FONTS.

The *COPY* key initiates the printing of measurement/ instrument status data. The instrument can distinguish between two different output devices, each of which may be individually configured, e.g., a laser printer and a ink jet printer. All documents are printed on the output device which is currently active.

Pressing the COPY COPY key initiates the print job. The printer parameters defined under Windows NT and in the COPY SETTING menu are used for setting up the printer configuration. After pressing the COPY key, all of the display items to be printed are written to the printer buffer of Windows NT. Since the printer runs in the background, the instrument may be operated immediately after pressing the COPY key.

With COPY SCREEN selected in submenu COPY SETTING-SEL ITEMS TO COPY, all the diagrams with traces and status displays are printed as they occur on the screen. Softkeys, open tables and data entry fields are not printed out. Function COPY TRACE allows to print out individual traces. With COPY TABLE tables can be printed out.

If output device *CLIPBOARD* is active in menu *COPY SETTING*, submenu *HARDCOPY DEVICE*, the clipboard can be used to directly transfer hardcopies to Windows applications. The copy is written in the clipboard by pressing *COPY*. The user can then change to another Word document and insert the clipboard content into the document via the menu EDIT - PASTE by using the key combination CTRL+V.


If the *FILE* option in the *HARDCOPY DEVICE* submenu of the *COPY SETTING* menu is selected then, upon pressing *COPY*, the file name to which the output data are to be written is requested. For this an entry field is opened for entering the file name. If no external keyboard is connected, the help line editor is activated.

If the *COPY* key is pressed again during an active print job, a second output can be released which can also be joined to the printer queue. Any number of print jobs can be released consecutively.

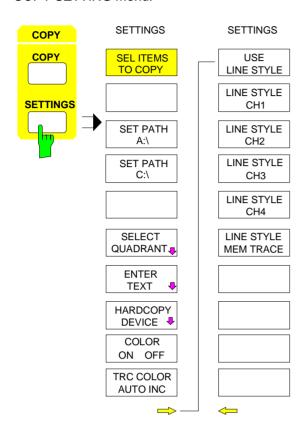
Current print jobs can be aborted only by canceling the entries in the Windows NT printer queue. After starting the print a printer symbol is displayed in the task bar near the time indication.

A double-click on this symbol opens a window containing the entries of the printer queue. The relevant print order can be cancelled by marking it with the mouse and pressing the DEL key.

While a print job is in progress, problems may occur in the output device. If, while printing, the output device issues a PAPER OUT message, i.e., no more paper is available, the user will be prompted by the following message

to load paper into the output device. The print job will then be either continued (CONTINUE selected) or aborted (ABORT selected).

Switchover between b/w and colored printouts is possible with softkey COLOR ON/OFF provided that the printer connected is able to output such prints. The colors of the printout correspond exactly to those of the screen, ie a red trace will be output in red.

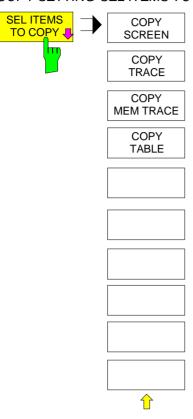

To change the colors of the objects on the printout, the screen colors have to be changed correspondingly in menu *RESPONSE DISPLAY*, submenu *CONFIG DISPLAY*. One exception is the color of the background and the color of the diagrams. The output background is always white irrespective of the screen color and the diagrams are always black.

If several traces are to be output one after the other on the same sheet different colors can be chosen for each trace with the aid of softkey *TRC COLOR AUTO INC* (Trace Color Auto Increment).

On most b/w printers, a better printout of the color screen is obtained on hardcopies if the color information is converted into gray shades. For this, the color output in menu *COPY SETTINGS* is to be activated (COLOR ON).

2.5.2 Printing Configuration – SETTING Key

COPY SETTING menu:


SETTINGS opens a configuration menu for the output of graphics, parameter lists and test reports to a printer, plotter or in the form of files.

To generate a hardcopy, he following procedure is recommended:

- 1. Configure the desired output device and select the output interface by means of softkey *HARDCOPY DEVICE*.
- 2. Select displayed elements to be printed from SEL ITEMS TO COPY submenu.
- Select color or monochrome hardcopy by means of softkeys COLOR ON/OFF and TRC COLOR AUTO INC.
- 4. Comments on graphics or a title for the hardcopy can be added by means of softkey ENTER TEXT.
- Select display mode (QUADRANT, FULL PAGE) by means of softkey SELECT QUADRANT.

2.5.2.1 Selection of Displayed Elements

COPY SETTING-SEL ITEMS TO COPY submenu:

The SEL ITEMS TO COPY submenu comprises the four softkeys COPY SCREEN, COPY TRACE, COPY MEM TRACE and COPY TABLE. With these softkeys you can select the displayed elements to be printed.

Only one of the softkeys can be active at a time. The softkeys are only for selecting the item to be printed, not for starting printing. Printing is started with the key *COPY COPY*.

The softkey COPY SCREEN is used to print out measurement results.

All diagrams, traces, markers, marker lists, display lines, limit lines etc. are printed out, provided they appear on the display screen. Softkeys, tables and open data entry windows are not printed out. In addition, any entered comments, title, date and time are printed out in the lower margin of the print-out. The logo appears in the upper left corner of the print-out.

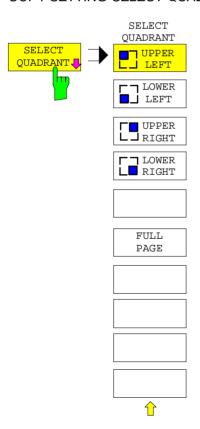
Using the COPY TRACE softkey, all traces visible on the display screen are printed out without auxiliary information. Specifically, <u>no</u> markers or display lines are printed.

Using the *COPY MEM TRACE* softkey, the memory trace visible on the display screen is printed out, provided it exists, without auxiliary information. Similar to the *COPY TRACE* softkey, no markers or display lines are printed.

Using the COPY TABLE softkey, all tables visible on the display screen are printed out.

2.5.2.2 Selection of Data Medium

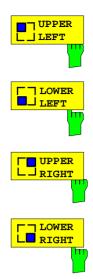
If you have selected a file under *HARDCOPY DEVICE*, use the softkeys *SET PATH A:* and *SET PATH C:\...* to select the data medium on which the file is to be stored. When one of the softkeys is activated, the entry field PRINT TO FILE opens. The field contains a preconfigured file name which can be edited.


The SET PATH A:\ softkey opens the PRINT TO FILE entry field with the preconfigured file name A:\SPOOL.XYZ. XYZ stands for the file type selected under HARDCOPY DEVICE.

The SET PATH C:\... softkey opens the PRINT TO FILE entry field with the preconfigured file name C:\USER\DATA\SPOOL.XYZ. XYZ stands for the file type selected under HARDCOPY DEVICE.

2.5.2.3 Selection of Hardcopy Format

COPY SETTING-SELECT QUADRANT submenu:



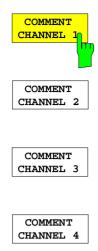
With the functions of the *SELECT QUADRANT* menu, the location of the displayed screen graphics on the printed page can be selected.

The *FULL PAGE* softkey switches quadrant printing off, i.e., printing now takes place at full size. The information as to which quadrant was last selected is also lost. *FULL PAGE* is the default setting.

1043.0009.50 2.159 E-13

The UPPER LEFT, LOWER LEFT as well as UPPER RIGHT, LOWER RIGHT softkeys select the page quadrants where the printed data will be positioned. In this case, the actual size of the data printed on the page is reduced to 25% of normal size. This reduction is independent of how the graphics are distributed on the display screen. Thus, in the modes DUAL SPLIT and QUAD SPLIT, both measurement diagrams (DUAL SPLIT) or all four diagrams (QUAD SPLIT) shown on the display are placed in the chosen quadrant. Thus, up to a maximum of 16 measurement diagrams can be printed on one page (4 print commands for a QUAD SPLIT display, each to a different quadrant).

2.5.2.4 Entry of Comment Text


COPY SETTING-ENTER TEXT submenu:

With the functions of the *ENTER TEXT* menu, commentary for individual diagrams can be entered. The comment text appears in the print-out, but does not appear on the display screen.

If you don't want the comment text to appear in the print-out, you must delete it.

All entered comment texts are deleted when the instrument is reset via the *PRESET* key.

The COMMENT CHANNEL 1, 2, 3 and 4 softkeys open an entry field in which a comment of two lines (60 characters per line) can be entered pertinent to the applicable channel. If the user enters more than 60 characters, the excess characters appear on the second line on the print-out. Note: at any point, a manual line-feed can be forced by entering the @ character. The commentary is printed below the corresponding diagram.

2.5.2.5 Color Settings

COPY SETTING menu:

The COLOR ON/ OFF softkey selects either a color or a black and white print-out (provided that the connected printer is capable of printing in color). The colors of the print-out correspond exactly with the display colors, i.e. a red trace will be printed in red by the printer.

In order to change the colors of the objects on the print-outs, the display colors must be changed in the *DISPLAY - CONFIG DISPLAY* submenu. Exceptions to this rule are the background color and the diagram color. The background is, independent of the display screen color, always white on the print-out and the diagrams are always black.

The softkey automatically switches to *ON* if the printer driver or the hardcopy device is changed (both of these functions appear in the *COPY SETTING* submenu).

An exception to this rule is the printer driver HP PCL4, which only supports black and white print-outs. In this case, the softkey cannot be operated.

The TRC COLOR AUTO INC softkey automatically increments the trace colors from one print-out to the next. On the second print-out, trace 1 is assigned the color from trace 2, trace 2 the color from trace 3, etc. The trace color assignments thus correspond with the initial state again after four print-outs. The trace colors are reset to their initial state when the softkey is switched off.

The TRC COLOR AUTO INC softkey is switched off when the printer driver or the hardcopy device is changed (both of these functions appear in the COPY SETTING submenu) or when a black and white print-out has been selected (COLOR ON/OFF softkey is set to OFF).

1043.0009.50 2.161 E-13

2.5.2.6 Selection and Configuration of the Output Device

The instrument permits two different output devices to be configured. One of the devices is defined as the active device and can be used for hardcopies.

The installation and configuration of these output devices is mainly done under Windows NT and is valid for all Windows applications (see Chapter 1, section "Connecting an Output Device"). The active device and the settings which concern only the output of hardcopies are selected in menu COPY DEVICE.

The *HARDCOPY DEVICE* softkey switches to the sub-menu which is used for the selection/configuration of the two output devices.

When the sub-menu is called, the corresponding table is simultaneously displayed. The *SETTINGS DEVICE 1* softkey is active and the selection bar is located at the *DEVICE1* line.

COPY SETTING-HARDCOPY DEVICE submenu:

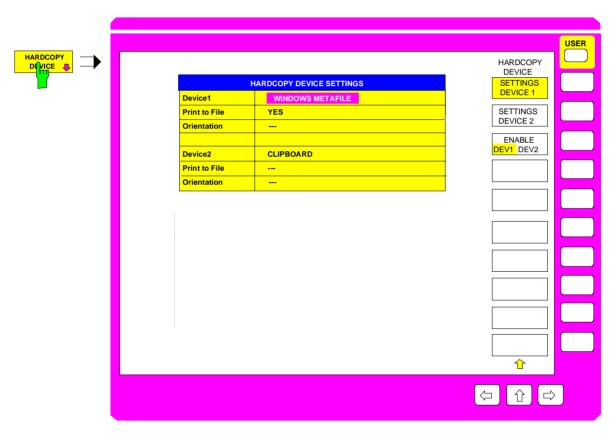
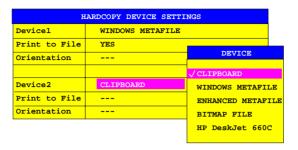


Fig. 2-27 Configuration of the output device


After calling the menu, the *SETTINGS DEVICE 1* soft key is active and permits the selection and configuration of the output device DEVICE 1. The *SETTINGS DEVICE 2* soft key is used to configure DEVICE 2.

The actual selection of the active output device takes place with the *ENABLE DEV1 DEV2* soft key in the *HARDCOPY DEVICE* sub-menu.

1043.0009.50 2.162 E-13

Device

The selection of the output device/language for DEVICE 1 and DEVICE 2 is made in this line

Three file formats and the Windows NT clipboard are always available, even if a printer has not yet been installed under Windows NT. All installed printers are listed below in alphabetic order.

The printer installation is described in Chapter 1, section 1.8.

CLIPBOARD

When "Clipboard" is selected the hardcopies are copied to the Windows NT clipboard. This permits to obtain a printout of high quality which can be directly inserted into other Windows applications (menu EDIT | PASTE or key combination CTRL+V). The lines 'Print to File', 'Orientation' and 'GPIB Address' are deactivated.

WINDOWS METAFILE and ENHANCED METAFILE

WMF and EWMF are vector graphics formats which can be imported by most graphics and editing programs. EMF is recommended for recent Windows32 applications.

BITMAP FILE BMP is a bitmap format which can also be imported by most programs.

When WMF, EWMF and BMP are selected, the line "Print to File" is automatically set to ON and line "Orientation" deactivated.

Print to File

With "Print to File" ON, the printout is directed to a file. In this case the user is prompted to enter a file name on calling up *COPY*.

Note: This setting is coupled to the corresponding setting under Windows NT.

Orientation

In this line, the print format of the output page is set to either vertical (= PORTRAIT) or horizontal (= LANDSCAPE).

The *ENABLE DEV1 / DEV2* soft key determines the active output device. The default output device is DEVICE 1, i.e., all output takes place on DEVICE 1.

1043.0009.50 2.163 E-13

2.5.2.7 Selection of Line Style

For output to a plotter, different test traces can be assigned different *line styles*. The test traces of a chart can thus be represented by various types of dotted and dash-dotted lines.

The line styles actually printed in the hardcopy depend on the plotter used. For this reason, no generally applicable assignment of line style to the sample shown can be made here.

All functions needed for line configuration will be found can be selected by means of the line-style softkeys. These softkeys are available only if a plotter is selected as an output device.

COPY SETTING line-style softkeys:

The softkey *USE LINE STYLE* switches the line configuration function on or off. The other line-style softkeys are available only if the softkey *USE LINE STYLE* is active.

Each of the softkeys *LINE STYLE CH1* to *LINE STYLE CH4* opens an input field for defining the line style for the test trace of a given channel.

The line style is defined with a number between 0 and 7.

The softkey LINE STYLE MEM TRACE opens an input field for defining the line style for all stored test traces (memory traces).

It is not possible to define different line styles for memory traces of different channels.

2.6 Saving and Recalling Data Sets – MEMORY Key Group

The keys in the MEMORY group call the following functions:

- Functions for management of storage media (CONFIG). Included are among others functions for listing files, formatting storage media, copying, and deleting/renaming files.
- Storage/loading functions for storing (SAVE) instrument settings such as instrument configurations (operating modes, measurement/display settings, etc.), calibration parameters and measurement results from working memory to permanent storage media, or to load (RECALL) stored data into working memory.

The network analyzer is capable of internally storing complete instrument settings with instrument configurations and measurement data in the form of data sets. The respective data are stored on the internal hard disk or, if selected, on a floppy. The hard-disk and floppy-disk drives are assigned logical names as usual in PC applications:

floppy disk A: hard disk C:

In addition to the saving and recalling of complete instrument settings, it is also possible to save/recall subsets of settings. Configuration data and measurement values are stored in separate files. These files have the same name as the data set but however have a different extension. A data set thus consists of several files which have the same name but different extensions (see Table 2-2).

When saving or loading a data set, the subsets which are to be saved or loaded can be selected in the corresponding menus. This makes it easy to reconstruct specific instrument settings.

When saving and loading data via the SAVE and RECALL menus, partial data sets are selected in a table in the sub-menu SEL ITEMS TO SAVE/RECALL. The relationship between the designations in the table and the contents of the partial data sets is shown in Table 2-2.

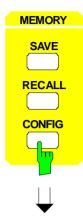

The saved files of the data sets can be copied from one storage medium (e.g. drive C:) to another storage medium (e.g. drive A:) or to another directory using the functions found in the *MEMORY CONFIG* menu. File names and extensions must however not be changed. The relationship between the partial data sets and the extensions is shown in Table 2-2.

Table 2-2 Relationship between file extensions and contents of partial data sets

	Extension	Contents	Designation in the table SEL ITEMS TO SAVE/RECALL
Configuration data:	.SET	current settings of the measurement hardware and the related title, if present	HARDWARE SETTINGS
	.LIN	data-point tables for the active limit lines + configuration of the limit line sets	LINES
	.CKD	data of the calibration standards which are used	CAL KIT DATA
	.CFG	current configuration of general instrument parameters	GENERAL SETUP
	.MAC	user-defined macros	
	.MNU	user-defined menu configuration	MENU+WINDOWS SETUP
	.HCS	configuration for hardcopy output	HARDCOPY
	.COL	user-defined color settings and positions of the movable display elements	COLOR SETUP
Measurement .CAL correction data:		calibration data	
	.PCA	power meter calibration data	
Measurement results:	.TR14	measurement data trace 1 to trace 4	TRACE14
	.M01xx	measurement data memory trace 1 to xx	
Reloadable functional extensions:	.Xxx	configuration data for functional extension xx	

2.6.1 Configuration of Memory – CONFIG Key

MEMORY CONFIG menu:

The CONFIG key opens a menu for managing storage media and files.

Table *DRIVE MANAGEMENT* displays the name and label of the storage medium as well as the available storage area.

Table *FILE MANAGEMENT* displays the files of the current directory and indicates if any subdirectories are present.

If a directory name is selected, the instrument automatically changes to this directory. Selection of the entry '..' moves the instrument to the next higher directory level.

Note: It is not possible to change menus as long as a file operation is running.

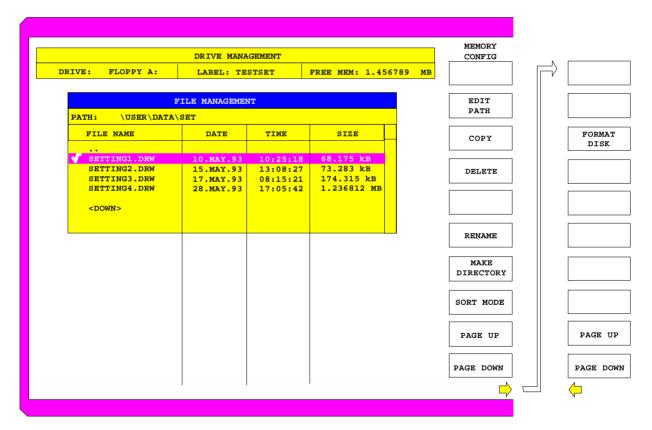


Fig. 2-28 File and storage media management

The *EDIT PATH* softkey activates the input of the directory which will be used in subsequent file operations.

The new path is included in the *FILE MANAGEMENT* table.

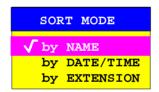
The COPY softkey activates the input of the destination of the copy operation.

By entering a predefined disk drive (e.g. C:), a file can also be copied to another storage medium. The files/directories selected by the cursor are copied after the input is confirmed by pressing the *ENTER* key.

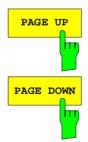
The DELETE softkey deletes the selected files.

To prevent accidental deletion of data, confirmation by the user is requested.

The *RENAME* softkey activates the entry of a new name for the selected file or directory.



The MAKE DIRECTORY softkey creates directories/sub-directories. Sub-directories are recommended for sorting files on the storage medium so that the structure is easier to comprehend.


The entry of an absolute path name (e.g.; "\USER\MEAS") as well as the path relative to the current directory (e.g., "..\MEAS") is possible.

The SORT MODE softkey activates the selection of the criteria according to which the files listed in the FILE MANAGEMENT table may be sorted.

Directory names are located at the top of the list after the entry for the next higher directory level ("..").

The PAGE UP or PAGE DOWN softkey sets the FILE MANAGEMENT table to the next or the previous page.

The FORMAT DISK softkey formats diskettes located in drive A:

To prevent accidental destruction of diskette data, confirmation by the user is requested.

2.6.2 Saving Data Sets – SAVE Key

The SAVE key activates a menu which contains all functions necessary for saving instrument data.

 Entry of the name of the data set which should be saved. Confirmation of the entry initiates a save operation to store the data set.

Data set names may contain both alphabetical and numeric characters, in the simplest case only numbers. The simplest example for the input of a data set name is illustrated by the following key strokes:

<SAVE> <1> <units key>

- Entry of the directory and drive in which the data set is to be saved (SET PATH..., EDIT PATH).
- Selection of the partial data sets to be saved (submenu SEL ITEMS TO SAVE).
- Indication of all available data sets (DATA SET LIST).
- Deletion of one or all available data sets.
- Input of data set description (EDIT COMMENT).
- Configuration of the ASCII files to be generated.

MEMORY SAVE menu

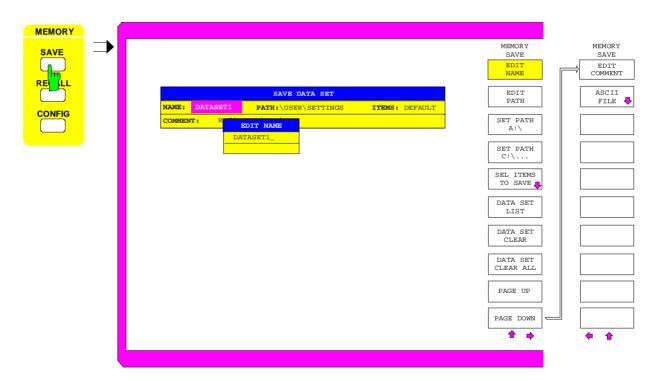


Fig 2-29 Saving data sets

The SAVE DATA SET table shows the current settings regarding the data set:

Name name of data set

Path directory in which the data set will be saved

Items indicates whether the default selection of the partial data set

(DEFAULT) or a user-defined selection (SELECTED) will be

saved

Comment regarding the data set

The *EDIT NAME* softkey for entering the name of the data set to be saved is activated automatically.

Saving Data Sets ZVx

2.6.2.1 Selecting the Data Set for Storage

MEMORY SAVE menu:

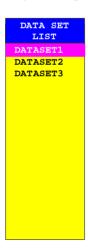
The EDIT NAME softkey activates the entry of the name of the data set to be saved.

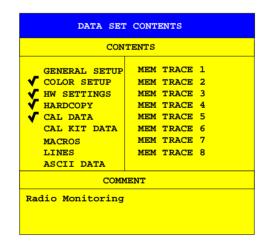
Data entry is concluded by pressing one of the units keys which initiates a save operation to store the data set.

The EDIT PATH softkey activates the input of a directory name where the data sets are to be stored.

The SET PATH A:\ softkey determines that the data set is to be stored in drive A (floppy disk).

The drive name is included in the SAVE DATA SET table.




The SET PATH C:\... softkey determines that the data set is to be stored in drive C (hard disk).

The drive name is included in the SAVE DATA SET table.

The DATA SET LIST softkey opens the DATA SET LIST/CONTENTS table.

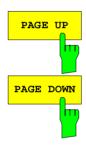
The DATA SET LIST column lists all of the data sets which are stored in the selected directory.

The CONTENTS and COMMENT lines in the DATA SET CONTENTS column indicate the saved partial data sets and the comment for the currently selected data set.

Note:

The current instrument configuration can be easily stored under the name of an existing data set:

- Press a prefix (unit) key after selecting a data set. The name and the selection of the partial data sets for the currently selected data set will be placed in the SAVE DATA SET table. The DATA SET LIST table is closed and, instead, the entry field for the EDIT NAME function with the name of the selected data set is opened.
- Press a units key.
 The current instrument configuration is saved as a data set under this name.



The DATA SET CLEAR softkey deletes the data set selected in the list. Confirmation by the user is required before.

The DATA SET CLEAR ALL softkey deletes all data sets in the current directory.

Confirmation by the user is required before.

The PAGE UP or PAGE DOWN softkey sets the DATA SET LIST table to the next or previous page.

The *EDIT COMMENT* softkey activates the entry of comment concerning the current data set. A total of 60 characters are available for this purpose.

Saving Data Sets ZVx

2.6.2.2 Selecting the Data Subset for Storage

The SEL ITEMS TO SAVE softkey opens a submenu and the table ITEMS TO SAVE for selecting a subset of the current data set to be stored.

MEMORY SAVE-SELECT ITEMS TO SAVE submenu:

Fig. 2-30 Selecting the data set for storage

In the ITEMS TO SAVE table, the following subsets of the current data set can be selected:

General Setup current configuration of general instrument parameters

HW-Settings current measurement hardware settingsTrace1...4 measurement data trace 1 to trace 4Lines data point tables for the active limit lines

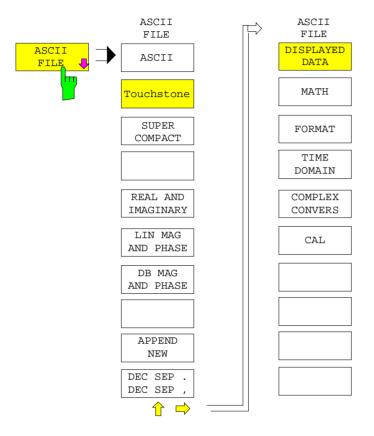
Cal Data calibration data

Cal Kit Data characteristics of the calibration kit

Menu+Window Setup user-defined menu settings
Color Setup user-defined color settings

Hardcopy configuration for hardcopy output

The ENABLE ALL ITEMS softkey selects (and checks) all entries in the ITEMS TO SAVE. table.


The DISABLE ALL ITEMS softkey deselects all entries in the ITEMS TO SAVE table.

The *DEFAULT CONFIG* softkey establishes the default selection of the partial data set to be saved and outputs *DEFAULT* in the *ITEMS* field of the *SAVE DATA SET* table.

2.6.2.3 Configuration of ASCII Files

MEMORY SAVE - ASCII FILE submenu:

The ASCII FILES softkey opens a submenu used to define the characteristics of the ASCII file to be created.

Any ASCII output file can be configured. However, in order to meet the requirements of the SUPER COMPACT and TOUCHSTONE formats, a file in these two formats is generated only if

- either a reflection parameter is measured in the single channel mode
- or all four S, Z or Y parameters are measured in the quadruple channel mode with coupled channels.

The ASCII softkey creates an ASCII file which can imported for arbitrary applications. Only the quantity of the active channel is output.

This format does not restrict the quantity to be measured, the channel coupling or the conversion and formatting.

If the *TOUCHSTONE* softkey is selected, the ASCII data are stored in a format compatible with the applications of CAE supplier Agilent EESof®.

- If a reflection factor S_{ii} or a non-normalized Z_{ii} or Y_{ii} is measured when the data is saved, a .S1P, .Z1P or .Y1P file is created.
- If all 4 S-parameters or the non-normalized Z or Y parameters of a two-port are measured in coupled quadruple channel mode (with any allocation to the display channels), a .S2P, .Z2P or .Y2P file is created.
- For other combinations or in decoupled multichannel mode, no file is created.

On pressing the *TOUCHSTONE* softkey, a message is displayed informing the user of the above conditions for a .S1P or .S2P file to be created.

Data obtained in a time or power sweep cannot be stored in the *TOUCHSTONE* format.

If the *SUPER COMPACT* softkey is selected, the ASCII data are stored in a format compatible with the applications of CAE supplier Ansoft[®].

- If a reflection factor S_{ii} or a non-normalized Z_{ii} or Y_{ii} is measured on when the data is saved, a one-port .FLP file is created.
- If all 4 S-parameters or the non-normalized Z or Y parameters of a two-port are measured in coupled quadruple channel mode (with any allocation to the display channels), a two-port .FLP file is created.
- For other combinations or in decoupled multichannel mode, no file is created.

On pressing the SUPER COMPACT softkey, a message is displayed informing the user of the above conditions for a .FLP file to be created in the one-port or two-port format.

Data obtained in a time or power sweep cannot be stored in the SUPER COMPACT format.

The softkey APPEND NEW (see below) allows to select whether a new file is created (an existing file may be overwritten) or if the data is appended to the end of an existing file.

The three following softkeys define the output format of the measured values:

The measured values are represented by their real and imaginary parts.

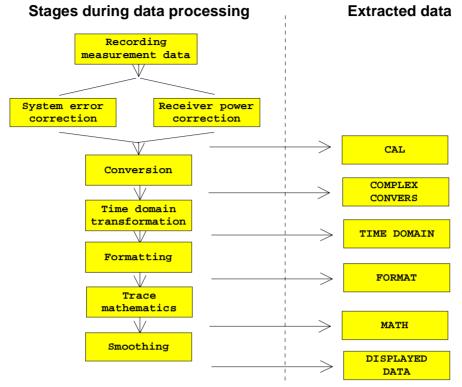
The measured values are represented by their linear magnitude and phase.

The measured values are represented by their logarithmic magnitude and phase.

The APPEND NEW softkey selects whether the output data is written to an already existing file or to a new file.

- In position APPEND, the data is appended to an existing file.
- In position NEW, either a new file is created or an already existing file is overwritten while the data is saved.

Note: As TOUCHSTONE does not support appending of data to the end of a file, the APPEND NEW is locked if this output format is selected.


The *DEC SEP* softkey selects the decimal separator for ASCII files. The separator must be selected according to the requirements of the application the ASCII file is intended for.

The default setting depends on the language for an external keyboard selected in the SETUP - GENERAL SETUP menu (see section 2.4.2.1.4, External Keyboard Configuration).

For the languages "GERMAN" and "FRENCH", the comma (',') is selected, for "US-AMERICAN" the period ('.') is the default separator.

1043.0009.50 2.175 E-13

The following diagram shows on which stages in the processing of measured values it is possible to extract data:

The data required can be selected with the softkeys described in the following.

The DISPLAYED DATA softkey saves the data in the selected format.

The *MATH* softkey saves the data without applying the possibly activated SMOOTHING-function.

The FORMAT softkey saves the data without applying the possibly activated functions SMOOTHING and TRACE MATH

The *TIME DOMAIN* softkey saves the data without applying the possibly activated functions SMOOTHING, TRACE MATH and FORMAT.

The COMPLEX CONVERS softkey saves the data without applying the possibly activated functions SMOOTHING, TRACE MATH, FORMAT and TIME DOMAIN.

The *CAL* softkey saves the data without applying the possibly activated functions SMOOTHING, TRACE MATH, FORMAT, TIME DOMAIN and COMPLEX CONVERS.

2.6.3 Recalling Data Sets - RECALL Key

The RECALL key activates a menu which contains all functions necessary for recalling data sets.

- Entry of the name of the data set which should be recalled. Confirmation of the entry initiates a load operation to recall the data set.
- Entry of the directory and drive in which the data set is stored.
- · Display of data set description.
- Selection of a data set which will be automatically loaded upon power-up.
- Indication of all available data sets.
- Deletion of all available data sets.
- Selection of the partial data sets which should be loaded (configurations, measurement and calibration data, sub-menu SEL ITEMS TO RECALL).

Any settings not restored when partial data sets are loaded will remain unchanged in the instrument. During recall operations, the instrument recognizes which partial data sets are present in the recalled data set and offers only the corresponding settings for selection in the SEL ITEMS TO RECALL submenu.

A new instrument data set can be easily constructed from several existing data sets:

- 1. The desired partial data sets are selected and recalled out of various data sets in several *RECALL* operations. When the desired configuration is completed, the new data set can be saved under a new name (*SAVE* menu).
- 2. The files of the desired partial data sets are copied (*MEMORY CONFIG* menu), whereby the new name (= the name of the new data set) is used for each of the copied files. The file extension is however not changed. When the copy procedure has terminated, the new data set can be loaded into the instrument (*RECALL* menu, *SEL ITEMS TO RECALL* submenu).

Note:

The second method may under certain conditions be quicker, but it involves the risk that data sets are constructed whose elements are incompatible. With the first method, a check is performed after each load operation as to whether the restored data are compatible with the rest of the instrument settings and warnings and error messages are generated if the case may be. With the second method, the information regarding the relationship between partial data sets and generated messages is lost. It then becomes very difficult to locate the partial data set which is incompatible with the others.

MEMORY RECALL menu:

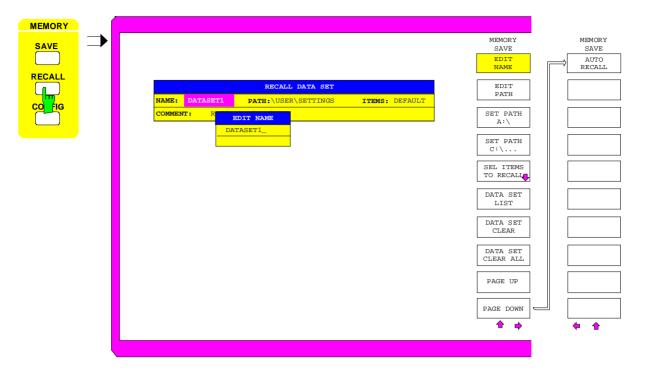


Fig. 2-31 Recalling data sets

The RECALL DATA SET table shows the current settings regarding the data set:

Name name of data set

Path directory in which the data set is located

Items indicates whether the default selection of the partial data set

(DEFAULT) or a user-defined selection (SELECTED) will be loaded

Comment regarding the data set

The *EDIT NAME* softkey for entering the name of the data set to be loaded is activated automatically.

2.6.3.1 Selecting the Data Set to be Recalled

MEMORY RECALL menu:

The *EDIT NAME* softkey activates the entry of a data set name.

The data input is terminated by pressing one of the units keys which simultaneously initiates the data set recall operation.

The *EDIT PATH* softkey activates the entry of a directory name in which the data set is located.

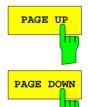
The new path is included in the SAVE DATA SET table.

The SET PATH A:\ softkey determines that the data set is called from drive A (floppy disk).

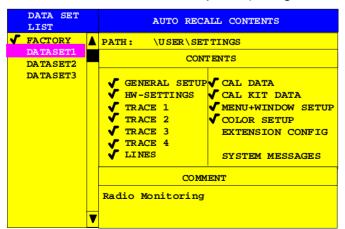
The name of the drive is included in the RECALL DATA SET table.

The SET PATH C:\... softkey determines that the data set is called from drive C (hard disk).

The name of the drive is included in the RECALL DATA SET table.


see Chapter "Saving Data Sets".

see Chapter "Saving Data Sets"


see Chapter "Saving Data Sets".

The PAGE UP or PAGE DOWN softkey sets the DATA SET LIST table to the next or previous page.

The *AUTO RECALL* softkey activates the selection of a data set which is automatically loaded when the instrument is powered on. To this end the table *DATA SET LIST/CONTENTS* is opened (analogous to *DATA SET LIST)*.

The DATA SET LIST column displays all data sets present in the selected directory.

The CONTENTS and COMMENT lines in the AUTO RECALL CONTENTS column indicate the saved partial data sets and the comment for the currently selected data set.

In addition to the data sets stored by the user, the data set *FACTORY*, which specifies the settings of the instrument before it was last switched off (Standby), is always present.

If a data set other than *FACTORY* is chosen then, at the time of instrument power on, the available partial data sets of the selected data set are recalled. The partial data sets which are not present in this data set are taken from the *FACTORY* data set

2.6.3.2 Selecting Data Subsets to be Recalled

The SEL ITEMS TO RECALL softkey opens a submenu for selecting a subset of the current data set to be recalled.

MEMORY RECALL-SELECT ITEMS TO RECALL submenu:

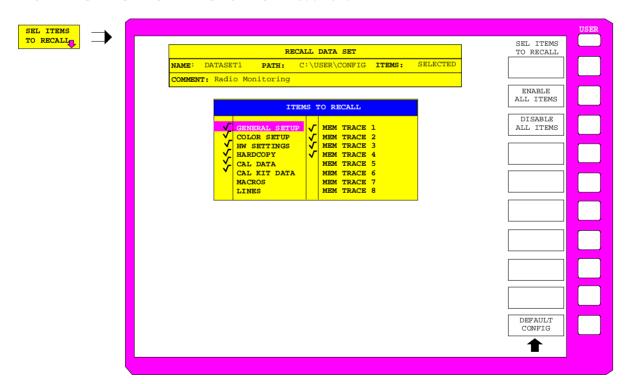


Fig. 2-32 Selecting partial data sets to be recalled

The ITEMS TO RECALL selection table lists the partial data sets available:

General Setup current configuration of general instrument parameters

HW-Settingscurrent measurement hardware settingsTrace1...4measurement data trace 1 to trace 4Linesdata point tables for the active limit lines

Cal Data calibration data

Cal Kit Data characteristics of the calibration kit

Menu+Window Setupuser-defined menu settingsColor Setupuser-defined color settingsHardcopyconfiguration for hardcopy output

The ENABLE ALL ITEMS softkey selects (and checks) all entries in the ITEMS TO RECALL table.

The DISABLE ALL ITEMS softkey deselects all entries in the ITEMS TO RECALL table.

The *DEFAULT CONFIG* softkey establishes the default selection of the partial data set to be recalled and outputs *DEFAULT* in the *ITEMS* field of the *RECALL DATA SET* table.

2.7 Switchover to Manual Operation and Default Setup – STATUS Group

2.7.1 Switchover to Manual Operation – *LOCAL* Key

The STATUS group comprises the SRQ and REMOTE LEDs and the LOCAL key.

- The SRQ LED indicates that the instrument has raised a service request on the IEC/IEEE bus.
- The LED REMOTE LED indicates that the instrument is in remote control.
- The *LOCAL* key switches the instrument from remote to manual control provided the remote controller has not activated the LOCAL LOCKOUT function.

Changing to manual control results in:

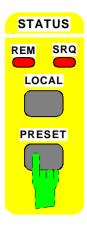
- Enabling the front-panel keys

Under remote control, the softkey menu is turned off and all keys, with the exception of *PRESET* and *LOCAL*, are disabled. Returning to manual mode enables all inactive keys. The softkey menu displayed is the main menu of the current operating mode.

- Turning off the REMOTE LED

- Generating the OPERATION COMPLETE message

If, at the time of pressing the *LOCAL* key, synchronization via *OPC, *OPC? or *WAI is active, the current measurement is aborted and synchronization is achieved by setting the corresponding bits in the registers of the status reporting system.


- Setting bit 6 (User Request) in the Event Status Register

With a corresponding configuration of the status reporting system, this bit causes the generation of a service request (*SRQ*) which is used to inform the controller that the user wishes to return to front-panel control. This information can be used, e.g. to interrupt the control program so that the user can make necessary manual corrections to instrument settings. This bit is set each time the *LOCAL* key is pressed irrespective of whether the instrument is under remote or manual control.

• The LOCAL key aborts a running macro. Macros cannot be continued.

ZVx Default Setup

2.7.2 Default Setup – PRESET Key

The *PRESET* key restores the default setup. All current settings are thereby lost.

To avoid the inadvertent switch-on of this function, a query is displayed each time the *PRESET* key is pressed. If resetting is confirmed with OK, the default setup is restored. If the preset should not be carried out, CANCEL has to be pressed. This, for instance, allows the current instrument setup to be stored with the aid of the MEMORY SAVE functions for subsequent call-up.

After pressing the *PRESET* key and subsequent confirmation, the instrument carries out a default setup according to the table below. Remember especially for sensitive EUTs that the output level at the ports is -10 dBm.

Table 2-3 PRESET settings

Parameter	Setting	
Active channel	CH1	
Magnitude	S ₁₁	
Conversion of measured value	S (selected s parameter is not converted)	
Reference impedance Z ₀	$50~\Omega$ or $75~\Omega$ (depending on TEST SET of instrument)	
Formatting the selected complex magnitude	Complex	
Aperture for group-delay measurement	10 test points	
Relative dielectric constant ϵ_{r} (EPSILON)	1	
Maximum on radial axis	1	
Diagram	SMITH	
Display mode	SINGLE CHANNEL	
Curve data	Currently measured data (not linked to stored data)	
System error correction	Switched off	
Offset	0	
Start frequency	9 kHz (ZVR, ZVRE, ZVRL with passive bridges) 300 kHz (ZVR, ZVRE, ZVRL with active bridges) 20 kHz (ZVC, ZVCE) 10 MHz (ZVK, ZVM)	
Stop frequency	4 GHz (ZVR, ZVRE, ZVRL) 8 GHz (ZVC, ZVCE) 20 GHz (ZVK, ZVM)	

Default Setup ZVx

Parameter	Setting
Center frequency	As appropriate
Sweep width	As appropriate
Sweep mode	Frequency sweep
Scale of measured values	Linear
Number of test points	401
Trigger mode	Free-running
Sweep direction	Forward
Sweep	Enabled
Parameters to be coupled	Coupled
Sweep	Automatic, continuous
Output level	-10 dBm
Rise of output level	0 dB/GHz
Sweep time	Automatic
Bandwidth of IF filters	10 kHz
IEC/IEEE-bus status of external generators	LOCAL

ZVx Macros

2.8 Macros – USER Key

The menus of the network analyzer are so designed that the analyzer can be easily applied to most of the usual measurement tasks with a minimum number of key operations. However, the *USER* menu also permits a tailored adaptation of any necessary setup and measurement functions needed for special applications. Here, a sequence of key operations, which may occur repeatedly, can be listed in the *USER* menu as a key macro, then stored in memory and recalled as required by the application.

2.8.1 Fundamentals

Macros are defined as arbitrary key sequences which need to be defined only once and then can be recalled as often as desired. Through the use of macros, often-needed measurement functions or instrument setups, which may require a large number of key operations, can be easily performed. The writing of macros is possible only under manual control. Macro generation is not possible under remote control (e.g. via the IEC Bus interface).

A total of 27 different macros can be programmed and assigned to the individual softkeys of the *USER* menu. Macros 1 to 7 are contained in the main menu, the remaining 20 can be found in the right and left supplementary menus. Each macro has a title (arbitrarily defined by the user) which is also used as a label for the corresponding softkey. To indicate that a macro has not yet been programmed, the softkey label appears in parenthesis (e.g. (MACRO 1)). After a key-sequence macro has been defined, the parenthesis are removed and the softkey is replaced by the title specified by the user.

Macro contents can be output as listings and edited. Using the functions in the *MEMORY-SAVE* and *MEMORY-RECALL* menus, macros can be saved to and recalled from the hard disk and floppies.

A macro is executed by pressing the corresponding softkey.

During execution of macros, the key actions are repeated in exactly the **same order** as they were programmed. The sequential execution of a macro may be interrupted by using the PAUSE instruction. As soon as a macro is interrupted, adjustments on the Unit Under Test (UUT) may be made, etc. The interrupted macro is allowed to continue by pressing *CONTINUE* in the message window and is aborted by pressing ABORT.

A running macro can be aborted by pressing the *LOCAL* key. At this time, the following message is displayed:

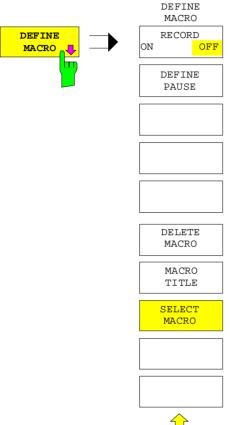
During the time a macro is executing, manual operations on the instrument are not possible, and the softkey panel is disabled. After interruption or conclusion of a macro, the applicable softkey panel is enabled (i.e., menu state at the conclusion of the macro).

Macros ZVx

2.8.2 **Starting Macros**

The USER key opens a menu for selection and starting of macros. The macros can be defined in the *DEFINE MACRO* submenu.

(MACRO 7)


The MACRO 1 to 7 softkeys start the execution of the associated macros.

ZVx Macros

2.8.3 Defining Macros

The *DEFINE MACRO* menu contains all of the softkeys which are needed for macro management. Included are functions for starting and ending macro programming, editing of a macro title, etc.

USER DEFINE MACRO menu

The *DEFINE MACRO* softkey calls the sub-menu to define the macros.

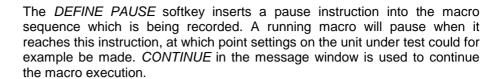
The SELECT MACRO softkey is active and opens the box to select the macro to be edited. In case no selection is made, MACRO 1 is automatically selected.

The RECORD ON/OFF starts or stops the recording of the macro.

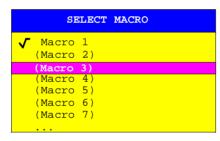
ON All key actions are recorded until the softkey is changed to *OFF*. To indicate that macro record is enabled, the enhancement label

MAC is displayed.

The number of actions which can be stored in a macro is limited. If the limit is exceeded, the error message "Macro too long. Recording aborted" is output and the recording operation is aborted, however, the actions already recorded do remain stored.

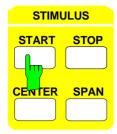

OFF The recording is stopped. The key actions are stored under the macro chosen by the SELECT MACRO softkey.

Macros ZVx


The *DELETE MACRO* softkey deletes the macro which was previously selected by the *SELECT MACRO* softkey. The softkey of the deleted title now carries its default label ($MACRO\ X$, $X = macro\ number$). After the macro has been deleted, its listing is blank.

The MACRO TITLE softkey activates the entry of the title for the selected macro.

Because the macro title is used for labeling the corresponding softkey, a maximum of only 20 characters is allowed. All text after the 10 th character is written to the second line. However, entering the character @ forces a new line at any point in the softkey title.


The SELECT MACRO softkey opens the selection box with a list of all 27 macros. All softkey functions of this menu are related to this macro. The listing of the selected macro is displayed on the screen.

(MACRO 27)

Use ENTER to select macro

2.9 Defining the Sweep Range – STIMULUS Key Group (START, STOP, CENTER and SPAN Keys)

The *STIMULUS* key group comprises the *START*, *STOP*, *CENTER* and *SPAN* keys. These keys activate the entry of the limits and size of the sweep range.

The selection of the sweep variable is made in the SYSTEM MODE - SWEEP TYPE menu. Three different sweep modes are available:

• FREQUENCY SWEEP sweep over the frequency of the internal source.

• TIME SWEEP sweep over the time.

• POWER SWEEP sweep over the level of the internal source

With single-point measurement (SWEEP SWEEP - SINGLE POINT), the START, STOP and CENTER keys can also be used to enter the stimulus value. The SPAN key is inoperative.

When a sweep list is active (SWEEP SWEEP - LIST SWEEP), the four keys of the STIMULUS key GROUP are inoperative.

The function and input parameters of the *START*, *STOP*, *CENTER* and *SPAN* keys depend on the sweep mode. They are collected in Table 2-4 in the format *parameter* [dimension].

Table 2-4 Input parameters of the START, STOP, CENTER and SPAN key

	START	STOP	CENTER	SPAN
FREQUENCY SWEEP	Start frequency [Hz]	Stop frequency [Hz]	Center frequency [Hz]	Frrequency span [Hz]
TIME SWEEP	_	total sweep time [h:min:s]	hallf of the sweep time [h:min:s]	total sweep time [h:min:s]
POWER SWEEP	Start level [dBm]	Stop level [dBm]	Center level [dBm]	Level span [dB]
Single point measurement	Stimulus value	Stimulus value	Stimulus value	-
Sweep list	_	_	_	-

Notes:

- In the power sweep mode, the START, STOP and CENTER entry fields indicate the generator powers at the test ports with the current attenuation of the generator step attenuators taken into account. If power calibration is active for a port, one of the generator power values refers to the reference plane of calibration, the other value is the uncalibrated nominal power of the other port and is marked UNCAL. The sweep range displayed below the measuring diagram applies to the test port that supplies the stimulus for the test parameter in the active display channel (for example PORT 1 for S₁₁). For the sweep range, any generator power calibration or attenuation of the generator step attenuators that may be active is taken into account.
- The ARBITRARY mode of option ZVR-B4 (see section 2.4.1.3.3) allows different frequency ranges for the internal generator, up to two external generators and the ZVx receiver for measurements on frequency-converting DUTs. The principle for the configuration of such measurements consists in

deriving these system frequencies from a base frequency using a formula. This base frequency is entered via the *STIMULUS START / STOP or CENTER / SPAN* keys. For scaling the sweep axis of the measurement diagram, it is possible to select the base frequency and also one of the configured system frequencies. In this case, note that the frequencies entered with the keys of the *STIMULUS* group still refer to the BASE FREQUENCY. The values for *START / STOP or CENTER / SPAN* may therefore differ from the corresponding scaling values in the sweep line or in the measurement diagram. In the *DEF ARBITRARY* menu or if the ARBITRARY mode is activated, a message is displayed in the entry field indicating that the value refers to the BASE FREQUENCY, and the frequency range used for scaling the sweep axis.

In the *TIME SWEEP* mode, the entry of *STOP*, *CENTER* and *SPAN* is made according to the hours:minutes:seconds format in a special entry field.

The times entered always refer to the respective sweep start. The *START* key has no function, since the sweep always starts immediately upon termination of the entry or immediately following the termination of the previous sweep. A reference to the absolute system clock time can be made via the real-time trigger source (*SWEEP SWEEP - DEFINE TRIGGER - REAL TIME CLOCK*).

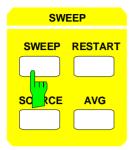
In the *POWER SWEEP* mode, the absolute levels *START*, *STOP* and *CENTER* are input in units of dBm. The span, i.e., the difference of two logarithmic values, is entered in dB.

In all modes, the sweep goes over a real interval ($SPAN \neq 0$). In order to perform a discrete measurement with just one stimulus value, the function SWEEP SWEEP - SINGLE POINT must be used.

If the sweep range is changed, the validity of some of the other settings is checked by the instrument. See the descriptions of the hard- and softkeys SWEEP SWEEP - LOG SWEEP, SWEEP AVG - IF BANDWIDTH, RESPONSE FORMAT - FREQUENCY APERTURE, RESPONSE SCALE - ZOOM, RESPONSE TRACE - SHOW MATH and CAL CAL.

For each of the three sweep modes (frequency, time and power sweep), the settings made in the *STIMULUS* and *SWEEP* key groups and the marker values are stored separately. If, e.g., one changes from a frequency sweep to a time sweep and then back to the frequency sweep, the original parameters are restored, regardless of the settings made in the time sweep mode.

In linear cartesian diagrams; the vertical grid lines depend on the type of entry of the sweep limits:


- If START or STOP values are entered, the partition lines lie on integer multiples of the grid increment.
- If CENTER or SPAN is specified, the division is symmetrical to the center of the diagram.

According to the last entry, either the *START* and *STOP* values or the *CENTER* and *SPAN* values are shown below all diagrams.

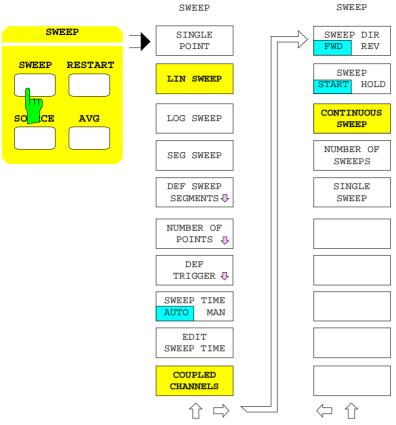
ZVx Sweep Variables

2.10 Sweep Setup – SWEEP Key Group

The SWEEP key group comprises the SWEEP, RESTART, SOURCE and AVG keys. These keys define the sweep mode in detail.

- The SWEEP key opens a menu setting parameters for the sweep in the active display channel.
- The RESTART key interrupts the sweep period currently active and restarts a new sweep at the start value.
- The SOURCE key opens a menu setting the fixed parameters of the sweep.
- The AVG key opens a menu setting parameters for the measurement channel bandwidth and the averaging procedure.

2.10.1 Settings for the Sweep Variable – SWEEP Key


The SWEEP key opens a menu defining the sweep in the active display channel. The selection of the sweep variable is made in the MODE - SWEEP TYPE menu. Test parameters can be displayed as a function of the frequency or power of the signal generator or over the time.

- Single point measurement can be performed in the frequency and power sweep modes (SINGLE POINT).
- A time sweep can only be performed in a linear grid (LIN SWEEP).
- Frequency and power sweeps may be performed in a linear or logarithmic (LOG SWEEP) grid.
- In the frequency sweep mode, an arbitrary grid can be chosen (SEG SWEEP) and the parameters can be defined in a special submenu (DEF SEGMENT LIST).
- The number of points can be set as required up to a maximum number of 2001 (with one channel) (NUMBER OF POINTS).
- Various trigger sources can be selected for sweeps or for single point measurement (DEF TRIGGER.
- A sweep may either be performed in the shortest possible time or the time is predefined by the user (SWEEP TIME AUTO/MAN, EDIT SWEEP TIME).
- The user may select whether setting parameters such as start and stop values of the sweep range, apply for all of the four display channels (COUPLED CHANNELS), or whether they are channel-specific.
- Sweeping is possible in forward or reverse direction(SWEEP DIR FWD/REV).
- The sweep may be interrupted and continued again at any time (SWEEP START/HOLD.
- Finally, the number of sweeps can be limited to a specific number (NUMBER OF SWEEPS) or to 1 (SINGLE SWEEP).

1043.0009.50 2.191 E-13

Sweep Variables ZVx

2.10.1.1 Single Point Measurement

SWEEP SWEEP menu:

The SINGLE POINT softkey switches over to single point measurement.

The sweep variable is then kept to a constant value. The latter is entered via the *START*, *STOP* and *CENTER* keys of the *STIMULUS* group. It is independent of the sweep range for the *LIN SWEEP* and *LOG SWEEP* grids. In Cartesian diagrams, the measured value is displayed as horizontal line and the partition of the x-axis disappears. In polar diagrams the measured value is displayed as a cross.

A single point measurement is possible for frequency or power sweeps only. It can not be performed in the *TIME SWEEP* mode.

Some of the keys in the *SWEEP* menu refer to the sweep mode nominally but can be used for single point measurement as well (see below, *SWEEP START/HOLD, NUMBER OF SWEEPS, SINGLE SWEEP*).

ZVx Sweep Variables

2.10.1.2 Defining the grid

SWEEP SWEEP menu:

The LIN SWEEP softkey sets a grid with constant step size. This is the default setting.

The grid depends on the sweep range and the number of points specified in the *NUMBER OF POINTS* menu. With Cartesian diagrams, the instrument switches to linear scaling of the x-axis. A single, dual or fifth-division scaling is superimposed on the sweep range such that approx. 10 division lines are obtained.

The position of these division lines is not predefined but depends on the integer multiple of the division increment in the absolute-value range of the sweep variable.

The LOG SWEEP softkey sets a logarithmic grid.

This is defined by the sweep range and the number of test points similar to *LIN SWEEP*. With Cartesian diagrams, the instrument switches over to a logarithmic scaling of the x-axis, simultaneously.

Partition lines are generated in steps of one between two octaves and two decades and in steps of two with more than 2 decades. The position of the partition lines depends on the absolute values of the sweep variable.

A logarithmic grid (LOG SWEEP) is available in the frequency and power sweep modes.

Note:

If the sweep range covers less than 2 octaves, LOG SWEEP can not be activated.

The SEG SWEEP softkey activates the setting of a grid using the DEF SWEEP SEGMENTS submenu.

This is possible if the currently valid sweep list contains at least two points. In the *LIST SWEEP* mode, those parameters which can be specified within the segment list (sweep range limits, number of points, power, sweep time, averaging factor and IF bandwidth) can no longer be set via the respective hard- and softkeys.

Defining a segment list via SEG SWEEP is possible in the frequency sweep mode only (SYSTEM MODE - FREQUENCY SWEEP).

The segmentation of the frequency axis can also be useful for performing power calibration for frequency-converting measurements. See section 2.15.1.4.

Sweep Variables ZVx

The DEF SWEEP SEGMENTS softkey opens a submenu for editing the sweep list.

This list allows to divide the sweep range into up to 40 individual segments each of which can be interpreted as an independent sweep range with individual setting of the most important generator and receiver parameters.

Using a segment list is suitable for a number of different applications.

- If the properties of a DUT at explicitly specified, not equidistant points are to be examined, then segments with one single point only can be entered.
- Frequently, a higher density of measuring points is required in specific domains of the sweep range, such as at filter skirts. Therefore, segments with different numbers of points which need not be adjacent or overlap can be defined.
- It is even possible to mask out negligible domains for making better use of the diagram width.

Similar functions are provided in the menu of the *DIAGRAM* key for the segmented scaling of the parameter axis in Cartesian and polar diagrams.

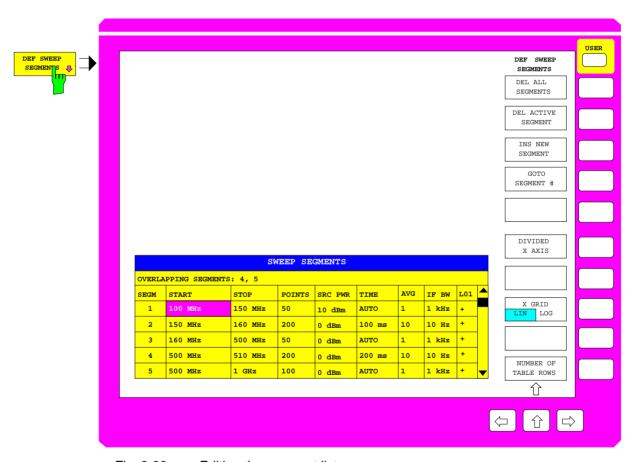


Fig. 2-33 Editing the segment list

ZVx Sweep Variables

When *DEF SEGMENT LIST* is called, the *SWEEP SEGMENTS* table is displayed which gives an overview of the current definition of the segments in the sweep range.

The table contains the segment number plus 8 columns which can be edited:

SEGM - current number of the segment

The parameters entered in the following columns refer to the segment currently active.

START - start frequency of segment

STOP - stop frequency of segment

The START and STOP columns contain the limits of a segment. In contrast to the equivalent keys, they may both be set to the same value. In this case, the number of points in the segment (see column POINTS below) is reduced to one

If START > STOP is entered, the system sets START = STOP and only one measuring point in the current segment is used.

In Cartesian diagrams (except with active segmented sweep and equidistant division of the axis *DIVIDED X AXIS*), the entry of segment limits is graphically supported. All segment limits currently defined are displayed as solid vertical lines labeled with the corresponding segment number. In addition, an arrow pointing towards the interior of the segment indicates whether the line marks the start or the stop frequency of the segment.

POINTS – Number of points in the active segment

The *POINTS* column contains the total number of points analogous to the entry via the *SWEEP - NUMBER OF POINTS* softkey. The number of points must be at least 1. The total number of points is limited and depends on the number of display channels.

SRC PWR - Power of the internal source in dBm.

The SRC PWR column contains the power of the internal source analogous to the entry via the SOURCE - POWER softkey.

If the currently active segment overlaps one or more other ones, a message is displayed and the power value can be applied to all overlapping segments.

If power calibration is active (CAL CAL-POWER UNCAL softkey deactivated), the SRC PWR column cannot be edited. It contains the entry POWER CAL.

TIME – sweep time for the segment

The *TIME* column contains the sweep time analogous to the entry via the *SOURCE* - *EDIT SWEEP TIME* softkey. When the column is edited, a further table is superimposed:

Sweep Variables ZVx

AUTO Selecting the AUTO field sets the sweep time automatically to the

minimum value.

200 ms A sweep time can be edited manually in the numeric field.

The *TIME* field can be edited only if the current segment does not overlap any other segment.

AVG - number of measured values used for averaging in the segment

The AVG field contains the averaging factor analogous to the entry via the AVG - AVG FACTOR softkey. If the currently valid segment overlaps one or more other segments, the entered value is applied to all overlapping segments after acknowledgement.

IF BW - Bandwidth of the IF input filter in the segment

The *IF BW* field opens a further table which allows for selection of the bandwidth of the *IF* input filter.

IF BW
1Hz
3Hz
10 Hz
30 Hz
100 Hz
300 Hz
1 kHz
3kHz
10 kHz
FULL

This selection table is analogous to the AVG - IF BANDWIDTH menu. The other setting parameters selected by the AVG key remain effective. Refer to the AVG - IF BANDWIDTH menu for automatic selection of a smaller bandwidth with low frequencies.

If the current segment overlaps one or more other segments, the entered value is applied to all overlapping segments after acknowledgement.

ZVx Sweep Variables

LO1 – Frequency of first local oscillator referred to the measurement frequency

The column LO1 is used to select whether the frequency of the first local oscillator (LO of the first mixer stage in the receiver) is set to a value which is higher (+) or lower (-) than the measurement frequency. For filters with very steep edges, unwanted mixer products that occur in a receiver mixer of the network analyzer may cause artifacts on the trace. In the default setting, the first LO is above the measurement frequency. In a transmission measurement of a DUT causing strong reflections (e.g. of a bandpass in its stop band), a mixer product with frequency 1s LO + 1st IF which is about 42 MHz above the measurement frequency, is generated in the receiver mixer of the reflected wave. Due to the finite backward isolation of the receiver, a small part of this spurious signal propagates via the port to the DUT. If the DUT is a bandpass, the spurious signal is transmitted for measurement frequencies which are larger than the lower limit of the pass band minus 42 MHz. In the receiver mixer for the transmission, it is converted to the 1st IF just like the measurement frequency. This causes a virtual flattening of the filter edge or, in case of a narrow bandpass, a virtual pass band at the center frequency of the bandpass minus 42 MHz.

This effect can be eliminated by dividing the sweep range at the center frequency of the band pass into two segments and setting LO to "-" in the low-frequency segment. In this segment, the 1st LO is below the measurement frequency and the spurious signal at measurement frequency minus 42 MHz does not distort the filter edge.

The LO1 field can not be set to "-" is the start frequency of the segment is below 50 MHz.

The DEL ALL SEGMENTS softkey deletes all segments of the list.

Prior to deletion the user is requested to acknowledge.

The DEL ACTIVE SEGMENT softkey deletes the active segment.

The active segment of the list is the one where the cursor is positioned.

The *INS NEW SEGMENT* softkey inserts a new segment subsequent to the active segment identified by the cursor location, if the maximum number of 40 segments is not exceeded.

The active segment of the list is the one where the cursor is positioned.

If a segment number is entered via the *GOTO SEGMENT* # softkey, the corresponding segment is set active. The default setting is the following segment – if the end of the list is reached, the first segment.

The cursor of the segment list is shifted vertically to the corresponding line. The column position of the cursor is not changed.

Sweep Variables ZVx

The *DIVIDED X AXIS* softkey causes the x-axis of Cartesian diagrams to be divided into as many sections of the same width as there are segments defined in the list.

The x-axis is scaled linearly or logarithmically in all sections according to the setting via the *X GRID LIN LOG* softkey. This display mode allows to expand narrow segments of interest such as filter skirts whereas uninteresting domains can be masked out.

DIVIDED X AXIS requires:

- · Cartesian diagrams,
- a maximum number of three segments,
- · non-overlapping segment limits and
- a minimum number of two points per segment.

If the limits of two adjacent segments coincide, the measurement for the common stimulus value is performed twice.

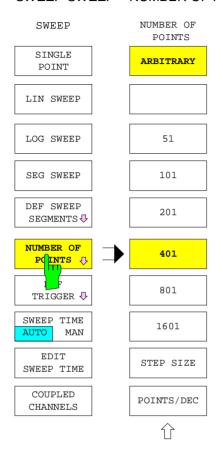
If *DIVIDED X AXIS* is active for a segmented sweep and the segment parameters are changed such that the equidistant division of the axis becomes incompatible, a system message field pops up where either *DIVIDED X AXIS* can be switched off or the parameter change can be cancelled. If the same situation occurs while the segmented sweep is switched off, however, *DIVIDED X AXIS* is disabled.

The X GRID LIN/LOG softkey toggles between a linear and a logarithmic grid.

The selected grid applies for all segments. If the complete segment list comprises less than two octaves, the logarithmic grid can not be selected and *X GRID LIN/LOG* is disabled.

If *X GRID LOG* is active for a segmented sweep and the segment list is reduced to less than 2 octaves, a system message field pops up where either *X GRID LIN* can be selected or the frequency change can be cancelled. If the same situation occurs while the segmented sweep is switched off, however, *X GRID LIN/LOG* is disabled.

The *NUMBER OF TABLE ROWS* softkey activates the entry of the maximum number of segments indicated in the table.


A small value prevents the diagram to be largely covered by the table. This setting is recommended, especially when segment limits are entered via the graphic cursor.

In the default setting, *NUMBER OF TABLE ROWS* is equal to the current total number of segments and will be automatically adjusted when a segment is added or removed. *NUMBER OF TABLE ROWS* is not changed, however, if the number of displayed segments is defined to be smaller than the total number of segments, or if more than 27 segments are defined.

ZVx Sweep Variables

2.10.1.3 Defining the Number of Points

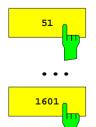
The *NUMBER OF POINTS* softkey opens a submenu defining the number of sweep points.

This is possible for linear (LIN SWEEP) or logarithmic (LOG SWEEP) grids but not when a segment list (SEG SWEEP) is used.

- Any number between two and the maximum number can be entered using the ARBITRARY softkey.
- A few numbers are predefined via softkey (51...1601).
- A fixed step size can be specified for linear sweeps (STEP SIZE).
- A number of points per decade can be specified for logarithmic sweeps (POINTS/DEC).

The maximum number is 2001 for one display channel, 1001 for two channels and 501 for four channels.

Switching on further display channels may cause the number of points to be larger than the maximum number allowed per channel. In this case, the number of points is automatically reduced to the respective maximum number for each channel and a message is displayed.


The maximum number of points for group delay measurements with frequency aperture (FORMAT - GROUP DELAY and FORMAT - FREQUENCY APERTURE activated) is one half of the points which are possible for other formattings.

If the sweep range is so narrow that the selected number of points leads to a step size below the hardware-dependent lowest resolution, the number of points is reduced such that the step size corresponds to the minimum resolution.

The ARBITRARY softkey opens the entry of the number of points. The default value is 401.

The number of points can be predefined arbitrarily between two and the maximum number. The maximum number depends on the number of display channels (see below).

The softkeys labeled 51, 101, 201, 401, 801 and 1601 set the corresponding number of points directly. 401 points are set as default.

Sweep Variables ZVx

The STEP SIZE softkey activates the entry of the step size of the sweep variables between two points.

This softkey is enabled only if LIN SWEEP is active.

If the current width of the sweep range divided by the entered step size is no integer ratio, the distance between the last and the last but one point is set smaller than the required step size. If it is less than 1% of the *STEP SIZE* value, the last but one point is cancelled.

The step size (STEP SIZE) can not exceed the width of the sweep range.

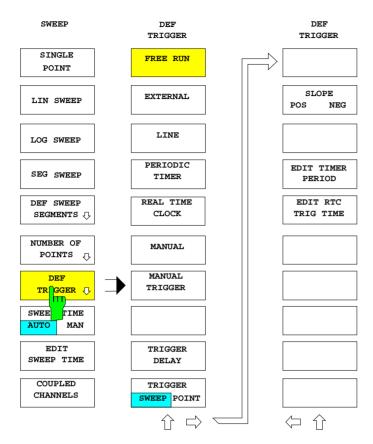
The *POINTS/DEC* softkey activates the entry of the number of points in one sweep decade.

This softkey is enabled only if *LOG SWEEP* is active.

2.10.1.4 Setting the Trigger Mode

The DEF TRIGGER softkey calls the menu for setting the trigger mode.

This provides the following options:


- Free-running measurement at utmost speed (FREE RUN).
- Triggering by
 - an external clock signal with reaction to the positive or negative edge (EXTERNAL, SLOPE POS/NEG),
 - the ac voltage (LINE),
 - the internal clock generator with settable period (PERIODIC TIMER, EDIT TIMER PERIOD),
 - the system time (REAL TIME CLOCK, EDIT RTC TRIG TIME),
 - a keystroke (MANUAL, MANUAL TRIGGER).
- It is possible to delay the triggered measurement by a user-defined period of time (TRIGGER DELAY).
- The triggered measurement may be either a single point measurement or a complete sweep (TRIGGER SWEEP/POINT).

In the *TIME SWEEP* mode and with manual setting of the sweep time (*SOURCE - SWEEP TIME AUTO MAN* in *MAN* position), the measurement of one single sweep point can not be triggered.

If a trigger event occurs before the previously triggered measurement has been terminated, a message is displayed.

ZVx Sweep Variables

SWEEP SWEEP - DEF TRIGGER submenu:

The FREE RUN softkey activates the free-running measuring mode. This is the default setting.

In the free-running mode, a new measurement is started immediately upon termination of the previous measurement. This means that the measurement does not adhere to a fixed time reference but is performed as fast as possible.

The EXTERNAL softkey switches on the external triggering. The enhancement label TRG EXT is displayed.

In the external trigger mode, a measurement is triggered by the rising or falling slope of a TTL signal at the EXT TRIGGER input on the rear panel depending on the position of the toggle switch SLOPE POS/NEG.

The LINE softkey activates triggering of the measurement by zero-axis crossing of the ac voltage. The enhancement label TRG LIN is displayed.

The *PERIODIC TIMER* softkey selects an internal clock generator as trigger source. The enhancement label TRG TIM is displayed.

The period of the internal trigger source can be defined via the *EDIT TIMER PERIOD* softkey (see below).

Sweep Variables ZVx

The *REAL TIME CLOCK* softkey defines the real-time clock as trigger signal. The enhancement label TRG RTC is displayed.

If *REAL TIME CLOCK* is activated, the trigger point can be entered via the *EDIT RTC TRIG TIME* softkey (see below).

The MANUAL softkey switches on manual triggering. The enhancement label TRG MAN is displayed.

In the manual trigger mode, a measurement is triggered by activating the *MANUAL TRIGGER* softkey.

The MANUAL TRIGGER softkey starts the measurement if the MANUAL trigger mode is active

The TRIGGER DELAY softkey activates the entry of a delay time between the trigger event and the start of the measurement. The default delay is 0 s (immediate measurement).

If several raw values must be measured at one point – as, e.g., for forward and reverse measurement, for measurement of the group delay with frequency aperture or for the determination of compression or intercept points – then the delay time is inserted prior to each single measurement.

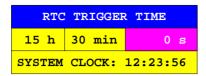
If PERIODIC TIMER is selected as a trigger source, no trigger delay time can be inserted.

The TRIGGER SWEEP/POINT softkey selects whether a complete sweep is started by a trigger event (SWEEP). The POINT position switches over to the subsequent point.

If SWEEP - SINGLE POINT is active, then SWEEP and POINT have the same function. SWEEP is the default setting.

In the *TIME SWEEP* mode and with manual setting of the sweep time (*SOURCE* - *SWEEP TIME AUTO MAN* in *MAN* position) the measurement of one single sweep point can not be triggered.

The SLOPE POS/NEG softkey defines whether the rising (POS) or falling (NEG) edge of a TTL signal at the EXT TRIGGER input initiates triggering in the EXTERNAL trigger mode.


The *EDIT TIMER PERIOD* softkey activates the entry of the period of the internal clock generator, which is used in the trigger mode *PERIODIC TIMER*.

TIMER PERIOD						
0 h	0 min	1 s				

ZVx Sweep Variables

The EDIT RTC TRIG TIME softkey activates the entry of a trigger point which is related to the internal real time clock.

2.10.1.5 Automatic or Manual Setting of the Sweep Time

SWEEP SWEEP menu:

The SWEEP TIME AUTO/MAN softkey defines the setting of the sweep time in the frequency or power sweep modes (MODE - SWEEP TYPE - FREQUENCY SWEEP and POWER SWEEP). The default setting is AUTO.

AUTO In the automatic mode (AUTO), the shortest possible sweep time is

selected for each point.

MAN Manual setting of the sweep time is done via the EDIT SWEEP TIME

softkey.

With manual setting of the sweep time (MAN), the sweep is not performed according to a fixed time reference but the difference between the manually set and the shortest possible sweep time is distributed evenly on the points. This constant waiting period between setting of the signal source and the start of the measurement is provided to the DUT for settling at each sweep point.

The SWEEP TIME AUTO/MAN softkey is disabled in the time sweep mode (SYSTEM MODE - SWEEP TYPE - TIME SWEEP active), if a nonlinear measurement is switched on (SYSTEM MODE - COMPRESS SOI TOI - COMPRESS POINT / SOI / TOI active), or if every measurement point is triggered (SWEEP SWEEP - DEF TRIGGER - TRIGGER POINT active).

The EDIT SWEEP TIME softkey activates the manual entry of the sweep time.

This is possible in the operating modes frequency sweep and power sweep (SYSTEM MODE - SWEEP TYPE- FREQUENCY and POWER SWEEP).

The actual sweep time may deviate slightly from the entered time. If the receive frequency is below 100 kHz in a part of the sweep, the actual sweep time may be considerably longer than the rated value since additional internal waiting times are required.

If the softkey *EDIT SWEEP TIME* is selected while *SWEEP TIME AUTO/MAN* assumes the *AUTO* position, the softkey switches over to *MAN*.

The *EDIT SWEEP TIME* softkey is disabled in the time sweep mode (*SYSTEM MODE - SWEEP TYPE - TIME SWEEP* active), if a nonlinear measurement is switched on (*SYSTEM MODE - COMPRESS SOI TOI - COMPRESS POINT / SOI / TOI* active), or if every measurement point is triggered (*SWEEP SWEEP - DEF TRIGGER - TRIGGER POINT* active).

Sweep Variables ZVx

2.10.1.6 Coupling of Display Channels

The NWA provides four independent display channels selected via the CH1, ..., CH4 keys in the CHANNEL group. The setting parameters for these channels can be subdivided into three categories:

- Global parameters are always identical for all of the 4 display channels. These are the IEC-bus addresses, attenuation setting, triggering and the settings selected via the RESPONSE DISPLAY key.
- Channel-specific setting parameters can be set separately for all of the 4 channels. This group
 comprises the parameters in the RESPONSE key field, except for the functions selected via the
 RESPONSE DISPLAY key.
- Coupled setting parameters are either global or channel-specific. These are the following:
 - Mode settings in the SYSTEM MODE FREQUENCY CONVERS, SYSTEM MODE -COMPRESS SOI TOI and SYSTEM MODE - SWEEP TYPE menus.
 - Functions of the STIMULUS key group (START, STOP, CENTER, SPAN hard keys),
 - Functions of the SWEEP key field (SWEEP, RESTART, SOURCE and AVG keys) except for the attenuations and the settings made in the DEF TRIGGER menu,
 - System error and level correction data and settings.

The COUPLED CHANNELS softkey sets the coupled parameters of all 4 display channels according to the parameters of the currently selected channel. If COUPLED CHANNELS is switched off, the parameters can be modified for each channel individually.

If the channels are coupled, the measuring data are obtained for all of the four channels simultaneously. With de-coupled channels, a separate sweep is performed for each channel.

When COUPLED CHANNELS is switched on, the values of the coupled parameters in the inactive display channels are deleted. Especially for calibration data, this side effect can be unwelcome. Therefore, a query is displayed if switching on the channel coupling could cause the calibration data to be lost.

Switching off COUPLED CHANNELS alone does not change the values of the parameters.

If several channels are displayed in conjunction with S-parameters and mere wave sizes or wave ratios, the channels can not be coupled. Coupling is impossible also, if the group delay with frequency aperture is measured in one channel (FORMAT - GROUP DELAY and FORMAT - FREQUENCY APERTURE active).

If the activated channel coupling is rendered illegal by subsequent entry, it is switched off and a message is displayed.

ZVx Sweep Variables

2.10.1.7 Miscellaneous Settings

SWEEP SWEEP menu:

The SWEEP DIR FWD/REV softkey reverses the sweep direction. The forward direction is the default setting (FWD position).

Reversing the sweep direction is particularly suitable in the low-frequency range. Since devices under test may have very long settling times in the AF range, the low-frequency phase shift caused by the start of a new forward sweep may lead to considerable measurement errors. This problem can be avoided by reversing the sweep direction, since the settling time in the high-frequency domain is considerably lower and the DUT has settled already when reaching lower frequencies - provided that phase continuity of the trigger signal is ensured.

The SWEEP DIR FWD/REV softkey can not be activated in the TIME SWEEP mode.

The SWEEP START/HOLD softkey disables (HOLD) or enables (START) the sweep. The default setting is START.

After switching over to *HOLD*, the measurement of the currently active point is terminated before the instrument assumes the *HOLD* state. The latter is indicated by the enhancement label HLD. After switching back to *START*, the measurement is continued starting at the subsequent point. Pressing the *CONTINUOUS SWEEP*, *NUMBER OF SWEEPS*, *SINGLE SWEEP* softkeys or the *RESTART* key resets the toggle switch to *CONT*, too.

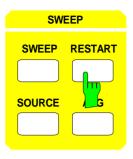
SWEEP START/HOLD is effective for single point measurements (SWEEP - SINGLE POINT active), too. If trigger events are ignored in the HOLD state, no corresponding message is displayed.

The CONTINUOUS SWEEP softkey switches to the continuous measuring mode allowing an infinite number of sweeps or single point measurements. This is the default setting.

The NUMBER OF SWEEPS softkey activates the entry of a limited number of sweeps.

When the specified number of sweeps has been performed, the measurement is terminated. The specified number of sweeps can be restarted by pressing one of the softkeys *NUMBER OF SWEEPS* or *SWEEP START/HOLD*.

For single-point measurement (SWEEP - SINGLE POINT active) the number of measurements at this point can be specified using the NUMBER OF SWEEPS softkey.



The SINGLE SWEEP softkey limits the number of sweeps to one.

This is equivalent to the entry $NUMBER\ OF\ SWEEPS = 1$. After one sweep, the measurement is terminated. A further sweep can be restarted using one of the softkeys $SINGLE\ SWEEP\ or\ SWEEP\ START/HOLD$.

With single point measurement, (SWEEP - SINGLE POINT active) only one measurement is performed.

2.10.2 Starting a New Sweep – RESTART Key

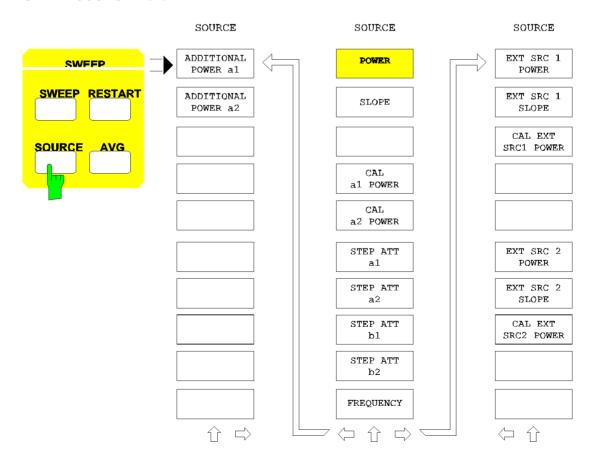
The *RESTART* key aborts the currently active sweep and starts a new one at the start value.

At the same time, the averaging procedure is initialized, i.e., the current average at a point is replaced by the first new measured value (see *AVG - AVERAGE RESTART*). This is suitable, e.g., if the DUT has been modified during long sweep times or after averaging over many points.

Pressing the *RESTART* key when the sweep is interrupted resets the *SWEEP START/HOLD* softkey to *START*

2.10.3 Setting Fixed Sweep Parameters – SOURCE Key

The SOURCE key opens a menu setting the fixed parameters of the sweep.


- The main menu and (on ZVK and ZVM) the left supplementary menu contain internal settings.
- The right supplementary menu refers to optionally fitted external sources. Calling the supplementary menu therefore causes display of the EXT SOURCES CONFIG menu (see SYSTEM MODE - DEF MIXER MEAS).

The following setting values may be entered:

- Power (POWER) of the internal signal source.
- In the frequency sweep mode, a slope factor which multiplies the frequency (SLOPE). This allows for compensation of any frequency-proportional loss, e.g., that of cables.
- Level of the output signals a1 and a2 provided that a power correction of these signal is active (CAL a1 POWER, CAL a2 POWER).
- Attenuation values for various attenuators (STEP ATT) if the corresponding options are fixed.
- in the frequency or power sweep mode, a value for the CW-frequency (FREQUENCY),
- the levels and slope factors for the two external sources (EXT SRC 1 POWER, ..., EXT SRC 2 SLOPE).
- Level of the external signal sources 1 and 2 provided that a power correction of these sources is active (CAL EXT SRC1 POWER, CAL EXT SRC2 POWER).
- Only with ZVK and ZVM: increase of generator power to the detriment of test port matching (ADDITIONAL POWER a1, ADDITIONAL POWER a2).

Note: Attenuation values of the generator step attenuators different from 0 dB may reduce the dynamic range. If any changes are made to the generator power or the attenuation values, the system error correction data may not be valid any more. The CAL or CAI enhancement label, therefore, changes to CA?. An exception is formed by ZVK and ZVM, see description of STEP ATT a1 softkey.

SWEEP SOURCE menu:

The *POWER* softkey allows to vary the power of the internal signal source electronically.

The following applies to models ZVRx and ZVCx:

- In the internal operating mode (SYSTEM MODE EXTERNAL EXTERNAL softkey disabled) without option ZVR-B10, the indicated level refers to PORT 1 and PORT 2.
- If option ZVR-B10 ("High Power") is fitted, the *POWER* setting in the internal mode refers to test port PORT 1. The level at PORT 2 is lower by a constant value depending on the instrument type. Both levels are shown in the input field.
- In the external mode (EXTERNAL activated), the level is valid for the OUTPUT socket.

For ZVK and ZVM, setting value POWER is always valid for PORT 1 and PORT 2.

The generator level serves as an entry value; the attenuation of eventually fitted generator attenuators is assumed to be set to zero. The actual levels applied to the currently active sockets, taking into account the attenuations due to attenuators, are also displayed in the entry field.

If a segment list is active (SWEEP - SEG SWEEP), the power information on the individual segments of the sweep list is directly taken from the list. POWER and SLOPE are then disabled.

The *POWER* softkey is operative only in the frequency or time sweep mode on condition that no generator power correction is active for wave a₁ or a₂.

The *SLOPE* softkey activates the entry of a factor varying the slope of a frequency sweep in units of dB/GHz. The default value is 0 dB/GHz (no extra slope).

Slope factors can be used in the operating mode frequency sweep (SYSTEM MODE - SWEEP - FREQUENCY SWEEP) to compensate for frequency-proportional losses in the test setup, e.g., cable losses. The entered factor is multiplied to the difference between current frequency and start frequency, the result is then added to the constant power (POWER).

Example: If the sweep range varies between 2 GHz and 4 GHz and POWER is set to -10 dBm, the entry of SLOPE = 2 dB/GHz causes the level at the OUTPUT socket in the linear sweep range to increase linearly from -10 dBm to -6 dBm.

If the specified *SLOPE* value causes the maximum or minimum allowed level to be reached at a particular frequency inside the sweep range, the level is held constant beyond this frequency.

If the *POWER* softkey is activated while a level correction is active, the latter is switched off (*CAL CAL - POWER UNCAL* is switched on) and a warning is displayed.

The *SLOPE* softkey is operative only in the frequency or time sweep mode on condition that no generator power correction is active for a_1 or a_2 .

1043.0009.50 2.208 E-13

The CAL a1 POWER softkey sets the power of wave a_1 provided the generator power correction for wave a_1 is active.

The input value is the power at the reference plane of calibration. If the attenuation value (STEP ATT a1) of the generator step attenuators is changed, the input value is adapted automatically.

CAL a1 POWER is operative only in the frequency or time sweep mode on condition that the generator power correction is active for wave a₁.

Note: In the CAL a1 POWER entry field, the uncalibrated nominal power of port 2 is displayed in addition.

The CAL a2 POWER softkey sets the power of wave a2 provided the generator power correction for wave a2 is active.

For the function of this softkey, refer to CAL a1 POWER.

(only ZVR, ZVRL, ZVC, ZVK, ZVM and ZVRE/ZVCE with option ZVR-B10)

The STEP ATT a1 softkey activates the entry of an attenuation value for the attenuator connected to the signal path of the wave a1 propagating towards the DUT. This requires the option ZVR-B21 or ZVM-B21, "Generator Step Attenuator PORT 1" to be fitted.

An attenuation of the incident wave is suitable, e.g. for DUTs which are sensitive to high levels or those causing high attenuation. The attenuation value can be varied between 0 dB and 70 dB in steps of 10 dB, the default value is 0 dB.

The output powers applied to the currently active sockets, taking into account the attenuation values due to attenuators, are also indicated in the entry field, provided that no generator power calibration is active.

If, with system error correction switched on, the attenuation value of a generator step attenuator is changed, the nominal change of attenuation is taken into account, which may slightly vary from the actual change. The CAL enhancement label changes to CA?. An exception is ZVK and ZVM with *FULL ONE PORT* or 7-term calibration (*TOM, TRM, TRL, TNA*). The ZVK/ZVM test set is designed such that the system error correction data remain valid without any restrictions for the said calibration methods if the attenuation of a generator step attenuator is changed.

Analogously, the nominal change of $STEP\ ATT\ a1$ is taken into account both in the generator and the receiver power correction of wave a_1 . The value set for $CAL\ a1\ POWER$ is adapted automatically, and the PC enhancement label changes to PCO.

Note: In the frequency and time sweep modes, the STEP ATT a1 entry field indicates the generator powers at the test ports with the current attenuation of the generator step attenuators taken into account. If power calibration is active for a port, one of the generator power values refers to the reference plane of calibration, the other value is the uncalibrated nominal power of the other port and is marked UNCAL.

(only ZVRE, ZVCE without ZVR-B10)

The STEP ATT a1 AND a2 softkey activates the entry of an attenuation value for an attenuator located in the signal path of the waves a1 and a2 propagating towards the DUT prior to the signal path changeover switch. This requires the option ZVR-B21, "Step Attenuator for Generator Port 1" to be fitted.

Refer to the description of the STEP ATT a1 softkey for the function of this softkey.

1043.0009.50 2.209 E-13

(only ZVR, ZVC, ZVK, ZVM and ZVRE/ZVCE with option ZVR-B10)

The STEP ATT a1 softkey activates the entry of an attenuation value for the attenuator connected to the signal path of the wave a2 propagating towards the DUT. This requires the option ZVR-B22 or ZVM-B22, "Step Attenuator for Generator Port 2" to be fitted.

This softkey can be used in the internal operating mode only (SYSTEM MODE - EXTERNAL switched off).

Refer to the description of the softkey STEP ATT a1 for the function of this softkey.

The STEP ATT b1 softkey activates the entry of an attenuation value for the attenuator connected to the signal path of the wave b1. This requires the option ZVR-B23 or ZVM-B23, "Receiver Step Attenuator PORT 1" to be fitted.

The attenuation value can be varied between 0 dB and 70 dB in steps of 10 dB, the preset value is 0 dB (. An attenuation of the wave b1 is suitable, e. g., to reduce the output level of a power amplifier to the permitted input level range of the network analyzer.

If, with system error correction switched on, the attenuation value of a receiver step attenuator is changed, the nominal change of attenuation is taken into account, which may slightly vary from the actual change. The CAL enhancement label changes to CA?.

Analogously, the nominal change of $STEP\ ATT\ b1$ is taken into account in the receiver power correction of wave b_1 . The PC enhancement label changes to PCO.

The STEP ATT b2 softkey activates the entry of an attenuation value for the attenuator connected to the signal path of the wave b2. This requires the option ZVR-B24 or ZVM-B24, "Step Attenuator for Receiver Port 2" to be fitted. The default value is 0 dB.

Refer to the description of the softkey STEP ATT a1 the function of this softkey.

The FREQUENCY softkey activates the entry of the CW frequency of the internal signal generator.

This is possible in the time sweep and power sweep modes (SYSTEM MODE - SWEEP TYPE - TIME SWEEP and POWER SWEEP). The CW frequency is displayed at the bottom left in the measuring diagram.

The EXT SRC 1 POWER softkey activates the entry of the constant level of the external signal source 1.

This is possible if one of the options ZVR-B4, "Frequency-converting Measurements" or ZVR-B5, "Non-linear Measurements" is fitted and an operating mode is selected which requires the external source 1 (e.g., mixer measurement). Moreover, the source must be configured as IEC or IEC+TTL in the *REMOTE* field of the *EXT SOURCES CONFIG* table and no generator level correction of this source must be switched on.

The permitted range of the level depends on the type of the signal generator used and is also indicated in the *EXT SOURCES CONFIG* table.

The EXT SRC 1 SLOPE softkey activates the entry of the slope for the level of the external source 1.

Refer to the *SLOPE* softkey concerning the function.

EXT SRC 1 SLOPE can be operated only if the generator level correction for the external source 1 is switched off.

The CAL EXT SRC1 POWER softkey sets the level of the external signal source 1 if a level correction of this source is active.

CAL EXT SRC1 POWER can be operated only if the generator level correction for the external source 1 is switched off.

The EXT SRC 2 POWER softkey activates the entry of the constant level of the external source 2.

Refer to the EXT SRC 1 POWER softkey concerning the function.

The EXT SRC 2 SLOPE softkey activates the entry of the slope for the level of the external source 2.

Refer to the SLOPE softkey concerning the function.

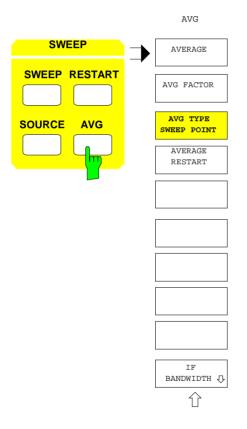
The CAL EXT SRC2 POWER softkey sets the level of the external signal source 2 if a level correction of this source is active.

(only ZVK/ZVM with option ZVM-B21)

The softkey *ADDITIONAL POWER a1* increases the power of the incident wave a₁ at the DUT by 3 dB. This softkey is available only if the option Generator Attenuator for ZVM PORT 1 is installed. If *ADDITIONAL POWER a1* is switched on, attenuation is reduced by 3 dB. However, this leads to poorer matching of test port PORT1.

(only ZVK/ZVM with option ZVM-B22).

The softkey *ADDITIONAL POWER a2* increases the power of the incident wave a_2 at the DUT by 3 dB. This softkey is available only if the option Generator Attenuator for ZVM PORT 2 is installed. If *ADDITIONAL POWER a2* is switched on, attenuation is reduced by 3 dB. However, this leads to poorer matching of test port PORT2.


1043.0009.50 2.211 E-13

2.10.4 Setting the Averaging Function and the Receiver Bandwidth – *AVG* Key

The averaging algorithm can be interpreted as an implementation of a single-stage recursive digital filter. Similar to the IF filter, this filter reduces the noise level and thus increased the dynamic range of the measurement. Averaging is suitable for elimination of very low-frequency interferences (< 1 Hz), whereas the IF filter should be used for reliable suppression of noise signals with larger offset from the measurement frequency.

For both types of filter (IF filter and averaging), the measuring time of a point increases inversely proportional to the effective bandwidth due to the required settling time.

SWEEP AVG menu:

The AVG opens the menu containing all setting functions which refer to the measurement bandwidth.

Those are the following:

- the averaging function (AVERAGE),
- the entry of an averaging factor (AVG FACTOR),
- selection whether the averaging should take place over several sweeps or for each point individually (AVG TYPE SWEEP POINT),
- restart of the averaging procedure independent of other settings(AVERAGE RESTART),
- selection of the IF filter bandwidth.

Note:

The segment-specific parameters averaging factor and receiver bandwidth can not be set via the AVG menu if a segment list (SWEEP - SEG SWEEP activated) is used.

The AVERAGE softkey switches averaging of the measured values on and off.

In the default state, *AVERAGE* it is switched off. If it is activated, the enhancement label AVG is displayed. The averaging factor (see below) is then shown in the following line. As long as the number of sweeps is smaller than the averaging factor, this number is read out instead of the averaging factor.

1043.0009.50 2.212 E-13

The AVG FACTOR softkey activates the entry of the averaging factor.

If the AVG TYPE SWEEP POINT softkey (see below) is active, the averaging factor represents the number of values measured at one point and averaged with equal weight.

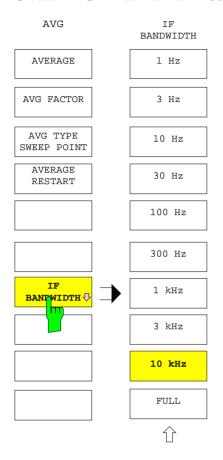
In contrast, if averaging is performed over several sweeps (i. e. *AVG TYPE SWEEP POINT* is switched off), the averaging factor corresponds to the maximum number of sweeps to be averaged. From the start of the averaging procedure up to this maximum number, all sweeps are weighted equally. Afterwards, a new sweep is first weighted with the inverse of the averaging factor and, later, decreases exponentially.

The AVG TYPE SWEEP POINT softkey causes the average at each point to be completed before the next point is measured. In the default state, AVG TYPE SWEEP POINT is switched off.

If AVG TYPE SWEEP POINT is switched off, the average is first formed over the sweeps. Therefore, the measurement result does not settle until several sweeps have been performed. Thus, averaging takes place over the system-error corrected measured values.

If AVG TYPE SWEEP POINT is switched on, the average is formed at each individual point prior to the system-error correction. Thus, a settled measurement result is obtained immediately - however, the sweep time increases.

With single point measurement (SWEEP - SINGLE POINT or MODE - POWER METER ON active) the only difference between the switch positions of AVG TYPE SWEEP POINT is the order of system error correction and average.



The AVERAGE RESTART softkey causes a restart of averaging over the sweeps.

This implies that the current average of the measured quantity is replaced by the next measured value. In contrast to the *RESTART* key, *AVERAGE RESTART* does not start a new sweep.

1043.0009.50 2.213 E-13

SWEEP AVG - IF BANDWIDTH submenu:

The *IF BANDWIDTH* softkey calls the submenu for setting the bandwidth of the digital receiver filter on the intermediate frequency.

- The bandwidth can be set between 1 Hz and 10 kHz in 1-3-10 steps.
- In addition, the FULL stage with approx. 26 kHz can be chosen.

The 1 Hz ... 10 kHz softkeys set the bandwidth of the digital receiver filter in 1-3-10 steps. The enhancement label FIL is displayed, the filter bandwidth is indicated in the line below.

If FULL is active, the maximum bandwidth of approx. 26 kHz is effective.

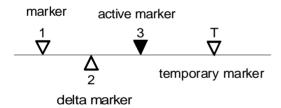
With lower receiver frequencies, a filter bandwidth smaller than the one defined in the menu might be selected. This depends on whether the user-defined filter bandwidth exceeds a frequency-dependent maximum The maximum bandwidths are as follows:

Received frequency		Maximum bandwidth of the receiver filter		
10 Hz	50 Hz	1 Hz		
50 Hz	500 Hz	10 Hz		
500 Hz	5 kHz	100 Hz		
5 kHz	50 kHz	1 kHz		
> 50 kHz		FULL		

ZVx Main Markers

2.11 The Marker Functions – MARKER Key Group

The Marker key group comprises the MARKER, SEARCH, DELTA, and = MKR keys and provides marker functions. These are tools for specifying points in diagrams, for numerically reading out a converted and formatted measured value and for quickly setting the display range. There are up to eight markers per display channel possible.



- The MARKER key opens a menu for switching on and off the eight markers and for selecting their format and conversion.
- The SEARCH key provides search functions positioning the markers to specific points of the measured curve.
- The DELTA key sets delta markers for determining the difference between marker values and a pre-defined reference value.
- The = *MKR* key assigns the response value of a marker to a specific parameter of the curve.

2.11.1 Main Markers – MARKER Key

Markers may be positioned on the trace or on a stored (memory) trace. The marker which can be currently moved by the user is defined as the active marker.

Examples:

The response value of the active marker is output at the right margin of the information line. The values of the other markers are located below the value of the active marker in the so-called marker info list, sorted according to their marker number.

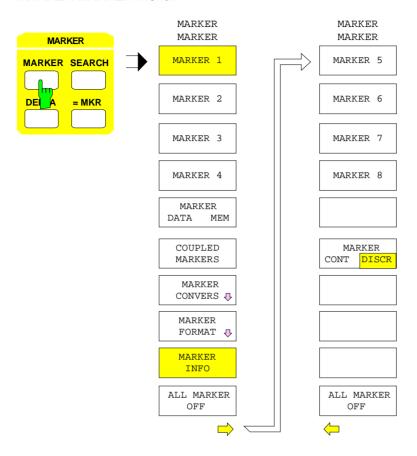
Depending on the marker format in the active display channel (see section 2.11.1.2), one or two marker response values (marker values) can be displayed in a line. It is thus possible to represent, via a marker, the magnitude trace of a reflection coefficient with simultaneous readout of the real component of the impedance. The stimulus value of the corresponding marker is displayed under each line which contains the response values. Depending on the sweep mode, the stimulus value is either a frequency, time or level value. The marker info list can be switched off so that only the response values for the active marker are shown.

Main Markers ZVx

			marker field in the information line
Δ1: 23.3	345 dB 23	3.76°	
	456.345	MHz	
∆2: 45.4 —	45 dB 1 ² 470.450		
∆3: -12.	99 dB 1 652.198	_	marker info list
Δ4: -4.4	56 dB 5 689.256	_	

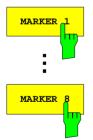
Markers are always located within the sweep range. If the sweep range is changed such that the stimulus value of a marker gets below the start value (e.g., after decreasing the span), the marker is placed at the beginning of the trace. The analogue applies when the marker gets larger than the stop value.

All marker characteristics (such as power-on state, position, conversion, formatting etc.) are stored individually for each of the three sweep modes *MODE - FREQUENCY SWEEP*, *TIME SWEEP* and *POWER SWEEP*, and are restored when the mode is switched. With single point measurement (*SWEEP - SINGLE POINT*), the markers are positioned in the center of the horizontal line (Cartesian diagrams) or directly on the measured point (circular diagrams) and cannot be moved.


The zoomed display of measurement diagrams has no influence on the application of markers. They can be moved between start and stop values of the sweep (and thus even outside the zoomed range of the trace). The search functions are not limited to the zoom window but evaluate the trace in the complete sweep range. Consequently, the active marker is no longer displayed in the zoomed range if the maximum is located outside the zoom window.

The MARKER key opens a menu that

- switches on and off each of the eight markers (MARKER 1, ..., MARKER 8 in the main menu, MARKER 5, ..., MARKER 8 in the right supplementary menu),
- sets the stimulus values as well as the conversion and formatting for the markers in all display channels equal to those of the active channel (COUPLED MARKERS),
- sets an individual conversion for the marker values (MARKER CONVERS),
- sets an individual formatting for the marker values (MARKER FORMAT),
- switches on and off a marker info list (MARKER INFO),
- switches between continuous (i.. e. interpolated) and discrete marker positions (MARKER CONT/DISCR).
- cancels all markers in the active channel (ALL MARKER OFF).


ZVx Main Markers

MARKER MARKER menu:

2.11.1.1 Switching on and Moving Markers

MARKER MARKER menu:

The MARKER 1 softkey switches on the corresponding marker which becomes the active marker.

At the same time, an field for entering the stimulus value of the marker is displayed. In this way, the active marker can be moved along the trace or memory trace using the roll-key or the cursor keys.

The same applies for the markers 2 - 8.

Note:

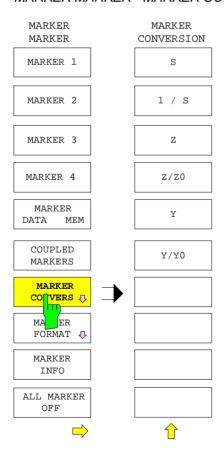
In the ARBITRARY mode, a system frequency other than the base frequency can be elected for scaling the measurement diagram. ARBITRARY SYSTEM FREQUENCIES instead of BASE FREQUENCY is displayed in the STIMULUS AXIS field of the ARBITRARY table. In this case, the entry field for the marker position indicates that the entry still refers to the base frequency and not to the scaling of the diagram.

Main Markers ZVx

The MARKER DATA MEM softkey places the active marker either on the trace (DATA) or on the memory trace of the active display channel (MEM).

The stimulus value of the marker remains unchanged. The softkey can only be operated when two traces are displayed in the sweep range.

When RESPONSE TRACE - SHOW MATH is switched on, the mathematically linked trace is selected instead of the trace.


The COUPLED MARKERS softkey switches the marker coupling on and off.

In all channels displayed, exactly the same markers are switched on as are switched on in the active channel. Each of the stimulus values is identical in all channels, the same applies for marker conversion and formatting. Moving the active marker causes the like-numbered markers in the other channels to be moved at the same time

Marker coupling can only be activated when the channels are coupled (SWEEP SWEEP - COUPLED CHANNELS on). The tracking mode for marker search (MARKER SEARCH-TRACKING softkey active) is switched off by COUPLED MARKERS.

2.11.1.2 Conversion of the Marker Value

MARKER MARKER - MARKER CONVERSION submenu:

The MARKER CONVERS softkey opens a submenu in which the conversions of the marker values of the active display channel are set

The marker value can only be converted when the measured quantity of the active channel is an S parameter.

The conversion of the marker values does not depend on the conversion of the trace. It applies to all markers of the active channel equally. If the markers are coupled (COUPLED MARKERS) each channel can be assigned its own individual conversion.

The conversion modes of the *RESPONSE MEAS - COMPLEX CONVERS* menu apply for the marker values as well. The normalization impedance Z_0 can only be defined in this menu.

ZVx Main Markers

The S softkey causes the marker values to be read out in a non-converted form.

The 1/S softkey inverts the marker values.

The Z softkey converts the marker values into impedances.

The value entered via the softkey MEAS - COMPLEX CONVERS - SET ZO (YO = 1/ZO) is used as reference impedance.

The softkey Z/Z0 converts the marker values into normalized impedances.

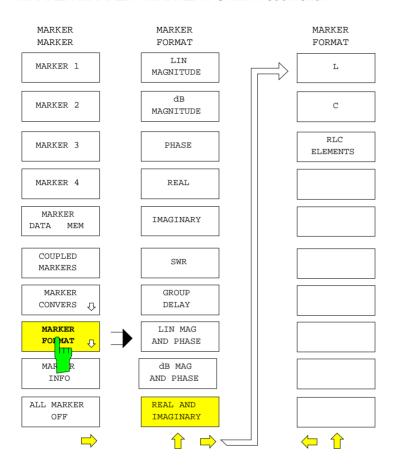
The Y softkey converts the marker values into admittances.

The value entered via the softkey MEAS - COMPLEX CONVERS - SET ZO (YO = 1/ZO) is used as reference impedance.

The Y/Y0 softkey converts the marker values into normalized admittances.

2.11.1.3 Format of the Marker Value

The MARKER FORMAT softkey calls a submenu in which the formatting of the marker values of the active display channel are set.


Similar to the conversion of markers, marker formatting is performed independent of the formatting of the trace. The selected formatting applies to all markers of the active display channel. An individual marker formatting may be selected for each channel even with coupled markers (*COUPLED MARKERS* on).

The formatting of markers is carried out similar to the formatting of trace values (see the description of the *FORMAT* key).

If single wave quantities are measured (*RESPONSE MEAS - INPUT* menu), only the marker format functions *LIN MAGNITUDE* and *dB MAGNITUDE* may be used. If the measured quantity is a quotient whose numerator or denominator is a scalar quantity (e.g. conversion gain), the standing-wave ratio function *SWR* may be additionally used.

Main Markers ZVx

MARKER MARKER - MARKER FORMAT submenu:

The *LIN MAGNITUDE* softkey displays the magnitude of the measured value as a marker value.

The *dB MAGNITUDE* softkey displays the magnitude of the measured value, converted into dB, as a marker value.

The PHASE softkey changes to the phase representation of the marker value.

The *REAL* softkey displays the real component of the marker value.

ZVx Main Markers

The IMAGINARY softkey displays the imaginary component of the marker value.

The SWR softkey formats the marker values as standing-wave ratios (SWR).

If single wave quantities are measured or if the marker conversion "impedance" or "admittance" is active, the *SWR* formatting may not be selected.

The GROUP DELAY softkey displays the marker value as a group delay.

The aperture width is set via the softkeys RESPONSE FORMAT - STEP APERTURE or RESPONSE FORMAT - FREQUENCY APERTURE. A frequency aperture which is independent of the grid can be used when the formatting RESPONSE FORMAT - GROUP DELAY with RESPONSE FORMAT - FREQUENCY APERTURE is active for the trace as well.

In accordance with the definition, group delay can only be measured in the "frequency sweep" mode.

The LIN MAG AND PHASE softkey displays the complex magnitude and phase of the marker value.

The *dB MAG AND PHASE* softkey displays the complex magnitude and phase of the marker value, whereby the magnitude is converted to dB.

The REAL AND IMAGINARY softkey displays the marker value with real and imaginary components.

The *L* softkey converts the imaginary component of the impedance or admittance to an inductance and displays it taking into account the frequency.

The *L* softkey can only be operated when the marker conversion "Z" or "Y" is active.

The *C* softkey converts the imaginary component of the impedance or admittance to a capacitance and displays it taking into account the frequency.

The C softkey can only be operated when the marker conversion "Z" or "Y" is active.

The *RLC ELEMENTS* softkey displays the real component of the impedance together with the imaginary component, which is, depending on the sign, converted to an inductance or a capacitance.

The RLC ELEMENTS softkey can only be operated when the marker conversion "Z" or "Y" is active.

Main Markers ZVx

2.11.1.4 Info list and Interpolation

MARKER MARKER menu:

The MARKER INFO softkey switches the marker info list in the active display channel on and off.

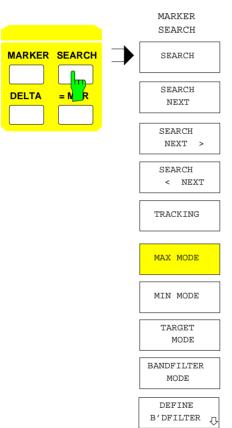
If the list is switched off, only the response values of the active marker are shown.

The MARKER CONT DISCR softkey selects between continuous (interpolation between the points) and discrete marker display (marker is set to measuring points only) for the active display channel.

If the coupled mode is selected (COUPLED MARKERS is on), this setting applies to all four channels simultaneously.

The ALL MARKER OFF softkey switches off all markers and auxiliary markers of the active display channel.

The softkey is provided once again in the right supplementary menu for the ease of operation.


ZVx Search Functions

2.11.2 Marker Search Functions – SEARCH Key

The MARKER SEARCH key opens a menu for positioning a marker to significant points on the trace (e.g. maximum, minimum etc.). The marker search functions can be triggered once manually or automatically with each sweep (TRACKING). They are always related to the currently active marker or delta marker of a display channel.

If no marker is enabled when calling the *MARKER SEARCH* menu, then the marker 1 is activated. Additionally, this menu contains functions for determination of the bandwidth, Q-factor and shape factor of band filters.

MARKER SEARCH menu:

The functions of the MARKER SEARCH menu can be divided into functions which allow the search target to be defined and functions which actually trigger the defined search. Possible search targets are

- maximums (SEARCH/MAX MODE),
- minimums (SEARCH/MIN MODE),
- fixed values (SEARCH/TARGET)
- and characteristic quantities of band filters (SEARCH/BANDFILTER MODE).

When triggering the search, it is possible to select

- a search for global targets, e.g. an absolute maximum (SEARCH),
- a search for the next (smallest) target (SEARCH NEXT),
- or a search from the current marker position to larger or smaller stimulus values (SEARCH NEXT ->/SEARCH <-NEXT).

If the search is successful, the active marker is positioned at the target. If it is unsuccessful, an error message is displayed.

The basis for the marker search functions is the measured values with the conversion and formatting of the trace, not of the marker. In circle diagrams, the search is based on the magnitude of the measured point.

The SEARCH softkey triggers the search for absolute extreme values for the active marker.

If the MAX MODE softkey is switched on, the function searches for the absolute maximum in the sweep range. If MIN MODE is active, the absolute minimum is searched for. If the bandfilter search mode is on (BANDFILTER MODE), the type of the search target depends on whether the BANDPASS or BANDSTOP softkey is on in the DEFINE B'DFILTER menu.

If the target mode is on (*TARGET MODE*), the search function will locate the first occurrence of the target from the beginning of the sweep.

Search Functions ZVx

The SEARCH NEXT softkey starts the search for local extreme values.

If the MAX MODE softkey is on, the function searches for the next smallest local maximum in the sweep range, starting at the measured value at the actual marker position. Correspondingly, the function searches for the next largest local minimum when MIN MODE is active. If the bandfilter search mode is on (BANDFILTER MODE), the type of the search target depends on whether the BANDPASS or BANDSTOP softkey is on in the DEFINE B'DFILTER menu.

If the target mode is on (TARGET MODE), the search function cannot be operated.

The SEARCH NEXT \rightarrow softkey searches for the next point which has a larger stimulus value than the active marker position.

The $SEARCH \leftarrow NEXT$ softkey searches for the next point which has a smaller stimulus value than the active marker position.

The TRACKING softkey causes the marker search function to be executed anew after each sweep.

The search is carried out in a specified locking range around the previous marker position. If more than one target is located in this range, then either the largest maximum, the smallest minimum, the target value or the bandfilter with the smallest stimulus value will be found.

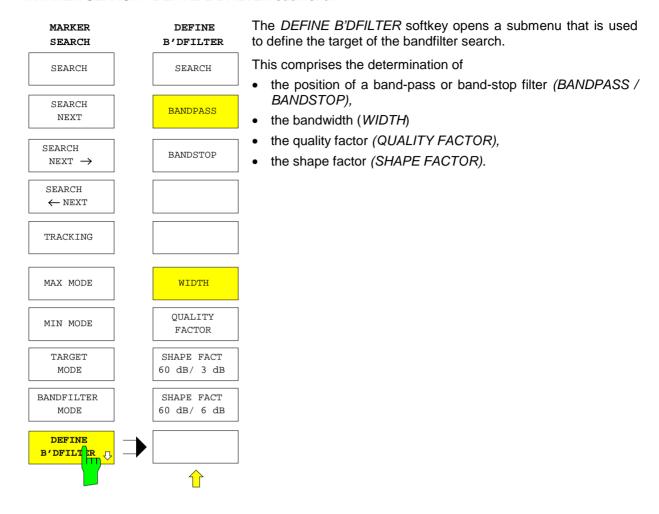
The marker coupling (MARKER MARKER-COUPLED MARKERS softkey active) is switched off by TRACKING.

The MAX MODE softkey causes the maximum of the trace to be searched for when a marker search function is activated. If MAX MODE is activated from another search mode, a maximum search is started automatically.

The *MIN MODE* softkey causes the minimum of the trace to be searched for when a marker search function is activated. If *MIN MODE* is activated from another search mode, a minimum search is started automatically.

The *TARGET MODE* softkey switches on the search for a fixed value. At the same time, the fixed target value may be input.

In cartesian diagrams, this is a y-coordinate, in circle diagrams, it is the radius. The unit of the entry depends on the current conversion and formatting of the trace. The search for the intersection of the line or circle with the trace is initiated via the $SEARCH \leftarrow NEXT$ or $SEARCH NEXT \rightarrow$ softkey.


The BANDFILTER MODE softkey selects the characteristic quantity of the bandfilter specified in the DEFINE B'DFILTER menu as a search target

The marker is positioned at the next local extremum in the search direction which allows to determine the characteristic quantity. Note that not all extrema are suitable. It is for example necessary that the measured value sags by at least 60 dB on both sides of the minimum when the shape factor of a band-pass is to be determined. Otherwise an error message is displayed when the search is triggered.

In addition to the active marker, two or four temporary markers are positioned on specific bandwidth points.

ZVx Search Functions

MARKER SEARCH - DEFINE B'DFILTER submenu:

The SEARCH softkey starts the search for a target defined previously.

The BANDPASS softkey defines the DUT as a band-pass filter.

Bandwidth, Q-factor and shape factor will be determined accordingly. The active marker is positioned at a local maximum when the search is triggered.

The BANDSTOP softkey defines the DUT as a band-stop filter.

Bandwidth, Q-factor and shape factor will be determined accordingly. The active marker is positioned at a local minimum when the search is triggered.

Search Functions ZVx

The WIDTH softkey selects the bandwidth as search target.

The instrument searches for an extremum and for bandwidth points at which the measured values have changed by a specific user-defined amount compared to the extremum (e.g. when determining the 3-dB bandwidth).

After the search has been triggered using the softkeys $SEARCH \leftarrow NEXT$ or $SEARCH \, NEXT \rightarrow$, two temporary markers which are labeled "W" are displayed at the determined bandwidth points in addition to the active marker. The difference of the stimulus values of the temporary markers is displayed in the marker info list, directly below the response values of the active marker.

The QUALITY FACTOR softkey selects the quality factor as search target.

The search procedure is similar to the determination of the width via the *WIDTH* softkey. The measured value difference between the bandwidth points and the extremum is however set to the fixed value of 3 dB. The quality factor Q is calculated from the center frequency f_0 and the bandwidth $\Delta f_{3 dB}$ according to the formula

$$Q = f_0 / \Delta f_{3 dB}$$

Q is displayed in the marker info list below the response values of the active marker. The temporary markers positioned at the bandwidth points are labeled with "Q".

The SHAPE FACT 60 dB / 3 dB softkey switches on the search for the shape factor

$$F_{3dB} = \Delta f_{60 dB} / \Delta f_{3 dB}$$

whereby Δf $_{3~dB}$ indicates the 3-dB bandwidth of the filter and Δf $_{60~dB}$ the 60-dB bandwidth.

The search procedure is similar to the search procedures described under the softkeys *WIDTH* and *QUALITY FACTOR*. However, the instrument searches for two additional bandwidth points which show a measured value difference of 60 dB from the extremum. In addition to the active marker, four temporary markers, labeled with "S", are displayed. The shape factor is displayed in the marker info list below the active marker values.

The SHAPE FACT 60 dB / 6 dB softkey switches on the search for the shape factor

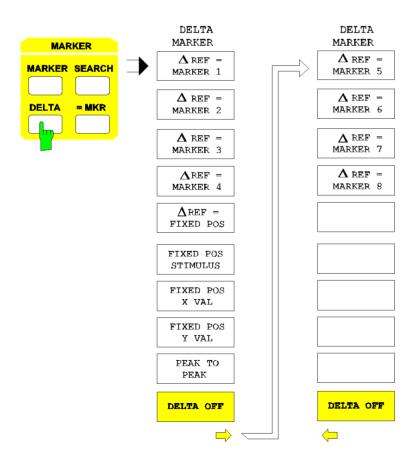
$$F_{6dB} = \Delta f_{60 dB} / \Delta f_{6 dB}$$

The search is performed analogous to the above-described search F 3dB.

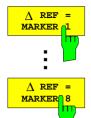
ZVx Delta Markers

2.11.3 Delta Markers - DELTA Key

Delta markers are used to determine the difference of the stimulus and response values of markers to a so-called reference marker.


The *DELTA* key opens a menu offering the following options:

- One of the eight markers is defined to be the reference marker (\triangle REF = MARKER 1, ..., 8).
- A freely movable reference marker is provided (△ REF = FIXED POS).
- The position of the reference marker can be defined numerically (FIXED POS STIMULUS, FIXED POS X VAL, FIXED POS Y VAL).
- In Cartesian diagrams, the peak-to-peak value and the average value of the measured value in a range defined by two markers is calculated (PEAK TO PEAK).
- The delta mode is left (DELTA OFF).


After the reference marker has been set, all enabled markers of the active display channel become delta markers. As usual, the reference marker is indicated on the trace by a triangle whose peak is facing down. Delta markers are on the other hand indicated by triangles whose peaks are facing up (uppercase Greek letter Delta).

The stimulus value of a delta marker is entered relative to a reference marker. In the same manner, the stimulus and response values are displayed in the information line and marker info list as the difference "delta marker minus reference marker". The values of the reference marker are on the other hand input and displayed as absolute values. With single point measurement (SWEEP - SINGLE POINT softkey is on), only the reference marker which may be freely positioned by the user is available.

MARKER DELTA menu:

Delta Markers ZVx

The \triangle REF = MARKER 1 softkey defines the marker 1 of the active display channel as a reference marker.

All other enabled markers in the active channel become delta markers. Markers 1 to 4 can be defined as reference markers in the main menu, the softkeys for the markers 5 to 8 are in the right supplementary menu.

Exit from the delta marker mode is possible via the softkey *DELTA OFF* or by deleting the reference marker.

The \triangle REF = FIXED POS softkey inserts marker with fixed position in the active display channel. In contrast to the reference markers 1 - 8, this marker is not bound to a trace.

The reference marker is identified by the letter F (F = FIXED) and can be positioned inside the displayed diagram by entering x- and y-coordinates. This reference marker is bound to the conversion and formatting with which it was defined.

The FIXED POS STIMULUS softkey activates the entry of an x-coordinate (stimulus value) of the fixed-position reference marker.

This is available in Cartesian diagrams.

The FIXED POS X VAL softkey activates the entry of an x-coordinate of the fixed-position reference marker.

This is available in circle diagrams.

The FIXED POS Y VAL softkey activates the entry of an y-coordinate of the fixed-position reference marker.

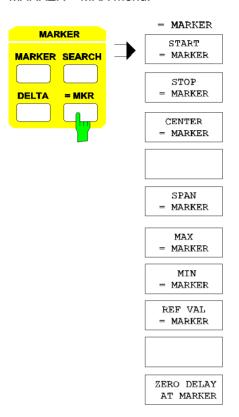
This is available in circle diagrams.

The PEAK TO PEAK softkey activates a statistical function which determines the average value of the measured value and the difference between the maximum and minimum measured value (peak-to-peak value) the range between the active marker and the reference marker.

Both results are displayed in the marker info list. If the delta mode is disabled, the two values are determined over the complete sweep.

The *PEAK TO PEAK* is available in Cartesian diagrams only. If two traces are displayed in the active display channel, *PEAK TO PEAK* can only be operated when the active marker and the reference marker are both positioned on the same trace.

The DELTA OFF softkey exits the delta mode.


All delta markers and reference markers (except for the *FIXED MARKER*) become normal markers again. The *FIXED MARKER* is deleted.

This function is provided in the right supplementary menu, too.

ZVx = Marker Menu

2.11.4 Marker Assignment Functions - = MKR Key

MARKER = MKR menu:

The = *MKR* key opens a menu where the stimulus or measured values of the last active marker or delta marker are assigned to specific parameters.

The following parameters may be defined:

- Start, stop and center value of the sweep range (START = MARKER, STOP = MARKER, CENTER = MARKER). This is equivalent to defining the sweep range by means of the STIMULUS key group.
- Maximum, minimum and specific reference value of the trace (MAX = MARKER; MIN = MARKER, REF VAL = MARKER). This corresponds to scaling the diagram with the RESPONSE SCALE key.
- The measurement plane corresponding to the measured quantity can be shifted such that the group delay at the marker position is cancelled (ZERO DELAY AT MARKER).

The functions in the = *MARKER* menu can only be operated when at least one marker is on. If stimulus values are to be assigned, the single point measurement mode (SWEEP -SINGLE POINT) and the sweep list (SWEEP - LIST SWEEP) must be inactive. Vertical or radial scaling values can't be assigned with segmented Cartesian (DIAGRAM SEGMENTED CARTESIAN) or polar (DIAGRAM SEGMENTED POLAR) diagrams.

Note:

In the ARBITRARY mode of option ZVR-B4, the frequency values of markers may differ from the sweep scaling of the measurement diagram. The marker position and the allocations for START, STOP and CENTER, however, always refer to the BASE FREQUENCY (see section 2.4.1.3.3).

The START = MARKER softkey sets the start value of the sweep equal to the stimulus value of the active marker.

The active marker is thus located at the beginning of the trace.

The STOP = MARKER softkey sets the stop value of the sweep equal to the stimulus value of the active marker.

The active marker is thus located at the end of the trace.

The *CENTER* = *MARKER* softkey sets the center value of the sweep equal to the stimulus value of the active marker.

The active marker is thus located in the middle of the trace.

= Marker Menu ZVx

The SPAN = MARKER softkey sets span equal to the width of the range between the active delta marker and the reference marker.

This function is only available in the delta mode.

The MAX = MARKER softkey sets the maximum value of the diagram equal to the measured value of the active marker.

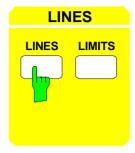
This softkey can't be operated with charter diagrams.

The *MIN* = *MARKER* softkey sets the minimum value of a Cartesian diagram equal to the measured value of the active marker.

This softkey can't be operated with circle diagrams.

The REF VAL = MARKER softkey sets the reference value of the diagram equal to the measured value of the active marker.

This softkey can't be operated with smith or charter diagrams.

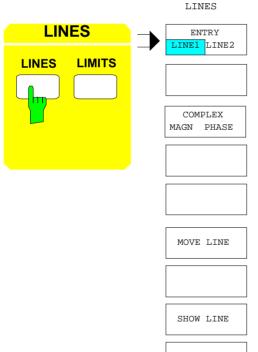

The ZERO DELAY AT MARKER softkey arithmetically shifts the measurement plane assigned to the measured quantity until a group delay of 0 sec. results at the current marker position.

The measurement plane assigned to the measured quantity is the port at which the wave quantities in the numerator are measured, e. g. PORT 1 for S_{11} and S_{12} , PORT 2 for S_{21} and S_{22} . The resulting length offset of the measurement plane can be accessed using the softkeys *DELAY TIME*, *ELECTRICAL LENGTH* and *MECHANICAL LENGTH* in the menu of the *OFFSET* key.

ZERO DELAY AT MARKER can only be operated when the GROUP DELAY format is on in the active display channel.

ZVx Display Lines

2.12 Display and Limit Lines – LINES Key Group



The *LINES* key group comprises the *LINES* and *LIMITS* keys. These keys provide auxiliary lines which make the evaluation of the trace easier.

- The LINES key provides display lines for measuring absolute values and differences on the trace.
- The LIMITS key provides limit lines. They are used to check whether the measured values lie inside of a specific interval.

2.12.1 Display Lines - LINES Key

Display lines are utilities which, similar to markers, make the evaluation of a measurement curve more convenient. The function of display lines is similar to that of a movable scale which can be used to measure absolute and differential values on measurement curves.

17

The LINES key opens a menu where display lines are set:

- A maximum of two display lines can be activated in each display channel (ENTRY LINE1/LINE2).
- In circular diagrams, either circles around the origin with variable radius or rays from the origin with variable angle position are available (COMPLEX MAGN/PHASE).
- In Cartesian diagrams, the lines are displayed as horizontal lines over the full width of the diagram and they are movable in the y-direction (MOVE LINE).
- When a display line is switched on (SHOW LINE) an info field as activated.

Both display lines are labeled D1 and D2. This labeling is displayed on radial and horizontal (Cartesian) lines. On horizontal lines, the current y-position is indicated in addition.

If the conversion or formatting of the measured value changes, the display lines of the active display channel are deactivated and no longer displayed. Transitions between linear, logarithmic and segmented axis are, however, permitted.

A switchover to another sweep mode (SYSTEM MODE - SWEEP TYPE), causes the settings of the display line as well as other diagram-specific parameters to be stored until the sweep mode is called again.

Display Lines ZVx

The *ENTRY LINE1 LINE2* softkey defines which of the two display lines is affected by the operating functions of the *LINES* menu.

The default setting is LINE1.

The COMPLEX MAGN PHASE softkey defines which kind of display lines are used in circle diagrams.

In the default setting *MAGN* the display line is a circle around the origin with any radius, whereas *PHASE* activates a ray hinged at the origin with any angle position.

The MOVE LINE softkey activates the entry of the position of the display line in axis units of the current diagram.

The following values may be entered:

- In Cartesian diagrams, the y-position. The default position is half the diagram height.
- In circular diagrams and in the MAGN position of the softkey COMPLEX MAGN/PHASE, the radius of an amplitude circle. The default radius of an amplitude circle is half the diagram radius.
- In circular diagrams and in the *PHASE* position of the softkey *COMPLEX MAGN/PHASE*, the angle of a radial ray. The default angle 0°.

The lines may be moved even beyond the edge of the diagram. In this case, the inscription which is provided with an arrow facing in the direction of the edge exceeded remains visible on the margin of the diagram.

The SHOW LINE softkey switches on or off the display line.

The default state is the switch-off state. Settings of the display line can only be made when the line is switched on.

ZVx Limit Lines

2.12.2 Limit Lines – LIMITS Key

Limit lines can be used in Cartesian or circle diagrams in order to check whether the parameters of a DUT adhere to defined limits. A typical application is the check for adherence to specifications.

If the limit check is activated,

- a message is displayed on the screen if the limits are exceeded,
- the section of the trace which is outside the limits is displayed in another color,
- an acoustic warning can be output in addition.

The LIMITS key opens a menu for managing limit lines. It allows to

- switch on specific limit lines (SELECT LINE), rename (EDIT NAME) and copy them to other limit lines (COPY LINE).
- define limit lines in circle diagrams (DEFINE CIRCLE) and in Cartesian diagrams (DEFINE SECTIONS),
- move display lines (MOVE LINE),
- switch on the display (SHOW LINE) of the current limit line on screen and the limit check (LIMIT CHECK).

In total, up to eight different limit lines can be defined. Only one limit line can be selected per display channel but the same line may be assigned to various channels simultaneously. Modifications of definitions, i.e., entries in the submenus *DEFINE CIRCLE*, *DEFINE SECTIONS* and *MOVE LINE* as well as via the *EDIT NAME* softkey, apply for the active display channel. If the limit line is assigned to various display channels, these entries apply for all channels in which this limit line is used.

Limit lines depend on the axis labels of the diagram which they have been defined in, i.e., on the respective sweep mode, the conversion and formatting of the measured value, and an eventually logarithmic scale. A modification of these parameters causes the limit line to be switched off.

On the other hand, rescaling or segmenting of the axes, zooming and the transition between various circle diagrams is permitted. The limit lines are adapted, accordingly.

1043.0009.50 2.233 E-13

Limit Lines ZVx

2.12.2.1 Selecting and Switching On Limit Lines

The SELECT LINE softkey switches on and off the SELECT LINE table. By default, the softkey is not active and the table is not displayed.

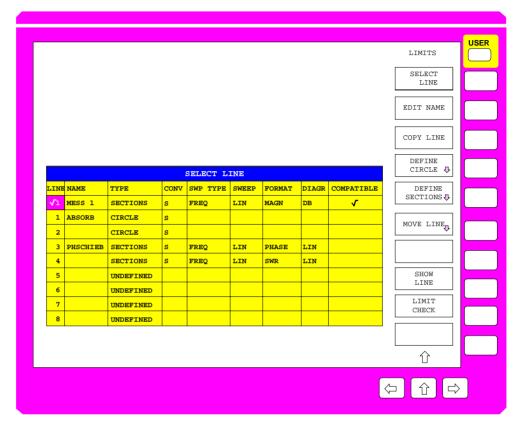


Fig. 2-34 Selection of limit lines

The SELECT LINE table contains nine columns. Only the first one can be edited:

LINE -limit line number

A checkmark in this column shows which line is currently selected. If one of the units prefix keys is pressed while the selection bar is located in the *LINE* field, the corresponding limit line is selected.

NAME - name of the limit line

Limit lines can be renamed via the EDIT NAME softkey.

TYPE – type of tolerance sections

SECTIONS for tolerance bands in Cartesian diagrams consisting of line

sections,

CIRCLE for tolerance circles used in circle diagrams,

UNDEFINED in the default state and after a line has been deleted (in this case,

all fields except LINE and TYPE are empty).

CONV - associated conversion of measured value

SWP TYPE – (only for TYPE = SECTIONS) associated sweep mode

ZVx Limit Lines

SWEEP - (only for TYPE = SECTIONS) associated grid

FORMAT – (only for TYPE = SECTIONS) associated formatting of measured value

DIAGR - (only for TYPE = SECTIONS) associated division of the x-axis

COMPATIBLE – Indication of compatibility

A checkmark in this column indicates that the setting parameters of the limit line are compatible with the current setting, i.e., the table columns *TYPE* to *DIAGR* comply with the current instrument settings. In this case only, the line can be switched on via *SHOW LINE* and a limit check can be performed.

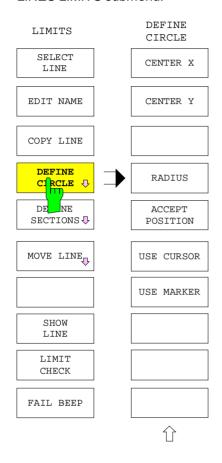
The *EDIT NAME* softkey calls the auxiliary line editor for entry of the name of the active limit line.

This name, which is maximally 8 characters long, is useful when trying to locate a limit condition which was previously entered in the SELECT LINE table.

EDIT NAME can only be operated when the selected limit line is defined.

The COPY LINE softkey copies the currently selected limit line onto another line.

The number of the other line (between 1 and 8) must be entered. COPY LINE can only be operated when the currently selected limit line is defined.


If an existing line is to be overwritten, the COPY LINE function must be confirmed before.

1043.0009.50 2.235 E-13

Limit Lines ZVx

2.12.2.2 Defining a Limit Line in a Circular Diagram

LINES LIMITS submenu:

The *DEFINE CIRCLE* softkey calls a submenu for definition of a limit line in a circular diagram.

In this type of diagram, limit lines are tolerance circles whose center and radius can be freely defined. These parameters can be entered in different ways:

- entry via the softkeys CENTER X, CENTER Y, RADIUS,
- entry via a graphic editing utility. The center coordinates of the tolerance circle are taken directly from this utility as soon as ACCEPT POSITION is activated.

The following two editing utilities are provided:

- a freely movable cursor (*USE CURSOR*) in form of a cross which can be moved via the cursor keys and the roll-key.
- a temporary marker which is identified by the number 8 and is different from the regular markers operated via the MARKER key group. This function (*USE MARKER*) is particularly suitable if the limit line is to be constructed using an ideal trace.

The x- and y-coordinates of both editing utilities are indicated in the bottom line of the marker info field in the axis units of the respective diagram. If no info field is displayed, the coordinates are displayed at the position of the info field.

A continuously updated "rubber circle" is displayed additionally in conjunction with the two graphic editing utilities. It corresponds to the tolerance circle which would be generated by activating ACCEPT POSITION depending on the current position of the editing utility and the set radius.

The SHOW LINE softkey is switched on automatically in order to graphically illustrate the editing procedure.

If a line which has already been defined should be overwritten, the redefinition must be confirmed.

The CENTER X softkey activates the entry of the x-coordinate of the tolerance-circle center in diagram units.

The CENTER Y softkey activates the entry of the y-coordinate of the tolerance-circle center in diagram units.

ZVx Limit Lines

The RADIUS softkey activates the entry of the radius of the tolerance circle in diagram units.

The ACCEPT POSITION softkey takes the position of the graphic editing utility as center of the tolerance circle.

As long as one of the two softkeys *USE CURSOR* or *USE MARKER* is active, the graphic editing utility is either a cursor in the form of a cross or a marker which is labeled with an "8".

The *USE CURSOR* softkey provides the freely movable cursor (in the form of a cross) as a graphic editing utility. Its default position is in the center of the diagram.

The cursor can be moved via the cursor keys and the roll-key and disappears when the cursor is switched off or when the menu is exited. The cursor coordinates are taken as center of the tolerance circle using the *ACCEPT POSITION* softkey.

The *USE MARKER* softkey provides the temporary marker numbered 8 as a graphic editing utility. Its default position is the beginning of the sweep.

Like other markers, this marker can be positioned over the associated entry window, however, it it deleted as soon as the LINES LIMITS submenu is left and can therefore not be operated like a regular marker via the MARKER key field. While USE MARKER is active, the sweep assumes the hold state and the regular marker no. 8 can not be displayed. The marker coordinates are taken as center of the tolerance circle using the ACCEPT POSITION softkey.

1043.0009.50 2.237 E-13

Limit Lines ZVx

2.12.2.3 Defining a Limit Line in a Cartesian Diagram

The *DEFINE SECTIONS* softkey opens a menu defining the characteristic of the currently active limit line in a Cartesian diagram.

In this type of diagram, limit lines consist of a maximum of 20 sections. Each section is specified by two pairs of reference points, located at the x-coordinates *START* and *STOP*, and defining each an upper and lower limit in the y-direction. The limits inside a section are defined by the equations of the two lines connecting the upper and the lower reference points.

Note:

Depending on the scale of the diagram, these two straight lines are not necessarily identical with the shortest graphical connection of the points (see SWEEP SWEEP - DEF SWEEP LIST). If a line exceeds a segment limit in the x- or y-direction, break-points may occur on the screen display due to different grid increments, or parts of the lines may be shifted due to gaps between the segments. This effect is, however, only visible in the final display and not while editing with rubber lines.

The sections need not necessarily be connected, i.e., form continuous polygonal lines. However, they must not overlap in the x-direction. The pair of lines may be reduced to a pair of points if the x-coordinates for the start and stop points coincide. If this is the case, the upper and lower limits are identified by hooks ("\" and "\").

The reference points for the sections can be entered in different ways:

- Entry via the LINE SECTIONS table (see below) which can be edited is displayed with calling the menu. In this table, sections can be deleted (DEL ALL SECTIONS, DEL ACTIVE SECTION) and inserted (INS NEW SECTION). Moreover, an arbitrary section can be activated (GOTO SECTION #).
- Entry using graphic editing utilities the position of which is taken as a reference point using ACCEPT POSITION.

Graphic editing utilities are:

- a freely movable cursor (USE CURSOR) in the form of a cross which can be moved with the cursor keys or with the roll-key,
- a temporary marker (USE MARKER) which is identified by the number 8. The temporary marker
 does not affect the regular markers operated via the MARKER key group and is deleted as soon as
 the LINES LIMITS submenu is left. This function is particularly suitable if the limit line is to be constructed as tolerance band around an ideal trace.

The SHOW LINE softkey is switched on automatically in order to graphically illustrate the editing procedure.

Entry via the *LINE SECTIONS* table is the default setting. In this case, the pairs of reference points can be entered either by specifying the upper and lower y-values (*UPPER LIM/LOWER LIM*) or the middle value and allowed y-deviation (*MIDDLE VAL/DELTA LIM*).

The x- and y-coordinates of both editing utilities are indicated in the bottom line of the marker info field in the axis units of the respective diagram. If no info field is displayed, the coordinates are displayed at the position of the info field.

Two continuously updated "rubber lines" are displayed additionally in conjunction with the two graphic editing utilities. These lines correspond to the upper and lower limit line in the active section, which would be generated when pressing *ACCEPT POSITION* with the current settings. "Rubber lines" are drawn only, if the table contains at least one section.

1043.0009.50 2.238 E-13

ZVx Limit Lines

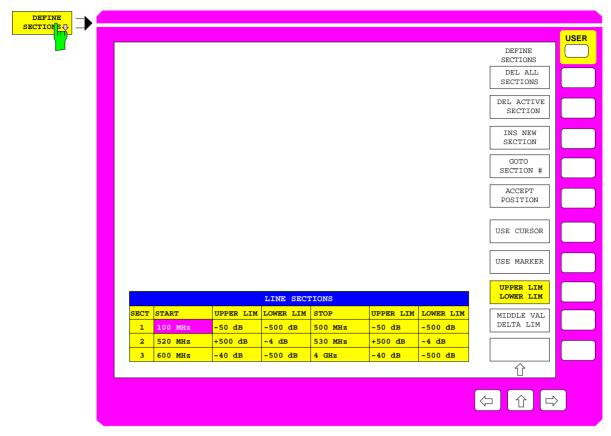


Fig. 2-35 Defining a limit line in a Cartesian diagram

The LINE SECTIONS table contains the current number of the section and six columns which can be edited.

SECT - number of section

START - abscissa (x-value) of the beginning of the section

STOP - abscissa of the end of the section

• If the UPPER LIM/LOWER LIM softkey is active:

UPPER LIM - upper ordinates (y-values)

Ordinates of the upper reference points at the beginning and end of the section

LOWER LIM - lower ordinates

Ordinates of the lower reference points at the beginning and end of the section.

• If the MIDDLE VAL/DELTA LIM is active:

MIDDLE VAL - rated value

Rated value of the tolerance band at the beginning and end of a section.

DELTA LIM - width

Width of the tolerance band at the beginning and end of a section.

Limit Lines ZVx

The DEL ALL SECTIONS softkey deletes all sections in the line sections table.

Prior to deletion, a request to confirm the action is displayed.

The DEL ACTIVE SECTION softkey deletes the active section.

The active section is where the cursor is positioned within the table.

The INS NEW SECTION softkey inserts a new section before the active section which is marked by the cursor.

This is possible only, if the permitted total amount of 20 sections is not exceeded. Default values are entered into the new fields of the table.

The GOTO SECTION # activates the indicated section.

It moves the cursor of the table vertically into the corresponding line. The column position of the cursor does not change.

The ACCEPT POSITION softkey enters the position of the graphic editing utility (see USE CURSOR or USE MARKER) into the selected field.

When a graphic editing utility is switched on the cursor on the table is positioned in one of the fields *UPPER LIM*, *LOWER LIM* or *MIDDLE VAL*. Activating *ACCEPT POSITION* causes the current y-coordinates of the cursor or marker to be entered into this field, the x-value is entered into the associated START or STOP field. The cursor is automatically positioned to the next field of the same name. If it is positioned, e.g., to *UPPER LIM* at the start of a section, it is positioned to *UPPER LIM* at the end point.

If the end of the last section is reached, a new section with the corresponding default values is added automatically until the maximum of 20 sections is reached. A new section is also inserted, if the *ACCEPT POSITION* softkey is used with an empty table. This case is handled as if a default section had been inserted before and the cursor had been positioned to the *UPPER LIM* or *MIDDLE VAL* field.

The *USE CURSOR* softkey provides a freely movable cursor in the form of a cross as a graphic editing utility. Its default position is the center of the diagram.

The cursor can be moved via the cursor keys or the roll-key. The cursor coordinates are entered into the selected table field using the *ACCEPT POSITION* softkey. If *USE CURSOR* is activated, the cursor of the table can no longer be moved using the cursor keys or the roll-key. Therefore, an automatic step mechanism for the cursor is activated simultaneously. If the cursor is positioned to the *START*, *STOP* or *DELTA LIM* fields, it moves to the associated fields *UPPER LIMIT* or *MIDDLE VAL*. Cf. *ACCEPT POSITION* softkey for further information on the cursor advancement .

After disabling *USE CURSOR*, the temporary cursor disappears and the cursor in the table can again be moved as usual.

ZVx Limit Lines

The *USE MARKER* softkey switches on a temporary marker which is displayed as graphic editing utility and labeled by the number 8. Its default position is the beginning of the sweep.

Similar to other markers the temporary marker can be positioned over the associated entry field, however, it can not be operated like a regular marker via the *MARKER* key group. While *USE MARKER* is active, the sweep assumes the hold state and it is not possible to simultaneously display the regular marker no. 8. The marker coordinates are accepted for the selected table field using the *ACCEPT POSITION* softkey.

As soon as *USE MARKER* is enabled, the table cursor can no longer be moved via the cursor keys or the roll-key. Therefore, an automatic step mechanism for the cursor is activated with enabling the softkey. If the cursor is positioned on the *START*, *STOP* or *DELTA LIM* fields, it moves to the associated fields *UPPER LIMIT* or *MIDDLE VAL*. Cf. *ACCEPT POSITION* softkey for further information on the cursor advancement.

The temporary marker disappears after disabling *USE MARKER* and the table cursor can be moved as usual.

The UPPER LIM/LOWER LIM softkey is switched alternately with the MIDDLE VAL/DELTA LIM softkey and defines the display of the LINE SECTIONS table. UPPER LIM/LOWER LIM is the default setting.

If this softkey is switched on, the START and STOP columns are followed by the columns UPPER LIM and LOWER LIM, respectively. This type of table display is particularly appropriate for the independent entry of upper (UPPER LIM) and lower limit (LOWER LIM) values. Switching over from MIDDLE VAL/DELTA LIM to UPPER LIM/LOWER LIM causes the previous table data to be converted, correspondingly.

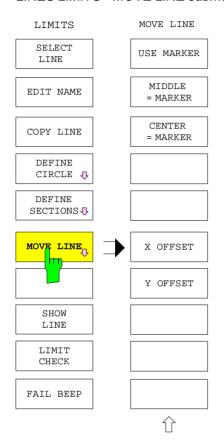
If the table is already displayed in the form "upper/lower limit" and if a graphic editing utility is active (*USE CURSOR* or *USE MARKER* switched on), *UPPER LIM LOWER LIM* has the following additional function: If a field in the *UPPER LIM* column of the *LINE SECTIONS* table is selected, the softkey switches to the corresponding *LOWER LIM* field and vice versa.

The MIDDLE VAL/DELTA LIM softkey is switched alternately with the UPPER LIM LOWER LIM softkey and defines the display of the LINE SECTIONS table.

If this softkey is switched on, the START and STOP columns are followed by the columns MIDDLE VAL and DELTA LIM. This type of table display is particularly appropriate for the entry of specifications which contain a rated value (MIDDLE VAL) and a maximum symmetrical deviation (DELTA LIM). Switching over from UPPER LIM LOWER LIM to MIDDLE VAL DELTA LIM causes the previous table data to be converted, correspondingly.

Note:

MIDDLE VAL is always the arithmetic means of upper and lower limit value in current units of the y-axis. This implies that with logarithmic or segmented y-scaling the value of MIDDLE VAL is not graphically centered between the upper and lower tolerance lines.


If the table is already displayed in the form "middle value/delta" and if a graphic editing utility is active (*USE CURSOR* or *USE MARKER* switched on), *MIDDLE VAL DELTA LIM* has the following additional function: If a field in the *MIDDLE VAL* column of the *LINE SECTIONS* table is selected, the softkey switches to the corresponding *DELTA LIM* field and vice versa.

1043.0009.50 2.241 E-13

Limit Lines ZVx

2.12.2.4 Moving a Limit Line

LINES LIMITS - MOVE LINE submenu:

The MOVE LINE softkey opens a submenu which allows for moving limit lines.

- The circle or tolerance band may be centered with reference to a point of the trace with a temporary marker (MIDDLE = MARKER, CENTER = MARKER). This marker is assigned the number 8. If, e.g., a trace in a Cartesian diagram has the correct shape but is offset in the y-direction, the limit line can be adapted with the centering function.
- Limit lines can also be arbitrarily shifted in the x- and ydirections (X OFFSET, Y OFFSET).

The MOVE LINE menu can be called only, if the selected limit line is displayed, i.e., if SHOW LINE is activated.

The *USE MARKER* softkey causes a temporary marker labeled 8 to be displayed as a graphic editing utility. Its default position is the beginning of the sweep range.

Similar to other (regular) markers, this marker can be positioned over the associated entry field, however, it can not be operated via the *MARKER* key group. If the temporary marker is active, the regular marker no. 8 cannot be displayed.

The MIDDLE = MARKER softkey centers the active limit line interpreted as a tolerance band on the trace.

To this end, the arithmetic means between upper and lower limit of the limit line is set equal to the y-coordinate of the temporary marker

Note:

The trace at the marker position doesn't graphically appear in the middle between upper and lower tolerance line when the y-axis is segmented or logarithmically scaled.

If no section is defined at the current stimulus value of the temporary marker 8, the tolerance band is centered relative to the end coordinate of the preceding section. If no section exists before the current marker position, the start coordinates of the first section defined are used.

ZVx Limit Lines

The CENTER = MARKER. softkey centers the active limit line interpreted as a tolerance circle on the position of the temporary marker.

The *X OFFSET* softkey activates the entry of an offset in the x-direction for the active limit line.

The Y OFFSET softkey activates the entry of an offset in the y-direction for the active limit line.

1043.0009.50 2.243 E-13

Limit Lines ZVx

2.12.2.5 Display and Limit Check

LINES LIMITS menu:

The SHOW LINE softkey switches on and off the display of the active limit line.

A line may only be switched on when it is compatible with the current diagram (see the COMPATIBLE field in the SELECT LINE table). A limit check can only be performed, when the limit line is displayed. Deactivating SHOW LINE causes LIMIT CHECK and FAIL BEEP to be deactivated, too.

The LIMIT CHECK softkey is used to switch on and off the limit check.

With limit check being activated, a number of warnings are displayed as soon as a measured value lies outside the specified limits:

- The FAIL warning is displayed.
- The trace changes its color in the range outside the limits (the color change can be set via DISPLAY CONFIG DISPLAY COLORS).
- The FAIL bit of the user port is set. The FAIL bit is set for at least 1 ms not later than 1 ms after limit violation.

LIMIT CHECK can be activated only, when the limit line is displayed (SHOW LINE). Switching off LIMIT CHECK causes the FAIL BEEP to be deactivated, too.

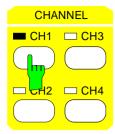
2.13 Selection of Display Channel – CHANNEL Group

The CHANNEL key group provides four independent display channels which can be selected by means of keys CH1 to CH4. The currently active display channel is indicated by the LED above the corresponding key.

Offering a choice of four display channels, a single Network Analyzer ZVR turns into four practically independent units, which may differ in a variety of parameters and can conveniently be selected.

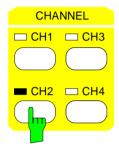
Note:

These display channels **are not identical** with the measurement channels (the ZVR, ZVC, ZVK and ZVM have four) for the test parameters a_1 , a_2 , b_1 and b_2 . The measurement channels can be set in the RESPONSE MEAS -INPUT menu.

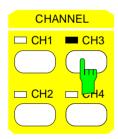

ZVR, ZVRE ZVC, ZVCE, ZVK, ZVM For models with bidirectional test set, the S parameters are assigned to the keys CH1 to CH4 such that the arrangement of the keys corresponds to the position of the four S parameters in the scattering matrix. Because the S parameter S_{21} is assigned to channel 2, the CH2 key is located in the lower left portion of the key group. The CH3 key (S_{12}) is on the other hand located in the upper right portion.

Display channel measured quantity		format	
CH1	S ₁₁		complex
CH2	S ₂₁		magnitude
CH3	S ₁₂		magnitude
CH4	S ₂₂		complex

ZVRL ZVRL can measure the S parameters S_{11} and S_{21} only. The default state corresponds to the following assignments:


Display channel	Imeasured quantity	representation/format
CH1	S ₁₁	complex
CH2	S ₂₁	magnitude
CH3	S ₁₂	group delay
CH4	S ₂₂	standing wave ratio

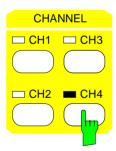
The setting parameters of the network analyzer can be divided into three categories: global, channel-specific and parameters that can be coupled. Global parameters act on all channels, channel-specific parameters on the channel in question. In the case of parameters that can be coupled the user can define if they should be global or channel-specific. This is done by means of the *SWEEP SWEEP - COUPLED CHANNELS* softkey. For assignment of parameters to the three above categories please refer to the description of this softkey.


The *CH1* key selects channel 1 as the active display channel and switches the LED above the key on.

Assignment in the default setting: S₁₁, *COMPLEX* formatting

The CH2 key selects channel 2 as the active display channel and switches the LED above the key on.

Assignment in the default setting: S₂₁, *MAGNITUDE* formatting



The *CH3* key selects channel 3 as the active display channel and switches the LED above the key on.

Assignment in the default setting:

S₁₂, MAGNITUDE formatting

Exception ZVRL: S₂₁, GROUP DELAY formatting

The *CH4* key selects channel 4 as the active display channel and switches the LED above the key on.

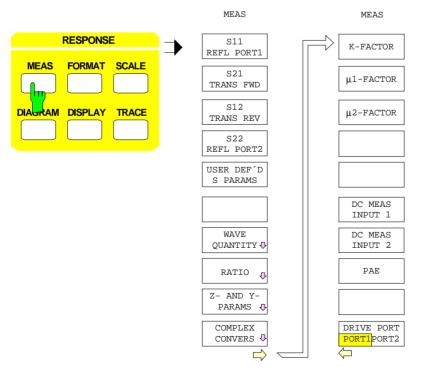

Assignment in the default setting:

S₂₂, COMPLEX formatting

Exception ZVRL: S₁₁, standing wave ration (SWR) formatting

2.14 Configuring of Measured-Value Display – *RESPONSE* Key Group

The *RESPONSE* key group comprises the *MEAS, FORMAT, SCALE, DIAGRAM, DISPLAY* and *TRACE* keys. They are used to define the display of measured values.


- The MEAS key selects the measured quantity in the active display channel,
- the FORMAT key determines the format the measured quantity is displayed in,
- the SCALE key defines the scaling of the measured diagram.
- the DIAGRAM key selects the type of diagram and its representation,
- the DISPLAY key configures the screen display of diagrams globally.
- the TRACE allows to store and mathematically manipulate the trace.

2.14.1 Selection of the Measured Quantity – MEAS Key

The MEAS key opens a menu for selecting the measured quantity for the active display channel.

The following options are provided:

- Default setting, where the four S-parameters of a two-port are assigned to the four display channels as described under the CHANNEL key group (S11 FWD REFL, ..., S22 REV REFL).
- Redefinition of the S parameters (USER DEF'D S-PARAMS). This is only possible in the external
 mode of the models in the ZVR and ZVC families.

- Direct measurement of wave quantities (WAVE QUANTITY).
- Calculation of any desired ratios of wave quantities (RATIO).
- Calculation of absolute or normalized two-port Z or Y parameters from the four S parameters (Z AND Y PARAMS).
- Conversion of a single S parameter into another complex quantity (COMPLEX CONVERS).
- Calculation of stability factors K, μ1 and μ2 from the four S parameters (K FACTOR, μ1 FACTOR, μ2 FACTOR).

Notes:

- The system-error correction can only be applied to the measurement of S parameters and quantities derived from them such as Z and Y parameters
- If S-parameters and wave quantities or ratios are measured at the same time, the display channels cannot be coupled (the SWEEP SWEEP COUPLED CHANNELS softkey is switched off).
- Ratios of measured waves (e.g. S parameters) and quantities derived from them are also allowed in the frequency-converting modes (SYSTEM MODE FREQUENCY CONVERS). However, if frequency conversion is actually set, the results will be spurious unless the two waves are converted to the same receive frequency. This is because the ZVx network analyzer family's measurement and reference channels can only be set to a single common receive frequency. If, however, a phase difference between waves is to be measured at different frequencies, external frequency conversion is required (see sections 2.4.1.3 and 2.4.1.6).

In some operating modes (selected with the MODE key), the number of selectable measured quantities is reduced.

- The wave a₂ or ratios which are functions of this wave can only be selected when models in the ZVR and ZVC families are in internal mode.
- During the SOI or TOI measurement (SYSTEM MODE COMPRESS SOI TOI), only wave quantities b1 or b2 (WAVE QUANTITY - b1 or WAVE QUANTITY - b2) can be measured.

2.14.1.1 Measurement of S-Parameters

RESPONSE MEAS menu:

The S11 REFL PORT1 softkey selects the input reflection coefficient S_{11} as measured quantity

 S_{11} is measured at PORT 1 and defined as the ratio of the wave amplitudes b_1 and a_1 . This ratio is also the default setting for S_{11} in the USER DEFINED S-PARAMETERS table.

For the external reflection measurement, a device for separating the forward and the reflected waves must be used, e. g. a measuring bridge or a directional coupler. On the instruments of the ZVR and ZVC families, for example, the input of the measuring bridge must be connected to OUTPUT a1, and its output to INPUT b1 for the preset definition of S_{11} .

The S21 TRANS FWDsoftkey selects the forward transmission coefficient S_{21} as measured quantity.

 S_{21} is measured as transmission from PORT 1 to PORT 2 and is defined as the ratio of the wave amplitudes b_2 and a_1 . This ratio is also the default setting for S_{21} in the USER DEFINED S-PARAMETERS table.

For this setting, the input of the DUT must be connected to OUTPUT a1, and its output to INPUT b2 or PORT 2 (model ZVRL) in the external mode in the instruments of the ZVR and ZVC families.

1043.0009.50 2.248 E-13

The S12 TRANS REV softkey selects the reverse transmission coefficient S_{12} as measured quantity.

 S_{12} is measured as transmission from PORT 2 to PORT 1 and is defined as the ratio of the wave amplitudes b_1 and a_2 .

Only for the ZVR and ZVC families: In the external mode, S_{12} is particularly useful if another transmission coefficient is to be measured at the same time as S_{21} . For this reason, S_{12} is predefined as the ratio of waves b_1 and a_1 in the *USER DEFINED S-PARAMETERS* table.

In this case, the input of the DUT must be connected to OUTPUT a1, and its output to INPUT b1.

The softkey S12 REV TRANS is not provided on the model ZVRL.

The S22 REFL PORT2 softkey selects the output reflection coefficient of the DUT S_{22} as measured quantity.

 S_{22} is measured at PORT 2 and is defined as the ratio of the wave amplitudes b_2 and a_2 .

Only for the ZVR and ZVC families: In the external mode, S_{22} is particularly useful if another reflection coefficient is to be measured at the same time as S_{11} . For this reason, S_{22} is predefined as the ratio of waves b_2 and a_1 in the *USER DEFINED S-PARAMETERS* table.

For an external reflection measurement, a device for separating the forward and the reflected waves must be used, e. g. a measuring bridge or a directional coupler. If the basic assignment of S_{22} is set, the input of the measuring bridge must be connected to OUTPUT a1, and its output to INPUT b2.

The S22 REFL PORT2 softkey is not provided on the model ZVRL.

1043.0009.50 2.249 E-13

The USER DEF'D S-PARAMS softkey opens the table USER DEFINED S PARAMETERS. This table is used to re-define S-parameters, thus allowing them to be adapted to an external test setup.

The main application of user-defined S-parameters is the unidirectional measurement of two independent transmission or reflection parameters at the same time. In the case of bidirectional full two-port error correction, however, a re-definition of S-parameters is not useful and its outcome is difficult to predict. For this reason, user-defined S-parameters cause switching to unidirectional measurement in the forward direction for the whole unit. With models of the ZVR and ZVC family, this condition is fulfilled by coupling user-defined S-parameters to "External measurements" mode (option ZVR-B25).

DEFINE S-PARAMETERS					
S-PARAM	NUMERATOR		DE	DENOMINATOR	
S11	V	b1			
		b2			
S21		b1	√	a1	
	√	b2		b1	
S12	^	b1		b2	
		b2			
S22		b1			
	√	b2			

The table USER DEFINED S-PARAMETERS contains the S- parameters to be defined and also two editable columns:

S-PARAM - S-Parameters

NUMERATOR – Numerator with which the S-parameter is formed

DENOMINATOR – Denominator with which the S-parameter is formed

The current setting is marked by a tick and is active for the measurement.

Notes:

- The wave quantity a2 (incident wave at the DUT in reverse direction) is not available.
- The wave quantity in the denominator is the same for all parameters.
- In the default setting, the forward parameters are defined as usual, the reverse parameters S₁₂ and S₂₂, however, with the complementary wave quantity (eg b1 instead of b2) in the numerator for the corresponding forward parameter.

This default setting allows the independent parallel measurement of two reflection or transmission parameters. If the definition of a currently measured S-parameter deviates from the usual one used in internal operation, the parameter is added USER in the info line.

The settings of table *USER DEFINED S-PARAMETERS* have no effect on the internal operation.

The parameters S12 and S22 are omitted in the table with ZVRL.

If the same wave quantity is selected for numerator and denominator, the constant value 1 is obtained irrespective of the measurement. For tha availability of a calibration, it is checked if the user-defined S-parameters are useful, ie if numerator and denominator differ. For unidirectional two-port calibration, the numerators of the two S-parameters to be corrected should also differ.

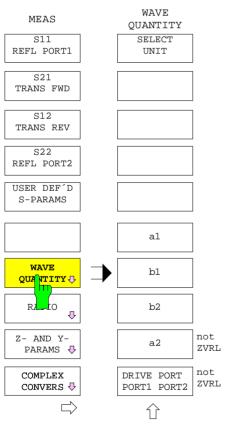
(ZVK and ZVM only)

The definition table can be called again by means of the softkey USER DEF'D S-PARAMS in the submenu with the same name. This may be useful, for instance, if the table was deleted inadvertently by pressing the CLR key.

(ZVK and ZVM only)

The softkey *USER DEF ACTIVE* activates the user-defined S-parameters in the table *USER DEF'D S-PARAMS* for the whole unit. In contrast to units of the ZVR and ZVC family, ZVK and ZVM do not activate the user-defined S-parameters automatically when switching on external operation but only if *USER DEF ACTIVE* is pressed. If this softkey is pressed, the unit automatically switches to unidirectional measurement in the forward direction. This means that wave quantity a₂ and all quotients formed with it are no longer available as magnitudes. When switching *USER DEF ACTIVE* on or off, a measurement is output as to which S-parameter definition is active.

1043.0009.50 2.251 E-13


2.14.1.2 Measuring Wave Quantities

The WAVE QUANTITY softkey calls a submenu that allows receiver input signals to be selected directly as measured quantities, i.e. without any prior formation of quotients.

The input signals are referred to as waves a1, b1, b2, a2 in the *WAVE QUANTITY* submenu. Their assignment to the physical connectors of the unit is different for the internal and the external mode.

- In the internal mode, the index of the wave quantity (1 or 2) determines whether the instrument measures at PORT 1 or PORT 2.
- Only for the ZVR and ZVC families: In the external mode, the assignment can be seen from the labeling of the connector (OUTPUT a1, INPUT b1 and INPUT b2). The wave a₂ cannot be measured in external mode.
- If the power correction is switched off (CAL POWER UNCAL is on) all measured levels refer to the assigned connector. An exception is the reference mixer mode (SYSTEM MODE REFERENCE MIXER on): In this case, the rear panel connector IF REF serves as the reference plane for the measured level of a₁. The output level, however, still refers to PORT1 or OUTPUT a1.

RESPONSE MEAS - WAVE QUANTITY submenu:

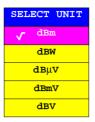
In the RESPONSE MEAS - WAVE QUANTITY submenu,

- the physical unit of the measured quantity can be selected (SELECT UNIT),
- a wave quantity (a1, b1, b2, a2) can be selected for measurement,
- in the internal mode, the generator signal is fed either to measurement PORT 1 or PORT 2 (DRIVE PORT PORT 1 / PORT 2). This function is not available on ZVRL.

Power calibration should first be performed if attenuation is active in the signal path between the instrument connector and the actual measurement port or if stringent demands are placed on measurement accuracy. System error correction is not possible in wave quantity measurements.

Note:

 Only unconverted wave quantities can be measured. Conversion is therefore switched off automatically. In addition, switchover is made to MAGNITUDE, which is the only permissible format, and a Cartesian diagram is selected as a default setting.


If wave a_1 or a_2 is selected and this does not agree with the active status of DRIVE PORT PORT 1/PORT 2, the source port is switched over and a message is output.

The SELECT UNIT softkey calls the table of the same name, where physical units for single waves can be defined.

The units W and V can be selected for a linear trace in a linear grid or for a logarithmic trace in a logarithmic grid (*RESPONSE DIAGRAM - LIN CARTESIAN*) and *LOG CARTESIAN*). If a logarithmic trace is represented in a linear dB-grid (*dB CARTESIAN*), the options are dBm, dBW, dB μ V and dBV. The default settings are W and dBm, respectively.

The a1 softkey selects the wave amplitude a_1 as measured quantity.

In the internal mode, this is the outgoing wave at PORT 1. In the external mode, it is the outgoing wave at OUTPUT a1.

Notes:

- ZVR and ZVC families: In the REFERENCE MIXER mode (only with option ZVR-B6), the rear-panel connector a1 EXT IN is used as the measurement input for wave a1. If a1 is to be measured in the frequency-converting mode (SYSTEM MODE FREQUENCY CONVERS), the generator signal, which is available at connector a1 EXT OUT, for example, must be externally converted to the receive frequency. The factory-set receive power correction for a1 always refers to PORT 1 or OUTPUT a1. There is no special receive power correction for the REFERENCE MIXER mode.
- ZVM and ZVK: The signal path of wave a1 can be disconnected between connectors R1 CHANNEL OUT / IN to insert a reference mixer, for example.

The b1 softkey selects the wave amplitude b1 as measured quantity.

In the internal mode, this is the incoming wave at PORT 1. In the external mode, it is the incoming wave at INPUT b1.

The b2 softkey selects the wave amplitude b2 as measured quantity.

In the internal mode, this is the incoming wave at PORT 2. In the external mode, it is the incoming wave at INPUT b2. In the case of ZVRL, b_2 is measured at PORT 2 in both the internal and the external mode.

1043.0009.50 2.253 E-13

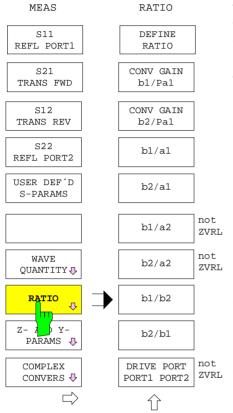
The a2 softkey selects the wave amplitude a2 as measured quantity.

This is the outgoing wave at PORT 2.

The a2 softkey is not provided on ZVRL. In the case of the ZVR and ZVC families, it is operative only in the internal mode.

Note:

On ZVM and ZVK, the signal path can be disconnected between connectors $\it R2$ CHANNEL OUT / $\it IN$ to insert a reference mixer, for example.


The DRIVE PORT PORT1/PORT2 softkey sets the signal-path switch of the test set.

This softkey is not provided on ZVRL. In the case of the ZVR and ZVC families, it is not operative in the external mode. It is coupled with the softkeys of the same name in the right side menu of the *MEAS* key and in the *RATIO* menu.

1043.0009.50 2.254 E-13

2.14.1.3 Measuring Ratios of Wave Quantities

RESPONSE MEAS - RATIO Submenu:

The *RATIO* softkey opens a submenu that selects ratios of the wave amplitudes received by the network analyzer as measured quantities.

For a description which wave amplitudes are available see below the *DEFINE RATIO* softkey. The assignment of the waves to the physical sockets of the instruments depends on the measuring mode and is described in the *MEAS - WAVE QUANTITY* submenu.

- The ratios are defined in a table (DEFINE RATIO).
- The most important ratios can be directly called via softkeys (CONV GAIN bx/Pa1, b1/a1, ... b2/b1) in the RATIO menu.
- In the internal mode, the generator signal is fed either to the measurement port PORT 1 or PORT 2 (DRIVE PORT PORT1/PORT2). This function is not available on the ZVRL.

Note:

- Only unconverted ratios can be measured. Conversion is therefore switched off automatically. In addition, switchover is made to the MAGNITUDE format, and a Cartesian diagram is selected as a default setting.
- If a ratio with denominator a₁ or a₂ is selected and this does not agree with the active status of DRIVE PORT PORT 1 / PORT 2, the source port is switched over and a message is output.
- For the measurement of waves a_1 and a_2 using a reference mixer, refer to the description of the *MEAS WAVE* QUANTITY $-a_1/a_2$ softkeys.

The *DEFINE RATIO* softkey calls the table *DEFINE RATIO*, where the numerator (NUMERATOR) and the denominator (DENOMINATOR) of a dimensionless ratio can be defined.

Both the numerator and the denominator may be one of wave quantities a_1 , b_1 or b_2 , which are determined by vector measurement. The quantity a_2 is available on all models except ZVRL. In the case of the ZVR and ZVC families, a_2 is permissible only in the internal mode. In cases where a_1 and a_2 cannot be measured because the generator frequency differs from the receive frequency (SYSTEM MODE - FREQUENCY CONVERS), the nominal and possibly level-corrected power of the Pa1 generator signal is available, in the internal mode also Pa2 (not on ZVRL). Powers Pa1 and Pa2 are used for calculating the conversion gain (CONV GAIN b1/Pa1).

1043.0009.50 2.255 E-13

DEFI	NE RATIO	
NUMERATOR	DENOMINATOR	
al	a1	
√ b1	b1	
b2	√ b2	
a2	a2	not ZVRL
a1	a1	
a2	a2	not ZVRL

The CONV GAIN b1/Pa1 softkey displays the conversion gain for the wave b1.

In frequency-converting measurements, S parameters are not defined. Since the receiver is usually set to the frequency converted by the DUT and, as a result, the reference signal cannot be measured at the input frequency of the DUT, the conversion gain used instead is the ratio of the measured receive signal (here the wave b_1) and the nominal generator signal power (here the level of the wave a_1).

- As the measured phase of the numerator is random, only the magnitude formats (FORMAT - MAGNITUDE and FORMAT - SWR) are possible for this quantity.
- CONV GAIN b1/Pa1 corresponds to the (uncorrected) reflection coefficient at connector PORT 1.
- Only ZVR and ZVC families: In the external mode, the transmission is measured from OUTPUT a1 to INPUT b1.

The CONV GAIN b2/Pa1 softkey displays the conversion gain for the wave b2.

This quantity is defined analogous to the conversion gain CONV GAIN b1/Pa1 (see above). In the internal mode, the transmission from PORT 1 to PORT 2 is measured, in the external mode, that of OUTPUT to INPUT 2 or OUTPUT to PORT 2 (ZVRL).

The b1/a1 softkey selects the ratio of the wave amplitudes b1 and a1 as measured quantity.

The b2/a1 softkey selects the ratio of the wave amplitudes b2 and a1 as measured quantity.

The b1/a2 softkey selects the ratio of the wave amplitudes b₁ and a₂ as measured quantity.

This softkey is not available on ZVRL. In the case of the ZVR and ZVC families, it is not operative in the external mode.

The b2/a2 softkey selects the ratio of the wave amplitudes b_2 and a_2 as measured quantity.

This softkey is not available on ZVRL. In the case of the ZVR and ZVC families, it is not operative in the external mode.

The b1/b2 softkey selects the ratio of the wave amplitudes b_1 and b_2 as measured quantity.

The b2/b1 softkey selects the ratio of the wave amplitudes b_2 and b_1 as measured quantity.

The DRIVE PORT PORT1/PORT2 switches the signal-path of the test set.

This softkey is not available on ZVRL. In the case of the ZVR and ZVC families, it is not operative in the external mode. It is coupled with the softkeys of the same name in the right side menu of the *MEAS* key and in the *WAVE QUANTITY* menu.

2.14.1.4 Measurement of Two-Port Z or Y Parameters

RESPONSE MEAS - Z- AND Y-PARAMS submenu:

The Z AND Y PARAMS softkey opens a submenu for measuring two-port Z or Y parameters.

- The two-port Z or Y parameters can be measured absolutely, i.e. using the units Ω or S.
- The parameters normalized to reference impedance Z₀ or reference admittance Y₀ can also be selected.
- Reference impedance Z₀ or reference admittance Y₀ can be entered. The reference impedance of the system-error calibration performed previously, or loaded by means of RECALL, is preset.

The measurement of the two-port Z or Y parameters is based on the transformation of the two-port scattering matrix into an impedance or admittance matrix. Any Z or Y parameter is, therefore, a function of the four S parameters (system-error corrected, if necessary).

If a Z or Y parameter is selected as a parameter, a polar diagram is set and markers are formatted as LIN MAG AND PHASE.

Two-port Z and Y parameters that are not normalized can be stored in file formats *.s2p or *.flp (see section 2.6.2.3).

Notes:

If a two-port Z or Y parameter is selected as measurement quantity, the following settings cannot be selected:

- Time domain measurement mode (SYSTEM MODE TIME DOMAIN)
- Complex conversion (RESPONSE MEAS COMPLEX CONVERS)
- SWR and group delay formats (RESPONSE FORMAT SWR, GROUP DELAY, STEP APERTURE, FREQUENCY APERTURE
- Marker conversion (MARKER MARKER MARKER CONVERS)
- Certain marker formats (MARKER MARKER MARKER FORMAT), the choice of selectable formats depending on whether the current Z or Y parameter is normalized or not.

The Y11 softkey selects the input admittance Y_{11} as a parameter.

The Y21 softkey selects the forward transadmittance Y_{21} as a parameter.

The Y12 softkey selects the reverse transadmittance Y_{12} as a parameter.

The Y22 softkey selects the output admittance Y₂₂ as a parameter.

The SET Z0 (Y0 = 1/Z0) softkey activates the entry for reference impedance Z₀.

Reference impedance Z_0 is required to calculate two-port Z and Y parameters from S parameters. Its reciprocal is the reference admittance Y_0 (see $SET\ YO\ (Z0=1/YO)$ softkey). Furthermore, Z_0 is used to convert a single S parameter into an impedance or admittance (see section 2.14.1.5). The corrections for receiver-power calibration also involve Z_0 (see section 2.15.1.4.1) as does the absolute level of a wave quantity.

If a system-error calibration is performed, or system-error corrections are loaded, Z₀ is overwritten with the calibration reference impedance.

The default value of the input field depends on the characteristic impedance of the model; it is therefore either 50 Ω or 75 Ω .

The SET Y0 (Z0 = 1/Y0) softkey activates the input for reference admittance Y₀.

Reference admittance Y_0 is the reciprocal of reference impedance Z_0 (see *SET Z0* (Y0=1/Z0) softkey).

The Z11 softkey selects input impedance Z_{11} as a measured quantity.

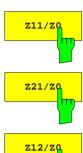
The Z21 softkey selects the forward transimpedance Z_{21} as a measured quantity.

The $Z12\,$ softkey selects the reverse transimpedance Z_{12} as a measured quantity.

The Z22 softkey selects output impedance Z_{22} as a measured quantity.

The Y11/Y0 softkey selects the normalized input admittance Y_{11}/Y_0 as a measured quantity.

The Y21/Y0 softkey selects the normalized forward input admittance Y_{21}/Y_0 as a measured quantity.



The Y12/Y0 softkey selects the normalized reverse input admittance Y_{12}/Y_0 as a measured quantity.

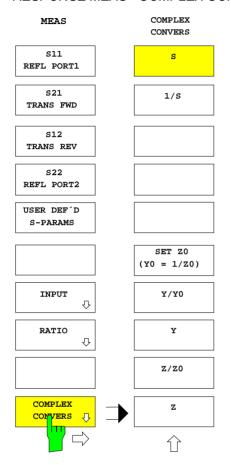
The Y22/Y0 softkey selects normalized output admittance Y_{22}/Y_0 as a parameter.

1043.0009.50 2.259 E-13

The Z11/Z0 softkey selects the normalized input impedance Z_{11}/Z_0 as a measured quantity.

The Z21/Z0 softkey selects the normalized forward transimpedance Z_{21}/Z_0 as a measured quantity.

The Z12/Z0 softkey selects the normalized reverse transimpedance Z_{12}/Z_0 as a measured quantity.



The $\emph{Z}22/\emph{Z}0$ softkey selects the normalized output impedance Z_{22}/Z_0 as a measured quantity.

2.14.1.5 Converting the Measured Quantity

Conversion means that an S parameter is converted into another complex quantity. It must not be mistaken for formatting, where a complex quantity is mapped to a scalar one.

RESPONSE MEAS - COMPLEX CONVERS Submenu:

The *COMPLEX CONVERS* opens the submenu for selecting the conversion of the measured quantity.

Conversion is always applied to S parameters:

- The reciprocal value can be formed (1/S),
- with a specified reference impedance Z₀ (SET Z0 (Y0=1/Z0)), absolute and normalized impedances (Z/Z0, Z) can be calculated.
- with a specified reference admittance Y₀ (SET Z0 (Y0=1/Z0)), absolute and normalized admittances (Y/Y0, Y) can be calculated.

What kind of formula is used to convert an S-parameter into impedances or admittances depends on whether a reflection parameter (S_{11} or S_{22}) or a transmission parameter (S_{12} or S_{21}) is to be converted.

Reflection parameters are converted to terminating impedances or admittances:

$$Z = Z_0 \frac{1 + S_{ii}}{1 - S_{ii}}, Y = \frac{1}{Z}$$

where S_{ii} is the reflection parameter and Z_0 the reference impedance.

Transmission parameters are converted to serial impedances or admittances:

$$Z = Z_0 \frac{2(1 - S_{ij})}{S_{ij}}, Y = \frac{1}{Z}$$

where S_{ij} is the transmission parameter and Z_0 the reference impedance.

The following applies to normalized quantities:

$$z = \frac{Z}{Z_0}$$
, $y = \frac{Y}{Y_0} = Z_0 Y$

When the conversion type is changed (except for switchover from S to 1/S and vice versa), formatting and diagram type are set to default values. The marker conversion is changed analogously.

The S softkey does not convert the S-parameter and is the default setting.

When S is selected, the FORMAT - MAGNITUDE formatting with associated default diagram is set.

The 1/S softkey inverts the selected S parameter.

This is useful in stability measurements, for example. When 1/S is selected, the FORMAT - MAGNITUDE formatting with associated default diagram is set.

The SET Z0 (Y0 = 1/Z0) softkey activates the entry of a reference impedance Z₀.

Reference impedance Z_0 is required to calculate a single S parameter from S parameters. Its reciprocal is the reference admittance Y_0 . Furthermore, Z_0 is used to convert a single S parameter into an impedance or admittance (see section 2.14.1.4). The corrections for receiver-power calibration also involve Z_0 (see section 2.15.1.4.1) as does the absolute level of a wave quantity.

If a system-error calibration is performed, or system-error corrections, are loaded, Z_0 is overwritten with the calibration reference impedance.

The default value of the input field is 50 Ω or 75 Ω , depending on the characteristic impedance of the instrument.

The Y/Y0 softkey converts the selected S parameter into a normalized admittance.

The COMPLEX formatting and a polar diagram with a radius of 2,5 are set at the same time.

The Y softkey converts the selected S parameter into an admittance. The reference impedance defined under SETZO (YO = 1/ZO) is used.

The COMPLEX formatting and a polar diagram with a radius of 50 mS are set.

The Z/Z0 softkey converts the selected S parameter into a normalised impedance.

The COMPLEX formatting and a polar diagram with a radius of 2,5 are set.

The Z softkey converts the selected S parameter into an impedance. The reference impedance defined under SETZO (YO = 1/ZO) is used.

The COMPLEX formatting and a polar diagram with a radius of 125 Ω are set.

2.14.1.6 Measurement of Stability Factors

Three parameters are available to assess the stability of linear two-ports such as amplifiers. They are derived by conversion from the S parameters of the DUT and are represented as a function of frequency or of another stimulus quantity. These are the parameters K factor, μ_1 factor and μ_2 factor which are defined as follows [References: Marion Lee Edwards and Jeffrey H. Sinsky "A New Criterion for Linear 2-Port Stability Using a Single Geometrically Derived Parameter", IEEE Trans. MTT, vol. 40, No. 12, pp. 2303-2311, Dec. 1992]:

$$\begin{split} K &\coloneqq \frac{1 - \left(\left|S_{11}\right|\right)^2 - \left(\left|S_{22}\right|\right)^2 + \left(\left|S_{11} \cdot S_{22} - S_{12} \cdot S_{21}\right|\right)^2}{2 \cdot \left|S_{12} \cdot S_{21}\right|} \\ \mu_1 &\coloneqq \frac{1 - \left(\left|S_{11}\right|\right)^2}{\left|S_{22} - \overline{S_{11}} \cdot \left(S_{11} \cdot S_{22} - S_{12} \cdot S_{21}\right)\right| + \left|S_{21} \cdot S_{12}\right|} \\ \mu_2 &\coloneqq \frac{1 - \left(\left|S_{22}\right|\right)^2}{\left|S_{11} - \overline{S_{22}} \cdot \left(S_{11} \cdot S_{22} - S_{12} \cdot S_{21}\right)\right| + \left|S_{21} \cdot S_{12}\right|} \end{split}$$

where S_{11} is the complex conjugate of S_{11} , i.e. $S_{11} := x \cdot j y$ if $S_{11} := x \cdot j y$, where $j \sqrt{1}$.

The two-port under test is stable when the stability factor is greater than 1. Values less than 1 indicate instability and are shown in colour in the measurement curve.

Note: Stability factors are scalar quantities carrying a sign. Consequently, only the REAL format can be selected. A Cartesian diagram with linear or logarithmic y axis is displayed.

RESPONSE MEAS - side menu:

Softkey K-FACTOR converts the measured S parameters of the DUT into stability factor K.

Softkey μ_1 -FACTOR converts the measured S parameters of the DUT into stability factor μ_1 .

Softkey μ_2 -FACTOR converts the measured S parameters of the DUT into stability factor μ_2 .

1043.0009.50 2.263 E-13

2.14.1.7 Measuring DC Voltage

The DC MEAS INPUTS group on the rear of the instrument comprises BNC connectors DC 1 and DC 2. These are floating inputs for measuring DC voltages between –10 V and +10 V. The measuring diagram displays the voltage versus the selected sweep variable (frequency, time, generator power). In addition, power added efficiency (PAE) can be calculated.

Notes:

- In DC voltage measurements, the same A/D converters are used as for RF signals. For this reason, DC voltages or PAE cannot be measured together with other quantities with coupled display channels. Coupled channels are, therefore, automatically decoupled when a DC voltage is selected, and a message is output.
- Voltages and power added efficiency are scalar quantities carrying a sign. So, only the REAL format can be selected. A Cartesian diagram with linear or logarithmic y axis is displayed.

The *DC MEAS INPUT 1* softkey selects the voltage present at the DC 1 input as measured quantity.

The *DC MEAS INPUT 2* softkey selects the voltage present at the DC 2 input as measured quantity.

The PAE softkey selects the power added efficiency of an active two-port as measured quantity. The power added efficiency is defined as the ratio of the added power generated by the two-port to the power delivered by the power supply. So, the added RF power is the difference between the power generated by port 2 and the power supplied to port 1. The two power values can be expressed by the squared magnitudes of the associated wave quantities by the following formula:

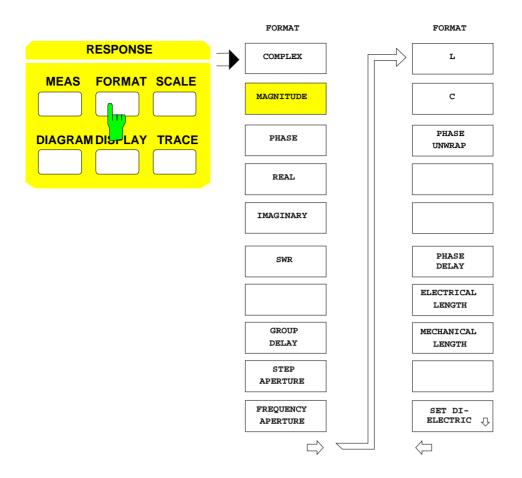
$$PAE = \frac{|b_2|^2 - |a_1|^2}{P_{DC}}$$

The supply power P_{DC} is measured via the DC 1 voltage input. It is assumed that a linear relationship exists between P_{DC} and the measured voltage, the proportionality constant being 1 W/V.

The DRIVE PORT PORT1/PORT2 softkey switches the signal path in the test set.

This softkey is not provided on ZVRL. In the case of the ZVR and ZVC families, it is not operative in the external mode. It is coupled with the softkeys of the same name in the menus *WAVE QUANTITY* and *RATIO*.

2.14.2 Formatting of the Measured Quantity – FORMAT Key


The *FORMAT* key opens a menu which defines in which form the complex measured quantity selected with the *MEAS* key is displayed.

- A complex quantity can be directly represented in a circular diagram (COMPLEX).
- A complex quantity can be converted into a scalar quantity and then represented in a Cartesian diagram. As is common for complex quantities, they can be represented by their magnitude and phase (MAGNITUDE, PHASE), or by their real and imaginary parts (REAL, IMAGINARY).
- The standing wave ratio (SWR) can be calculated from the reflection coefficients.
- The group delay (GROUP DELAY) can be calculated from the phase and frequency difference of two
 points (aperture). The aperture can be selected within (STEP APERTURE) or independent of the
 measured grid (FREQUENCY APERTURE).
- When the measured quantity is converted into an impedance (admittance), its imaginary part can be used together with the frequency to calculate the capacitance (inductance) which corresponds to the same reactance (susceptance) as the measured quantity (*L*, *C*).
- The phase can be limited to an interval or be represented continuously (PHASE UNWRAP).
- From the phase response of a measured quantity, the phase delay (PHASE DELAY), as well as the electrical and mechanical length (ELECTRICAL LENGTH, MECHANICAL LENGTH) can be calculated and displayed in addition.

The user can enter the effective dielectric constant of a line for calculation of the mechanical length (SET DIELECTRIC).

Note:

- With a complex format, the results must be displayed in a circular diagram, with a scalar format, a
 Cartesian diagram must be used. When the current measured quantity is formatted, a diagram and
 scaling parameters suitable for typical test results are automatically selected.
- For direct measurements of the input signal, i. e. with one of the measured quantities of the MEAS -WAVE QUANTITY menu being selected, only the MAGNITUDE format can be used. For measurements of quotients having a scalar quantity (e.g. conversion gain), SWR may be selected in addition to MAGNITUDE.

The COMPLEX softkey displays the result in a complex format.

The result is displayed directly in a circular diagram.

The *MAGNITUDE* softkey displays the magnitude of the current complex measured quantity in a Cartesian diagram.

The *PHASE* softkey displays the phase of the current measured quantity in degrees.

The range of values possible depends on the setting of softkey *SCALE - PHASE UNWRAP:* When the key is switched off, values between -180° and +180° are possible only, otherwise, the range of values is unlimited.

Note:

If the default scaling of the diagram with limits of -180° and +180° is selected, the wave form is represented correctly only if the difference between the phases of two adjacent test points is smaller than 180°. The PHASE format cannot be selected for the measurement of single wave quantities.

The REAL softkey displays the real part of the current measured quantity.

The *REAL* format cannot be selected for the measurement of single wave quantities.

The *IMAGINARY* softkey displays the imaginary part of the current measured quantity.

The IMAGINARY format cannot be selected for the measurement of single wave quantities.

The SWR softkey calculates the standing wave ratio (SWR) from the measured quantity.

The SWR is defined for reflection parameters (S_{11}, S_{22}) and is determined from their magnitudes using the formula

$$SWR = \frac{1 + |S_{ii}|}{1 - |S_{ii}|}$$

The SWR format cannot be selected when single wave quantities are measured or if the conversion "admittance" or "impedance" is active.

The *GROUP DELAY* softkey calculates the group delay τ_g from the measured quantity. τ_g is defined to be the negative derivative of phase ϕ with respect to the angular velocity ω . This implies:

$$\tau_g = -\frac{d\phi}{360^{\circ}d\phi}$$

where $d\phi$ is the phase variation in degrees over the frequency increment df, which is also referred to as aperture. The aperture most favorable for a specific measurement task must be set by the user in each case according to the phase characteristics, the greatest phase slope in the sweep range under test being decisive for the selection of the aperture. If the latter is too great, detail information will be lost, if it is too small, the effect of measurement noise will be too strong.

The aperture can be defined in two ways:

- by specifying a number of test points within the grid (STEP APERTURE).
- by defining a fixed frequency value (FREQUENCY APERTURE, see below). This
 will however double the number of test points.

According to its definition, a group delay can only be measured in the frequency sweep mode (SYSTEM MODE – SWEEP MODE – FREQUENCY SWEEP).

In the frequency-converting mode (SYSTEM MODE - FREQUENCY CONVERS), only a relative measurement of the group delay related to a reference mixer is possible (see section 2.4.1.6).

The STEP APERTURE softkey activates the entry of the aperture width for group delay measurements as a number of test points in the grid. The default setting for group delay measurements is STEP APERTURE with an aperture of 10 test points.

Only integers \geq 1 are permitted. Entering STEP APERTURE = 5, for example, will result in the phase values of test points n-3 and n+2 to be used for calculating the group delay at test point n.

1043.0009.50 2.267 E-13

Since no measurements are made outside the set sweep range, the aperture is reduced to about half of its value at the limits of the range. In the above example, the value obtained at the first sweep point would be determined from the phases of points 1 and 3.

Contrary to group delay measurements with a constant aperture (*FREQUENCY APERTURE*), *STEP APERTURE* does not require a higher number of test points than other formats. However, the aperture width varying with respect to frequency in the case of non-equidistant test points may have a negative effect. *STEP APERTURE* has no function for single-point measurements (*SWEEP SWEEP - SINGLE POINT*).

The FREQUENCY APERTURE softkey activates the entry of the aperture for group delay measurements as a continuously adjustable frequency value faperture.

As compared to the entry via STEP APERTURE, the number of test points is doubled, since for each point f_{test} of the sweep range two phase measurements are performed, i. e. at f_{test} - $f_{aperture}/2$ and at f_{test} + $f_{aperture}/2$. The higher accuracy is thus achieved at the expense of a longer sweep time.

If a system error correction is to be made in a group delay measurement with FREQUENCY APERTURE, and if the associated calibration was not performed with the test point grid of the set group delay measurement, the correction data must be interpolated (and, if the case may be, extrapolated at the limits of the sweep range). If required, the CAL CAL - INTERPOL softkey is automatically activated and a message is displayed. This also occurs when the current calibration was performed during an active group delay measurement (with FREQUENCY APERTURE on) which is then switched off.

When group delay measurements with frequency aperture are performed, the display channels are de-coupled (the SWEEP SWEEP - COUPLED CHANNELS softkey is switched off).

The frequency aperture is not available in connection with an active gate in the time domain (*TIME GATE*) of option ZVR-B2.

The softkeys *L* and *C* calculate an inductance or capacitance that corresponds to the imaginary part of the measured impedance or admittance at the measured frequency.

To this end, the measured value must be converted into an impedance or admittance (RESPONSE MEAS - COMPLEX CONVERS submenu). The values for L and C can then be calculated taking into account the measurement frequency f:

$$L = \frac{\operatorname{Imag}(Z)}{2\pi f} \qquad C = -\frac{1}{\operatorname{Imag}(Z)2\pi f}$$

$$L = -\frac{1}{\operatorname{Imag}(Y)2\pi f} \qquad C = \frac{\operatorname{Imag}(Y)}{2\pi f}$$

If the assumed equivalent circuit reflects real conditions, the values of L or C do not depend on the frequency.

The PHASE UNWRAP softkey cancels the limitation of the range to ±180° in the scalar phase representation (PHASE softkey is on).

No more steps will occur and the phase may assume any value. However, at the start of the sweep, the phase value will always be between +180° and -180°.

The scaling of the diagram will not be changed by switching over PHASE UNWRAP.

The *PHASE DELAY* softkey calculates the phase delay τ_{ϕ} and displays its value in the marker-info field (entry PD:).

The representation of the test trace is not changed. The phase delay is calculated according to the formula

$$\tau_{\varphi} = -\frac{\Delta \varphi}{360^{\circ} \, \Delta f}$$

 $\Delta \phi$ designates the entire phase span over the sweep range Δf . However, same as with *PHASE*, a correct result will be achieved only if the phase difference between two adjacent test points does not exceed 180°.

The format *PHASE DELAY* is not available if a complex conversion is active (*RESPONSE MEAS - COMPLEX CONVERS*) or Z or Y parameters are represented (*RESPONSE MEAS - Z- AND Y-PARAMS*).

The *ELECTRICAL LENGTH* softkey calculates the electrical length $I_{el\phi}$ of the DUT and displays it in the marker-info field (entry EL:).

The electrical length is calculated from the phase delay τ_{ϕ} (see softkey *PHASE DELAY*) using the formula

$$I_{el\phi} = c_0 \tau_{\phi}$$

where c₀ stands for the velocity of light in a vacuum.

The format *ELECTRICAL LENGTH* is not available if a complex conversion is active (*RESPONSE MEAS - COMPLEX CONVERS*) or Z or Y parameters are represented (*RESPONSE MEAS - Z- AND Y-PARAMS*).

Note:

According to its definition, the electrical length is given by the product of velocity of light and the differential group delay τ_g (see above). The group delay is replaced by the phase delay for two reasons:

- Specifying the electrical length is useful only for non-dispersive DUTs in which the phase and group delay coincide.
- Measurement accuracy for phase delay is by far higher than for group delay as for phase delay the aperture is considerably wider.

The *MECHANICAL LENGTH* softkey calculates the mechanical length $l_{el\phi}$ of the DUT and displays it in the marker-info field (entry ML:).

MECHANICAL LENGTH differs from ELECTRICAL LENGTH only in that not the vacuum light velocity is assumed for electromagnetic wave propagation but a lower speed, the latter resulting from the use of a dielectric:

$$l_{\rm mech\phi} = c_0 \frac{1}{\sqrt{\mathcal{E}_r}} \tau_\phi$$

This is useful especially if a cable dielectric is to be taken into account.

With the aid of table SET DIELECTRIC, the required relative dielectric constant ε_r , or alternatively the reduction factor for the wave velocity (VELOCITY FACTOR), can be specified.

The format *MECANICAL LENGTH* is not available if a complex conversion is active (*RESPONSE MEAS - COMPLEX CONVERS*) or Z or Y parameters are represented (*RESPONSE MEAS - Z- AND Y-PARAMS*).

The SET DIELECTRIC softkey activates a table of the same name for selecting the relative dielectric constant ε_r (EPSILON) or the reduction factor for the wave velocity (VELOCITY FACT), which are used in calculating the mechanical length of a DUT.

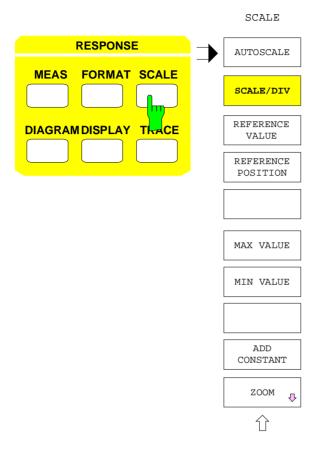
The quantities dielectric constant and reduction factor are equivalent, see table *EDIT DIELECTRIC* below.

The table SET DIELECTRIC is identical with the one used for defining an offset of the measurement plane in the menu belonging to the OFFSET key. The dielectric selected is the same in both cases, too.

SET DIELECTRIC			
EPSILON	VELOCITY FACT		
1.00056	0.999720		
2.5	0.63		
2.1	0.69		
1.5	0.82		
1	1		
1	1		
1	1		
1	1		
	EPSILON 1.00056 2.5 2.1 1.5 1		

The *EDIT DIELECTRIC* softkey calls the *EDIT DIELECTRIC* table that is superimposed on table *SET DIELECTRIC* and is used for editing the name and parameters of the selected dielectric.

The following relationship exists between the second and the third column:


$$ELOCITY FACT = \frac{1}{\sqrt{EPSILON}}$$

Either of the two fields can be edited. The other field will be adjusted automatically.

EDIT DIELECTRIC			
	EPSILON	VELOCITY FACT	
	1	1	

1043.0009.50 2.271 E-13

2.14.3 Scaling of the Test Diagram – SCALE Key

The *SCALE* key opens a menu scaling the test diagram in the active display channel.

• Scaling can be automatic or manual (AUTOSCALE).

In linear Cartesian or polar diagrams, there are two scaling modes:

- The fixed division by 10 or 5, where the grid increment is set with SCALE/DIV, the reference position with REFERENCE POSITION and the reference value with REFERENCE VALUE.
- The flexible scaling with the softkeys MAX VALUE and MIN VALUE (MIN VALUE not for polar diagrams), where the y-grid lines are drawn in analogy to the x-lines upon entering START and STOP values. In this case, the grid increment is automatically determined in steps of 1, 2 or 5 depending on the displayed range of values. The division lines or circles are located at absolute multiples of the grid increment. The number of division lines may vary between 5 and 15, no reference line is displayed.
- ADD CONSTANT shifts the scaling of the axis by a specified value.
- The ZOOM function allows to magnify a defined section of the diagram.

Note:

In linear polar diagrams with fixed division, the scaling and reference settings are coupled with each other since the minimum value of the radial axis is fixed at 0. If the reference value or position is changed, the grid increment is adjusted. If the grid increment is changed, the reference value is calculated anew.

If switchover is made from fixed to flexible scaling with MAX VALUE, MIN VALUE from the previous scaling is taken over. This applies analogously to switchover made with MIN VALUE. If switchover is made from flexible to fixed scaling, the grid increment remains unchanged. With linear Cartesian diagrams, the reference line in the middle of the diagram is redrawn and the reference value is taken over from the division line nearest to the middle of the previous diagram. With linear polar diagrams, the outer circle of the diagram is taken as a reference circle, and the reference value is five times the value of the grid increment.

With logarithmic diagrams, only MAX VALUE and MIN VALUE can be defined. The logarithmic grid is adjusted to the specified range limits.

With Smith charts, only the radius of the outer circle can be set with *MAX VALUE*. For schematic diagrams, no scaling can be set, for diagrams with segmented y or radial axis, scaling can be set only by means of *DIAGRAM - DEF CART SEGMENTS* and *DEF POLAR SEGMENTS*.

RESPONSE SCALE menu:

The AUTOSCALE softkey automatically re-scales the y or radial axis.

As a result, all values measured in the current sweep are really displayed on screen. The range of values is determined during the sweep run in which *AUTOSCALE* is pressed.

- In Cartesian diagrams with a linear or a linear dB-scale or in polar diagrams, AUTOSCALE causes 10 or 5 grid lines to be displayed and the grid increment to be defined in steps of 1, 2 or 5. In Cartesian diagrams, the reference line is positioned on a value as round as possible, in polar diagrams, on the outer circle. The reference value is a multiple of the grid increment.
- In logarithmic diagrams, the decade limits nearest to the maximum and minimum
 of the test trace are taken as MAX VALUE and MIN VALUE. If the difference
 between the maximum and minimum values is less than two octaves, the
 instrument automatically switches to a linear diagram and a message is
 displayed.
- In Smith charts, the radius of the outer circle is determined same as with linear polar diagrams.
- AUTOSCALE has no function in schematic or segmented diagrams.

The SCALE/DIV softkey activates the entry of the grid increment for the y or radial axis.

If flexible axis division is active, switchover is made to fixed division. The conventions set forth in the introduction to this section apply.

The softkey can be operated only in diagrams with a linear or a linear dB-scale or in polar diagrams.

The SCALE/DIV value can be defined in logarithmic steps of 1, 2 or 5 by means of the cursor keys.

The REFERENCE VALUE softkey activates the entry of the reference value for the scaling of the y or radial axis. If flexible axis division is active, switchover is made to fixed division. The conventions set forth in the introduction to this section apply.

The softkey can be operated only in diagrams with a linear or a linear dB-scale or in polar diagrams.

The REFERENCE POSITION softkey defines the position of the reference line or reference circle.

- In Cartesian diagrams, a value between 0 and 10 can be selected, with 0 corresponding to the lower and 10 to the upper edge of the diagram.
- In polar diagrams, a position between 0 and 5 can be selected, with 0 corresponding to the center and 5 to the outer circle.

Since the reference line coincides with one of the grid lines, all grid lines are shifted correspondingly. If the active diagram has flexible axis division, switchover is made to fixed division. The conventions set forth in the introduction to this section apply.

The softkey can be operated only in diagrams with a linear or a linear dB-scale or in polar diagrams.

1043.0009.50 2.273 E-13

The MAX VALUE softkey activates the entry of the maximum value on the y or radial axis.

If fixed axis division is active, switchover is made to flexible division. The conventions set forth in the introduction to this section apply.

For logarithmic Cartesian diagrams (*DIAGRAM - LOG CARTESIAN* active), *MAX VALUE* must be positive. If such a diagram is split in two parts for the positive and the negative values, *MAX VALUE* defines as absolute values the maximum of the upper and the minimum of the lower half.

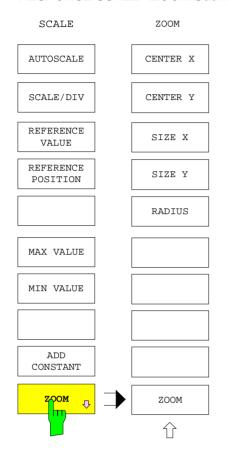
The MIN VALUE softkey activates the entry of the minimum value on the y or radial axis.

If fixed axis division is active, switchover is made to flexible division. The conventions set forth in the introduction to this section apply.

The softkey has no function with linear circular diagrams since these have a minimum value of 0. For logarithmic Cartesian diagrams (*DIAGRAM - LOG CARTESIAN* active), *MIN VALUE* must be positive. If such a diagram is split in two parts for the positive and the negative values, *MIN VALUE* defines as absolute values the minimum of the upper and the maximum of the lower half.

The *ADD CONSTANT* softkey activates the entry of a constant which is added to a scalar measured quantity or to the magnitude of a complex measured quantity.

Unlike the offset quantities set with the *OFFSET* key, which refer to unconverted measured values, the value entered with *ADD CONSTANT* is added after conversion and formatting. It has the effect of a linear shift of the scaling of the y or radial axis.


In Cartesian diagrams, rectangular sections can be zoomed, in circular diagrams, round sections. The *ZOOM* menu can be called only for unsegmented diagrams. With multi-channel display, all channels can be zoomed simultaneously with different ranges of magnification.

The center and size of a section can be entered graphically or numerically. A section frame with a center cursor is displayed as a graphical aid. If no input window is open, the position can be changed by means of the cursor keys and the roll-key.

If the zoom function is activated, measurements continue to be made using the test point spacing of the unzoomed range even if only part of the points can be displayed.

1043.0009.50 2.274 E-13

RESPONSE SCALE - ZOOM Submenu:

The ZOOM softkey opens a submenu where any segment of the test diagram in the active display channel can be magnified.

- In Cartesian diagrams, the center position (CENTER X, CENTER Y) and the width (SIZE X) and height (SIZE Y) of the frame can be selected separately.
- In circular diagrams, the radius (RADIUS) is set.
- ZOOM activates and deactivates the zoom function.
- Polar diagrams are always zoomed with reference to their origin.
- Charter diagrams cannot be zoomed.

The grid is shown with a finer or coarser structure depending on the magnifying factor. The labeling and legends within and outside the diagram, including that of the sweep and information line, are adjusted to the new grid. Since with coupled channels there is only one sweep line for all diagrams, the display mode for non-coupled channels must be selected, i.e. a sweep line appears for each diagram. The channels remain coupled, however.

When a Smith chart is zoomed, a three-line information field appears in the upper left-hand corner of the chart indicating the x and y co-ordinate of the center as well as the radius of the zoom circle. The values are output as chart co-ordinates. The *MAX VALUE* data are not displayed in the information line.

The CENTER X softkey activates the entry of the center co-ordinate of the zoom section frame in the X direction.

- For Cartesian diagrams, the value is entered as a percentage of the diagram width. The co-ordinate origin is in the lower left-hand corner (entry 0 to 100%).
- For circular diagrams, the value is entered as a percentage of the diagram radius. The origin is in the center (entry -100 to 100%).

The CENTER Y softkey activates the entry of the center co-ordinate of the section frame in the Y direction.

For Cartesian diagrams, the value is entered as a percentage of the diagram height, for circular diagrams, as a percentage of the diagram radius. For the location of the co-ordinate origin please refer to softkey *CENTER X*.

The SIZE X softkey activates the entry of the width of the rectangular section frame as a percentage of the diagram width.

The softkey operates only in Cartesian diagrams.

The *SIZE* Y softkey activates the entry of the height of the rectangular section frame as a percentage of the diagram height.

The softkey operates only in Cartesian diagrams.

The *RADIUS* softkey activates the entry of the radius of the circular section frame as a percentage of the diagram radius.

The softkey operates only in circular diagrams.

The ZOOM softkey switches the zoom function on or off.

With the zoom function switched on, the area marked by the section frame is magnified to such an extent that it takes up the whole area of the original diagram. The state of *ZOOM* is indicated by the inscription "ZOOMED" in the left, lower part of the screen.

Some operations, e. g. a change of the limits of the sweep range in Cartesian diagrams or a change of the diagram type, cause the zoom to be automatically switched off and a message to be displayed. Upon switching off the zoom function, the original representation of the test diagram is reactivated.

The zoom function cannot be switched on if logarithmic scaling is active in the x, y or radial axis and the zoom window comprises an area of less than two octaves in the respective axis.

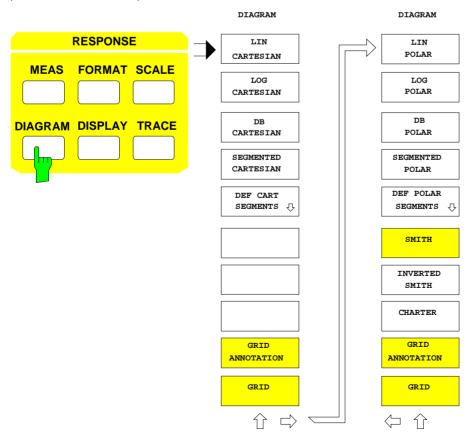
1043.0009.50 2.276 E-13

2.14.4 Selection of the Test Diagram – *DIAGRAM* Key

The *DIAGRAM* key opens a menu where the diagram for the display of measured values can be selected.

In addition to the default diagram set automatically when the formatting for an active display channel is defined (see *FORMAT* key), a number of other diagram types is available.

If a complex measured quantity is represented as a scalar (e.g. MAGNITUDE formatting), DIAGRAM calls the main menu. The measured values can be displayed only in a Cartesian diagram. The user can select between


- a linear trace in a linear grid (LIN CARTESIAN),
- a logarithmic trace in a logarithmic grid (LOG CARTESIAN),
- a logarithmic trace in a linear dB grid (DB CARTESIAN),
- segmented scaling (SEGMENTED CARTESIAN), where the yaxis is divided into up to three segments with different scaling (DEF CART SEGMENTS).

Selection of another diagram will not affect the x-axis scaling.

With complex formatting, right-hand lateral menu is called. One of the four circular diagrams, i.e.

- polar diagram, where the radial scaling may be linear (LIN POLAR), logarithmic (LOG POLAR), in dB (DB POLAR) or divided into a maximum of two segments (SEGMENTED POLAR; DEF SEGMENTS).
- Smith chart (SMITH),
- inverted Smith chart (INVERTED SMITH),
- or charter diagram (CHARTER).

The grid for the various diagrams can be switched on or off *(GRID)*. In Cartesian diagrams, the labeling *(GRID ANNOTATION)* can be switched off in addition.

The LIN CARTESIAN softkey displays the non-logarithmic measured quantity in a Cartesian diagram with linear y-axis division.

The number and position of the division lines depend on the selected scaling (see *SCALE* menu). *LIN CARTESIAN* can be selected only with scalar formatting.

The LOG CARTESIAN softkey displays the logarithmic measured quantity in a Cartesian diagram with logarithmic y-axis division.

This is possible only if the y range of values comprises at least 2 octaves. If the range of values comprises between 2 octaves and 5 decades, each decade is divided in steps of 1. With more than 5 decades, a division is made in steps of 2.

The reference line is switched off with logarithmic scaling. The lower and upper limits of the range are entered using the softkeys *MIN VALUE* and *MAX VALUE*. If the selected formatting allows for negative values (e.g. *PHASE*), the logarithmic diagram is divided into two symmetrical ranges for positive and negative y values.

LOG CARTESIAN can be selected only with scalar formatting.

The *DB CARTESIAN* softkey displays the logarithmic trace in a diagram with linear division and dB scaling.

Similar to linear Cartesian diagrams, it is possible to activate both a fixed and a flexible scaling (see the description of the SCALE menu).

DB CARTESIAN is possible only in the *MAGNITUDE* format, but not with impedance or admittance (*Z* or *Y*) conversion.

The SEGMENTED CARTESIAN activates the division of the y-axis in segments defined by means of DEF CART SEGMENTS.

The segment list must not be empty or contain a segment where MIN = MAX. The SCALE key has no function in this mode. The scaling for the individual segments is defined in the YSEGMENTS table.

1043.0009.50 2.278 E-13

2.14.4.1 Defining the Cartesian Segmentation of the y Axis

RESPONSE DIAGRAM - DEF CART SEGMENTS submenu:

The *DEF CART SEGMENTS* softkey opens a submenu which subdivides the y-axis of a Cartesian diagram into up to three segments.

By segmentation of the y axis, the ranges of a measured quantity that are of particular interest can be examined more closely using a scaling with a high resolution, while other ranges, in which an overview of the trace is sufficient, are shown at the same time. A typical application is the measurement of a bandpass filter, whose ripple is to be displayed with high resolution in the pass band but whose edges and stop band are of minor importance.

On the x axis of a Cartesian diagram, this corresponds to using a sweep list with the function *DIVIDED X AXIS* activated. However, unlike the divisions of the x axis, the segments of the y axis must adjoin each other, i.e. there must be no gaps and the segments must not overlap.

The x and y axes of a Cartesian diagram can be segmented at the same time (DEF CART SEGMENTS and SYSTEM MODE - DEF SWEEP LIST - DIVIDED X AXIS), yielding up to 3 x 3 = 9 sections with different scaling for one and the same diagram.

- The limits of the segments are defined in the Y SEGMENTS table. Each segment can be scaled separately. The y axis is divided into sections of equal length depending on the number of segments entered.
- All segments in a list (DEL ALL SEGMENTS) or a single segment (DEL ACTIVE SEGMENT) can be deleted
- The scaling of the segments is linear (Y GRID LIN),, logarithmic (Y GRID LOG) or logarithmic with dB divisions (Y GRID DB). The selected scaling applies to all segments. If the formatting is changed, a new table is created. This table contains a segment whose limits correspond with the default scaling of the nonsegmented display mode.

If a diagram segmented in the y-direction is active when *DEF CART SEGMENTS* is called, the instrument switches automatically to the unsegmented diagram whose grid corresponds to the grid of the segmented representation.

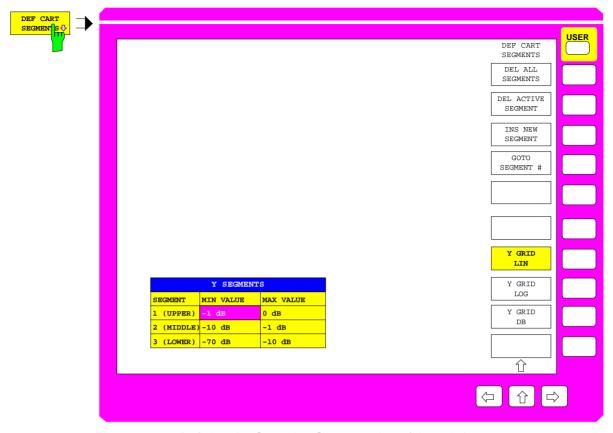


Fig. 2-36 Defining the Cartesian Segmentation of the y Axis

The Y SEGMENTS table contains, in addition to the numbering and designation of the segment in the SEGMENT column, two columns which may be edited:

SEGMENT number and designation of the segment

MIN VALUE lower limit of the segment

MAX VALUE upper limit of the segment

Note:

- As the segments adjoin each other, the limit of the adjoining segment is adjusted automatically when the limit of a segment is changed.
- If Y GRID LOG is active, it is not permissible to enter negative values.

As a graphical aid, the defined segment limits are represented by means of colored continuous horizontal lines. Unlike the x-axis segments, there is no indication as to the beginnings or ends of the segments since these are adjoining. The respective designation UPPER, MIDDLE, or LOWER is displayed in each segment. The limits of the active segment are shown as dashed lines. The position of the segment limit that is currently edited is updated continuously.

The DEL ALL SEGMENTS softkey deletes all segments from the table.

Prior to this, a dialogue window appears that prompts the user to confirm deletion.

The DEL ACTIVE SEGMENT softkey deletes the active segment.

The active segment is the segment of the line in which the editing bar is positioned.

The INS NEW SEGMENT softkey inserts a new segment above the active segment.

The maximum number of 3 segments is however not exceeded.

The GOTO SEGMENT # softkey activates the specified segment, i.e. shifts the editing bar to the corresponding line of the table.

The Y GRID LIN softkey selects a linear grid for the segmented y-axis. In order to make editing of the segment limits easier, the instrument switches immediately to an unsegmented, linear diagram.

This setting applies to all segments.

The Y GRID LOG softkey selects a logarithmic grid for the segmented y-axis. In order to make editing of the segment limits easier, the instrument switches immediately to an unsegmented, logarithmic diagram.

The setting applies to all segments.

Logarithmic y-axis scaling is possible only with a positive range of values. For logarithmic scaling, the complete range of values of all segments must include at least two octaves. The switched-on state of *Y GRID LOG* is not checked for validity until y-axis scaling is activated via *SEGMENTED CARTESIAN*. Thus, the current state of this softkey can't be changed due to temporary incompatible settings of the segment list during editing.

The Y GRID DB softkey selects a linear grid with dB scaling for the segmanted y-axis. In order to make editing of the segment limits easier, the instrument switches immediately to an unsegmented, dB-diagram.

Measured values are logarithmized. The setting applies to all segments. Y GRID DB can be selected only with the MAGNITUDE format, but not if impedance or admittance (Z or Y) conversion is active.

1043.0009.50 2.281 E-13

RESPONSE DIAGRAM menu:

The *GRID ANNOTATION* switches the labeling in Cartesian diagrams on or off. As a default setting, the labeling is switched on.

The function is valid only for the diagram of the active display channel.

The *GRID* softkey switches on or off the grid of the diagram of the active display channel.

As a default setting, GRID is switched on.

The LIN POLAR softkey displays the non-logarithmic measured in a polar diagram with linear radial division.

The number and position of the division circles depend on the defined scaling (see *SCALE* menu). *LIN POLAR* can be selected only with complex formatting.

The LOG POLAR softkey activates a polar diagram with logarithmic radial division. The test trace is displayed in logarithmic form as well.

This is possible only if the radial range of values comprises at least 2 octaves. If the range of values comprises between 2 octaves and 2 decades, each decade is divided in steps of 1. With more than 2 decades, a division is made in steps of 2; with more than 5 decades, only the decade limits are displayed.

The reference circle is switched off with logarithmic scaling. The lower and upper limits of the range are entered using the softkeys FORMAT - MIN VALUE and MAX VALUE.

LOG POLAR can be selected only with complex formatting.

The *DB POLAR* softkey displays the logarithmic trace in a polar diagram with linear radial division in dB.

Similar to linear polar diagrams, it is possible to activate both a fixed and a flexible scaling (see *SCALE* menu).

DB POLAR can be selected only with complex formatting. The conversions impedance or admittance (Z or Y) must not be active.

The SEGMENTED POLAR softkey activates the entry of the division in segments of the radial axis defined by means of DEF POLAR SEGMENTS.

The segment list must not be empty and contain no segment where MIN = MAX. In this mode the *SCALE* key is inoperative. The scaling of the individual segments results from the limits defined in table *RADIAL SEGMENTS*. The current segment limits are displayed in an info field above and to the left of the diagram.

1043.0009.50 2.282 E-13

2.14.4.2 Defining the Polar Radial Segmentation

RESPONSE DIAGRAM - DEF POLAR SEGMENTS Submenu:

The explanations given for *DEF CART SEGMENTS* in the main menu (section 2.14.1.1) apply analogously to softkey *DEF POLAR SEGMENTS* in the lateral menu, therefore no detailed description is given here.

- The RADIAL SEGMENTS table is called instead of the Y SEGMENTS table,
- · two radial segments can be selected instead of three,
- for linear radial scaling, the minimum value of the inner segment is always equal to 0,
- when editing the segment limits, an auxiliary circle is indicated instead of a horizontal line.

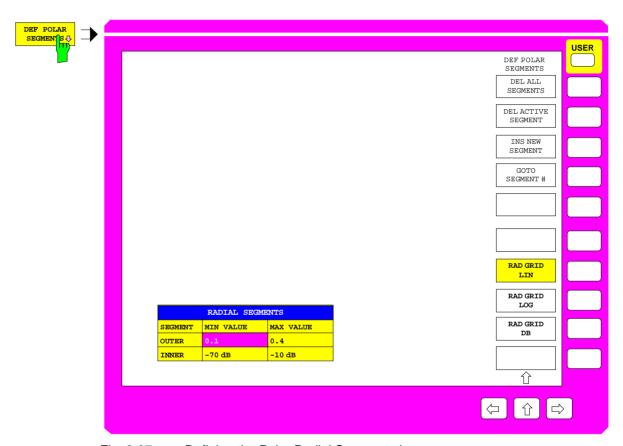


Fig. 2-37 Defining the Polar Radial Segmentation

RESPONSE DIAGRAM menu:

The SMITH softkey displays a Smith chart if complex formatting of the measured-value is active.

In this diagram type, the Cartesian grid of the complex impedance plane (Z plane) is projected onto the reflection-coefficient plane. Therefore it is frequently used in reflection-coefficient measurements.

The default Smith diagram is bordered by the unit circle. The user may however define the outer circle radius as required by means of *SCALE - MAX VALUE* so that a representation scaled up or down relative to the center of the circle is obtained. Moreover, the user can zoom relative to a selectable center (submenu *SCALE - ZOOM*).

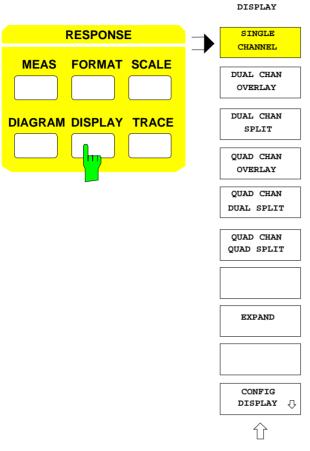
The grid of these particular diagrams is made up of circle segments with prominent values, whose spacing is automatically defined as a function of the displayed range.

The Smith chart cannot be selected in the impedance or admittance (Y or Z) conversion.

The *INVERTED SMITH* softkey displays an inverted Smith chart if complex formatting of the measured-value is active.

An inverted Smith chart differs from the normal Smith diagram in that the admittance plane (Y plane) and not the impedance plane is projected onto the reflection-coefficient plane. The grid is turned 180° about the origin relative to the normal Smith diagram.

Scaling options are the same as for the normal Smith diagram. The inverted Smith diagram cannot be selected if an impedance or admittance (Y or Z) conversion is active.


The CHARTER softkey displays a charter diagram if complex formatting of the measured-value is active.

Similar to the Smith chart, the charter diagram represents a projection of the complex impedance plane on the reflection-coefficient plane. However, a polar grid in the Z plane, i.e. a grid made up of circles of constant magnitude and radial lines of constant phase, is taken as a basis.

User-selected scaling or zooming is not possible with this diagram. A charter diagram cannot be selected if impedance or admittance (Y or Z) conversion is active.

1043.0009.50 2.284 E-13

2.14.5 Configuration of the Screen – DISPLAY Key

The *DISPLAY* key opens a menu configuring the whole screen.

The settings made under this key have a global effect, whereas the settings made under the other keys of the *RESPONSE* block are channel-specific.

- As an essential function, the number of channels displayed and the arrangement of the associated diagrams on the screen can be defined. Six different combinations are possible (SINGLE CHANNEL, ..., QUAD CHAN QUAD SPLIT).
- The EXPAND function expands the diagrams to take up the full screen size. Additional information is not displayed on screen in this case.
- In the CONFIG DISPLAY menu, the characteristics of the graphic elements on the screen are configured (visibility, color etc.).

2.14.5.1 Defining the Number and Arrangement of the Display Channels

RESPONSE DISPLAY menu:

The SINGLE CHANNEL softkey displays the active channel alone.

The *DUAL CHAN OVERLAY* softkey superimposes the diagrams of the active display channel and its adjacent channel.

The combinations of channel 1 and 2 or channel 3 and 4 are possible. In this combination of channels, the default assignment of S parameters to the channels is such that the forward and the reverse parameters are combined in each case. If segmented polar diagrams are displayed in overlay mode, only the info field of the active channel is displayed.

The *DUAL CHAN SPLIT* softkey superimposes the diagrams of the active display channel and its adjacent channel. It differs from *DUAL CHAN OVERLAY* only in that the diagrams of the two channels are displayed separately.

The odd-numbered channel is shown in the upper, the even-numbered channel in the lower half of the screen.

The QUAD CHAN OVERLAY softkey superimposes the diagrams of all four display channels.

In order to obtain a clear-cut display, the diagram type and scaling should be the same for all channels. If segmented polar diagrams are displayed in overlay mode, only the info field of the active channel is displayed.

The QUAD CHAN DUAL SPLIT softkey displays all four channels. In the upper half of the screen, channels 1 and 4 are superimposed on each other, in the lower half channels 2 and 3.

In this combination of channels, the default assignment of S parameters to the channels is such that the two reflection and the two transmission coefficients are combined.

The *QUAD CHAN QUAD SPLIT* softkey displays all four channels in separate screen areas. This is the default setting.

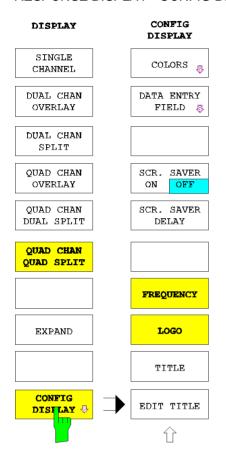
Channel 1 is displayed in the upper left, channel 2 in the lower left, channel 3 in the upper right and channel 4 in the lower right of the screen. This has the advantage that, with the default assignment of S parameters to the channels active, the positions of the diagrams correspond to the positions of the parameters in the S matrix.

In the *QUAD CHAN QUAD SPLIT* representation, the marker field in the information line is no longer displayed. Therefore, if the marker information list is switched on, the value of the active marker is included in the list.

2.14.5.2 Expansion of Diagrams to Maximum Screen Format

RESPONSE DISPLAY menu:

The *EXPAND* softkey erases all display elements (including softkeys, enhancement labels, sweep bars, etc.) from the screen and expands the test diagram(s) to take up the maximum screen format.


The *EXPAND* function is useful in cases where the scaling generally doesn't change and in the case of test assemblies where the trace or compliance with limit values are of interest.

In the *EXPAND* representation, the marker field in the information line is no longer displayed. Therefore, if the marker information list is switched on, the value of the active marker is included in the list.

The expanded display mode remains active until the user presses any key or clicks on any portion of the display with the mouse. The instrument then switches to the normal screen display. If a hardkey was pressed, the function triggered is executed.

2.14.5.3 Configuring the Graphic Elements of the Display

RESPONSE DISPLAY - CONFIG DISPLAY submenu

The CONFIG DISPLAY softkey calls a menu which sets the characteristics of the graphic elements of the display.

These include

- the colors of the graphic elements (COLORS),
- the position of entry fields and their display in transparent or opaque form (DATA ENTRY FIELD),
- the switching on and off and a delay time for the screen saver (SCR. SAVER ON OFF, SCR. SAVER DELAY)
- the insertion or removal of frequency information (FREQUENCY) or company logos (LOGO),
- the editing of diagram headings (TITLE, EDIT TITLE).

The COLORS softkey calls a submenu and the DISPLAY OBJECTS table which set the colors of the display's graphic elements.

- The graphic element which is to be changed can be selected in the table DISPLAY OBJECTS.
- The tint, saturation and brightness of the selected graphic element (TINT, SATURATION, BRIGHTNESS) can be either set individually or the color can be selected from the palette offered (SET COLORS) In both cases, the color of the element is immediately updated.
- The default colors can be restored by means of another softkey (RESET COLORS).

Note:

The color assignments of the softkeys are coupled with those of other display elements. Changing for example the color of switched-off softkeys (SOFTKEY OFF) will simultaneously cause the table background color to be changed. In the same manner, SOFTKEY ACTIVE and display lines are coupled, and SOFTKEY ON and enhancement labels are coupled.

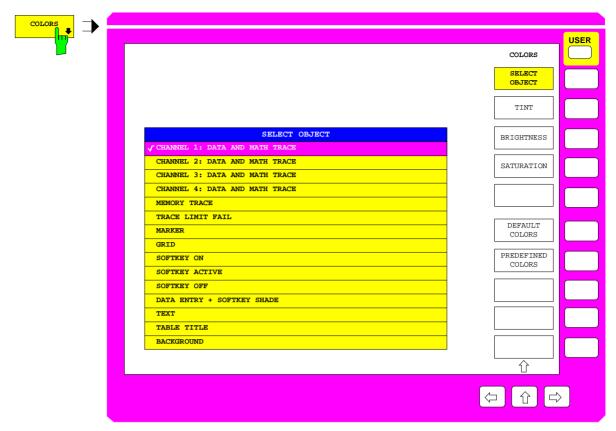


Fig. 2-38 Setting the screen colors

RESPONSE DISPLAY - CONFIG DISPLAY - COLORS submenu

The SELECT OBJECT softkey calls the table of the same name. In this table, the graphic element whose colors are to be changed is selected.

The *TINT* softkey sets the tint for the selected group.

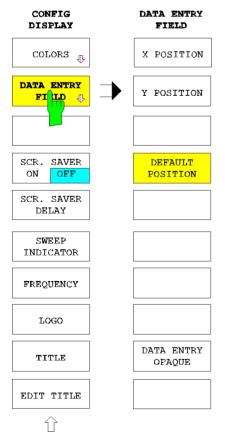
The tint can be set between 0 and 100%, whereby 0 and 100% correspond to red and the values in between to the rest of the color spectrum.

The BRIGHTNESS softkey sets the color brightness for the selected group..

A value between 0 and 100% can be set.

The SATURATION softkey sets the color saturation for the selected group.

A value between 0 and 100% can be set.


The SET COLOR softkey calls a table containing predefined colors which can be assigned to the graphic element selected in the SELECT OBJECT table.

The *RESET COLORS* softkey restores the default settings of the colors. Before the current color settings are superseded, confirmation by the user is requested.

RESPONSE DISPLAY - CONFIG DISPLAY - DATA ENTRY FIELD submenu:

The DATA ENTRY FIELD softkey opens a submenu used to define the position of the selection tables and their display in opaque or transparent form.

The *X POSITION* softkey activates the entry of the x-axis position of the left edge of the selection table as a percentage of the diagram width.

The *Y POSITION* softkey activates the entry of the y-axis position of the upper edge of the selection table as a percentage of the diagram height.

The DEFAULT POSITION softkey shifts the selection table to its default position, i.e.:

- *X POSITION* = 12%
- Y POSITION = 84,8%

The DATA ENTRY OPAQUE renders the selection tables opaque.

This implies that they take the same background color as the tables, and that the diagrams and traces behind are no longer visible.

RESPONSE DISPLAY - CONFIG DISPLAY submenu

The SCR. SAVER ON OFF softkey switches the screen saver on or off. If the screen saver is active the back-lighting of the LCD display is switched off unless an instrument key is pressed within the delay time defined via SCR. SAVER DELAY.

Note: The settings made for the screen saver are not changed by PRESET.

The SCR. SAVER DELAY softkey defines the delay time for the screen saver. The back-lighting of the LCD display is switched off unless an instrument key is pressed within the delay time. The default screen saver time is 5 min.

Note: The settings made for the screen saver are not changed by PRESET.

The sweep indicator can be activated or deactivated on the bottom of the measurement screen via the *SWEEP INDICATOR* softkey. The sweep indicator shows the current sweep setting and is switched on the default setting. At very short sweep times, this display flickers and may thus be disturbing.

The FREQUENCY softkey prevents, when it is switched off, any frequency information to be displayed on the screen. In the default state, FREQUENCY is switched on.

The function may be used, for example, to protect confidential data.

The *LOGO* softkey switches the Rohde & Schwarz logo on and off. In the default state, the logo is switched on.

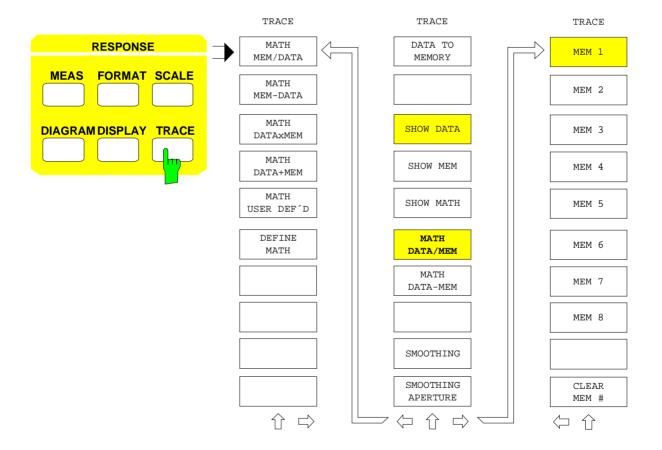
The logo is shown in the right-hand upper corner of the diagram (or, if several diagrams are displayed, in the right-hand upper diagram). It is saved in bitmap form and can be replaced by another one (see section 2.3.1).

The TITLE softkey switches the header line on and off, i.e. the uppermost line of the screen.

Entries into this line are made by means of *EDIT TITLE*. The line can be switched on only if it is not empty.

The EDIT TITLE softkey activates the input field for editing the header line.

The header line is the uppermost line of the screen; it has a maximum length of 60 characters. After editing, *TITLE* is switched on automatically provided a title was entered by the user.


1043.0009.50 2.291 E-13

2.14.6 Operations with Traces – TRACE Key

The TRACE key opens a menu for storing and mathematically manipulating measured traces.

- Up to eight traces can be stored (DATA TO MEMORY).
- The current measured data of a channel can be displayed directly (SHOW DATA), mathematically linked with the data of another channel (SHOW MATH) or with stored data (SHOW MEM) before they are output.
- The mathematical relation between the current trace and stored data is defined by one of the softkeys MATH DATA/MEM, ... MATH DATA+MEM or by MATH USER DEF'D. In the latter case, an arbitrary mathematical relation can be entered (DEFINE MATH).
- The memories are selected with MEM 1, ..., MEM 8 and cleared with CLEAR MEM #.
- A function for smoothing the current trace (SMOOTHING) is provided.

The assigned memory data are defined separately for each channel. Measured data are stored after error correction, i.e. prior to conversion and formatting. It is thus possible to adapt the stored trace to the current settings made with the *STIMULUS*, *SWEEP* and *RESPONSE* groups of keys.

The DATA TO MEMORY softkey copies the data of the active display channel to the memory selected in the menu on the right.

In the default state, channels 1 to 4 are assigned memories 1 to 4. The memory content is erased by changing the sweep mode, switching off the unit or using the CLEAR MEM # softkey. PRESET does not erase the memory content.

The SHOW DATA softkey displays the current measured data directly, i.e. they are not linked mathematically with any other data.

The softkey can be activated only alternatively to *SHOW MATH*, i.e. only one trace obtained from current measured data can be output per display channel.

The SHOW MEM softkey displays the contents of the memory selected in the right-hand menu as a static trace in addition to the current measured data, provided the memory is not empty.

Since storage of a trace is made immediately after error correction, the conversion, formatting and scaling of the trace can be adapted to match the active display channel. If the sweep range of the stored trace differs from the active sweep, stored data are indicated only for the overlapping range.

Note:

Stored data can be displayed together with the current results only if they both belong to the same category. The four categories for the measured quantities are S parameters, vectorial quotients (MEAS - RATIO menu), scalar quotients (e.g. conversion losses) and single signals (MEAS - INPUT menu).

The SHOW MATH softkey links the measured data of display channels mathematically with one another or with stored data and displays them the active channel. SHOW MATH active is indicated by enhancement label MAT.

This is possible provided that

- the stimulus values of all test points of the channels or memories involved coincide,
- the measured quantities involved belong to the same category to which the active channel belongs. The four categories for the measured quantities are S parameters, vectorial quotients (*MEAS - RATIO* menu), scalar quotients (e.g. conversion losses) and single signals (*MEAS - INPUT* menu),
- the memories involved are not empty,
- the display channels involved are shown on the screen and are converted and formatted in such a way that the measured values are either all real or all complex and have the same unit. The associated memories involved are converted and formatted depending on the active display channel.

The type of mathematical relation is defined by means of a softkey (*MATH* ...). All basic arithmetic operations linking measured data of the active channel with stored data from the right-hand menu can be directly selected by means of a softkey. The default setting is *MATH DATA / MEM*.

In addition, the user can define arithmetic terms with up to three freely selectable operands (memory traces or display channels). The selected operation is in each case performed after the conversion and formatting but before a possible logarithmation. Accordingly, the mathematical relation defined in the *TRACE* menu is independent of the selected diagram type. If a dB-diagram is selected and the mathematical operation yields a negative result (e. g. after subtraction of two amplitudes), a value of -300 dB(xx) is output.

SHOW MATH can be activated only alternatively to SHOW DATA, i.e. only one trace obtained from current measured data can be displayed per channel.

The above-mentioned requirements must remain fulfilled after the mathematical linkage has been switched on. If for example the sweep range is changed or if the measurement mode is switched from S parameter to single signals, the measured data of the active display channel are displayed again (SHOW DATA is switched on) and a message is displayed.

1043.0009.50 2.293 E-13

The MATH DATA/MEM softkey divides the current measured data by the stored data. MATH DATA/MEM is the default setting.

Note: Normalization of the measured data to the stored data by is performed by MATH DATA/MEM in a logarithmic representation (e. g. a dB-representation), too.

The MATH DATA-MEM softkey subtracts the stored data from the current measured data.

The SMOOTHING softkey smoothes the current trace over the sweep. If SMOOTHING is active, this is indicated by enhancement label SMO. The width of the window (SMOOTHING APERTURE) is indicated in the line below the label.

For smoothing a trace, local averaging is performed with reference to the sweep axis. A rectangular window symmetrical about the current test point is opened. To the left and to the right of the current test point, there is an equal number of points that are used for averaging, the points being equally weighted. The width of the window can be defined as a percentage of the sweep range by means of softkey SMOOTHING APERTURE. At the edges of the sweep range, the smoothing result is not so good since there are not enough points for averaging.

Smoothing of a trace should be applied with caution since, in the case of strong fluctuations of measured values during a sweep, the trace could be distorted. The function is mainly intended for noise bands, comparable to a video filter in spectrum analysis.

For circle diagrams, real and imaginary components are smoothed independent of each other.

The SMOOTHING APERTURE softkey activates the entry of the width of the rectangular window used for smoothing.

The width is entered as a percentage of the sweep range (STIMULUS SPAN key). The default value is 10%, the maximum value 20%. Smoothing is not performed when the width is set to 0%.

The MEM 1 to MEM 8 softkeys in the right-hand menu select the memory used to perform the operations DATA TO MEM, SHOW MEM and SHOW MATH.

In the default state, the four channels are assigned memories 1 to 4; any other assignments are possible.

1043.0009.50 2.294 E-13

The STIMULUS OFFSET softkey is used to shift traces stored in memories MEM 1 to MEM 8 by positive or negative offsets with respect to the stimulus axis. This makes it possible to compare traces from different frequency ranges.

All sweep modes (frequency, power, time) are supported. It is possible to define an offset for each memory and also for different sweep modes when decoupling is used.

The trace can be shifted independently of the limits selected for the sweep variable. The maximum range of the sweep mode is the de-facto limit.

If a non-zero offset is defined for a memory trace, the trace can no longer be used for "trace mathematics". Conversely, no offset can be entered for data as long as the data is used for "trace mathematics".

CLEAR MEM # and DATA TO MEMORY clear an offset defined for the memory in question.

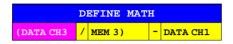
The CLEAR MEM # softkey clears the specified memory (no. 1 to 8).

The MATH MEM/DATA softkey divides the memory data by the current measured data.

The MATH DATA-MEM softkey subtracts the current measured data from the memory data.

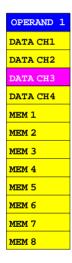
The MATH DATAXMEM softkey multiplies the current measured data with the memory data.

The MATH DATA+MEM softkey adds the memory data to the current measured data.



The MATH USER DEF softkey selects the mathematical operation linking max. three operands which is defined by means of table DEFINE MATH.

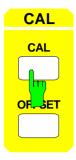
The *DEFINE MATH* softkey calls a table of the same name. The table allows to define a mathematical term consisting of max. three operands linked by means of basic arithmetic operations. The mathematical operation defined by means of a softkey is preset (eg *MATH* = *DATA/MEM*).


The first operand is always the active display channel. The two other operands are either display channels or memories and should be compatible with the active display channel (see *SHOW MATH* softkey). The single-line table *DEFINE MATH* shows the currently defined mathematical expression:

In evaluating this term, the 1st and the 2nd operand are linked first, then the third operand is linked. In other words, the position of the parentheses cannot be changed.

The selection bar can be placed on each of the five column fields unless *FINISHED* is selected for one of the operators (see below). In this case, the bar can be moved only from the first operand to the operator field in question.

When one of the operand fields is edited, the table *OPERAND X* is superimposed (X stands for the number of the operand):

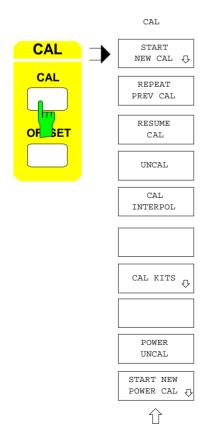

This table contains only operands that fulfill the compatibility conditions for the *SHOW MATH* softkey (refer to this softkey). The active display channel is preset. Only this channel can be selected for the first operand field.

While editing an operator in table $DEFINE\ MATH$, the table $OPERATOR\ X$ is displayed (X stands for the number of the operator):

If *FINISHED* is selected, the term is reduced to the part left of the operator field in question, i.e. the term includes only one or two operands.

2.15 Correction of System Errors – CAL Key Group

The CAL key group comprises the keys CAL and OFFSET and is used to correct systematic errors.


- The CAL key allows to determine and correct system errors.
- The OFFSET key allows to enter known offset values for system error correction.

2.15.1 Calibration – CAL Key

The *CAL* key opens a menu to determine and correct systematic, i.e., reproducible errors of the network analyzer. There are two types of them:

- **System errors**, caused by, e. g., directivity, mismatch at the test port and transmission loss, impair the measurement of S-parameters. System errors can be represented by a linear signal flowchart.
- Level errors can occur due to deviation of the generator level from the nominal value or faulty measurement of the receive level. They impair measured quantities which are determined by absolute level measurements, such as compression and intercept points.

When the display channels are coupled (COUPLED CHANNELS softkey is switched on) during a system error or power correction, one single correction data set applies for all channels together. If that softkey is switched off, the correction data are channel-specific, the CAL key menu only affecting the active channel.

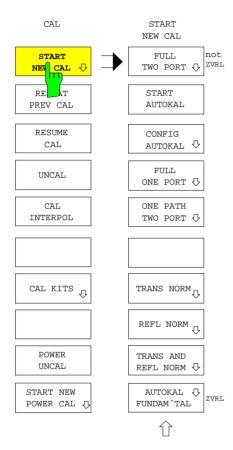
The following functions are provided in the *CAL* menu:

- performing a system-error calibration with entry of all additional information required (START NEW CAL),
- repeating the last-performed system-error calibration without any entry, i.e., directly calling the corresponding standard test menu (REPEAT PREV CAL),
- continuing an aborted system-error calibration (RESUME CAL),
- switching on and off the system error correction (UNCAL).
- switching on and off the interpolation (CAL INTERPOL), if the test points of the current sweep range are located within a calibrated range,
- modifying or entering the calibration standard characteristics (MODIFY CAL KIT),
- switching on and off the power correction (POWER UNCAL),
- performing a power calibration (START NEW POWER CAL).

2.15.1.1 System Error Calibration

The first six softkeys of the CAL CAL menu (START NEW CAL, ..., MODIFY CAL KIT) perform a system error calibration. The enhancement label CAL indicates that the system-error correction is switched on. If the correction values are interpolated. If the correction values are interpolated over the sweep variable, the CAI label is displayed. The label CA? (calibration questionable) is displayed if the generator power has changed during calibration.

A system error correction can only be applied to the measurement of S-parameters. This is why a system error calibration cannot be performed in frequency-converting operating modes, with measurement of intercept points and with selective power measurement.


The system-error correction is switched off for measuring modes and parameters which are not compatible with it. This applies to the following cases:

- Switching over between internal and external mode, newly defining S-parameters in external mode, switching on or off the reference mixer mode, activating the frequency conversion or a non-linear measurement or changing the sweep mode cause.
- Switching on the selective power measurement or modification of an attenuation.
- Inadequate location of the test points on the frequency axis, so that interpolation is not possible or not allowed.
- Selection of a test parameter which can not be corrected by means of the current data.

Calibration data is recorded for each frequency point of the sweep range. When a group delay measurement with frequency aperture is performed, please note that the test point grid and thus the grid of the calibration's interpolation points deviates from the usual grid used with other formatting modes.

2.15.1.1.1 Performing a System-Error Calibration

CAL-CAL START NEW CAL submenu:

The START NEW CAL softkey starts the system-error calibration. The softkey calls a chain of submenus which leads back to the main menu of the CAL key after a completed calibration.

First, the calibration mode is selected i. e.

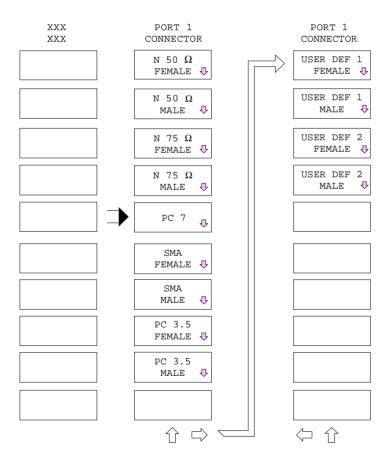
- a complete calibration for one or two-port measurements (FULL ONE PORT, FULL TWO PORT),
- an automatic calibration (AUTOKAL),
- a unidirectional two-port calibration (ONE PATH TWO PORT) or
- a simple normalization (TRANS NORM; REFL NORM; TRANS AND REFL NORM).

This selection already determines the calibration procedure to be used. Only for the full two-port calibration, the calibration procedure is selected in an additional menu.

After selecting the calibration mode, menus are called for those calibration modes which require information on the calibration standards used. The menus offer selection of the multipoint-connector family and polarity of the test ports, thus enabling access to the parameters of the associated calibration set which can be edited via the MODIFY CAL KIT menu. Since these multipoint-connector selection menus are identical for all calibration procedures they are explained in the following as well as the general way of measuring a calibration standard.

Apart from the coaxial connector families N (50 Ω and 75 Ω), SMA, PC7 and PC 3.5 which are normally used in the frequency range up to 8 GHz, two user-defined types of connector are offered, the reference impedance of which can be freely selected. The parameters of the associated calibration standards can be entered via the tables called by entering *CAL - MODIFY CAL KIT - SELECT OTHER KIT - USER KIT 1* or *USER KIT 2*. Calibrations for exceptional connector families or for planar transmission lines can be performed this way.

Subsequent to selection of a softkey in the connector selection menu it is checked whether the parameters of the standards selected for the calibration are valid in the current frequency range. The latter must not exceed the range between MIN FREQ and MAX FREQ of the standard list (see *MODIFY CAL KIT* softkey). Otherwise, a warning is displayed.


a) Specification of the Connectors at the Test Ports

The *PORT 1 CONNECTOR* menu is called if the calibration procedure selected requires the characteristics of the standards connected to test port 1 to be known. This applies to the full two-port calibration, the full one-port calibration at port 1 and at both ports as well as for the unidirectional calibration in forward direction.

In the internal operating mode, test port 1 need not coincide with the socket PORT 1 but may be located, e.g., at the end of a cable connected to PORT 1. In the external mode, which allows for redefinition of S-parameters, test port 1 is characterized as follows: in its reference level, the incident wave of the S_{11} denominator is fed to the DUT and the wave of the numerator is reflected.

If the selected calibration requires no further information regarding test port 2, the menu for measuring the calibration standard (from hereon called the "calibration test menu") is called immediately upon selection of the connector of test port 1. Otherwise, the *PORT 2 CONNECTOR* menu is displayed.

CAL CAL - START NEW CAL - XXX - PORT 1 CONNECTOR submenu (for ZVR and ZVC with N 50 Ω test ports):

The type and order of the connectors shown in this menu are different for the different models of the ZVx family. The connector types used for the instrument test ports always come at the uppermost position.

The N 50 Ω FEMALE softkey declares the test port to be a socket of the connector family N 50 Ω .

1043.0009.50 2.301 E-13

The N 50 Ω MALE softkey declares the test port to be a connector of the connector family N 50 Ω .

The N 75 Ω FEMALE softkey declares the test port to be a socket of the connector family N 75 Ω .

The N 75 Ω MALE softkey declares the test port to be a connector of the connector family N 75 Ω .

The PC 7 softkey declares the test port to be a connector of the balanced connector family PC 7.

The SMA FEMALE softkey declares the test port to be a socket of the connector family SMA.

The SMA MALE softkey declares the test port to be a connector of the connector family SMA.

The PC 3.5 FEMALE softkey declares the test port to be a socket of the connector family PC 3.5.

The PC 3.5 MALE softkey declares the test port to be a connector of the connector family PC 3.5.

The SEXLESS USR CONN1 softkey declares the test port to be a connector of the sexless user-definable connector family 1. This family is particularly suitable for transitions in planar conductor structures

The USR CONN 2 FEMALE softkey declares the test port to be a socket of the userdefinable connector family 2.

The USR CONN 2 MALE softkey declares the test port to be a connector of the user-definable connector family 2.

The *PORT 2 CONNECTOR* menu, which is not available on ZVRL, is analogous to the *PORT 1 CONNECTOR* menu. This menu is called if the properties of the standard connected to test port 2 are needed for the calibration mode selected.

- For a full two-port calibration, the connector families at the two ports must be the same, i. e. the choice in the *PORT 2 CONNECTOR* menu is limited to connector and socket of the family selected for *PORT 1 CONNECTOR*. Therefore, no choice can be made for PORT 2 if the sexless connector types (*PC7*, *SEXLESS USR CONN1*) are used. Subsequent to definition of the connector of port 2, a menu for selection of the calibration procedure is called.
- For all the other calibration modes, the calibration procedure is fixed and the calibration test menu is directly called.

b) System-Error Calibration Procedure

If a softkey is pressed in the calibration test menu which is assigned to a standard, the current sweep is aborted and the measurement of the standard is started. No matter which measurement quantity was selected in the active display channel, an S-parameter which is relevant for the respective standard measurement is displayed. The system error correction for displaying this S-parameter during the calibration measurement is generally performed with the factory-set correction data, just as in case of a system-error correction initiated with *UNCAL*. Conversion, formatting and scaling are not modified. However, it is checked, whether the current IF bandwidth is equal to or smaller than 1 kHz. If it is larger, the IF bandwidth is set to 1 kHz until the end of the calibration measurement, in order to increase measurement accuracy.

After system-error correction, the instrument performs a plausibility check of the data of the standards with the factory-recorded correction data. For example, when a forward measurement is performed on a through-connection, the instrument checks whether the transmission coefficient S_{21} is ≥ 0.1 . If the result is not plausible, e.g., because a standard was incorrectly connected or the wrong standard was used, a message is displayed on the screen. The calibration can still be continued since the non-plausible data may also be caused by an external test setup where the standards were connected correctly.

The first sweep after pressing a softkey serves to acquire the test data of the standard. After this sweep, the softkey is switched on and an audio signal is generated. The height of this tone indicates whether a plausibility error occurred or not.

A measurement may be repeated any time, the standards can be measured in any order. The *APPLY CAL* softkey, which initiates calculation of the correction coefficients and subsequent return to the main menu of the *CAL* key, can not be activated until all standards required have been measured at least once. The calculation can be aborted manually.

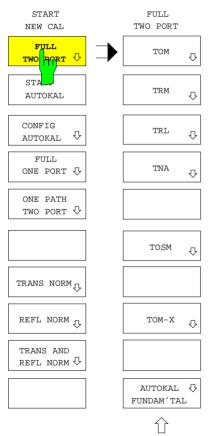
After calculation of the correction coefficients has been correctly terminated, the \it{UNCAL} softkey is switched off, the enhancement label CAL is switched on and the data are stored on the hard disk together with the instrument setting under a default file name. The instrument switches back to the last test parameter selected in the active display channel provided that the new correction values can be applied to this test parameter. If this requirement is not met (e.g., if S_{22} was selected and a unidirectional calibration has been carried out in forward direction, or if the previous test parameter was not an S-parameter), the S-parameter of the last standard measurement performed is retained. The original IF bandwidth is reset.

If an open standard is used for the selected calibration procedure, it is permissible to leave the test port open when measuring this standard at frequencies lower than approximately 100 MHz. At 100 MHz, the parasitic stray capacitance of a typical open standard causes a phase deviation of approximately 0.4° compared to an ideal open. Decreasing the frequency reduces the error proportionately. The open standard should, however, be connected at frequencies above 100 MHz. Otherwise, if the test ports were left open, measurement errors up to 1 dB or 10° at 10 GHz would occur due to radiation losses and undefined stray capacitances.

For those calibration procedures which require measurement of a matched termination, either a matched broadband termination or a sliding load may be used. Note that a sliding load has a typical

lower frequency limit of 2 GHz. If the sweep range includes lower frequencies, the broadband termination must be measured additionally. Broadband termination and sliding load can be measured in arbitrary order. However, the measurement results of the sliding load have a higher priority than those of the broadband termination. The softkeys for sliding load measurement are always located in the right supplementary menu on the same position as the broadband termination.

A sliding load must be measured in five different positions. So, the corresponding softkey (e.g. *SLIDE PORT 1*) only reaches the switch-on state after the fifth measurement. The number of measurements already performed is displayed in a message window.


After 5 measurements, a new measurement overwrites the oldest one.

2.15.1.1.2 Full Two-port Calibration (ZVR, ZVC, ZVK and ZVM)

The calibration mode "full two-port calibration" can only be carried out in the internal mode, since it requires conversion of the test-signal direction.

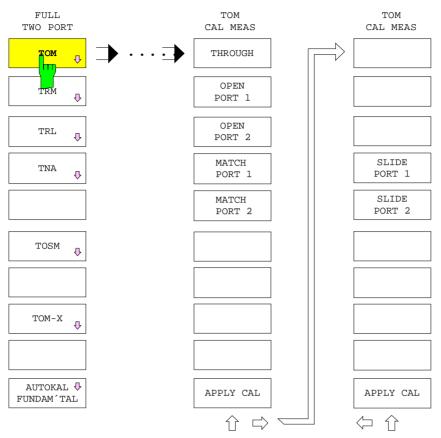
For procedures which use an unknown reflection standard (*REFLECT*), it is necessary that the electrical characteristics of the reflection standards are identical when both test ports are measured. If test port connectors of differing polarity are selected, the instrument checks for agreement using the saved data of the calibration standard (*CAL - MODIFY CAL KIT* menu). A warning is displayed if *MALE* and *FEMALE REFLECT* differ.

CAL CAL - START NEW CAL - FULL TWO PORT submenu:

The *FULL TWO PORT* softkey selects the calibration mode complete two-port calibration.

The *FULL TWO PORT* menu offers selection of different calibration procedures:

- Normally, the TOM (THROUGH-OPEN-MATCH) procedure is recommended. It contains an implicit verification, making it easier for calibration errors to be detected.
- The TRM (THROUGH-REFLECT-MATCH), TRL (THROUGH-REFLECT-LINE) and TNA (THROUGH-NETWORK-ATTENUATION) procedures use standards which need not always meet high requirements. They are particularly appropriate for line types where conventional standards are difficult to obtain (e. g. planar lines). In addition, an especially high effective directivity can be reached with the TRL procedure.
- TOSM (THROUGH-OPEN-SHORT-MATCH) is the classical 12-term procedure,
- TOM-X (THROUGH-OPEN-MATCH- CROSSTALK) is a calibration which correctly takes into account all crosstalk errors, even those which depend on the DUT.
- AUTOKAL FUNDAM TAL is the fundamental calibration of the Autokal procedure. This calibration is based on the TOM procedure and the same standards are used.


After selection of a calibration procedure, the corresponding calibration test menu is called.

a) TOM Calibration Procedure

The *TOM* softkey selects the THROUGH-OPEN-MATCH calibration procedure. For the ZVR, ZVC, ZVK and ZVM, this is the preferable calibration procedure for two-port measurements. The required standards are: a low-reflection, low-loss through-connection (THROUGH), the length of which may be different from zero, an open circuit (OPEN) and a matched termination (MATCH).

Since the two known one-port standards are connected to both test ports, the error parameters are over-determined. This redundancy is used for an additional implicit verification of the calculation of correction coefficients. Thus, typical calibration errors, such as the use of wrong standards, loose screwed connections, defective cables etc. can be detected immediately.

CAL CAL - START NEW CAL - FULL TWO PORT - TOM CAL MEAS submenu:

The *THROUGH* softkey starts the measurement of the through-connection between test ports 1 and 2.

The OPEN PORT 1 softkey starts the measurement of the open circuit at test port 1.

The OPEN PORT 2 softkey starts the measurement of the open circuit at test port 2.

The MATCH PORT 1 softkey starts the measurement of the matched termination at test port 1.

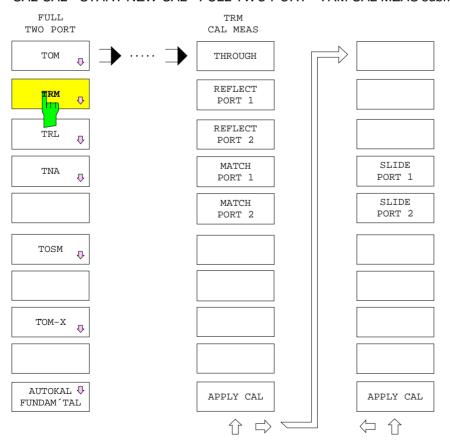
The MATCH PORT 2 softkey starts the measurement of the matched termination at test port 2.

The APPLY CAL softkey terminates the measurement of the calibration standard and initiates calculation of the correction data.

This softkey can be activated only, if the required standards have been measured at least one time. If the implicit verification detects an error, the user is asked whether to continue the calibration or not.

The SLIDE PORT 1 softkey starts a measurement of the sliding load at test port 1.

For special features of the sliding load measurement, see section 2.15.1.0.1.


The SLIDE PORT 2 softkey starts a measurement of the sliding load at test port 2.

For special features of the sliding load measurement, see section 2.15.1.0.1.

b) TRM Calibration Procedure

The *TRM* softkey selects the calibration procedure THROUGH-REFLECT-MATCH. A through-connection (THROUGH) which is as free of attenuation and reflection as possible, any unknown reflecting one-port standard (REFLECT) which must show the same electrical characteristics at both ports, and a matched termination (MATCH) are required as standards.

CAL CAL - START NEW CAL - FULL TWO PORT - TRM CAL MEAS submenu:

The *THROUGH* softkey starts the measurement of the through-connection between test ports 1 and 2.

The REFLECT PORT 1 softkey starts the measurement of the unknown one-port standard at test port 1.

The REFLECT PORT 2 softkey starts the measurement of the unknown one-port standard at test port 2.

The MATCH PORT 1 softkey starts the measurement of the matched termination at test port 1.

The MATCH PORT 2 softkey starts the measurement of the matched termination at test port 2

The APPLY CAL softkey terminates the measurement of the calibration standards and initiates the calculation of the correction coefficients.

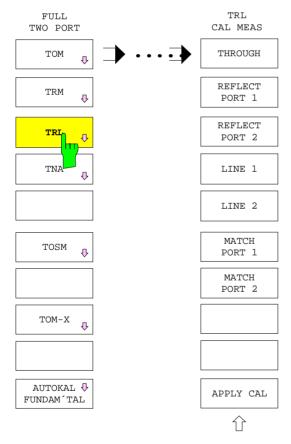
This softkey can only be activated, if all standards required have been measured at least one time.

The SLIDE PORT 1 softkey starts a measurement of the sliding load at test port 1.

For special features of the sliding load measurement, see section 2.15.1.0.1.

The SLIDE PORT 1 softkey starts a measurement of the sliding load at test port 1.

For special features of the sliding load measurement, see section 2.15.1.0.1.


c) TRL Calibration Procedure

The *TRL* softkey selects the THROUGH-REFLECT-LINE calibration procedure. A through-connection (THROUGH) which is as free of attenuation and reflection as possible, any unknown reflecting one-port standard (REFLECT) which must show the same electrical characteristics at both ports, and a line (LINE) which is as free of reflection and attenuation as possible are required as standards.

The difference in length between the through-connection and the line must not be an integer multiple of half of the wave length, since this would cause a singularity to occur. Therefore, the frequency range for the calibration measurement of the line standard is limited by the condition that the phase difference of the transmission coefficients must be between 20° and 160°, or that the maximum ratio of the stop frequency to the start frequency must be 8:1.

In order to extend the frequency range of the TRL calibration procedure, two lines of different length can be measured. Besides, the TRL calibration can be completed by a TRM calibration below the frequency limit of the longer of the two lines. The additional measurement of a reflection-free MATCH is provided for this purpose. However, only the calibrations required for the current sweep range have to be performed.

CAL CAL - START NEW CAL - FULL TWO PORT - TRL CAL MEAS submenu:

The *THROUGH* softkey starts the measurement of the through-connection between the test ports 1 and 2.

The REFLECT PORT 1 softkey starts the measurement of the unknown one-port standard at test port 1.

1043.0009.50 2.309 E-13

The REFLECT PORT 2 softkey starts the measurement of the unknown one-port standard at test port 2.

The LINE 1 softkey starts the measurement of line 1 between the test ports 1 and 2.

The frequency range of this measurement is limited by the condition that the phase difference between the transmission coefficients of line 1 and the through-connection of the current calibration set must be between 20° and 160°. If line 2 is also measured (*LINE 2*) and the frequency ranges of the two measurements overlap, the measured values of the longer of the two lines are used in the lower half of the overlapping range and those of the shorter in the upper half.

The LINE 2 softkey starts the measurement of line 2. The measurement is performed analogously to that of line 1 (see LINE 1 softkey).

The MATCH PORT 1 softkey starts the measurement of the matched termination at test port 1.

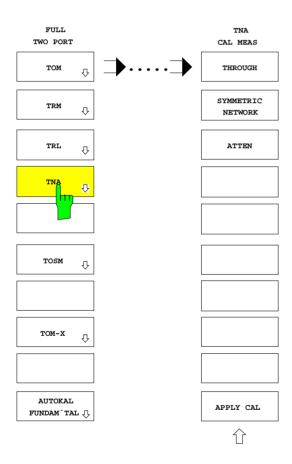
This is required for the completing TRM calibration, if the start frequency of the sweep is below the limit resulting from the 20°-phase difference between the through-connection and the longer of the two lines. This calibration measurement covers the completing lower frequency range only.

The MATCH PORT 2 softkey starts the measurement of the matched termination at test port 2.

This is required for the completing TRM calibration, if the start frequency of the sweep is below the limit resulting from the 20°-phase difference between the through-connection and the longer of the two lines. This calibration measurement covers the completing lower frequency range only.

The APPLY CAL softkey terminates the measurement of the calibration standards and initiates the calculation of the correction coefficients.

This softkey can only be activated, if all standards required have been measured at least one time.


d) TNA calibration procedure

The TNA softkey selects the THROUGH-NETWORK-ATTENUATION calibration procedure.

This procedure requires two-port standards, only. Apart from the THROUGH which should be as free of reflection and attenuation as possible, an attenuation standard (ATTENUATION) is to be measured which must be matched on both sides but which may provide any transmission coefficient. The attenuation must be sufficiently different from 0 dB. The symmetric network standard must feature reflection symmetry (SYMMETRIC NETWORK), the reflection coefficient must be different from 0.

TNA can be interpreted as TRM procedure which allows for transmission at the "double one-port standards" REFLECT/REFLECT or MATCH/MATCH. This calibration method provides an additional result, namely the attenuation supposed to be unknown caused by the *ATTENUATION* standard. This value is checked; if it is larger than 10 dB, a warning is displayed.

CAL CAL - START NEW CAL - FULL TWO PORT - TNA CAL MEAS submenu:

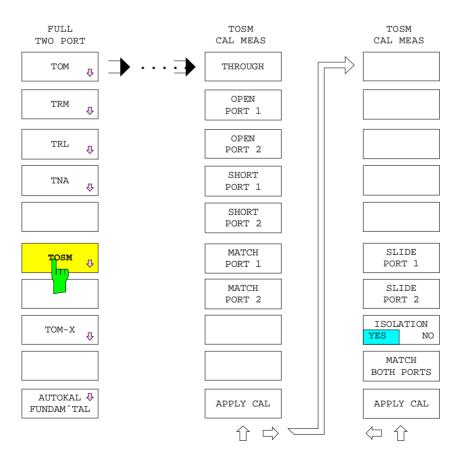
The *THROUGH* softkey starts the measurement of the through-connection between the test ports 1 and 2.

The SYMMETRIC NETWORK softkey starts the measurement of the reflection-symmetric network between the test ports 1 and 2.

1043.0009.50 2.311 E-13

The *ATTEN* softkey starts the measurement of the matched attenuation standard between the test ports 1 and 2.

The APPLY CAL softkey terminates the measurement of the calibration standard and initiates calculation of the correction data.


This softkey can be activated only, if the required standards have been measured at least one time. If the implicit verification detects an error, the system asks whether to continue the calibration or not.

e) TOSM calibration procedure

The *TOSM* softkey selects the THROUGH-OPEN-SHORT-MATCH calibration procedure which is also called SOLT- or 12-term procedure. (Please note that the L in SOLT stands for LOAD = MATCH and not for LINE.)

This procedure requires a matched, no-loss THROUGH, the one-port standards OPEN, SHORT and MATCH, which are connected to both test ports, each.

CAL CAL - START NEW CAL - FULL TWO PORT - TOSM CAL MEAS submenu:

The *THROUGH* softkey starts the measurement of the through-connection between the test ports 1 and 2.

The OPEN PORT 1 softkey starts the measurement of the open circuit at test port 1.

The OPEN PORT 2 softkey starts the measurement of the open circuit at test port 2.

The SHORT PORT 1 softkey starts the measurement of the short circuit at test port 1.

The SHORT PORT 2 softkey starts the measurement of the short circuit at test port 2.

The MATCH PORT 1 softkey starts the measurement of the matched termination at test port 1.

The MATCH PORT 2 softkey starts the measurement of the matched termination at test port 2.

The APPLY CAL softkey terminates the measurement of the calibration standard and initiates calculation of the correction data.

This softkey can be activated only, if the required standards have been measured at least one time.

The SLIDE PORT 1 softkey starts a measurement of the sliding load at test port 1.

For special features of the sliding load measurement, see section 2.15.1.0.1.

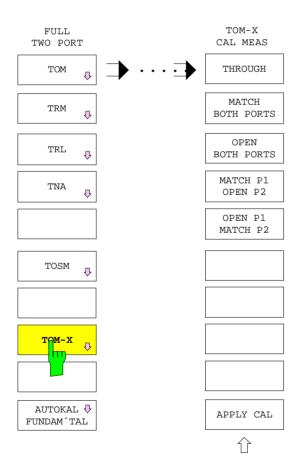
The SLIDE PORT 2 softkey starts a measurement of the sliding load at test port 2.

For special features of the sliding load measurement, see section 2.15.1.0.1.

The ISOLATION YES/NO softkey specifies whether a crosstalk error between the test ports has to be taken into account or not in a TOSM calibration.

If the switch position YES is selected, the measurement of crosstalk has to be performed using the MATCH BOTH PORTS softkey. The default setting is NO.

The MATCH BOTH PORTS softkey starts the measurement of crosstalk between the test ports, whereby terminators must be fastened to both ports.


This softkey can only be activated when ISOLATION is in the YES state.

f) TOM-X calibration procedure

The *TOM-X* softkey selects the THROUGH-OPEN-MATCH calibration procedure which has been extended to 15 error terms (complete model).

It is the only calibration procedure which allows for mathematically correctly detecting all crosstalk errors in the test setup (X means crosstalk) Apart from a matched, no-loss THROUGH, two matched terminations (MATCH) and open circuits (OPEN) are required. The one-port standards are measured in four different pairs.

CAL CAL - START NEW CAL - FULL TWO PORT - TOM-X CAL MEAS submenu:

The *THROUGH* softkey starts the measurement of the through-connection between both of the test ports 1 and 2.

1043.0009.50 2.314 E-13

The MATCH BOTH PORTS softkey starts the measurement of matched terminations.

The latter must be connected to the test ports simultaneously.

The OPEN BOTH PORTS softkey starts the measurement of the open circuits.

The latter must be connected to the test ports simultaneously.

The MATCH P1 OPEN P2 softkey the measurement of the matched termination at test port 1 and measurement of the open circuit at test port 2.

The standards must be connected to the test ports simultaneously.

The *OPEN P1 MATCH P2* softkey starts the measurement of the open circuit at test port 1 and measurement of the matched termination at test port 2.

The standards must be connected to the test ports simultaneously.

The APPLY CAL softkey terminates the measurement of the calibration standard and initiates calculation of the correction data.

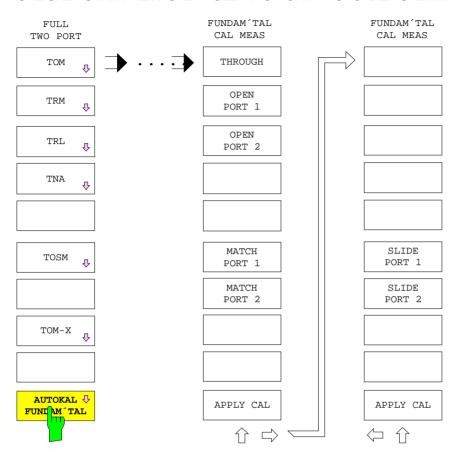
This softkey can be activated only, if the required standards have been measured at least one time.

g) AutoKal fundamental calibration

CAL CAL - START NEW CAL - FULL TWO PORT submenu:

The AUTOKAL FUNDAM'TAL softkey calls the calibration test menu for a fundamental calibration of the AutoKal procedure.

The AutoKal procedure can only be used together with the option ZVR-B1 (AutoKal add-on module). See the description of the *AUTOKAL* softkey for instructions on connecting the AutoKal add-on module to the network analyzer (section 2.15.1.1.3).


Apart from the position of some softkeys, the *AUTOKAL FUNDAM TAL* menu does not differ from that of the TOM calibration, which the fundamental calibration is based on. The description of the individual softkeys can be looked up in the description of the *TOM CAL MEAS* menu. However, this procedure requires three sweeps for the through standard, since the latter must be measured in three different switching states of the AutoKal add-on module.

The usual plausibility checks are carried out for the measurement of the standards as well as for the switching states of the AutoKal add-on module (see *AUTOKAL* softkey). As in the TOM procedure, the calculation of the correction data like the TOM procedure includes an implicit verification.

After an AutoKal fundamental calibration, the network analyzer is calibrated in the same way as with a TOM calibration. In addition, the AutoKal add-on module features measured during fundamental calibration are stored in a data set, which will be used later for transfer calibration. Section 2.15.1.1.4 describes the management and activation of these data sets.


1043.0009.50 2.315 E-13

CAL CAL - START NEW CAL - FULL TWO PORT - AUTOKAL FUNDAM'TAL submenu:

2.15.1.1.3 Full two-port calibration (ZVRE, ZVCE)

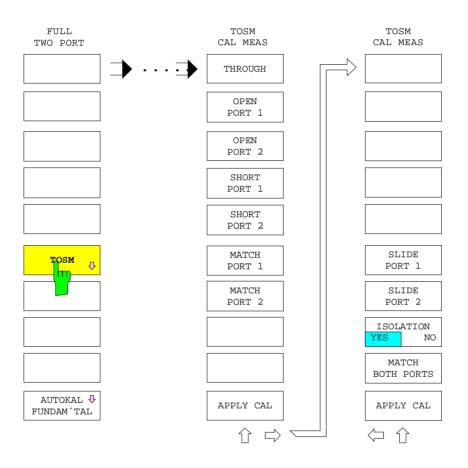
CAL CAL - START NEW CAL - FULL TWO PORT submenu:

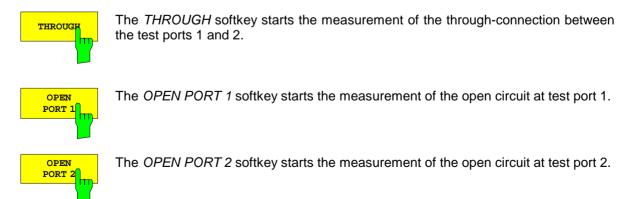
The *FULL TWO PORT* softkey selects the complete two-port calibration mode.

Full two-port calibration can only be carried out in the internal mode, since it requires conversion of the test-signal direction.

Two calibration procedures are offered:

- the classical 12 term or TOSM (THROUGH-OPEN-SHORT-MATCH) procedure,
- the AutoKal fundamental calibration which is based on TOSM.


After selection of a calibration procedure, the corresponding calibration test menu is called.


a) TOSM calibration

The *TOSM* softkey selects the THROUGH-OPEN-SHORT-MATCH calibration which is also known as SOLT or 12-term calibration. (Please note that the L in SOLT stands for LOAD = MATCH and not for LINE.)

Apart from a matched, no-loss through-connection (THROUGH), this procedure requires the one-port standards OPEN, SHORT and a matched termination (MATCH), which are each connected to both test ports.

CAL CAL - START NEW CAL - FULL TWO PORT -TOSM CAL MEAS submenu:

The SHORT PORT 1 softkey starts the measurement of the short circuit at test port 1.

The SHORT PORT 2 softkey starts the measurement of the short circuit at test port 2.

The MATCH PORT 1 softkey starts the measurement of the matched termination at test port 1.

The MATCH PORT 2 softkey starts the measurement of the matched termination at test port 2.

The APPLY CAL softkey terminates the measurement of the calibration standard and initiates calculation of the correction data.

This softkey can be activated only, if the required standards have been measured at least one time.

The SLIDE PORT 1 softkey starts a measurement of the sliding load at test port 1.

For special features of the sliding load measurement, see section 2.15.1.0.1.

The SLIDE PORT 2 softkey starts a measurement of the sliding load at test port 2.

For special features of the sliding load measurement, see section 2.15.1.0.1.

The ISOLATION YES NO softkey specifies whether a crosstalk error between the test ports has to be taken into account or not during a TOSM calibration. The default setting is NO.

If the switch position YES is selected, the measurement of crosstalk has to be performed using the MATCH BOTH PORTS softkey.

The MATCH BOTH PORTS softkey starts the measurement of crosstalk between the test ports, whereby terminators must be fastened to both ports.

This softkey can only be activated when ISOLATION is in the YES state.

b) AutoKal Fundamental Calibration

CAL CAL - START NEW CAL - FULL TWO PORT submenu:

The AUTOKAL FUNDAM TAL softkey calls the calibration test menu for a fundamental calibration of the AutoKal procedure.

The AutoKal procedure can only be used together with the option ZVR-B1 (AutoKal add-on module). See the description of the *AUTOKAL* softkey for instructions on connecting the AutoKal add-on module to the network analyzer (section 2.15.1.1.3).

Apart from the position of some softkeys, the AUTOKAL FUNDAM TAL menu does not differ from that of the TOSM calibration, which the fundamental calibration is based on. The description of the individual softkeys can be looked up in the description of the TOSM CAL MEAS menu (see above). However, this procedure requires three sweeps for the through standard, since the latter must be measured in three different switching states of the AutoKal add-on module.

The usual plausibility checks are carried out for the measurement of the standards as well as for the switching states of the AutoKal add-on module (see *AUTOKAL* softkey).

After an AutoKal fundamental calibration, the network analyzer is calibrated in the same way as with a TOSM calibration. In addition, the AutoKal add-on module features measured during fundamental calibration are stored in a data set, which will be used later for transfer calibration. Section 2.15.1.1.4 describes the management and activation of these data sets.

2.15.1.1.4 Automatic Two-port Transfer Calibration

Like fundamental calibration, automatic two-port transfer calibration (AutoKal) is only possible in conjunction with option ZVR-B1 (AutoKal add-on module).

The AutoKal add-on module has a switchable transfer standard. This is a standard which can assume different states with high repeat accuracy. For an AutoKal fundamental calibration, the characteristics of each state are determined and stored in a data set. The measurement uncertainty after transfer calibration depends on the uncertainty of the transfer standard, which cannot be less than the measurement uncertainty after fundamental calibration. For this reason, fundamental calibration, in which standards are individually connected in the usual way, should be performed with extreme care since a certain loss in accuracy between fundamental and transfer calibration is unavoidable.

AutoKal transfer calibration cannot be performed unless a data set of a fundamental calibration is available. All data sets stored in the analyzer are listed in the ACTIVE AUTOKAL UNIT DATA SET table which can be called by means of the CAL - START NEW CAL - CONFIG AUTOKAL softkey. The data set used in a subsequent transfer calibration is ticked.

The AutoKal add-on module has four ports. The two ports at the front are labelled PORT 1 and PORT 2. Prior to fundamental or transfer calibration, the left rear port of the add-on module must be connected to PORT 1 of the network analyzer, and the right rear port to PORT 2. Cables may be used for these connections. PORT 1 and PORT 2 of the add-on module are connected together. It is essential to insert the same two-port (cable or similar) between PORT 1 and the measurement port as used for the fundamental calibration and also to use the same through standard (THROUGH). If the add-on module is to be removed after calibration (see below), the whole network, which will later be connected to the measurement ports to perform transfer calibration, must be identical to that used for fundamental calibration. This means that the cables and adapters between the measurement ports and the add-on module, as well as the through connection between PORT 1 and PORT 2 on the add-on module should be connected in exactly the same way as for the associated fundamental calibration. The flat cable of the add-on module is connected to the USER connector on the rear panel of the analyzer.

The AutoKal add-on module can be used in two different ways. Either measurement ports PORT 1 and PORT 2 on the AutoKal add-on module assume the function of the analyzer measurement ports (i.e. the add-on module remains connected after transfer calibration), or the add-on module is connected for calibration only and then removed. The first possibility requires only the analyzer and option ZVR-B1; the second requires software option ZVR-K9 as well (version 3.2 and higher).

The data set of a fundamental calibration depends only on the characteristics of the AutoKal add-on module and if the add-on module is to be removed after calibration on the connected lines and adapters to the desired calibration power. The data set is not influenced by the characteristics of the network analyzer which was used for fundamental calibration. It is, therefore, possible to transfer data sets between analyzers of different types, and with different hardware components, provided they belong to the ZVx family. Special export and import functions are available for this purpose.

In the CAL – START NEW CAL menu, two softkeys are associated with AutoKal:

- START AUTOKAL starts transfer calibration with the settings selected via CONFIG AUTOKAL.
- In the CONFIG AUTOKAL submenu, it is possible to select either of the two AutoKal variants referred to above. It also contains functions for activating and managing the data sets generated during fundamental calibration or by the ZVR-K9 software.

The START AUTOKAL softkey starts automatic two-port transfer calibration. The fundamental calibration data set activated in the ACTIVE AUTOKAL UNIT DATA SET table (see CONFIG AUTOKAL softkey) is used.

Before the *AUTOKAL* softkey is pressed, the AutoKal add-on module should be connected as described above.

In order to ensure compatibility with fundamental calibration, its setting data is restored (compare *UNCAL* softkey).

Measurements are performed on the AutoKal add-on module in three states during fundamental calibration as with the through-connection measurement.

As for any calibration, the measured values are subjected to a plausibility check in order to determine whether the AutoKal add-on module is connected and operational.

1043.0009.50 2.321 E-13

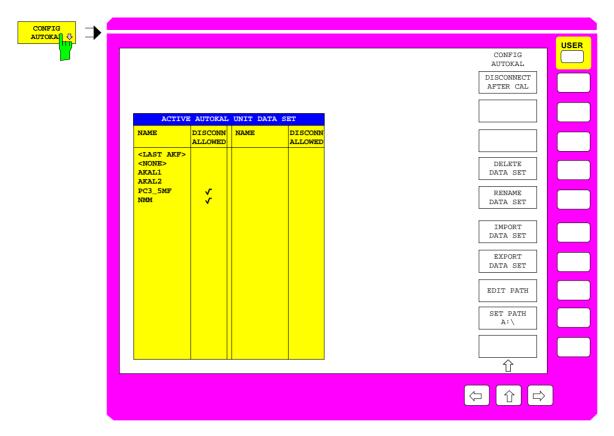


Fig. 2-39 Menu CONFIG AUTOKAL

The CONFIG AUTOKAL softkey calls the submenu of the same name. The ACTIVE AUTOKAL UNIT DATA SET table is displayed at the same time.

With the submenu functions, you can:

- select whether the AutoKal add-on module is to be removed after transfer calibration
- delete or rename fundamental calibration data sets in the ACTIVE AUTOKAL UNIT DATA SET table
- export or import fundamental calibration data sets

All currently stored fundamental calibration data sets are listed in the ACTIVE AUTOKAL UNIT DATA SET table. The table has the two following columns. Two pairs of columns are arranged next to each other.

NAME - Data set name

The data set name is displayed here. The currently active data set is ticked. It is used for the next transfer calibration. The scrollbar can be moved up and down in the *NAME* column. The data set marked with the scrollbar can be activated by pressing the ENTER key. The data set of the last fundamental calibration to be performed is assigned the name <LAST AKF>. To prevent it from being overwritten during the next fundamental calibration, it is a good idea to rename it (see *RENAME DATA SET* softkey).

DISCONN ALLOWED - Add-on module can be removed after calibration

A tick in this column indicates that the relevant data set contains additional information. This information allows the AutoKal add-on module to be removed after transfer calibration. If the active data set contains additional information, the *DISCONNECT AFTER CAL* softkey can be operated. Its switching state determines whether the system-error correction data refers to the reference plane of the AutoKal fundamental calibration or to the plane at which the add-on module is disconnected. Data sets containing additional information can only be generated by means of software option ZVR-K9 (version 3.2 or higher). The position of the disconnection plane is also defined.

The DISCONNECT AFTER CAL softkey defines the position of the reference plane after the AutoKal transfer calibration.

When DISCONNCECT AFTER CAL is in the OFF state, the reference plane of the transfer calibration is the same as the plane of the allocated fundamental calibration. If, on the other hand, the softkey is ON, the system-error correction data is calculated during transfer calibration so that they refer to a disconnection plane between the network analyzer and the AutoKal add-on module. It is then possible to disconnect the add-on module at this plane. Option ZVR-B1 can then be used like an electronic transfer standard, as produced by other manufacturers. However, the advantage of the AutoKal method over these solutions is that it operates with a transfer standard which can be characterized by the user during fundamental calibration. This means that a separate transfer standard is not required for each connector system; the AutoKal add-on module can be configured using adapters for the connector in question.

The softkey can be operated only when the active fundamental calibration data set in the ACTIVE AUTOKAL UNIT DATA SET table contains additional information which makes it possible to shift the reference plane to the desired disconnection plane. Data sets of this kind can only be generated by means of software option ZVR-K9 (version 3.2 or higher).

The DELETE DATA SET softkey clears the fundamental calibration data set marked by the scrollbar from the ACTIVE AUTOKAL UNIT DATA SET table.

The active data set and <LAST AKF> and <NONE> data sets cannot be cleared.

The RENAME DATA SET softkey is used to rename the fundamental calibration data set marked by the scrollbar in the ACTIVE AUTOKAL UNIT DATA SET table.

The active data set and <LAST AKF> and <NONE> data sets cannot be renamed.

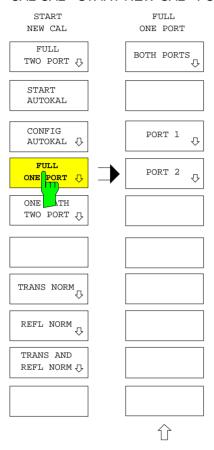
The *IMPORT DATA SET* softkey is used to search for fundamental calibration data sets in the path defined by *EDIT PATH* or *SET PATH A:\!*. If only one data set is found, the *IMPORT DATA SET* entry field is displayed together with the data set name. If two or more data sets are available, they are listed in the *IMPORT AUTOKAL UNIT DATA SETS* table. You can select the data you want with the scrollbar. The selected data set is read when the ENTER key is pressed.

Note that a data set with the name AUTOKAL cannot be imported.

The EXPORT DATA SET softkey is used to export the fundamental calibration data sets marked in the ACTIVE AUTOKAL UNIT DATA SET table to the path defined by EDIT PATH or SET PATH A:\ The name of the newly created data set can be edited in the EXPORT LOCAL UNIT DATA SET XXX TO THE DATA SET window (XXX stands for the current name in the table).

The <NONE> data set cannot be exported.

The *EDIT PATH* softkey opens the alphanumerical input field EDIT *IMPORT/EXPORT PATH* used for defining the path for performing import or export. The *SET PATH A:* is provided for fast switching of the path to the disk drive.



The SET PATH A:\ softkey is used for the fast selection of the disk drive as the import /export path.

1043.0009.50 2.323 E-13

2.15.1.1.5 Full One-port Calibration (ZVR, ZVRE; ZVC, ZVCE, ZVK, ZVM)

CAL CAL - START NEW CAL - FULL ONE PORT submenu:

The *FULL ONE PORT* softkey opens a menu to define the full one-port calibration.

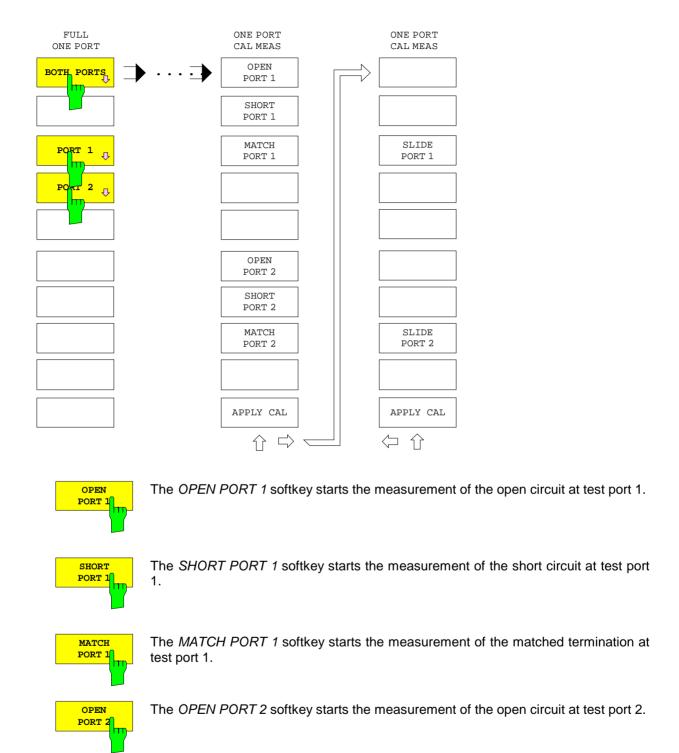
It must be defined whether to calibrate

- test port 1 (PORT 1),
- test port 2 (PORT 2), or
- both test ports (BOTH PORTS).

In the external measuring mode, reflection calibration at two different measurement ports (e. g. two external reflection coefficient ports) can be performed, too. Before, the definition of S_{11} and S_{22} must be adapted to the external measurement setup via RESPONSE MEAS - USER DEF´D S-PARAMS.

The BOTH PORTS softkey starts one-port calibration of both test ports.

The PORT 1 softkey starts the one-port calibration of test port 1.


The PORT 2 softkey starts the one-port calibration of test port 2.

Subsequent to selection of the test port connectors, the *ONE PORT CAL MEAS* menu is displayed. The OPEN, SHORT and MATCH standards have to be connected to the port which is to be calibrated. A sliding load may be used instead of a broadband fixed terminator. All softkeys which are not required for the selected calibration are disabled.

PORT 2

2.

CAL CAL - START NEW CAL - FULL ONE PORT - BOTH PORTS submenu:

The SHORT PORT 2 softkey starts the measurement of the short circuit at test port

The MATCH PORT 2 softkey starts the measurement of the matched termination at test port 2.

The APPLY CAL softkey terminates the measurement of the calibration standard and initiates calculation of the correction data.

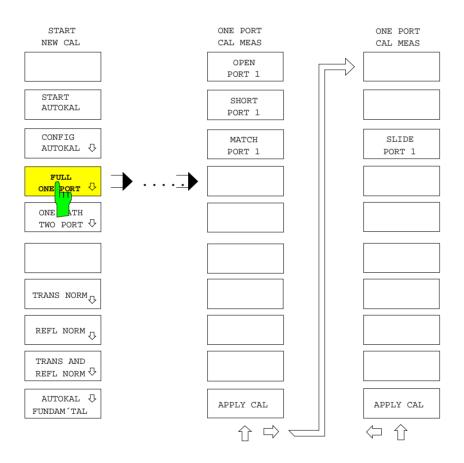
This softkey can be activated only, if the required standards have been measured at least one time.

The SLIDE PORT 1 softkey starts a measurement of the sliding load at test port 1.

For special features of the sliding load measurement, see section 2.15.1.0.1.

The SLIDE PORT 2 softkey starts a measurement of the sliding load at test port 2.

For special features of the sliding load measurement, see section 2.15.1.0.1.


2.15.1.1.6 Full One-port Calibration (ZVRL)

The FULL ONE PORT softkey starts the complete one-port calibration measurement.

This calibration mode can be performed at test port 1 only. Subsequent to selection of the test port connector the *ONE PORT CAL MEAS* menu is displayed. The OPEN, SHORT and MATCH standards have to be connected to the test port. A sliding load may be used instead of the broadband fixed termination.

In the external mode, a reflection calibration can be performed as well (e. g. at an external reflection coefficient bridge). Before, the definition of S_{11} must be adapted to the external test setup via RESPONSE MEAS - USER DEF D S-PARAMS.

CAL CAL - START NEW CAL - FULL ONE PORT submenu:

The OPEN PORT 1 softkey starts the measurement of the open circuit at test port 1.

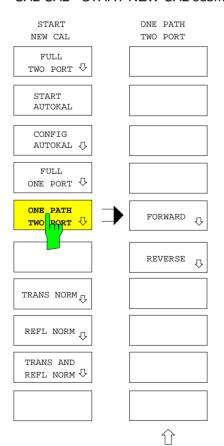
The SHORT PORT 1 softkey starts the measurement of the short circuit at test port 1.

1043.0009.50 2.327 E-13

The MATCH PORT 1 softkey starts the measurement of the matched termination at test port 1.

The APPLY CAL softkey terminates the measurement of the calibration standard and initiates calculation of the correction data.

This softkey can be activated only, if the required standards have been measured at least one time.


The SLIDE PORT 1 softkey starts a measurement of the sliding load at test port 1.

For special features of the sliding-load measurement, see section 2.15.1.1.1, part b).

2.15.1.1.7 Unidirect. Two-port Calibration (ZVR, ZVRE, ZVC,ZVCE, ZVK, ZVM)

The ONE PATH TWO PORT menu is selected to start unidirectional calibration measurements. This type of calibration is particularly appropriate for two-port measurements in external mode, which does not allow for two-port calibration. It may also be applied in internal mode, if the S-parameters are to be measured in forward (S_{11} and S_{21}) or reverse direction (S_{22} and S_{12}). Since the direction of the test signal does not have to be converted, the measurement speed of unidirectional two-port correction is considerably higher than that of full two-port calibration.

CAL CAL - START NEW CAL submenu:

The ONE PATH TWO PORT softkey opens the menu for unidirectional two-port calibration.

Unidirectional calibration can be performed

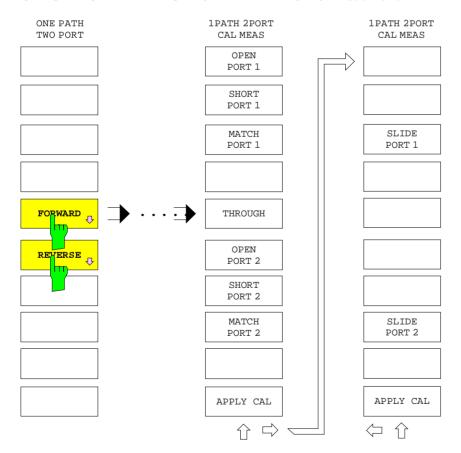
- in forward (FORWARD) and
- in reverse direction (REVERSE).

It includes a full one-port calibration at the source port (in the external mode, this requires a reflection coefficient bridge) and a transmission calibration from the source to the destination port. In the external mode, the definition of S_{11} and S_{21} (forward measurement) or S_{22} and S_{12} (reverse measurement) must be adapted to the test setup via *RESPONSE MEAS - USER DEF´D S-PARAMS*. In this case, the numerators of the two S-parameters must be different.

Errors of the transmission measurement caused by interflections between DUT and destination port, can not be eliminated with unidirectional calibration since the mismatch of the DUT output is not measured. If the DUT outputs are mismatched, the destination port should be well matched for transmission.

The FORWARD softkey starts the unidirectional two-port calibration in forward direction.

It consists of full one-port calibration at test port 1 (for S_{11}) and a transmission calibration from port 1 to port 2 for (S_{21}) .



The REVERSE softkey starts the unidirectional two-port calibration in reverse direction.

It consists of full one-port calibration at test port 2 (for S_{22}) and a transmission calibration from port 2 to port 1 (for S_{12}).

Subsequent to selection of the test port connectors, the *1PATH2 PORT CAL MEAS* menu is displayed. It corresponds to the calibration test menu for one-port calibration extended by the through-connection measurement (THROUGH), the loss and length of which are not considered. All softkeys which are not required for the selected calibration are disabled.

CAL CAL - START NEW CAL ONE PATH TWO PORT submenu:

The OPEN PORT 1 softkey starts the measurement of the open circuit at test port 1.

The SHORT PORT 1 softkey starts the measurement of the short circuit at test port 1.

The MATCH PORT 1 softkey starts the measurement of the matched termination at test port 1.

The *THROUGH* softkey starts the measurement of the through-connection between test ports 1 and 2.

The *OPEN PORT 2* softkey starts the measurement of the open circuit at test port 2.

The SHORT PORT 2 softkey starts the measurement of the short circuit at test port 2.

The MATCH PORT 2 softkey starts the measurement of the matched termination at test port 2.

The APPLY CAL softkey terminates the measurement of the calibration standard and initiates calculation of the correction data.

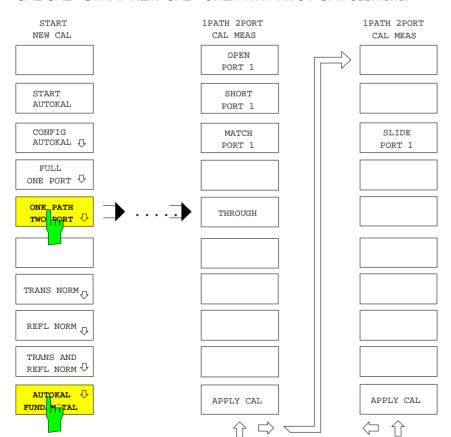
This softkey can be activated only, if the required standards have been measured at least one time.

The SLIDE PORT 1 softkey starts a measurement of the sliding load at test port 1.

For special features of the sliding-load measurement, see section 2.15.1.1.1, part b).

The SLIDE PORT 2 softkey starts a measurement of the sliding load at test port 2.

For special features of the sliding-load measurement, see section 2.15.1.1.1, part b).


2.15.1.1.8 Unidirectional Two-port Calibration (ZVRL)

The ONE PATH TWO PORT softkey starts the calibration for unidirectional two-port measurements, the best calibration procedure possible for the ZVRL.

It consists of a full one-port calibration measurement at port 1 (for S_{11} , in the external mode, this requires, e. g., a reflection coefficient bridge) and a transmission calibration from port 1 to port 2 (for S_{21}). In the external mode, the definition of S_{11} and S_{21} must be adapted to the test setup via RESPONSE MEAS - USER DEF´D S-PARAMS. In this case, the numerators of the two S-parameters must be different.

Errors of the transmission measurement caused by interflections between DUT and destination port, can not be eliminated with unidirectional calibration since the mismatch of the DUT output is not measured. If the DUT outputs are mismatched, the destination port should be well matched for transmission.

Subsequent to selection of the connector of PORT 1, the 1PATH 2PORT CAL MEAS menu is displayed. Similar to the full one-port calibration measurement the OPEN, SHORT and MATCH standards have to be connected to the port which is to be calibrated. A sliding load (SLIDE) may be used instead of a broadband fixed termination. The THROUGH has to be measured additionally for transmission calibration. The loss and length of the through-connection are assumed to be zero.

CAL CAL - START NEW CAL - ONE PATH TWO PORT submenu:

The *OPEN PORT 1* softkey starts the measurement of the open circuit at test port 1.

1043.0009.50 2.331 E-13

The SHORT PORT 1 softkey starts the measurement of the short circuit at test port 1.

The MATCH PORT 1 softkey starts the measurement of the matched termination at test port 1.

The *THROUGH* softkey starts the measurement of the through-connection between the test ports 1 and 2.

The APPLY CAL softkey terminates the measurement of the calibration standard and initiates calculation of the correction data.

This softkey can be activated only, if the required standards have been measured at least one time.

The SLIDE PORT 1 softkey starts a measurement of the sliding load at test port 1.

For special features of the sliding-load measurement, see section 2.15.1.1.1, part b).

2.15.1.1.9 AutoKal Fundamental Calibration (ZVRL)

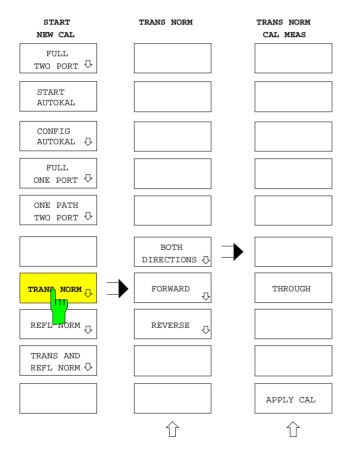
The AUTOKAL FUNDAM TAL softkey calls the calibration test menu for a fundamental calibration of the AutoKal procedure.

It can only be used together with the option ZVR-B1 (AutoKal add-on module). See the description of the *AUTOKAL* softkey for instructions on connecting the AutoKal add-on module to the network analyzer.

The AUTOKAL FUNDAM TAL menu does not differ from that of the unidirectional two-port calibration, which the fundamental calibration is based on (see description of the ONE PATH TWO PORT softkey). However, this procedure requires three sweeps to obtain all standards since the latter must be measured with three different switching states of the AutoKal add-on module.

The usual plausibility checks are carried out with measurement of the standards including check of the three switching states of the AutoKal add-on module with measurement of the through-connection (see *AUTOKAL* softkey). The 20-dB attenuator in the AutoKal add-on module is used for verification. After calculation of the correction values, the measured values of this attenuator are subject to system-error correction and compared to the rated values. A message is displayed in case of an error. Besides, the corrected values are stored and will be used later for verification of the transfer calibration.

While up to 4 different data sets can be active for the system error correction with decoupled display channels, only one current data set is available for the fundamental calibration. The *MEMORY RECALL* key is used to call a stored fundamental calibration, e.g., if required for another type of connector.


2.15.1.1.10 Normalization Calibration (ZVR, ZVRE, ZVC, ZVCE, ZVK, ZVM)

A normalization is the simplest form of system-error calibration since it requires the measurement of only one standard for each of the S-parameters to be calibrated.

The value measured for a given DUT at a given test point is divided by the measured value of the calibration standard at the same test point, i.e., the measurement is normalized. For transmission calibrations, a through-connection is used as standard, an open circuit is used for reflection calibrations. The frequency-dependent transmission attenuation of the network analyzer is eliminated by the normalization correction. Measurement errors due to low directivity or mismatch at the test port are not taken into account. Through-connection as well as open circuit are assumed to be ideal, i.e., with zero loss and length.

a) Transmission Normalization

CAL CAL - START NEW CAL - XX - TRANS NORM submenu:

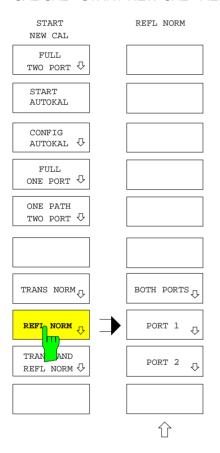
The TRANS NORM softkey calls the menu transmission normalization measurements. The measurement signal normalized in both (BOTH DIRECTIONS) or in one direction (FORWARD, REVERSE, see Section 2.15.1.1.7, "Unidirectional Two-port Calibration").

- In the internal mode, a throughconnection (THROUGH) between PORT 1 and PORT 2 is required as a standard.
- In the external mode, the signal paths given by the current definition of S₂₁ and S₁₂ (RESPONSE MEAS - USER DEF'D S-PARAMS) must be connected by a through-connection.

The S-parameters S_{21} and S_{12} are normalized by a common THROUGH measurement in both the internal and the external mode.

The *THROUGH* softkey starts the measurement of the through-connection between the test ports 1 and 2.

1043.0009.50 2.333 E-13



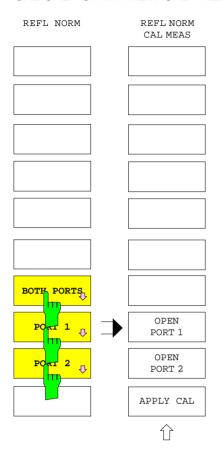
The APPLY CAL softkey terminates the measurement of the calibration standard and initiates calculation of the correction data.

This softkey can be activated only, if the required standards have at least been measured one time.

b) Reflection Normalization

CAL CAL - START NEW CAL - REFL NORM submenu:

The REFL NORM softkey starts a reflection normalization calibration measurement.


This procedure can be performed for

- test port 1 (PORT 1),
- test port 2 (PORT 2) or
- both ports (BOTH PORTS).

In the external mode, a reflection normalization can be performed at two different test ports (e. g. two external reflection coefficient bridges) as well. The definition of S_{11} and S_{22} must be adapted before to the external test setup via RESPONSE MEAS - USER DEF D S-PARAMS.

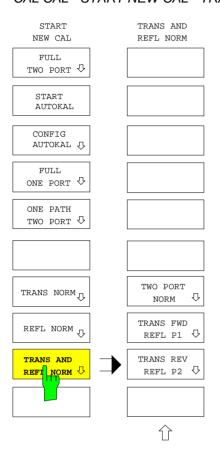
The OPEN is used as standard providing total reflection. This is especially advantageous at low frequencies since the standard needs not be fitted physically. It is sufficient to leave the test port open.

CAL CAL - START NEW CAL - REFL NORM - REFL NORM CAL MEAS submenu:

The PORT 1, PORT 2 and BOTH PORTS softkeys open the corresponding submenus for performing a reflection normalization at test port 1, test port 2 or at both test ports.

The OPEN PORT 1 softkey starts the measurement of the open circuit at test port 1.

The OPEN PORT 2 softkey starts the measurement of the open circuit at test port 2.


The APPLY CAL softkey terminates the measurement of the calibration standard and initiates calculation of the correction data.

This softkey can be activated only, if the corresponding open circuit has been measured at least one time.

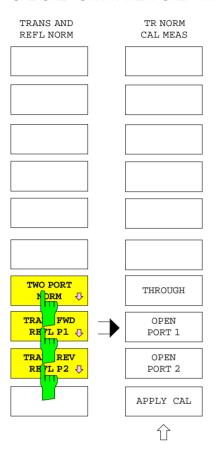
1043.0009.50 2.335 E-13

c) Combined Transmission and Reflection Normalization

CAL CAL - START NEW CAL - TRANS AND REFL NORM submenu:

The TRANS AND REFL NORM softkey opens a menu for selecting a combined normalization calibration for transmission and reflection measurements.

It is thus possible to perform


- bi-directional calibration for measuring the reflection at both test ports and transmission in both directions(TWO PORT NORM).
- calibration of the transmission in forward direction and the reflection at port 1 (TRANS FWD REFL P1),
- calibration of the transmission in reverse direction and the reflection at port 2 (TRANS REV REFL P2).

The combined normalization uses a through-connection and an open circuit as standards, too.

In the external mode, a reflection normalization requires, e. g., external reflection coefficient bridges. Prior to calibration, the definition of the S-parameters in question must be adapted to the external test setup via RESPONSE MEAS - USER DEF'D S-PARAMS. For the transmission calibration, the signal paths given by the current definition of S_{21} and S_{12} must be connected by a through-connection. In both the internal and the external mode, these two S-parameters are normalized by a common THROUGH measurement for a bi-directional calibration.

1043.0009.50 2.336 E-13

CAL CAL - START NEW CAL - TRANS AND REFL NORM - TR NORM CAL MEAS submenu:

The TWO PORT NORM, TRANS FWD REFL P1 and TRANS REV REFL P2 softkeys open submenus for performing a combined as a bi-directional or unidirectional calibration in forward or reverse direction.

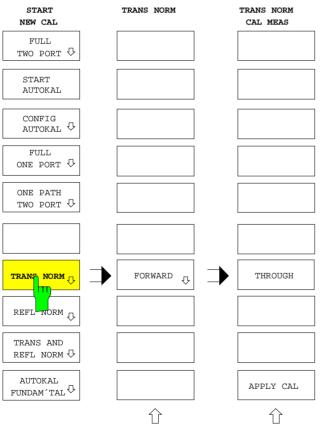
The *THROUGH* softkey starts the measurement of the through-connection between the test ports 1 and 2.

The *OPEN PORT 1* softkey starts the measurement of the open circuit at test port 1.

The *OPEN PORT 2* softkey starts the measurement of the open circuit at test port 2.

The APPLY CAL softkey terminates the measurement of the calibration standard and initiates calculation of the correction data.

This softkey can be activated only, if the required standards have been measured at least one time.


2.15.1.1.11 Normalization Calibration (ZVRL)

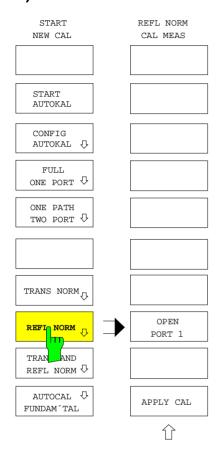
A normalization is the simplest form of system-error calibration since it requires the measurement of only one standard for each of the S-parameters to be calibrated.

The value measured for a given DUT at a given test point is divided by the measured value of the calibration standard at the same test point, i.e., the measurement is normalized. For transmission calibrations, a through-connection is used as standard, an open circuit is used for reflection calibrations. The frequency-dependent transmission attenuation of the network analyzer is eliminated by the normalization correction. Measurement errors due to low directivity or mismatch at the test port are not taken into account. Through-connection as well as open circuit are assumed to be ideal, i.e., with zero loss and length.

a) Transmission Normalization

CAL CAL - START NEW CAL - FORWARD - TRANS NORM submenu:

- The TRANS NORM softkey calls the menu for performing a normalization calibration for transmission measurements.
- In the internal mode, a throughconnection between PORT 1 and PORT 2 is required as standard (THROUGH).
- In the external mode, the signal path given by the current definition of S₂₁ (RESPONSE MEAS - USER DEF'D S-PARAMS) must be connected by a through-connection.


The *THROUGH* softkey starts the measurement of the through-connection between ports 1 and 2.

The APPLY CAL softkey terminates the measurement of the calibration standard and initiates calculation of the correction data.

This softkey can be activated only, if the required through-connection has been measured at least one time.

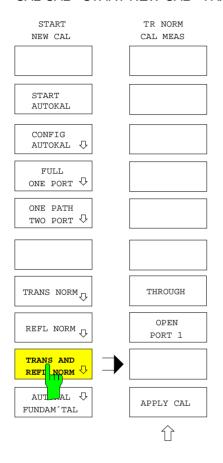
b) Reflection Normalization

The *REFL NORM* softkey directly calls the menu for reflection normalization at test port 1.

In the external mode, a reflection normalization can be performed (e. g. at an external reflection coefficient bridge) as well. The definition of S_{11} must be adapted before to the external test setup via RESPONSE MEAS - USER DEF´D S-PARAMS.

The OPEN is used as standard providing total reflection. This is especially advantageous at low frequencies since the standard needs not be fitted physically. It is sufficient to leave the test port open.

The *OPEN PORT 1* softkey starts the measurement of the open circuit at test port 1.



The APPLY CAL softkey terminates the measurement of the calibration standard and initiates calculation of the correction data.

This softkey can be activated only, if the required open circuit has been measured at least one time.

c) Combined Transmission and Reflection Normalization

CAL CAL - START NEW CAL - TRANS AND REFL NORM submenu:

The TRANS AND REFL NORM softkey calls the menu for combined transmission and reflection normalization.

A reflection normalization is performed at test port 1 (for S_{11}), a transmission normalization from port 1 to port 2 (for S_{21}). The combined normalization uses the standards through-connection and open as well.

In the external mode, a reflection normalization requires, e. g., an external reflection coefficient bridge. Prior to calibration, the definition of the S-parameters S_{11} and S_{21} must be adapted to the external test setup via *RESPONSE MEAS - USER DEF'D S-PARAMS*. For the transmission calibration, the signal path given by the current definition of S_{21} must be connected by a through-connection.

The *THROUGH* softkey starts the measurement of the through-connection between the test ports 1 and 2.

The *OPEN PORT 1* softkey starts the measurement of the open circuit at test port 1.

The APPLY CAL softkey terminates the measurement of the calibration standard and initiates calculation of the correction data.

This softkey can be activated only, if all standards required have been measured at least one time.

2.15.1.2 Auxiliary Functions for System Error Calibration

CAL CAL menu:

The softkey *REPEAT PREV CAL* repeats the calibration which corresponds to the system-error correction data of the active display channel.

The calibration test menu is displayed without any additional entries being made. The operating mode and sweep settings which are associated with the correction data set are restored when the calibration is started.

The RESUME CAL softkey continues a calibration in the calibration test menu which had been interrupted, e.g. in order to modify the scaling of the diagram

After resuming a calibration, only those standards, which have not yet been tested during a complete calibration sweep, must be measured.

Note:

- Resuming an interrupted calibration with RESUME CAL is only possible as long as no setting parameters which are important for the validity of the calibration data already stored are changed. Such data are, e. g., switchover between the internal/external mode, reference-mixer mode, switch-on of a frequencyconverting or non-linear operating mode, sweep mode, selective power measurement, location of the test points on the sweep axis and attenuation.
- Switch-off or reset of the instrument using the STATUS PRESET key causes loss of all measured data of the standards.

With the *UNCAL* softkey switched on, the system error correction recorded by the user is switched off and vice versa. Thus, like the *POWER UNCAL* softkey, *UNCAL* has an inverse functionality. The system error correction is a parameter that can be coupled. For decoupled channels, it is effective only in the active display channel.

The enhancement label CA(x) signals an active system error correction. The possible versions of this enhancement label are described in section 2.3.1.1.

Some additional setting parameters of the network analyzer which are relevant for the correction are stored together with the system error correction data. When system error correction is switched on, these parameters are restored to ensure consistency of correction data and device setting. For example, the frequency sweep mode and the test point grid are restored at the time of calibration and an active frequency conversion is deactivated.

Even if *UNCAL* is switched on (i.e. user calibration is switched off), a system error correction with a factory-set correction data record will be carried out. Independent of the switching state of the *CAL INTERPOL* softkey, interpolation between these correction data points is performed if they do not coincide with the test points of the current sweep.

1043.0009.50 2.341 E-13

The CAL INTERPOL softkey interpolates the correction data between the test points of the calibration run. The enhancement label CAI indicates calibration with interpolation (UNCAL is switched off and CAL INTERPOL is switched on).

Interpolation allows a system error correction even if the test points of the current sweep do not coincide with the points of the current calibration.

Note:

An interpolation is possible only if the interpolation grid is linear and all test points lie inside the calibrated range. There is no extrapolation (except when a group delay measurement with frequency aperture is performed, see the RESPONSE FORMAT - FREQUENCY APERTURE softkey).

If *CAL INTERPOL* is switched on and the sweep range is modified such that the test points get outside the calibration data range, the network analyzer switches to the factory-set correction data set *(UNCAL* is switched on). The same applies, if *CAL INTERPOL* is switched off and the sweep is changed such that the calibration points and test points do no longer coincide. Interpolation is possible in all sweep modes.

1043.0009.50 2.342 E-13

2.15.1.3 Characteristics of Calibration Standards

The MODIFY CAL KIT softkey opens a menu for the management of calibration kits for the individual connector families.

Exact knowledge of the calibration standards is a prerequisite for a accurate system-error calibration. More precisely, the calibration is based on the knowledge of those S-parameters of the standards which are assumed to be known for the applied calibration method. These S-parameters are derived from physical models which contain one or more parameters (such as the electrical length) depending on the type of standard.

In addition to these physical parameters, there are three description fields for each standard listing the assignment of the standard and further information for the user.

- 1. Standard type: The type depends on the kind of standard (e.g. open circuit, short circuit, through-connection) and the sex of the connectors. Example: THROUGH (MF) denotes a through-connection with a plug at one and a socket at the other port. The standard type determines the physical description model and therefore the parameters which can be edited. Up to four individual standards with different parameters can be defined for one standard type. Only one of them can be selected (active) at one time.
- 2. Calibration kit (KIT): A calibration kit is an assembly of real, physical calibration standards. Calibration kits are supplied by Rohde & Schwarz as an accessory for network analyzers. The parameters of the standards in a calibration kit are stored on a floppy disk which can be read in via the INSTALL NEW KIT softkey. Kits for coaxial connector families usually do not contain all possible standard types of these families but only a subset comprising the types which are most frequently used in coaxial technology. Calibration kits can be user-defined as well. Using the ACTIVATE KIT softkey, the standards of a calibration kit can be selected altogether by just one keystroke.
- 3. Serial number (SERIAL #): All standards of a calibration kit are factory-labeled with the same serial number so they can be assigned unambiguously to this kit. The serial number helps to avoid confusion between standards of the same type from different calibration kits which might have different physical parameters.

1043.0009.50 2.343 E-13

CAL CAL - CAL KITS submenu:

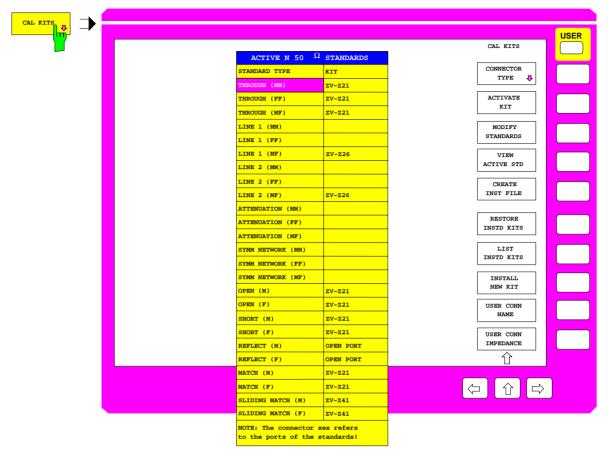


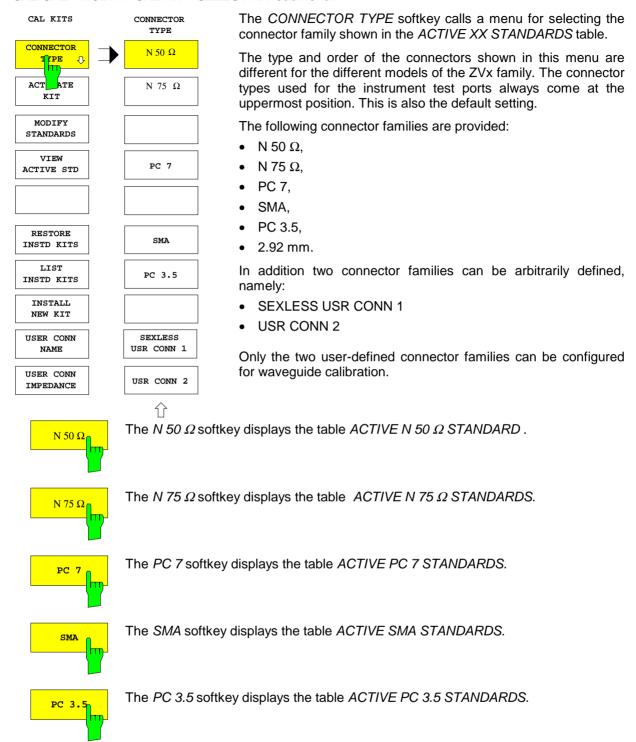
Fig. 2-40 Selecting the connector families

After pressing the *CAL KITS* softkey, the *ACTIVE XX STANDARDS* selection table is displayed, where XX denotes the connector family selected. By default, the connector family of the test set ports is selected. The table gives an overview of the active standards of the connector family:

- The STANDARD TYPE column lists all standard types which are required for the calibration procedures of the respective type of instrument.
- The KIT column indicates to which calibration kit the currently selected physical standard belongs. By default, for standard types contained in the calibration kits offered by Rohde & Schwarz, the designation of the corresponding kit is also displayed. Although typical parameter values are pre-defined for these standards, the individual parameters for each calibration kit, which are supplied on a floppy, should be read in for the sake of maximum accuracy (see INSTALL NEW KIT softkey). The predefined standards without calibration kit assignment are assumed to be ideal.

The cursor can be used to select the standard type the softkeys MODIFY STANDARDS and VIEW ACTIVE STD refer to.

For polarized connector families, three types exist for each two-port standard, namely male/male (MM), female/female (FF), and male/female (MF). One-port standards are provided as male (M) and female (F). For non-polarized connectors, such as PC 7, all standards are contained only once in the table.


If a calibration method requires to measure two standards with the same polarity simultaneously, their characteristics are assumed to be identical. This applies, e.g., to the TOM-X calibration method if the *OPEN BOTH PORTS* measurement is performed.

The following types of standards are provided for the various types of network analyzers. Due to the restricted calibration facilities of the ZVRE, ZVCE and ZVRL compared to the ZVR, ZVC, ZVK and ZVM, a reduced set of standards is required only.

Table 2-5 Standard types for the network analyzers

ZVR, ZVC, ZVK, ZVM	ZVRE, ZVCE, ZVRL		
THROUGH	THROUGH	through-connection	
LINE 1		line 1 for TRL calibration procedure	
LINE 2		line 2 for TRL calibration procedure	
ATTENUATION		unknown matched attenuator	
SYMMETRIC NETWORK		unknown mismatched reflection-symmetric two-port standard	
OPEN	OPEN	open circuit	
SHORT	SHORT	short circuit	
OFFSET SHORT	OFFSET SHORT	additional short circuit for waveguide calibration	
REFLECT		unknown mismatched one-port standard	
MATCH	MATCH	broadband termination	
SLIDING MATCH	SLIDING MATCH	sliding load	

CAL CAL - MODIFY CAL KIT - SELECT KIT submenu:

1043.0009.50 2.346 E-13

The SEXLESS USR CONN 1 softkey displays the table ACTIVE USER CONN 1 STANDARDS. The connector family SEXLESS USR CONN 1 which can be user-defined is not polarized (similar to PC 7) and particularly suited for non-coaxial cable systems such as microstrip.

The two user-defined connector families SEXLESS USR CONN 1 and USR CONN 2 can also be used for waveguide calibration (refer to *WAVEGUIDE* softkey description). As waveguides are as a rule not polarized, SEXLESS USR CONN 1 is to be preferred to USR CONN 2.

The name of this connector family (USER CONN 1 by default) can be modified via the *USER CONN NAME* softkey.

The USR CONN 2 softkey displays the table ACTIVE USER CONN 2 STANDARDS. Unlike SEXLESS USR CONN 1, this user-defined connector family is polarized and therefore suited for the coaxial connectors that are not pre-defined in the CONNECTOR TYPE menu. The connector family USR CONN 2 can also be used for waveguide calibration.

The name of this connector family (USER CONN 2 by default) can be modified via the USER CONN NAME softkey.

CAL CAL - CAL KITS submenu:

The ACTIVATE KIT softkey displays the selection table ACTIVATE KIT.

This table lists all calibration kit names defined for the connector family currently selected. All standards including the ones that are currently not active are considered.

The cursor keys move the cursor within the table. A kit is selected via the units prefix key. A checkmark displayed for a short time indicates that a kit has been selected.

All standards with the selected kit name are set active.

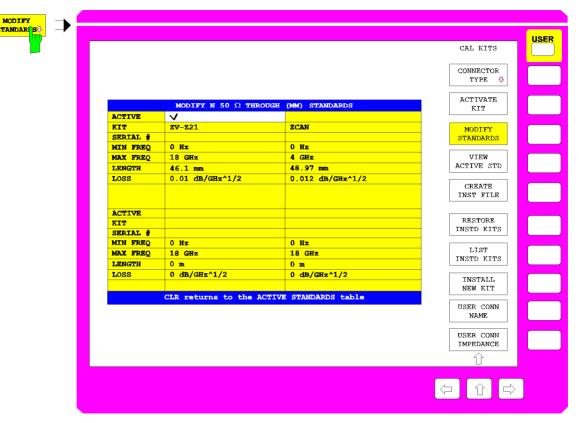


Fig. 2-41 Modifying the standards

The MODIFY STANDARDS softkey calls the MODIFY XX YY STANDARDS table.

In the four quadrants of this table, the parameters of the four individual standards of a single type are displayed. The type is selected in the *ACTIVE XX STANDARDS* table. The parameters describe the physical model of this standard type. All displayed parameters can be edited, even if the corresponding standard is currently not set. The upper five parameters are available for all standard types, the remaining ones depend on the kind of model applied.

If a parameter in this table is changed, an asterisk (*) is appended to the calibration kit name (*KIT*) of the corresponding standard.

ACTIVE Standard active

A checkmark in the table row *ACTIVE* indicates which one of the individual standards is currently active. If a definite standard type, e.g. an OPEN (F), is measured in a calibration, the calibration algorithm uses the parameters of the active individual standard of this type.

KIT Designation of the calibration kit

The calibration kit name can be entered here. It comprises a maximum of 10 characters and appears in the ACTIVE XX STANDARDS table if the standard activated.

Some softkey functions access the calibration kit name as well. The standards with the same kit name can be activated altogether via ACTIVATE KIT. The softkey RESTORE INSTD KITS restores the original parameters of the calibration data sets which were installed from floppy disk. LIST INSTD KITS list all calibration data of a connector type installed from floppy disk.

An asterisk (*) as the last character of the kit name indicates that the preset values or the values installed from floppy of one or several parameters of the corresponding individual standard were changed. If an attempt is made to enter a calibration kit name which is already present twice (e.g. once in the original form and once labeled as user-defined, i.e. with an asterisk), an exclamation mark and an asterisk will be appended to the name.

SERIAL # Serial number of the standard

Besides the calibration kit name, the serial number (max. 15-digit) is a further individual attribute for the standards. It is used especially to distinguish standards from calibration kits of the same type. For the calibration kits offered by Rohde & Schwarz, the same serial number is used throughout the whole kit. This number is assigned to every single standard when the kit is installed. Standards purchased later as spare parts have another serial number of course.

MIN FREQ – minimum frequency of the standard

The sliding load, e.g., is a standard with minimum frequency since it can be used above 2 GHz only.

MAX FREQ - maximum frequency of the standard

For each standard, a maximum frequency is defined. The physical model described by the subsequent parameters is valid up to this maximum frequency.

LENGTH - electrical length of the standard

The electrical length of the standard can be entered for *OPEN*, *SHORT*, *OFFSET SHORT*, *REFLECT*, *THROUGH*, *LINE* 1 and *LINE* 2 and *SYMMETRIC NETWORK*. The default unit of the electrical length is mm. For *REFLECT* and *SYMMETRIC NETWORK*, the electrical length must be specified only if it causes a phase deviation of more than 90° from the assumed approximation (*APPROX* field) in the frequency range to be calibrated.

Note: For one-port standards, only the single length (length offset) is to be entered, too.

LOSS - losses

The losses of the standard are entered in this field. It is assumed that they are resistive line losses whose value (in dB) increases proportionally with the root of the frequency due to the skin effect. The attenuation is thus entered in units of dB/GHz. Losses are indicated only for *OPEN*, *SHORT*, *OFFSET SHORT*, *THROUGH* and *LINE*. For one-port standards, the total loss, i.e., the return loss must be entered.

1043.0009.50 2.349 E-13

C0... C3 – polynomial coefficients for parasitic capacitance

For *OPEN*, as well as for *REFLECT* and *SYMMETRIC NETWORK* with *APPROX* = *OPEN* selected, the parasitic capacitance at the open end of the line can be described by a third-order frequency polynomial. C0 denotes the constant part, C1 to C3 the polynomial coefficients of the corresponding powers of the frequency. The unit of the coefficient Cn is thus fF/GHz^n (n=0,..., 3).

For *REFLECT* and *SYMMETRIC NETWORK*, specification of the coefficients is required only if the latter cause a phase deviation of more than 90° from the assumed *OPEN* approximation in the frequency range to be calibrated.

L0... L3 – polynomial coefficients for parasitic inductance

For *OPEN*, as well as for *REFLECT* and *SYMMETRIC NETWORK* with *APPROX* = SHORT selected, the parasitic inductance can be described by a third-order frequency polynomial. L0 denotes the constant part, L1 to L3 the polynomial coefficients of the corresponding powers of the frequency. The unit of the coefficient Ln is thus pH/GHzⁿ (n=0,..., 3).

For *REFLECT* and *SYMMETRIC NETWORK*, specification of the coefficients is required only if the latter cause a phase deviation of more than 90° from the assumed *SHORT* approximation in the frequency range to be calibrated.

APPROX - approximate modeling

When a reflection standard (*REFLECT*) or a reflection-symmetric network (*SYMMETRIC NETWORK*) is selected, it must be indicated, whether the unknown reflection coefficient can be approximately modeled as a short or an open circuit.

This information is required only to exclude a sign ambiguity when the reflection coefficient is determined implicitly. If the length offset or parasitic reactances cause a rotation of the phase of the unknown reflection coefficient of more than 90° with respect to the approximate phase (0° for *APPROX* = *OPEN*, 180° for *SHORT*), these parameters must be specified as well.

The VIEW ACTIVE STD softkey displays the ACTIVE XX YY table, where XX denotes the connector family and YY the standard type, e.g. ACTIVE N 50 Ω OPEN (F).

This table can not be edited. It shows the parameters of the currently active individual standard of the type that was selected in the *ACTIVE XX STANDARDS* table. If a certain standard type, e.g. an OPEN (F) is measured during a calibration, the calibration algorithm uses the parameters of the active individual standard of this type. For a description of the table rows refer to softkey *MODIFY STANDARDS*.

1043.0009.50 2.350 E-13

The CREATE INST FILE softkey creates an installation file for a calibration kit. This function is useful, e.g., if an updated installation file for the entire calibration kit is needed after exchange of an individual calibration standard, or if calibration kit data entered via MODIFY STANDARDS are to be transferred to other instruments. The SELECT KIT table shows all calibration kits of the connector type currently selected.

Once the desired kit has been selected and confirmed via the ENTER key, an input field for the path and name of the installation file is displayed. The default entries correspond to the current path for *SAVE / EDIT* and the name of the selected calibration kit with the extension *.chk. Upon entering the name the installation file is written to the specified directory.

To create an updated installation file for the entire calibration kit after exchanging an individual calibration standard, the file supplied with the replacement standard is installed first. During installation, only the data pertaining to this standard are overwritten in the corresponding calibration kit file. Afterwards, the desired file for the entire kit can be created via *CREATE INST FILE*.

To create an installation file for calibration kits from other manufacturers, the data describing the different standards is entered via MODIFY STANDARDS; the entire data is assigned to the same calibration kit. Afterwards, CREATE INST FILE is used to create the installation file.

The RESTORE INSTD KITS softkey resets the parameters of all standards to the values defined in the instrument firmware. Exceptions are calibration kits installed from floppy disk (or from another storage medium). Those are reset to their original state after the installation.

The softkey also activates the same standards which were active in the preset state. Besides that, the default values of the name and reference impedance of the connector families which can be user-defined (SEXLESS USR CONN 1 and USR CONN 2) are restored. This function is used to cancel all user entries, especially the ones made by mistake.

The LIST INSTD KITS softkey displays the INSTALLED CAL KITS table.

This table can not be edited. It shows all calibration kits which were installed from floppy disk (or from another storage medium) or which were generated by modifying an originally installed calibration kit. Preinstalled kits or kits generated by modification of an originally preinstalled kit are not listed.

INSTALLED CAL KITS				
CONNECTOR	KIT	SERIAL #		
Ν50Ω	ZV-Z21	123456/001		

CONNECTOR Connector family

The CONNECTOR column shows the connector family of the calibration kit.

The meaning of the two columns *KIT* and *SERIAL* # is as explained under softkey *MODIFY STANDARDS*. If the standards of a kit have different serial numbers *VARIOUS* is indicated in the *SERIAL* # column.

1043.0009.50 2.351 E-13

The INSTALL NEW KIT softkey allows one to install calibration kits from a floppy disk or another storage medium.

If a floppy containing a single calibration kit file (this applies to all floppies provided with the calibration kits from Rohde & Schwarz) is inserted into the disk drive a message window indicating the connector type and the kit designation is displayed after a short time. In this window, installation of the new kit must be confirmed. The calibration kit is read in and a new message indicates that the installation was successfully completed.

If several calibration kit files (file extension *.ck) are stored on the floppy, or if no floppy is in the disk drive, the input field *EDIT CAL KIT PATH* is invoked where the path and file name of the desired calibration kit file can be entered. The further procedure is as described above.

The *UNINSTALL KITS* softkey allows the user to delete the user-installed calibration kits for a connector family.

User-installed calibration kits are meant to include calibration kits read in from a storage medium by means of the *INSTALL NEW KIT* function. They do not mean to include the preinstalled kits contained in the instrument firmware. Please note that this function deletes **all** user-installed calibration kits for the connector family selected in the *CONNECTOR TYPE* menu (e.g. PC 3.5).

To preserve particular user-installed calibration kits, they must first be saved by means of the *CREATE INST FILE* function.

1043.0009.50 2.352 E-13

The connector families SEXLESS USR CONN 1 and USR CONN 2 can also be configured for waveguide calibration by means of the WAVEGUIDE softkey. If this softkey is activated, the instrument takes into account the nonlinear relationship between the phase of the S-parameters and the frequency, which prevails in waveguides. This effect is also known as dispersion.

At the frequency f, the transmission phase ϕ , e.g. of a THROUGH or a LINE standard of the length I, is not governed by the relationship

$$\varphi = \frac{2\pi f}{c} \cdot l \quad \text{ but by }$$

$$\varphi = \frac{2\pi f}{c} \cdot l \cdot \sqrt{1 - \left(\frac{f_c}{f}\right)^2} \;,$$

where f_c is the cutoff frequency of the waveguide mode used (normally the basic mode).

When the *WAVEGUIDE* softkey is activated, the *CUTOFF FREQUENCY* softkey for entering the cutoff frequency is available too.

The OPEN standard is unsuitable with waveguide calibration because in this case it does not provide total reflection but radiates like an antenna. Therefore, if the WAVEGUIDE softkey is switched on, the OPEN standards are replaced by SHORTS (for standards table see CAL CAL - CAL KITS submenu). The latter must have a length offset different from the existing SHORTS and are for this reason referred to as OFFSET SHORTS. At frequencies at which the length difference between the SHORT and the OFFSET SHORT equals a multiple of $\lambda/2$, singularities occur since the shorts have identical reflection coefficients in this case. To avoid this, the length offset of the OFFSET SHORT should be selected to obtain a length difference of $\lambda/4$ between the SHORT and the OFFSET SHORT in the middle of the measurement frequency range. The associated reflection coefficients are then exactly opposite in phase. As the frequency range is normally not larger than the single-mode range of the waveguide, i.e. max. one octave, singularities do not occur at the range limits either if the length offset is selected as described.

The SHORT of a waveguide calibration kit is usually in the form of a plate, i.e. it has no electrical length. The effects of attenuation and leakage inductance can be neglected in practice. The OFFSET SHORT is in most cases realized by a SHORT to which a piece of line ($\lambda/4$) (shim) is added. The electrical length of this added line is entered as the length offset for the OFFSET SHORT. The effects of attenuation and leakage inductance can usually also be neglected for the OFFSET SHORT.

Note: The $\lambda/4$ line can also be used as a LINE standard, for example for TRL calibration.

The CUTOFF FREQUENCY softkey opens an input field for entering the cutoff frequency for the waveguide mode for which calibration is to be made. This is usually the basic mode of the waveguide.

The waveguide mode cannot propagate below the cutoff frequency, which means that system error correction is not possible below this point. The cutoff frequency, therefore, represents the minimum start frequency for measurement and calibration. If the start frequency of the calibration range is lower than the entered cutoff frequency (e.g. after a PRESET), an error message is output.

1043.0009.50 2.353 E-13

The USER CONN NAME softkey activates the entry of a name comprising up to 11 characters for the connector families SEXLESS USR CONN 1 and USR CONN 2. The name refers to the family selected in the CONNECTOR TYPE menu. In the title of the tables ACTIVE XX STANDARDS, MODIFY XX YY STANDARDS and ACTIVE XX YY, it replaces the character string XX. The name of the corresponding softkeys in the CONNECTOR TYPE submenu, however, can not be overwritten.

The default names are USER CONN 1 and USER CONN 2.

The USER CONN IMPEDANCE softkey activates the entry of the reference impedance for the connector SEXLESS USR CONN 1 or USR CONN 2. The impedance refers to the family selected in the CONNECTOR TYPE menu. The default value is 50 Ω .

Note: Only a constant reference impedance can be entered via this softkey. While the characteristic impedance of a waveguide is highly frequency-dependent, the conversion of reflection coefficients to impedances or the calculation of Z parameters in the waveguide are irrelevant in practice.

1043.0009.50 2.354 E-13

2.15.1.4 Power Calibration (Option ZVR-B7)

When measuring ratios formed from wave parameters, such as S-parameters, the absolute value of the generator level cancels out. For other test parameters such as compression and intercept points, it is, however, important to know the absolute generator and receive levels at the ports. Corresponding to those levels, the ZVR allows to perform either a generator or a receiver power calibration. Power calibration is possible for frequency sweep and controlled via the menu of the START NEW POWER CAL softkey.

Generator power calibration:

Purpose:

A generator power calibration is carried out in order to keep the level of a wave propagating towards the DUT in an arbitrary reference plane (typically the input of the DUT) independent of the frequency at a constant value selected by the user.

This eliminates the frequency response of the attenuation introduced by the test setup between signal generator and the reference plane. As the test setup itself can cause arbitrary gain or attenuation, the desired level at the reference plane is not restricted to the usual setting range.

A generator power calibration can be performed for both the internal signal source of the network analyzer and the two external sources.

Carrying out:

The calibration is performed with a power meter. Its power sensor can be fitted either directly to the calibrating reference plane or to any other test point whose level is proportional to the level of the reflected wave at the reference plane. The power meter is remote-controlled via the IEC SYSTEM BUS (lower IEC/IEEE connector on rear panel).

For each point of the sweep,

- the desired nominal level is set with the factory-set power correction of NWA being active. This corresponds to a level setting via the SWEEP SOURCE – POWER softkey,
- 2. the level at the reference plane or at the test point is measured with the power meter,
- the difference between actual and rated value is calculated, ie correction value.
- 4. the power of the source to be calibrated is modified by this correction value provided that this is compatible with the electronic setting range (depending on the type of instrument and the measurement mode).
- 5. step 2 to 4 is repeated if several iterations are desired, For external generators the test run at the first sweep point is different: in this case, the power is increased from the smallest settable level step by step until the rated level is attained. The setting value thus found is then used as start level for the second sweep point. Then, step 2 to 5 is repeated. The corresponding setting value thus found is also the iteration start for the next test point.

Attenuator:

If a generator attenuator is available, its attenuation should be selected before the calibration is started such that the level range that can be set electronically covers the frequency response to be corrected.

1043.0009.50 2.355 E-13

Power correction with an offset:

If the desired value is changed after a generator power calibration and if the calibration is not repeated, the correction values are referred to this new value, ie the offset between the original and the new desired value is taken into account. The same holds

- if the attenuation of the corresponding generator attenuator is changed after a power calibration of the waves a₁ or a₂,
- if the mode is changed from frequency to power sweep,
- if a compression or intercept point measurement is activated.

Note:

Power correction with an offset impairs the accuracy of the desired level because of possible deviations from linearity in the generator level and, eventually, also in the signal path. The maximum offset is given by the setting range of the respective source.

Change of measured quantity:

If a new measured quantity is selected while generator power calibration is active, it is checked whether the stimulus signal for the new quantity is identical with the generator wave currently being calibrated. For example, to determine S_{11} and S_{21} , the DUT has to be stimulated with wave a_1 (leaving out of account that for full two-port calibration two stimulus signals are needed), whereas for S_{12} and S_{22} wave a_2 is needed as a stimulus. If the new stimulus signal differs from the generator wave currently being calibrated, a message is output informing the user that the generator signal is not calibrated.

Receiver power calibration:

Purpose:

A receiver power calibration is carried out in order to detect signals received by the network analyzer with respect to an arbitrary plane (typically the output of the DUT) with their correct level. The corresponding power correction is effective for the measurement of wave quantities and ratios formed from these quantities (menus RESPONSE MEAS - INPUT and RATIO).

Carrying out:

For a receiver power calibration, a signal with a level known from a previously performed generator power calibration is fed into the reference plane to be calibrated. The generator power calibration can be either factory-set or performed by the user.

- For a power calibration of the waves a₁ and a₂, the analyzer independently performs a receive level calibration of the associated reference channel at each test point and immediately after the generator power calibration. As the reference channels are carried inside the instrument, no external cable connections need to be fitted.
- For a calibration of the measurement channels (waves b₁ and b₂ as well as a₁ at the a1 EXT IN socket), however, the instrument must be connected externally such that a wave with a known level (a₁ or a₂ according to generator power calibration) is fed into the receive channel to be calibrated.

1043.0009.50 2.356 E-13

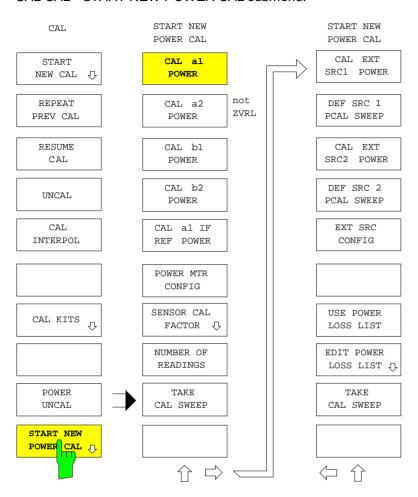
Power correction with an offset:

Similar to the generator power correction, also the receiver power correction takes into account an offset if the receiver attenuator setting is changed.

Note:

The level uncertainty after a generator power calibration basically depends on the measurement uncertainty of the power meter as well as on multiple reflections caused by a possible generator output and power meter mismatch. For power meters that can take a frequency-dependent calibration factor into account (eg all power meters from Rohde & Schwarz), the frequency is communicated via IEC/IEEE bus, which reduces measurement uncertainty. The uncertainty of the receiver power calibration is at least as large as that of the fundamental generator power calibration, and an additional uncertainty arises from the multiple reflections between mismatched generator output and receiver input. To obtain an accurate receiver power calibration, it is therefore recommended not to rely on the factory power calibration on the test ports but to perform a very accurate generator power calibration at a suitable reference plane (eg at the end of a cable).

With the *POWER UNCAL* softkey switched on, the power correction recorded by the user is switched off and vice versa. Thus, *POWER UNCAL* like the *UNCAL* softkey has an inverse functiononality. The power correction is a parameter that can be coupled. For decoupled channels it is effective only in the active display channel.


The enhancement label PC(x) signals an active power correction. The possible versions of this enhancement label are described in the START NEW POWER menu. The currently power-calibrated wave quantities are listed under the enhancement label.

Some additional setting parameters of the network analyzer which are relevant for the correction are stored together with power correction data. When power correction is switched on, these parameters are restored to ensure consistency of correction data and device setting. For example, the frequency sweep mode and the test point grid are restored at the time of calibration, and an active frequency conversion is deactivated.

Even if *POWER UNCAL* is switched on, ie user calibration is switched off a power correction with a factory-set correction data record will be carried out. The level measured for a wave parameter is then with reference to the connector active in the corresponding operating mode. For the internal mode (*SYSTEM MODE – EXTERNAL* switched off) with instruments of the ZVR or ZVC family, these are test ports PORT 1 and PORT 2, for external mode connectors OUTPUT a1, INPUT b1 and INPUT b2. With ZVK and ZVM, the receiver power correction for wave b_1 refers to PORT 1 or INPUT b1 depending on the *SYSTEM MODE – INPUTS – PORT 1 INPUT b1* softkey setting, the same applies to b_2 analogously.

1043.0009.50 2.357 E-13

CAL CAL - START NEW POWER CAL submenu:

The START NEW POWER CAL menu contains the following functions:

Using a generator calibration for the outgoing waves, one of the wave parameters a₁ or a₂ can be corrected to a frequency constant level at an arbitrary reference plane (CAL a1 POWER and CAL a2 POWER, the latter softkey not for ZVRL). In addition, a receiver power calibration for the corresponding reference channel is performed.

- A receiver power calibration can be performed for the incoming wave parameters b₁ and b₂ (b1 POWER CAL and b2 POWER CAL). If the option ZVR-B6 (Reference Channel Ports) is fitted, the reference channel a₁ for the wave fed to the a1 EXT IN socket can be calibrated as well (a1 IF REF POWER CAL).
- The power meter can be configured (POWER MTR CONFIG).
- If the power meter does not automatically take into account the frequency-dependent calibration factor of the power sensor used, one of two editable calibration factor lists can be chosen (SENSOR CAL FACTOR).
- If higher accuracy of the generator power calibration is required, the evaluation of correction values can be iterated. The number of iterations (NUMBER OF READINGS) can be selected.
- After selecting the wave parameter to be calibrated, the calibration sweep can be started (TAKE CAL SWEEP).
- If the option ZVR-B4 (Frequency-Converting Measurements) or ZVR-B5 (Nonlinear Measurements) is fitted, a generator power calibration can be performed for the two external sources (CAL EXT SRC 1 POWER and EXT SRC 2 POWER). This power calibration is performed analogous to the calibration of the internal generator. However, the frequency points can be chosen independent of the test point grid of the network analyzer. If the sensor is not directly connected to the reference plane and the level difference between the reference plane and the test point is known as a function of the frequency, this difference can be entered into a list and thus be taken into account (USE POWER LOSS LIST, EDIT POWER LOSS LIST).

Power setting in the SWEEP SOURCE menu:

If a generator power correction of the internal source is active, the level can no longer be set via the *SWEEP SOURCE - POWER* and *SLOPE* softkeys. One of the *CAL a1 POWER* or *CAL a2 POWER* softkeys in the same menu can then be pressed instead to set the rated level. These softkeys have the same function as those in the *CAL CAL - START NEW POWER CAL* menu.

For the power calibration of external sources the CAL EXT SRC1/2 POWER softkeys in the right side menu of SWEEP SOURCE menu are available, EXT SRC 1/2 POWER and EXT SRC 1/2 SLOPE continue to be inhibited.

Power calibration of several waves:

A power calibration can be successively applied to several wave parameters. To this end, the following must be avoided:

- switchover between internal and external mode,
- change of the test point grid.

If one of these settings is changed and a new power calibration for the wave parameter is performed, the calibration data for all other waves become irreversibly invalid.

After a calibration sweep has been carried out successfully, the correction data are stored in a file so that they are still available after switching off and on the instrument (this does not hold if *SRC PCAL EACH SWEEP* is selected).

1043.0009.50 2.359 E-13

Validity of correction data:

If the test point grid is changed, the correction values are interpolated over the frequency provided the new frequency points lie inside the calibrated range. If not, the power calibration is switched off. The correction values for the fixed frequency in the level or time sweep are also interpolated, if possible.

re: The generator and receive frequency range are also influenced by switching on and off or modifying a frequency-converting or non-linear measurement mode. All power-calibrated wave parameters have to be inside the calibrated frequency range as correction will otherwise be switched off. The power correction of external generators is specially checked for validity and is switched off, if required. The frequency range of power calibration should be selected so as to cover the minimum and maximum frequency at the connectors of the network analyzer. The power correction of external generators is checked for validity independently of the internal waves.

Enhancement labels:

An enhancement label indicates which one of the waves a_1 , a_2 , b_1 and b_2 is currently corrected:

PC	Power correction of at least one wave quantity or one external generator
PCI	Interpolation of correction values as a function of frequency
PCO	An offset relative to the original correction data is taken into account
PC?	During a generator power calibration of the internal signal source, for at least one test point either the nominal value was not attained or the offset was so large that the setting range of the source was exceeded.

All wave quantities which are currently power-calibrated (see section 2.3.1.1, Diagram Area) are indicated under PC(x), except for the external generators. Status message E1/2 is displayed even if valid correction data is available for the relevant generator, which, however, is not used for the current measurement. E1/2 goes off if the relevant generator is currently operating in a range which is not or is only partially covered by the correction data.

If only one receiver power correction is activated for wave quantities a_1 or a_2 , this is indicated by status message a1I or a2I. This occurs for instance when wave a_1 is calibrated and then a_2 . Since the two outgoing waves cannot be simultaneously generator-power-calibrated, only the receiver power calibration of the reference channel has an effect in relation to a_1 .

The power calibration cannot be started if:

- the sweep is not performed over frequency in the current setting,
- a frequency-converting or non-linear measurement is active

However, power correction can itself be activated in these cases.

Power calibration and segmented sweep:

Power calibration is possible in a segmented frequency-point grid (SWEEP SWEEP - DEF SWEEP SEGMENTS or SEG SWEEP) and can be active. Note the following:

The nominal value of a generator-power calibration is also entered via *CAL CAL - START NEW POWER CAL - CAL a1 / a2 POWER* when the frequency axis is segmented. The power values for the various segments in the SRC PWR column of the *SWEEP SEGMENTS* table have no relevance for generator-power calibration. If power calibration is active, the entry POWER CAL is displayed in the SRC PWR column.

If only one receiver-power calibration is active, the segment-specific generator power values in the *SWEEP SEGMENTS* table still apply.

If a receiver-power calibration is performed during the segmented sweep, the reference generator wave should first be calibrated with CAL CAL – START NEW POWER CAL – CAL a1 / a2 POWER. If not, the selected generator power values at least must be identical in all segments in order to obtain a useful result.

Segmented, linear and logarithmic sweeps are interpolation-compatible. This means, for example, that the power correction values are interpolated when the calibration interpolation-point grid is segmented and the measurement-point grid is linear and vice versa. However, extrapolation is never performed outside the interpolation-point grid. If there are wide gaps between segments, the interpolation error may not be negligible in the gaps.

In the case of frequency-converting measurements, power calibration with a segmented interpolation-point grid is particularly effective if a narrow frequency band is shifted by a large offset. If the range between the minimum and the maximum frequency at the network analyzer connectors is covered by a linear grid, many interpolation points may occur in the unused gaps between frequencies. Conversely, the grid in the bands of interest only provides a coarse partition, which means that measurement accuracy is not optimal. This can be avoided by means of a calibration over a segmented sweep, which only takes into account the frequency ranges relevant for the measurement. The following procedure is recommended:

- Definition of a segment list with typically two segments, one corresponding to the unconverted frequency band and the other to the converted band (SWEEP SWEEP – DEF SWEEP SEGMENTS). It is, of course, possible to define several segments - for example, when several bands are to be converted at the same time. The number of test points in each segment can be selected as required.
- 2. Activation of the segmented sweep (SWEEP SWEEP SEG SWEEP)
- 3. Power calibration of all relevant wave quantities over the segmented sweep (CAL CAL START NEW POWER CAL)
- 4. Only if the frequency-converting measurement is to be performed in the ARBITRARY mode: Call of the definition menu (SYSTEM MODE – FREQUENCY CONVERS – DEF ARBITRARY)
- 5. Setting the start and stop frequency of the linear or log sweep over which the frequency-converting measurement is to be performed (STIMULUS START / STOP). The sweep range of the fundamental is set for the ARBITRARY mode. Caution: This setting has no effect on the sweep trace in the measurement diagram since the segmented sweep is not yet active.
- 6. Switchover to linear or log measurement-point grid (SWEEP SWEEP LIN / LOG SWEEP). This should not be done prior to setting the sweep range. Otherwise, power correction would be deactivated if the start or stop frequency that has been set is outside the segmented sweep. Enhancement label PC becomes PCI since interpolation has to be performed with the new measurement-point grid.

1043.0009.50 2.361 E-13

7. Only if the frequency-converting measurement is to be performed in the MIXER or ARBITRARY mode: Configuration of the frequency-converting measurement (SYSTEM MODE – FREQUENCY CONVERS – DEF MIXER MEAS / DEF ARBITRARY)

8. Activation of the frequency-converting measurement (SYSTEM MODE – FREQUENCY CONVERS – SECOND / THIRD HARMONIC, MIXER MEAS, ARBITRARY)

1043.0009.50 2.362 E-13

CAL CAL - START NEW POWER CAL submenu:

The *CAL a1 POWER* softkey selects power calibration of the wave parameter a₁. This comprises a generator power calibration of the internal source and – if *SRC PCAL EACH SWEEP* is switched off – a receiver power calibration of the reference channel for forward measurement. In the preset state this softkey is switched on. An entry field for the desired level at the reference plane of calibration is opened.

In the internal mode the reference plane for a_1 lies in a signal path connected to the PORT 1 socket, in the external mode the reference plane is connected to OUTPUT a1.

The calibration sweep is started by activating the *TAKE CAL SWEEP* softkey. The measured quantity a_1 is selected automatically. A generator power correction is possible only for one of the two waves a_1 or a_2 . If the power calibration of a wave parameter is started, any correction data for the other wave become invalid. Instead, the correction data of the calibrated wave are also applied to the uncalibrated wave. A receiver power correction of the other channel is however kept. If the test set is unbalanced (eg instrument with only one generator attenuator), the level of the uncalibrated generator wave can considerably deviate from the nominal value of the calibrated one.

Note:

For the ZVR and ZVC families the following applies: If the option ZVR-B6 (Reference Channel Ports) is fitted and the REFERENCE MIXER softkey is switched on, a correct receiver power calibration for a_1 is achieved only if the generator-power-calibrated reference wave a_1 is fed to the a1 EXT IN rear-panel socket. This receiver power calibration need not be performed together with the generator power calibration of a_1 but can be made in a separate step (see a1 IF REF POWER CAL softkey). Either the reference plane for generator power calibration is connected directly to a1 EXT IN, then a_1 is measured with the correct power as referred to this connector. Or, a1 EXT OUT is connected to a1 EXT IN via a line, then the quantity a1 is a measure for the outgoing wave at PORT 1. The two alternatives exist also for ZVK and ZVM, where the paths of both reference waves can be opened and receiver power calibration performed (connectors R1 / R2 CHANNEL OUT / IN).

In the CAL a1 POWER entry field, the current attenuation values of the generator step attenuators are displayed.

The CAL a2 POWER softkey selects power calibration of wave a_2 . This is analogous to the calibration of a_1 (CAL a1 POWER). The CAL a2 POWER softkey is not available for model ZVRL.

The reference plane for a_2 lies in a signal path connected to PORT 2 so that the softkey operates in the internal mode only.

1043.0009.50 2.363 E-13

The CAL b1 POWER softkey selects receiver power calibration of the wave parameter b₁

A generator with a known level is required. If wave quantity b_1 is received via test PORT 1, a_2 serves as a known reference wave. However, if b_1 is received via INPUT b1 socket (ie external mode set on ZVRx and UVCx or INPUT b1 activated on ZVK/ZVM), a1 is used. To reduce measurement uncertainty, the reference wave should first undergo a generator power calibration.

- If b₁ is received via PORT 1, the reference plane for b₁ has to be connected to the reference plane of the generator power calibration of a₂ (in a signal path connected to PORT 2) via a low-loss and low-reflection cable.
- Otherwise, INPUT 1 socket has to be connected to the reference plane of the generator power calibration of a1 (connected to OUTPUT a1 or PORT 1 on ZVK/ZVM) via a low-loss and low-reflection cable.

The calibration sweep is started by activating the *TAKE CAL SWEEP* softkey. Measured quantity b_1 is automatically selected.

The CAL b2 POWER softkey selects receiver power calibration of wave parameter b2. This is analogous to the calibration of b1 (CAL b1 POWER).

As known generator wave, a_1 is used. The reference plane for b_2 lies in a signal path connected to PORT 2 or INPUT b2.

The CAL a1 IF REF POWER softkey selects receiver power calibration of the wave parameter a₁ via the rear-panel socket a1 EXT IN.

This function requires the option ZVR-B6 (Reference Channel Ports) to be fitted and the MODE - REFERENCE MIXER to be switched on. The receive calibration via a1 EXT IN is useful especially for frequency-converting measurements where a converted reference signal is received in channel a_1 .

The generator-power-calibrated wave a_1 is used as known calibration signal. Calibration can be performed in the internal and external mode. Depending on whether the known generator wave a_1 is directly fed to the a1 EXT IN socket or the a1 EXT OUT and a1 EXT IN sockets are connected, the measured level for a1 refers to a1 EXT IN socket or to test PORT 1.

With the REFERENCE MIXER softkey activated, the receiver power correction data for a_1 are independent of those recorded with the softkey deactivated. Thus, two correction data records are available. The REFERENCE MIXER softkey is used to switch over between these two data records.

The calibration sweep is started by activating the *TAKE CAL SWEEP* softkey. Measured quantity a₁ is selected automatically.

The POWER MTR CONFIG softkey calls a table for configuration of the power meter.

Power meters NRVS, NRVD and NRV from Rohde & Schwarz as well as 437 B and 438 A from Hewlett-Packard are supported.

POWER METER CONFIG				
TYPE	GPIB ADDR	AUTO ZERO	SENSOR CAL FACTOR	
NRVD	4	✓	DATA FROM SENSOR	

When editing the TYPE field, the selection table PWR MTR TYPE is displayed:

In the GPIB ADDR field, the IEC/IEEE-bus address of the power meter is entered.

When the AUTO ZERO field is switched on, automatic zeroing of the power meter is performed before each sweep. If the power meter supports this function it is recommended to activate AUTO ZERO. This is recommended for particularly small desired levels.

The SENSOR CAL FACTOR field cannot be edited. It indicates the way in which the frequency-dependent calibration factor of the power sensor is taken into account. Power meters from Rohde & Schwarz take the correction factor automatically into account. In this case, entry DATA FROM SENSOR is displayed. For other units, a list comprising the interpolation test points of the calibration factor over the frequency can be entered in the SENSOR CAL FACTOR submenu. This submenu also helps to determine which of the two lists is to be used. Depending on the setting of the CAL CAL – START NEW POWER CAL – SENSOR CAL FACTOR - USE SENSOR A B softkey, the message FACTOR LIST A or B (see SENSOR CAL FACTOR menu) is displayed in the SENSOR CAL FACTOR field.

1043.0009.50 2.365 E-13

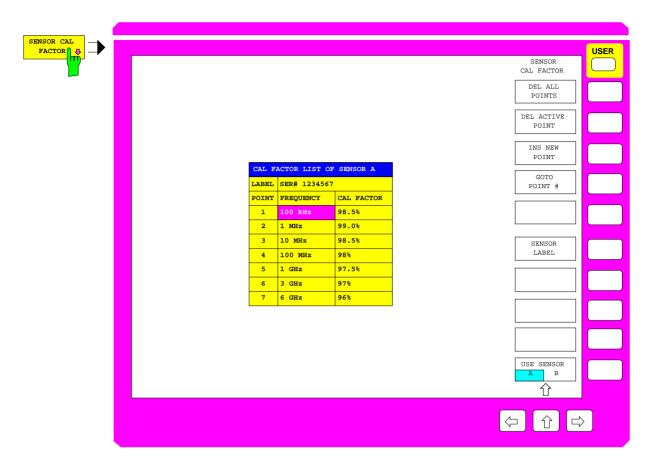


Fig. 2-42 Entry of a frequency-dependent calibration factor

The SENSOR CAL FACTOR softkey calls a submenu for entry of the frequency-dependent calibration factor for the power sensor used.

Due to mismatch, losses and changes in sensitivity of the power sensor, the power measurement is subject to frequency-dependent errors. The calibration factor of a sensor describes which percentage of the power transmitted to the sensor is actually detected and indicated by the test instrument. Some power meters, such as the units of the NRV family from R&S, read the calibration factor from a memory in the sensor and thus take it into account automatically. For other instruments (eg HP 436 A), the calibration factor must be set manually at the instrument but is only valid for one frequency. In this case, a table of calibration factors over frequency which is taken into account for the generator power calibration can be entered into the analyzer via the SENSOR CAL FACTOR menu. A calibration factor of 100 % is to be set at the power meter.

The calibration factor can be entered for two different power sensors and for up to 20 frequency interpolation points. Depending on the setting of the *USE SENSOR A B* softkey, either the table SENSOR A CAL FACTOR LIST or SENSOR B CAL FACTOR LIST is displayed. The second line contains a name for identification of the power sensor which can be defined via the SENSOR LABEL softkey. The individual softkeys are listed below, sorted automatically in ascending order of the frequencies. Next to the test point number, there are two columns which can be edited:

FREQUENCY frequency value of the interpolation point CAL FACTOR associated calibration factor in percent

Linear interpolation is applied between the points of the active calibration coefficient list. Outside the given frequency range the calibration factors of the lower and upper limit frequency apply. No correction is made in the presetting of the table, ie the calibration factor is generally set to 100%. If the list contains only one point, the FREQUENCY field cannot be edited and CAL FACTOR applies to all frequencies.

When attempting to close the list with several points available at the same frequency, a corresponding message is displayed. Either the redundant points can be deleted automatically or you can return to the edit mode.

CAL CAL - START NEW POWER CAL - SENSOR CAL FACTOR submenu:

The DEL ALL POINTS softkey deletes all interpolation points from the selected calibration-factor list.

The *DEL ACTIVE POINT* softkey deletes the active interpolation point, ie the one which the cursor is positioned to.

The *INS NEW POINT* softkey inserts a new interpolation point following the active one.

The default values of the new line are adopted by the active interpolation point.

The GOTO POINT # softkey renders the indicated interpolation point active, ie it shifts the cursor of the calibration-factor list vertically into the respective line. The position of the cursor in the column does not change.

A name for the selected power sensor (A or B) of up to 12 characters can be entered via the SENSOR LABEL softkey .

This name is displayed in the second line of the calibration-factor list.

The USE SENSOR A B softkey is used to switch between the calibration factors of power sensors A and B.

The switchover refers to the table displayed and to the data set used with power calibration.

CAL CAL - START NEW POWER CAL submenu:

The number of iteration steps to be made for generator power calibration at each test point can be entered via the *NUMBER OF READINGS* softkey. The default value is one.

An iteration step consists of first measuring the actual level at the reference port or at the test point with the power meter. Then, the difference between the desired and the actual level is determined and the power of the generator to be calibrated is increased or decreased by this difference provided that this is compatible with the allowed setting range. The smaller the previous deviation of the actual level from the desired value, the higher the level accuracy which can be obtained in one step. It is thus advisable to set the level at the test point via the corresponding softkey in the SWEEP SOURCE menu before the calibration is started such that the difference to the desired value is minimized.

The TAKE CAL SWEEP softkey starts a single power calibration sweep.

The sweep can be aborted via the ABORT field. If the desired value is not attained at least at one sweep point, a message will be issued and the enhancement label PC? will be displayed.

The CAL EXT SRC 1 POWER softkey selects generator power calibration of the external signal source 1. An entry field for the desired level is opened simultaneously.

The frequency range of this calibration is defined via *DEF SRC 1 PCAL SWEEP*. Only the frequency of this generator and not that of the internal wave parameters is decisive for the validity of the level correction data of an external generator.

The *TAKE CAL SWEEP* softkey starts the calibration sweep. The measured quantity is not changed.

The *DEF SRC 1 PCAL SWEEP* softkey calls the table SRC 1 POWER CAL SWEEP used to define the frequency points for the generator power calibration of the external source 1.

SRC 1 POWER CAL SWEEP		
START	10 MHz	
STOP	3 GHz	
NUM OF PTS	100	
SWEEP GRID	LIN	

The CAL EXT SRC 2 POWER softkey selects generator power calibration of the external signal source 2.

This is analogous to the calibration of the external source 1 (CAL EXT SRC 1 POWER softkey).

The *DEF SRC 2 PCAL SWEEP* softkey calls the table SRC 2 POWER CAL SWEEP used to define the frequency points for the generator power calibration of the external source 2.

This is analogous to the definition of the frequency points for the external source 1 (DEF SRC 1 PCAL SWEEP softkey)

The EXT SRC CONFIG softkey calls the EXT SOURCES CONFIG table.

For a description of this table refer to the SYSTEM MODE - FREQUENCY CONVERS - DEF MIXER MEAS softkey.

The USE POWER LOSS LIST softkey switches on the power calibration using a known, frequency-dependent power loss list.

Sometimes it is not possible to connect the power sensor directly at the reference plane for the generator power calibration, eg if the reference port is not accessible. If, however, the level difference between the reference port and the power test point is known and stored in the power loss list, a generator power calibration can be performed nevertheless. The measured power is then increased by the power loss value from the list before comparison with the desired value. Eventually, interpolation over the frequency is carried out. The points of the power loss list are entered in the *EDIT POWER LOSS LIST* menu.

1043.0009.50 2.369 E-13

The *EDIT POWER LOSS LIST* softkey calls a submenu for entering the frequency-dependent loss between the reference plane and the power test point.

Up to 20 interpolation points can be entered into the POWER LOSS LIST table. The entries are sorted in ascending order of the frequencies. Next to the test point number, there are two columns which can be edited:

FREQUENCY – frequency value of the interpolation point

POWER LOSS - associated loss in dB

Linear interpolation is applied between the interpolation points of the loss list. Outside the given frequency range the power loss values of the lower and upper limit frequency apply. In its preset state, the table is empty and cannot be used. If the list only contains one point, the FREQUENCY field cannot be edited. POWER LOSS then applies to all frequencies.

When attempting to close the list with several points available at the same frequency, a corresponding message is displayed. Either the redundant points can be deleted automatically or you can return to the edit mode.

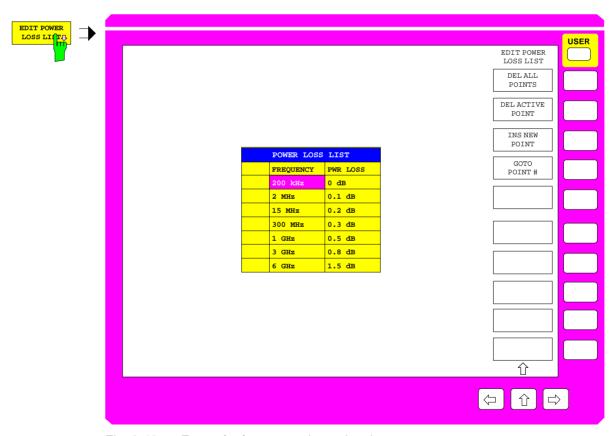


Fig. 2-43 Entry of a frequency-dependent loss

The DEL ALL POINTS softkey deletes all interpolation points from the power loss list.

1043.0009.50 2.370 E-13

The *DEL ACTIVE POINT* softkey deletes the active interpolation point, ie the one which the cursor of the loss list is positioned to.

The *INS NEW POINT* softkey inserts a new interpolation point following the active interpolation point.

The default values of the new line are adopted by the active interpolation point.

The GOTO POINT # softkey renders the indicated interpolation point active, ie it shifts the cursor of the loss list vertically into the respective line. The position of the cursor in the column does not change.

The TAKE CAL SWEEP softkey is also available in the side menu.

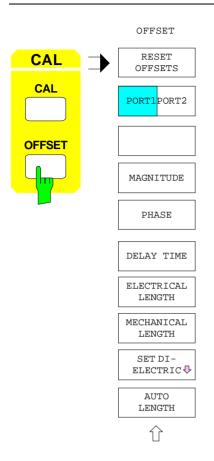
2.15.2 Entry of Offset Parameters – *OFFSET* Key

The system error correction which is accessed via the *CAL* key is completed by the *OFFSET* key. Offset parameters are useful, eg

- if a DUT is connected unseparably to a cable and the scattering parameters of the DUT are to be measured without the phase rotation of the cable which is proportional to the frequency.
- if a DUT cannot be connected directly to the calibrated test port but the loss and phase rotation between the test port and the desired reference plane is known and has to be eliminated.

Only S-parameters can have an offset but not wave parameters and quotients of the *RESPONSE MEAS* – *INPUT and RATIO* menus. It is to be noted that offset parameters are always with reference to one of the two test ports and not to the currently selected S-parameter. This simplifies the most important application of offset parameters, ie the shift into the reference plane. A length offset does not have to be defined for each individual S-parameter but, like a piece of conductor, automatically influences all S-parameters concerned. An offset for PORT 1 influences S_{11} , S_{12} and S_{21} , an offset for PORT 2 influences S_{12} , S_{21} and S_{22} .

Please note that the resulting phase rotation of reflection parameters (S_{11} , S_{22}) with given offset length is twice as high as that of transmission parameters (S_{12} , S_{21}). If, say at a test frequency of 300 MHz, the reference plane is shifted by 250 mm (λ / 4), the phase indicator of S_{21} is turned by 90° whereas that of S_{11} is turned by 180°.


A positive offset length at a test port corresponds to a shift of the reference plane towards the DUT and causes a positive phase rotation of the reflection coefficient and transmission coefficient. A negative offset length has the opposite effect.

In addition to the position of the reference plane also the amplitude or phase offset for the S-parameters concerned can be defined for each test port.

Offsets are considered after system error correction but prior to conversion and formatting. They should therefore not be confused with the addition of a constant after formatting (RESPONSE SCALE - ADD CONSTANT softkey).

Offset parameter setting is global, ie applies to all channels irrespective of the coupling state. If at least one offset parameter is different from 0, the enhancement label OFS is displayed.

1043.0009.50 2.371 E-13

The *OFFSET* menu comprises the following functions

- All offset parameters can be reset to 0 (RESET OFFSETS).
- The entered value is valid for one of the two test ports (PORT1/PORT2).
- An individual amplitude (MAGNITUDE), phase (PHASE) and length offset can be defined for each test port.
- A length offset can be entered as a delay time (DELAY TIME),
- Electrical length (ELECTRICAL LENGTH),
- Mechanical length (MECHANICAL LENGTH).
- When entering a mechanical length, a dielectric can be set for conversion into the effective electrical length (SET DIELECTRIC).
- In the frequency sweep mode, the length offset can be calculated automatically such that the phase rotation of the active S-parameter in the sweep range is minimal (AUTO LENGTH).

The RESET OFFSETS softkey resets the amplitude, phase and length offsets of both test ports to zero.

The *PORT1/PORT2* softkey defines which test port the entered offset parameters refer to. In the external mode, the above-mentioned allocation between offset parameters and S-parameters applies.

The *MAGNITUDE* softkey activates the entry of an amplitude offset (in dB) for the S-parameters concerned by the selected test port.

The *PHASE* softkey activates the entry of a phase offset (in degrees) for the S-parameters concerned by the selected test port.

The DELAY TIME softkey activates the entry of a length offset for the selected test port as a delay time. The entry value is coupled with that of softkeys ELECTRICAL LENGTH and MECHANICAL LENGTH.

The *ELECTRICAL LENGTH* softkey activates the entry of a length offset for the selected test port as an electrical length. The entry value is coupled with that of softkeys *DELAY TIME and MECHANICAL LENGTH*.

The electrical length is interpreted as length of a piece of conductor with a dielectric of permittivity ε_0 (i.e. $\varepsilon_r = 1$).

The MECHANICAL LENGTH softkey activates the entry of a length offset for the selected test port as mechanical length. The entry value is coupled with that of softkeys DELAY TIME and ELECTRICAL LENGTH.

The mechanical length is interpreted as a piece of conductor with a dielectric the permittivity ε_r of which is defined by SET DIELECTRIC.

The SET DIELECTRIC softkey calls a submenu and the table SET DIELECTRIC.

The table SET DIELECTRIC is used to select the dielectric the relative permittivity of which determines the relation between the entry values of MECHANICAL LENGTH and ELECTRICAL LENGTH. The following applies:

ELECTRICAL LENGTH = (PERMITTIVITY) 1/2 MECHANICAL LENGTH

The same table can also be called up via the RESPONSE FORMAT - SET DIELECTRIC softkey (see description under softkey).

The AUTO LENGTH softkey sets the length offset of the selected test port such that the phase response of the S-parameter in the active display channel is minimized across the sweep range. For this purpose, the phase is approximated by a mean straight line and a conductor length is calculated from the slope of this straight line.

This softkey can be activated only with frequency sweep and when a length offset at the selected test port influences the phase of the S-parameter in the active display channel. If, for example, S_{11} is the test parameter in the active channel and PORT 2 has been selected for entry of offset parameters, *AUTO LENGTH* cannot be used since the offset length at PORT 2 has no effect on the phase of S_{11} .

1043.0009.50 2.373 E-13

Operating Manual

VECTOR NETWORK ANALYZER

ZVR / ZVRE / ZVRL

1127.8551.61/.62 1127.8551.51/.52 1127.8551.41

ZVC / ZVCE

1127.8600.60/.61/.62 1127.8600.50/.51/.52

ZVM

1127.8500.60

ZVK

1127.8651.60

Volume 2 Operating Manual consists of 2 volumes

Printed in the Federal Republic of Germany

Volume 1 Volume 2

Contents Contents Index

Data Sheet Supplements

Safety Instructions
Certificate of Quality
EC-Certificate of Conformity
Support Center Address
List of R&S Representatives

Safety Instructions
Certificate of Quality
EC-Certificate of Conformity
Support Center Address
List of R&S Representatives

Tabbed Divider		Tab	bed Divider
1	Preparation for Use	1	Remote Control
2	Manual Operation	2	Maintenance and Troubleshooting
		3	Testing the Rated Specifications
		4	Annex A: Interfaces
		5	Annex B: List of Error Messages
		6	Annex C: List of Commands
		7	Annex D: Programming Examples
		8	Annex E: Emulations

Contents

3	Ren	note Control	3.1
	3.1	Introduction	3.1
	3.2	Brief Instructions	3.1
	3.3	Switchover to Remote Control	3.2
		3.3.1 Remote Control via IEC Bus	3.2
		3.3.1.1 Setting the Device Address	3.2
		3.3.1.2 Indications during Remote Control	
		3.3.1.3 Return to Manual Operation	
		3.3.2 Remote Control via RS-232-Interface	
		3.3.2.1 Setting the Transmission Parameters	
		3.3.2.3 Return to Manual Operation	
		3.3.3 Remote Control via RSIB Interface	
		3.3.3.1 Windows Environment	
		3.3.3.2 Unix Environment	3.5
		3.3.3.3 Indications during Remote Control	
		3.3.3.4 Return to Manual Operation	3.5
	3.4	Messages	3.6
		3.4.1 IEC/IEEE bus Interface Messages	3.6
		3.4.2 RSIB Interface Messages	3.6
		3.4.3 Device Messages (Commands and Device Responses)	3.7
	3.5	Structure and Syntax of the Device Messages	3.8
		3.5.1 SCPI Introduction	3.8
		3.5.2 Structure of a Command	3.8
		3.5.3 Structure of a Command Line	3.11
		3.5.4 Responses to Queries	3.11
		3.5.5 Parameters	3.12
		3.5.6 Overview of Syntax Elements	3.13
	3.6	Description of Commands	3.14
		3.6.1 Notation	3.14
		3.6.2 Common Commands	3.17
		3.6.3 CALCulate Subsystem	3.20
		3.6.3.1 CALCulate:FILTer - Subsystem	3.20
		3.6.3.2 CALCulate:FORMat Subsystem	
		3.6.3.3 CALCulate:GDAPerture Subsystem	
		3.6.3.4 CALCulate:LIMit Subsystem	3.24

13

3.6.3.5 CALCulate:MARKer Subsystem	
3.6.3.6 CALCulate:MATH Subsystem	
3.6.3.8 CALCulate:TRANsform Subsystem	
3.6.3.9 CALCulate:UNIT Subsystem	
3.6.4 DIAGnostic Subsystem	
3.6.5 DISPlay Subsystem	3.45
3.6.6 FORMat Subsystem	3.52
3.6.7 HCOPy Subsystem	3.55
3.6.8 INITiate Subsystem	3.61
3.6.9 INPut Subsystem	3.62
3.6.10INSTrument Subsystem	3.63
3.6.11MMEMory Subsystem	3.64
3.6.12OUTPut Subsystem	3.72
3.6.13PROGram - Subsystem	3.74
3.6.14SENSe Subsystem	3.76
3.6.14.1 SENSe:AVERage Subsystem	
3.6.14.2 SENSe:BANDwidth Subsystem	
3.6.14.4 SENSe:DETector Subsystem	
3.6.14.4 SENSe:DETector - Subsystem	
3.6.14.6 SENSe:FUNCtion Subsystem	
3.6.14.7 SENSe:ROSCillator - Subsystem	
3.6.14.8 SENSe:SEGMent Subsystem	
3.6.14.9 SENSe:SWEep Subsystem	
3.6.15SOURce Subsystem	3.114
3.6.16STATus Subsystem	3.123
3.6.17SYSTem Subsystem	3.130
3.6.18TRACe Subsystem	3.140
3.6.19TRIGger-Subsystem	3.144
Instrument Model and Command Processing	3.146
3.7.1 Input Unit	
3.7.2 Command Recognition	3.147
3.7.3 Data Set and Instrument Hardware	3.147
3.7.4 Status Reporting System	3.147
3.7.5 Output Unit	3.148
3.7.6 Command Sequence and Command Synchronization	3.145
Status Reporting System	3.149
3.8.1 Structure of an SCPI Status Register	
3.8.2 Overview of the Status Registers	
3.8.3 Description of the Status Registers	

3.7

3.8

		3.8.3.1 Status Byte (STB) and Service Request Enable Register (SRE)	3.153 3.153
		3.8.3.5 STATus:QUEStionable-Register	
		3.8.3.6 STATus:QUEStionable:LIMit Register	3.156
	3.8.4	Application of the Status Reporting System	
		3.8.4.1 Service Request, Making Use of the Hierarchy Structure	
		3.8.4.2 Serial Poll	
		3.8.4.3 Parallel Poll	
		3.8.4.4 Query by Means of Commands	
		3.8.4.5 Error-Queue Query	
	3.8.5	Reset Values of the Status Reporting System	3.159
3.9	Softk	eys and Related IEC/IEEE BUS Commands	3.160
	3.9.1	SYSTEM Key Group	3.160
		orerem new croup	
		COPY Key Group	
	3.9.2		3.166
	3.9.2 3.9.3	COPY Key Group	. 3.166 . 3.167
	3.9.2 3.9.3 3.9.4	COPY Key Group	3.166 3.167 3.169
	3.9.2 3.9.3 3.9.4 3.9.5	COPY Key Group MEMORY Key Group STATUS Key Group	3.166 3.167 3.169 3.170
	3.9.2 3.9.3 3.9.4 3.9.5 3.9.6	COPY Key Group MEMORY Key Group STATUS Key Group STIMULUS Key Group	. 3.166 . 3.167 . 3.169 . 3.170
	3.9.2 3.9.3 3.9.4 3.9.5 3.9.6 3.9.7	COPY Key Group MEMORY Key Group STATUS Key Group STIMULUS Key Group SWEEP Key Group	3.166 3.167 3.169 3.170 3.170
	3.9.2 3.9.3 3.9.4 3.9.5 3.9.6 3.9.7 3.9.8	COPY Key Group MEMORY Key Group STATUS Key Group STIMULUS Key Group SWEEP Key Group MARKER Key Group	3.166 3.167 3.169 3.170 3.170 3.173

4	Mair	ntenance and Troubleshooting	4.1
	4.1	Maintenance	4.1
		4.1.1 Mechanical Maintenance	4.1
		4.1.2 Electrical Maintenance	4.1
		4.1.2.1 Testing the Generator Level	4.1
		4.1.2.2 Testing the Receiver Accuracy	4.1
		4.1.2.3 Testing the Frequency Accuracy	4.1
		4.1.2.4 Verifying the Measuring Accuracy	4.1
	4.2	Monitoring the Function	4.2
		4.2.1 Switch-on Test	4.2
		4.2.2 Monitoring the Synthesizers and the Level Control	4.2
		4.2.3 Synthesizer Error Messages	4.2
		4.2.4 Error Message of Level Control	4.2
		4.2.5 Overload Displays	4.2
	4.3	Function Description of the Complete Instrument	4.3
		4.3.1 Description of the Analog Modules	4.3
		4.3.1.1 Test Set	4.3
		4.3.1.2 Front End	4.4
		4.3.1.3 Converter	4.4
		4.3.1.4 Synthesizer	
		4.3.1.5 Local	_
		4.3.1.6 Source	
		4.3.1.7 Output Stage	
		4.3.2 Modules of the Digital Unit	
		4.3.3 Processor Structure	
		4.3.3.1 Measurement Control Unit	4.6
	11	Salf tast	17

16

Contents

5	Test	ting the Rated Specifications	5.1
	5.1	Measuring Instruments and Accessories (ZVR, ZVRE, ZVRL)	5.1
	5.2	Test Sequence (ZVR, ZVRE, ZVRL)	5.2
		5.2.1 Testing the Generator Specifications	5.2
		5.2.1.1 Frequency Accuracy	5.2
		5.2.1.2 Harmonics Suppression	
		5.2.1.3 Spurious Suppression	
		5.2.1.4 Phase Noise	5.4
		5.2.1.5 Residual FM	5.4
		5.2.1.6 Level Accuracy	5.5
		5.2.1.7 Level Linearity	
		5.2.1.7.1 Matching to Output a1	
		5.2.2 Testing the Receiver Specifications	
		5.2.2.1 Absolute Accuracy	
		5.2.2.2 Linearity	
		5.2.2.3 Noise Level	
		5.2.2.4 Matching Input b1 and Input b2	
		5.2.3 Testing the Test Set Specifications	
		5.2.3.1 Matching to PORT1 and PORT2	
		5.2.3.2 Directivity	
		5.2.3.3 Testing the Attenuators	
		5.2.3.4 Crosstalk	5.17
	5.3	Performance Test Report (ZVR, ZVRE, ZVRL)	5.17
	5.4	Measuring Instruments and Accessories (ZVC, ZVCE)	5.52
	5.5	Test Sequence (ZVC, ZVCE)	5.53
		5.5.1 Testing the Generator Specifications	5.53
		5.5.1.1 Frequency Accuracy	5.53
		5.5.1.2 Harmonics Suppression	5.53
		5.5.1.3 Spurious Suppression	5.54
		5.5.1.4 Phase Noise	5.55
		5.5.1.5 Residual FM	5.55
		5.5.1.6 Level Accuracy	5.56
		5.5.1.7 Level Linearity	
		5.5.1.8 Matching to Output a1	5.57
		5.5.2 Testing the Receiver Specifications	5.58
		5.5.2.1 Absolute Accuracy	
		5.5.2.2 Linearity	
		5.5.2.3 Noise Level	
		5.5.2.4 Matching Input b1 and Input b2	5.61

		5.5.3 Testing the Test Set Specifications 5.5.3.1 Matching to PORT1 and PORT2 5.5.3.2 Directivity 5.5.3.3 Testing the Attenuators 5.5.3.4 Crosstalk	5.63 5.63 5.64
	5.6	Performance Test Report (ZVC, ZVCE)	5.66
5	Che	cking of Rated Specifications	5.1
	5.1	Measuring Equipment and Accessories (ZVM, ZVK)	5.1
	5.2	Test Procedure (ZVM & ZVK)	5.2
		5.2.1 Checking the Generator Specifications	5.2
		5.2.1.1 Frequency Deviation	5.2
		5.2.1.2 Harmonics	5.3
		5.2.1.3 Spurious	5.4
		5.2.1.4 Phase Noise	
		5.2.1.5 Residual FM	
		5.2.1.6 Level Accuracy	
		5.2.1.7 Level Linearity	
		5.2.2 Checking the Receiver Specifications	
		5.2.2.1 Absolute Accuracy	
		5.2.2.3 Noise Level	
		5.2.2.4 Match Input b1 and Input b2	
		5.2.3 Checking the Test Set Specifications	
		5.2.3.1 Match at PORT1 and PORT2	
		5.2.3.2 Matching Reference Channel Inputs R1 and R2 Channel IN	
		5.2.3.3 Raw Directivity	
		5.2.3.4 Checking the Attenuators	5.16
		5.2.3.5 Dynamic Range	5.17
	5.3	Performance Test Record (ZVM)	5.18
	5.4	Performance Test Record (ZVK)	5.70

Annex	A - Interfaces	A.1
A.1	IEC Bus Interface (SCPI IEC625, SYSTEM BUS)	A.1
	Interface Characteristics	A.1
	Bus Lines	A.2
	IEC Bus Messages	A.3
	Interface Messages	A.3
	Instrument Messages	A.4
A.2	RS-232-C Interface (COM1, COM2)	A.5
	Interface Characteristics	A.5
	Signal Lines	A.5
	Transmission Parameters	A.6
	Interface Functions	A.7
	Handshake	A.7
A.3	RSIB Interface	A.9
	Windows Environment	A.9
	Unix Environment	A.10
	RSIB Interface Functions	A.11
	Variables ibsta, iberr, ibcntl	A.11
	Overview of Interface Functions	
	Description of Interface Functions	A.13
A.4	User Interface (USER)	A.21
A.5	Printer Interface (LPT)	A.22
A.6	Probe Connectors (PROBE 1, PROBE 2)	A.23
A.7	Reference Input (REF IN)	A.23
A.8	Reference Output (REF OUT)	A.23
A.9	External Trigger Input (EXT TRIGGER)	A.23
A.10	External Level Control Input (LEVEL)	A.23
A.11	DC Voltage Input for PORT 1 and PORT 2 (PORT BIAS 1 / 2)	A.23
A.12	Connectors for Controlling an Ext. Gen. of the R&S Family SME / SMP and other .	A.24
A.13	External Reference Mixer Connector (a1 EXT OUT, a1 EXT IN)	A.24
A.14	External Keyboard (KEYBOARD)	A.24
A.15	Mouse Connector (MOUSE)	A.25
A.16	Monitor Connectors (PC MONITOR, ANALYZER MONITOR)	A 25

E-3

Annex	B – List of Error Messages	B.1
B.1	SCPI-Specific Error Messages	B.1
Annex	C – List of Commands	C.1
Annex	D – Programming Examples	D.1
D.1	Including IEC-Bus Library for QuickBasic	D.1
D.2	Initialization and Default Status	D.1
	D.2.1 Initiate Controller	D.1
	D.2.2 Initiate Instrument	D.1
D.3	Transmission of Instrument Setting Commands	D.2
D.4	Switchover to Manual Control	D.2
D.5	Reading out Instrument Settings	D.2
D.6	Positioning a Marker and Displaying Values	D.2
D.7	Command synchronization	D.3
D.8	Service Request	D.4
D.9	Programming via the RSIB Interface	D.6
	D.9.1 Visual Basic	D.6
	D.9.2 Visual Basic for Applications (Winword and Excel)	D.8
	D.9.3 C / C++	D.10
Annex	E - Emulations	E.1
E.1	Mouse Control of Display Elements	E.1
E.2	Front Panel Keyboard Emulation	E.2

ZVx Figures

Figures

Fig. 3-1	Tree structure of the SCPI command systems: The SENSe system	3.9
Fig. 3-2	Model of the instrument in the case of remote control by means of the IEC bus	3.146
Fig. 3-3	The status register model	3.149
Fig. 3-4	Overview over the status registers	3.151
Fig. A-1	Pin assignment of IEC-Bus interface	A.1
Fig. A-2	Pin assignment of the RS-232-C interface	A.5
Fig. A-3	Wiring of the data lines for software handshake	A.7
Fig. A-4	Wiring of the data, control and acknowledge lines for hardware handshake	A.8
Fig. A-5	Pin assignments for the USER connector	A.21
Fig. A-6	Pin assignments for the LPT connector.	A.22
Fig. A-7	Pin assignments of the KEYBOARD connector.	A.24
Fig. A-8	Pin assignments for the MOUSE connector.	A.25
Fig. A-9	Pin assignments of the MONITOR connector.	A.25

Tables ZVx

Tables

Table 3-1	Synchronisation using *OPC *OPC? and *WAI	3.148
Table 3-2	Meaning of the bits used in the status byte	3.152
Table 3-3	Meaning of the bits used in the event status register	3.153
Table 3-4	Meaning of the bits used in the STATus.OPERation register	3.154
Table 3-5	Meaning of the bits used in the STATus:QUEStionable register	3.155
Table 3-6	Meaning of the bits used in the STATus:QUEStionable:LIMit register	3.156
Table 3-7	Resettting instrument functions	3.159
Table 4-1	Possible error messages	4.2
ZVR, ZV	RE, ZVRL, ZVC, ZVCE	
Table 5-1	Performance Test Report – Generator Specifications	5.17
Table 5-2	Performance Test Report: Receiver specifications	5.31
Table 5-3	Performance Test Report: Test Set Specifications	5.41
Table 5-4	Performance Test Report: Crosstalk	5.50
Table 5-5	Performance Test Report – Generator Specifications	5.66
Table 5-6	Performance Test Report: Receiver Specifications	5.73
Table 5-7	Performance Test Report: Test Set Specifications	5.78
Table 5-8	Performance Test Report: Crosstalk	5.84
ZVK, ZV	M	
Table 5-1	Performance Test Record – Generator Specifications	5.18
Table 5-2	Performance Test Record – Generator Specifications	5.70
Table A-1	Interface functions	A.3
Table A-2	Universal Commands	A.4
Table A-3	Addressed Commands	A.4
Table A-4	Control strings or control characters of the RS-232 interface	A.7

ZVx Index

Index

Note:

All softkeys are listed with their names. The page numbers 2.xxx refer to the detailed description of the softkeys in chapter 2. Generally, the number of the page in chapter 3 containing the equivalent remote control command is given in addition.

A list of softkeys and equivalent remote control commands or command sequences is given in section 3.9.

Annex C contains a list of all remote control commands.

=	
= MKR (key)	2.229
0	
09 (key)	2.81
1	
1 Hz,, 10 kHz (softkeys)2.219, 2.26	. 2.214, 3.77 2, 3.31, 3.40
5	
51,, 1601 (softkeys)	2.199, 3.113
Α	
a1 INPUT POWER CAL	
a1, , b2	2.253, 3.107
macro	2.182
Abscissa scaling time domain transformation	2 113
ACCEPT POSITION	
Accessories ZVC, ZVCE	5 52
ZVR, ZVRE, ZVRL	
ACTIVATE KIT	
ACTIVE XX STANDARDS (selection table)	
ACTIVE XX YY (menu table)	2.350
ADD CONSTANT	
Administrator identification	
Admittance	
absolute	
normalized	
reference	
serial	
terminating	
ALL MARKER OFF	
Amplitude offset	2.312
Connector	1 25
Aperture	
group delay	2 267
APPEND NEW	
APPEND NEW	
APPLY CAL 2.307, 2.308	, 2.310, 3.93
APPLY CAL (FULL ONE PORT)	2.326, 3.93
APPLY CAL (FULL ONE PORT, ZVRL)	2.328, 3.93
APPLY CAL (ONE PATH, ZVR)	2.330, 3.93
APPLY CAL (ONE PATH, ZVRL)	
APPLY CAL (REFL NORM, ZVR)	
APPLY CAL (REFL NORM, ZVRL)	
APPLY CAL (TNA)	
APPLY CAL (TOM-X)	2.315, 3.93

APPLY CAL (TOSM)	2.313, 3.93
APPLY CAL (TOSM, ZVRE)	2.319, 3.93
APPLY CAL (TRANS AND REFL NORM, Z\	/R)
	2.337, 3.93
APPLY CAL (TRANS AND REFL NORM, Z\	
ADDLY OAL (TDANO NODA) 71(D)	
APPLY CAL (TRANS NORM, ZVR)	2.334, 3.93
APPLY CAL (TRANS NORM, ZVRL)	2.338, 3.93
APPLY CAL(TNA)	
ARBITRARY	
ARBITRARY (mixer measurements)	2.123, 3.104
ARBITRARY GATE SHAPE	
ARBITRARY SIDELOBES	
ARBITRARY SYST FREQ (mixer measurem2.12	nents) A 3 10A 3 121
ARBITRARY SYSTEM FREQUENCIES (sel	4, 3.104, 3.12 1 lection table)
ASCII	
ASCII file	
create	2 173
define output format	
ASCII FILES	
ATTEN	
Attenuator	
AUTO LENGTH (OFFICET)	1.44
AUTO LENGTH (OFFSET)	2.373, 3.97
AUTO RECALL	2.179
indicate	2 1 4 0
AUTOKAL CONNECTED	2.140
AUTOKAL FUNDAM TAL (7/05)	
AUTOKAL FUNDAM TAL (ZVRE)	3.93
AUTOKAL FUNDAM TAL (ZVRL)	2.332, 3.93
AUTOSCALE	
Auxiliary line editor	
AVERAGE	2.212, 3.76
AVERAGE RESTART	2.213, 3.76
Averaging	
Averaging factor	
AVG (key)	
AVG FACTOR	2.213, 3.76
AVG TYPE SWEEP POINT	2.213, 3.77
В	
b1/a1, b2/a2	2.256, 3.107
BACK (key)	
Bandfilter measurements	
BANDFILTER MODE	2.224. 3.33
BANDPASS	
Band-pass filter	
BANDPASS LOWPASS	2 108 3 41
BANDSTOP	
Band-stop filter	
BNC connector	
BOTH PORTS	
DO 1111 OINTO	2.024, 0.90

Index ZVx

BOTH PORTS (REFL NORM, ZVR)	2.335, 3.93	COLORS	2.287
BRIGHTNESS		COLORS (selection table)	2.289
Broadband termination	2.304	COM PORT 1	2.144, 3.136, 3.137
_		COM PORT 2	
C		COM PORTS (selection table)	2.144
_		COM1/2 interface	
C	2.221, 2.268, 3.22	Combined normalization	
CAL	2.176, 3.54	Combined normalization (ZVRL	
CAL (key group)	2.298	Commands	.)
CAL (key)	2.298		2.45
CAL a1 POWER			3.17
CAL a2 POWER		COMMENT CHANNEL 1,, 4	-
CAL b1 INPUT POWER		Common commands	
CAL b1 POWER		COMP POINT INP/OUTP (com	
CAL EXT SRC1 POWER			
CAL EXT SRC1 FOWER		COMPLEX	2.266, 3.22
		COMPLEX CONVERS	2.176, 2.261, 3.40, 3.54
CAL INTERPOL		COMPLEX MAGN/PHASE	2.232, 3.25
CAL KITS	3.93	COMPRESS POINT	
CALEXT SRC 1 POWER		COMPRESS SOI TOI	
Calibration	2.298	2.126, 3.106	3 3 107 3 117 3 118 3 122
full one-port	2.327	Compression point	
full two-port	2.305		
full two-port (ZVRE)			2.127
fundamental (ZVRL)		CONFIG (key)	
interpolation		CONFIG DISPLAY	2.287
normalization (ZVR)		Configuration	
		save	2.165
normalization (ZVRL)		Connector family	2.300
offset		CONNECTOR TYPE	2.346
receiver power calibration		CONTINUOUS SWEEP	
system error		CONV GAIN b1/a1	· ·
unidirectional two-port (ZVR)	2.328	CONV GAIN b2/a1	
unidirectional two-port (ZVRL)	2.331	CONV GAIN	
Calibration kit	2.343		
Calibration mode		CONV GAIN b2/Pa1	2.250
Calibration procedure		Conversion	
TNA			2.50
TOM		Conversion gain	2.256
		Copy	
TOM-X		file	2.168
TOSM		COPY	2.168, 3.65
TOSM (ZVRE)		COPY LINE	2.235
TRL		COPY MEM TRACE	
TRM	2.307	COPY SCREEN	
Calibration standard	2.301	COPY TABLE	
Calibration test menu	2.301	COPY TRACE	
CENTER (key)	2.189, 3.103, 3.118		2.136, 3.38
CENTER = MARKER		Correction	
Center value			2.90
CENTER X		Coupled channels	
CENTER Y	, -, -	COUPLED CHANNELS	
		COUPLED MARKERS	2.218, 3.30
CH1 - CH4 (keys)		CREATE INST FILE	2.351
CH1CH4 (keys)	3.63	Crosstalk errors	2.314
Channel		Cursor (key)	2.82
display		Cursor key	
dual overlay	2.61		2.82
dual split	2.61	CUTOFF FREQUENCY	_
information	2.50	CUTOFF FREQUENCY	2.353
quad dual split		D	
quad overlay		ט	
quad split		DATA ENTRY FIELD	2 280
		DATA ENTRY OPAQUE	
representation			2.290
single		Data entry windows	
CHARTER		_	2.95
Charter diagram		Data set	
CHIRP transformation	2.107	creation	2.177
CHK VALUE SETTINGS (compression	n point)2.129	partial	2.172
CHK VALUE SETTINGS (intercept po	. ,		2.177
CLEAR ALL MESSAGES			2.169
CLEAR MEM #		DATA SET CLEAR	
CLEAR MESSAGE		DATA SET CLEAR (RECALL).	
CLR (key)		DATA SET CLEAR ALL	
COLOR ON/OFF		DATA SET CLEAR ALL (RECA	
Colors	2.28/	DATA SET LIST	

ZVx Index

DATA SET LIST (RECALL)2.179	Diagram	
DATA SET LIST/CONTENTS (RECALL) (selection table)	Cartesian	•
	Charter	·
DATA SET LIST/CONTENTS (SAVE) (selection table)	expand	
	inverted Smith	
DATA TO MEMORY2.292, 3.141 Date	logarithmicpolar diagram	
input2.147	segmented	
DATE2.147, 3.137	Smith	
DB CARTESIAN	smoothing	•
B MAG AND PHASE 2.174, 2.221, 3.31, 3.53	DIAGRAM (key)	
#B MAGNITUDE2.220, 3.31	Directory	
DB POLAR2.282, 3.46	create	2.168
DC MEAS INPUT 12.264	rename	
DC MEAS INPUT 22.264	Disable	
DEC SEP2.175, 3.53	operation	2.93
Decimal separator2.175	DISABLE ALL ITEMS (RECALL)	2.181, 3.7
DEF ARBITRARY (mixer measurements)	DISABLE ALL ITEMS (SAVE)	2.172, 3.7
	Diskette	
DEF CART SEGMENTS2.279	format	
DEF COMP PNT MEAS	Display	
2.128, 3.106, 3.107, 3.117, 3.118, 3.122	brightness	
DEF MIXER MEAS2.119, 3.105	colors	
DEF POLAR SEGMENTS2.283	conversion	
DEF SOI MEAS2.133, 3.106, 3.107, 3.122 DEF SRC 1 PCAL SWEEP2.369	formatting	
DEF SRC 1 PCAL SWEEP2.369 DEF SRC 2 PCAL SWEEP2.369	information on the diagram	
DEF SWEEP SEGMENTS2.194, 3.110	marker info list	
DEF TIME GATE2.100	referencesaturation	
DEF TOI MEAS2.133, 3.106, 3.107, 3.122	scale reference	
DEF TRANSF TYPE2.106	scaling	
DEF TRIGGER2.100	sweep position	
DEF X-AXIS2.113, 3.42	sweep range	
DEFAULT CONFIG (RECALL)	DISPLAY (key)	
DEFAULT CONFIG (SAVE)	Display channels	
DEFAULT POSITION2.290	coupling	
Default setup2.183	Display line	
DEFAULT STEP SIZE2.95	DISPLAY OBJECTS (selection table)	2.28
DEFAULT VAL AND CHK SETTINGS OF SECOND /	Display windows	
THIRD ORDER INTERCEPT POINT MEASUREMENT	DISPLAYED DATA	2.176, 3.54
(table)2.135	Displays	
DEFAULT VALUES AND CHECK SETTINGS OF	mouse control	2.90
COMPRESSION POINT MEASUREMENT (table)2.129	DIVIDED X AXIS	
DEFINE B'DFILTER2.225, 3.33	Documentation	
DEFINE CIRCLE	DOMAIN TIME FREQ	•
DEFINE MACRO	DOMAIN TIME FREQUENCY	3.40
DEFINE MATH2.296, 3.38	DRIVE PORT PORT1/PORT2	0.050.000.00
DEFINE PAUSE		
DEFINE RATIO	DUAL CHAN OVERLAY	
DEFINE RATIO (selection table)	DUAL CHAN SPLIT	2.200, 3.43
DEFINE S-PARAMETERS (selection table)2.250	E	
DEL ACTIVE POINT2.367	_	
DEL ACTIVE I OINT (EDIT POWER LOSS LIST)2.371	EDIT CAL KIT PATH (menu table)	2.352
DEL ACTIVE SECTION2.240	EDIT COMMENT	2.171, 3.7
DEL ACTIVE SEGMENT	EDIT DIELECTRIC	
DEL ALL POINTS2.367	EDIT DIELECTRIC (OFFSET)	
DEL ALL POINTS (EDIT POWER LOSS LIST)2.370	EDIT DIELECTRIC (selection table)	
DEL ALL SECTIONS2.240	EDIT NAME	
DEL ALL SEGMENTS 2.197, 2.281, 3.111	EDIT NAME (RECALL)	
Delay time2.202	EDIT NAME (SAVE)	
DELÁY TIME (OFFSET)2.372, 3.96	EDIT PATH (BECALL)	
Delete	EDIT PATH (RECALL)	
file2.168	EDIT PATH (SAVE)	
DELETE 2.168, 3.66, 3.68	EDIT POWER LOSS LIST	·
DELETE MACRO2.188	EDIT RTC TRIG TIME EDIT SWEEP TIME	
DELTA (key)2.227	EDIT SWEEF TIME	
Delta marker2.58	EDIT TITLE	
Delta markers2.227	Editing Editing	2.29
DELTA OFF	parameter	288 20
DEVICE SETTINGS (selection table)2.162	ELECTRICAL LENGTH	

Index ZVx

ELECTRICAL LENGTH (OFFSET)	•	F	
Electrostatic discharge	1.20		0.40
Enable		Fast Fourier transformation	
Front panel keys		Fast Mode	
ENABLE ALL ITEMS (RECALL)		FAST MODE	
ENABLE ALL ITEMS (SAVE)		FFT CHIRP	2.107, 3.41
ENABLE NEW OPTION		File	0.400
Enhancement label	2.53	copy	
ARB	2.123	delete	
AVG	2.212	rename	
CA?	2.299	SORT	
CAI	2.299	FILE MANAGEMENT (selection tabl	e)2.167
CAL		Filter measurement measurement example	0.45
CMP			2.17
EXT		Filtering frequency range	2 106
FST			2.100
H=2		Firmware Options enable	2 140
H=3		FIRMWARE OPTIONS	
HLD		FIRMWARE OPTIONS (selection tal	
list of all		FIRMWARE VERSIONS	
MAT		FIRMWARE VERSIONS (selection t	
MIX		FIXED IF (mixer measurements)	
PC		FIXED LO (mixer measurements)	
PC(x)		FIXED POS STIMULUS	
PC?		FIXED POS X VAL	
PCi		FIXED POS Y VAL	*
PCo		FIXED RF (mixer measurements)	· ·
SMO		Format	2. 12 1, 3. 100
SOI		ASCII	2 173
TIM		FORMAT	
TOI		FORMAT (key)	*
TRF RTC		FORMAT DISK	
TRG EXT		Formatting	
TRG LIN		complex	
TRG MAN		display	
TRG TIM		imaginary part	
ENTER (key)		magnitude	
ENTER PASSWORD		phase	
ENTER TEXT	2. 160, 3.36	real part	
Entry abort	2.04	FORWARD	
		Fourier transformation, fast	
activate		FREE RUN	
correction		FREQ OFFS OF 2ND SRC (SOI)	
terminate ENTRY LINE1/LINE2		FREQ OFFS OF 2ND SRC (TOI)	
Error messages, list		Frequency	- , -
Ethernet Adapter	300 AIIIICA D	base	2.117
EXP (key)		equation	
EXPAND		fixed	2.121
EXR SRC CONFIG		sweep	
EXT LEVEL CONTROL		FREQUENCY	
EXT REF FREQUENCY		FREQUENCY APERTURE	
EXT SOURCES CONFIG (selection table)	· ·	FREQUENCY CONVERS	2.117, 3.104
EXT SRC 1 POWER		FREQUENCY SWEEP	
EXT SRC 1 SLOPE	·	Front panel	, -
EXT SRC 2 POWER	·	keyboard emulation	2.2
EXT SRC 2 POWER CAL		FTP	
EXT SRC 2 SLOPE		operation	
EXT SRC CONFIG	· ·	FULL	
EXT SRC CONFIG		FULL ONE PORT	
EXT SRC CONFIG (mixer measurement)		FULL PAGE	
EXT SRC CONFIG (mixer measurement) EXT SRC1 (compression point)		FULL TWO PORT	
EXT SRC1 (compression point) EXT SRC1 EXT SRC2 (S0I)		FULL TWO PORT (ZVRE)	2.317
EXT SRC1 EXT SRC2 (301)		Fuse	
EXT SRC1 EXT SRC2 (101)EXT SRC2 (compression point)			
Ext SRC2 (compression point) Ext Trigger	2. 101, 3. 122	G	
input	Δ 22	Cha (hana)	2.2
EXTERNAL		G/n (key)	
EXTERNAL (Trigger)	·	Gain factor	
External generator		Gate (time domain)	
		GATE SPAN	
		GATE SPAN2	. 100, 2.114, 3.21, 3.42

ZVx Index

GATE START 2	.105, 2.114, 3.20, 3.41	Input reflection coefficient	2.248
GATE STOP 2	.105, 2.114, 3.20, 3.42	INS NEW POINT	
Generator power calibration	2.355	INS NEW POINT (EDIT POWER L	OSS LIST) 2.371
GOTO POINT # (EDIT POWER LOS	SS LIST)2.371	INS NEW SECTION	*
GOTO POINT # (SENSOR CAL FAC	CTOR) 2.367	INS NEW SEGMENT	
GOTO SECTION #	2 240	Insertion loss	
GOTO SEGMENT #		INSTALL NEW KIT	
GPIB ADDRESS		INSTALLED CAL KITS (menu tabl	
		INSTALLED CAL KITS (Mentitable INSTALLED COMPONENTS (sele	
Graphic elements			
Grid		INSTALLED OPTIONS (selection t	
harmonic		Instrument model	
linear		INT SRC (compression point)	
logarithmic		INT SRC EXT SRC1 (SOI)	
user-defined	2.193	INT SRC EXT SRC1 (TOI)	
GRID		INT SRC EXT SRC2 (SOI)	2.137, 3.122
GRID ANNOTATION	2.282	INT SRC EXT SRC2 (TOI)	
Grid points		INT SRC1 (compression point)	3.122
for time-domain transformation	2.108	INTC POINT INP/OUTP (SOI)	
Group delay		INTC POINT INP/OUTP (TOÍ)	
GROUP DÉLAY2		Intercept	2.126
	,,,	Intercept measurement (2 nd /3 rd order)	2 132
H		Interface	see Anney A
		printer	
Handshake protocol		Interface configuration	
hardware	2.1 <i>4</i> 5	S .	2.141
software	2.146	Interfaces	
Hardcopy		IEC/IEEE bus	
comments	2 160	RS-232-C	
CODY		Interpolation	
format		INVERTED SMITH	
		ISOLATION YES/NO (TOSM)	2.313
output device		ISOLATION YES/NO (TOSM, ZVF	RE) 2.319
position		ITEMS TO RECALL (selection table	le) 2.181
screen		ITEMS TO SAVE (selection table).	
HARDCOPY DEVICE		(**************************************	
Hardware		K	
HARDWARE+OPTIONS			
Harmonic Grid	2.108	k/m (key)	2.81
Header line	2.49	KEEP FREQ STEP WIDTH	
HOLD (key)	2.93	KEEP STOP FREQ	2.110, 3.41
		Key	•
		COPY (hardcopy)	
		Key group	
IEC/IEEE bus		CHANNEL	2 245
address	2.142	LINES	
commands and related softkeys.	3.160	Keyboard	
device messages		connector	4.24
interface			A.24
interface messages		Keyboard, external	4.05
interfaces		connection	
		K-FACTOR	3.107
set address			
IF = BASE FREQ (mixer measureme		L	
IF BANDWIDTH		1	2 221 2 260 2 22
IF-Filter		L	2.221, 2.200, 3.22
IMAGINARY2		LED message	2.2
IMMEDIATE		REMOTE	3.2
Impedance		Length	
serial	2.261	electrical	2.269
terminating	2.261	Length offset	
IMPULSE STĔP		Level error	2.298
INFO (Key)		Limit check	
Information		LIMIT CHECK	
channel	2.50	Limit line	
test parameter		cartesian diagram	
•		circle diagram	
Information line	2.50	copy	
Input	404		
a1 EXT IN		move	
BLANK		select	
Ext Trigger	A.23	LIMITS (key)	
LEVEL	A.23	LIN CARTESIAN	
PORT BIAS 1 / 2	A.23	LIN MAG AND PHASE	
REF IN	A.23	LIN MAGNITUDE	
INPUT	2.252 3.107	LIN POLAR	2.282, 3.46

Index ZVx

LIN SWEEP	2.193, 3.104, 3.113	MATCH P1 OPEN P2	
Lin/Log		MATCH PORT 12.306, 2.3	
display		MATCH PORT 1 (FULL ONE PORT)	
LINE		MATCH PORT 1 (FULL ONE PORT, ZVRL).	
LINE 1		MATCH PORT 1 (ONE PATH, ZVR)	
LINE 2		MATCH PORT 1 (ONE PATH, ZVRL)	
LINE SECTIONS (selection table)	2.239	MATCH PORT 1 (TOSM)	
Line style		MATCH PORT 1 (TOSM, ZVRE)	
selection of		MATCH PORT 22.306, 2.3	
LINE STYLE CHn		MATCH PORT 2 (FULL ONE PORT)	
LINE STYLE MEM TRACE		MATCH PORT 2 (ONE PATH, ZVR)	
LINES (key)		MATCH PORT 2 (TOSM)	
LIST INSTD KITS		MATCH PORT 2 (TOSM, ZVRE)	
LO = BASE FREQ (mixer measurem		MATH	
LO EXT SRC1/SRC2 (mixer measure	∍ments) 2.120, 3.105	MATH DATA/MEM	
LOAD STATE	3.67	MATH DATA+MEM	2.295
LOCAL (key)	2.182	MATH DATA-MEM	
LOCK ALL		MATH DATAxMEM	2.295
LOCK DATA		MATH MEM/DATA	
LOG CARTESIAN	2.278, 3.46	MATH USER DEF´D	
LOG POLAR		MAX = MARKER	
LOG SWEEP	2.193, 3.104, 3.113	MAX MODE	2.224, 3.33
Login	1.23	MAX VALUE	2.274, 3.49
Login (NT controller)	1.23	MAXIMUM FLATNESS	2.102, 3.21
Logo	2.53, 2.290	MEAS (key)	2.247
LÕGO	2.290	MEAS FRÉQ SUM/DIFF (SOI)	2.134, 3.107
Logout	1.23	MEAS SIDEB LSB USB (TOI)	
LŎW FIRST SIDELOBE		Measured diagram	,
LOWER LEFT		scaling	2.272
LOWER RIGHT		Measured quantity	
LOWPASS DC S-PARAM		conversion	2.261
LPT		diagram	
interface	A 22	formatting	
		manipulating mathematically	
M		storing	
		Measurement	
M/μ (key)	2.81	direct input signal	2 252
Macro		ratio	
abort	2.182	save	
definition	2.187	Measurement example	2. 700
start	2.185	filter measurement	2 17
MACRO 17	2.186	transmission measurement	
MACRO TITLE	2.188	Measuring diagram	
MAGNITUDE	2.266, 3.22	Measuring diagram Measuring Instruments	2.00
MAGNITUDE (OFFSET)	2.372, 3.98	ZVC, ZVCE	5.50
Maintenance	4.1		
MAKE DIRECTORY	2.168, 3.67	ZVR, ZVRE, ZVRL MECHANICAL LENGTH	
MANUAL (trigger)	2.202		
Manual control		MECHANICAL LENGTH (OFFSET)	
switchover	2.182	MECHANICAL LENGTH (OFFSET)	
MANUAL STEP SIZE		MEM 1, , MEM 8	2.294
MANUAL TRIGGER		Memory	4.00
Marker		battery-powered	
active		configuration	2.167
display of active value		Menu	0.70
formatting		arrows	
Lists		call	
marker position		change keys	
marker value		Message windows	2.73
reference		Messages	
representation		acknowledgement	2.76
•		MICROSOFT NET	
symbols MARKER (key group)		operation	
MARKER (key group) MARKER 1		MIDDLE = MARKER	
MARKER CONT/DISCR		MIDDLE VAL/DELTA LIM	2.241
		MIN = MARKER	2.230
MARKER CONVERS		MIN MODE	2.224, 3.33
MARKER DATA/MEM	-	MIN VALUE	2.274, 3.49
MARKER INFO		MIXER MEAS	2.119, 3.104
Marker info list	•	Mode	•
MATCH BOTH PORTS (TOM-X)		Delta marker	2.228
MATCH BOTH PORTS (TOSM)		external measurement	
MATCH BOTH PORTS (TOSM, ZVR	' <i>∟)</i> 2.319, 3.92	fast mode	

ZVx Index

frequency sweep	2.138	OPEN PORT 2 (FULL ONE PORT)	2.325, 3.92
frequency-converting measurements	2.117	OPEN PORT 2 (ONE PATH, ZVR)	2.330, 3.92
mixer measurements	2.119	OPEN PORT 2 (REFL NORM, ZVR)	2.335, 3.92
power sweep	2.139	OPEN PORT 2 (TOSM)	2.313, 3.92
reference mixer	2.140	OPEN PORT 2 (TOSM, ZVRE)	2.318, 3.92
segmented sweep	2.194	OPEN PORT 2 (TRANS AND REFL NORI	M, ZVR)
single point measurement	2.192		2.337, 3.92
time sweep	2.139	OPERAND X (selection table)	2.296
MODE (key)		Operating mode	
MODEL TYPE (selection table)	2.151, 2.152	time domain	
MODIFY CAL KIT	2.343	Operational site	
MODIFY STANDARDS		OPERATOR X (selection table)	2.297
MODIFY XX YY STANDARDS (selection	table)2.348	Option	
Module		external measurements, ZVR-B25	
information on	2.152	frequency-converting measurements, .	ZVR-B4 2.117
Monitor		FSE-B16 - Ethernet Adapter	
connection	1.26	nonlinear measurements, ZVR-B5	
Mouse		reference mixer	
connection		reference mixer, ZVR-B6	
connector		Time Domain Transformation, ZVR-B2	
operation	2.95	OPTIONS	2.149
Mouse control		Output	
display elements		a1 EXT OUT	
MOVE LINE	2.232, 2.242	REF OUT	
N		TRIGGER	
N		Output reflection coefficient	
N 50 Ω	2 346 3 93	Output unit	3.148
N 50 Ω FEMALE2	· ·	Р	
N 50 Ω MALE		P	
N 75 Ω		PAE	2.264
N 75 Ω FEMALE		PAGE DOWN (DATA SET LIST)	
N 75 Ω MALE		PAGE DOWN (FILE MANAGEMENT)	
network operating system	2.302, 3.33	PAGE DOWN (RECALL)	
FTP	1 54	PAGE UP (DATA SET LIST)	2.171
MICROSOFT NET		PAGE UP (FILE MANAGEMENT)	2.168
NOVELL NETWARE		PAGE UP (RECALL)	
TCP/IP		Parameter	
NO PROFILING		editing	2.88, 2.90
NORMAL (key)	·	selection	2.83
NORMAL GATE		Parameters	2.204
NORMAL PROFILE	· ·	coupled	2.204
NOVELL NETWARE		Parasitic capacitance	2.350
operation	1.48	Parasitic inductance	2.350
NT controller		Password	
NUMBER OF POINTS		Windows NT	
NUMBER OF READINGS	2.368, 3.120	Path	
NUMBER OF SWEEPS		PC 3.5	
NUMBER OF TABLE ROWS	2.198	PC 3.5 FEMALE	·
		PC 3.5 MALE	
0		PC 7	2.346, 3.93
05505T (I)	0.074	PC Monitor	
OFFSET (key)		Connector	
Offset quantities		PEAK TO PEAK	2.228, 3.36
ONE PATH TWO PORT		Performance Test Report	
Open		(ZVR, ZVRE, ZVRL)	
OPEN BOTH PORTS	,	ZVC, ZVCE	
OPEN P1 MATCH P2	·	PERIODIC TIMER	
OPEN PORT 1		PHASE2.220,	
OPEN PORT 1 (FULL ONE PORT, ZVP)	,	PHASE (OFFSET)	
OPEN PORT 1 (FULL ONE PORT, ZVRL)		Phase delay	
OPEN PORT 1 (ONE PATH, ZVR)		PHASE DELAY	
OPEN PORT 1 (ONE PATH, ZVRL) OPEN PORT 1 (PEEL NORM ZVR)	· ·	Phase offset	
OPEN PORT 1 (REFL NORM, ZVR) OPEN PORT 1 (REEL NORM, ZVRL)		PHASE UNWRAP	2.269, 3.22
OPEN PORT 1 (REFL NORM, ZVRL)		Plotter	
OPEN PORT 1 (TOSM)	·	connection	
OPEN PORT 1 (TOSM, ZVRE) OPEN PORT 1 (TRANS AND PEEL NOR		POINTS/DEC	
OPEN PORT 1 (TRANS AND REFL NOR		Polar diagram	
OPEN PORT 1 /TRANS AND REEL NOR	· ·	PORT 1 (DEEL MORM 700)	
OPEN PORT 1 (TRANS AND REFL NOR		PORT 1 (REFL NORM, ZVR)	
OPEN PORT 2		PORT 1 CONNECTOR	
OI LIVI OINI Z	2.000, 3.32	PORT 2	2.324, 3.93

Index ZVx

PORT 2 (REFL NORM, ZVR)		REFLECT PORT 2	· · ·
PORT1/PORT2		Reflection coefficient	
POWER		Reflection normalization (ZVR)	2.334
Power added efficiency		Reflection normalization (ZVRL).	
Power loss list		Remote control2.12	· ·
POWER LOSS LIST (selection table)		ABORt	
POWER MTR CONFIG2.3	, ,	CALCulate	
POWER MTR CONFIG (selection table)		DIAGnostic	
POWER MTR TYPE (selection table)		DISPlay	
POWER SWEEP	·	FORMat	
		НСОРу	
Preset		indication	
PRESET (key)	3.139	INITiate	
Printer		INPut	
connection	1.28, A.22	INSTrument	
Probe Power		instrument model	
connector		MMEMory	
Processing of measured values	2.22	OUTPut	
0		SENSe	
Q		set transmission parameters	
QUAD CHAN DUAL SPLIT	2 286 3 45	SOURce	
QUAD CHAN OVERLAY		STATus	
QUAD CHAN QUAD SPLIT		switching on	
Quality factor	·	SYSTem	
QUALITY FACTOR		TRACe	
QUALITITACTON	2.220, 3.34	TRIGger	3.144
R		Remote Control	
•		PROGram	3.74
Rack		Rename	
installation	1.21	directory	2.168
RADIUS2.	.237, 2.276, 3.27	file	2.168
Rated specifications		RENAME	2.168, 3.67
generator (ZVC, ZVCE)	5.53	REPEAT PREV CAL	2.341
generator (ZVR)		Reset	
measuring instruments	5.1, 5.52	instrument	2.183
receiver (ZVC, ZVCE)	5.58	RESET COLORS	2.289
test sequence (ZVC, ZVCE)	5.53	RESET OFFSETS	2.372
test sequence (ZVR, ZVRE, ZVRL)	5.2	RESPONSE (key group)	
test set (ZVC, ZVCE)	5.63	RESTART (key)	2.206
test set (ZVR, ZVRE, ZVRL)	5.14	RESTORE INSTD KITS	
testing	5.1	RESUME CAL	
-		REVERSE	
	5.9	RF = BASE FREQ (mixer measu	rements)2.120, 3.105
	5.65	RJ45 (star topology)	1.44
	5.17	RLC ELEMENTS	2.221
RATIO 2.2	255, 2.258, 3.107	Rohde & Schwarz logo	2.53
REAL 2.220, 2	2.266, 3.22, 3.31	Rollkey	
REAL AND IMAGINARY2.	.174, 2.221, 3.31	functions	2.82
REAL TIME CLOCK	2.202, 3.144	RS-232-C	
Real-time clock	2.202	interface	A.5
Recall			
data set	2.177	S	
RECALL (key)	2.177	C	2 2 4 0 2 2 6 4 2 2 4 2 4 6
RECALL DATA SET (selection table)	2.178	S	
Receiver power calibration		S11 REFL PORT1	·
RECORD ON/OFF		S12 TRANS REV	·
Reduction factor (wave velocity)		S21 TRANS FWD	·
REF VAL = MARKER		S22 REFL PORT2	· ·
Reference	,	SATURATION	2.288
external	2.148	Save	0.405
Reference admittance		configuration	
Reference circle		data set	
REFERENCE EXT/INT		measurement	
Reference line	·	SAVE (key)	
REFERENCE MIXER	·	SAVE DATA SET (selection table	
REFERENCE POSITION		SCALE (key)	
Reference value		Scale Reference Fields	
REFERENCE VALUE		SCALE/DIV	· · · · · · · · · · · · · · · · · · ·
REFL NORM (ZVR)		Scaling	
REFL NORM (ZVRL)		abscissa	
REFLECT PORT 12		automatic	
2.	.555, 2.555, 5.55	circular	2.71

display	2.52, 2.53	SET DIELECTRIC (OFFSET)	2.373, 3.97
ordinate	2.66	SET DIELECTRIC (selection table)	2.270
radial		SET FREQS LOWPASS	2.109
reference value		SET PATH	3.65
SCPI-standard		SET PATH A	
block data		\ (RECALL)	
boolean parameters		\((SAVE)	
command line		\ (SETTING) SET PATH C	2.159
commandsdevice-independent commands		\ (RECALL)	2 170
device-independent commands		l (SAVE)	
introduction		\ (SETTING)	
key words		SET Z0	
numerical values		SETTINGS DEVICE 1, 2	
parameters		Settling time	
queries		SETTLING TIME (compression point)	
strings		SETTLING TIME (SOI)	
syntax elements		SETTLING TIME (TOÍ)	
text parameters	3.13	Setup	2.141
SCPI-status register	3.149	general	2.142
IST flag		SETUP (key)	
service request enable register		SEXLESS USR CONN 1	
status byte		SEXLESS USR CONN1	
SCR. MODE ON/OFF		SHAPE FACT 60 dB / 3 dB	
SCR. SAVER ON OFF		SHAPE FACT 60 dB / 6 dB	·
SCR. SAVER ON/OFF		Shape factor	
SCR. SAVER TIME		SHORT PORT 1	
Screendiagram area		SHORT PORT 1 (FULL ONE PORT) SHORT PORT 1 (FULL ONE PORT, ZV.	
diagram area		SHORT PORT 1 (POLL ONE PORT, 2V) SHORT PORT 1 (ONE PATH, ZVR)	, ,
setup softkey area		SHORT PORT 1 (ONE PATH, ZVR.)	
subdivision		SHORT PORT 1 (TOSM, ZVRE)	2 319 3 92
SEARCH		SHORT PORT 2	
SEARCH ← NEXT		SHORT PORT 2 (FULL ONE PORT)	
SEARCH (key)		SHORT PORT 2 (ONE PATH, ZVR)	
SEARCH NEXT		SHORT PORT 2 (TOSM, ZVRE)	
SEARCH NEXT	·	SHOW DATA	
SECOND HARMONIC		SHOW LINE	2.232, 2.244
SEG SWEEP		SHOW MATH	2.293, 3.38
Segment list (sweep)		SHOW MEM	
Segmentation	2.279	Sign (key)	
Cartesian	2.279	SINGLE CHANNEL	2.285, 3.45
radial	2.283	SINGLE POINT	
SEGMENTED CARTESIAN		Single point measurement	
SEGMENTED POLAR		SINGLE SWEEP	
SEL BAND (mixer measurements)		SIZE X	
SEL ITEMS TO COPY		SIZE Y	
SEL ITEMS TO RECALL	,	SLIDE 1 (FULL ONE PORT, ZVRL) SLIDE PORT 12.307,	2.328
SEL ITEMS TO SAVE	·	•	
SELECT KIT		SLIDE PORT 1 (FULL ONE PORT) SLIDE PORT 1 (ONE PATH, ZVR)	·
SELECT LINE SELECT MACRO		SLIDE PORT 1 (ONE PATH, ZVR.)	
SELECT MACKO		SLIDE PORT 1 (TOSM, ZVRE)	
SELECT OBJECTSELECT (selection table)		SLIDE PORT 22.307,	
SELECT ODSECT (Selection table) SELECT QUADRANT		SLIDE PORT 2 (FULL ONE PORT)	
SELECT UNIT		SLIDE PORT 2 (ONE PATH, ZVR)	
SELECT UNIT (selection table)		SLIDE PORT 2 (TOSM, ZVRE)	
Selection table		Sliding load	
position	2.289	SLOPE	
SELFTEST (selection table)		Slope factor	2.208
SENSOR A CAL FACTOR		SLOPE POS/NEG	
SENSOR A CAL FACTOR LIST (selectio	on table)2.367	SMA	
SENSOR B CAL FACTOR LIST (selectio	,	SMA FEMALE	2.302, 3.93
SENSOR LABEL		SMA MALE	
Serial admittance	2.261	SMITH	2.284, 3.46
Serial impedance	2.261	Smith chart	
Serial interface		inverted	
configuration	2.144	Smoothing	
SERVICE		SMOOTHING	
Service request		SMOOTHING APERTURE	
SET COLOR		SMOOTHING function	2.176
SET DIELECTRIC	2 270		

Index ZVx

Softkey		SWEEP DIR FWD/REV	2.205, 3.113
ENABLE DEV1 / DEV2	2.163	Sweep direction	2.205
GENERAL SETUP		Sweep line	
MONITOR CONNECTED	2.147	Sweep modes	
SETTINGS DEVICE 1/2	2.162	Sweep segments	
Softkey		SWEEP SEGMENTS (selection table)	2.195
display	2.59	SWEEP START/HOLD	2.205
EXT SRC CONFIG	2.130	Sweep time	2.203
IEC/IEEE bus	2.59	automatic setting	2.203
menu	2.59	manual setting	2.203
related IEC/IEEE-bus commands	3.160	SWEEP TIME AUTO/MAN	2.203, 3.112
Softkey TRANS NORM (ZVRL)	2.338	SWEEP TYPE	2.138, 3.107
SOI	2.132, 3.107	switch-on test	4.2
SORT MODE	2.168	SWR2.22	
SOURCE (key)	2.207	SYMMETRIC NETWORK	2.311
Span	2.189	SYSTEM (key group)	2.97
SPAN (key)	3.103, 3.119	System error	
SPAN (key)		System error calibration	
SPAN = MARKER		System messages	
SRC POWER MAX LIMIT (compression p		SYSTEM MESSAGES	
2.		System-error correction	2.213
SRC POWER MAX LIMIT (SOI)		T	
SRC POWER MAX LIMIT (TOI)		Т	
SRC POWER MIN LIMIT (compression p	,	Table	
2.		operation	2 85
SRC POWER MIN LIMIT (SOI)		scrolling	
SRC POWER MIN LIMIT (TOI)	2.133	TAKE CAL SWEEP	
SRQ		TARGET MODE	•
indication		Target search mode	
Stability factor		TCP/IP	
Standby		operation	1.53
Standing wave ratio		Terminating admittance	
START (key)2.189, 3		Terminating impedance	
START = MARKER		Test parameter	
START AUTOKAL		information	2.50
START NEW CAL		Test Sequence	
START NEW POWER CAL		ZVC, ZVCE	5.53
START POWER CAL		ZVR, ZVRE, ZVRL	
Start value		Testing the Rated Specifications	
Start-Up		Thick Ethernet	
Status registers		Thin Ethernet	1.43
Status reporting service request		THIRD HARMONIC	2.118, 3.104
Status reporting system		THROUGH (ONE PATH, ZVR)	2.330, 3.92
error queue query		THROUGH (ONE PATH, ZVRL)	2.332, 3.92
parallel poll		THROUGH (TNA)	2.311, 3.92
queries		THROUGH (TOM)	2.306, 3.92
reset valuesserial poll		THROUGH (TOM-X)	2.314, 3.92
use		THROUGH (TOSM)	
STEEP EDGES		THROUGH (TOSM, ZVRE)	
STEEP FALLOFF		THROUGH (TRANS AND REFL NORM,	,
STEEPEST EDGES		THROUGH (TRANS AND REFL NORM,	•
STEP (key)	•	THROUGH (TRANS NORM, ZVR)	
STEP APERTURE		THROUGH (TRANS NORM, ZVRL)	
STEP ATT a1		THROUGH (TRL)	
STEP ATT a1 AND a2		THROUGH (TRM)	2.308, 3.92
STEP ATT a2		Time	
STEP ATT b1	· ·	input	
STEP ATT b2		TIME	
STEP SIZE		Time domain	
Stepsize		TIME DOMAIN	
settings	2.94	TIME GATE	· ·
STIMULUS (key group)		Time sweep	
STOP (key)2.		TIME SWEEP	•
STOP = MARKER		TINT	
Stop value	·	TITLE	
SUPER COMPACT		Title line	·
SUPERCOMPACT		TNA	
Sweep		Toloropeo bond	•
indikator	2.57	Tolerance band	
SWEEP (key group)		Tolerance circlesTOM	
SWFFP (key)	2 191	1 OIVI	2.305, 3.93

ZVx Index

TOM-X	2.314. 3.93
TOSM	
TOSM (ZVRE)	2.318, 3.93
TOUCHSTONE	
Trace	
TRACE (key)	2.292
TRACE MATH function	
Tracking	
TRACKINGTRANS AND REFL NORM (ZVR)	2 226 2 02
TRANS AND REFL NORM (ZVR)	2 340 3 03
TRANS FWD REFL P1 (ZVR)	
TRANS FWD REFL P21	3.93
TRANS NORM (ZVR)	2.333, 3.93
TRANS REV RÈFL P2 (ZVR)	2.337
Transmission coefficient	
Transmission measurement	
measurement example	2.2
Transmission normalization (ZVR)	2.333
Transmission normalization (ZVRL)	2.338
TRC COLOR AUTO INC	2.161, 3.59
TRIGGER DELAY Trigger mode	2.202, 3.145
external	
free-running measuement	
internal	2 201
manual	
TRIGGER SWEEP/POINT	2.202. 3.145
TRL	2.309. 3.93
TRM	2.307, 3.93
TWO PORT NORM	3.93
TWO PORT NORM (ZVR)	2.337
Two-tone signal	2.126
U	
UNCAL	0.00
ONCAL	3.98
UNINSTALL KITS	2.352
UNINSTALL KITS Unit (key)	2.352 2.81
UNINSTALL KITS Unit (key) UNLOCK	2.352 2.81 2.93
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES	2.352 2.81 2.93 2.154
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT	2.352 2.81 2.93 2.154 2.160, 3.60
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT UPPER LIM/LOWER LIM	2.352 2.81 2.93 2.154 2.160, 3.60 2.241, 3.26
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT UPPER LIM/LOWER LIM UPPER RIGHT	
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT UPPER LIM/LOWER LIM UPPER RIGHT USE CURSOR	
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT UPPER LIM/LOWER LIM UPPER RIGHT USE CURSOR USE LINE STYLE	
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT UPPER LIM/LOWER LIM UPPER RIGHT USE CURSOR USE LINE STYLE USE MARKER 2.237	2.352 2.81 2.154 2.160, 3.60 2.241, 3.26 2.160, 3.60 2.237, 2.240 2.164 7, 2.241, 2.242
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT UPPER LIM/LOWER LIM UPPER RIGHT USE CURSOR USE LINE STYLE	
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT UPPER LIM/LOWER LIM UPPER RIGHT USE CURSOR USE LINE STYLE USE MARKER	
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT UPPER LIM/LOWER LIM UPPER RIGHT USE CURSOR USE LINE STYLE USE MARKER USE MARKER USE POWER LOSS LIST. USE SENSOR A/B. USER	
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT UPPER LIM/LOWER LIM UPPER RIGHT USE CURSOR USE LINE STYLE USE MARKER USE MIN STEP WIDTH USE POWER LOSS LIST USE SENSOR A/B User interface	
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT UPPER LIMLOWER LIM UPPER RIGHT USE CURSOR USE LINE STYLE USE MARKER	
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT UPPER LIM/LOWER LIM UPPER RIGHT USE CURSOR USE LINE STYLE USE MARKER USE MIN STEP WIDTH USE POWER LOSS LIST USE SENSOR A/B User interface USER (key) USER CONN IMPEDANCE	
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT UPPER LIMLOWER LIM UPPER RIGHT USE CURSOR USE LINE STYLE USE MARKER USE MIN STEP WIDTH USE POWER LOSS LIST USE SENSOR A/B USER (key) USER CONN IMPEDANCE USER CONN NAME	
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT UPPER LIMLOWER LIM UPPER RIGHT USE CURSOR USE LINE STYLE USE MARKER USE MIN STEP WIDTH USE POWER LOSS LIST USE SENSOR A/B USER interface USER (key) USER CONN IMPEDANCE USER CONN NAME USER DEF'D S-PARAMS	
UNINSTALL KITS	
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT UPPER LIM/LOWER LIM UPPER RIGHT USE CURSOR USE LINE STYLE USE MARKER 2.237 USE MIN STEP WIDTH USE POWER LOSS LIST USE SENSOR A/B USER (key) USER CONN IMPEDANCE USER CONN IMPEDANCE USER DEF 'D S-PARAMS USER PORT A USER PORT B USER PORT B 2.1 USER PORTS (selection table)	
UNINSTALL KITS Unit (key) UNLOCK UPDATE MESSAGES UPPER LEFT UPPER LIM/LOWER LIM UPPER RIGHT USE CURSOR USE LINE STYLE USE MARKER 2.237 USE MIN STEP WIDTH USE POWER LOSS LIST USE SENSOR A/B USER (key) USER CONN IMPEDANCE USER CONN IMPEDANCE USER DEF 'D S-PARAMS USER PORT A USER PORT B USER PORT B 2.1 USER PORTS (selection table)	
UNINSTALL KITS	

Windows NT
^
X DB COMP POINT (compression point) 2.129, 3.107 X GRID LIN/LOG 2.198, 3.113 X OFFSET 2.243 X POSITION 2.290 x1 (key) 2.81 X-AXIS DISTANCE 2.113, 3.42 X-AXIS DISTANCE/2 2.114, 3.42 X-AXIS TIME 2.113, 3.42
Υ
Y
Z
Z
Δ
1 REF = FIXED POS
u
u1-FACTOR3.107 u2-FACTOR3.107

Important Hints before Operation:

For all instruments:

- The directory C:\R_S\INSTR and its subdirectories are reserved for system software. Never modify this directory in any way, otherwise the functioning of the instrument will be impaired.
- Aborting a hardcopy is not possible when printout is in progress. Print jobs in the queue can be
 deleted before printout has been started by pressing the HARDCOPY START key until the
 message "Hardcopy in progress. Abort?" is displayed. The length of the queue is two jobs.
- To avoid damage of electronic components of the DUT and the analyzer, the operational site
 must be protected against electrostatic discharge.

Windows NT

Caution:

The drivers and programs used under Windows NT are adapted to the measuring instrument. In order to prevent the instrument functions from damage, the settings should only be modified as described below. Existing software may only be modified using update software released by Rohde&Schwarz. Additionally only programs authorized by Rohde&Schwarz for use on the ZVx may be run on the instrument.

Do not power down during booting. Such a switch-off may lead to corruption of the hard disk files.

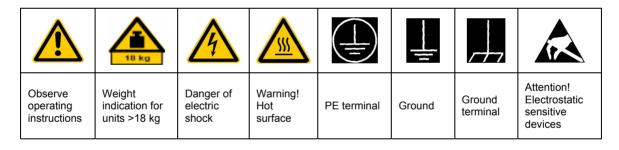
Removable Harddisk FSE-B18

When using the Removable Harddisk, FSE-B18, please observe the following:

- Always keep your Removable Harddisk in the plastic case included in this package.
- Do not drop your Removable Harddisk.
- Do not expose it to moisture, to extreme temperatures, or to a strong magnetic field.
- Do not squeeze the external cover of the Removable Harddisk.
- Do not affix additional labels.
- Do not remove the existing label or write anything on to it.

Patent Information This product contains technology licensed by Marconi Instruments LTD. under US patents 4609881 and 4870384 and under corresponding patents in Germany and elsewhere. Please note the safety instructions on the next sheet!

Before putting the product into operation for the first time, make sure to read the following


Safety Instructions

Rohde & Schwarz makes every effort to keep the safety standard of its products up to date and to offer its customers the highest possible degree of safety. Our products and the auxiliary equipment required for them are designed and tested in accordance with the relevant safety standards. Compliance with these standards is continuously monitored by our quality assurance system. This product has been designed and tested in accordance with the EC Certificate of Conformity and has left the manufacturer's plant in a condition fully complying with safety standards. To maintain this condition and to ensure safe operation, observe all instructions and warnings provided in this manual. If you have any questions regarding these safety instructions, Rohde & Schwarz will be happy to answer them.

Furthermore, it is your responsibility to use the product in an appropriate manner. This product is designed for use solely in industrial and laboratory environments or in the field and must not be used in any way that may cause personal injury or property damage. You are responsible if the product is used for an intention other than its designated purpose or in disregard of the manufacturer's instructions. The manufacturer shall assume no responsibility for such use of the product.

The product is used for its designated purpose if it is used in accordance with its operating manual and within its performance limits (see data sheet, documentation, the following safety instructions). Using the products requires technical skills and knowledge of English. It is therefore essential that the products be used exclusively by skilled and specialized staff or thoroughly trained personnel with the required skills. If personal safety gear is required for using Rohde & Schwarz products, this will be indicated at the appropriate place in the product documentation.

Symbols and safety labels

10	(l)		\sim	1	
Supply voltage ON/OFF	Standby indication	Direct current (DC)	Alternating current (AC)	Direct/alternating current (DC/AC)	Device fully protected by double/reinforced insulation

Observing the safety instructions will help prevent personal injury or damage of any kind caused by dangerous situations. Therefore, carefully read through and adhere to the following safety instructions before putting the product into operation. It is also absolutely essential to observe the additional safety instructions on personal safety that appear in other parts of the documentation. In these safety instructions, the word "product" refers to all merchandise sold and distributed by Rohde & Schwarz, including instruments, systems and all accessories.

Tags and their meaning

DANGER This tag indicates a safety hazard with a high potential of risk for the

user that can result in death or serious injuries.

WARNING This tag indicates a safety hazard with a medium potential of risk for the

user that can result in death or serious injuries.

CAUTION This tag indicates a safety hazard with a low potential of risk for the user

that can result in slight or minor injuries.

ATTENTION This tag indicates the possibility of incorrect use that can cause damage

to the product.

NOTE This tag indicates a situation where the user should pay special attention

to operating the product but which does not lead to damage.

These tags are in accordance with the standard definition for civil applications in the European Economic Area. Definitions that deviate from the standard definition may also exist. It is therefore essential to make sure that the tags described here are always used only in connection with the associated documentation and the associated product. The use of tags in connection with unassociated products or unassociated documentation can result in misinterpretations and thus contribute to personal injury or material damage.

Basic safety instructions

- 1. The product may be operated only under the operating conditions and in the positions specified by the manufacturer. Its ventilation must not be obstructed during operation. Unless otherwise specified, the following requirements apply to Rohde & Schwarz products: prescribed operating position is always with the housing floor facing down, IP protection 2X, pollution severity 2, overvoltage category 2, use only in enclosed spaces, max. operation altitude max. 2000 m. Unless specified otherwise in the data sheet, a tolerance of ±10% shall apply to the nominal voltage and of ±5% to the nominal frequency.
- 2. Applicable local or national safety regulations and rules for the prevention of accidents must be observed in all work performed. The product may be opened only by authorized, specially trained personnel. Prior to performing any work on the product or opening the product, the
- product must be disconnected from the supply network. Any adjustments, replacements of parts, maintenance or repair must be carried out only by technical personnel authorized by Rohde & Schwarz. Only original parts may be used for replacing parts relevant to safety (e.g. power switches, power transformers, fuses). A safety test must always be performed after parts relevant to safety have been replaced (visual inspection, PE conductor test, insulation resistance measurement, leakage current measurement, functional test).
- As with all industrially manufactured goods, the use of substances that induce an allergic reaction (allergens, e.g. nickel) such as aluminum cannot be generally excluded. If you develop an allergic reaction (such as a skin rash, frequent sneezing, red eyes or respiratory difficulties), consult a physician immediately to determine the cause.

- 4. If products/components are mechanically and/or thermically processed in a manner that goes beyond their intended use, hazardous substances (heavy-metal dust such as lead, beryllium, nickel) may be released. For this reason, the product may only be disassembled, e.g. for disposal purposes, by specially trained personnel. Improper disassembly may be hazardous to your health. National waste disposal regulations must be observed.
- 5. If handling the product yields hazardous substances or fuels that must be disposed of in a special way, e.g. coolants or engine oils that must be replenished regularly, the safety instructions of the manufacturer of the hazardous substances or fuels and the applicable regional waste disposal regulations must be observed. Also observe the relevant safety instructions in the product documentation.
- 6. Depending on the function, certain products such as RF radio equipment can produce an elevated level of electromagnetic radiation. Considering that unborn life requires increased protection, pregnant women should be protected by appropriate measures. Persons with pacemakers may also be endangered by electromagnetic radiation. The employer is required to assess workplaces where there is a special risk of exposure to radiation and, if necessary, take measures to avert the danger.
- 7. Operating the products requires special training and intense concentration. Make certain that persons who use the products are physically, mentally and emotionally fit enough to handle operating the products; otherwise injuries or material damage may occur. It is the responsibility of the employer to select suitable personnel for operating the products.
- 8. Prior to switching on the product, it must be ensured that the nominal voltage setting on the product matches the nominal voltage of the AC supply network. If a different voltage is to be set, the power fuse of the product may have to be changed accordingly.
- In the case of products of safety class I with movable power cord and connector, operation is permitted only on sockets with earthing contact and protective earth connection.

- 10. Intentionally breaking the protective earth connection either in the feed line or in the product itself is not permitted. Doing so can result in the danger of an electric shock from the product. If extension cords or connector strips are implemented, they must be checked on a regular basis to ensure that they are safe to use.
- 11. If the product has no power switch for disconnection from the AC supply, the plug of the connecting cable is regarded as the disconnecting device. In such cases, it must be ensured that the power plug is easily reachable and accessible at all times (length of connecting cable approx. 2 m). Functional or electronic switches are not suitable for providing disconnection from the AC supply. If products without power switches are integrated in racks or systems, a disconnecting device must be provided at the system level.
- 12. Never use the product if the power cable is damaged. By taking appropriate safety measures and carefully laying the power cable, ensure that the cable cannot be damaged and that no one can be hurt by e.g. tripping over the cable or suffering an electric shock.
- 13. The product may be operated only from TN/TT supply networks fused with max. 16 A.
- 14. Do not insert the plug into sockets that are dusty or dirty. Insert the plug firmly and all the way into the socket. Otherwise this can result in sparks, fire and/or injuries.
- 15. Do not overload any sockets, extension cords or connector strips; doing so can cause fire or electric shocks.
- 16. For measurements in circuits with voltages V_{rms} > 30 V, suitable measures (e.g. appropriate measuring equipment, fusing, current limiting, electrical separation, insulation) should be taken to avoid any hazards.
- 17. Ensure that the connections with information technology equipment comply with IEC 950/EN 60950.
- 18. Never remove the cover or part of the housing while you are operating the product. This will expose circuits and components and can lead to injuries, fire or damage to the product.

- 19. If a product is to be permanently installed, the connection between the PE terminal on site and the product's PE conductor must be made first before any other connection is made. The product may be installed and connected only by a skilled electrician.
- 20. For permanently installed equipment without built-in fuses, circuit breakers or similar protective devices, the supply circuit must be fused in such a way that suitable protection is provided for users and products.
- 21. Do not insert any objects into the openings in the housing that are not designed for this purpose. Never pour any liquids onto or into the housing. This can cause short circuits inside the product and/or electric shocks, fire or injuries.
- 22. Use suitable overvoltage protection to ensure that no overvoltage (such as that caused by a thunderstorm) can reach the product. Otherwise the operating personnel will be endangered by electric shocks.
- 23. Rohde & Schwarz products are not protected against penetration of water, unless otherwise specified (see also safety instruction 1.). If this is not taken into account, there exists the danger of electric shock or damage to the product, which can also lead to personal injury.
- 24. Never use the product under conditions in which condensation has formed or can form in or on the product, e.g. if the product was moved from a cold to a warm environment.
- 25. Do not close any slots or openings on the product, since they are necessary for ventilation and prevent the product from overheating. Do not place the product on soft surfaces such as sofas or rugs or inside a closed housing, unless this is well ventilated.
- 26. Do not place the product on heatgenerating devices such as radiators or fan heaters. The temperature of the environment must not exceed the maximum temperature specified in the data sheet.
- 27. Batteries and storage batteries must not be exposed to high temperatures or fire. Keep batteries and storage batteries away from children. If batteries or storage batteries are improperly replaced, this can cause an explosion (warning: lithium cells). Replace the battery or storage battery only with the

- matching Rohde & Schwarz type (see spare parts list). Batteries and storage batteries are hazardous waste. Dispose of them only in specially marked containers. Observe local regulations regarding waste disposal. Do not short-circuit batteries or storage batteries.
- 28. Please be aware that in the event of a fire, toxic substances (gases, liquids etc.) that may be hazardous to your health may escape from the product.
- 29. Please be aware of the weight of the product. Be careful when moving it; otherwise you may injure your back or other parts of your body.
- 30. Do not place the product on surfaces, vehicles, cabinets or tables that for reasons of weight or stability are unsuitable for this purpose. Always follow the manufacturer's installation instructions when installing the product and fastening it to objects or structures (e.g. walls and shelves).
- 31. Handles on the products are designed exclusively for personnel to hold or carry the product. It is therefore not permissible to use handles for fastening the product to or on means of transport such as cranes, fork lifts, wagons, etc. The user is responsible for securely fastening the products to or on the means of transport and for observing the safety regulations of the manufacturer of the means of transport. Noncompliance can result in personal injury or material damage.
- 32. If you use the product in a vehicle, it is the sole responsibility of the driver to drive the vehicle safely. Adequately secure the product in the vehicle to prevent injuries or other damage in the event of an accident. Never use the product in a moving vehicle if doing so could distract the driver of the vehicle. The driver is always responsible for the safety of the vehicle; the manufacturer assumes no responsibility for accidents or collisions.
- 33. If a laser product (e.g. a CD/DVD drive) is integrated in a Rohde & Schwarz product, do not use any other settings or functions than those described in the documentation. Otherwise this may be hazardous to your health, since the laser beam can cause irreversible damage to your eyes. Never try to take such products apart, and never look into the laser beam.

Por favor lea imprescindiblemente antes de la primera puesta en funcionamiento las siguientes informaciones de seguridad

Informaciones de seguridad

Es el principio de Rohde & Schwarz de tener a sus productos siempre al día con los estandards de seguridad y de ofrecer a sus clientes el máximo grado de seguridad. Nuestros productos y todos los equipos adicionales son siempre fabricados y examinados según las normas de seguridad vigentes. Nuestra sección de gestión de la seguridad de calidad controla constantemente que sean cumplidas estas normas. Este producto ha sido fabricado y examinado según el comprobante de conformidad adjunto según las normas de la CE y ha salido de nuestra planta en estado impecable según los estandards técnicos de seguridad. Para poder preservar este estado y garantizar un funcionamiento libre de peligros, deberá el usuario atenerse a todas las informaciones, informaciones de seguridad y notas de alerta. Rohde&Schwarz está siempre a su disposición en caso de que tengan preguntas referentes a estas informaciones de seguridad.

Además queda en la responsabilidad del usuario utilizar el producto en la forma debida. Este producto solamente fue elaborado para ser utilizado en la indústria y el laboratorio o para fines de campo y de ninguna manera deberá ser utilizado de modo que alguna persona/cosa pueda ser dañada. El uso del producto fuera de sus fines definidos o despreciando las informaciones de seguridad del fabricante queda en la responsabilidad del usuario. El fabricante no se hace en ninguna forma responsable de consecuencias a causa del maluso del producto.

Se parte del uso correcto del producto para los fines definidos si el producto es utilizado dentro de las instrucciones del correspondiente manual del uso y dentro del margen de rendimiento definido (ver hoja de datos, documentación, informaciones de seguridad que siguen). El uso de los productos hace necesarios conocimientos profundos y el conocimiento del idioma inglés. Por eso se deberá tener en cuenta de exclusivamente autorizar para el uso de los productos a personas péritas o debidamente minuciosamente instruidas con los conocimientos citados. Si fuera necesaria indumentaria de seguridad para el uso de productos de R&S, encontrará la información debida en la documentación del producto en el capítulo correspondiente.

Símbolos y definiciones de seguridad

<u>^</u>	18 kg	A			1	<i>/</i> -/-	
Ver manual de instrucciones del uso	Informaciones para maquinaria con uns peso de > 18kg	Peligro de golpe de corriente	¡Advertencia! Superficie caliente	Conexión a conductor protector	Conexión a tierra	Conexión a masa conductora	¡Cuidado! Elementos de construción con peligro de carga electroestática

10	(l)	===	\sim	\sim	
potencia EN MARCHA/PARADA	Indicación Stand-by	Corriente continua DC	Corriente alterna AC	Corriente continua/alterna DC/AC	El aparato está protegido en su totalidad por un aislamiento de doble refuerzo

Tener en cuenta las informaciones de seguridad sirve para tratar de evitar daños y peligros de toda clase. Es necesario de que se lean las siguientes informaciones de seguridad concienzudamente y se tengan en cuenta debidamente antes de la puesta en funcionamiento del producto. También deberán ser tenidas en cuenta las informaciones para la protección de personas que encontrarán en otro capítulo de esta documentación y que también son obligatorias de seguir. En las informaciones de seguridad actuales hemos juntado todos los objetos vendidos por Rohde&Schwarz bajo la denominación de "producto", entre ellos también aparatos, instalaciones así como toda clase de accesorios.

Palabras de señal y su significado

PELIGRO Indica un punto de peligro con gran potencial de riesgo para el

ususario.Punto de peligro que puede llevar hasta la muerte o graves

heridas.

ADVERTENCIA Indica un punto de peligro con un protencial de riesgo mediano para el

usuario. Punto de peligro que puede llevar hasta la muerte o graves

heridas .

ATENCIÓN Indica un punto de peligro con un protencial de riesgo pequeño para el

usuario. Punto de peligro que puede llevar hasta heridas leves o

pequeñas

CUIDADO Indica la posibilidad de utilizar mal el producto y a consecuencia

dañarlo.

INFORMACIÓN Indica una situación en la que deberían seguirse las instrucciones en el

uso del producto, pero que no consecuentemente deben de llevar a un

daño del mismo.

Las palabras de señal corresponden a la definición habitual para aplicaciones civiles en el ámbito de la comunidad económica europea. Pueden existir definiciones diferentes a esta definición. Por eso se debera tener en cuenta que las palabras de señal aquí descritas sean utilizadas siempre solamente en combinación con la correspondiente documentación y solamente en combinación con el producto correspondiente. La utilización de las palabras de señal en combinación con productos o documentaciones que no les correspondan puede llevar a malinterpretaciones y tener por consecuencia daños en personas u objetos.

Informaciones de seguridad elementales

- 1. El producto solamente debe ser utilizado según lo indicado por el fabricante referente a la situación y posición de funcionamiento sin que se obstruya la ventilación. Si no se convino de otra manera, es para los productos R&S válido lo que sigue: como posición de funcionamiento se define principialmente la posición con el suelo de la caja para abajo , modo de protección IP 2X, grado de suciedad 2, categoría de sobrecarga eléctrica 2, utilizar solamente en estancias interiores, utilización hasta 2000 m sobre el nivel del mar.
 - A menos que se especifique otra cosa en la hoja de datos, se aplicará una tolerancia de ±10% sobre el voltaje nominal y de ±5% sobre la frecuencia nominal.
- 2. En todos los trabajos deberán ser tenidas en cuenta las normas locales de seguridad de trabajo y de prevención de accidentes. El producto solamente debe de ser abierto por personal périto autorizado. Antes de efectuar trabajos en el producto o abrirlo deberá este ser desconectado de la corriente. El ajuste. el cambio de partes, la manutención y la reparación deberán ser solamente efectuadas por electricistas autorizados por R&S. Si se reponen partes con importancia para los aspectos de seguridad (por ejemplo el enchufe. los transformadores o los fusibles), solamente podrán ser sustituidos por partes originales. Despues de cada recambio de partes elementales para la seguridad deberá ser efectuado un control de

- seguridad (control a primera vista, control de conductor protector, medición de resistencia de aislamiento, medición de medición de la corriente conductora, control de funcionamiento).
- 3. Como en todo producto de fabricación industrial no puede ser excluido en general de que se produzcan al usarlo elementos que puedan generar alergias, los llamados elementos alergénicos (por ejemplo el níquel). Si se producieran en el trato con productos R&S reacciones alérgicas, como por ejemplo urticaria, estornudos frecuentes, irritación de la conjuntiva o dificultades al respirar, se deberá consultar inmediatamente a un médico para averigurar los motivos de estas reacciones.
- 4. Si productos / elementos de construcción son tratados fuera del funcionamiento definido de forma mecánica o térmica, pueden generarse elementos peligrosos (polvos de sustancia de metales pesados como por ejemplo plomo, berilio, níquel). La partición elemental del producto, como por ejemplo sucede en el tratamiento de materias residuales, debe de ser efectuada solamente por personal especializado para estos tratamientos. La partición elemental efectuada inadecuadamente puede generar daños para la salud. Se deben tener en cuenta las directivas nacionales referentes al tratamiento de materias residuales.
- 5. En el caso de que se produjeran agentes de peligro o combustibles en la aplicación del producto que debieran de ser transferidos a un tratamiento de materias residuales, como por ejemplo agentes refrigerantes que deben ser repuestos en periodos definidos, o aceites para motores, deberan ser tenidas en cuenta las prescripciones de seguridad del fabricante de estos agentes de peligro o combustibles y las regulaciones regionales para el tratamiento de materias residuales. Cuiden también de tener en cuenta en caso dado las prescripciones de seguridad especiales en la descripción del producto.
- 6. Ciertos productos, como por ejemplo las instalaciones de radiación HF, pueden a causa de su función natural, emitir una radiación electromagnética aumentada. En vista a la protección de la vida en desarrollo deberían ser protegidas personas embarazadas debidamente. También las personas con un bypass pueden correr

- peligro a causa de la radiación electromagnética. El empresario está comprometido a valorar y señalar areas de trabajo en las que se corra un riesgo de exposición a radiaciones aumentadas de riesgo aumentado para evitar riesgos.
- 7. La utilización de los productos requiere instrucciones especiales y una alta concentración en el manejo. Debe de ponerse por seguro de que las personas que manejen los productos estén a la altura de los requerimientos necesarios referente a sus aptitudes físicas, psíquicas y emocionales, ya que de otra manera no se pueden excluir lesiones o daños de objetos. El empresario lleva la responsabilidad de seleccionar el personal usuario apto para el manejo de los productos.
- 8. Antes de la puesta en marcha del producto se deberá tener por seguro de que la tensión preseleccionada en el producto equivalga a la del la red de distribución. Si es necesario cambiar la preselección de la tensión también se deberán en caso dabo cambiar los fusibles correspondientes del prodcuto.
- Productos de la clase de seguridad I con alimentación móvil y enchufe individual de producto solamente deberán ser conectados para el funcionamiento a tomas de corriente de contacto de seguridad y con conductor protector conectado.
- 10. Queda prohibida toda clase de interrupción intencionada del conductor protector, tanto en la toma de corriente como en el mismo producto ya que puede tener como consecuencia el peligro de golpe de corriente por el producto. Si se utilizaran cables o enchufes de extensión se deberá poner al seguro, que es controlado su estado técnico de seguridad.
- 11. Si el producto no está equipado con un interruptor para desconectarlo de la red, se deberá considerar el enchufe del cable de distribución como interruptor. En estos casos deberá asegurar de que el enchufe sea de fácil acceso y nabejo (medida del cable de distribución aproximadamente 2 m). Los interruptores de función o electrónicos no son aptos para el corte de la red eléctrica. Si los productos sin interruptor están integrados en construciones o instalaciones, se deberá instalar el interruptor al nivel de la instalación.

- 12. No utilice nunca el producto si está dañado el cable eléctrico. Asegure a través de las medidas de protección y de instalación adecuadas de que el cable de eléctrico no pueda ser dañado o de que nadie pueda ser dañado por él, por ejemplo al tropezar o por un golpe de corriente.
- 13. Solamente está permitido el funcionamiento en redes de distribución TN/TT aseguradas con fusibles de como máximo 16 A.
- 14. Nunca conecte el enchufe en tomas de corriente sucias o llenas de polvo. Introduzca el enchufe por completo y fuertemente en la toma de corriente. Si no tiene en consideración estas indicaciones se arriesga a que se originen chispas, fuego y/o heridas.
- 15. No sobrecargue las tomas de corriente, los cables de extensión o los enchufes de extensión ya que esto pudiera causar fuego o golpes de corriente.
- 16. En las mediciones en circuitos de corriente con una tensión de entrada de Ueff > 30 V se deberá tomar las precauciones debidas para impedir cualquier peligro (por ejemplo medios de medición adecuados, seguros, limitación de tensión, corte protector, aislamiento etc.).
- En caso de conexión con aparatos de la técnica informática se deberá tener en cuenta que estos cumplan los requisitos de la EC950/EN60950.
- 18. Nunca abra la tapa o parte de ella si el producto está en funcionamiento. Esto pone a descubierto los cables y componentes eléctricos y puede causar heridas, fuego o daños en el producto.
- 19. Si un producto es instalado fijamente en un lugar, se deberá primero conectar el conductor protector fijo con el conductor protector del aparato antes de hacer cualquier otra conexión. La instalación y la conexión deberán ser efecutadas por un electricista especializado.

- 20. En caso de que los productos que son instalados fijamente en un lugar sean sin protector implementado, autointerruptor o similares objetos de protección, deberá la toma de corriente estar protegida de manera que los productos o los usuarios estén suficientemente protegidos.
- 21. Por favor, no introduzca ningún objeto que no esté destinado a ello en los orificios de la caja del aparato. No vierta nunca ninguna clase de líquidos sobre o en la caja. Esto puede producir corto circuitos en el producto y/o puede causar golpes de corriente, fuego o heridas.
- 22. Asegúrese con la protección adecuada de que no pueda originarse en el producto una sobrecarga por ejemplo a causa de una tormenta. Si no se verá el personal que lo utilice expuesto al peligro de un golpe de corriente.
- 23. Los productos R&S no están protegidos contra el agua si no es que exista otra indicación, ver también punto 1. Si no se tiene en cuenta esto se arriesga el peligro de golpe de corriente o de daños en el producto lo cual también puede llevar al peligro de personas.
- 24. No utilice el producto bajo condiciones en las que pueda producirse y se hayan producido líquidos de condensación en o dentro del producto como por ejemplo cuando se desplaza el producto de un lugar frío a un lugar caliente.
- 25. Por favor no cierre ninguna ranura u orificio del producto, ya que estas son necesarias para la ventilación e impiden que el producto se caliente demasiado. No pongan el producto encima de materiales blandos como por ejemplo sofás o alfombras o dentro de una caja cerrada, si esta no está suficientemente ventilada.
- 26. No ponga el producto sobre aparatos que produzcan calor, como por ejemplo radiadores o calentadores. La temperatura ambiental no debe superar la temperatura máxima especificada en la hoja de datos.

- 27. Baterías y acumuladores no deben de ser expuestos a temperaturas altas o al fuego. Guardar baterías v acumuladores fuera del alcance de los niños. Si las baterías o los acumuladores no son cambiados con la debida atención existirá peligro de explosión (atención celulas de Litio). Cambiar las baterías o los acumuladores solamente por los del tipo R&S correspondiente (ver lista de piezas de recambio). Baterías y acumuladores son deshechos problemáticos. Por favor tirenlos en los recipientes especiales para este fín. Por favor tengan en cuenta las prescripciones nacionales de cada país referente al tratamiento de deshechos. Nunca sometan las baterías o acumuladores a un corto circuito.
- 28. Tengan en consideración de que en caso de un incendio pueden escaparse gases tóxicos del producto, que pueden causar daños a la salud.
- 29. Por favor tengan en cuenta que en caso de un incendio pueden desprenderse del producto agentes venenosos (gases, líquidos etc.) que pueden generar daños a la salud.
- 30. No sitúe el producto encima de superficies, vehículos, estantes o mesas, que por sus características de peso o de estabilidad no sean aptas para él. Siga siempre las instrucciones de instalación del fabricante cuando instale y asegure el producto en objetos o estructuras (por ejemplo paredes y estantes).

- 31. Las asas instaladas en los productos sirven solamente de ayuda para el manejo que solamente está previsto para personas. Por eso no está permitido utilizar las asas para la sujecion en o sobre medios de transporte como por ejemplo grúas, carretillas elevadoras de horquilla, carros etc. El usuario es responsable de que los productos sean sujetados de forma segura a los medios de transporte y de que las prescripciones de seguridad del fabricante de los medios de transporte sean tenidas en cuenta. En caso de que no se tengan en cuenta pueden causarse daños en personas y objetos.
- 32. Si llega a utilizar el producto dentro de un vehículo, queda en la responsabilidad absoluta del conductor que conducir el vehículo de manera segura. Asegure el producto dentro del vehículo debidamente para evitar en caso de un accidente las lesiones u otra clase de daños. No utilice nunca el producto dentro de un vehículo en movimiento si esto pudiera distraer al conductor. Siempre queda en la responsabilidad absoluta del conductor la seguridad del vehículo y el fabricante no asumirá ninguna clase de responsabilidad por accidentes o colisiones.
- 33. Dado el caso de que esté integrado un producto de laser en un producto R&S (por ejemplo CD/DVD-ROM) no utilice otras instalaciones o funciones que las descritas en la documentación. De otra manera pondrá en peligro su salud, ya que el rayo laser puede dañar irreversiblemente sus ojos. Nunca trate de descomponer estos productos. Nunca mire dentro del rayo laser.

Certificate No.: 2000-05, page 1

This is to certify that:

Equipment type	Stock No.	Designation
ZVC	1127.8600.60/.61/.62	Vector Network Analyzer
ZVRL	1127.8551.41	
ZVCE ZVK ZVM ZVR ZVRE ZVRL	1127.8600.50/.51/.52 1127.8651.60 1127.8500.60 1127.8551.61/.62 1127.8551.51/.52/.55 1127.8551.41	

complies with the provisions of the Directive of the Council of the European Union on the approximation of the laws of the Member States

- relating to electrical equipment for use within defined voltage limits (73/23/EEC revised by 93/68/EEC)
- relating to electromagnetic compatibility (89/336/EEC revised by 91/263/EEC, 92/31/EEC, 93/68/EEC)

Conformity is proven by compliance with the following standards:

EN61010-1: 1993 + A2: 1995

EN55011: 1998 + A1: 1999, Klasse B

EN61000-3-2: 1995 + A1: 1998 + A2: 1998 + A14: 2000

EN61000-3-3: 1995 EN50082-2: 1995

Affixing the EC conformity mark as from 2000

ROHDE & SCHWARZ GmbH & Co. KG Mühldorfstr. 15, D-81671 München

Munich, 2001-01-30 Central Quality Management FS-QZ / Becker

Certificate No.: 2000-05, page 2

This is to certify that:

Equipment type	Stock No.	Designation
ZVK-B21	1128.1409.11	Attenuator for Generator Port 1
ZVK-B22	1128.1409.21	Attenuator for Generator Port 2
ZVK-B23	1128.1409.12	Attenuator for Receiver Port 1
ZVK-B24	1128.1409.22	Attenuator for Receiver Port 2
ZVM-B21	1128.1009.11	Attenuator for Generator Port 1
ZVM-B22	1128.1009.21	Attenuator for Generator Port 2
ZVM-B23	1128.1009.12	Attenuator for Receiver Port 1
ZVM-B24	1128.1009.22	Attenuator for Receiver Port 2
ZVR-B1	1044.0625.02	Autokal, Automatic Calibration System
ZVR-B2	1044.1009.02	Time Domain
ZVR-B8	1086.0000.02	3-Port Adapter
ZVR-B10	1106.6495.xx	Increased Output Power at Port 1
ZVR-B14	1106.7510.02/.03	4-Port Adapter
ZVR-B21	1044.0025.11	Attenuator for Generator Port 1
ZVR-B22	1044.0025.21	Attenuator for Generator Port 2
ZVR-B23	1044.0025.12/.31	Attenuator for Receiver Port 1
ZVR-B24	1044.0025.22/.42	Attenuator for Receiver Port 2
ZVR-B26	1106.8600.07	Extra Inputs 4 Port
FSE-B16	1073.5973.02/.03	Ethernet Interface
FSE-B17	1066.4017.02	Second IEC BUS Interface

complies with the provisions of the Directive of the Council of the European Union on the approximation of the laws of the Member States

- relating to electrical equipment for use within defined voltage limits (73/23/EEC revised by 93/68/EEC)
- relating to electromagnetic compatibility (89/336/EEC revised by 91/263/EEC, 92/31/EEC, 93/68/EEC)

Conformity is proven by compliance with the following standards:

EN61010-1:1993 + A2:1995

EN55011: 1998 + A1: 1999, Klasse B

EN61000-3-2: 1995 + A1: 1998 + A2: 1998 + A14: 2000

EN61000-3-3 : 1995 EN50082-2 : 1995

Affixing the EC conformity mark as from 2000

ROHDE & SCHWARZ GmbH & Co. KG Mühldorfstr. 15, D-81671 München

Munich, 2001-01-30 Central Quality Management FS-QZ / Becker

1127.8600.01-2- CE E-2

3 Remote Control

3.1 Introduction

The instrument is equipped with two IEC/IEEE bus interfaces according to standard IEC 625.1/IEEE 488.1 and two RS-232 interfaces.

Either the connector labeled SCPI IEC625 (the upper IEC/IEEE bus interface) or both of the RS-232 interfaces can be used for remote control of the instrument. In addition, the instrument is equipped with an RSIB interface that allows instrument control by Visual C++ and Visual Basic programs

In certain operating modes (e.g. frequency conversion measurements), the instrument can control other instruments which are connected to it as part of an IEC/IEEE bus chain via the connector labeled SCPI SYSTEM BUS (the lower IEC/IEEE bus interface). The usage of this IEC/IEEE bus interface is described in further detail in the relevant sections of the operating manual.

The instrument supports the SCPI version 1994.0 (Standard Commands for Programmable Instruments). The SCPI standard is based on standard IEEE 488.2 and aims at the standardization of device-specific commands, error handling and the status registers (see Section 3.5.1, SCPI Introduction).

This section assumes basic knowledge of IEC-bus programming and operation of the controller. A description of the interface commands is to be obtained from the relevant manuals. The RSIB interface functions are matched to the function interface for IEC/IEEE-bus programming from National Instruments. The functions supported by the DLLs are listed in annex A.

The requirements of the SCPI standard placed on command syntax, error handling and configuration of the status registers are explained in detail in the respective sections. Tables provide a fast overview of the commands implemented in the instrument and the bit assignment in the status registers. The tables are supplemented by a comprehensive description of every command and the status registers.

The program examples for IEC/IEEE bus programming are all written in Quick BASIC.

3.2 Brief Instructions

The short and simple operating sequence given below permits fast putting into operation of the instrument and setting of its basic functions. As a prerequisite, the IEC/IEEE bus address, which is factory-set to 20, must not have been changed.

- 1. Connect instrument and controller using IEC/IEEE bus cable.
- 2. Write and start the following program on the controller:

```
CALL IBFIND("DEV1", analyzer%)

CALL IBPAD(analyzer%, 20)

'Address

CALL IBWRT(analyzer%, "*RST;*CLS")

CALL IBWRT(analyzer%, "FREQ:CENT 100MHz")

CALL IBWRT(analyzer%, "FREQ:SPAN 10MHz")

CALL IBWRT(analyzer%, "FREQ:SPAN 10MHz")

CALL IBWRT(analyzer%, "FREQ:SPAN 10MHz")

'Yet center frequency to 100 MHz

'Set span to 10 MHz
```

The instrument now performs a sweep in the frequency range of 95 MHz to 105 MHz.

3. To return to manual control, press the LOCAL key at the front panel

3.3 Switchover to Remote Control

On power-on, the instrument is always in the manual operating state ("LOCAL" state) and can be operated via the front panel.

It is switched to remote control ("REMOTE" state)

RS-232 as soon as it receives an addressed command from a controller.

RSIB as soon as it receives the command "@REM" from a controller.

as soon as it receives an addressed command from a controller.

During remote control, operation via the front panel is disabled. The instrument remains in the remote state until it is reset to the manual state via the front panel or via remote control interfaces. Switching from manual operation to remote control and vice versa does not affect the remaining instrument settings. 3.3.1

3.3.1 Remote Control via IEC Bus

3.3.1.1 Setting the Device Address

In order to operate the instrument via the IEC/IEEE bus I, it must be addressed using the set IEC/IEEE bus address. The IEC/IEEE bus address of the instrument is factory-set to 20. It can be changed manually in the SETUP - GENERAL SETUP menu or via IEC bus. Addresses 0 to 30 are permissible.

Manually: ➤ Call SETUP - GENERAL SETUP menu

> Enter desired address in table GPIB ADDRESS

> Terminate input using one of the unit keys (=ENTER).

Via IEC bus:

```
CALL IBFIND("DEV1", analyzer%)

CALL IBPAD(analyzer%, 20)

CALL IBWRT(analyzer%, "SYST:COMM:GPIB:ADDR 18")'Set instrument to new address

CALL IBPAD(analyzer%, 18)

'Inform controller about new address

'Inform controller about new address
```

3.3.1.2 Indications during Remote Control

Remote control mode is indicated by the LED "REMOTE" "on the instrument's front panel. In this mode the softkeys on the display are not shown.

3.3.1.3 Return to Manual Operation

Return to manual operation is possible via the front panel or the IEC bus.

Manually:

> Press the LOCAL key.

Note:

- Before switchover, command processing must be completed as otherwise switchover to remote control is effected immediately.
- The LOCAL key can be disabled by the universal command LLO (see annex A) in order to prevent unintentional switchover. In this case, switchover to manual mode is only possible via the IEC bus
- The LOCAL key can be enabled again by deactivating the REN line of the IEC bus (see annex A).

Via IEC bus:

CALL IBLOC(analyzer%)

'Set instrument to manual operation.

...

3.3.2 Remote Control via RS-232-Interface

3.3.2.1 Setting the Transmission Parameters

To enable an error-free and correct data transmission, the parameters of the unit and the controller should have the same setting. Parameters can be manually changed in menu SETUP-GENERAL SETUP in table COM PORT 1/2 or via remote control using the command SYSTem: COMMunicate: SERiall | 2:...

The transmission parameters of the interfaces COM1 and COM2 are factory-set to the following values: baudrate = 9600, data bits = 8, stop bits = 1, parity = NONE and protocoll = NONE.

Manually:

Setting interface COM1|2

- > Call SETUP-GENERAL SETUP menu
- Select desired baudrate, bits, stopbit, parity and protocoll in table COM PORT 1/2.
- > Terminate input using one of the unit keys (=ENTER).

3.3.2.2 Indications during Remote Control

See Section 3.3.1.2.

3.3.2.3 Return to Manual Operation

Return to manual operation is possible via the front panel or via RS-232 interface.

Manually: ➤ Press the *LOCAL* key.

Note: – Before switchover, command processing must be completed as otherwise switchover to remote control is effected immediately.

 The LOCAL key can be disabled by the universal command LLO (see annex A) in order to prevent unintentional switchover. In this case, switchover to manual mode is only possible via the IEC bus.

 The LOCAL key can be enabled again by sending the command "@LOC" via RS-232 (see annex A).

Via RS-232:

V24puts(port, "@LOC"); Set instrument to manual operation.

...

3.3.3 Remote Control via RSIB Interface

3.3.3.1 Windows Environment

To access the measuring instruments via the RSIB interface the DLLs should be installed in the corresponding directories:

- RSIB.DLL in Windows NT system directory or control application directory.
- RSIB32.DLL in Windows NT system32 directory or control application directory.

On the measuring instrument the DLL is already installed in the corresponding directory.

The control is performed with Visual C++ or Visual Basic programs. The local link to the internal controller is established with the name '@local'. If a remote controller is used, the instrument IP address is to be indicated here.

Via VisualBasic: internal controller: ud = RSDLLibfind ('@local', ibsta, iberr, ibcntl)

remote controller:ud = RSDLLibfind ('82.1.1.200', ibsta, iberr, ibcntl)

3.3.3.2 Unix Environment

In order to access the measuring equipment via the RSIB interface, copy the librsib.so.X.Y file to a directory for which the control application has read rights. X.Y in the file name indicates the version number of the library, for example 1.0.

The librsib.so.X.Y library is created as a *shared library*. The applications using the library have nothing to do with versions. They simply link the library with the lrsib option. The following instructions have to be observed so that linking can be successfully performed and the library can be found during the program run:

File link:

• Use the operating system command *In* to create a file with the link name librsib.so and pointing to librsib.so.X.Y in a directory for which the control application has read rights. Example:

```
$ ln -s /usr/lib/librsib.so.1.0 /usr/lib/librsib.so
```

Linker options for creating applications:

- -lrsib: import library
- -Lxxx: path information where the import library can be found. This is where the above file link has been created. Example: -L/usr/lib.

Additional linker options for creating applications (only under Solaris):

• -Rxxx: path information where the library is searched for during the program run: -R/usr/lib.

Run-time environment:

• Set environment variable LD_RUN_PATH to the directory in which the file link has been created. This is necessary only if librsib.so cannot be found in the standard search path of the operating system and the -R linker option (only Solaris) was not specified.

For C/C++ programming, the declarations of the library functions and the definition of error codes are contained in:

C/C++: 'RSIB.H' (D:\R_S\Instr\RSIB)

3.3.3.3 Indications during Remote Control

See Section 3.3.1.2.

3.3.3.4 Return to Manual Operation

The return to manual operation can be performed via the front panel (LOCAL key) or the RSIB interface.

Manually: ➤ Press the *LOCAL* key.

Note: Before switchover, command processing must be completed as otherwise switchover to remote control is effected immediately.

Via RSIB: .

ud = RSDLLibloc (ud, ibsta, iberr, ibcntl);

...

Messages ZVx

3.4 Messages

The messages transferred via the data lines of the IEC bus or via the RSIB Interface (see annex A) can be divided into two groups:

- interface messages and
- device messages.

For the RS-232 interface, no interface messages are defined.

3.4.1 IEC/IEEE bus Interface Messages

Interface messages are transferred on the data lines of the IEC bus, the "ATN" control line being active. They are used for communication between controller and instrument and can only be sent by a controller which has the IEC/IEEE bus control. Interface commands can be subdivided into

- universal commands and
- addressed commands.

Universal commands act on all devices connected to the IEC bus without previous addressing, addressed commands only act on devices previously addressed as listeners. The interface messages relevant to the instrument are listed in annex A.

Some control characters are defined for the control of the RS-232-interface (see annex A).

3.4.2 RSIB Interface Messages

The RSIB interface enables the instrument to be controlled by Windows applications. The interface functions are matched to the function interface for IEC/IEEE-bus programming from National Instruments.

The functions supported by interface are listed in annex A.

ZVx Messages

3.4.3 Device Messages (Commands and Device Responses)

Device messages are transferred on the data lines of the IEC bus, the "ATN" control line not being active. ASCII code is used. The device messages are more or less equal for the 2 interfaces (IEC/IEEE bus and RS-232).

A distinction is made according to the direction in which they are sent on the IEC bus:

Commands

are messages the controller sends to the instrument. They operate the device functions and request informations.

The commands are subdivided according to two criteria::

1. According to the effect they have on the instrument:

Setting commands cause instrument settings such as reset of the

instrument or setting the center frequency.

Queries cause data to be provided for output on the IEC/IEEE

bus, e.g. for identification of the device or polling the

marker.

2. According to their definition in standard IEEE 488.2:

Common Commands are exactly defined as to their function and

notation in standard IEEE 488.2. They refer to functions such as management of the standar-dized

status registers, reset and selftest.

Device-specific

commands refer to functions depending on the features of the

instrument such as frequency setting. A majority of these commands has also been standardized by the

SCPI committee (cf. Section 3.5.1).

 Device responses are messages the instrument sends to the controller after a query. They can contain measurement results, instrument settings and information on the

instrument status (cf. Section 3.5.4).

Structure and syntax of the device messages are described in Section 3.5. The commands are listed and explained in detail in Section 3.6.

3.5 Structure and Syntax of the Device Messages

3.5.1 SCPI Introduction

SCPI (Standard Commands for Programmable Instruments) describes a standard command set for programming instruments, irrespective of the type of instrument or manufacturer. The goal of the SCPI consortium is to standardize the device-specific commands to a large extent. For this purpose, a model was developed which defines the same functions inside a device or for different devices. Command systems were generated which are assigned to these functions. Thus it is possible to address the same functions with identical commands. The command systems are of a hierarchical structure.

Fig. 3-1 illustrates this tree structure using a section of command system SENSe, which controls device-specific settings. The other examples concerning syntax and structure of the commands are derived from this command system.

SCPI is based on standard IEEE 488.2, i.e. it uses the same syntactic basic elements as well as the common commands defined in this standard. Part of the syntax of the device responses is defined with greater restrictions than in standard IEEE 488.2 (see Section "Responses to Queries").

3.5.2 Structure of a Command

The commands consist of a so-called header and, in most cases, one or more parameters. Header and parameter are separated by a "white space" (ASCII code 0 to 9, 11 to 32 decimal, e.g. blank). The headers may consist of several key words. Queries are formed by directly appending a question mark to the header.

Note: The commands used in the following examples are not in every case implemented in the instrument.

Common commands Common commands consist of a header preceded by an asterisk "*"

and one or several parameters, if any.

Examples: *RST RESET, resets the device

*ESE 253 EVENT STATUS ENABLE, sets the bits of

the event status enable register

*ESR? EVENT STATUS QUERY, queries the

contents of the event status register.

Device-specific commands

Hierarchy:

Device-specific commands are of hierarchical structure (see Fig. 3-1). The different levels are represented by combined headers. Headers of the highest level (root level) have only one key word. This key word denotes a complete command system.

Example: SENSe This key word denotes the command system SENSe.

For commands of lower levels, the complete path has to be specified, starting on the left with the highest level, the individual key words being separated by a colon ":".

Example: SENSe:FREQuency:SPAN 100E6

This command lies in the fourth level of the SENSe system. It determines which parameter remains unchanged when the span is changed. If LINK is set to STARt, the values of CENTer and STOP are adjusted when the span is changed.

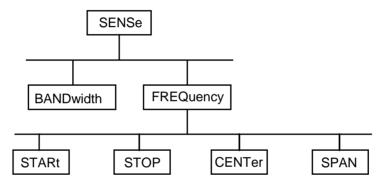


Fig. 3-1Tree structure of the SCPI command systems: The SENSe system

Some key words occur in several levels within one command system. Their effect depends on the structure of the command, that is to say, at which position in the header of a command they are inserted.

Example: SOURce:FM:POLarity NORMal

This command contains key word POLarity in the third command level. It defines the polarity between modulator and modulation signal.

SOURce:FM:EXTernal:POLarity NORMal

This command contains key word POLarity in the fourth command level. It defines the polarity between modulation voltage and the resulting direction of the modulation only for the external signal source indicated. Optional key words:

Some command systems permit certain key words to be optionally inserted into the header or omitted. These key words are marked by square brackets in the description. The full command length must be recognized by the instrument for reasons of compatibility with the SCPI standard. Some commands are considerably shortened by omitting these optional key words.

Example: [SENSe]:BANDwidth[:RESolution]:AUTO

This command couples the resolution bandwidth of the instrument to other parameters. The following command has

the same effect:
BANDwidth: AUTO

Note: An optional key word must not be omitted if its effect is specified

in detail by a numeric suffix.

Long and short form: The key words feature a long form and a short form. Either the short form or the long form can be entered, other abbreviations are not permissible.

Beispiel: STATus:OUEStionable:ENABle 1= STAT:OUES:ENAB 1

Note: The short form is marked by upper-case letters, the long form

corresponds to the complete word. Upper-case and lower-case notation only serve the above purpose, the instrument itself does not make any difference between upper-case and lower-

case letters.

Parameters: The parameter must be separated from the header by a "white space". If

several parameters are specified in a command, they are separated by a comma ",". A few queries permit the parameters MINimum, MAXimum and DEFault to be entered. For a description of the types of parameter, refer to

Section 3.5.5.

Example: SENSe:FREQuency:STOP? MAXimum Response: 3.5E9

This query requests the maximal value for the stop frequency.

Numeric suffix: If a device features several functions or features of the same kind, e.g.

inputs, the desired function can be selected by a suffix added to the command. Entries without suffix are interpreted like entries with the suffix 1.

Example: SYSTem:COMMunicate:SERial2:BAUD 9600

This command sets the baudrate of the second serial interface.

3.5.3 Structure of a Command Line

A command line may consist of one or several commands. It is terminated by a <New Line>, a <New Line> with EOI or an EOI together with the last data byte. Quick BASIC automatically produces an EOI together with the last data byte.

Several commands in a command line are separated by a semicolon ";". If the next command belongs to a different command system, the semicolon is followed by a colon.

Example:

```
CALL IBWRT(analyzer%, "SENSe:FREQuency:CENTer 100MHz;:INPut:ATTenuation 10")
```

This command line contains two commands. The first command is part of the SENSe system and is used to specify the center frequency of the analyzer. The second command is part of the INPut system and sets the attenuation of the input signal.

If the successive commands belong to the same system, having one or several levels in common, the command line can be abbreviated. To this end, the second command after the semicolon starts with the level that lies below the common levels (see also Fig. 3-1). The colon following the semicolon must be omitted in this case.

Example:

```
CALL IBWRT(analyzer%, "SENSe:FREQuency:STARt 1E6;:SENSe:FREQuency:STOP 1E9")
```

This command line is represented in its full length and contains two commands separated from each other by the semicolon. Both commands are part of the SENSe command system, subsystem FREQuency, i.e. they have two common levels.

When abbreviating the command line, the second command begins with the level below SENSe:FREQuency. The colon after the semicolon is omitted.

The abbreviated form of the command line reads as follows:

```
CALL IBWRT(analyzer*, "SENSe:FREQuency:STARt 1E6;STOP 1E9")
```

However, a new command line always begins with the complete path.

3.5.4 Responses to Queries

A query is defined for each setting command unless explicitly specified otherwise. It is formed by adding a question mark to the associated setting command. According to SCPI, the responses to queries are partly subject to stricter rules than in standard IEEE 488.2.

```
1 The requested parameter is transmitted without header.
```

```
Example: DISPlay:FORMat:TRAce:Y:SPACing? Response: LIN
```

2. Maximum values, minimum values and all further quantities, which are requested via a special text parameter are returned as numerical values.

```
Example: SENSe: FREQuency: STOP? MAX Response: 4E9
```

3. Numerical values are output without a unit. Physical quantities are referred to the basic units or to the units set using the Unit command.

```
Example: SENSe: FREQuency: CENTer? Response: 1E6 for 1 MHz
```

4. Truth values <Boolean values> are returned as 0 (for OFF) and 1 (for ON).

```
Example: SENSe:BANDwidth:AUTO? Response: 1 for ON
```

5. Text (character data) is returned in a short form (see also Section 3.5.5).

Example: SYSTem:COMMunicate:SERial:CONTrol:RTS? Response(for standard): STAN

3.5.5 Parameters

Most commands require a parameter to be specified. The parameters must be separated from the header by a "white space". Permissible parameters are numerical values, Boolean parameters, text, character strings and block data. The type of parameter required for the respective command and the permissible range of values are specified in the command description (see Section 3.6).

Numerical values

Numerical values can be entered in any form, i.e. with sign, decimal point and exponent. Values exceeding the resolution of the instrument are rounded up or down. The allowed range is -9.9E37 to +9.9E37. The exponent is introduced by an "E" or "e". Entry of the exponent alone is not permissible. In the case of physical quantities, the unit can be entered. Permissible unit prefixes are G (giga), MA (mega), MOHM and MHZ are also permissible), K (kilo), M (milli), U (micro) and N (nano). It the unit is missing, the basic unit is used.

Example:

SENSe:FREQuency:STOP 1.5GHz = SENSe:FREQuency:STOP 1.5E9

Special numerical

The texts MINimum, MAXimum, DEFault, UP and DOWN are interpreted as valuesspecial numerical values.

In the case of a query, the numerical value is provided.

Example: Setting command: SENSe:FREQuency:STOP MAXimum

Query: SENSe: FREQuency: STOP? Response: 3.5E9

MIN/MAX MINimum and MAXimum denote the minimum and maximum value.

DEF DEFault denotes a preset value which has been stored in the EPROM. This

value conforms to the default setting, as it is called by the *RST command

UP/DOWN UP, DOWN increases or reduces the numerical value by one step. The step

width can be specified via an allocated step command (see annex C, List of

Commands) for each parameter which can be set via UP, DOWN.

INF/NINF INFinity, Negative INFinity (NINF) Negative INFinity (NINF) represent the

numerical values -9.9E37 or 9.9E37, respectively. INF and NINF are only sent

as device reponses.

NAN Not A Number (NAN) represents the value 9.91E37. NAN is only sent as

device response. This value is not defined. Possible causes are the division of zero by zero, the subtraction of infinite from infinite and the representation of

missing values.

Boolean Parameters

Boolean parameters represent two states. The ON state (logically true) is represented by ON or a numerical value unequal to 0. The OFF state (logically untrue) is represented by OFF or the numerical value 0. 0 or 1 is provided in a query.

Example:

Setting command: DISPlay: WINDow: TRACe: STATe ON

Query: DISPlay:WINDow:TRACe:STATe? Response: 1

ZVx

Text Text parameters observe the syntactic rules for key words, i.e. they can be

entered using a short or long form. Like any parameter, they have to be separated from the header by a white space. In the case of a query, the short

form of the text is provided.

Example: Setting command: INPut:COUPling GROund

Query: INPut:COUPling? Response GRO

Strings Strings must always be entered in quotation marks (' or ").

Example: SYSTem:LANGuage "SCPI" or

SYSTem:LANGuage 'SCPI'

Block data are a transmission format which is suitable for the transmission of

large amounts of data. A command using a block data parameter has the

following structure:

Example: HEADer: HEADer #45168xxxxxxxx

ASCII character # introduces the data block. The next number indicates how many of the following digits describe the length of the data block. In the example the 4 following digits indicate the length to be 5168 bytes. The data bytes follow. During the transmission of these data bytes all End or other control signs are ignored until all bytes are transmitted. Data elements comprising more than one byte are transmitted with the byte being the first which was specified by SCPI

command "FORMat:BORDer".

3.5.6 Overview of Syntax Elements

The fo	The following survey offers an overview of the syntax elements.			
:	The colon separates the key words of a command. In a command line the separating semicolon marks the uppermost command level.			
;	The semicolon separates two commands of a command line. It does not alter the path.			
,	The comma separates several parameters of a command.			
?	The question mark forms a query.			
*	The asterisk marks a common command.			
,	Double or single quotation marks introduce a string and terminate it.			
#	The double dagger # introduces block data.			
	A "white space" (ASCII-Code 0 to 9, 11 to 32 decimal, e.g. blank) separates header and parameter.			

3.6 Description of Commands

3.6.1 Notation

In the following sections, all commands implemented in the instrument are first listed in tables and then described in detail, separated according to the command system. The notation corresponds to the one of the SCPI standards to a large extent. The SCPI conformity information can be taken from the individual description of the commands.

Table of Commands

Command: In the command column, the table provides an overview of the commands

and their hierarchical arrangement (see indentations).

Parameter: In the parameter column the requested parameters are indicated together

with their specified range.

Unit: The unit column indicates the basic unit of the physical parameters.

Remark: In the remark column an indication is made on:

whether the command does not have a query form,

- whether the command has only one query form,

whether this command is implemented only with a certain option of the

instrument.

Indentations

The different levels of the SCPI command hierarchy are represented in the table by means of indentations to the right. The lower the level is, the farther the indentation to the right is. Please observe that the complete notation of the command always includes the higher levels as well.

Example: SENSe:FREQuency:CENTer is represented in the table as

follows:

SENSe first level
:FREQuency second level
:CENTEr third level

In the individual description, the hierarchy is represented in the corresponding way. That is to say, for each command all key words above up to the left-hand margin must be considered. An example for each command is written out at the end of the individual description.

Upper/lower case notation Upper/lower case letters serve to mark the long or short form of the key words of a command in the description (see Section 3.5.2). The instrument itself does not distinguish between upper and lower case letters.

Special characters |

A selection of key words with an identical effect exists for several commands. These key words are indicated in the same line, they are separated by a vertical stroke. Only one of these key words has to be indicated in the header of the command. The effect of the command is independent of which of the key words is indicated.

Example: SENSe: FREQuency: CW |: FIXed

The two following commands of identical meaning can be formed. They set the frequency of the constantly frequent signal to 1 kHz:

SENSe: FREQuency: CW 1E3 = SENSe: FREQuency: FIXed 1E3

A vertical stroke in indicating the parameters marks alternative possibilities in the sense of "or". The effect of the command is different, depending on which parameter is entered.

Example: Selection of the parameters for the command

CALC: FORM MAGN | PHAS

MAGN: Level values will be indicated PHAS: Phase values will be indicated

[] Key words in square brackets can be omitted when composing the header (cf. Section 3.5.2. Optional Keywords). The full command length must be accepted by the instrument for reasons of compatibility with the SCPI standards.

Parameters in square brackets can optionally be incorporated in the command or omitted as well.

{ } Parameters in braces can optionally be incorporated in the command either not at all, once or several times.

Description of parameters Due to the standardization, the parameter section of SCPI commands consists always of the same syntactical elements. SCPI has specified a series of definitions therefore, which are used in the tables of commands. In the tables, these established definitions are indicated in angled brackets (<...>) and will be briefly explained in the following (see also Section 3.5.5, "Parameters").

<Boolean>

This indication refers to parameters which can adopt two states, "on" and "off". The "off" state may either be indicated by the keyword OFF or by the numeric value 0, the "on" state is indicated by ON or any numeric value other than zero. Parameter queries are always returned the numeric value 0 or 1.

<numeric_value>

These indications mark parameters which may be entered as numeric values or be set using specific keywords (character data).

The keywords given below are permitted:

MINimum This keyword sets the parameter to the smallest possible

value.

MAXimum This keyword sets the parameter to the largest possible value.

DEFault This keyword is used to reset the parameter to its default

value.

UP This keyword increments the parameter value.

DOWN This keyword decrements the parameter.

The numeric values associated to MAXimum/MINimum/DEFault can be queried by adding the corresponding keywords to the command. They must be entered following the quotation mark.

Example: SENSe: FREQuency: CENTer? MAXimum

returns the maximum possible numeric value of the center frequency as result.

<arbitrary block program data>

This keyword is provided for commands the parameters of which consist of a binary data block.

3.6.2 Common Commands

The common commands are taken from the IEEE 488.1 (IEC 625-2) standard. Same commands have the same effect on different devices. The headers of these commands consist of an asterisk "*" followed by three letters. Many common commands refer to the status reporting system which is described in detail in Section 3.8.

Command	Designation	Parameter	Remark
*CAL?	Calibration Query		query only
*CLS	Clear Status		no query
*ESE	Event Status Enable	0 to 255	
*ESR?	Standard Event Status Query		query only
*IDN?	Identification Query	<string></string>	query only
*IST?	Individual Status Query		query only
*OPC	Operation Complete		
*OPT?	Option Identification Query		query only
*PCB	Pass Control Back	0 to 30	no query
*PRE	Parallel Poll Register Enable	0 to 255	
*PSC	Power On Status Clear	0 1	
*RST	Reset		no query
*SRE	Service Request Enable	0 to 255	
*STB?	Status Byte Query		query only
*TRG	Trigger		no query
*TST?	Self Test Query		query only
*WAI	Wait to continue		no query

Common Commands ZVx

*CAL?

CALIBRATION QUERY triggers a calibration of the instrument and subsequently query the calibration status. Any responses > 0 indicate errors.

*CLS

CLEAR STATUS sets the status byte (STB), the standard event register (ESR) and the EVENt-part of the QUEStionable and the OPERation register to zero. The command does not alter the mask and transition parts of the registers. It clears the output buffer.

*ESE 0...255

EVENT STATUS ENABLE sets the event status enable register to the value indicated. Query *ESE? returns the contents of the event status enable register in decimal form.

*ESR?

STANDARD EVENT STATUS QUERY returns the contents of the event status register in decimal form (0 to 255) and subsequently sets the register to zero.

*IDN?

IDENTIFICATION QUERY queries the instrument identification.

The device response is for example: "Rohde&Schwarz, ZVxx, 123456/001, 1.03"

ZVxx = Device 123456/001 = serial number

1.03 = Firmware versions number

*IST?

INDIVIDUAL STATUS QUERY returns the contents of the IST flag in decimal form (0 | 1). The IST flag is the status bit which is sent during a parallel poll (cf. Section 3.8.3.2).

*OPC

OPERATION COMPLETE sets bit 0 in the event status register when all preceding commands have been executed. This bit can be used to initiate a service request (cf. Section 3.7).

*OPC?

OPERATION COMPLETE QUERY writes message "1" into the output buffer as soon as all preceding commands have been executed (cf. Section 3.7).

*OPT?

OPTION IDENTIFICATION QUERY queries the options included in the instrument and returns a list of the options installed. The options are separated from each other by means of commas.

*PCB 0 to 30

PASS CONTROL BACK indicates the controller address which the IEC-bus control is to be returned to after termination of the triggered action.

*PRE 0 to 255

PARALLEL POLL REGISTER ENABLE sets parallel poll enable register to the value indicated. Query *PRE? returns the contents of the parallel poll enable register in decimal form.

*PSC 0 | 1

POWER ON STATUS CLEAR determines whether the contents of the ENABle registers is maintained or reset in switching on.

- *PSC = 0 causes the contents of the status registers to be maintained. Thus a service request can be triggered in switching on in the case of a corresponding configuration of status registers ESE and SRE.
- *PSC \neq 0 resets the registers.

Query *PSC? reads out the contents of the power-on-status-clear flag. The response can be 0 or 1.

*RST

RESET sets the instrument to a defined default status. The command essentially corresponds to pressing the [PRESET] key. The default setting is indicated in the description of the commands.

*SRE 0 to 255

SERVICE REQUEST ENABLE sets the service request enable register to the value indicated. Bit 6 (MSS mask bit) remains 0. This command determines under which conditions a service request is triggered. Query *SRE? reads the contents of the service request enable register in decimal form. Bit 6 is always 0.

*STB?

READ STATUS BYTE QUERY reads out the contents of the status byte in decimal form.

*TRG

TRIGGER triggers all actions waiting for a trigger event (cf. Section "TRIGger subsystem", as well).

*TST?

SELF TEST QUERY triggers all self tests of the instrument and outputs an error code in decimal form.

*WAI

WAIT-to-CONTINUE only permits the servicing of the subsequent commands after all preceding commands have been executed and all signals have settled (cf. Section 3.7 and "*OPC" as well).

3.6.3 CALCulate Subsystem

The CALCulate subsystem contains commands for converting instrument data, transforming and carrying out corrections. These functions are carried out subsequent to data acquisition, i.e., following the SENSe subsystem.

CALCulate1...4 selects the corresponding channel CH1...CH4.

3.6.3.1 CALCulate:FILTer - Subsystem

The CALCulate:FILTer subsystem defines how filter functions are applied to the measured data sets.

COMMAND	PARAMETER	UNIT	COMMENT
CALCulate<14>			
:FILTer			
[:GATE]			
:TIME			
:STATe	<boolean></boolean>		
:STARt	<numeric_value></numeric_value>	s m	
:STOP	<numeric_value></numeric_value>	s m	
:SPAN	<numeric_value></numeric_value>	s m	
:CENTer	<numeric_value></numeric_value>	s m	
:WINDow	RECT HAMMing HANNing BOHMan DCHebyshev		
:DCHebyshev	<numeric_value></numeric_value>	dB	

CALCulate[1...4]:FILTer[:GATE]:TIME:STATe

This command switches on and off the time domain gate.

Syntax: CALCulate[1...4]:FILTer[:GATE]:TIME:STATe ON | OFF

Example: "CALC:FILT:TIME:STATe ON"

Features: *RST-Wert: OFF

SCPI: conforming

CALCulate[1...4]:FILTer[:GATE]:TIME:STARt

This command defines the start time for the gate.

Syntax: CALCulate[1...4]:FILTer[:GATE]:TIME:STARt <numeric_value>

Example: "CALC:FILT:TIME:STARt 10ms"

Features: *RST-Wert: - 500 ps

SCPI: conforming

CALCulate[1...4]:FILTer[:GATE]:TIME:STOP

This command defines the stop time for the gate.

Syntax: CALCulate[1...4]:FILTer[:GATE]:TIME:STOP <numeric_value>

Example: "CALC:FILT:TIME:STARt 60ms"

Features: *RST-Wert: + 500 ps

SCPI: conforming

CALCulate[1...4]:FILTer[:GATE]:TIME:SPAN

This command defines the span of the gate.

Syntax: CALCulate[1...4]:FILTer[:GATE]:TIME:SPAN <numeric value>

Example: "CALC:FILT:TIME:SPAN 50ms"

Features: *RST-Wert: 1 ns

SCPI: conforming

CALCulate[1...4]:FILTer[:GATE]:TIME:CENTer

This command defines the center value for the gate.

Syntax: CALCulate[1...4]:FILTer[:GATE]:TIME:CENTer <numeric_value>

Example: "CALC:FILT:TIME:CENT 35ms"

Features: *RST-Wert: 0 s

SCPI: conforming

CALCulate[1...4]:FILTer[:GATE]:TIME:WINDow

This command selects the type of time domain gate (gate function) to be used.

Syntax: CALCulate[1...4]:FILTer[:GATE]:TIME:WINDow RECT | HAMMing | HANNing |

BOHMan | DCHebyshev

Example: "CALC:FILT:TIME:WIND RECT"

Features: *RST-Wert: HANNing

SCPI: conforming

CALCulate[1...4]:FILTer[:GATE]:TIME:DCHebyshev

This command defines the sidelobe suppression for a Dolph-Chebishev gate function.

Syntax: CALCulate[1...4]:FILTer[:GATE]:TIME:DCHebyshev <numeric_value>

Example: "CALC:FILT:TIME:DCH 30dB"

Features: *RST-Wert: 40 dB

3.6.3.2 CALCulate:FORMat Subsystem

The CALCulate:FORMat subsystem specifies the display format of the measured data.

COMMAND	PARAMETER	UNIT	COMMENT
CALCulate<14>			
:FORMat	COMPlex MAGNitude PHASe UPHase REAL IMAGinary SWR GDELay L C		

CALCulate[1 to 4]:FORMat

This command defines in which format the complex measured quantity is displayed.

Syntax: CALCulate[1...4]:FORMat COMPlex | MAGNitude | PHASe | UPHase |

REAL | IMAGinary | SWR | GDELay | SWR |

GDELay | L | C

Example: "CALC:FORM IMAG"

Features: *RST value:

SCPI: conforming

3.6.3.3 CALCulate:GDAPerture Subsystem

The CALCulate:GDAPerture - subsystem defines the parameters for the group delay and the aperture.

COMMAND	PARAMETER	UNIT	COMMENT
CALCulate<14>			
GDAPerture			
:MODE	STEP FREQuency		
[:SPAN]	<numeric_value></numeric_value>	HZ	
:SCOunt	<numeric_value></numeric_value>		

CALCulate[1...4]:GDAPerture:MODE

This command switches between the aperture defined as a number of points (STEP) or as a fixed frequency value..

Syntax: CALCulate[1...4]:GDAPerture:MODE

Example: "CALC:GDAP:MODE STEP"

Features: *RST value: STEP

SCPI: device-specific

CALCulate[1...4]:GDAPerture[:SPAN]

This command defines the aperture as a fixed frequency value..

Syntax: CALCulate[1...4]:GDAPerture[:SPAN] < numeric_value>

Example: "CALC:GDAP 0.5"

Features: *RST value: -

SCPI: conforming

CALCulate[1...4]:GDAPerture:SCOunt

This command defines the aperture as a number of points..

Syntax: CALCulate[1...4]:GDAPerture:SCOunt <numeric_value>

Example: "CALC:GDAP:SCO 12"

Features: *RST value: 10

3.6.3.4 CALCulate:LIMit Subsystem

The CALCulate:LIMit subsystem comprises the limit lines and the corresponding limit checks.

COMMAND	PARAMETER	UNIT	COMMENT
CALCulate<14>			
:LIMit<18>			
:STATe	<boolean></boolean>		
:RDOMain			
:COMPlex	S SINV Y Z YREL ZREL		
:FORMat	COMPlex MAGNitude PHASe REAL IMAGinary SWR GDELay L C		
:SPACing	LINear LOGarithmic DB SIC		
:CONTrol			
[:DATA]	<numeric_value>,<numeric_value></numeric_value></numeric_value>	HZ S DBM	
:DOMain	FLIN FLOG FSEG FSINgle TLIN TLOG PLIN PLOG PSINgle		
:SHIFt	<numeric_value></numeric_value>	HZ S DB	no query
:CENTer	<numeric_value>,<numeric_value></numeric_value></numeric_value>	DB OHM SIE UNIT	
:SHIFt	<numeric_value>,<numeric_value></numeric_value></numeric_value>	UNIT	no query
:UPPer			
[:DATA]	<numeric_value>,<numeric_value></numeric_value></numeric_value>	DB DEG S H F OHM SIE UNIT	
:SHIFt	<numeric_value></numeric_value>	DB DEG S H F OHM SIE UNIT	valid for UPPer and LOWer no query
:STATe	<boolean></boolean>		
:RADius	<numeric_value></numeric_value>	DB OHM SIE UNIT	
:LOWer			
[:DATA]	<numeric_value>,<numeric_value></numeric_value></numeric_value>	DB DEG S H F OHM SIE UNIT	
:SHIFt	<numeric_value></numeric_value>	DB DEG S H F OHM SIE UNIT	valid for UPPer and LOWer no query
:STATe	<boolean></boolean>	'	
:FAIL?			query only
:CLEar			
[:IMMediate]			no query

CALCulate[1...4]:LIMit[1...8]:STATe

This command switches on and off the limit check..

Syntax: CALCulate[1...4]:LIMit[1...8]:STATe ON | OFF

Example: "CALC:LIM:STAT ON"

Features: *RST value: OFF

SCPI: conforming

CALCulate[1...4]:LIMit[1...8]: RDOMain:COMPlex

This command defines the complex conversion of the measured value belonging to the limit line.

Syntax: CALCulate[1...4]:LIMit[1...8]: RDOMain:COMPlex S | SINV | Y | Z | YREL |

ZREL

Example: "CALC:LIM:RDOM:COMP Y"

Features: *RST value: -

SCPI: device-specific

CALCulate[1...4]:LIMit[1...8]: RDOMain:FORMat

This command defines the formatting of the measured value belonging to the limit line.

Syntax: CALCulate[1...4]:LIMit[1...8]: RDOMain:FORMat COMPlex | MAGNitude |

PHASe | REAL | IMAGinary |

SWR | GDELay

Example: "CALC:LIM:RDOM:FORM REAL"

Features: *RST value: COMPlex

SCPI: device-specific

CALCulate[1...4]:LIMit[1...8]: RDOMain:SPACing

This command defines the scaling of the axis belonging to the limit line. For Smith, inverted Smith and charter diagrams, SIC must be specified.

Syntax: CALCulate[1...4]:LIMit[1...8]: RDOMain:SPACing LINear | LOGarithmic | DB |

SIC

Example: "CALC:LIM:RDOM:SPAC LOG"

Features: *RST value: LINear

SCPI: device-specific

CALCulate[1...4]:LIMit[1...8]:CONTrol[:DATA]

This command defines the x-axis values of the limit line.

Syntax: CALCulate[1...4]:LIMit[1...8]:CONTrol[:DATA] <numeric_value>,

<numeric_value>..

Example: "CALC:LIM:CONT 1MHz, 30MHz, 300MHz, 1GHz"

Features: *RST value:

SCPI: conforming

CALCulate[1...4]:LIMit[1...8]:CONTrol:DOMain

This command defines the x-axis representation in the frequency (F), time (T) and level (P) domains.

Syntax: CALCulate[1...4]:LIMit[1...8]:CONTrol:DOMain FLIN | FLOG | FSEG | FSINgle

| TLIN | TLOG | PLIN | PLOG |

PSINgle

Example: "CALC:LIM:CONT:DOM FLOG"

Features: *RST value: FLIN

CALCulate[1..4]:LIMit[1...8]:CONTrol:SHIFt

This command shifts a limit line along the x-axis direction by the value specified.

Syntax: CALCulate<1|2>:LIMit<1...8>:CONTrol:SHIFt <numeric_value>

Example: "CALC:LIM2:CONTrol:SHIFT 50KHZ"

Features: *RST value: --

SCPI: device-specific

The command is an "event",, which is why it is not assigned an *RST value.

CALCulate[1...4]:LIMit[1...8]:CENTer

This command defines the coordinates of the center of the tolerance circle. .

Syntax: CALCulate[1...4]:LIMit[1...8]:CENTer <numeric_value>,<numeric_value>

Example: "CALC:LIM:CENT 0,0"

Features: *RST value:

SCPI: device-specific

CALCulate[1...4]:LIMit[1...8]:CENTer:SHIFt

This command shifts the tolerance circle center.

Syntax: CALCulate[1...4]:LIMit[1...8]:CENTer:SHIFt <numeric_value>,<numeric_value>

Example: "CALC:LIM:CENT:SHIFt 0.5,0.5"

Features: *RST value:

SCPI: device-specific

CALCulate[1...4]:LIMit[1...8]:UPPer[:DATA]

This command defines the values for the upper limit lines.

Syntax: CALCulate[1...4]:LIMit[1...8]:UPPer[:DATA <numeric_value>,

<numeric_value>..

Example: "CALC:LIM:UPP -10,0,0,-10"

Features: *RST value:

SCPI: conforming

The number of values for the CONTrol-axis and the corresponding UPPer limit line must be identical. If the measured values exceed the UPPer limit line, the limit test reports an error.

CALCulate[1...4]:LIMit[1...8]:UPPer:SHIFt

This command shifts the tolerance band along the y-axis direction.

Syntax: CALCulate[1...4]:LIMit[1...8]:UPPer:SHIFt <numeric_value>

Example: "CALC:LIM:UPPer:SHIFt 3dB"

Features: *RST value: -

SCPI: device-specific

The LOWer limit is shifted together with the UPPer limit by the same distance.

CALCulate[1...4]:LIMit[1...8]:UPPer:STATe

This command switches on and off the limit check with an upper limit line. ON | OFF

CALCulate[1...4]:LIMit[1...8]:UPPer:STATe Syntax:

"CALC:LIM:UPPer:STAT ON" **Example:**

Features: *RST value:

> SCPI: conforming

The result of the limit check can be gueried with the command CALCulate:LIMit<1...8>:FAIL?

CALCulate[1...4]:LIMit[1...8]:UPPer:RADius

This command defines the radius of the limit line in a circle diagram.

CALCulate[1...4]:LIMit[1...8]:UPPer:STATe ON | OFF Syntax:

"CALC:LIM:UPPer:RAD " **Example:**

Features: *RST value:

> SCPI: device-specific

CALCulate[1...4]:LIMit[1...8]:LOWer[:DATA]

This command defines the values of the lower limit lines.

Syntax: CALCulate[1...4]:LIMit[1...8]:LOWer[:DATA] <numeric value>,

<numeric value>..

"CALC:LIM:LOW -40,-30,-30,-40" **Example:**

*RST value: Features:

> SCPI: conforming

CALCulate[1...4]:LIMit[1...8]:LOWer:SHIFt

This command shifts the tolerance band along the y-axis direction.

CALCulate[1...4]:LIMit[1...8]:LOWer:SHIFt Syntax: <numeric_value>

"CALC:LIM:LOWer:SHIFt 3dB" **Example:**

*RST value: Features:

SCPI: Gerätespezifisch

The UPPer limit is shifted together with the LOWer limit by the same distance.

CALCulate[1...4]:LIMit[1...8]:LOWer:STATe

This command switches on and off the limit test with a lower limit line.

Syntax: CALCulate[1...4]:LIMit[1...8]:LOWer:STATe ON | OFF

"CALC:LIM:STAT ON" Example: *RST value: OFF Features:

CALCulate[1...4]:LIMit[1...8]:FAIL?

This command queries the result of the limit check.

Syntax: CALCulate[1...4]:LIMit[1...8]:FAIL?

Example: "CALC:LIM:FAIL?"

Features: *RST value:

SCPI: conforming

CALCulate[1...4]:LIMit[1...8]:CLEar[:IMMediate]

This command deletes the result of the current limit check.

Syntax: CALCulate[1...4]:LIMit[1...8]:CLEar[:IMMediate]

Example: "CALC:LIM:CLE"

Features: *RST value: -

SCPI: conforming

This command is an event,, which is why it is not assigned an *RST value and has no query.

3.6.3.5 CALCulate:MARKer Subsystem

The CALCulate:MARKer subsystem controls the marker functions.

COMMAND	PARAMETER	UNIT	COMMENT
CALCulate<14>			
:MARKer<18>			
[:STATe]	<boolean></boolean>		
:AOFF			no query
:MODE	CONTinuous DISCrete		
:COUPled			
[:STATe]	<boolean></boolean>		
:X	<numeric_value></numeric_value>	HZ S DBM	
:MODE	ABS REL	'-'	
:Y?			query only
:FORMat	MLINear MDB PHASe		query ermy
	REAL IMAGinary SWR GDELay MLPHase MDPHase COMPlex L C RLC		
:TRANsform			
:COMPlex	S SINV Z ZREL Y YREL		
:TRACe	CHDATA CHMEM		
:SEARch			
[:IMMediate]			no query
:NEXT			no query
:RIGHt			no query
:LEFT			no query
:TRACking	<boolean></boolean>		
:MAXimum			no query
:MINimum			no query
:FUNCtion			
[:SELect]	MAXimum MINimum TARGet BFILter		
:BWIDth	<numeric_value></numeric_value>	DB	
:MODE	BPASs BSTop		
:QFACtor			
:SFACtor	<numeric_value>,<numeric_value></numeric_value></numeric_value>		
:TARGet	<numeric_value></numeric_value>	DBM DB	
:RESULT?			query only
:EDELay	TIME DISTance ELENgth OFF		
:VALue?			query only
:DELTa			
:STATe	<boolean></boolean>		
:REFerence	MARKER1 MARKER2 MARKER3 MARKER4 MARKER5 MARKER6 MARKER7 MARKER8 FIXed		
:RPOSition			
[:CARTesian]	<numeric_value>,<numeric_value></numeric_value></numeric_value>	HZ S DBM,DB	
POLar	<numeric_value>,<numeric_value>, <numeric_value></numeric_value></numeric_value></numeric_value>	HZ S DBM,DB, DB	
:PTPeak	_		
:STATe	<boolean></boolean>		
:RESult?	[ALL]		query only
:CENTer			no query
:STARt			no query
:STOP			no query
:REFerence			no query

CALCulate[1 to 4]:MARKer[1 to 8][:STATe]

This command switches on or off the selected marker (1 to 8). If no indication is made, marker 1 is selected automatically.

Syntax: CALCulate[1 to 4]:MARKer[1 to 8][:STATe] ON | OFF

Example: "CALC:MARK3 ON" **Features:** *RST value: OFF

SCPI: device-specific

CALCulate[1 to 4]:MARKer[1 to 8]:AOFF

This command switches off all active markers.

Syntax: CALCulate[1 to 4]:MARKer[1 to 8]:AOFF

Example: "CALC:MARK:AOFF"

Features: *RST value: -

SCPI: device-specific

This command is an event,, which is why it is not assigned an *RST value and has no query.

CALCulate[1 to 4]:MARKer[1 to 8]:MODE

This command switches over between mode continuous and discrete for the selected marker.

Syntax: CALCulate[1 to 4]:MARKer[1 to 8]MODE CONTinuous | DISCrete

Features: "CALC:MARK3:MODE DISC"

*RST value: CONTinuous

SCPI: device-specific

CALCulate[1...4]:MARKer[1...8]:COUPled[:STATe]

This command couples/decouples the markers. It is valid for all markers; the CALC and MARK suffixes have no influence.

Syntax: CALCulate[1...4]:MARKer[1...8]:COUPled[:STATe] ON | OFF

Example: "CALC:MARK:COUP ON"

Features: *RST value: OFF

SCPI: device-specific

CALCulate[1...4]:MARKer[1...8]:X:MODE

This command switches over between absolute and relative positioning in relation to the reference marker when delta markers are used.

Syntax: CALCulate[1...4]:MARKer[1...8]:X:MODE ABS | REL

Example: "CALC:MARK:X:MODE REL"

Features: *RST value: ABS

CALCulate[1 to 4]:MARKer[1 to 8]:X

This command positions the selected marker to the indicated stimulus value. If the marker is a delta marker, the position can be specified either absolutely, or relative relation to the reference marker.

Syntax: CALCulate[1 to 4]:MARKer[1 to 8]:X < numeric value>

<numeric value> ::= 0 to MAX (frequency) | MAX (sweep time)

Example: "CALC:MARK:X 10.7MHz"

Features: *RST value:

SCPI: device-specific

CALCulate[1 to 4]:MARKer[1 to 8]:Y?

This command queries the selected marker value. If the selected marker is a delta marker the query returns the difference to the reference marker.

Syntax: CALCulate[1 to 4]:MARKer[1 to 8]:Y?

Example: "CALC:MARK:Y?"

Features: *RST value: -

SCPI: device-specific

CALCulate[1...4]:MARKer[1...8]:FORMat

This command defines the formatting of the marker value.

Syntax: CALCulate[1...4]:MARKer[1...8]:FORMat MLINear | MDB | PHASe |

REAL | IMAGinary | SWR |

GDELay | MLPHase | MDPHase |

COMPlex | L | C | RLC

Example: "CALC:MARK:FORM MLIN"

Features: *RST value:

SCPI: device-specific

CALCulate[1...4]:MARKer[1...8]:TRANsform:COMPlex

This command defines the conversion of the marker value.

Syntax: CALCulate[1...4]:MARKer[1...8]:TRANsform:COMPlex S | SINV | Z | ZREL | Y

| YREL

Example: "CALC:MARK:TRAN:COMP SINV"

Features: *RST value:

SCPI: device-specific

CALCulate[1...4]:MARKer[1...8]:TRACe

This command changes the marker between the active and the memory trace.

Syntax: CALCulate[1...4]:MARKer[1...8]:TRACe CHDATA | CHMEM

Example: "CALC:MARK:TRAC CHMEM"

Features: *RST value:

CALCulate[1...4]:MARKer[1...8]:SEARch[:IMMediate]

This command triggers a search for absolute extreme values for the active marker.

Syntax: CALCulate[1...4]:MARKer[1...8]:SEARch[:IMMediate]

Example: "CALC:MARK:SEAR"

Features: *RST value:

SCPI: device-specific

This command is an event,, which is why it is not assigned an *RST-value and has no query.

CALCulate[1...4]:MARKer[1...8]:SEARch:NEXT

This command triggers the search for the next local extreme value for the active marker.

Syntax: CALCulate[1...4]:MARKer[1...8]:SEARch:NEXT

Example: "CALC:MARK:SEAR:NEXT"

Features: *RST value:

SCPI: device-specific

This command is an event,, which is why it is not assigned an *RST-value and has no query.

CALCulate[1...4]:MARKer[1...8]:SEARch:RIGHt

This command triggers the search for the next target point with a larger stimulus value for the active marker.

Syntax: CALCulate[1...4]:MARKer[1...8]:SEARch:RIGHt

Example: "CALC:MARK:SEAR:RIGH"

Features: *RST value:

SCPI: device-specific

This command is an event,, which is why it is not assigned an *RST-value and has no query.

CALCulate[1...4]:MARKer[1...8]:SEARch:LEFT

This command triggers the search for the next target point with a smaller stimulus value for the active marker.

Syntax: CALCulate[1...4]:MARKer[1...8]:SEARch:LEFT

Example: "CALC:MARK:SEAR:LEFT"

Features: *RST value:

SCPI: device-specific

This command is an event,, which is why it is not assigned an *RST-value and has no query.

CALCulate[1...4]:MARKer[1...8]:SEARch:TRACking

This command switches the permanent (i. e. renewed after each sweep) search for extreme values on and off.

Syntax: CALCulate[1...4]:MARKer[1...8]:SEARch:TRACking ON | OFF

Example: "CALC:MARK:SEAR:TRACK ON"

Features: *RST value: OFF

CALCulate[1...4]:MARKer[1...8]:MAXimum

This command triggers the search for the maximum of the trace for the active marker.

Syntax: CALCulate[1...4]:MARKer[1...8]:MAXimum

Example: "CALC:MARK:MAX"

Features: *RST value: -

SCPI: device-specific

This command is an event,, which is why it is not assigned an *RST-value and has no query.

CALCulate[1...4]:MARKer[1...8]:MINimum

This command triggers the search for the minimum of the trace for the active marker.

Syntax: CALCulate[1...4]:MARKer[1...8]:MINimum

Example: "CALC:MARK:MIN"

Features: *RST value: -

SCPI: device-specific

This command is an event,, which is why it is not assigned an *RST-value and has no query.

CALCulate[1...4]:MARKer[1...8]:FUNCtion[:SELect]

This command selects the marker search function.

Syntax: CALCulate[1...4]:MARKer[1...8]:FUNCtion[:SELect] MAXimum | MINimum |

TARGet | BFILter

Example: "CALC:MARK:FUNC TARG"

Features: *RST value: -

SCPI: device-specific

CALCulate[1...4]:MARKer[1...8]:FUNCtion:BWIDth

This command defines the difference of the bandwidth points which are searched starting from an extreme value (e.g. the 3dB-bandwidth).

Syntax: CALCulate[1...4]:MARKer[1...8]:FUNCtion:BWIDth <numeric_value>

Example: "CALC:MARK:FUNC:BWID 6dB"

Features: *RST value: -

SCPI: device-specific

CALCulate[1...4]:MARKer[1...8]:FUNCtion:BWIDth:MODE

This command selects the filter type (bandpass or bandstop) for the search of the bandwidth.

Syntax: CALCulate[1...4]:MARKer[1...8]:FUNCtion:BWIDth:MODE BPASs | BSTOp

Example: "CALC:MARK:FUNC:BWID:MODE BSTOP"

Features: *RST value: -

CALCulate[1...4]:MARKer[1...8]:FUNCtion:QFACtor

This command defines the quality factor for the marker search function. **Syntax:** CALCulate[1...4]:MARKer[1...8]:FUNCtion:QFACtor

Example: "CALC:MARK:FUNC:QFAC 100"

Features: *RST value: -

SCPI: device-specific

CALCulate[1...4]:MARKer[1...8]:FUNCtion:SFACtor

This command defines the form factor for the marker search function.

Syntax: CALCulate[1...4]:MARKer[1...8]:FUNCtion:SFACtor <numeric_value>,

<numeric_value>

Example: "CALC:MARK:FUNC:SFAC 60dB,3dB"

Features: *RST value: -

SCPI: device-specific

CALCulate[1...4]:MARKer[1...8]:FUNCtion:TARGet

This command defines the target value for the fixed-value search mode.

Syntax: CALCulate[1...4]:MARKer[1...8]:FUNCtion:TARGet <numeric_value>

Example: "CALC:MARK:FUNC:TARG 1.75"

Features: *RST value: -

SCPI: device-specific

CALCulate[1...4]:MARKer[1...8]:FUNCtion:RESULT?

This command queries the result of the marker search function.

Syntax: CALCulate[1...4]:MARKer[1...8]:FUNCtion:RESULT?

Example: "CALC:MARK:FUNC:RES?"

Features: *RST value:

SCPI: device-specific

This command is a guery,, which is why it is not assigned an *RST value.

CALCulate[1...4]:MARKer[1...8]:FUNCtion:EDELay

This command switches on or off the display of the electrical or the mechanical length or the phase delay. The suffix of MARKer has no meaning. The parameter information means the following:

ELENgth = electrical length
DISTance = mechanical length
TIME = phase delay
OFF = display switched off

Syntax: CALCulate[1...4]:MARKer[1...8]:FUNCtion:EDELay TIME | DISTance |

ELENgth | OFF

Example: "CALC:MARK:FUNC:EDEL TIME"

Features: *RST value: OFF

CALCulate[1...4]:MARKer[1...8]:FUNCtion:EDELay:VALue?

This command queries the value of the electrical or the mechanical length or the phase delay. The format of the return value must be selected beforehand with CALC:MARK:FUNC:EDEL. The suffix of MARKer has no meaning.

Syntax: CALCulate[1...4]:MARKer[1...8]:FUNCtion:EDELay:VALue?

Example: "CALC:MARK:FUNC:EDEL:VAL?"

Features: *RST value: --

SCPI: device-specific

This command is a query only and therefore has no *RST value.

CALCulate[1...4]:MARKer[1...8]:FUNCtion:DELTa:STATe

This command switches the delta marker mode on or off.

Syntax: CALCulate[1...4]:MARKer[1...8]:FUNCtion:DELTa:STATe ON | OFF

Example: "CALC:MARK:FUNC:DELT:STAT ON"

Features: *RST value: OFF

SCPI: device-specific

CALCulate[1...4]:MARKer[1...8]:FUNCtion:DELTa:REFerence

This command defines the reference marker for the delta marker mode.

Syntax: CALCulate[1...4]:MARKer[1...8]:FUNCtion MARKER1 | MARKER2 |

:DELTa:REFerence MARKER3 | MARKER4 | MARKER5 | MARKER6 |

FIXed

MARKER7 | MARKER8 |

Example: "CALC:MARK:FUNC:DELT:REF MARKER1"

Features: *RST value: -

SCPI: device-specific

CALCulate[1...4]:MARKer[1...8]:FUNCtion:DELTa:REFerence:RPOSition[:CARTesian]

This command defines the reference value for the delta marker mode "FIXED" in Cartesian diagrams.

Syntax: CALCulate[1...4]:MARKer[1...8]:FUNCtion

:DELTa:REFerence:RPOSition[:CARTesian] <numeric value>

Example: "CALC:MARK:FUNC:DELT:REF:RPOS 1"

Features: *RST value: -

SCPI: device-specific

CALCulate[1...4]:MARKer[1...8]:FUNCtion:DELTa:REFerence:RPOSition:POLar

This command defines the reference value for the delta marker mode "FIXED" in polar diagrams.

Syntax: CALCulate[1...4]:MARKer[1...8]:FUNCtion

:DELTa:REFerence:RPOSition:POLar <numeric_value>,

<numeric_value>

Example: "CALC:MARK:FUNC:DELT:REF:RPOS:POL 1,2"

Features: *RST value:

CALCulate[1...4]:MARKer[1...8]:FUNCtion:PTPeak:STATe

This command switches the determination of the maximum and minimum measured value (peak-to-peak value) on or off.

Syntax: CALCulate[1...4]:MARKer[1...8]:FUNCtion:PTPeak:STATe ON | OFF

Example: "CALC:MARK:FUNC:PTP:STAT ON"

Features: *RST value: OFF

SCPI: device-specific

CALCulate[1...4]:MARKer[1...8]:FUNCtion:PTPeak:RESult?

This command queries the result of the peak-to-peak value search.

Syntax: CALCulate[1...4]:MARKer[1...8]:FUNCtion:PTPeak:RESult? [ALL]

Example: "CALC:MARK:FUNC:PTP:RES?"

Features: *RST value:

SCPI: device-specific

This command is a query,, which is why it is not assigned an *RST value.

By default, the analyzer will return the peak-to-peak and the average value. If the optional parameter *ALL* is specified the analyzer will return the peak-to-peak, average, minimum, maximum values and the standard deviation.

CALCulate[1...4]:MARKer[1...8]:FUNCtion:CENTer

This command sets the center frequency to the current marker frequency.

Syntax: CALCulate[1...4]:MARKer[1...8]:FUNCtion:CENTer

Example: "CALC:MARK:FUNC:CENT"

Features: *RST value:

SCPI: device-specific

This command is an "event",, which is why it is not assigned an *RST value and has no query.

CALCulate[1...4]:MARKer[1...8]:FUNCtion:STARt

This command sets the start frequency to the frequency of the specified marker.

Syntax: CALCulate[1...4]:MARKer[1...8]:FUNCtion:STARt

Example: "CALC:MARK:FUNC:STAR"

Features: *RST value: -

SCPI: device-specific

This command is an "event",, which is why it is not assigned an *RST value and has no query.

CALCulate[1...4]:MARKer[1...8]:FUNCtion:STOP

This command sets the stop frequency to the frequency of the specified marker.

Syntax: CALCulate[1...4]:MARKer[1...8]:FUNCtion:STOP

Example: "CALC:MARK:FUNC:STOP"

Features: *RST value: -

SCPI: device-specific

This command is an "event",, which is why it is not assigned an *RST value and has no query.

CALCulate[1...4]:MARKer[1...8]:FUNCtion:REFerence

This command sets the reference level to the current marker level.

Syntax: CALCulate[1...4]:MARKer[1...8]:FUNCtion:REFerence

Example: "CALC:MARK:FUNC:REF"

Features: *RST value:

SCPI: device-specific

This command is an "event",, which is why it is not assigned an *RST value and has no query.

3.6.3.6 CALCulate:MATH Subsystem

The CALCulate:MATH - Subsystem allows to process data from the SENSe-subsystem with numerical expressions.

COMMAND	PARAMETER	UNIT	COMMENT
CALCulate[1 to 4]			
:MATH			
[:EXPRession]			
[:DEFine]	<expr></expr>		
:STATe	<boolean></boolean>		

CALCulate[1...4]:MATH[:EXPression][:DEFine]

This command defines the mathematical expression for data processing.

Syntax: CALCulate[1...4]:MATH[:EXPRession][:DEFine] <expr>

<expr>::= (OP1 op OP2 [op OP3])

OP1..OP3 ::= CH1DATA..CH4DATA | MDATA1 ... MDATA8

op ::= + | - | * | /

Example: "CALC:MATH (CH1DATA / MDATa1)"

Features: *RST value:

SCPI: conforming

CALCulate[1 to 4]:MATH:STATe

This command switches mathematical data processing on or off.

Syntax: CALCulate[1 to 4]:MATH:STATe ON|OFF

Example: "CALC:MATH:STAT ON"

Features: *RST value: OFF

3.6.3.7 CALCulate: SMOothing Subsystem

The CALCulate:SMOothing - Subsystem allows to smooth a data set point-by-point taking into account the values at adjacent points.

COMMAND	PARAMETER	UNIT	COMMENT
CALCulate<14>			
:SMOOthing [:STATe] :APERture	<boolean> <numeric_value></numeric_value></boolean>	 	

CALCulate[1...4]:SMOothing[:STATe]

This command determines the type of transformation of the data sets.

Syntax: CALCulate[1...4]:SMOothing[:STATe] ON | OFF

Example: "CALC:SMO ON"

Features: *RST value: OFF

SCPI: conforming

CALCulate[1...4]:SMOothing:APERture

This command defines the number of neighbor values used for smoothing relative to the number of points contained in the whole data set.

Syntax: CALCulate[1...4]:SMOothing:APERture <numeric_value>

Example: "CALC:SMO:APER 0.2"

Features: *RST value: 0

3.6.3.8 CALCulate:TRANsform Subsystem

The CALCulate:TRANsform subsystem defines the transformation of data sets into other representations.

COMMAND	PARAMETER	UNIT	COMMENT
CALCulate<14>			
:TRANsform			
:COMPlex	S SINV Y Z YREL ZREL		
ZREFerence	<numeric_value></numeric_value>	OHM	
:TIME			
:STATe	<boolean></boolean>		
:METHod	FFT CHIRp		
[:TYPE]	BPASs LPASs		
:LPASs	KFSTop KDFRequency MINStep		
:DCSParam	<numeric_value></numeric_value>		
:STIMulus	IMPulse STEP		
:STARt	<numeric_value></numeric_value>	s m	
:STOP	<numeric_value></numeric_value>	s m	
:SPAN	<numeric_value></numeric_value>	s m	
:CENTer	<numeric_value></numeric_value>	s m	
:WINDow	RECT HAMMing HANNing BOHMan DCHebyshev		
:DCHebyshev	<numeric_value></numeric_value>	dB	
:XAXis	TIME DISTance HDIStance		

CALCulate[1...4]:TRANsform:COMPlex

This command defines the transformation of data sets.

Syntax: CALCulate[1...4]:TRANsform:COMPlexS | SINV | Y | Z | YREL | ZREL

Example: "CALC:TRAN:COMP SINV"

Features: *RST value: -

SCPI: device-specific

CALCulate[1...4]:TRANsform:COMPlex:ZREFerence

This command defines the reference impedance for the normalized measured quantities.

Syntax: CALCulate[1...4]:TRANsform:COMPlex:ZREFerence <numeric_value>

Example: "CALC:TRAN:COMP:ZREF 30 Ohm"

Features: *RST value: 50Ω

SCPI: device-specific

CALCulate[1...4]:TRANsform:TIME:STATe

This command switches ON or OFF the time domain transformation.)

Syntax: CALCulate[1...4]:TRANsform:TIME:STATe ON | OFF

Example: "CALC:TRAN:TIME:STATe ON"

Features: *RST-Wert: OFF

CALCulate[1...4]:TRANsform:TIME:METHod

This command selects the transformation method (fast Fourier or chirp transformation) to be used.

Syntax: CALCulate[1...4]:TRANsform:TIME:METHod FFT | CHIRp

Example: "CALC:TRAN:TIME:METH FFT"

Features: *RST-Wert: CHIRp

SCPI: device-specific

CALCulate[1...4]:TRANsform:TIME[:TYPE]

This command selects the time domain transformation mode (lowpass or bandpass).

Syntax: CALCulate[1...4]:TRANsform:TIME:TYPE BPASs | LPASs

Example: "CALC:TRAN:TIME LPAS"

Features: *RST-Wert: BPASs

SCPI: conforming

CALCulate[1...4]:TRANsform:TIME:LPASs

This command defines the type of grid to be used in the lowpass mode.

Syntax: CALCulate[1...4]:TRANsform:TIME:LPASs KFSTop | KDFRequency | MINStep

Example: "CALC:TRAN:TIME:LPAS KFST"

Features: *RST-Wert: --

SCPI: device-specific

CALCulate[1...4]:TRANsform:TIME:LPASs:DCSParam

This command sets the S-parameter at 0 Hz for a lowpass transformation.

Syntax: CALCulate[1...4]:TRANsform:TIME:LPASs:DCSParam <numeric_value>

Example: "CALC:TRAN:TIME:LPAS:DCSP 2"

Features: *RST-Wert: 1

SCPI: device-specific

CALCulate[1...4]:TRANsform:TIME:STIMulus

This command selects the type of input signal to be used for the time domain transformation.

Syntax: CALCulate[1...4]:TRANsform:TIME:STIMulus IMPulse | STEP

Example: "CALC:TRAN:TIME:STIMulus STEP"

Features: *RST-Wert: IMPulse

SCPI: conforming

CALCulate[1...4]:TRANsform:TIME:STARt

This command defines the start time for the time domain transformation.

Syntax: CALCulate[1...4]:TRANsform:TIME:STARt <numeric_value>

Example: "CALC:TRAN:TIME:STARt 10ms"

Features: *RST-Wert: - 500 ps

CALCulate[1...4]:TRANsform:TIME:STOP

This command defines the stop time for the time domain transformation.

CALCulate[1...4]:TRANsform:TIME:STOP Syntax: <numeric value>

"CALC:TRAN:TIME:STARt 60ms" **Example:**

Features: *RST-Wert: +500 ps

> SCPI: conforming

CALCulate[1...4]:TRANsform:TIME:SPAN

This command defines the start time for the time domain transformation.

Syntax: CALCulate[1...4]:TRANsform:TIME:SPAN <numeric value>

"CALC:TRAN:TIME:SPAN 50ms" **Example:**

Features: *RST-Wert: 1 ns

> SCPI: conforming

CALCulate[1...4]:TRANsform:TIME:CENTer

This command defines the center time value for the time domain transformation.

Syntax: CALCulate[1...4]:TRANsform:TIME:CENTer <numeric value>

"CALC:TRAN:TIME:CENT 35ms" **Example:**

*RST-Wert: Features: 0 s

> SCPI: conformina

CALCulate[1...4]:TRANsform:TIME:WINDow

This command defines the filter function for the time domain transformation.

CALCulate[1...4]:TRANSform:TIME:WINDow RECT | HAMMing | HANNing | Syntax:

BOHMan | DCHebyshev

<numeric_value>

Example: "CALC:TRAN:TIME:WIND RECT"

Features: *RST-Wert: **HANNing**

> SCPI: conforming

CALCulate[1...4]:TRANsform:TIME:DCHebyshev

This command defines the sidelobe suppression for a Dolph-Chebyshev-type time domain transformation.

CALCulate[1...4]:TRANSform:TIME:DCHebyshev Syntax: "CALC:TRAN:TIME:DCH 30dB"

Example: 40 dB

*RST-Wert: Features:

SCPI: device-specific

CALCulate[1...4]:TRANsform:TIME:XAXis

This command defines the x-axis scaling of the transform. The parameters time, distance and half of the distance can be selected.

CALCulate[1...4]:TRANSform:TIME:XAXis TIME | DISTance | HDIStance Syntax:

"CALC:TRAN:TIME:XAX DIST" **Example:**

*RST-Wert: TIME Features:

3.6.3.9 CALCulate:UNIT Subsystem

The CALCulate:UNIT - subsystem defines the physical units to be used for the measured values.

COMMAND	PARAMETER	UNIT	COMMENT
CALCulate<14>			
:UNIT			
:POWer			
:A1	MW W UV MV V DBM DBW DBUV DBMV DBV		
:A2	MW W UV MV V DBM DBW DBUV DBMV DBV		
:B1	MW W UV MV V DBM DBW DBUV DBMV DBV		
:B2	MW W UV MV V DBM DBW DBUV DBMV DBV		

CALCulate[1...4]:UNIT:POWer:A1|A2|B1|B2

This command defines the physical units for the direct measured wave quantities.

DBW | DBUV | DBMV | DBV

Example: "CALC:UNIT:POW:A2 DBUV"

Features: *RST value: -

3.6.4 DIAGnostic Subsystem

The DIAGnostic subsystem contains the commands which support instrument diagnostics for maintenance, service and repair. In accordance with the SCPI standard, all of these commands are device-specific.

COMMAND	PARAMETER	UNIT	COMMENT
DIAGnostic			
:SERVice			
:FUNCtion	<numeric_value>,<numeric_value></numeric_value></numeric_value>		no query
:RFPower	<boolean></boolean>		

DIAGnostic:SERVice:FUNCtion

This command activates a service function.

Syntax: DIAGnostic:SERVice:FUNCtion <numeric_value>,,<numeric_value>...

Example: "DIAG:SERV:FUNC 2,0,2,12,1"

Features: *RST value:

SCPI: device-specific

The service function is selected via five parameters: functional group number, board number,

function number, parameter 1 and parameter 2.

See service manual

DIAGnostic:SERVice:RFPower

This command switches the stimulus signal on and off.

Syntax: DIAGnostic:SERVice:RFPower ON | OFF

Example: "DIAG:SERV:RFP OFF"

Features: *RST value:

3.6.5 DISPlay Subsystem

The DISPLay subsystem controls the selection and presentation of textual and graphic information and of trace data on the display.

The commands for TRACe1 refer to the active measured value memory, the commands for TRACe2 to the memory trace.

COMMAND	PARAMETER	UNIT	COMMENT
DISPlay			
:FORMat	SINGle DOVerlay QOVerlay DSPLit QDSPlit QQSPlit		
:EXPand	<boolean></boolean>		
:PROgram			
[:MODE]	<boolean></boolean>		
:PSAVe			
[:STATe]	<boolean></boolean>		
:HOLDoff	<numeric_value></numeric_value>		
[:WINDow<14>]			
:DIAGram	CLIN CLOG CDB CSEG PLIN PLOG PDB PSEG CHARter SMITh ISMith		
:SEGMented			
:X			
[:STATe]	<boolean></boolean>		
:R	<numeric_value></numeric_value>		
:Y	<numeric_value></numeric_value>		
:TRACe<1 2>			
:X			
:OFFSet	<numeric_value></numeric_value>	HZ	
:SPACing	LINear LOGarithmic		
:Y			
[:SCALe]			
:AUTO	ONCE		no query
:RLEVel	<numeric_value></numeric_value>	DBM DB	
:PDIVision	<numeric_value></numeric_value>	DBM DB	
:RPOSition	<numeric_value></numeric_value>	PCT	
:BOTTom	<numeric_value></numeric_value>	DBM DB	
:TOP	<numeric_value></numeric_value>	DBM DB	
:OFFSet	<numeric_value></numeric_value>	DBM DB	
:SPACing :R	LINear LOGarithmic DB		
[:SCALe] :CPOint	<numeric value=""></numeric>	DBM DB	
:OEDGe	<numeric value=""></numeric>	DBM DB	
:SPACing	LINear LOGarithmic DB		
[:STATe]	<pre><boolean></boolean></pre>		
[.017.16]			

DISPlay:FORMat

This command switches the display format of the measurement results between one, two and four diagrams.

Syntax: DISPlay:FORMat SINGle | DOVerlay | QOVerlay | DSPLit | QDSPlit | QQSPlit

Example: "DISP:FORM DSPL"

Features: *RST value: SINGle

DISPlay:FORMat:EXPand

This command switches the expanded representation on or off.

Syntax: DISPlay:FORMat:EXPand ON | OFF

Example: "DISP:FORM:EXP ON"

Features: *RST value: OFF

SCPI: device-specific

DISPlay:PROGram[:MODE]

This command switches the screen between the measuring instrument and the controller function.

Syntax: DISPlay:PROGram:[MODE] ON | OFF

Example: "DISP:PROG ON" **Features:** *RST value: OFF

SCPI: device-specific

DISPlay:PSAVe[:STATe]

This command switches the screen saver of the unit's LCD display on or off.

Syntax: DISPlay:PSAVe:[STATe] ON | OFF

Example: "DISP:PSAV ON"

Characteristics: *RST value: OFF

SCPI: device-specific

DISPlay:PSAVe:HOLDoff

This command sets the time after which the unit's LCD display is switched off. The range is 1 to 100 minutes.

Syntax: DISPlay:PSAVe:[STATe] <numeric_value>

Example: "DISP:PSAV:HOLD 7"

Characteristics: *RST value: 5

SCPI: device-specific

DISPlay[:WINDow[1...4]]:DIAGram

This command selects the diagram type for representation.

Syntax: DISPlay[:WINDow[1...4]]:DIAGram CLIN | CLOG | CDB | CSEG | PLIN | PLOG |

PDB | PSEG |CHARter | SMITh | ISMith

Example: "DISP:DIAG SMIT Features: *RST value: CLOG

SCPI: device-specific

DISPlay[:WINDow[1...4]]:DIAGram:SEGMented:X[:STATe]

This command switches on and off the list sweep with a segmented x-axis.

Syntax: DISPlay[:WINDow[1...4]]:DIAGram:SEGMented:X:[STATe] ON | OFF

Example: "DISP:DIAG:SEGM:X ON"

Features: *RST value: OFF

DISPlay[:WINDow[1...4]]:DIAGram:SEGMented:R

This command defines the segment limits for polar diagrams. A maximum of 3 segments can be defined. The separation line between two segments is common, i.e. there are neither gaps nor overlaps. The numeric values refer to the unit used in the diagram and are sorted in descending order.

Syntax: DISPlay[:WINDow[1...4]]:DIAGram:SEGMented:R <numeric_value> ...

Example: "DISP:DIAG:SEGM:R 20,-30,-70,-120"

Features: *RST value:

SCPI: device-specific

DISPlay[:WINDow[1...4]]:DIAGram:SEGMented:Y

This command defines the segment limits for Cartesian diagrams. A maximum of 3 segments can be defined. The separation line between two segments is common, i.e. there are neither gaps nor overlaps. The numeric values refer to the unit used in the diagram and are sorted in descending order.

Syntax: DISPlay[:WINDow[1...4]]:DIAGram:SEGMented:Y <numeric_value> ...

Example: "DISP:DIAG:SEGM:Y 20,-30,-70,-120"

Features: *RST value:

SCPI: device-specific

DISPlay[:WINDow[1...4]]:TRACe2:X:OFFSet

This command sets the stimulus offset of a memory trace. It is therefore only available for TRAC2.

Syntax: DISPlay[:WINDow[1...4]]:TRACe2:X:OFFSet <numeric_value>

Example: "DISP:TRAC2:X:OFFs 10MHZ"

Features: *RST value: 0 Hz

SCPI: device-specific

DISPlay[:WINDow[1 to 4]]:TRACe[1|2]:X:SPACing

This command toggles between linear and logarithmic display of the X-axis.

Syntax: DISPlay[:WINDow[1 to 4]]:TRACe[1|2]:X:SPACing LINear | LOGarithmic | dB

Example: "DISP:TRAC:X:SPAC LOG"

Features: *RST value: LINear

SCPI: conforming

DISPlay[:WINDow[1 to 4]]:TRACe[1|2]:Y[:SCALe]:AUTO

This command performs a single rescaling of the y-axis or the radial axis, respectively.

Syntax: DISPlay[:WINDow[1 to 4]:TRACe[1|2]:Y[:SCALe]:AUTO ONCE

Example: "DISP:TRAC:Y:AUTO ONCE"

Features: *RST value: -

SCPI: conforming

This command is an "event", which is why it is not assigned an *RST value and has no query.

DISPlay[:WINDow[1 to 4]]:TRACe[1|2]:Y[:SCALe]:RLEVel

This command defines the reference level. In addition to the units given in the table, the following units and prefixes are permitted for the individual measured quantities:

Power: DBM, DB, DBW, W, MW, UW, NW, PW Voltage: V, MV, UV, NV, PV, DBV, DBMV, DBUV Phase: DEG, KDEG, MDEG, UDEG, NDEG, PDEG

Group delay: S, MS, US, NS, PS

Impedance: OHM, GOHM, MOHM, KOHM

Admittance: SIE, MSIE, USIE, NSIE
Inductivity: H, MH, UH, NH, PH, FH
Capacity: F, MF, UF, NF, PF, FF

Dimensionless: UNIT, MUNIT, UUNIT, NUNIT, PUNIT, FUNIT

Syntax: DISPlay[:WINDow[1 to 4]]:TRACe[1|2]:Y[:SCALe]:RLEVel < numeric value>

Example: "DISP:TRAC:Y:RLEV -60dBm"

Features: *RST value: -

SCPI: conforming

The specification of the reference level depends on the unit currently selected.

DISPlay[:WINDow[1 to 4]]:TRACe[1|2]:Y[:SCALe]:PDIVision

This command defines the distance between two grid lines. In addition to the units given in the table, the following units and prefixes are permitted for the individual measured quantities:

Power: DBM, DBW, MW, UW, NW, PW

Voltage: V, MV, UV, NV, PV, DBV,

Phase: DEG, KDEG, MDEG, UDEG, NDEG, PDEG

Group delay: S, MS, US, NS, PS

Impedance: OHM, GOHM, MOHM, KOHM

Admittance: SIE, MSIE, USIE, NSIE Inductivity: H, MH, UH, NH, PH, FH F, MF, UF, NF, PF, FF

Dimensionless: UNIT, MUNIT, UUNIT, NUNIT, PUNIT, FUNIT

Syntax: DISPlay[:WINDow[1 to 4]]:TRACe[1 to 4]:Y[:SCALe]:PDIVision numeric_value>

<numeric_value>::=

Example: "DISP:TRAC:Y:PDIV 10dB"

Features: *RST value: 10 dB

SCPI: conforming

DISPlay[:WINDow[1 to 4]]:TRACe[1|2]:Y[:SCALe]:RPOSition

This command defines the reference position in percent.

Syntax: DISPlay[:WINDow[1 to 4]]:TRACe[1|2]:Y[:SCALe]:RPOSition <numeric_value>

<numeric_value>::=

Example: "DISP:TRAC:Y:RPOS 50 PCT"

Features: *RST value: 100PCT

SCPI: device-specific

Value 100% corresponds to the reference level (TOP), value 0% corresponds to the bottom of the grid (BOTTom).

DISPlay[:WINDow[1 to 4]]:TRACe[1|2]:Y[:SCALe]:BOTTom

This command defines the lower edge of the grid. In addition to the units given in the table, the following units and prefixes are permitted for the individual measured quantities:

Power: DBM, DB, DBW, W, MW, UW, NW, PW Voltage: V, MV, UV, NV, PV, DBV, DBMV, DBUV Phase: DEG, KDEG, MDEG, UDEG, NDEG, PDEG

Group delay: S, MS, US, NS, PS

Impedance: OHM, GOHM, MOHM, KOHM

Admittance: SIE, MSIE, USIE, NSIE Inductivity: H, MH, UH, NH, PH, FH Capacity: F, MF, UF, NF, PF, FF

Dimensionless: UNIT, MUNIT, UUNIT, NUNIT, PUNIT, FUNIT

Syntax: DISPlay[:WINDow[1 to 4]:TRACe[1|2]:Y[:SCALe]:BOTTom <numeric value>

Example: "DISP:TRAC:Y:BOTT -60dBm"

Features: *RST value: -

SCPI: conforming

DISPlay[:WINDow[1 to 4]]:TRACe[1|2]:Y[:SCALe]:TOP

This command defines the upper edge of the grid. In addition to the units given in the table, the following units and prefixes are permitted for the individual measured quantities:

Power: DBM, DB, DBW, W, MW, UW, NW, PW Voltage: V, MV, UV, NV, PV, DBV, DBMV, DBUV Phase: DEG, KDEG, MDEG, UDEG, NDEG, PDEG

Group delay: S, MS, US, NS, PS

Impedance: OHM, GOHM, MOHM, KOHM

Admittance: SIE, MSIE, USIE, NSIE Inductivity: H, MH, UH, NH, PH, FH Capacity: F, MF, UF, NF, PF, FF

Dimensionless: UNIT, MUNIT, UUNIT, NUNIT, PUNIT, FUNIT

Syntax: DISPlay[:WINDow[1 to 4]:TRACe[1|2]:Y[:SCALe]:TOP <numeric value>

Example: "DISP:TRAC:Y:TOP 10dBm"

Features: *RST value: –

DISPlay[:WINDow[1 to 4]]:TRACe[1|2]:Y[:SCALe]:OFFSet

This command defines an offset value to be added to the output values. In addition to the units given in the table, the following units and prefixes are permitted for the individual measured quantities:

Power: DBM, DBW, MW, UW, NW, PW

Voltage: V, MV, UV, NV, PV,

Phase: DEG, KDEG, MDEG, UDEG, NDEG, PDEG

Group delay: S, MS, US, NS, PS

Impedance: OHM, GOHM, MOHM, KOHM Admittance: SIE, MSIE, USIE, NSIE

Inductivity: H, MH, UH, NH, PH, FH
Capacitance: F, MF, UF, NF, PF, FF

Dimensionless: UNIT, MUNIT, UUNIT, NUNIT, PUNIT, FUNIT

Syntax: DISPlay[:WINDow[1 to 4]:TRACe[1|2]:Y[:SCALe]:OFFSet <numeric_value>

Example: "DISP:TRAC:Y:OFFS -6dBm"

Features: *RST value: 0dB

SCPI: device-specific

DISPlay[:WINDow[1 to 4]]:TRACe[1|2]:Y:SPACing

This command toggles between linear and logarithmic scaling of the Y-axis.

Syntax: DISPlay[:WINDow[1 to 4]]:TRACe[1|2]:Y:SPACing LINear | LOGarithmic | dB

Features: "DISP:TRAC:Y:SPAC LIN"
*RST value: LOGarithmic

SCPI: conforming

DISPlay[:WINDow[1...4]]:TRACe[1|2]:R[:SCALe]:CPOint

This command defines the center value of the polar diagram.

Syntax: DISPlay[:WINDow[1...4]]:TRACe[1|2]:R[:SCALe]:CPOint <numeric value>

Example: "DISP:TRAC:R:CPO"

Features: *RST value:

SCPI: conforming

DISPlay[:WINDow[1...4]]:TRACe[1|2]:R[:SCALe]:OEDGe

This command defines the radius of the polar diagram.

Syntax: DISPlay[:WINDow[1...4]]:TRACe[1|2]:R[:SCALe]:OEDGe <numeric_value>

Example: "DISP:TRAC:R:OEDG"

Features: *RST value:

SCPI: conforming

DISPlay[:WINDow[1...4]]:TRACe[1|2]:R:SPACing

This command switches between linear and logarithmic representation.

Syntax: DISPlay[:WINDow[1...4]]:TRACe[1|2]:R:SPACing LINear | LOGarithmic | dB

Example: "DISP:TRAC:R:SPAC LIN"

Features: *RST value: LOGarithmic

DISPlay[:WINDow[1 to 4]:TRACe[1|2][:STATe]

This command switches the display of the current trace on or off.

Syntax: DISPlay[:WINDow[1 to 4]]:TRACe[1|2][:STATe] ON | OFF

Example: "DISP:TRAC2 ON"

Features: *RST value: ON for TRACe1, OFF for TRACe2

3.6.6 FORMat Subsystem

The FORMat subsystem specifies the format of the data transmitted from and to the analyzer.

COMMAND	PARAMETER	UNIT	COMMENT
FORMat			
[:DATA]	ASCii REAL[, <numeric_value>]</numeric_value>		
:DEXPort	ASCii TOUChstone SCOMpact		
:FORMat	COMPlex MLPHase MDPHase		
:MODe	NEW APPend		
:DSEParator	POINt COMMa		
:SOURce	CDATa CVData TDATa FDATa MDATa DDATa		

FORMat[:DATA]

This command defines the data format for transmission from and to the analyzer.

Syntax: FORMat[:DATA] ASCII | REAL [,<numeric_value>]

Example: "FORM REAL,32" "FORM REAL,64"

"FORM REAL,64

Characteristics: *RST value: ASCII

SCPI: conforming

Either the ASCII or REAL data format can be selected. ASCII data are transmitted in plain text with commas used as separators. REAL data are transmitted as 32- or 64-bit IEEE 754 floating-point numbers using definite length blocks.

Results are transmitted as S-parameters or ratios of wave quantities in real and imaginary part representation. For a sweep with 401 test points, therefore, 802 values are transmitted separated by commas.

If the format "FORM REAL, 32" is selected for the above example, the data stream from the analyzer to the controller is as follows:

#432085334.....

From here follow the data bytes of the data block, here 5334

Number of bytes of data block stated in ASCII plain text, here 3208

ASCII byte stating the length of the subsequent length counter, here 4

Head marker of binary data stream

For this example, the number of transmitted data bytes is as follows:

Number = number of test points * bytes/value * 2 3208 = 401 * 4 * 2

The factor of two takes into account that the result is represented as a complex variable.

FORMat:DEXPort

This command defines the format of the file to be generated.

Syntax: FORMat:DEXPort ASCii | TOUChstone | SCOMpact

Example: "FORM: DEXP ASCII"

Features: *RST value: ASCii

SCPI: conforming

The file format can be compatible to ASCII (can be imported into arbitrary applications), TOUCHSTONE or SUPERCOMPACT

FORMat:DEXPort:FORMat

This command defines the format for representing the measurement values.

Syntax: FORMat:DEXPort:FORMat COMPlex | MLPHase | MDPHase

Example: "FORM: DEXP: FORM COMP"

Features: *RST value: ASCii

SCPI: conforming

FORMat:DEXPort:MODe

This command defines whether the output data are written into a new file or appended to an existing file.

Syntax: FORMat:DEXPort:MODe NEW | APPend

Example: "FORM: DEXP: MODE NEW"

Features: *RST value: NEW

SCPI: conforming

FORMat:DEXPort:DSEParator

This command defines the decimal separator to be used (for ASCII files only).

Syntax: FORMat:DEXPort:DSEParator POINt | COMMa

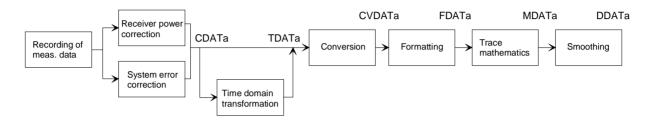
Example: "FORM:DEXP:DSEP POINT"

Litample.

Features: *RST value: COMMa SCPI: conforming

FORMat:DEXPort:SOURce

This command defines the source of measurement data.


Syntax: FORMat:DEXPort:SOURce CDATa | CVData | TDATa | FDATa | MDATa |

DDATa

Example: "FORM: DEXP: SOUR CDAT" **Features:** *RST value: DDATa

SCPI: conforming

The possible sources correspond to different stages in the flow of measurement data:

3.6.7 HCOPy Subsystem

The HCOPy subsystem controls the output of screen information to output devices or files for documentation purposes.

COMMAND	PARAMETER	UNIT	COMMENT
НСОРу			
:ABORt			no query
:DESTination<1 2>	<string></string>		no query
:DEVice			
:COLor	<boolean></boolean>		
:LANGuage<1 2>	HPGL PCL4 PCL4_C PCL4_C3 PCL5 LASerj DESKJ DESKJ_C DESKJ_C3 POSTscript EPSON24 EPSON24C WMF PCX HP7470 HP7470LS		
:PRESet<1 2>	<boolean></boolean>		
:RESolution<1 2>	<numeric_value></numeric_value>		
[:IMMediate<1 2>]			no query
:ITEM			
:ALL			no query
:FFEed<1 2>			
:STATe	<boolean></boolean>		
:LABEL			
:TEXT	<string></string>		
:PFEed<1 2>			
:STATe	<boolean></boolean>		
:WINDow<14>			
:TABLe			
:STATe	<boolean></boolean>		
:TEXT	<string></string>		
:TRACe<1 2> :STATe	(Pooloop)		
:STATE :CAINcrement	<boolean></boolean>		
:LTYPe	SOLid STYLe0 STYLe1 STYLe2 STYLe3 STYLe4 STYLe5 STYLe6 STYLe7		
:STATe	<boolean></boolean>		
:AINCrement	<boolean></boolean>		
:PAGE			
:DIMensions			
:QUADrant<14>			no query
:FULL			no query
:ORIentation<1 2>	LANDscape PORTrait		

HCOPy:ABORt

This command aborts an active print job.

Syntax: HCOPy:ABORt

Example: "HCOP:ABOR"

Features: *RST value:

SCPI: conforming

This command is an "event", which is why it is not assigned an *RST value and has no query.

HCOPy:DESTination<1|2> <string>

This command selects the device for outputting the hardcopy.

Syntax: HCOPy:DESTination[1|2] <string>

<string>::= 'SYST:COMM:PRIN' |

'SYST:COMM:CLIP' |

'MMEM'

Example: "HCOP:DEST2 'SYST:COMM:SER2'"

Features: *RST value:

SCPI: conforming

This command is an event, which is why it is not assigned an *RST value and has no query.

'MMEM' creates a file for the hardcopy output. Command MMEM: NAME

<file_name> defines the file name. All formats can be selected with

HCOPy: DEVice: LANGuage.

'SYST: COMM: PRIN' directs the hardcopy to the printer. The printer is selected with command

SYSTEM: COMMunicate: PRINter: SELect.

GDI should be selected for HCOPy: DEVice: LANGuage.

'SYST: COMM: CLIP' directs the hardcopy to the clipboard. EWMF should be selected for

HCOPy: DEVice: LANGuage.

HCOPy:DEVice:COLor

This command selects between color and monochrome printout of the screen display.

Syntax: HCOPy:DEVice:COLor ON|OFF

Example: "HCOP:DEV:COL ON" **Features:** *RST value: OFF

HCOPy:DEVice:LANGuage<1|2>

This command determines the data format of the printout.

Syntax: HCOPy:DEVice:LANGuage HPGL | PCL4 | PCL4_C | PCL4_C3 | PCL5 |

LASERJ | DESKJ | DESKJ_C | DESKJ_C3 |
POSTscript | EPSON24 | EPSON24C | WMF |

PCX

Example: "HCOP:DEV:LANG WMF"

Features: *RST value: -

SCPI: conforming

HPGL and Data format for a plotter output in HPGL,

HP7470 special output for plotter hp7470 (reduced HPGL format)
HPGL_LS and Special HPGL/HP7470 format with output of traces with

HP7470LS different line styles (<u>Linestyles</u>)

PCL4... and PCL5 Generic data formats for laser and ink-jet printers, with

PCL4: Black/white

PCL4_C: Colour (3 colour cartridges + black cartridge)

PCL4_C3: Colour (only 3 colour cartridges)

PCL5: Black/white with 300-DPI resolution, new language version.

LASERJ Data format for HP Laserjet as of series III

DESKJ... Data formats for printers of the HP Deskjet series, with

DESKJ: Black/white

DESKJ C: Colour (3 colour cartridges + black cartridge, e.g. Deskjet 560)

DESKJ C3: Colour (only 3 colour cartridges, e.g. Deskiet 500)

POSTscript Postscript language,

EPSON24 Data format for Epson-compatible 24-pin matrix printers, black/white, e.g.

Epson LQ series, R&S PDN

EPSON24C Data format for Epson-compatible 24-pin dot matrix printers with colour, e.g.

Epson Stylus Color, R&S PDN Color

WMF and (WINDOWS Metafile Format) and

PCX (pixel graphics) data formats for output to files, which can later be directly

inserted in appropriate programs for documentation.

HCOPy[:IMMediate]

This command starts a print job.

Syntax: HCOPy[:IMMediate]

Example: "HCOP"

Features: *RST value: -

SCPI: conforming

HCOPy:IMM[1] starts the hardcopy output at device no. 1 (default),

HCOPy:IMM2 starts the hardcopy output at device no. 2.

This command is an "event", which is why it is not assigned an *RST value and has no query.

HCOPy:ITEM:ALL

This command selects the complete screen to be output.

Syntax: HCOPy:ITEM:ALL

Example: "HCOP:ITEM:ALL"

Features: *RST value: OFF

SCPI: conforming

The hardcopy output is always provided with comments, title, time and date.

As an alternative to the whole screen, only traces (commands 'HCOPy:DEVice:WINDow:TRACe:STATe ON') or tables (command 'HCOPy:DEVice:WINDow:TABLe:STATe ON') can be output.

HCOPy:ITEM:FFEed[1|2]:STATe

The command adds a form feed command to the hardcopy output of the screen.

Syntax: HCOPy:ITEM:FFEed[1|2]:STATe ON|OFF

Example: "HCOP:ITEM:FFE2:STAT ON"

Features: *RST value: OFF

SCPI: conforming

HCOPy:ITEM:LABeI:TEXT

This command defines the title of the hardcopy output...

Syntax: HCOPy:ITEM:LABel:TEXT <string>

Example: "HCOP:ITEM:LAB:TEXT 'My Title'"

Features: *RST value: OFF

SCPI: conforming

HCOPy:ITEM:PFEed[1|2]:STATe

This command adds a paper feed command to the hardcopy output.

Syntax: HCOPy:ITEM:PFEed[1|2]:STATe ON|OFF

Example: "HCOP:ITEM:PFE2:STAT ON"

Features: *RST value: OFF

SCPI: device-specific

HCOPy:ITEM:WINDow<1...4>:TABLe:STATe

This command prints the currently displayed tables..

Syntax: HCOPy:ITEM:WINDow<1...4>:TABLe:STATe ON | OFF

Example: "HCOP:ITEM:WIND2:TABL:STAT ON"

Features: *RST value: OFF

SCPI: device-specific

The command HCOPy:ITEM:WINDow<1...4>:TABLe:STATe OFF selects the whole screen for output, in analogy to the command HCOPy:ITEM:ALL

HCOPy:ITEM:WINDow<1...4>:TEXT

This command selects the comment text for printout to trace 1 or 2. **Syntax:** HCOPy:ITEM:WINDow<1...4>:TEXT <string>

Example: "HCOP:ITEM:WIND2:TEXT 'Comment'"

Features: *RST value: -

SCPI: device-specific

HCOPy:ITEM:WINDow<1...4>:TRACe:STATe

This command selects the currently displayed trace for output.

Syntax: HCOPy:ITEM:WINDow<1...4>:TRACe:STATe ON | OFF

Example: "HCOP:ITEM:WIND2:TRACe:STAT ON"

Features: *RST value: OFF

SCPI: device-specific

The command HCOPy:ITEM:WINDow<1...4>:TABle:STATe OFF selects the whole screen for output, in analogy to the command HCOPy:ITEM:ALL.

HCOPy:ITEM:WINDow<1...4>:TRACe:CAINcrement

The command automatically changes the color of the currently displayed trace after printout.

Syntax: HCOPy:ITEM:WINDow<1...4>:TRACe:CAINcrement ON | OFF

Example: "HCOP:ITEM:WIND2:TRACe:CAIN ON"

Features: *RST value: OFF

SCPI: device-specific

The automatic change of color of the trace allows to plot several traces of the same diagram. For a better distinction, the color of the trace is changed each time ("Color Auto Increment").

HCOPy:ITEM:WINDow[1...4]:TRACe[1|2]:LTYPe:STATe

This command switches the line configuration function on or off for data output to a plotter. With OFF, all test traces of a plot are in the form of continuous lines. This command is available only if a plotter is selected as an output device.

Syntax: HCOPy:ITEM:WINDow[1...4]:TRACe[1|2]:LTYPe:STATe ON | OFF

Example: "HCOP:ITEM:WIND:TRAC:LTYPe:STAT ON"

Characteristics: *RST value: OFF

SCPI: device-specific

HCOPy:ITEM:WINDow[1...4]:TRACe[1|2]:LTYPe

This command enables editing of the line style of a selected test trace. TRACe2 stands for memory traces.

This command is available only if a plotter is selected as an output device. Permissible values are SOLid (continuous line) and STYLE0 to STYLE7. STYLE7 is equivalent to SOLid, the other values are for dashed, dash-dotted and other line styles.

Syntax: HCOPy:ITEM:WINDow[1...4]:TRACe[1|2]:LTYPe SOLid | STYLe<n>

Example: "HCOP:ITEM:WIND:TRACe:LTYPe STYLe5"

Characteristics: *RST value: channel-specific

HCOPy:ITEM:WINDow[1...4]:TRACe[1|2]:LTYPe:AINCrement

This command causes automatic incrementation of the line style of the active-channel test trace after each hardcopy generated. The command is available only if a plotter is selected as an output device. The command has no effect on the memory traces. In automatic incrementation, line styles STYLe7 to STYLe3 are activated one after the other.

Syntax: HCOPy:ITEM:WINDow[1...4]:TRACe[1|2]:LTYPe:AINCrement ON | OFF

Example: "HCOP:ITEM:WIND:TRAC:LTYP:AINC ON"

Characteristics: *RST value channel-specific

SCPI: device-specific

HCOPy:PAGE:DIMensions:QUADrant

The command defines the quadrant which is allocated to the screen output.

Syntax: HCOPy:PAGE:DIMensions:QUADrant[1...4]

Example: "HCOP:PAGE:DIM:QUAD1"

Features: *RST value:

SCPI: conforming

The quadrants are defined as QUAD1 at the top right, QUAD2 at the top left, QUAD3 at the bottom left and QUAD4 at the bottom right. This command is an event, which is why it is not assigned an *RST value and has no query.

HCOPy:PAGE:DIMensions:FULL

This command defines that the full screen is to be printed out.

Syntax: HCOPy:PAGE:DIMensions:FULL

Example: "HCOP:PAGE:DIM:FULL"

Features: *RST value: -

SCPI: device-specific

This command is an event, which is why it is not assigned and *RST value and has no query.

HCOPy:PAGE:ORlentation

The command selects the format of the output (portrait and landscape). **Syntax:** HCOPy:PAGE:ORIentation LANDscape | PORTrait

Example: "HCOP:PAGE:ORI LAND"

Features: *RST value: -

3.6.8 INITiate Subsystem

The INITiate subsystem controls the initialization of the trigger subsystem.

COMMAND	PARAMETER	UNIT	COMMENT
INITiate			
:CONTinuous	<boolean></boolean>		
[:IMMediate]			no query

INITiate: CONTinuous

This command determines if the trigger system is continuously initiated ("Free Run")...

Syntax: INITiate:CONTinuous ON | OFF

Example: "INIT:CONT OFF" Features: *RST value: ON

SCPI: conforming

Setting "INITiate:CONTinuous ON" corresponds to the CONTINUOUS SWEEP, i.e. the sweep is cyclically repeated. The setting "INITiate:CONTinuous OFF" corresponds to the function SINGLE SWEEP.

INITiate[:IMMediate]

The command initiates a new sweep or starts a single sweep.

Syntax: INITiate[:IMMediate]

Example: "INIT"

Features: *RST value: -

SCPI: conforming

This command is an event, which is why it is not assigned an *RST value and has no query.

INPut Subsystem ZVx

3.6.9 INPut Subsystem

The INPut subsystem controls the features of the input of the instrument.

COMMAND	PARAMETER	UNIT	COMMENT
INPut			
:ATTenuation	<numeric_value></numeric_value>	DB	
:BRIDge	INTernal BYPass FPORt		
:UPORt<1 2>			
[:VALue?]			
:STATe	<boolean></boolean>		

INPut[1|2]:ATTenuation

This command determines the attenuation of the attenuator in the signal path of the incident wave b1 or b2.

Syntax: INPut[1|2]:ATTenuation <numeric_value>

<numeric_value>::= 0dB..70dB

Example: "INP:ATT 40dB" **Features:** *RST value: 0 dB

SCPI: conforming

INPut:BRIDge

This command defines the type of measurement performed with the test set (internal, external or full-port) .

Syntax: INPut[1|2]:BRIDge INTernal | BYPass | FPORt

Example: "INP:BRID BYP"

Features: *RST value: INTernal

SCPI: device-specific

INPut:UPORt<1|2>[:VALue]?

This command queries the control lines of the user Ports.

Syntax: INPut:UPORt<1|2>[:VALue]?

Example: "INP:UPOR2?"

Features: *RST value: -

SCPI: device-specific

This command is a query and therefore is not assigned an *RST value.

INPut:UPORt<1|2>:STATe

This command switches the control lines of the user ports between INPut and OUTPut.

Syntax: INPut:UPORt<1|2>:STATe ON | OFF

Example: "INP:UPOR2:STAT ON"

Features: *RST value: ON

SCPI: device-specific

ON switches the User-Port to INPut, OFF switches to OUTPut.

3.6.10 INSTrument Subsystem

The INSTrument subsystem selects the measuring mode of the instrument either via text parameters or via assigned default numbers.

COMMAND	PARAMETER	UNIT	COMMENT
INSTrument			
:COUPle	ALL NONE		
[:SELect]	CHANNEL1 CHANNEL2 CHANNEL3 CHANNEL4		
:NSELect	<numeric_value></numeric_value>		

INSTrument:COUPle

This command switches the coupling of the display channels of the analyzer on or off.

Syntax: INSTrument:COUPle ALL | NONE

Features: "INST:COUP NONE"

*RST value: ALL
SCPI: conforming

INSTrument[:SELect]

This command selects the active channel of the analyzer.

Syntax: INSTrument[:SELect] CHANNEL<1..4>

Example: "INST CHANNEL2"

Features: *RST value: CHANNEL1, coupled channels

SCPI: conforming

INSTrument:NSELect

This command switches between the channels of the analyzer. The channel number is directly entered.

Syntax: INSTrument:NSELect <numeric_value>

<numeric_value>::= 1 to 4

Example: "INST:NSEL 2"

Features: *RST value: 1, coupled channels

SCPI: conforming

The value 1 corresponds to CHANNEL1 etc. of the command INSTrument[:SELect].

3.6.11 MMEMory Subsystem

The MMEMory (mass memory) subsystem provides the commands which allow for access to the storage media of the instrument and for storing and loading various instrument settings.

The NAMe command stores the HCOPy outputs in a file.

The various drives can be addressed via the mass storage unit specifier <msus> using the conventional DOS syntax. The internal hard disk is addressed by "C:", the floppy-disk drive installed by "A:".

The file names <file_name> are specified as string parameters with the commands being enclosed in quotation marks. They are written according to the ordinary DOS conventions:

DOS file names consist of max. 8 ASCII characters and an extension of up to three characters separated from the file name by a colon "." Both the colon and the extension are optional. The colon is not part of the file name. DOS file names do not differ between uppercase and lowercase notation. All letters and digits are permitted as well as the special characters "_", "^", "\$", "~", "!", "#", "%", "&", "-", "[", "]", "@" and "'". Reserved file names are CLOCK\$, CON, AUX, COM1 to COM4, LPT1 to LPT3, NUL and PRN.

The two characters "*" and "?" have the function of so-called "wildcards", i.e., they are variables for selection of several files. The question mark "?" replaces exactly one character which may be any, the asterisk means any of the remaining characters in the file name. "*.*" thus means all files in a directory.

COMMAND	PARAMETER	UNIT	COMMENT
MMEMory			
:CATalog?			query only
:CDIRectory	<directory_name></directory_name>		
:COPY	<file_name>,<file_name></file_name></file_name>		no query
:DATA	<file_name>[,<block>]</block></file_name>		
:DELete	<file_name></file_name>		no query
:INITialize	<msus></msus>		no query
:LOAD			
:AUTO	1, <file_name></file_name>		
:STATe	1, <file_name></file_name>		no query
:MDIRectory	<directory_name></directory_name>		no query
:MOVE	<file_name>,<file_name></file_name></file_name>		no query
:MSIS	<msus></msus>		
:NAME	<file_name></file_name>		
:RDIRectory	<directory_name></directory_name>		no query
:STORe			
:STATe	1, <file_name></file_name>		no query
:CLEar			
:STATe	1, <file_name></file_name>		no query
:ALL			no query

COMMAND	PARAMETER	UNIT	COMMENT
:SELect			
[:ITEM]			
:GSETup	<boolean></boolean>		
:HWSettings	<boolean></boolean>		
:LINes			
[:ALL]	<boolean></boolean>		
:CSETup	<boolean></boolean>		
:CDATa	<boolean></boolean>		
:CKData	<boolean></boolean>		
:HCOPy	<boolean></boolean>		
:MACRos	<boolean></boolean>		
:MTRace<18>	<boolean></boolean>		
:AFILes	<boolean></boolean>		
:ALL			no query
:NONE			no query
:DEFault			no query
:COMMent	<string></string>		

MMEMory: CATalog?

This command queries the contents of the current directory.

Syntax: MMEMory:CATalog?

Example: "MMEM:CAT?"

Features: *RST value: -

SCPI: conforming

MMEMory:CDIRectory

This command changes the current directory.

Syntax: MMEMory:CDIRectory <directory_name>

<directory_name>::= DOS path name

Example: "MMEM:CDIR 'C:\USER\DATA'"

Features: *RST value:

SCPI: conforming

In addition to the path name, the indication of the directory may contain the drive name. The path name complies with the DOS conventions.

MMEMory:COPY

This command copies the files indicated.

Syntax: MMEMory:COPY <file_source>,<file_of destination>

<file source>,<file of destination> ::= <file name>

<file_name> ::= DOS file name

Example: "MMEM:COPY 'C:\USER\DATA\SETUP.CFG','A:'"

Features: *RST value: -

SCPI: conforming

The indication of the file name may include the path and the drive. The file names and path information must be in accordance with the DOS conventions. This command is an event, which is why it is not assigned an *RST value and has no query.

MMEMory:DATA

This command writes block data to a specified file.

Syntax: MMEMory:DATA <file_name>,<block>

MMEMory:DATA? <file_name>
<file_name> ::= DOS file name
<block> ::= binary data block

Example: "MMEM:DATA? 'TEST01.HCP'"

Features: *RST value: -

SCPI: conforming

The delimiter must be set to EOI in order to obtain a perfect data transfer.

MMEMory:DELete

This command deletes the files indicated.

Syntax: MMEMory:DELete <file name>

<file_name> ::= DOS file name

Example: "MMEM:DEL 'TEST01.HCP'"

Features: *RST value: -

SCPI: conforming

The file name may comprise the specification of the path and, eventually, the name of the drive. Indication of the path is according to the DOS conventions. This command is an event, which is why it is not assigned an *RST value and has no query.

MMEMory: INITialize

This command formats the disk in drive A.

Syntax: MMEMory:INITialize <msus>

<msus> ::= 'A:'

Example: "MMEM:INIT 'A:'"

Features: *RST value: -

SCPI: conforming

Formatting deletes all data stored on the floppy disk. This command is an event, which is why it is not assigned an *RST value and has no query.

MMEMory:LOAD:AUTO

This command defines the device settings to be automatically loaded upon switching on the device.

Syntax: MMEMory:LOAD:AUTO 1,<file_name>

<file_name> ::= DOS file name

FACTORY means the data last set in the unit

Example: "MMEM:LOAD:AUTO 1,'A:TEST.CFG'"

Characteristics: *RST value: -

SCPI: conforming

The file contents are read after switching on the device and activated as the new device setup. In addition to the file name, the drive designation and the path name may be specified. The path name should be in conformance with DOS conventions. This command is an event and therefore includes neither an *RST value nor a query.

MMEMory:LOAD:STATe

This command loads instrument settings from files.

Syntax: MMEMory:LOAD:STATe 1,<file name>

<file_name> ::= DOS file name

Example: "MMEM:LOAD:STAT 1,'A:TEST.CFG'"

Features: *RST value: -

SCPI: conforming

The contents of the file are loaded and determine the new state of the instrument. The file name may comprise the specification of the path and, eventually, the name of the drive. Indication of the path is according to the DOS conventions. This command is an event, which is why it is not assigned an *RST value and has no query.

MMEMory:MDIRectory

This command creates a new directory.

Syntax: MMEMory:MDIRectory <directory name>

<directory_name>::= DOS path name

Example: "MMEM:MDIR 'C:\USER\DATA'"

Features: *RST value:

SCPI: device-specific

The file name may comprise the specification of the path and, eventually, the name of the drive. Indication of the path is according to the DOS conventions. This command is an event, which is why it is not assigned an *RST value and has no query.

MMEMory:MOVE

This command renames existing files.

Syntax: MMEMory:MOVE <file_source>,<file_of destination>

<file source>,<file of destination> ::= <file name>

<file_name> ::= DOS file name

Example: "MMEM:MOVE 'TEST01.CFG', 'SETUP.CFG'"

Features: *RST value: -

SCPI: conforming

The file name may comprise the specification of the path and, eventually, the name of the drive. Indication of the path is according to the DOS conventions. This command is an event, which is why it is not assigned an *RST value and has no query.

MMEMory: MSIS

This command changes to the drive indicated.

Syntax: MMEMory:MSIS <device>

<device>::= 'A:' | 'C:'

Example: "MMEM:MSIS 'A:'"

Features: *RST value: "C:'

SCPI: conforming

The drive may be the internal hard disk C: or the floppy-disk drive A:. The drive is indicated according to the DOS conventions.

MMEMory:NAME

This command specifies a file which is printed or plotted.

Syntax: MMEMory:NAME <file name>

<file_name> ::= DOS filename

Example: "MMEM:NAME 'PLOT1.HPG'"

Features: *RST value: -

SCPI: conforming

The file name may comprise the specification of the path and, eventually, the name of the drive. Indication of the path is according to the DOS conventions. The output to the printer is routed into a file using the command "HCOP:DEST 'MMEM'".

MMEMory:RDIRectory

This command deletes the directory indicated.

Syntax: MMEMory:RDIRectory <directory_name>

<directory_name>::= DOS path name

Example: "MMEM:RDIR 'C:\TEST'"

Features: *RST value: -

SCPI: device-specific

The file name may comprise the specification of the path and, eventually, the name of the drive. Indication of the path is according to the DOS conventions. This command is an event, which is why it is not assigned an *RST value and has no query.

MMEMory:STORe:STATe

This command stores the current instrument setting in a file.

Syntax: MMEMory:STORe:STATe 1,<file_name>

<file_name> ::= DOS file name

Example: "MMEM:STOR:STAT 1,'TEST.CFG'"

Features: *RST value: -

SCPI: conforming

The current instrument state is stored as a file. The file name may comprise the specification of the path and, eventually, the name of the drive. Indication of the path is according to the DOS conventions. This command is an event, which is why it is not assigned an *RST value and has no query.

MMEMory:CLEar:STATe

This command deletes the instrument setting stored in file <file_name>.

Syntax: MMEMory:CLEar:STATe 1,<file_name>

<file_name> ::= DOS-file name without extension

Example: "MMEM:CLE:STAT 1,'TEST'"

Features: *RST value:

SCPI: device-specific

The selected device dataset is deleted. <file_name> may contain the full path and the name of the drive, all specified according to DOS-conventions. This command is an "event", which is why it is not assigned an *RST-value and has no query.

MMEMory:CLEar:ALL

This command deletes all device settings in the current directory.

Syntax: MMEMory:CLEar:ALL

Example: "MMEM:CLE:ALL"

Features: *RST value: -

SCPI: device-specific

This command is an "event", which is why it is not assigned an *RST-value and has no query.

MMEMory:SELect[:ITEM]:GSETup

This command includes the general setup data in the list of partial data sets of a device setting which are to be stored/loaded.

Syntax: MMEMory:SELect[:ITEM]:GSETup ON|OFF

Features: "MMEM:SEL:GSET ON"

*RST value: OFF
SCPI: device-specific

MMEMory:SELect[:ITEM]:HWSettings

This command includes the hardware settings in the list of partial data sets of a device setting which are to be stored/loaded.

Syntax: MMEMory:SELect[:ITEM]:HWSettings ON|OFF

Example: "MMEM:SEL:HWS ON"

Features: *RST value: ON

SCPI: device-specific

MMEMory:SELect[:ITEM]:MTRace<1...8>

This command includes the selected memory trace data in the list of partial data sets of a device setting which are to be stored/loaded.

Syntax: MMEMory:SELect[:ITEM]:MTRace<1...8> ON|OFF

Example: "MMEM:SEL:MTR3 ON"

Features: *RST value: OFF für alle Memory Traces

SCPI: device-specific

MMEMory:SELect[:ITEM]:LINes[:ALL]

This command includes all limit lines in the list of partial data sets of a device setting which are to be stored/loaded.

Syntax: MMEMory:SELect[:ITEM]:LINes[:ALL] ON|OFF

Features: "MMEM:SEL:LIN ON"

*RST value: ON
SCPI: device-specific

At the same time, this command selects all active limit lines.

MMEMory:SELect[:ITEM]:CSETup

This command includes the current screen color settings in the list of partial data sets of a device setting which are to be stored/loaded.

Syntax: MMEMory:SELect[:ITEM]:CSETup ON|OFF

Example: "MMEM:SEL:CSET ON" Features: *RST value: SCPI:

device-specific

MMEMory:SELect[:ITEM]:CDATa

This command includes the current calibration data in the list of partial data sets of a device setting which are to be stored/loaded.

Syntax: MMEMory:SELect[:ITEM]:CDATa ON|OFF

Example: "MMEM:SEL:CDAT ON" Features: *RST value: ON

SCPI: device-specific

MMEMory:SELect[:ITEM]:CKData

This command includes the current cal-kit data in the list of partial data sets of a device setting which are to be stored/loaded.

MMEMory:SELect[:ITEM]:CKData ON|OFF Syntax:

Example: "MMEM:SEL:CKD ON" Features: *RST value: **OFF**

SCPI: device-specific

MMEMory:SELect[:ITEM]:HCOPy

This command includes the hardware data in the list of partial data sets of a device setting which are to be stored/loaded.

Syntax: MMEMory:SELect[:ITEM]:HCOPy ON|OFF

Example: "MMEM:SEL:HCOPy ON" Features: *RST value: SCPI: device-specific

MMEMory:SELect[:ITEM]:MACRos

This command includes the keyboard macros in the list of partial data sets of a device setting which are to be stored/loaded.

Syntax: MMEMory:SELect[:ITEM]:MACRos ON|OFF

Example: "MMEM:SEL:MACRos ON" Features: *RST value: OFF SCPI: device-specific

MMEMory:SELect[:ITEM]:AFILes

This command includes the ASCII data sets generated in the list of partial data sets of a device setting which are to be stored/loaded.

Syntax: MMEMory:SELect[:ITEM]:AFILes ON|OFF

Example: "MMEM:SEL:AFILES ON" **Features:** *RST value: OFF

SCPI: device-specific

MMEMory:SELect[:ITEM]:ALL

This command includes all partial data sets in the list of partial data sets of a device setting which are to be stored/loaded.

Syntax: MMEMory:SELect[:ITEM]:ALL

Example: "MMEM:SEL:ALL" **Features:** *RST value: --

SCPI: device-specific

This command is an "event", which is why it is not assigned an *RST value.

MMEMory:SELect[:ITEM]:NONE

This command removes all partial data sets from the list of partial data sets of a device setting which are to be stored/loaded.

Syntax: MMEMory:SELect[:ITEM]:NONE

Example: "MMEM:SEL:NONE" **Features:** *RST value: --

SCPI: device-specific

This command is an "event", which is why it is not assigned an *RST value.

MMEMory:SELect[:ITEM]:DEFault

This command sets the default list of the partial data sets of a device setting which are to be stored/loaded.

Syntax: MMEMory:SELect[:ITEM]:DEFault

Example: "MMEM:SEL:DEFault"

Features: *RST value: --

SCPI: device-specific

This command is an "event", which is why it is not assigned an *RST value.

MMEMory:COMMent

This command defines a comment for a device setting to be stored.

Syntax: MMEMory:COMMent <string>

Example: "MMEM:COMM 'Setup for GSM measurement'"

Features: *RST value: blank comment

3.6.12 OUTPut Subsystem

The OUTPut subsystem controls the output features of the analyzer.

COMMAND	PARAMETER	UNIT	COMMENT
OUTPut<1 2>			
:ATTenuation	<numeric_value></numeric_value>	DB	
:DPORt	PORT1 PORT2		
:POWer	NORMal HIGH		
:RMIXer			
[:STATe]	<boolean></boolean>		
:UPORt<1 2>			
[:VALue]	<binary></binary>		
:STATe	<boolean></boolean>		

OUTPut[1|2]:ATTenuation

This command determines the attenuation of the attenuator located in the signal path of the wave a1 or a2 propagating towards the DUT.

Syntax: OUTPut:ATTenuation <numeric_value>

<numeric_value>::= 0dB .. 70dB

Example: "OUTP:ATT 40dB" **Features:** *RST value: -

SCPI: conforming

OUTPut:DPORt

This command defines the setting of the signal path switch in the test set (drive port).

Syntax: OUTPut:DPORt PORT1 | PORT2

Example: "OUTP:DPOR PORT2" **Features:** *RST value: PORT1

SCPI: device-specific

OUTPut[1|2]:POWer

This command switches an additional attenuator on and off in the generator signal path. This can increase the output power to the detriment of matching.

Syntax: OUTPut[1|2]:POWer NORMal | HIGH

Example: "OUTP:POW HIGH"

Features: *RST value: NORM

CODI:

SCPI: device-specific

OUTPut:RMIXer

This command defines whether the reference wave a1 is to be applied internally or via rear-panel connectors a1 EXT OUT and a1 EXT IN.

Syntax: OUTPut:RMIXer[:STATe] ON | OFF

Example: "OUTP:RMIX ON" **Features:** *RST value: OFF

OUTPut:UPORt<1|2>[:VALue]

This command sets the control lines of the user port. If the user port was set to INPut previously, the output value is stored intermediately.

Syntax: OUTPut:UPORt<1|2>[:VALue] <Binary>

<Binary>::= 00000000 ... 11111111

Example: "OUTP:UPOR2 #B10100101"

Features: *RST value:

SCPI: device-specific

OUTPut:UPORt<1|2>:STATe

This command toggles the control lines of the user ports between INPut and OUTPut.

Syntax: OUTPut:UPORt<1|2>:STATe ON | OFF

Example: "OUTP:UPOR:STAT ON" **Features:** *RST value: OFF

SCPI: device-specific

ON switches the user port to OUTPut, OFF switches to INPut.

3.6.13 **PROGram - Subsystem**

The PROGram-subsystem contains commands used to start and control application programs on the instrument.

COMMAND	PARAMETER	UNIT	COMMENT
PROGram			
[:SELected]			
:NAME	ZVR_K9 PROG		
:STRing	<varname>[,<string>]</string></varname>		
:EXECute	<cmdname></cmdname>		no query

PROGram[:SELected]:NAME

This command specifies the name of the application to be selected.

Syntax: PROGram[:SELected]:NAME ZVR K9 | PROG

"PROG:NAME ZVR_K9" **Example:** *RST value: Features: **PROG**

> SCPI: conforming

PROGram[:SELected]:STRing

This command assigns values to the variables in the application selected or queries the values of variables.

PROGram[:SELected]:STRing Syntax: <varname>,<string>

> PROGram[:SELected]:STRing? <varname>

<varname> ::= 'EMBED CAL IN' |

> 'EMBED TNW' | 'EMBED CAL OUT' |

'CMDLINE' |

'FILE'

Example: "PROG:STR 'EMBED_CAL_IN','c:\user\config\user.cal'"

"PROG:STR? 'EMBED_CAL_IN'"

*RST value: Features:

> SCPI: conforming

'EMBED_CAL_IN' defines the file name for the calibration file to be processed.

'EMBED_CAL_OUT' defines the file name for the output file.

'EMBED TNW' specifies the file describing the transformation network.

Command line parameters for applications can be specified in <string> with <varname>='CMDLINE'.

With <varname>='FILE', the file name is specified in <string> (optionally with path).

[,] The application ZVR-K9 or, for PROG, any program running under Windows NT is controlled via the PROGram subsystem. For Windows applications, there is no backsignalling of results to the instrument software.

PROGram[:SELected]:EXECute

This command executes the specified command in the selected application.

Syntax: PROGram[:SELected]:EXECute <cmdname>

<md><md>= 'EMBED' |

'DEEMBED' |

'RUN'

Example: "PROG: EXEC 'EMBED'"

Features: *RST value:

SCPI: conforming

The commands 'EMBED' and 'DEEMBED' enable the calculation of input files (previously indicated by PROG:STR) in the ZVR_K9 application. The 'RUN' command starts an application at the operation system level.

3.6.14 SENSe Subsystem

The SENSe subsystem is divided up into several subsystems. The commands of these subsystems directly control device-specific settings, they do not refer to the signal characteristics of the measurement signal.

3.6.14.1 SENSe: AVERage Subsystem

The SENSe:AVERage subsystem calculates the average of the data acquired: Various successive measurements are combined in order to obtain a new test result. The number of test points and the abscissa of the new result correspond to those of the original measurements.

COMMAND	PARAMETER	UNIT	COMMENT
[:SENSe[1 to 4]]			
:AVERage			
: COUNt	<numeric_value></numeric_value>		
[:STATe]	<boolean></boolean>		
:CLEar		j	no query
:MODE	SWEep POINt		

[:SENSe[1 to 4]:]AVERage:COUNt

The command specifies the number of measurements combined.

Syntax: [:SENSe[1 to 4]:]AVERage:COUNt <numeric_value>

<numeric value> ::= 0 to 256

Example: "AVER:COUN 16" **Features:** *RST value: 0

SCPI: conforming

[:SENSe[1 to 4]:]AVERage[:STATe]

The command switches on or off the average function.

Syntax: [:SENSe[1 to 4]:]AVERage[:STATe] ON | OFF

Example: "AVER OFF"

Features: *RST value: OFF

SCPI: conforming

[:SENSe[1 to 4]:]AVERage:CLEar

The command resets the result of the average function and restarts the measurement.

Syntax: [:SENSe[1 to 4]:]AVERage:CLEar

Example: "AVER:CLE"

Features: *RST value:

SCPI: device-specific

This command is an event, which is why it is not assigned an *RST value and has no query.

[:SENSe[1 to 4]:]AVERage:MODE

The command selects the type of the average function.

Syntax: [:SENSe[1 to 4]:]AVERage:MODE SWEep | POINt

Example: "AVER:MODE POIN"

Features: *RST value: NORMal

SCPI: device-specific

3.6.14.2 SENSe:BANDwidth Subsystem

This subsystem controls the setting of the analyzer's filter bandwidths. The commands BANDwidth and BWIDth have the same effect.

COMMAND	PARAMETER	UNIT	COMMENT
[SENSe<14>]			
:BANDwidth			
[:RESolution]	<numeric_value></numeric_value>	HZ	
:BWIDth			
[:RESolution]	<numeric_value></numeric_value>	HZ	

[SENSe[1 to 4]:]BANDwidth|BWIDth[:RESolution]

This command defines the analyzer's resolution bandwidth.

Syntax: [SENSe[1 to 4]:]BANDwidth|BWIDth[:RESolution] <numeric_value>

<numeric_value>::= 1kHz...26kHz; "MAX" must be entered instead of 26 kHz.

Example: "BAND 10kHz"

Features: *RST value: -

3.6.14.3 SENSe:CORRection Subsystem

The SENSe:CORRection subsystem controls the system error correction and the recording of the individual correction values.

COMMAND	PARAMETER	UNIT	COMMENT
[SENSe<14>]			
:CORRection			
[:STATe]	<boolean></boolean>		
:DATA	<string>,<block> <numeric_value></numeric_value></block></string>		
:DATE?			query only
:INTerpolate			
[:STATe]	<boolean></boolean>		
:AKAL			
:SELect	<string></string>		
:EXPort	<string></string>		no query
:IMPort	<string></string>		no query
:CLEar	<string></string>		no query
:REName	<string>,<string></string></string>		no query
:COLLect			
[:ACQuire]	THRough OPEN1 OPEN2 OPEN12 SHORT1 SHORT2 MATCH1 MATCH2 MATCH12 NET ATT IMATCH12 REFL1 REFL2 SLIDE1 SLIDE2 SLIDE12 LINE1 LINE2 M1O2 O1M2 AKAL		no query
:METHod	FTRans RTRans FRTRans TOM TRM TRL TNA TOMX TOSM FUNDAMENTAL FOPORT1 FOPORT2 FOPORT12 FOPTport ROPTport REFL1 REFL2 REFL12 TPORT FTREF1 RTREF2		
:SAVE	3		no query
:CONNection<1 2>	N50FEMALE N50MALE N75FEMALE N75MALE PC7 SMAFEMALE SMAMALE PC35FEMALE PC35MALE PC292FEMALE PC292MALE UFEMALE1 UMALE1 UFEMALE2 UMALE2 N50 N75 SMA PC7 PC35 PC292		quary
	USER1 USER2		
:INSTall	<string></string>		
:N<50 75>	MMTHrough MFTHrough FFTHrough MMLINE1 MFLINE1 FFLINE1 MMLINE2 MFLINE2 FFLINE2 MMATten MFATten FFATten MMSNetwork MFSNetwork FFSNetwork MOPen FOPen MSHort FSHort MREFlect FREFlect MMTCh FMTCh MSMatch FSMatch[, <string>]</string>		
:SELect	<string></string>		

COMMAND	PARAMETER	UNIT	COMMENT
[SENSe<14>]			
:CORRection			
:CKIT			
:N<50 75>			
:MMTHrough	<string>,</string>	,	
	<string>,</string>	HZ,	
	<numeric_value>,</numeric_value>	HZ, HZ,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	m,	
	<numeric_value></numeric_value>	1111,	
:MFTHrough	<string>,</string>		
.ivii 11 irougii	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	m,	
	<numeric_value></numeric_value>	,	
:FFTHrough	<string>,</string>		
	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	m,	
	<numeric_value></numeric_value>		
:MMLINE<1 2>	<string>,</string>	,	
·	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	m,	
	<numeric_value></numeric_value>		
:MFLINE<1 2>	<string>,</string>	,	
	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>, <numeric_value></numeric_value></numeric_value>	m,	
FF! INF. 410	_		
:FFLINE<1 2>	<string>,</string>	,	
	<string>,</string>	HZ,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	m,	
	<numeric_value></numeric_value>	1111,	
:MMATten	<string>,</string>		
INIMATELL	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric value=""></numeric>	HZ	
:MFATten	<string>,</string>		
/ 11 1011	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value></numeric_value>	HZ	
:FFATten	<string>,</string>	,	
	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value></numeric_value>	HZ	
:MMSNetwork	<string>,</string>	,	
	<string>,</string>	١,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	m,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	,	
	OPEN SHORT	,	
	3, 5, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10		
		,	

COMMAND	PARAMETER	UNIT	COMMENT
[SENSe<14>]			
:CORRection			
:CKIT			
:N<50 75>			
:MFSNetwork	<string>,</string>	,	
	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	m,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	OPEN SHORT	,	
:FFSNetwork	<string>,</string>	,	
	<string>,</string>	',	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	m,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	,	
	<pre><numeric_value>, <numeric_value>,</numeric_value></numeric_value></pre>	,	
	OPEN SHORT	,	
:MOPen	<string>,</string>		
INIOI OII	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	m,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
:FOPen	<string>,</string>		
01 011	<string>,</string>	'.	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	m,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value></numeric_value>	,	
:MSHort	<string>,</string>		
	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	m,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
:FSHort	<string>,</string>	,	
	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	m,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	,	
	<numeric_value>,</numeric_value>	,	

COMMAND	PARAMETER	UNIT	COMMENT
[SENSe<14>]			
:CORRection			
:CKIT			
:N<50 75>			
:MREFlect	<string>, <string>, <numeric_value>, <nu< td=""><td>, HZ, HZ, m,</td><td></td></nu<></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></string></string>	, HZ, HZ, m,	
:FREFlect	<string>, <string>, <numeric_value>, <nu< td=""><td>, HZ, HZ, m, ,</td><td></td></nu<></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></string></string>	, HZ, HZ, m, ,	
:MMTCh	<string>, <string>, <numeric_value>, <numeric_value></numeric_value></numeric_value></string></string>	, , HZ, HZ	
:FMTCh	<string>, <string>, <numeric_value>, <numeric_value></numeric_value></numeric_value></string></string>	, HZ, HZ	
:MSMatch	<pre><string>, <string>, <numeric_value>, <numeric_value></numeric_value></numeric_value></string></string></pre>	, , HZ, HZ	
:FSMatch	<string>, <string>, <numeric_value>, <numeric_value></numeric_value></numeric_value></string></string>	, HZ, HZ	

COMMAND	PARAMETER	UNIT	COMMENT
[SENSe<14>]			
:CORRection			
:CKIT			
:SMA	MMTHrough MFTHrough FFTHrough MMLINE1 MFLINE1 FFLINE1 MMLINE2 MFLINE2 FFLINE2 MMATten MFATten FFATten MMSNetwork MFSNetwork FFSNetwork MOPen FOPen MSHort FSHort		
	MREFlect FREFlect MMTCh FMTCh MSMetch FSMetch cettings		
0511	MSMatch FSMatch[, <string>]</string>		
:SELect	<string></string>		
:MMTHrough	<string>, <string>,</string></string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	m, ´	
	<numeric_value></numeric_value>		
:MFTHrough	<string>,</string>	,	
	<string>,</string>	, 	
	<pre><numeric_value>, <numeric_value>,</numeric_value></numeric_value></pre>	HZ, HZ,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	m,	
	<numeric_value></numeric_value>	,	
:FFTHrough	<string>,</string>	,	
· · · · - 9 · ·	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>, <numeric_value></numeric_value></numeric_value>	m,	
:MMLINE<1 2>	<string>,</string>		
.iviiviLiiNL<1 Z>	<string>, <string>,</string></string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	m,	
	<numeric_value></numeric_value>		
:MFLINE<1 2>	<string>,</string>	,	
	<pre><string>, <numeric_value>,</numeric_value></string></pre>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	m,	
	<numeric_value></numeric_value>		
:FFLINE<1 2>	<string>,</string>	,	
	<pre><string>, <numeric_value>,</numeric_value></string></pre>	, HZ,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	HZ, HZ,	
	<numeric_value>,</numeric_value>	m,	
	<numeric_value></numeric_value>	<u> </u>	
:MMATten	<string>,</string>	,	
	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
. B A E A T	<numeric_value></numeric_value>	HZ	
:MFATten	<string>, <string>,</string></string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value></numeric_value>	HZ	
:FFATten	<string>,</string>	,	
	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value></numeric_value>	HZ	
		1	

COMMAND	PARAMETER	UNIT	COMMENT
[SENSe<14>]			
:CORRection			
:CKIT			
:SMA			
:MMSNetwork	<string>,</string>	,	
	<string>,</string>	·	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	HZ, m,	
	<numeric_value>,</numeric_value>	•	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	OPEN SHORT		
:MFSNetwork	<string>,</string>	,,	
	<string>,</string>	,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	HZ, HZ,	
	<numeric_value>,</numeric_value>	m,	
	<numeric_value>,</numeric_value>	, , ,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	OPEN SHORT		
:FFSNetwork	<string>,</string>	,	
	<string>, <numeric_value>,</numeric_value></string>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	m,	
	<numeric_value>,</numeric_value>	, ,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
MODer	OPEN SHORT		
:MOPen	<string>, <string>,</string></string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	m,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	,	
	<numeric_value></numeric_value>	,	
:FOPen	<string>,</string>		
01 011	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	m,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value></numeric_value>	,	
:MSHort	<string>,</string>	,	
	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	m,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value></numeric_value>	'	

COMMAND	PARAMETER	UNIT	COMMENT
[SENSe<14>]			
:CORRection			
:CKIT			
:SMA			
:FSHort	<string>,</string>	,	
	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	HZ, m,	
	<numeric_value>,</numeric_value>		
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value></numeric_value>		
:MREFlect	<string>,</string>	,	
	<string>,</string>	,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	HZ, HZ,	
	<numeric_value>,</numeric_value>	m,	
	<numeric_value>,</numeric_value>	,	
	OPEN SHORT		
:FREFlect	<string>, <string>,</string></string>	,	
	<numeric_value>,</numeric_value>	, HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	m, [′]	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	,	
	OPEN SHORT	,	
:MMTCh	<string>,</string>		
	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value></numeric_value>	HZ	
:FMTCh	<string>,</string>	,	
	<string>,</string>	,	
	<numeric_value>, <numeric_value></numeric_value></numeric_value>	HZ, HZ	
:MSMatch	_		
ivioiviatori	<string>, <string>,</string></string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value></numeric_value>	HZ	
:FSMatch	<string>,</string>	,	
	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value></numeric_value>	HZ	

COMMAND	PARAMETER	UNIT	COMMENT
[SENSe<14>]			
:CORRection			
:CKIT			
:PC<7 35 292>	MMTHrough MFTHrough FFTHrough MMLINE1 MFLINE1 FFLINE1 MMLINE2 MFLINE2 FFLINE2 MMATten MFATten FFATten MMSNetwork MFSNetwork FFSNetwork MOPen FOPen MSHort FSHort MREFlect FREFlect		
	MMTCh FMTCh MSMatch FSMatch[, <string>]</string>		
:SELect	<string></string>		
:MMTHrough	<string>, <string>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>,</numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></string></string>	, , HZ, HZ, m,	
:MFTHrough	<string>, <string>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>,</numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></string></string>	, , HZ, HZ, m,	
:FFTHrough	<string>, <string>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>,</numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></string></string>	, , HZ, HZ, m,	
:MMLINE<1 2>	<string>, <string>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>,</numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></string></string>	, , HZ, HZ, m,	
:MFLINE<1 2>	<string>, <string>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>,</numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></string></string>	, , HZ, HZ, m,	
:FFLINE<1 2>	<pre><string>, <string>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>,</numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></string></string></pre>	, , HZ, HZ, m,	
:MMATten	<string>, <string>, <numeric_value>, <numeric_value></numeric_value></numeric_value></string></string>	, , HZ, HZ	
:MFATten	<string>, <string>, <numeric_value>, <numeric_value></numeric_value></numeric_value></string></string>	, HZ, HZ	
:FFATten	<string>, <string>, <numeric_value>, <numeric_value></numeric_value></numeric_value></string></string>	, , HZ, HZ	

COMMAND	PARAMETER	UNIT	COMMENT
[SENSe<14>]			
:CORRection			
:CKIT			
:PC<7 35 292>			
:MMSNetwork	<string>,</string>	,	
	<string>,</string>	·	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	m,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	OPEN SHORT		
:MFSNetwork	<string>,</string>	,,	
	<string>,</string>	,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	HZ, HZ,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	m∠, m,	
	<numeric_value>,</numeric_value>	,	
	OPEN SHORT		
:FFSNetwork	<string>,</string>	,	
	<string>,</string>	, HZ,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	m,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>, OPEN SHORT</numeric_value>	,	
:MOPen			
.woPen	<string>, <string>,</string></string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	m,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	,	
	<numeric_value></numeric_value>	,	
:FOPen	<string>,</string>		
	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	m,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value></numeric_value>	•	
:MSHort	<string>,</string>	,	
	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	m,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value></numeric_value>		
	1		I

COMMAND	PARAMETER	UNIT	COMMENT
[SENSe<14>]			
:CORRection			
:CKIT			
:PC<7 35 292>			
:FSHort	<string>,</string>		
6.161	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	m,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
:MREFlect	_		
IVIKEFIECI	<string>, <string>,</string></string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	m, ´	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	<pre><numeric_value>,</numeric_value></pre>	,	
	OPEN SHORT		
:FREFlect	<string>,</string>	,	
	<string>,</string>	, HZ,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	m,	
	<numeric value="">,</numeric>	, ,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	OPEN SHORT		
:MMTCh	<string>,</string>	,	
	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ, HZ	
·FMTCh	<numeric_value></numeric_value>	ΠΔ	
:FMTCh	<string>, <string>,</string></string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value></numeric_value>	HZ	
:MSMatch	<string>,</string>		
Momaton	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value></numeric_value>	HZ	
:FSMatch	<string>,</string>	,	
	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value></numeric_value>	HZ	

COMMAND	PARAMETER	UNIT	COMMENT
[SENSe<14>]			
:CORRection			
:CKIT			
:USER<1 2>	MMTHrough MFTHrough FFTHrough MMLINE1 MFLINE1 FFLINE1 MMLINE2 MFLINE2 FFLINE2 MMATten MFATten FFATten MMSNetwork MFSNetwork FFSNetwork MOPen FOPen MSHort FSHort MREFlect FREFlect MMTCh FMTCh MSMatch FSMatch[, <string>]</string>		
:SELect	<string></string>		
:IMPedance :WGUide	<numeric_value></numeric_value>	ОНМ	
[:STATe]	<boolean></boolean>		
:CFRequency	<numeric_value></numeric_value>	HZ	
:MMTHrough	<string>,</string>	,	
Ŭ	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>, <numeric_value></numeric_value></numeric_value>	m,	
:MFTHrough	<string>,</string>		
.ivii 11 ilougii	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	m,	
	<numeric_value></numeric_value>		
:FFTHrough	<string>,</string>	,	
	<pre><string>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>,</numeric_value></numeric_value></numeric_value></numeric_value></string></pre>	, HZ, HZ, m,	
:MMLINE<1 2>	<string>,</string>	,	
·	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	HZ, m,	
	<numeric_value>,</numeric_value>	111,	
:MFLINE<1 2>	<string>,</string>		
2.172 3.172	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>, <numeric_value></numeric_value></numeric_value>	m,	
:FFLINE<1 2>	<string>,</string>		
2.112 3 1/22	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>, <numeric_value></numeric_value></numeric_value>	m,	
:MMATten	<string>,</string>		
.iviivi\(\tall\)	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value></numeric_value>	HZ	
:MFATten	<string>,</string>	,	
	<string>,</string>	,	
	<numeric_value>, <numeric_value></numeric_value></numeric_value>	HZ, HZ	
:FFATten	<string>,</string>		
.i FATIEII	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value></numeric_value>	HZ	

COMMAND	PARAMETER	UNIT	COMMENT
[SENSe<14>]			
:CORRection			
:CKIT			
:USER<1 2>			
:MMSNetwork	<string>,</string>	,	
	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	m,	
	<numeric_value>,</numeric_value>	,	
	<pre><numeric_value>, <numeric_value>,</numeric_value></numeric_value></pre>	,	
	<numeric_value>,</numeric_value>	,	
	OPEN SHORT	,	
:MFSNetwork	<string>,</string>		
Crossion	<string>,</string>	,,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	m,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	<pre><numeric_value>,</numeric_value></pre>	,	
	<pre><numeric_value>, OPEN SHORT</numeric_value></pre>	,	
-EECNotwork			
:FFSNetwork	<string>, <string>,</string></string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	m,	
	<numeric_value>,</numeric_value>	,	
	OPEN SHORT		
:MOPen	<string>,</string>	,	
	<string>,</string>	HZ,	
	<pre><numeric_value>, <numeric_value>,</numeric_value></numeric_value></pre>	HZ,	
	<numeric_value>,</numeric_value>	m,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value></numeric_value>		
:FOPen	<string>,</string>	,	
	<string>,</string>	,	
	<pre><numeric_value>, <numeric_value>,</numeric_value></numeric_value></pre>	HZ, HZ,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	m,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value></numeric_value>		
:MSHort	<string>,</string>	,	
	<string>,</string>		
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<pre><numeric_value>, <numeric_value>,</numeric_value></numeric_value></pre>	m,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
			1
	<numeric_value>,</numeric_value>	,	
		,	

COMMAND	PARAMETER	UNIT	COMMENT
[SENSe<14>]			
:CORRection			
:CKIT			
:USER<1 2>			
:FSHort	<string>,</string>	,	
	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	m,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value></numeric_value>		
:MREFlect	<string>,</string>	,	
	<string>,</string>	·	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	HZ, m,	
	<numeric_value>,</numeric_value>	111,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	OPEN SHORT		
:FREFlect	<string>,</string>	,	
	<string>,</string>	,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	HZ, HZ,	
	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	m,	
	<numeric_value>,</numeric_value>	, ,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	,	
	OPEN SHORT		
:MMTCh	<string>,</string>	,	
	<string>, <numeric_value>,</numeric_value></string>	HZ,	
	<numeric_value></numeric_value>	HZ	
:FMTCh	<string>,</string>		
	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value></numeric_value>	HZ	
:MSMatch	<string>,</string>	,	
	<string>,</string>	,	
	<numeric_value>,</numeric_value>	HZ,	
, COM-4-h	<numeric_value></numeric_value>	HZ	
:FSMatch	<string>, <string>,</string></string>	,	
	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value></numeric_value>	HZ	
			ı

COMMAND	PARAMETER	UNIT	COMMENT
[SENSe<14>]			
:CORRection			
:EDELay<1 2>			
[:TIME]	<numeric_value></numeric_value>	s	
:DISTance	<numeric_value></numeric_value>	m	
:ELENgth	<numeric_value></numeric_value>	m	
:DIELectric	<numeric_value></numeric_value>		
:AUTO	ONCE	ONCE	
:STATe	<boolean></boolean>		
:OFFSet<1 2>			
:STATe	<boolean></boolean>		
:MAGNitude	<numeric_value></numeric_value>	DB	
:PHASe	<numeric_value></numeric_value>	DEG	
:POWer			
[:STATe]	<boolean></boolean>		
:DATE?			
:ACQuire	B1 B2 IFRef		no query

[SENSe[1...4]:]CORRection:AKAL:SELect

This command selects an active data set for the AutoKal box. The suffix of SENSe is not significant.

Syntax: [SENSe[1...4]:]CORREction:AKAL:SELect <string>

Features: "CORR: AKAL: SEL 'AK1'"

*RST value: '<NONE>'
COR: device-species

SCPI: device-specific

[SENSe[1...4]:]CORRection:AKAL:EXPort

This command exports the selected data set for the AutoKal box. The suffix of SENSe is not significant.

Syntax: [SENSe[1...4]:]CORREction:AKAL:EXPort <string>

Example: "CORR:AKAL:EXP 'AK1'"

Features: *RST value: -

SCPI: device-specific

The command is an "event",, which is why it is not assigned an *RST value and has no query.

[SENSe[1...4]:]CORRection:AKAL:IMPort

This command imports the selected data set for the AutoKal box. The suffix of SENSe is not significant.

Syntax: [SENSe[1...4]:]CORREction:AKAL:IMPort <string>

Example: "CORR:AKAL:IMP 'AK1'"

Features: *RST value: -

SCPI: device-specific

The command is an "event",, which is why it is not assigned an *RST value and has no query.

[SENSe[1...4]:]CORRection:AKAL:CLEar

This command clears the selected data set for the AutoKal box. The suffix of SENSe is not significant.

Syntax: [SENSe[1...4]:]CORREction:AKAL:CLEar <string>

Example: "CORR:AKAL:CLE 'AK1'"

Features: *RST value:

SCPI: device-specific

The command is an "event",, which is why it is not assigned an *RST value and has no query.

[SENSe[1...4]:]CORRection:AKAL:REName

This command names a data set for the AutoKal box, the first parameter indicating the target name and the second one the source name. The suffix of SENSe is not significant.

Syntax: [SENSe[1...4]:]CORREction:AKAL:REName <string>,<string>

Example: "CORR: AKAL: REN 'AK2', 'AK1'"

Features: *RST value: -

SCPI: device-specific

The command is an "event",, which is why it is not assigned an *RST value.

[SENSe[1...4]:]CORRection:INTerpolate[:STATe]

This command switches the interpolation for system error correction on and off. **Syntax:** [SENSe[1...4]:]CORRection:INTerpolate[:STATe] ON | OFF

Example: "CORR:INT ON"

Properties: *RST value: ON

SCPI: device-specific

[SENSe[1...4]:]CORRection:COLLect[:AQUire]

This command performs a measurement and stores internally the result for the selected standard.

Syntax: [SENSe[1...4]:]CORRection:COLLect[:ACQuire] THRough | OPEN1 | OPEN 2 |

SHORT1 | SHORT2 | SHORT12 | MATCH1 | MATCH2 | MATCH12 | NET | ATT | IMATCH12 | REFL1 | REFL2 | SLIDE1 | SLIDE2 | SLIDE12 | LINE1 | LINE2 | M1O2 | O1M2 | M1S2 | S1M2

Example: "CORR:COLL OPEN1"

Features: *RST value: -

SCPI: conforming

This command is an event, which is why it is not assigned an *RST value and has no query.

[SENSe[1...4]:]CORRection:COLLect:METHod

This command defines the calibration method.

Syntax: [SENSe[1...4]:]CORRection:COLLect:METHod FTRans | RTRans | FRTRans |

TOM | TRM | TRL | TNA |
TOMX| TOSM | FUNDamental |
FOPORT1 | FOPORT2 |
FOPORT12 | FOPTport |
ROPTport | REFL1 | REFL2 |
REFL12 | TPORT | FTREF1 |

RTREF2

Example: "CORR:COLL:METH TOM"

Features: *RST value: -

SCPI: conforming

[SENSe[1...4]:]CORRection:COLLect:SAVE

This command calculates the calibration data according to the calibration method currently selected from the previously performed measurements of the standards and stores them internally.

Syntax: [SENSe[1...4]:]CORRection:COLLect:SAVE

Example: "CORR:COLL:SAV"

Features: *RST value: -

SCPI: conforming

This command is an event,, which is why it is not assigned an *RST value and has no query.

[SENSe[1...4]:]CORRection:COLLect:CONNection[1|2]

This command selects a connector family for the port between connector and socket.

Syntax: [SENSe[1...4]:]CORRection

:COLLect:CONNection[1|2] N50FEMALE | N50MALE |

N75FEMALE | N75MALE | PC7 | SMAFEMALE | SMAMALE | PC35FEMALE | PC35MALE | PC292FEMALE | PC292MALE |

UFEMALE1 | UMALE1 | UFEMALE2 | UMALE2

Example: "CORR:COLL:CONN2 SMAM"

Features: *RST value: -

SCPI: device-specific

[SENSe[1...4]:]CORRection:CKIT

This command determines the connector system of the calibration standards.

Syntax: [SENSe[1...4]:]CORRection:CKIT N50 | N75 | SMA | PC7 | PC35 | PC292 |

USER1 | USER2

Example: "CORR:CKIT SMA"

Features: *RST value: –

[SENSe[1...4]:]CORRection:CKIT:INSTall

The command installs a calibration kit data set from a file.

Syntax: [SENSe[1...4]:]CORREction:CKIT:INSTall <filename>

Example: "CORR:CKIT:INST 'A:\mykit.ck'"

Features: *RST value: -

SCPI: device-specific

[SENSe[1...4]:]CORRection:CKIT:<CAL-Kit-Typ>:<Standard>

The command configures the parameters of the different standards.

Syntax: [SENSe[1...4]:]CORREction:CKIT: string>,

<CAL-Kit-Typ>:<Standard> <string>,

<numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>, OPEN | SHORT

Example: "CORR:CKIT:N50:MOP

'ZCAN', '123456/001', OHz, 3GHz, 5mm, 0.002, 24, 1.8, 0.1, 0"

Features: *RST value:

SCPI: device-specific

Depending on the standard, not all values are used in the list. Their meaning in the given sequence is as follows:

string>: CAL kit name max. 10 characters <string>: Serial number max. 15 characters

<numeric_value>: Lower frequency limit of the standard, unit Hz
<numeric_value>: Upper frequency limit of the standard, unit Hz
<numeric_value>: Electrical length of the standard, unit m

<numeric value>: Loss

<numeric_value>:
Polynomial coefficient C0/L0 for parasitic capacitance / inductance, no unit
<numeric_value>:
Polynomial coefficient C1/L1 for parasitic capacitance / inductance, no unit
Polynomial coefficient C2/L2 for parasitic capacitance / inductance, no unit
<numeric_value>:
Polynomial coefficient C3/L3 for parasitic capacitance / inductance, no unit
Polynomial coefficient C3/L3 for parasitic capacitance / inductance, no unit

OPEN | SHORT: Approximate modelling

[SENSe[1...4]:]CORRection:CKIT:<CAL-Kit-Typ>:SELect

This command selects a defined calibration kit from the specified connector family.

Syntax: [SENSe[1...4]:]CORREction:CKIT:<CAL-Kit-Typ>:SELect <string>

Example: "CORR:CKIT:N50:SEL 'ZCAN'

Features: *RST value:

SCPI: device-specific

[SENSe[1...4]:]CORRection:CKIT:USER<1|2>:IMPedance

This command sets the impedance of the USER calibration kit.

Syntax: [SENSe[1...4]:]CORREction:CKIT:USER<1|2>:IMPedance <numeric value>

Example: "CORR:CKIT:USER2:IMP 40 OHM

Features: *RST value: 50Ω

SCPI: device-specific

[SENSe[1...4]:]CORRection:CKIT:USER<1|2>:WGUIde[:STATe]

This command switches on or off waveguide calibration for the respective calibration kit.

The suffix of SENSe has no meaning.

Syntax: [SENSe[1...4]:]CORRection:CKIT:USER<1|2>:WGUide[:STATe] ON | OFF

Example: "CORR:CKIT:USER:WGU ON"

Features: *RST value: OFF

SCPI: device-specific

[SENSe[1...4]:]CORRection:CKIT:USER<1|2>:CFRequency

This command sets the cutoff frequency for the USER calibration kit.

Syntax: [SENSe[1...4]:]CORREction:CKIT:USER<1|2>: CFRequency <numeric_value>

Example: "CORR:CKIT:USER2:CFR 1 GHz

Features: *RST value: 0 Hz

SCPI: device-specific

[SENSe[1...4]:]CORRection:CKIT:N50|N75

This command selects a standard from the N-calibration kit (N50 or N75).

Syntax: [SENSe[1...4]:]CORRection:CKIT:N50|N75 MMTHrough | MFTHrough |

FFTHrough | MMLINE1 | MFLINE1 |
FFLINE1 | MMLINE2 | MFLINE2 |
FFLINE2 | MMATten | MFATten |

FFATten | MMSNetwork |

MFSNetwork | FFSNetwork | MOPEn

| FOPEn | MSHort | FSHort | MREFlect | FREFlect | MMATch | FMATch | MSMatch | FSMatch

[,<string>]

Example: "CORR:CKIT:N50 FFTH"

Features: *RST value: -

Two-port standards are either MM = connector/connector, FF = socket/socket or MF = connector/socket, one-port standards are either M = connector or F = socket.

The following standards are available:

THRough Through connection

LINE1 Line 1 for TRL-procedure (ZVR and ZVC only)
LINE2 Line 2 for TRL-procedure (ZVR and ZVC only)
ATTenuation matched attenuator pad (ZVR and ZVC only)
SNETwork reflection symmetric network (ZVR and ZVC only)

OPEN open SHORt short circuit

REFLect unknown one-port standard (ZVR and ZVC only)

MATCh broadband termination

SMATch sliding load

In case of a query, the first parameter must be specified, not the second.

[SENSe[1...4]:]CORRection:CKIT:SMA

This command selects a standard from the SMA-calibration set.

Syntax: [SENSe[1...4]:]CORRection:CKIT:SMA

Example: "CORR:CKIT:SMA MFLINE1"

Features: *RST value:

SCPI: device-specific

The definition of the abbreviations is analogous to the definition in the N-calibration set. In case of a query, the first parameter must be specified, not the second.

[SENSe[1...4]:]CORRection:CKIT:PC[7|35]

This command selects a standard from the PC7-, PC3.5 or 2.92 mm-calibration set.

Syntax: [SENSe[1..4]:]CORRection:CKIT: Example: "CORR:CKIT:PC35 FMAT"

Features: *RST value:

SCPI: device-specific

The definition of the abbreviations is analogous to the definition in the N-calibration set. In case of a query, the first parameter must be specified, not the second.

[SENSe[1...4]:]CORRection:EDELay[1|2][:TIME]

This command defines the length offset as a delay time.

Syntax: [SENSe[1...4]:]CORRection:EDELay[1|2][:TIME] <numeric value>

Example: "CORR:EDEL2 10ns"

Features: *RST value: 0

SCPI: conforming

[SENSe[1...4]:]CORRection:EDELay[1|2]:DISTance

This command defines the length offset as a mechanical length.

Syntax: [SENSe[1...4]:]CORRection:EDELay[1|2]:DISTance <numeric value>

Example: "CORR:EDEL:DIST 10mm"

Features: *RST value: 0

[SENSe[1...4]:]CORRection:EDELay[1|2]:ELENgth

This command defines the length offset as an electrical length.

Syntax: [SENSe[1...4]:]CORRection:EDELay[1|2]:ELENgth <numeric value>

Example: "CORR:EDEL:ELEN 12.32mm"

Features: *RST value: 0

SCPI: device-specific

[SENSe[1...4]:]CORRection:EDELay[1|2]:DIELectric

This command defines the value of the dielectric corresponding to the length specified via EDELay:DISTance.

Syntax: [SENSe[1...4]:]CORRection:EDELay[1|2]:DIELectric <numeric value>

Example: "CORR:EDEL2:DIEL 1.2"

Features: *RST value:

SCPI: device-specific

[SENSe[1...4]:]CORRection:EDELay[1|2]:AUTO

This command sets the length offset such that the phase offset of the quantity measured in the active channel is minimized over the current sweep.

Syntax: [SENSe[1...4]:]CORRection:EDELay[1|2]:AUTO ONCE

Example: "CORR:EDEL2:AUTO ONCE"

Features: *RST value:

SCPI: device-specific

This command is an event, which is why it is not assigned an *RST value and has no query.

[SENSe[1...4]:]CORRection:EDELay[1|2]:STATe

This command switches the correction of the length offset on or off.

Syntax: [SENSe[1...4]:]CORRection:EDELay[1|2]:State ON | OFF

Example: "CORR:EDEL:STAT ON"

Features: *RST value: OFF

SCPI: conforming

[SENSe[1...4]:]CORRection:OFFSet[1|2]:STATe

This command switches the correction of the amplitude, phase and length offset on and off.

Syntax: [SENSe[1...4]:]CORRection:OFFSet[1|2]:STATe ON | OFF

Example: "CORR:OFFS:STAT ON"
Features: *RST value: OFF

[SENSe[1...4]:]CORRection:OFFSet[1|2]:MAGNitude

This command defines the amplitude offset.

Syntax: [SENSe[1...4]:]CORRection:OFFSet[1|2]:MAGNitude

Example: "CORR:OFFS:MAGN 3"

Features: *RST value: 0

SCPI: conforming

[SENSe[1...4]:]CORRection:OFFSet[1|2]:PHASe

This command defines the phase offset.

Syntax: [SENSe[1...4]:]CORRection:OFFSet[1|2]:PHASe

Example: "CORR:OFFS:PHAS 23"

Features: *RST value: 0

SCPI: conforming

[SENSe[1...4]:]CORRection:STATe

This command switches the system error correction of the current channel on or off.

Syntax: [SENSe[1...4]:]CORRection:STATe

Example: "CORR:STAT ON"

Features: *RST value: OF

SCPI: conforming

[SENSe[1...4]:]CORRection:DATA

This command is used for reading and writing system error correction values. The data set contains a complex value (real and imaginary component) for each test point. Data can be transferred in ASCII or binary format.

The <string> parameter may assume the following values:

"SCORR1" Directivity, port 1
"SCORR2" Source match, port 1
"SCORR3" Reflection tracking, port 1

"SCORR4" Forward isolation Load match, port 1

"SCORR6" Forward transmission tracking

"SCORR7" Directivity, port 2
"SCORR8" Source match, port 2
"SCORR9" Reflection tracking, port 2

"SCORR10" Reverse isolation
"SCORR11" Load match, port 2

"SCORR12" Reverse transmission tracking

"E11" to "E22" Elements of E matrix (15-term method)

"G11" to "G22" Elements of G matrix (7-term and 15-term methods)
"H11" to "H22" Elements of H matrix (7-term and 15-term methods)

"F11", "F21", "F12" Elements of F matrix (15-term method)

Syntax: [SENSe[1...4]:]CORRection:DATA <string>,<block> | <numeric_value>...

Example: "CORR:DATA "SCORR1", <block_data>"

Features: *RST value: -

The table below shows the correction terms available for the calibration methods:

Calibration Method	Available Correction Terms
Trans Norm Forward Trans Norm Reverse	SCORR6 SCORR12
Trans Norm both Directions	SCORR6, SCORR12
Refl Norm P1 Refl Norm P2	SCORR3 SCORR9
Refl Norm both Ports	SCORR3, SCORR9
Trans+Refl Norm Forward Trans+Refl Norm Reverse	SCORR3, SCORR6 SCORR9, SCORR12
Trans+Refl Norm both Ports	SCORR3, SCORR6, SCORR9, SCORR12
Full One Port P1 Full One Port P2	SCORR1 to SCORR3 SCORR7 to SCORR9
Full One Port both Ports	SCORR1 to SCORR3, SCORR7 to SCORR9
One Path Two Port Forward One Path Two Port Reverse	SCORR1 to SCORR3, SCORR6 SCORR7 to SCORR9, SCORR12
TOM, TRM, TNA, TRL	G11 to G22 and H11, H12, H22 (H21 = 1); Gxx is normalized to H21
TOSM	SCORR1 to SCORR12
TOM-X	E11 to E22, G11 to G22, H11 to H22, F11, F21, F12

[SENSe[1...4]:]CORRection:DATE?

This command queries the date at which the active system error correction was recorded.

Syntax: [SENSe[1...4]:]CORRection:DATE?

Example: "CORR:DATE?"

Features: *RST value: -

SCPI: device-specific

[SENSe[1...4]:]CORRection:POWer:ACQuire

This command is used to acquire a receiver power calibration.

Syntax: [SENSe[1...4]:]CORRection:POWer:ACQuire B1 | B2 | IFRef

Example: "CORR:POW:ACQ B1"

Features: *RST value:

SCPI: conforming

[SENSe[1...4]:]CORRection:POWer[:STATe]

This command switches on or off the power calibration in the specified channel.

Syntax: [SENSe[1...4]:]CORRection:POWer[:STATe]

Example: "CORR:POW:STAT ON"

Features: *RST value: OFF

[SENSe[1...4]:]CORRection:POWer:DATA

This command is used for reading and writing power correction values for a receiver channel.

The <string> parameter may assume the following values:

"B1" Correction data for wave b1 at port 1
"INPUTB1" Correction data for wave b1 at input b1
"B2" Correction data for wave b2 at port 2
"INPUTB2" Correction data for wave b2 at input b2

"IFREF" Correction data for reference input a1 on rear panel
"A1REF" Correction data for reference input a1 (ZVM and ZVK only)
"A2REF" Correction data for reference input a2 (ZVM and ZVK only)

Example: "CORR:POW:DATA "B1", <block>"

Features: *RST value:

SCPI: device-specific

[SENSe[1...4]:]CORRection:POWer:DATE?

This command queries the date at which the active power calibration was recorded.

Syntax: [SENSe[1...4]:]CORRection:POWer:DATE?

Example: "CORR:POW:DATE?"

Features: *RST value:

3.6.14.4 SENSe:DETector Subsystem

Das SENSe:DETector-subsystem controls how the analyzer takes measurement data.

COMMAND	PARAMETER	UNIT	COMMENT
[SENSe<14>]			
:DETector			
[:FUNCtion]	FAST NORMal		

[SENSe[1...4]:]DETector[:FUNCtion]

This command switches the fast measurement mode on and off.

Syntax: [SENSe[1...4]:]DETector[:FUNCtion]

Example: "DET FAST"

Features: *RST value: NORMal

3.6.14.5 SENSe:FREQuency Subsystem

The SENSe:FREQuency subsystem controls the frequency abscissa of the active display. The frequency abscissa can either be defined via the start/stop frequency or via the center frequency and span.

The following frequency ranges apply to the different instrument models.

SENSe:FREQuency:	zvr,	ZVRE,	ZVRL	ZVC, ZVCE
SOURce:FREQuency:	internal mode		external mode	
	passive test set	active test set		
STARt, STOP, CW FIXed	9 kHz to 4 GHz	300 kHz to 4 GHz	10 Hz to 4 GHz	20 kHz to 8 GHz
CENTer	> 9 kHz to < 4 GHz	> 300 kHz to < 4 GHz	> 9 kHz to < 4 GHz	> 20 kHz to < 8 GHz
SPAN	10 mHz to 3,999991 GHz	10 mHz to 3,9997 GHz	10 mHz to 3,99999999 GHz	10 mHz to 3,99998 GHz

COMMAND	PARAMETER	UNIT	COMMENT
[SENSe[14]]			
:FREQuency			
:CENTer	<numeric_value></numeric_value>	Hz	
:SPAN	<numeric_value></numeric_value>	Hz	
:STARt	<numeric_value></numeric_value>	Hz	
:STOP	<numeric_value></numeric_value>	Hz	
:MODE	CW FIXed SWEep SEGMent		
[:CW]	<numeric_value></numeric_value>	Hz	
:FIXED	<numeric_value></numeric_value>	Hz	
:CONVersion	FUNDamental SHARmonic THARmonic MIXer ARBitrary		
:ARBitrary	<pre><numeric_value>, <numeric_value>, <numeric_value>, CW FIXed SWEep</numeric_value></numeric_value></numeric_value></pre>	, , Hz,	
:MIXer			
:FUNDamental	RF LO IF		
:LOEXternal	SOURCE1 SOURCE2		
:RFFixed	<numeric_value></numeric_value>	Hz	
:LOFixed	<numeric_value></numeric_value>	Hz	
:IFFixed	<numeric_value></numeric_value>	Hz	
:TFRequency	BAND1 BAND2		
:NLINear			
:COMP			
:STIMe	<numeric_value></numeric_value>	S	
SOI:			
:STIMe	<numeric_value> s</numeric_value>		
:TOI			
:STIMe	<numeric_value></numeric_value>	s	

[SENSe[1 to 4]:]FREQuency:CENTer

This command defines the center frequency of the analyzer.

Syntax: [SENSe[1 to 4]:]FREQuency:CENTer <numeric_value>

<numeric value> ::= model-dependent range (see table at the beginning of

this subsystem)

Example: "FREQ:CENT 100MHz"

Features: *RST value: -

SCPI: conforming

[SENSe:]FREQuency:SPAN

This command defines the frequency span of the analyzer.

Syntax: [SENSe:]FREQuency:SPAN < numeric value>

<numeric value> ::= model-dependent range (see table at the beginning of

this subsystem)

Example: "FREQ:SPAN 10MHz"

Features: *RST value: MAXimum

SCPI: conforming

[SENSe:]FREQuency:STARt

This command defines the start frequency of the analyzer.

Syntax: [SENSe:]FREQuency:STARt < numeric value>

<numeric value> ::= model-dependent range (see table at the beginning of

this subsystem)

Example: "FREQ:STAR 20MHz"

Features: *RST value: 9kHz or 300kHz (passive or active test set)

SCPI: conforming

[SENSe:]FREQuency:STOP

This command defines the stop frequency of the analyzer.

Syntax: [SENSe:]FREQuency:STOP < numeric value>

<numeric value> ::= model-dependent range (see table at the beginning of

this subsystem)

Example: "FREQ:STOP 2000MHz"

Features: *RST value: model-dependent (see table at the beginning of

this subsystem)

[SENSe[1...4]:]FREQuency:MODE

This command determines which command groups are used for setting the frequency of the analyzer.

Syntax: [SENSe[1...4]:]FREQuency:MODE CW | FIXed | SWEep | SEGMent

Example: "FREQ:MODE SWE" **Features:** *RST value: SWE

SCPI: conforming

For CW and FIXed, the frequency setting is via command FREQuency:CW. In the SWEep mode, the setting is via the commands FREQuency:STARt, STOP, CENTer and SPAN.

[SENSe[1 to 4]:]FREQuency:CW|FIXed

This command sets the frequency of the analyzer for CW operation.

Syntax: [SENSe[1 to 4]:]FREQuency:CW|FIXed <numeric_value>

<numeric value> ::= model-dependent range (see table at the beginning of

this subsystem)

Example: "FREQ:CW 100MHz"

Features: *RST value: -

SCPI: conforming

The commands FREQuency:CW and FREQuency:FIXed are equivalent.

[SENSe[1...4]:]FREQuency:CONVersion

This command selects frequency-converting measurement modes (second harmonic, third harmonic, mixer measurements or arbitrary frequency-converting modes).)

Syntax: [SENSe[1...4]:]FREQuency:CONVersion FUNDamental | SHARmonic |

THARmonic | MIXer | ARBitrary

Example: "FREQ:CONV THAR"

Features: *RST value: FUNDamental

SCPI: device-specific

[SENSe[1...4]:]FREQuency:CONVersion:ARBitrary

This command defines the frequency range of the receiver for a frequency-converting measurement mode.

Syntax: [SENSe[1...4]:]FREQuency:CONVersion: <numeric_value>,<numeric_value>,

ARBitrary <numeric_value>, CW | FIXed |

SWEep"

Example: "FREQ:CONV:ARB 1,1,10MHz,SWE"

Features: *RST value: 1,1,0

SCPI: device-specific

The parameters are sorted as follows (see Section 2.4.1.2.3, "General Frequency Configurations"):

numerator, denominator,

offset.

sweep or fixed frequency.

[SENSe[1...4]:]FREQuency:CONVersion:MIXer:FUNDamental

For mixer measurements, this command selects the fundamental frequency out of the three mixer frequencies. .

Syntax: [SENSe[1...4]:]FREQuency:CONVersion:MIXer:FUNDamental RF | LO | IF

Example: "FREQ:CONV:MIX:FUND RF"

Features: *RST value: LO

SCPI: device-specific

[SENSe[1...4]:]FREQuency:CONVersion:MIXer:LOEXternal

This command selects one of the two external signal sources as a local oscillator.

Syntax: [SENSe[1...4]:]FREQuency:CONVersion:MIXer:LOEXternal SOURCE1 | SOURCE2

Example: "FREQ:CONV:MIX:LOEX SOURCE2"

Features: *RST value: SOURCE1

SCPI: device-specific

[SENSe[1...4]:]FREQuency:CONVersion:MIXer:RFFixed

This command defines the RF mixer frequency as a fixed value.

Syntax: [SENSe[1...4]:]FREQuency:CONVersion:MIXer:RFFixed <numeric_value>

Example: "FREQ:CONV:MIX:RFF 2.5GHz"

Features: *RST value: 0

SCPI: device-specific

[SENSe[1...4]:]FREQuency:CONVersion:MIXer:LOFixed

This command defines the LO mixer frequency as a fixed value.

Syntax: [SENSe[1...4]:]FREQuency:CONVersion:MIXer:LOFixed <numeric value>

Example: "FREQ:CONV:MIX:LOF 1.8GHz"

Features: *RST value: 0

SCPI: device-specific

[SENSe[1...4]:]FREQuency:CONVersion:MIXer:IFFixed

This command defines the IF mixer frequency as a fixed value.

Syntax: [SENSe[1...4]:]FREQuency:CONVersion:MIXer:IFFixed <numeric_value>

Example: "FREQ:CONV:MIX:IFF 21.4MHz"

Features: *RST value: 0

[SENSe[1...4]:]FREQuency:CONVersion:MIXer:TFRequency.

This command determines the sign of the third mixer frequency by selecting either the lower or upper band.

Syntax: [SENSe[1...4]:]FREQuency:CONVersion:MIXer:TFRequency BAND1 | BAND2

Example: "FREQ:CONV:MIX:TFR BAND2"

Features: *RST value: BAND1

SCPI: device-specific

[SENSe[1...4]:]FREQuency:NLINear:COMP:STIMe

This command defines a settling time to be inserted between the generator setting and the start of data aquisition for a compression point measurement.

Syntax: [SENSe[1...4]:]FREQuency:NLINear:COMP:STIMe <numeric_value>

<numeric_value>::= 0s...1000s

Example: "FREQ:NLIN:COMP:STIMe 1s"

Features: *RST value: 0s

SCPI: device-specific

[SENSe[1...4]:]FREQuency:NLINear:SOI:STIMe

This command defines a settling time to be inserted between the generator setting and the start of data aquisition for a 2nd order intercept point measurement.

Syntax: [SENSe[1...4]:]FREQuency:NLINear:SOI:STIMe <numeric_value>

<numeric_value>::= 0s...1000s

Example: "FREQ:NLIN:SOI:STIMe 1s"

Features: *RST value: 0s

SCPI: device-specific

[SENSe[1...4]:]FREQuency:NLINear:TOI:STIMe

This command defines a settling time to be inserted between the generator setting and the start of data aquisition for a 2nd order intercept point measurement.

Syntax: [SENSe[1...4]:]FREQuency:NLINear:TOI:STIMe <numeric value>

<numeric value>::= 0s...1000s

Example: "FREQ:NLIN:TOI:STIMe 1s"

Features: *RST value: 0s

3.6.14.6 SENSe:FUNCtion Subsystem

The SENSe:FUNCtion-Subsystem defines the measurement function performed by the analyzer.

COMMAND	PARAMETER	UNIT	COMMENT
[SENSe<14>]			
:FUNCtion			
[:ON]	<string></string>		

[SENSe[1...4]:]FUNCtion[:ON]

This command defines the measurement function performed by the analyzer in one string.

[SENSe[1...4]:]FUNCtion[:ON] Syntax: <string> <string> ::= "XFRequency:POWer:A<1|2>" "XFRequency:POWer:B<1|2>" "XFRequency:POWer:S<11..22>" "XFRequency:POWer:S<11..22>:DEFine B1 | B2 | A1, A1 | B1 | B2" "XFRequency:POWer:Z<11..22>" "XFRequency:POWer:Y<11..22>" "XFRequency:POWer:ZREL<11..22>" "XFRequency:POWer:YREL<11..22>"

> "XFRequency:POWer:RATio B1 | B2 | A1 | A2 | ABSA1 | ABSA2, A1 | A2 | B1 | B2 | ABSA1 | ABSA2"

"XFRequency:POWer:KFACtor "XFRequency:POWer:MUFactor<1|2> "XFRequency:POWer:EFFiciency

"XFRequency:VOLTage[:DC] DCIN1 | DCIN2"

"XFRequency:NLINear COMP | SOI | TOI | OFF" "XFRequency:NLINear:COMP:LEVel <numeric_value>" "XFRequency:NLINear:COMP:CPOint INP | OUTP" "XFRequency:NLINear:COMP:CHECk[:ALL] ON | OFF" "XFRequency:NLINear:COMP:CHECk:MAXPwr ON | OFF" "XFRequency:NLINear:COMP:CHECk:MINPwr ON | OFF" "XFRequency:NLINear:COMP:CHECk:ITERations ON | OFF" "XFRequency:NLINear:COMP:CHECk:RCOMpress ON | OFF" "XFRequency:NLINear:COMP:CHECk:ESRC ON | OFF" "XFRequency:NLINear:SOI:IPOint INP | OUTP "

"XFRequency:NLINear:SOI:FREQuency SUM | DIFF" "XFRequency:NLINear:SOI:CHECk[:ALL] ON | OFF" "XFRequency:NLINear:SOI:CHECk:MAXPwr ON | OFF" "XFRequency:NLINear:SOI:CHECk:MINPwr ON | OFF" "XFRequency:NLINear:SOI:CHECk:LEVel ON | OFF" "XFRequency:NLINear:SOI:CHECk:IPNoise ON | OFF" "XFRequency:NLINear:SOI:CHECk:SQR ON | OFF" "XFRequency:NLINear:SOI:CHECk:RIMod ON | OFF"

"XFRequency:NLINear:SOI:CHECk:COMP ON | OFF" "XFRequency:NLINear:SOI:CHECk:ESRC ON | OFF" "XFRequency:NLINear:TOI:IPOint INP | OUTP "

"XFRequency:NLINear:TOI:SIDeband LSB | USB" "XFRequency:NLINear:TOI:CHECk[:ALL] ON | OFF" "XFRequency:NLINear:TOI:CHECk:MAXPwr ON | OFF"

"XFRequency:NLINear:TOI:CHECk:MINPwr ON | OFF"

```
"XFRequency:NLINear:TOI:CHECk:LEVel ON | OFF"
"XFRequency:NLINear:TOI:CHECk:IPNoise ON | OFF"
"XFRequency:NLINear:TOI:CHECk:CUBic ON | OFF"
"XFRequency:NLINear:TOI:CHECk:RIMod ON | OFF"
"XFRequency:NLINear:TOI:CHECk:COMP ON | OFF"
"XFRequency:NLINear:TOI:CHECk:ESRC ON | OFF"
"XPOWer:POWer:A<1|2>"
"XPOWer:POWer:B<1|2>"
"XPOWer:POWer:S<11..22>"
"XPOWer:POWer:S<11..22>:DEFine
                                   B1 | B2 | A1,
                                   A1 | B1 | B2"
"XPOWer:POWer:Z<11..22>"
"XPOWer:POWer:Y<11..22>"
"XPOWer:POWer:ZREL<11..22>"
"XPOWer:POWer:YREL<11..22>"
"XPOWer:POWer:RATio
                          B1 | B2 | A1 | A2 | ABSA1 | ABSA2,
                          A1 | A2 | B1 | B2 | ABSA1 | ABSA2"
"XPOWer:POWer:KFACtor
"XPOWer:POWer:MUFactor<1|2>
"XPOWer:POWer:EFFiciency
"XPOWer:VOLTage[:DC] DCIN1 | DCIN2"
"XTIMe:POWer:A<1|2>"
"XTIMe:POWer:B<1|2>"
"XTIMe:POWer:S<11..22>"
"XTIMe:POWer:S<11..22>:DEFine
                                   B1 | B2 | A1,
                                   A1 | B1 | B2"
"XTIMe:POWer:Z<11..22>"
"XTIMe:POWer:Y<11..22>"
"XTIMe:POWer:ZREL<11..22>"
"XTIMe:POWer:YREL<11..22>"
"XTIMe:POWer:RATio
                          B1 | B2 | A1 | A2 | ABSA1 | ABSA2,
                          A1 | A2 | B1 | B2 | ABSA1 | ABSA2"
"XTIMe:POWer:KFACtor
"XTIMe:POWer:MUFactor<1|2>
"XTIMe:POWer:EFFiciency
"XTIMe:VOLTage[:DC] DCIN1 | DCIN2"
```

Example: "FUNC 'XFR:POW:RAT B1,A1'"

Features: *RST value: -

SCPI: conforming

1043.0009.50 3.108 E-15

3.6.14.7 SENSe:ROSCillator - Subsystem

Dieses Subsystem controls the reference oscillator.

COMMAND	PARAMETER	UNIT	COMMENT
[SENSe]			
:ROSCillator			
[:SOURce]	INTernal EXTernal		
:EXTernal			
FREQuency	<numeric_value></numeric_value>	HZ	

[SENSe:]ROSCillator[:SOURce]

This command selects the reference oscillator..

Syntax: [SENSe:]ROSCillator[:SOURce] INTernal | EXTernal

Example: "ROSC:SOUR EXT"

Features: *RST value:

SCPI: conforming

If EXT is selected, the external reference signal mut be applied to the rear panel of the instrument.

[SENSe:]ROSCillator:EXTernal:FREQuency.

This command defines the external reference frequency.

Syntax: [SENSe:]ROSCillator:EXTernal:FREQ <numeric_value>

uency

<numeric_value> ::= 1 MHz ..15 MHz

Example: "ROSC:EXT:FREQ 5MHZ"

Features: *RST value: 10MHz

SCPI: conforming

The value of the external reference frequency (1 MHz to 15 MHz) is rounded in steps of 1 MHz.

3.6.14.8 SENSe:SEGMent Subsystem

The SENSe:SEGMent-Subsystem defines the parameter for a segmented sweep.

COMMAND	PARAMETER	UNIT	COMMENT
[SENSe<14>]			
:SEGMent			
:DEFine<150>	<pre><numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value> AUTO, <numeric_value>, <numeric_value>, <numeric_value>, [POSitive NEGative]</numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></pre>	Hz, Hz, , dBm, s, , Hz,	
:CLEar			no query
:INSert<150>	<pre><numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value> AUTO, <numeric_value>, <numeric_value>, <numeric_value>, [POSitive NEGative]</numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></pre>	Hz, Hz, , dBm, s, , Hz,	
:DELete<150> :COUNT? :OVERlap	<boolean></boolean>		query only

[SENSe[1...4]:]SEGMent:DEFine[1...50]

This command defines a sweep segment. .

Syntax: [SENSe[1...4]:]SEGMent:DEFine[1...50] <numeric_value>,<numeric_value>,

<numeric_value>,<numeric_value>,

<numeric_value> | AUTO,

<numeric_value>,<numeric_value>,

[POSitive | NEGative]"

Example: "SEG:DEF3 100kHz, 300kHz, 401, -20dBm, AUTO, 1, 10kHz"

Features: *RST value: –

SCPI: device-specific

The ordered parameters are:

START STOP POINTS

SOURCE POWER SWEEP TIME AVERAGE FACTOR IF BANDWIDTH

LO to RF

[SENSe[1...4]:]SEGMent:CLEar

This command deletes all segments

Syntax: [SENSe[1...4]:]SEGMent:CLEar

Example: "SEG:CLE"

Features: *RST value:

SCPI: device-specific

This command is an event, which is why it is not assigned an *RST value and has no query.

[SENSe[1...4]:]SEGMent:INSert[1...50]

This command inserts a segment into an existing list.

Syntax: [SENSe[1...4]:]SEGMent:INSert[1...50] numeric_value>,<numeric_value>,

<numeric_value>,<numeric_value>,

<numeric_value> | AUTO,

<numeric_value>,<numeric_value>,

[POSitive | NEGative]"

Example: "SEG: INS12 9kHz, 100kHz, 201, -10dBm, AUTO, 1, 10kHz"

Features: *RST value:

SCPI: device-specific

[SENSe[1...4]:]SEGMent:DELete[1...50]

This command deletes a segment from a previously defined segment list.

Syntax: [SENSe[1...4]:]SEGMent:DELete[1...50]

Example: "SEG:DEL2"

Features: *RST value: -

SCPI: device-specific

[SENSe[1...4]:]SEGMent:COUNt?

This command returns the number of segments previously defined for a sweep.

Syntax: [SENSe[1...4]:]SEGMent:COUNt?

Example: "SEG:COUN?"

Features: *RST value: -

SCPI: device-specific

[SENSe[1...4]:]SEGMent:OVERlap

This command activates/deactivates the segmented sweep mode with overlapping segments.

Syntax: [SENSe[1...4]:]SEGMent:OVERlap ON | OFF

Example: "SWE:SEGM:OVER ON"

Features: *RST value: OFF

3.6.14.9 SENSe:SWEep Subsystem

This subsystem controls the sweep parameters.

COMMAND	PARAMETER	UNIT	COMMENT
[SENSe<14>]			
:SWEep			
:TIME	<numeric_value></numeric_value>	S	
:AUTO	<boolean></boolean>		
:COUNt	<numeric_value></numeric_value>		
:POINts	<numeric_value></numeric_value>		
:SPACing	LINear LOGarithmic		
:STEP	<numeric_value></numeric_value>	HZ	
:PDECade	<numeric_value></numeric_value>		
:DIRection	UP DOWN		

[SENSe[1 to 4]:]SWEep:TIME

This command defines the duration of the sweep.

Syntax: [SENSe[1 to 4]:]SWEep:TIME <numeric_value>

<numeric_value>::= 5ms to 1000s

Example: "SWE:TIME 10s"

Features: *RST value - (AUTO is set to ON)

SCPI: conforming

If SWEep:TIME is directly programmed, the automatic coupling is switched off.

[SENSe[1 to 4]:]SWEep:TIME:AUTO

This command controls the automatic coupling of the sweep time to the frequency span or to the bandwidth settings.

Syntax: [SENSe[1 to 4]:]SWEep:TIME:AUTO ON | OFF

Example: "SWE:TIME:AUTO ON"

Features: *RST value: ON

SCPI: conforming

If SWEep:TIME is directly programmed, the automatic coupling is switched off.

[SENSe[1 to 4]:]SWEep:COUNt

This command defines the number of sweeps started by "single sweep".

Syntax: [SENSe[1 to 4]:]SWEep:COUNt <numeric value>

<numeric_value>::= 0 to 32767

Example: "SWE:COUNT 64" **Features:** *RST value: 0

SCPI: conforming

This parameter defines the number of sweeps or the number of averagings. In the average mode, the value 0 defines a running averaging of the measured data over 10 sweeps.

[SENSe[1 to 4]:]SWEep:POINts

This command defines the number of measured points in one sweep.

Syntax: [SENSe[1 to 4]:]SWEep:POINts <numeric_value>

<numeric_value>::= 1... 2001

Example: "SWE:POIN 10"

Features: *RST value: 400

SCPI: conforming

[SENSe[1 to 4]:]SWEep:SPACing

This command switches over between linear and logarithmic sweep.

Syntax: [SENSe[1 to 4]:]SWEep:SPACing LINear | LOGarithmic

Example: "SWE:SPAC LOG" **Features:** *RST value: LIN

SCPI: conforming

[SENSe[1 to 4]:]SWEep:STEP

This command defines the step width of the linear sweep.

Syntax: [SENSe[1 to 4]:]SWEep:STEP <numeric_value>

Example: "SWE:STEP 200kHz"

Features: *RST value: -

SCPI: conforming

[SENSe[1 to 4]:]SWEep:PDECade

This command defines the number of steps per decade for the linear sweep.

Syntax: [SENSe[1 to 4]:]SWEep:PDECade <numeric_value>

Example: "SWE:PDEC 100kHz"

Features: *RST value: -

SCPI: device-specific

[SENSe[1...4]:]SWEep:DIRection

This command defines the direction of the sweep.

Syntax: [SENSe[1...4]]SWEep:DIRection UP | DOWN

Example: "SWE:DIR DOWN"

Features: *RST value: UP

3.6.15 SOURce Subsystem

The SOURce subsystem directly controls device-specific settings which are necessary for signal generation.

The following value ranges apply to the different instrument models:

SOURce:POWer:	ZVR,	ZVRE,	ZVRL	ZVC,	ZVCE
	internal mode		external mode	internal mode	external mode
	50 Ω - test set	75 Ω - test set			
STARt, STOP, LEVel:IMMediate: AMPLitude	–25 dBm to 0 dBm	–27 dBm to –6 dBm	–18 dBm to 7 dBm	–25 dBm to 0 dBm	–23 dBm to 3 dBm
CENTer	-24,9 dBm to -0,1 dBm	-26,9 dBm to -6,1 dBm	-17,9 dBm to 6,9 dBm	-24,9 dBm to -0,1 dBm	-22,9 dBm to 2,9 dBm
SPAN	0,1 dB to25 dB	0,1 dB to21 dB	0,1 dB to25 dB	0,1 dB to25 dB	0,1 dB to23 dB

COMMAND	PARAMETER	UNIT	COMMENT
SOURce<14>			
:POWer			
[:LEVel]			
[:IMMediate]			
[:AMPLitude]	<numeric_value></numeric_value>	DBM	
:CAMPlitude			
:A<1 2>	<numeric_value></numeric_value>	DBM	
:ESRC<1 2>	<numeric_value></numeric_value>	DBM	
:SLOPe	<numeric_value></numeric_value>	DB/GHZ	
:EXTernal<1 2>			
[:AMPLitude]	<numeric_value></numeric_value>	DBM	
:SLOPe	<numeric_value></numeric_value>	DB/GHZ	
:ALC			
[:STATe]	<boolean></boolean>		
:NLINear			
:COMP			
:RANGe			
:UPPer	<numeric_value></numeric_value>	dBm	
:LOWer	<numeric_value></numeric_value>	dBm	
:SOI			
:RANGe			
:UPPer	<numeric_value></numeric_value>	dBm	
:LOWer	<numeric_value></numeric_value>	dBm	
:TOI			
:RANGe			
:UPPer	<numeric_value></numeric_value>	dBm	
:LOWer	<numeric_value></numeric_value>	dBm	

COMMAND	PARAMETER	UNIT	COMMENT
SOURce<14>			
:POWer			
:CENTer	<numeric_value></numeric_value>	dBm	
:SPAN	<numeric_value></numeric_value>	dB	
:STARt	<numeric_value></numeric_value>	dBm	
:STOP	<numeric_value></numeric_value>	dBm	
:CORRection			
:DATA	<string>,</string>		
	<blook> <numeric_value></numeric_value></blook>		
:EXT<1 2>	·		
:SWEep	<numeric_value>,</numeric_value>	HZ,	
· ·	<numeric_value>,</numeric_value>	HZ,	
	<numeric_value>,</numeric_value>	,	
	LIN LOG		
:NREadings	<numeric_value></numeric_value>		
[:ACQuire]	A1 A2 ESRC1 ESRC2		no query
:LLISt	<numeric_value>,</numeric_value>	,	
	<numeric_value>, <numeric_value></numeric_value></numeric_value>	HZ, dB	
:STATE	<boolean></boolean>	uБ	
:FREQuency	< DOUGHI >		
:rrequency [:CW]	<numeric_value></numeric_value>	HZ	
:FIXED	<numeric_value></numeric_value>	HZ	
:CONVersion	<numeric_value></numeric_value>	П	
:ARBitrary	and the second s		
:IFRequency	<numeric_value>, <numeric_value>,</numeric_value></numeric_value>	,	
	<numeric_value>,</numeric_value>	HZ,	
	CW FIXed SWEep	,	
:EFRequency<1 2>	<boolean>,</boolean>	١,	
	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	·	
	<numeric_value>,</numeric_value>	HZ,	
:NILINIoor	CW FIXed SWEep		
:NLINear	INIT LESDO1 LESDO2		
:COMP :SOI	INT ESRC1 ESRC2]	
	IESRC1 IESRC2 ESRC12	LIZ	
:OFFSet	<numeric_value></numeric_value>	HZ	
:TOI	IESRC1 IESRC2 ESRC12	117	
:OFFSet	<numeric_value></numeric_value>	HZ	

SOURce<1...4>:POWer[:LEVel]][:IMMediate][:AMPLitude]

This command defines the level of the output signal.

Syntax: SOURce<1...4>:POWer[:LEVel][:IMMediate][:AMPLitude] <numeric_value>

<numeric_value>::= -25dBm...0dBm (model-dependent, see table at the

beginning of this section)

Example: "SOUR2:POW -20dBm" **Features:** *RST value: -10 dBm

SOURce<1...4>:POWer[:LEVel][:IMMediate]:CAMPlitude:A<1|2>

This command defines the level of the output signal a1 / a2 when the power correction is switched on or when a power calibration is started.

Syntax: SOURce<1...4>:POWer[:LEVel][:IMMediate]: <numeric_value>

CAMPlitude:A<1|2>

<numeric_value>::= -300dBm...+200dBm

Example: "SOUR:POW:CAMP:A1 -10dBm"

Features: *RST value: 0 dBm

SCPI: conforming

SOURce<1...4>:POWer[:LEVel][:IMMediate]:CAMPlitude:ESRC<1|2>

This command defines the level of the external generator 1 / 2 when the power correction is switched on or when a power calibration is started.

Svntax: SOURce<1...4>:POWer[:LEVel][:IMMediate]: <numeric value>

CAMPlitude:ESRC<1|2>

<numeric_value>::= -300dBm...+200dBm

Example: "SOUR:POW:CAMP:ESRC2 -10dBm"

Features: *RST value: 0 dBm

SCPI: conforming

SOURce<1...4>:POWer[:LEVel]][:IMMediate]:SLOPe

This command defines the variation of the output signal level during a sweep.

Syntax: SOURce<1...4>:POWer[:LEVel][:IMMediate]:SLOPe

<numeric value>::= 0dBm to 20 dB/GHz

Example: "SOUR2:POW:SLOP 6dB/GHz"

Features: *RST value: 0dB/Hz

SCPI: device-specific

SOURce<1...4>:POWer[:LEVel>][:IMMediate]:EXTernal[1|2]:AMPLitude

This command defines the level of the output signal when an external generator is used.

Syntax: SOURce<1...4>:POWer[:LEVel][:IMMediate]

:EXTernal[1|2]:AMPLitude <numeric_value>

Example: "SOUR2:POW:EXT:AMP -20dBm"

Features: *RST value:

SCPI: device-specific

SOURce<1...4>:POWer[:LEVel>][:IMMediate]:EXTernal[1|2]:SLOPe

This command defines the variation of the output signal level when an external generator is used.

Syntax: SOURce<1...4>:POWer[:LEVel][:IMMediate]:

EXTernal[1|2]:SLOPe <numeric_value>

Example: "SOURC2:POW:EXT:SLOP 6dB/GHz"

Features: *RST value: 0dB/Hz

SOURce[1...4]: POWer:ALC[:STATe]

This command is for controlling the ALC loop of the analyzer. With ON the internal ALC loop is closed, with OFF an external control signal fed via a rear-panel connector is used. The channel specification (1 to 4) is of no importance here since this is a global setting.

Syntax: SOURce[1...4]: POWer:ALC[:STATe] ON | OFF

Example: "SOUR:POW:ALC ON"

Characteristics: *RST value: ON

SCPI: conforming

SOURce[1...4]:POWer:NLINear:COMP:RANGe:UPPer

This command defines an upper limit for the power of the signal source for a compression point measurement. The value set must not exceed the maximum level of the selected source.

With power calibration, the upper limit is +200 dBm, regardless of the selected signal source.

Syntax: SOURce[1...4]: POWer:NLINear:COMP:RANGe:UPPer <numeric_value>

Example: "SOUR:POW:NLIN:COMP:RANG:UPP 0dBm"

Features: *RST value: 0 dBm

SCPI: device-specific

SOURce[1...4]:POWer:NLINear:COMP:RANGe:LOWer

This command defines a lower limit for the power of the signal source for a compression point measurement. The value set must not fall below the minimum level of the selected source.

With power calibration, the lower limit is -300 dBm, regardless of the selected signal source.

Syntax: SOURce[1...4]: POWer:NLINear:COMP:RANGe:LOWer <numeric_value>

Example: "SOUR:POW:NLIN:COMP:RANG:LOW -25dBm"

Features: *RST value: -25 dBm

SCPI: device-specific

SOURce[1...4]:POWer:NLINear:SOI:RANGe:UPPer

This command defines an upper limit for the power of the signal sources for a 2nd order intercept point measurement. The allowed range of upper limits depends on the power of the signal sources.

With power calibration, the upper limit must be set such that it can be reached by both signal sources.

Syntax: SOURce[1...4]: POWer:NLINear:SOI:RANGe:UPPer <numeric_value>

Example: "SOUR:POW:NLIN:SOI:RANG:UPP 0dBm"

Features: *RST value: 0 dBm

SOURce[1...4]:POWer:NLINear:SOI:RANGe:LOWer

This command defines a lower limit for the power of the signal sources for a 2nd order intercept point measurement. The allowed range of lower limits depends on the power of the signal sources.

With power calibration, the lower limit must be set such that it can be reached by both signal sources.

Syntax: SOURce[1...4]: POWer:NLINear:SOI:RANGe:LOWer <numeric_value>

Example: "SOUR:POW:NLIN:SOI:RANG:LOW -25dBm"

Features: *RST value: -25 dBm

SCPI: device-specific

SOURce[1...4]:POWer:NLINear:TOI:RANGe:UPPer

This command defines an upper limit for the power of the signal sources for a 3rd order intercept point measurement. The allowed range of upper limits depends on the power of the signal sources.

With power calibration, the upper limit must be set such that it can be reached by both signal sources.

Syntax: SOURce[1...4]: POWer:NLINear:TOI:RANGe:UPPer <numeric_value>

Example: "SOUR:POW:NLIN:TOI:RANG:UPP 0dBm"

Features: *RST value: 0 dBm

SCPI: device-specific

SOURce[1...4]:POWer:NLINear:TOI:RANGe:LOWer

This command defines a lower limit for the power of the signal sources for a 3rd order intercept point measurement. The allowed range of lower limits depends on the power of the signal sources.

With power calibration, the lower limit must be set such that it can be reached by both signal sources.

Syntax: SOURce[1...4]: POWer:NLINear:TOI:RANGe:LOWer <numeric value>

Example: "SOUR:POW:NLIN:TOI:RANG:LOW -25dBm"

Features: *RST value: -25 dBm

SCPI: device-specific

SOURce<1...4>: POWer:CENTer

This command defines the center level of the analyzer in the level sweep mode.

Syntax: SOURce<1...4>: POWer:CENTer <numeric_value>

<numeric value> ::= -25dBm to 0 dBm (device-specific)

Example: "SOUR:POW:CENT -10dBm"

Features: *RST value:

SOURce<1...4>: POWer:SPAN

This command defines the level display range of the analyzer in the level sweep mode.

Syntax: SOURce<1...4>: POWer:SPAN <numeric_value>

<numeric value> ::= 0dBm to 25 dB (device-specific)

Features: "SOUR:POW:SPAN 10dB"

*RST value: MAXimum SCPI: conforming

SOURce<1...4>: POWer:STARt

This command defines the start level in the level sweep mode.

Syntax: SOURce<1...4>: POWer:STARt <numeric_value>

<numeric value> ::= -25dBm to 0dBm (device-specific)

Example: "SOUR:POW:STARt -10dBm"

Features: *RST value:

SCPI: conforming

SOURce<1...4>: POWer:STOP

This command defines the stop level in the level sweep mode.

Syntax: SOURce<1...4>: POWer:STOP <numeric value>

<numeric value> ::= -25dBm to 0dBm (device-specific)

Example: "SOUR:POW:STOP -10dBm"

Features: *RST value:

SCPI: conforming

[SENSe[1...4]:]CORRection:POWer:DATA

This command is used for reading and writing power correction values for a receiver channel.

The <string> parameter may assume the following values:

"B1" Correction data for wave b1 at port 1
"INPUTB1" Correction data for wave b1 at input b1
"B2" Correction data for wave b2 at port 2
"INPUTB2" Correction data for wave b2 at input b2

"IFREF" Correction data for reference input a1 on rear panel
"A1REF" Correction data for reference input a1 (ZVM and ZVK only)
"A2REF" Correction data for reference input a2 (ZVM and ZVK only)

Syntax: [SENSe[1...4]:]CORRection:POWer:DATA <string>,<block>|

<numeric value>...

Example: "CORR:POW:DATA "B1", <block>"

Features: *RST value:

SOURce<1...4>: POWer:CORRection:EXT<1|2>:SWEep

This command defines the sweep parameters to be used when an external generator power calibration is started.

Syntax: SOURce<1...4>:POWer: <numeric_value>,<numeric_value>

CORRection:EXT<1|2>:SWEep ,<numeric_value>, LIN | LOG

Example: "SOUR:POW:CORR:EXT1:SWE 10MHZ,1GHZ,101,LOG"

Features: *RST value: ..., ..., 101, LIN (Start / Stop depending on external generator)

SCPI: conforming

The parameters are sorted as follows:

start frequency (range depending on external generator) stop frequency (range depending on external generator)

number of frequency points (1.. 2001)

sweep mode (LIN, LOG)

If the number of points is set equal to 1, the start and stop frequencies must be the same

SOURce<1...4>: POWer:CORRection:NREadings

This command defines the number of power measurements at one frequency point when a power calibration is started.

Syntax: SOURce<1...4>:POWer:CORRection:NREadings <numeric_value>

<numeric value> ::= 1 .. 100

Example: "SOUR:POW:CORR:NRE 2"

Features: *RST value: 1

SCPI: conforming

SOURce<1...4>: POWer:CORRection:[:ACQuire]

This command is used to perform a generator power calibration (internal, external).

Syntax: SOURce<1...4>:POWer:CORRection[:ACQuire] A1 | A2 | ESRC1 | ESRC2

Example: "SOUR:POW:CORR:ACQ A1"

Features: *RST value:

SCPI: conforming

SOURce<1...4>: POWer:CORRection:LLISt

This command defines the power loss list which may be used for a power calibration.

Syntax: SOURce<1...4>:POWer:CORRection:LLISt <numeric_value>, <numeric_value>,

<numeric_value>...

Example: "SOUR:POW:CORR:LLIS 2,10HZ,1DB,4GHZ,2DB"

Features: *RST value: 0 (i.e. power loss list empty)

SCPI: conforming

The parameters are sorted as follows:

number of following (frequency, attenuation) pairs (0 to 20)

frequency 1 (10 Hz to 4 GHz)

attenuation for frequency 1 (-100 dB to 1000 dB)

• • •

The frequencies must be sorted in **ascending** order.

SOURce<1...4>: POWer:CORRection:LLISt:STATe

This command defines whether the power loss list should be used for a power calibration.

Syntax: SOURce<1...4>:POWer:CORRection:LLISt:STATe ON | OFF

Example: "SOUR:POW:CORR:LLIS:STAT ON"

Features: *RST value: OFF

SCPI: conforming

SOURce<1...4>:FREQuency[:CW|FIXed]

This command defines the CW-frequency for the POWER SWEEP and TIME SWEEP modes.

Syntax: SOURce<1...4>: FREQuency[:CW|FIXed] <numeric_value>

<numeric value>::=9kHz...4GHz

Example: "SOURC2:FREQ 1GHz"

Features: *RST value:

SCPI: conforming

SOURce<1...4>:FREQuency:CONVersion:ARBitrary:IFRequency

This command defines the frequency range of the internal generator for frequency-converting modes.

Syntax: SOURce<1...4>:FREQuency: <numeric_value>,<numeric_value>,

CONVersion:ARBitrary:IFRequency <numeric_value>, CW | FIXed | SWEep"

Example: "SOUR:FREQ:CONV:ARB:IFR 1,1,10MHz"

Features: *RST-value: 1,1,0

SCPI: device-specific

The parameters are sorted as follows (see. Section 2.4.1.2.3, "General Frequency Configurations"):

Numerator Denominator Offset

Sweep mode or fixed frequency

SOURce<1...4>:FREQuency:CONVersion:ARBitrary:EFRequency<1|2>

This command defines the frequency range of the external generator for frequency-converting modes.

Syntax: SOURce<1...4>:FREQuency: <ON|OFF>,<numeric_value>,

CONVersion:ARBitrary: <numeric_value>,<numeric_value>,

EFRequency<1|2> CW | FIXed | SWEep "

Example: "SOUR:FREQ:CONV:ARB:EFR ON,1,1,10MHz"

Features: *RST-value: 0

SCPI: device-specific

The parameters are sorted as follows (see. Section 2.4.1.2.3, "General Frequency Configurations"):

Numerator Denominator Offset

Sweep mode or fixed frequency

SOURce[1...4]:FREQuency:NLINear:COMP

This command specifies whether the internal signal source or one of the two external sources is to be used for the compression point measurement.

Syntax: SOURce[1...4]:FREQuency:NLINear:COMP INT | ESRC1 | ESRC2

Example: "SOUR:FREQ:NLIN:COMP INT"

Features: *RST value: INT

SCPI: device-specific

SOURce[1...4]:FREQuency:NLINear:SOI

This command specifies whether the internal signal source plus one of the two external sources or both external sources are to be used for the 2nd order intercept point measurement.

Syntax: SOURce[1...4]:FREQuency:NLINear:SOI IESRC1 | IESRC2 | ESRC12

Example: "SOUR:FREQ:NLIN:SOI ESRC12"

Features: *RST value: IESRC1

SCPI: device-specific

SOURce[1...4]:FREQuency:NLINear:SOI:OFFSet

This command defines a frequency offset for the second signal source relative to the first one used in a 2nd order intercept point measurement.

Syntax: SOURce[1...4]:FREQuency:NLINear:SOI <numeric_value>

<numeric value>::=0 GHz...4 GHz

Example: "SOUR:FREQ:NLIN:SOI:OFFS 1MHz"

Features: *RST value: 3 MHz

SCPI: device-specific

SOURce[1...4]:FREQuency:NLINear:TOI

This command specifies whether the internal signal source plus one of the two external sources or both external sources are to be used for the 3rd order intercept point measurement.

Syntax: SOURce[1...4]:FREQuency:NLINear:TOI IESRC1 | IESRC2 | ESRC12

Example: "SOUR:FREQ:NLIN:TOI ESRC12"

Features: *RST value: IESRC1

SCPI: device-specific

SOURce[1...4]:FREQuency:NLINear:TOI:OFFSet

This command defines a frequency offset for the second signal source relative to the first one used in a 3rd order intercept point measurement.

Syntax: SOURce[1...4]:FREQuency:NLINear:TOI <numeric_value>

<numeric_value>::=0 GHz...4 GHz

Example: "SOUR:FREQ:NLIN:TOI:OFFS 1MHz"

Features: *RST value: 3 MHz

3.6.16 STATus Subsystem

The STATus subsystem contains the commands for the status-reporting system (see Section 3.8, Status Reporting System"). *RST does not influence the status registers.

COMMAND	PARAMETER	UNIT	COMMENT
STATus			
:OPERation			
[:EVENt?]			
:CONDition?			
:ENABle	065535		
:PTRansition	065535		
:NTRansition	065535		
:PRESet			
:QUEStionable			
[:EVENt?]			
:CONDition?			
:ENABle	065535		
:PTRansition	065535		
:NTRansition	065535		
:FREQuency			
[:EVENt?]			
:CONDition?			
:ENABle	065535		
:PTRansition	065535		
:NTRansition	065535		
:LIMit			
[:EVENt?]			
:CONDition?			
:ENABle	065535		
:PTRansition	065535		
:NTRansition	065535		
:POWer			
[:EVENt?]			
:CONDition?			
:ENABle	065535		
:PTRansition	065535		
:NTRansition	065535		
:QUEue			
[:NEXT?]			

STATus:OPERation[:EVENt?]

This command queries the contents of the EVENt section of the STATus:OPERation register.

Syntax: STATus:OPERation[:EVENt?]

Example: "STAT:OPER?" **Features:** *RST value: -

SCPI: conforming

Readout deletes the contents of the EVENt section.

STATus: OPERation: CONDition?

This command queries the CONDition section of the STATus:OPERation register.

Syntax: STATus:OPERation:CONDition?

Example: "STAT:OPER:COND?"

Features: *RST value: -

SCPI: conforming

Readout does not delete the contents of the CONDition section. The value returned reflects the current hardware status.

STATus: OPERation: ENABle

This command sets the bits of the ENABle section of the STATus:QUEStionable register.

Syntax: STATus:OPERation:ENABle 0 to 65535

Example: "STAT:OPER:ENAB 65535"

Features: *RST value: -

SCPI: conforming

The ENABle register selectively enables the individual events of the associated EVENt section for the sum bit in the status byte.

STATus: OPERation: PTRansition

This command sets the edge detectors of all bits of the STATus:OPERation register from 0 to 1 for the transitions of the CONDition bit.

Syntax: STATus:OPERation:PTRansition 0 to 65535

Example: "STAT:OPER:PTR 65535"

Features: *RST value: -

SCPI: conforming

STATus: OPERation: NTRansition

This command sets the edge detectors of all bits of the STATus:OPERation register from 1 to 0 for the transitions of the CONDition bit.

Syntax: STATus:OPERation:NTRansition 0 to 65535

Example: "STAT:OPER:NTR 65535"

Features: *RST value: -

SCPI: conforming

STATus:PRESet

This command resets the edge detectors and ENABle parts of all registers to a defined value. All PTRansition parts are set to FFFFh, i.e., all transitions from 0 to 1 are detected. All NTRansition parts are set to 0, i.e., a transition from 1 to 0 in a CONDition bit is not detected. The ENABle part of the STATus:OPERation and STATus:QUEStionable registers are set to 0, i.e., all events in these registers are not passed on.

Syntax: STATus:PRESet

Example: "STAT:PRES"

Features: *RST value: -

STATus:QUEStionable[:EVENt?]

This command queries the contents of the EVENt section of the STATus:QUEStionable register.

Syntax: STATus:QUEStionable[:EVENt?]

Example: "STAT:QUES?" **Features:** *RST value: -

SCPI: conforming

Readout deletes the contents of the EVENt section.

STATus: QUEStionable: CONDition?

This command queries the CONDition section of the STATus:QUEStionable register.

Syntax: STATus:QUEStionable:CONDition?

Example: "STAT:QUES:COND?"

Features: *RST value: –

SCPI: conforming

Readout does not delete the contents of the CONDition section.

STATus: QUEStionable: ENABle

This command sets the bits of the ENABle section of the STATus-QUEStionable register.

Syntax: STATus:QUEStionable:ENABle 0 to 65535

Example: "STAT:QUES:ENAB 65535"

Features: *RST value: -

SCPI: conforming

The ENABle register selectively enables the individual events of the associated EVENt section for the sum bit in the status byte.

STATus:QUEStionable:PTRansition

This command sets the edge detectors of all bits of the STATus:OPERation register from 0 to 1 for the transitions of the CONDition bit.

Syntax: STATus:QUEStionable:PTRansition 0 to 65535

Example: "STAT:QUES:PTR 65535"

Features: *RST value: -

SCPI: conforming

STATus:QUEStionable:NTRansition

This command sets the edge detectors of all bits of the STATus:OPERation register from 1 to 0 for the transitions of the CONDition bit.

Syntax: STATus:QUEStionable:NTRansition 0 to 65535

Example: "STAT:QUES:NTR 65535"

Features: *RST value:

STATus:QUEStionable:FREQuency[:EVENt?]

This command queries the contents of the EVENt section of the STATus:QUEStionable:FREQuency register.

Syntax: STATus:QUEStionable:FREQuency[:EVENt?]

Example: "STAT:QUES:FREQ?"

Characteristics: *RST value:

SCPI: device-specific

The contents of the EVENt section are cleared on reading out.

STATus:QUEStionable:FREQuency:CONDition?

This command queries the CONDition section of the STATus:QUEStionable:FREQuency register.

Syntax: STATus:QUEStionable:FREQuency:CONDition?

Example: "STAT:QUES:FREQ:COND?"

Characteristics: *RST value: -

SCPI: device-specific

The contents of the CONDition section are not cleared on reading out.

STATus:QUEStionable:FREQuency:ENABle

This command sets the bits of the ENABle section of the STATus:QUEStionable:FREQuency register.

Syntax: STATus: QUEStionable:FREQuency:ENABle 0 to 65535

Example: "STAT:QUES:FREQ:ENAB 65535"

Characteristics: *RST value: -

SCPI: device-specific

The ENABle register enables the events of the corresponding EVENt section selectively for the sum bit in the status byte.

STATus:QUEStionable:FREQuency:PTRansition

This command sets the edge detectors of all bits of the STATus:QUEStionable:FREQuency register for the transitions of the CONDition bit from 0 to 1.

Syntax: STATus: QUEStionable:FREQuency:PTRansition 0 to 65535

Example: "STAT:QUES:FREQ:PTR 65535"

Characteristics: *RST value: -

SCPI: device-specific

STATus:QUEStionable:FREQuency:NTRansition

This command sets the edge detectors of all bits of the STATus:QUEStionable:FREQuency register for the transitions of the CONDition bit from 1 to 0.

Syntax: STATus: QUEStionable:FREQuency:NTRansition 0 to 65535

Example: "STAT:QUES:FREQ:NTR 65535"

Characteristics: *RST value: -

STATus:QUEStionable:LIMit[:EVENt?]

This command queries the contents of the EVENt-section of the STATus:QUEStionable:LIMit-register.

Syntax: STATus:QUEStionable:LIMit[:EVENt?]

Example: "STAT:QUES:LIM?"

Features: *RST value: -

SCPI: device-specific

Readout deletes the contents of the EVENt section.

STATus:QUEStionable:LIMit:CONDition?

This command queries the CONDition-section of the STATus:QUEStionable:LIMit-register.

Syntax: STATus:QUEStionable:LIMit:CONDition?

Example: "STAT:QUES:LIM:COND?"

Features: *RST value: -

SCPI: device-specific

Readout does not delete the contents of the CONDition section.

STATus:QUEStionable:LIMit:ENABle

This command sets the Bits of the ENABle-section of the STATus:QUEStionable:LIMit-register.

Syntax: STATus: QUEStionable:LIMit:ENABle 0...65535

Example: "STAT:QUES:LIM:ENAB 65535"

Features: *RST value:

SCPI: device-specific

The ENABle register selectively enables the individual events of the associated EVENt section for the sum bit in the status byte.

STATus:QUEStionable:LIMit:PTRansition

This command sets the edge detectors of all bits of the STATus:QUEStionable:LIMit-registers for the transitions of the CONDition-Bits from 0 to 1.

Syntax: STATus: QUEStionable:LIMit:PTRansition 0...65535

Example: "STAT:QUES:LIM:PTR 65535"

Features: *RST value:

SCPI: device-specific

STATus:QUEStionable:LIMit:NTRansition

This command sets the edge detectors of all bits of the STATus:QUEStionable:LIMit-registers for the transitions of the CONDition-Bits from 1 to 0.

Syntax: STATus:QUEStionable:LIMit:NTRansition 0...65535

Example: "STAT:QUES:LIM:NTR 65535"

Features: *RST value:

STATus:QUEStionable:POWer[:EVENt?]

This command queries the contents of the EVENt section of the STATus:QUEStionable:POWerregister.

Syntax: STATus:QUEStionable:POWer[:EVENt?]

Example: "STAT:QUES:POW?"

Characteristics: *RST value: -

SCPI: device-specific

The contents of the EVENt section are cleared on reading out.

STATus:QUEStionable:POWer:CONDition?

This command queries the CONDition section of the STATus:QUEStionable:POWer register.

Syntax: STATus:QUEStionable:POWer:CONDition?

Example: "STAT:QUES:POW:COND?"

Characteristics: *RST value:

SCPI: device-specific

STATus:QUEStionable:POWer:ENABle

This command sets the bits of the ENABle section of the STATus:QUEStionable:POWer register.

Syntax: STATus: 0 to 65535

QUEStionable:POWer:ENABle

Example: "STAT:QUES:POW:ENAB 65535"

Characteristics: *RST value: -

SCPI: device-specific

The ENABle register enables the events of the corresponding EVENt section selectively for the sum bit in the status byte.

STATus:QUEStionable:POWer:PTRansition

This command sets the edge detectors of all bits of the STATus:QUEStionable:POWer register for the transitions of the CONDition bit from 0 to 1.

Syntax: STATus: QUEStionable:POWer:PTRansition 0 to 65535

Example: "STAT:QUES:POW:PTR 65535"

Characteristics: *RST value: -

SCPI: device-specific

STATus:QUEStionable:POWer:NTRansition

This command sets the edge detectors of all bits of the STATus:QUEStionable:POWer register for the transitions of the CONDition bit from 1 to 0.

Syntax: STATus: QUEStionable:POWer:NTRansition 0 to 65535

Example: "STAT:QUES:POW:NTR 65535"

Characteristics: *RST value: -

STATus:QUEue[:NEXT?]

This command queries the earliest entry to the error queue, thus deleting it.

Syntax: STATus:QUEue[:NEXT?]

Example: "STAT:QUE?"

Features: *RST value: -

SCPI: conforming

Positive error numbers indicate device-specific errors, negative error numbers are error messages defined by SCPI (cf. Appendix B). If the error queue is empty, the error number 0, "no error", is returned. This command is identical with the command SYSTem: ERROR.

3.6.17 SYSTem Subsystem

The SYSTem subsystem lists commands for general functions.

COMMAND	PARAMETER	UNIT	COMMENT
SYSTem			
:COMMunicate			
:AKAL			
[:STATe]	<boolean></boolean>		
:GPIB			
[:SELF]			
:ADDRess	030		
:RTERminator	LFEoi EOI		
:RDEVice	'		
[:PRINter<1 2>]			
:ADDRess	030		
:GENerator<1 2>			
:ADDRess	030		
:PMETer			
:ADDRess	030		
:RDEVice	565		
:GENerator<1 2>			
:CONTrol	REMote LOCal		
:LINK	GPIB TTL		
:TYPE	<name></name>		
:PMETer	sharros		
:CFACtor			
[:SELect]	ASENsor BSENsor		
:ASENsor	<numeric_value>,</numeric_value>		
.AGENSOI	<numeric_value>,</numeric_value>	Hz,	
	<numeric_value></numeric_value>	PCT	
:BSENsor	<numeric_value>,</numeric_value>	,	
	<numeric_value>,</numeric_value>	Hz,	
	<numeric_value></numeric_value>	PCT	
:AZERo			
[:STATe]	<boolean></boolean>		
:TYPE	<name></name>		
:SERial<1 2>			
:CONTrol	IDE III OFF		
:DTR	IBFull OFF		
:RTS	IBFull OFF		
[:RECeive]	and the section		
:BAUD	<numeric_value></numeric_value>		
:BITS	7 8		
:PARity	EVEN LODD LAIONE		
[:TYPE]	EVEN ODD NONE		
:SBITs	1 2		
:PACE	XON NONE		
:DATE	<num>, <num>,</num></num>		
:DISPlay	-Pasisan LONGE		
:UPDate	<boolean> ONCE</boolean>		
:ERRor?			quary only
[:NEXT]?			query only
:ALL?			query only
:FIRMware	antrin au		no guent
:UPDate	<string></string>		no query
:PASSword	atria a		
[:CENable]	<string></string>		no query

COMMAND	PARAMETER	UNIT	COMMENT
:PRESet			
:SET	<blook></blook>		
:TIME	023, 059, 059		
:VERSion?			query only

SYSTem:COMMunicate:AKAL[:STATe]

This command switches the control of the AutoKal box on and off.

Syntax: SYSTem:COMMunicate:AKAL[:STATe] ON | OFF

Example: "SYST:COMM:AKAL ON"

Features: *RST value: - (no influence on this parameter)

SCPI: device-specific

SYSTem:COMMunicate:GPIB[:SELF]:ADDRess

This command changes the IEC/IEEE-bus address of the unit.

Syntax: SYSTem:COMMunicate:GPIB[:SELF]:ADDRess 0 to 30

Example: "SYST:COMM:GPIB:ADDR 18"

Features: *RST value: - (no influence on this parameter)

SCPI: conforming

SYSTem:COMMunicate:GPIB[:SELF]:RTERminator

This command changes the receive terminator of the device.

Syntax: SYSTem:COMMunicate:GPIB[:SELF]:RTERminator LFEOI | EOI

Example: "SYST:COMM:GPIB:RTERM EOI"

Features: *RST value: LFEOI

SCPI: device-specific

The analyzer features a DME-channel for communication via IEC/IEEE-bus. This guarantees maximum speed for the transfer of commands and data. The parser for command decoding integrated in the device is activated by the terminator only after the command is completely transferred. In order to make this possible for the transfer of binary data as well , the terminator recognition has to be reset to the EOI signal before transfer starts. Readout of binary data does not require such a reset.

SYSTem:COMMunicate:GPIB: RDEVice[:PRINter<1|2>]:ADDRess

This command changes the IEC/IEEE-bus address of the unit which is selected as hardcopy device 1 or 2, provided that the IEC/IEEE-bus interface of this unit is activated.

Syntax: SYSTem:COMMunicate:GPIB:RDEVice:PRINter<1|2>:ADDRess 0 to 30

Example: "SYST:COMM:GPIB:RDEV2:ADDR 5"

Features: *RST value: 4

SYSTem:COMMunicate:GPIB:RDEVice:GENerator<1|2>:ADDRess

This command changes the IEC-bus address of the device selected as generator no. 1 or 2.

Syntax: SYSTem:COMMunicate:GPIB:RDEVice:GENerator<1|2>: ADDRess 0...30

Example: "SYST:COMM:GPIB:RDEV:GENerator1:ADDR 19"

Features: *RST value:

SCPI: device-specific

SYSTem:COMMunicate:GPIB:RDEVice:PMETer:ADDRess

This command changes the IEC-bus address of the device selected as power meter.

Syntax: SYSTem:COMMunicate:GPIB:RDEVice:PMETer:ADDRess 0...30

Example: "SYST:COMM:GPIB:RDEV:PMETer:ADDR 5"

Features: *RST value:

SCPI: device-specific

SYSTem:COMMunicate:PRINter<1|2>:ENUMerate:FIRSt?

This command queries the name of the first printer (in the list of printers) under Windows NT. The numeric suffix in $PRINter<1 \mid 2>$ is not significant.

The names of other installed printers can be queried with command SYSTem:COMMunicate: PRINter:ENUMerate:NEXT?.

If no printer is configured an empty string is output.

Example: "SYST:COMM:PRIN:ENUM:FIRS?"

Features: *RST value:

SCPI: device-specific

SYSTem:COMMunicate:PRINter<1|2>:ENUMerate:NEXT?

This command queries the name of the next printer installed under Windows NT. The numeric suffix in $PRINter<1 \mid 2>$ is not significant.

This command can only be sent after command SYSTem:COMMunicate:PRINter:ENUMerate:FIRSt?.

An empty string is output after all printer names have been output.

Example: "SYST:COMM:PRIN:ENUM:NEXT?"

Features: *RST value: -

SYSTem:COMMunicate:PRINter<1|2>:SELect <printer_name>

This command selects one of the printers installed under Windows NT. The numeric suffix in $PRINter<1 \mid 2>$ selects the device.

The name of the first printer is queried with FIRSt?. After that the names of other installed printers can be queried with NEXT?.

Parameter: <printer_name> ::= string which has been queried with commands

SYSTem: COMMunicate: PRINter: ENUMerate: FIRSt?

and NEXT?.

Example: "SYST:COMM:PRIN:SEL 'HP DESKJET660'"

Features: *RST value: -

SCPI: device-specific

SYSTem:COMMunicate:RDEVice:GENerator<1|2>:CONTrol

This command switches the external generator between remote and manual control.

Syntax: SYSTem:COMMunicate:RDEVice:GENerator<1|2>:CONTrol REMote | LOCal

Example: "SYST:COMM:RDEV:GEN:CONT REM"

Features: *RST value: LOC

SCPI: device-specific

SYSTem:COMMunicate:RDEVice:GENerator<1|2>:LINK

This command selects the interface type of the external generator.

Syntax: SYSTem:COMMunicate:RDEVice:GENerator<1|2>:LINK GPIB | TTL

Example: "SYST:COMM:RDEV:GEN:LINK GPIB"

Features: *RST value:

SYSTem:COMMunicate:RDEVice:GENerator<1|2>:TYPE

This command selects the type of external generator.

Syntax: SYSTem:COMMunicate:RDEVice:GENerator<1|2>:TYPE <name>

<name>::= 'HP8340A' | 'HP_ESG' 'HP_ESG_B' | 'SME02' 'SME03' 'SME06' | 'SMG' | 'SMGL' | 'SMGU' | 'SMH' 'SMHU' 'SMIQ02' | 'SMIQ02E' I 'SMIQ03' 'SMIQ03E' | 'SMP02' 'SMP03' 'SMP04' 'SMP22' 'SMR20' | 'SMR20B11' | 'SMR27' | 'SMR27B11' | 'SMR40' | 'SMR40B11' | 'SMT02' | 'SMT03' 'SMT06' 'SMY01' | 'SMY02'

Example: "SYST:COMM:RDEV:GEN:TYPE 'SME02'"

Features: *RST value: -

SCPI: device-specific

SYSTem:COMMunicate:RDEVice:PMETer:CFACtor[:SELect]

This command defines the sensor factor list to be used for a power calibration (unless the internal list of the power meter is used)..

Syntax: SYSTem:COMMunicate:RDEVice:PMETer:CFACtor[:SELect] ASENsor |

BSENsor

Example: "SYST:COMM:RDEV:PMET:CFAC:SEL ASEN"

Features: *RST value: ASENsor

SYSTem:COMMunicate:RDEVice:PMETer:CFACtor:ASENsor

This command defines the sensor factor list for sensor A which can be active for a power calibration.

Syntax: SYSTem:COMMunicate: <numeric_value>,<numeric_value>,

RDEVice:PMETer:CFACtor:ASENsor <numeric_value> ...

Example: "SYST:COMM:RDEV:PMET:CFAC:ASEN 2,10HZ,99PCT,4GHZ,98PCT"

Features: *RST value: 0 (i.e. sensor factor list empty)

SCPI: conforming

The parameters are sorted as follows:

number of following (frequency, factor) pairs (0..20)

frequency 1 (10 Hz .. 4 GHz)

faktor for frequency 1 (0 PCT .. 100 PCT)

...

The frequencies must be sorted in ascending order.

SYSTem:COMMunicate:RDEVice:PMETer:CFACtor:BSENsor

This command defines the sensor factor list for sensor B which can be active for a power calibration.

Syntax: SYSTem:COMMunicate: <numeric_value>,<numeric_value>,

RDEVice:PMETer:CFACtor:BSENsor < numeric value> ...

Example: "SYST:COMM:RDEV:PMET:CFAC:BSEN 2,10HZ,99PCT,4GHZ,98PCT"

Features: *RST value: 0 (d.h leere Sensor-Faktor-Liste)

SCPI: conforming

The parameters are sorted as follows:

number of following (frequency, factor) pairs (0..20)

frequency 1 (10 Hz .. 4 GHz)

faktor for frequency 1 (0 PCT .. 100 PCT)

...

The frequencies must be sorted in **ascending** order.

SYSTem:COMMunicate:RDEVice:PMETer:AZERo[:STATe]

This command defines whether the automatic zeroing of the power meter is performed for a power calibration.

Syntax: SYSTem:COMMunicate:RDEVice:PMETer:AZERo[:STATe] ON | OFF

Example: "SYST:COMM:RDEV:PMET:AZER:STAT ON"

Features: *RST value: OFF

SCPI: conforming

SYSTem:COMMunicate:RDEVice:PMETer:TYPE

This command selects the external power meter type.

Syntax: SYSTem:COMMunicate:RDEVice:PMETer:TYPE <name>

<name>::= 'NRVD'

Example: "SYST:COMM:RDEV:PMET:TYPE 'NRVD'"

Features: *RST value:

SYSTem:COMMunicate:SERial<1|2>:CONTrol:DTR SYSTem:COMMunicate:SERial<1|2>:CONTrol:RTS

These commands switch the hardware handshake procedure for the given serial interface off (OFF) or on (IBFull).

Syntax: SYSTem:COMMunicate:SERial<1|2>:CONTrol:DTR | IBFull | OFF

SYSTem:COMMunicate:SERial<1|2>:CONTrol:RTS | IBFull | OFF

Examples: "SYST:COMM:SER:CONT:DTR OFF"

"SYST:COMM:SER2:CONT:RTS IBF"

Features: *RST value: OFF

SCPI: conforming

The two commands have the same meaning. SERial1 and SERial2 correspond to device COM1 and COM2, respectively.

SYSTem:COMMunicate:SERial<1|2>[:RECeive]:BAUD

This command sets the transmission speed for the given serial interface.

Syntax: SYSTem:COMMunicate:SERial<1|2>[:RECeive:]BAUD <numeric_value>

<numeric_value>::= 75 | 150 | 300 | 600 | 1200 | 2400 | 9600

Example: "SYST:COMM:SER:BAUD 2400"

Features: *RST value: 9600

SCPI: conforming

SERial1 and SERial 2 correspond to device interface COM1 and COM2, respectively.

SYSTem:COMMunicate:SERial<1|2>[:RECeive]:BITS

This command defines the number of data bits per data word for the given serial interface.

Syntax: SYSTem:COMMunicate:SERial<1|2>[:RECeive]:BITS 7 | 8

Example: "SYST:COMM:SER2:BITS 7"

Features: *RST value: 8

SCPI: conforming

SERial1 and SERial 2 correspond to device interface COM1 and COM2, respectively.

SYSTem:COMMunicate:SERial<1|2>[:RECeive]:PARity[:TYPE]

This command defines the parity check for the given serial interface.

Syntax: SYSTem:COMMunicate:SERial<1|2>:RECeive:PARity[:TYPE]

EVEN | ODD | NONE

Example: "SYST:COMM:SER:PAR EVEN"

Features: *RST value: NONE

SCPI: conforming

SERial1 and SERial 2 correspond to device interface COM1 and COM2, respectively. Permissible

values are:

EVEN even Parity
ODD odd Parity
NONE no parity check.

SYSTem:COMMunicate:SERial<1|2>[:RECeive]:SBITs

This command defines the number of stopbits per data word for the given serial interface.

Syntax: SYSTem:COMMunicate:SERial<1|2>[:RECeive]:SBITs 1|2

Example: "SYST:COMM:SER:SBITs 2"

Features: *RST value: 1

SCPI: conforming

SERial1 and SERial 2 correspond to device interface COM1 and COM2, respectively.

SYSTem:COMMunicate:SERial<1|2>[:RECeive]:PACE

This command switches on or off the software handshake for the given serial interface.

Syntax: SYSTem:COMMunicate:SERial<1|2>[:RECeive]:PACE XON | NONE

Examplel: "SYST:COMM:SER:PACE XON"

features: *RST value: NONE

SCPI: conforming

SERial1 and SERial 2 correspond to device interface COM1 and COM2, respectively.

SYSTem:DATE

This command is used to enter the date for the internal calendar.

Syntax: SYSTem:DATE <num>.<num>.<num>

<num>,<num>,<num> ::= 1980 to 2099, 1 to 12, 1 to 31

Example: " SYST:DATE 1994,12,1"

Features: *RST value: -

SCPI: conforming

The entry format is year, month, day.

SYSTem:DISPlay:UPDate

This command causes all display elements to be regularly updated / prevents their update.

Syntax: SYSTem:DISPlay:UPDate ON | OFF | ONCE

Example: "SYST:DISP:UPD ON" Features: *RST value: OFF

SCPI: device-specific

SYSTem:DISPlay:UPDate ONCE causes a single update of all display elements.

SYSTem:ERRor[:NEXT]?

This command queries and at the same time deletes the oldest entry in the error queue.

Syntax: SYSTem:ERRor?

Example: "SYST:ERR?"

Features: *RST value: -

SCPI: conforming

Positive error numbers indicate device-specific errors, negative error numbers are error messages defined by SCPI (cf. Appendix B). If the error queue is empty, the error number 0, "no error", is returned. This command is identical with the command STATus:QUEue:NEXT?. This command is a query, which is why it is not assigned an *RST value.

SYSTem: ERRor: ALL?

This command queries and at the same time deletes all entries in the error queue.

Syntax: SYSTem:ERRor:ALL?

Beispiel: "SYST:ERR:ALL?"

Eigenschaften: *RST-Wert:

SCPI: konform

Positive error numbers indicate device-specific errors, negative error numbers are error messages defined by SCPI (cf. Appendix B). If the error queue is empty, the error number 0, "no error", is returned. This command is a query, which is why it is not assigned an *RST value.

SYSTem:FIRMware:UPDate

This command starts a firmware update with the data set from the indicated directory.

Syntax: SYSTem:FIRMware:UPDate <string>

Example: "SYST:FIRM:UPD 'C:\V4.32'"

Features: *RST value:

SCPI: device-specific

SYSTem:PASSword[:CENable]

This command gives access to the service functions upon entry of the password.

Syntax: SYSTem:PASSword[:CENable] password

Example: "SYST:PASS 'XXXX'"

Features: *RST value:

SCPI: conforming

The command has no query.

SYSTem:PRESet

This command triggers an instrument reset.

Syntax: SYSTem:PRESet

Example: "SYST:PRES"

Features: *RST value: -

SCPI: conforming

The effect of this command corresponds to that of the *PRESET* key for manual control or to the *RST command.

SYSTem:SET

This command loads the instrument setting previously stored via SYSTem:SET?.

Syntax: SYSTem:SET

Example: "SYST:SET"

Features: *RST value:

SCPI: conforming

The delimiter must be set to EOI in order to achieve a perfect data transfer.

SYSTem:TIME

This command sets the internal clock.

Syntax: SYSTem:TIME 0 to 23, 0 to 59, 0 to 59

Example: "SYST:TIME 12,30,30"

Features: *RST value: -

SCPI: conforming

The entry format is hour, minute, second.

SYSTem: VERSion?

This command gueries the number of the SCPI version relevant for the instrument.

Syntax: SYSTem:VERSion?

Example: "SYST:VERS?"

Features: *RST value: -

SCPI: conforming

This command is a query, which is why it is not assigned an *RST value.

3.6.18 TRACe Subsystem

The TRACe subsystem controls access to the instrument's internal trace memory.

COMMAND	PARAMETER	UNIT	COMMENT
TRACe			
:COPY	MDATA1 MDATA2 MDATA3 MDATA4 MDATA5 MDATA6 MDATA7 MDATA8, CH1DATA CH2DATA CH3DATA CH4DATA		no query
:CLEar	MDATA1 MDATA2 MDATA3 MDATA4 MDATA5 MDATA6 MDATA7 MDATA8		no query
[:DATA]			
[:RESPonse]			
[:ALL]?	CH1DATA CH2DATA CH3DATA CH4DATA CH1MEM CH2MEM CH3MEM CH4MEM MDATA1 MDATA2 MDATA3 MDATA4 MDATA5 MDATA6 MDATA7 MDATA8		query only
:PREamble?	CH1DATA CH2DATA CH3DATA CH4DATA CH1MEM CH2MEM CH3MEM CH4MEM MDATA1 MDATA2 MDATA3 MDATA4 MDATA5 MDATA6 MDATA7 MDATA8		query only
:BODY?	CH1DATA CH2DATA CH3DATA CH4DATA CH1MEM CH2MEM CH3MEM CH4MEM MDATA1 MDATA2 MDATA3 MDATA4 MDATA5 MDATA6 MDATA7 MDATA8		query only
:STIMulus			
[:ALL]?	CH1DATA CH2DATA CH3DATA CH4DATA CH1MEM CH2MEM CH3MEM CH4MEM MDATA1 MDATA2 MDATA3 MDATA4 MDATA5 MDATA6 MDATA7 MDATA8		query only
:PREamble?	CH1DATA CH2DATA CH3DATA CH4DATA CH1MEM CH2MEM CH3MEM CH4MEM MDATA1 MDATA2 MDATA3 MDATA4 MDATA5 MDATA6 MDATA7 MDATA8		query only
:BODY?	CH1DATA CH2DATA CH3DATA CH4DATA CH1MEM CH2MEM CH3MEM CH4MEM MDATA1 MDATA2 MDATA3 MDATA4 MDATA5 MDATA6 MDATA7 MDATA8		query only
:FEED	CH1MEM CH2MEM CH3MEM CH4MEM [, MDATA1 MDATA2 MDATA3 MDATA4 MDATA5 MDATA6 MDATA7 MDATA8]		

TRACe: COPY

This command copies the trace data of the active channel to one of the 8 memory traces.

Syntax: TRACe:COPY <memory_name>,<trace_name>

<memory_name>::= MDATA1 | MDATA2 | MDATA3 | MDATA4 |

MDATA5 | MDATA6 | MDATA7 | MDATA8

<trace_name>::= CH1DATA | CH2DATA | CH3DATA | CH4DATA

Examples: "TRAC:COPY MDATA5,CH1DATA"

Features: *RST value: -

SCPI: conforming

TRACe:CLEar

This command clears the corresponding memory trace.

Syntax: TRACe:CLEar MDATA1 | MDATA2 | MDATA3 | MDATA4 | MDATA5 |

MDATA6 | MDATA7 | MDATA8

Example: "TRAC:CLE MDATA5"

Features: *RST value: -

SCPI: device-specific

The command is an "event", which is why it is not assigned an *RST value and has no query.

TRACe[:DATA][:RESPonse][:ALL]?

This query reads the response values of the trace data from the instrument. Binary data are transferred as SCPI block data.

Syntax: TRACe[:DATA][:RESPonse] CH1DATA | CH2DATA | CH3DATA |

[:ALL]? CH4DATA | CH1MEM | CH2MEM | CH3MEM | CH4MEM | MDATA1 | MDATA2 | MDATA3 |

MDATA4 | MDATA5 | MDATA6 | MDATA7 |

MDATA8

Example: "TRAC? CH1DATA"

Features: *RST value: -

SCPI: conforming

TRACe[:DATA][:RESPonse]:PREamble?

This query command reads the preamble of the response values of the trace data from the device. With binary data transmission (setting: FORMat[:DATA] REAL, 32 or FORMat[:DATA] REAL, 64), this is the length of the useful data in bytes. With ASCII data transmission (setting: FORMat[:DATA] ASCii), "0" is returned.

Syntax: TRACe[:DATA][:RESPonse]:PREamble? CH1DATA | CH2DATA | CH3DATA |

CH4DATA | CH1MEM | CH2MEM | CH3MEM | CH4MEM | MDATA1 | MDATA2 | MDATA3 | MDATA4 | MDATA5 | MDATA6 | MDATA7 |

MDATA8

Example: "TRAC:PRE? CH1DATA"

Characteristics: *RST value: -

TRACe[:DATA][:RESPonse]:BODY?

This query command reads the response values of the trace data from the device. With binary data transmission, these are only the useful data without the SCPI block data header.

Syntax: TRACe[:DATA][:RESPonse]:BODY? CH1DATA | CH2DATA | CH3DATA |

CH4DATA | CH1MEM | CH2MEM | CH3MEM | CH3MEM | CH4MEM | MDATA1 |

MDATA2 | MDATA3 | MDATA4 | MDATA5

| MDATA6 | MDATA7 | MDATA8

Example: "TRAC:BODY? CH1DATA"

Characteristics: *RST value: -

SCPI: device-specific

TRACe[:DATA]:STIMulus[:ALL]?

This query reads the stimulus values of the trace data from the instrument. Binary data are transferred as SCPI block data.

Syntax: TRACe[:DATA]:STIMulus CH1DATA | CH2DATA | CH3DATA |

[:ALL]? CH4DATA | CH1MEM | CH2MEM | CH3MEM |

CH4MEM | MDATA1 | MDATA2 | MDATA3 | MDATA4 | MDATA5 | MDATA6 | MDATA7 |

MDATA8

Example: "TRAC:STIM? CH1DATA"

Features: *RST value: -

SCPI: device-specific

TRACe[:DATA]:STIMulus:PREamble?

This query command reads the preamble of the stimulus values of the trace data from the device. With binary data transmission (setting: FORMat[:DATA] REAL, 32 or FORMat[:DATA] REAL, 64), this is the length of the useful data in bytes. With ASCII data transmission (setting: FORMat[:DATA] ASCii), "0" is returned.

Syntax: TRACe[:DATA]:STIMulus:PREamble? CH1DATA | CH2DATA | CH3DATA |

CH4DATA | CH1MEM | CH2MEM | CH3MEM | CH4MEM | MDATA1 | MDATA2 | MDATA3 | MDATA4 | MDATA5 | MDATA6 | MDATA7 |

MDATA8

Example: "TRAC:STIM:PRE? CH1DATA"

Characteristics: *RST value: -

SCPI: device-specific

TRACe[:DATA]:STIMulus:BODY?

This query command reads the stimulus values of the trace data from the device. With binary data transmission, these are only the useful data without the SCPI block data header.

Syntax: TRACe[:DATA]:STIMulus:BODY? CH1DATA | CH2DATA | CH3DATA |

CH4DATA | CH1MEM | CH2MEM |

CH3MEM | CH4MEM | MDATA1 | MDATA2 | MDATA3 | MDATA4 | MDATA5 | MDATA6

| MDATA7 | MDATA8

Example: "TRAC:STIM:BODY? CH1DATA"

Characteristics: *RST value: -

TRACe:FEED

This command transfers data from the internal memory traces to the channel specific memories for measured values.

Syntax: TRACe:FEED CH1MEM | CH2MEM | CH3MEM | CH4MEM

[, MDATA1 | MDATA2 | MDATA3 | MDATA4 | MDATA5 |

MDATA6 | MDATA7 | MDATA8]

Example: "TRAC:COPY CH1MEM,MDAT5"

Features: *RST value: -

3.6.19 TRIGger-Subsystem

The TRIGger subsystem is used to synchronize tasks performed by the instrument and events. This allows to control and synchronize the start of a sweep. An external trigger signal can be applied to the rear panel connector.

COMMAND	PARAMETER	UNIT	COMMENT
TRIGger			
[:SEQuence]			
:SOURce	IMMediate EXTernal LINE TIMer MANual RTCLock		
:TIMer	<numeric_value></numeric_value>	S	
:RTCLock	023, 059, 059		
:HOLDoff	<numeric_value></numeric_value>	S	
:SLOPe	POSitive NEGative		
:LINK	<string></string>		

TRIGger[:SEQuence]:SOURce

This command selects the trigger source for starting a sweep..

Syntax: TRIGger[:SEQuence]:SOURce IMMediate | EXTernal | LINE | TIMer |

MANual | RTCLock

Example: "TRIG:SOUR EXT"

Features: *RST value: IMMediate

SCPI: conforming

TRIGger[:SEQuence]:TIMer

This command selects the internal trigger with a specified time interval.

Syntax: TRIGger[:SEQuence]:TIMer <numeric value>

<numeric_value> ::= 0 .. 1000s

Example: "TRIG:TIM 2s"

Features: *RST value: -

SCPI: conforming

TRIGger[:SEQuence]:RTCLock

This command selects the internal clock with a specified time as a trigger signal.

Syntax: TRIGger[:SEQuence]:RTCLock 0...23, 0...59, 0...59

Example: "TRIG:RTCL 13,30,0"

Features: *RST value:

SCPI: device-specific

TRIGger[:SEQuence]:HOLDoff

This command defines the length of the trigger delay.

Syntax: TRIGger[:SEQuence]:HOLDoff <numeric value>

<numeric value> ::= 0...100s.

Example: "TRIG:HOLD 500us"

Features: *RST value: 0s

SCPI: conforming

TRIGger[:SEQuence]:SLOPe

This command selects the edge of the trigger signal.

Syntax: TRIGger[:SEQuence]:SLOPe POSitive | NEGative

Example: "TRIG:SLOP NEG"

Features: *RST value: POSitive

SCPI: conforming

TRIGger[:SEQuence]:LINK

This command selects whether the triggered measurement will be a single point measurement or a sweep.

Syntax: TRIGger[:SEQuence]:LINK <string>

<string> ::= 'POINT'

'SWEEP'

Example: "TRIG:LINK 'POINT'"

Features: *RST value: 'SWEEP'

SCPI: conforming

3.7 Instrument Model and Command Processing

The model shown in Fig. 3-2 visualizes the instrument from the point of view of servicing IEC-bus commands. The individual components work independent of each other and simultaneously. They communicate with each other by means of so-called "messages".

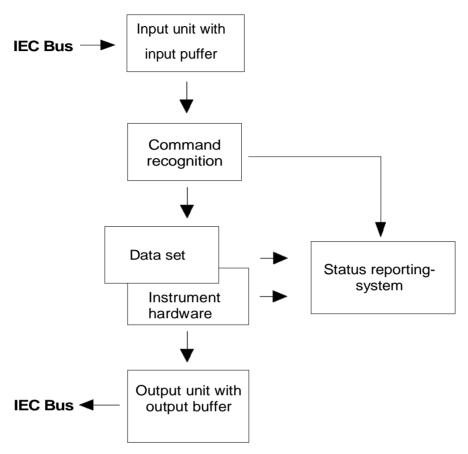


Fig. 3-2 Model of the instrument in the case of remote control by means of the IEC bus

3.7.1 Input Unit

The input unit receives commands character by character from the IEC bus and collects them in the input buffer. The input buffer has a size of 256 characters. The input unit sends a message to the command recognition as soon as the input buffer is full or as soon as it receives a delimiter, <PROGRAM MESSAGE TERMINATOR>, as defined in IEEE 488.2, or the interface message DCL.

If the input buffer is full, the IEC-bus traffic is stopped and the data received up to then are processed. Subsequently the IEC-bus traffic is continued. If, however, the buffer is not yet full when receiving the delimiter, the input unit can already receive the next command during command recognition and execution. The receipt of a DCL clears the input buffer and immediately initiates a message to the command recognition.

3.7.2 Command Recognition

The command recognition analyses the data received from the input unit. It proceeds in the order in which it receives the data. Only a DCL is serviced with priority, a GET (Group Execute Trigger), e.g., is only executed after the commands received before as well. Each recognized command is immediately transferred to the data set but without being executed there at once.

Syntactical errors in the command are recognized here and supplied to the status reporting system. The rest of a command line after a syntax error is analysed further if possible and serviced.

If the command recognition recognizes a delimiter or a DCL, it requests the data set to set the commands in the instrument hardware as well now. Subsequently it is immediately prepared to process commands again. This means for the command servicing that further commands can already be serviced while the hardware is still being set ("overlapping execution").

3.7.3 Data Set and Instrument Hardware

Here the expression "instrument hardware" Hdenotes the part of the instrument fulfilling the actual instrument function - signal generation, measurement etc. The controller is not included.

The data set is a detailed reproduction of the instrument hardware in the software.

IEC-bus setting commands lead to an alteration in the data set. The data set management enters the new values (e.g. frequency) into the data set, however, only passes them on to the hardware when requested by the command recognition. As this is always only effected at the end of a command line, the order of the setting commands in the command line is not relevant.

The data are only checked for their compatibility among each other and with the instrument hardware immediately before they are transmitted to the instrument hardware. If the detection is made that an execution is not possible, an "execution error" is signalled to the status reporting system. All alterations of the data set are cancelled, the instrument hardware is not reset. Due to the delayed checking and hardware setting, however, it is permissible to set impermissible instrument states within one command line for a short period of time without this leading to an error message. At the end of the command line, however, a permissible instrument state must have been reached again.

Before passing on the data to the hardware, the settling bit in the STATus:OPERation register is set (cf. Section 3.8.3.4). The hardware executes the settings and resets the bit again as soon as the new state has settled. This fact can be used to synchronize command servicing.

IEC-bus queries induce the data set management to send the desired data to the output unit.

3.7.4 Status Reporting System

The status reporting system collects information on the instrument state and makes it available to the output unit on request. The exact structure and function are described in Section 3.8

3.7.5 Output Unit

The output unit collects the information requested by the controller, which it receives from the data set management. It processes it according to the SCPI rules and makes it available in the output buffer. The output buffer has a size of 4096 characters. If the information requested is longer, it is made available "in portions" without this being recognized by the controller.

If the instrument is addressed as a talker without the output buffer containing data or awaiting data from the data set management, the output unit sends error message "Query UNTERMINATED" to the status reporting system. No data are sent on the IEC bus, the controller waits until it has reached its time limit. This behaviour is specified by SCPI.

3.7.6 Command Sequence and Command Synchronization

According to what was said above, overlapping execution is possible for all commands. Equally, setting commands within one command line are not necessarily serviced in the order in which they were received.

In order to make sure that commands are actually carried out in a definite order, each command must be sent in a separate command line, that is to say, with a separate IBWRT()-call.

In order to prevent an overlapping execution of commands, one of commands *OPC, *OPC? or *WAI must be used. All three commands cause a certain action only to be carried out after the hardware has been set and has settled. By a suitable programming, the contoller can be forced to wait for the respective action to occur (cf. Table 3-1).

Table 3-1 Synchronisation using *OPC *OPC? and *WAI

Commnd	Action after the hardware has settled	Programming the controller
*OPC	Setting the opteration-complete bit in the ESR	- Setting bit 0 in the ESE - Setting bit 5 in the SRE - Waiting for service request (SRQ)
*OPC?	Writing a "1" into the output buffer	Addressing the instrument as a talker
*WAI	Continuing the IEC-bus handshake	Sending the next command

3.8 Status Reporting System

The status reporting system (cf. Fig. 3-4) stores all information on the present operating state of the instrument, e.g. that the instrument presently carries out an AUTORANGE and on errors which have occurred. This information is stored in the status registers and in the error queue. The status registers and the error queue can be queried via IEC bus.

The information is of a hierarchical structure. The register status byte (STB) defined in IEEE 488.2 and its associated mask register service request enable (SRE) form the uppermost level. The STB receives its information from the standard event status register (ESR) which is also defined in IEEE 488.2 with the associated mask register standard event status enable (ESE) and registers STATus:OPERation and STATus:QUEStionable which are defined by SCPI and contain detailed information on the instrument.

The IST flag ("Individual STatus") and the parallel poll enable register (PPE) allocated to it are also part of the status reporting system. The IST flag, like the SRQ, combines the entire instrument status in a single bit. The PPE fulfills an analog function for the IST flag as the SRE for the service request.

he output buffer contains the messages the instrument returns to the controller. It is not part of the status reporting system but determines the value of the MAV bit in the STB and thus is represented in Fig. 3-4.

3.8.1 Structure of an SCPI Status Register

Each SCPI register consists of 5 parts which each have a width of 16 bits and have different functions (cf. Fig. 3-3). The individual bits are independent of each other, i.e. each hardware status is assigned a bit number which is valid for all five parts. For example, bit 3 of the STATus:OPERation register is assigned to the hardware status "wait for trigger" in all five parts. Bit 15 (the most significant bit) is set to zero for all parts. Thus the contents of the register parts can be processed by the controller as positive integer.

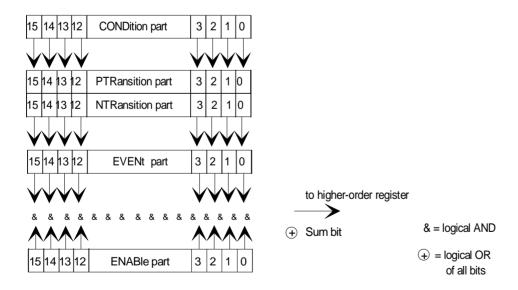


Fig. 3-3 The status register model

CONDition part

The CONDition part is directly written into by the hardware or the sum bit of the next lower register. Its contents reflects the current instrument status. This register part can only be read, but not written into or cleared. Its contents is not affected by reading.

PTRansition part

The Positive-TRansition part acts as an edge detector. When a bit of the CONDition part is changed from 0 to 1, the associated PTR bit decides whether the EVENt bit is set to 1.

PTR bit =1: the EVENt bit is set.
PTR bit =0: the EVENt bit is not set.

This part can be written into and read at will. Its contents is not affected by reading.

NTRansition part

The Negative-TRansition part also acts as an edge detector. When a bit of the CONDition part is changed from 1 to 0, the associated NTR bit decides whether the EVENt bit is set to 1.

NTR-Bit = 1: the EVENt bit is set. NTR-Bit = 0: the EVENt bit is not set.

This part can be written into and read at will. Its contents is not affected by reading.

With these two edge register parts the user can define which state transition of the condition part (none, 0 to 1, 1 to 0 or both) is stored in the EVENt part.

EVENt part

The EVENt part indicates whether an event has occurred since the last reading, it is the "memory" of the condition part. It only indicates events passed on by the edge filters. It is permanently updated by the instrument. This part can only be read by the user. During reading, its contents is set to zero. In linguistic usage this part is often equated with the entire register.

ENABle part

The ENABle part determines whether the associated EVENt bit contributes to the sum bit (cf. below). Each bit of the EVENt part is ANDed with the associated ENABle bit (symbol '&'). The results of all logical operations of this part are passed on to the sum bit via an OR function (symbol '+').

ENABle-Bit = 0: the associated EVENt bit does not contribute to the sum bit ENABle-Bit = 1: if the associated EVENT bit is "1", the sum bit is set to "1" as

This part can be written into and read by the user at will. Its contents is not affected by reading.

Sum bit

As indicated above, the sum bit is obtained from the EVENt and ENABle part for each register. The result is then entered into a bit of the CONDition part of the higher-order register.

The instrument automatically generates the sum bit for each register. Thus an event, e.g. a PLL that has not locked, can lead to a service request throughout all levels of the hierarchy.

Note:

The service request enable register SRE defined in IEEE 488.2 can be taken as ENABle part of the STB if the STB is structured according to SCPI. By analogy, the ESE can be taken as the ENABle part of the ESR.

3.8.2 Overview of the Status Registers

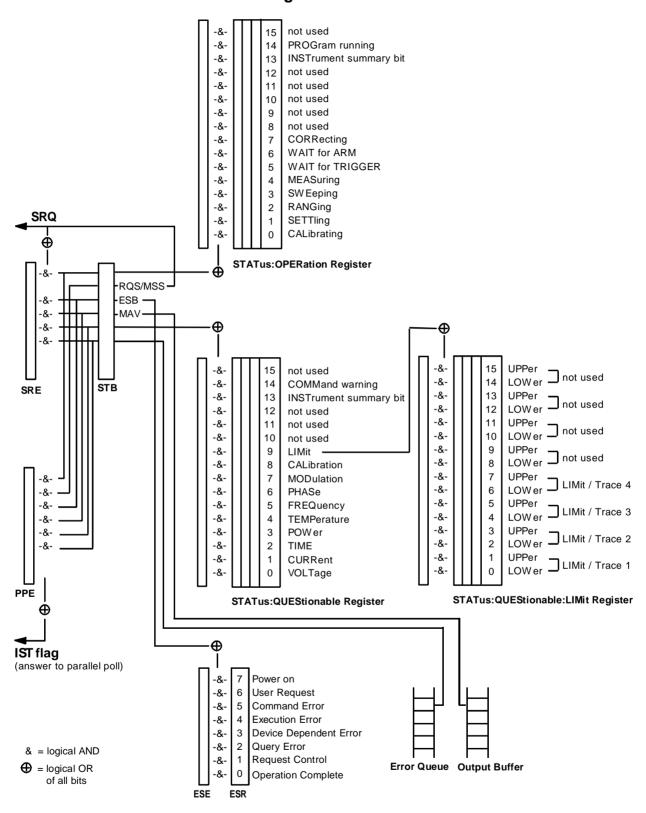


Fig. 3-4 Overview over the status registers

3.8.3 Description of the Status Registers

3.8.3.1 Status Byte (STB) and Service Request Enable Register (SRE)

The STB is already defined in IEEE 488.2. It provides a rough overview of the instrument status by collecting the pieces of information of the lower registers. It can thus be compared with the CONDition part of an SCPI register and assumes the highest level within the SCPI hierarchy. A special feature is that bit 6 acts as the sum bit of the remaining bits of the status byte.

The STATUS BYTE is read out using the command "*STB?" or a serial poll.

The STB implies the SRE. It corresponds to the ENABle part of the SCPI registers as to its function. Each bit of the STB is assigned a bit in the SRE. Bit 6 of the SRE is ignored. If a bit is set in the SRE and the associated bit in the STB changes from 0 to 1, a Service Request (SRQ) is generated on the IEC bus, which triggers an interrupt in the controller if this is appropriately configured and can be further processed there.

The SRE can be set using command "*SRE" and read using "*SRE?".

Table 3-2 Meaning of the bits used in the status byte

Bit No.	Meaning
2	Error Queue not empty
	The bit is set when an entry is made in the error queue. If this bit is enabled by the SRE, each entry of the error queue generates a Service Request. Thus an error can be recognized and specified in greater detail by polling the error queue. The poll provides an informative error message. This procedure is to be recommended since it considerably reduces the problems involved with IEC-bus control.
3	QUEStionable status sum bit
	The bit is set if an EVENt bit is set in the QUEStionable-Status register and the associated ENABle bit is set to 1.
	A set bit indicates a questionable instrument status, which can be specified in greater detail by polling the QUEStionable-Status register.
4	MAV bit (message available)
	The bit is set if a message is available in the output buffer which can be read. This bit can be used to enable data to be automatically read from the instrument to the controller.
5	ESB bit
	Sum bit of the event status register. It is set if one of the bits in the event status register is set and enabled in the event status enable register.
	Setting of this bit implies an error or an event which can be specified in greater detail by polling the event status register.
6	MSS bit (master status smmary bit)
	The bit is set if the instrument triggers a service request. This is the case if one of the other bits of this registers is set together with its mask bit in the service request enable register SRE.
7	OPERation status register sum bit
	The bit is set if an EVENt bit is set in the OPERation-Status register and the associated ENABle bit is set to 1. A set bit indicates that the instrument is just performing an action. The type of action can be determined by polling the OPERation-status register.

3.8.3.2 IST Flag and Parallel Poll Enable Register (PPE)

By analogy with the SRQ, the IST flag combines the entire status information in a single bit. It can be queried by means of a parallel poll (cf. Section 3.8.4.3) or using command "*IST?".

The parallel poll enable register (PPE) determines which bits of the STB contribute to the IST flag. The bits of the STB are ANDed with the corresponding bits of the PPE, with bit 6 being used as well in contrast to the SRE. The Ist flag results from the ORing of all results. The PPE can be set using commands "*PRE" and read using command "*PRE?".

3.8.3.3 Event-Status Register (ESR) and Event-Status-Enable Register (ESE)

The ESR is already defined in IEEE 488.2. It can be compared with the EVENt part of an SCPI register. The event status register can be read out using command "*ESR?".

The ESE is the associated ENABle part. It can be set using command "*ESE" and read using command "*ESE".

Table 3-3 Meaning of the bits used in the event status register

Bit No.	Meaning
0	Operation Complete
	This bit is set on receipt of the command *OPC exactly when all previous commands have been executed.
1	Request Control
	This bit is set if the instrument requests the controller function. This is the case when hardcopy is outputted to a printer or a plotter via the IEC-bus.
2	Query Error
	This bit is set if either the controller wants to read data from the instrument without having send a query, or if it does not fetch requested data and sends new instructions to the instrument instead. The cause is often a query which is faulty and hence cannot be executed.
3	Device-dependent Error
	This bit is set if a device-dependent error occurs. An error message with a number between -300 and -399 or a positive error number, which denotes the error in greater detail, is entered into the error queue (cf. annex B, Error Messages).
4	Execution Error
	This bit is set if a received command is syntactically correct, however, cannot be performed for other reasons. An error message with a number between -200 and -300, which denotes the error in greater detail, is entered into the error queue (cf. annex B, Error Messages).
5	Command Error
	This bit is set if a command which is undefined or syntactically incorrect is received. An error message with a number between -100 and -200, which denotes the error in greater detail, is entered into the rror queue (cf. annex B, -Error Messages).
6	User Request
	This bit is set on pressing the <i>LOCAL</i> key, i. e., when the instrument is switched over to manual control.
7	Power On (supply voltage on)
	This bit is set on switching on the instrument.

3.8.3.4 STATus:OPERation Register

In the CONDition part, this register contains information on which actions the instrument is being executing or, in the EVENt part, information on which actions the instrument has executed since the last reading. It can be read using commands "STATus:OPERation:CONDition?" or "STATus:OPERation[:EVENt]?".

Table 3-4 Meaning of the bits used in the STATus.OPERation register

Bit No.	Meaning
0	CALibrating This bit is set as long as the instrument is performing a calibration.
1	SETTling This bit is set as long as the new status is settling after a setting command. It is only set if the settling time is longer than the command processing time.
2	RANGing This bit is set as long as the instrument is changing a range (e.g. Autorange).
3	SWEeping This bit is set while the instrument is performing a sweep.
4	MEASuring This bit is set while the instrument is performing a measurement.
5	WAIT for TRIGGER This bit is set as long as the instrument is waiting for a trigger event.
6	WAIT for ARM This bit is set as long as the instrument is waiting for an arming event.
7	CORRecting This bit is set while the instrument is performing a correction.
8 - 12	Device dependent
13	INSTrument Summary Bit This bit is set when one or more logical instruments is reporting a status message.
14	PROGram running This bit is set while the instrument is performing a program.
15	This bit is always 0

The network analyzer does not support the STATus:OPERation register.

3.8.3.5 STATus:QUEStionable-Register

This register contains information on questionable instrument states. Such states can occur, e.g. if the instrument is operated outside its specifications. It can be read using commands STATus:QUEStionable:CONDition? or STATus:QUEStionable[:EVENt]?

Table 3-5 Meaning of the bits used in the STATus:QUEStionable register

Bit No.	Meaning
0	VOLTage This bit is set if a questionable voltage occurs.
1	CURRent This bit is set if a questionable current occurs.
2	TIME This bit is set if a questionable time occurs.
3	POWer This bit is set if a questionable power occurs.
4	TEMPerature This bit is set if a questionable temperature occurs.
5	FREQuency The bit is set if a frequency is questionable.
6	PHASe The bit is set if a phase value is questionable.
7	MODulation The bit is set if a modulation is performed questionably.
8	CALibration The bit is set if a calibration is not performed properly.
9	LIMiit The bit is set if one of the limit values is exceeded (see also Section 3.8.3.6, STATus:QUEStionable:LIMit-Register)
10-12	Not used.
13	INSTrument Summary Bit This bit is set when one or more logical instruments is reporting a message.
14	COMMand Warning This bit is set if the instrument ignores parameters when executing a command.
15	This bit is always 0.

The network analyzer supports bits 5 and 9.

3.8.3.6 STATus:QUEStionable:LIMit Register

This register provides information about whether a limit value (upper limit, lower limit) for one of the memory traces (Trace 1, ... Trace 4) is exceeded. The register can be queried with the commands STATus:QUEStionable:LIMit[:EVENt?] and STATus:QUEStionable:LIMit:CONDition?.

Table 3-6 Meaning of the bits used in the STATus:QUEStionable:LIMit register

Bit-Nr	Meaning
0	This bit is set if trace 1 falls below the associated limit line.
1	This bit is set if trace 1 exceeds the associated limit line.
2	This bit is set if trace 2 falls below the associated limit line.
3	This bit is set if trace 2 exceeds the associated limit line.
4	This bit is set if trace 3 falls below the associated limit line.
5	This bit is set if trace 3 exceeds the associated limit line.
6	This bit is set if trace 4 falls below the associated limit line.
7	This bit is set if trace 4 exceeds the associated limit line.
8	not used
9	not used
10	not used
11	not used
12	not used
13	not used
14	not used
15	not used

3.8.4 Application of the Status Reporting System

In order to be able to effectively use the status reporting system, the information contained there must be transmitted to the controller and further processed there. There are several methods which are represented in the following.

3.8.4.1 Service Request, Making Use of the Hierarchy Structure

Under certain circumstances, the instrument can send a service request (SRQ) to the controller. Usually this service request initiates an interrupt at the controller, to which the control program can react with corresponding actions. As evident from Fig. 3-4 (Section 3.8.2), an SRQ is always initiated if one or several of bits 2, 3, 4, 5 or 7 of the status byte are set and enabled in the SRE. Each of these bits combines the information of a further register, the error queue or the output buffer. The corresponding setting of the ENABle parts of the status registers can achieve that arbitrary bits in an arbitrary status register initiate an SRQ. In order to make use of the possibilities of the service request, all bits should be set to "1" in enable registers SRE and ESE.

Examples (cf. Fig. 3-4 as well):

Use of command "*OPC" to generate an SRQ at the end of a sweep.

- > Set bit 0 in the ESE (Operation Complete)
- > Set bit 5 in the SRE (ESB)?

After its settings have been completed, the instrument generates an SRQ.

The SRQ is the only possibility for the instrument to become active on its own. Each controller program should set the instrument such that a service request is initiated in the case of malfunction. The program should react appropriately to the service request.

3.8.4.2 Serial Poll

In a serial poll, just as with command "*STB", the status byte of an instrument is queried. However, the query is realized via interface messages and is thus clearly faster. The serial-poll method has already been defined in IEEE 488.1 and used to be the only standard possibility for different instruments to poll the status byte. The method also works with instruments which do not adhere to SCPI or IEEE 488.2.

The quick-BASIC command for executing a serial poll is "IBRSP()". Serial poll is mainly used to obtain a fast overview of the state of several instruments connected to the IEC bus.

3.8.4.3 Parallel Poll

In a parallel poll, up to eight instruments are simultaneously requested by the controller by means of a single command to transmit 1 bit of information each on the data lines, i.e., to set the data line allocated to each instrument to logically "0" or "1". By analogy to the SRE register which determines under which conditions an SRQ is generated, there is a parallel poll enable register (PPE) which is ANDed with the STB bit by bit as well considering bit 6. The results are ORed, the result is then sent (possibly inverted) as a response in the parallel poll of the controller. The result can also be queried without parallel poll by means of command "*IST".

The instrument first has to be set for the parallel poll using quick-BASIC command "IBPPC()". This command allocates a data line to the instrument and determines whether the response is to be inverted. The parallel poll itself is executed using "IBRPP()".

The parallel-poll method is mainly used in order to quickly find out after an SRQ which instrument has sent the service request if there are many instruments connected to the IEC bus. To this effect, SRE and PPE must be set to the same value.

3.8.4.4 Query by Means of Commands

Each part of every status register can be read by means of queries. The individual commands are indicated in the detailed description of the registers in Section 3.8.3. What is returned is always a number which represents the bit pattern of the register queried. Evaluating this number is effected by the controller program.

Queries are usually used after an SRQ in order to obtain more detailed information on the cause of the SRQ.

3.8.4.5 Error-Queue Query

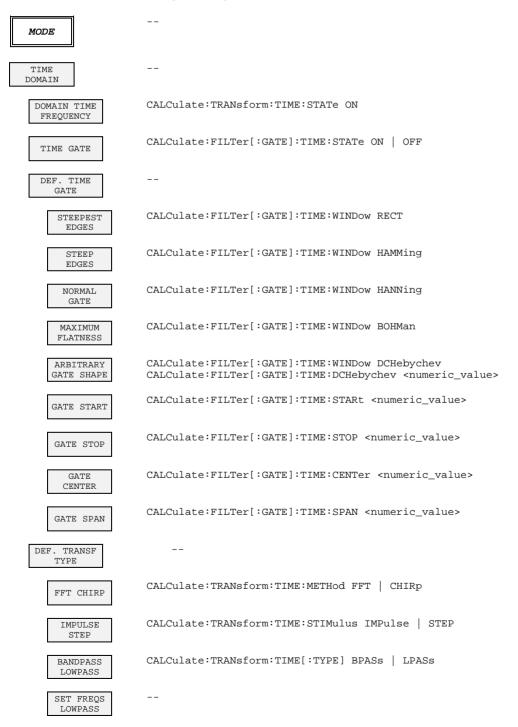
Each error state in the instrument leads to an entry in the error queue. The entries of the error queue are detailed plain-text error messages which can be looked at in the ERROR menu via manual control or queried via the IEC bus using command "SYSTem:ERRor?". Each call of "SYSTem:ERRor?" provides an entry from the error queue. If no error messages are stored there any more, the instrument responds with 0, "No error".

The error queue should be queried after every SRQ in the controller program as the entries describe the cause of an error more precisely than the status registers. Especially in the test phase of a controller program the error queue should be queried regularly since faulty commands from the controller to the instrument are recorded there as well.

3.8.5 Reset Values of the Status Reporting System

Table 3-7 comprises the different commands and events causing the status reporting system to be reset. None of the commands, except for *RST and SYSTem:PRESet influences the functional instrument settings. In particular, DCL does not change the instrument settings.

Table 3-7 Resettting instrument functions


Event	Switching on supply voltage Power-On-Status- Clear		DCL,SDC (Device Clear, Selected Device Clear)	*RST or SYSTem:PRESet	STATus:PRESet	*CLS
Effect	0	1	0.00.7			
Clear STB,ESR	_	yes	_	_	_	yes
Clear SRE,ESE	_	yes	_	_	_	_
Clear PPE	_	yes	_	_	_	_
Clear EVENTt parts of the registers	_	yes	_	_	_	yes
Clear Enable parts of all OPERation and QUEStionable registers, Fill Enable parts of all other registers with "1".	_	yes	_	_	yes	_
Fill PTRansition parts with "1", Clear NTRansition parts	_	yes	_	_	yes	_
Clear error queue	yes	yes	_	_	_	yes
Clear output buffer	yes	yes	yes	1)	1)	1)
Clear command processing and input buffer	yes	yes	yes	_	_	_

¹⁾ Every command being the first in a command line, i.e., immediately following a <PROGRAM MESSAGE TERMINATOR> clears the output buffer.

3.9 Softkeys and Related IEC/IEEE BUS Commands

The following list contains the IEC/IEEE-bus commands of the ZVR arranged according to the softkey menu structure (Section 2.2). Submenus are visualized by indentations. The function of the softkeys is described in Chapter 2, Manual Operation (for page numbers refer to the alphabetical softkey list – keyword "Softkey" – in the index). The remote control commands are listed in Section 3.6 (see Annex C).

3.9.1 SYSTEM Key Group

CALCulate:TRANsform:TIME:LPASs KFSTop KEEP STOP FREQ CALCulate:TRANsform:TIME:LPASs KDFRequency KEEP FREO STEP WIDTH CALCulate:TRANsform:TIME:LPASs MINStep USE MIN STEP WIDTH CALCulate:TRANsform:TIME:LPASs:DCSPara <numeric_value> LOWPASS DC S-PARAM CALCulate:TRANsform:TIME:WINDow RECT NO PROFILING CALCulate:TRANsform:TIME:WINDow HAMMing LOW FIRST SIDELOBE NORMAL CALCulate:TRANsform:TIME:WINDow HANNing PROFILE CALCulate:TRANsform:TIME:WINDow BOHMan STEEP FALLOFF ARBITRARY CALCulate:TRANsform:TIME:WINDow DCHebychev SIDELOBES CALCulate:TRANsform:TIME:DCHebychev <numeric_value> DEF X-AXIS CALCulate:TRANsform:TIME:XAXis TIME TIME CALCulate:TRANsform:TIME:XAXis DISTance X-AXIS DISTANCE CALCulate:TRANsform:TIME:XAXis HDIStance X-AXIS DISTANCE/2 CALCulate:FILTer[:GATE]:TIME:STARt <numeric_value> GATE START CALCulate:FILTer[:GATE]:TIME:STOP <numeric value> GATE STOP CALCulate:FILTer[:GATE]:TIME:CENTer <numeric_value> GATE CENTER CALCulate:FILTer[:GATE]:TIME:SPAN <numeric_value> GATE SPAN INPut[1|2]:BRIDge BYPass | INT EXTERNAL FREQUENCY CONVERS SECOND SENSe[1..4]:FREQuency:CONVersion SHARmonic HARMONIC SENSe[1..4]:FREQuency:CONVersion THARmonic THIRD HARMONIC SENSe[1..4]:FREQuency:CONVersion MIXer MIXER MEAS

```
DEF
 MIXER MEAS
                    SENSe[1...4]:FREQuency:CONVersion:MIXer:FUNDamental RF
        RF=
      BASE FREO
                    SENSe[1...4]:FREQuency:CONVersion:MIXer:FUNDamental LO
        LO=
      BASE FREQ
                    SENSe[1...4]:FREQuency:CONVersion:MIXer:FUNDamental
                                                                            ΙF
        TE-
      BASE FREQ
                    SENSe[1...4]:FREQuency:CONVersion:MIXer:LOEXternal SOURce1|SOURce2
       LO EXT
      SRC1/SRC2
                    SENSe[1...4]:FREQuency:CONVersion:MIXer:RFFixed <numeric_value>
      FIXED RE
                    SENSe[1...4]:FREQuency:CONVersion:MIXer:LOFixed <numeric_value>
      FIXED LO
                    SENSe[1...4]:FREQuency:CONVersion:MIXer:IFFixed <numeric_value>
      FIXED IF
      SEL BAND
                    SENSe[1...4]:FREQuency:CONVersion:MIXer:TFRequency BAND1 BAND2
                   SENSe[1..4]:FREQuency:CONVersion ARBitrary
 ARBITRARY
    DEF
 ARBITRARY
                   SENSe[1..4]:FREQuency:CONVersion:ARBitrary
     ARBITRARY
     SYST FREQ
                   <numeric_value>, <numeric_value>, <numeric_value>, CW | FIXed | SWEep
                   SOURce[1..4]:FREQuency:CONVersion:ARBitrary:IFRequency
                   <numeric_value>, <numeric_value>, <numeric_value>, CW | FIXed |
                   SOURce[1..4]:FREQuency:CONVersion:ARBitrary:EFRequency<1|2>
                   <Boolean>, <numeric_value>, <numeric_value>, <numeric_value>,
                   FIXed | SWEep
                   SYSTem:COMMunicate:GPIB:RDEVice:GENerator<1 | 2>:ADDRess 0...30
       EXT SRC
       CONFIG
                   SYSTem:COMMunicate:RDEVice:GENerator<1 2>:LINK GPIB | TTL
                   SYSTem:COMMunicate:RDEVice:GENerator<1 2>:TYPE <name>
COMPRESS
SOI TOI
   COMPRESS
                   SENSe[1..4]:FUNCtion[:ON] 'XFRequency:NLINear COMP'
    POINT
  DEF COMP
  PNT MEAS
                   SOURce[1..4]:POWer:NLINear:COMP:RANGe:UPPer <numeric_value>
    SRC POWER
    MAX LIMIT
                   SOURce[1..4]:POWer:NLINear:COMP:RANGe:LOWer <numeric_value>
    SRC POWER
    MIN LIMIT
                   SENSe[1..4]:FREQuency:NLINear:COMP:STIMe <numeric_value>
     SETTLING
      TIME
                   SENSe[1..4]:FUNCtion[:ON] 'XFRequency:NLINear:COMP:CPOint INP|OUTP'
    COMP POINT
     INP/OUTP
    X DB COMP
                   SENSe[1..4]:FUNCtion[:ON] 'XFRequency:NLINear:COMP:LEVel <num_value>'
      POINT
```

```
SOURce[1..4]:FREQuency:NLINear:COMP INT
  INT SRC
                SOURce[1..4]:FREQuency:NLINear:COMP ESRC1
 EXT SRC1
                SOURce[1..4]:FREQuency:NLINear:COMP ESRC2
 EXT SRC2
                SENSe[1..4]:FUNCtion[:ON] 'XFRequency:NLINear SOI'
 SOI
DEF SOI
 MEAS
                SOURce[1..4]:POWer:NLINear:SOI:RANGe:UPPer <numeric_value>
 SRC POWER
 MAX LIMIT
                SOURce[1..4]:POWer:NLINear:SOI:RANGe:LOWer <numeric value>
 SRC POWER
 MIN LIMIT
                SENSe[1..4]:FREQuency:NLINear:SOI:STIMe <numeric_value>
 SETTLING
   TIME
                SENSe[1..4]:FUNCtion[:ON] 'XFRequency:NLINear:SOI:IPOint INP | OUTP'
 INTC POINT
 INP/OUTP
                SOURce[1..4]:FREQuency:NLINear:SOI:OFFSet <numeric_value>
 FREO OFF
 OF 2ND SRC
                SENSe[1..4]:FUNCtion[:ON] 'XFRequency:NLINear:SOI:FREQuency SUM|DIFF'
 MEAS FREQ
 SUM/DIFF
  INT SRC
                SOURce[1..4]:FREQuency:NLINear:SOI IESRc1
 EXT SRC1
                SOURce[1..4]:FREQuency:NLINear:SOI IESRc2
  INT SRC
 EXT SRC2
                SOURce[1..4]:FREQuency:NLINear:SOI ESRC12
 EXT SRC1
 EXT SRC2
                SENSe[1..4]:FUNCtion[:ON] 'XFR:NLINear TOI'
 TOT
DEF TOI
 MEAS
 SRC POWER
                SOURce[1..4]:POWer:NLINear:TOI:RANGe:UPPer <numeric_value>
 MAX LIMIT
                SOURce[1..4]:POWer:NLINear:TOI:RANGe:LOWer <numeric_value>
 SRC POWER
 MIN LIMIT
 SETTLING
                SENSe[1..4]:FREQuency:NLINear:TOI:STIMe <numeric_value>
   TIME
                SENSe[1..4]:FUNCtion[:ON] 'XFRequency:NLINear:TOI:IPOint INP | OUTP'
INTC POINT INP/OUTP
                SOURce[1..4]:FREQuency:NLINear:TOI:OFFSet <numeric_value>
 FREQ OFFS
 OF 2ND SRC
                SENSe[1..4]:FUNCtion[:ON] 'XFRequency:NLINear:TOI:SIDeband LSB | USB'
 MEAS SIDEB
  LSB USB
                SOURce[1..4]:FREQuency:NLINear:TOI IESRc1
  INT SRC
 EXT SRC1
                SOURce[1..4]:FREQuency:NLINear:TOI IESRc2
  INT SRC
 EXT SRC2
                SOURce[1..4]:FREQuency:NLINear:TOI ESRC12
 EXT SRC1
 EXT SRC2
```

```
SWEEP MODE
                     SENSe[1..4]:FUNCtion[:ON] 'XFR:POW:...'
   FREQUENCY
     SWEEP
                     SENSe[1..4]:FUNCtion[:ON] 'XTIM:POW:...'
     TIME
     SWEEP
                     SENSe[1..4]:FUNCtion[:ON] 'XPOW:POW:...'
     POWER
     SWEEP
                     SENSe[1..4]:DETector:[FUNCtion] FAST | NORMAL
FAST MODE
  SETUP
  GENERAL
   SETUP
                    SYSTem:COMMunicate:GPIB[:SELF]:ADDRess
      CPTR
    ADDRESS
                    INPut:UPORt<1 | 2>[:VALue]?
      USER
                    INPut:UPORt<1 2>:STATe ON | OFF
     PORT A
                    OUTPut[:STATe | ON | OFF
                    OUTPut:UPORt<1 | 2>[:VALue] <Binary>
      USER
                    INPut:UPORt<1 | 2>[:VALue]?
     PORT B
                    INPut:UPORt<1 2>:STATe ON | OFF
                    OUTPut[:STATe] ON | OFF
                    OUTPut:UPORt<1 | 2>[:VALue] <Binary>
                    SYSTem:COMMunicate:SERial:CONTrol:DTR
                                                             IBFull | OFF
      COM
                    SYSTem:COMMunicate:SERial:CONTrol:RTS
     PORT 1
                                                             IBFull
                    SYSTem:COMMunicate:SERial[:RECeive]:BAUD
                                                                <numeric_value>
                                                                 7 | 8
                    SYSTem:COMMunicate:SERial[:RECeive]:BITS
                    SYSTem:COMMunicate:SERial[:RECeive]:PARity[:TYPE] EVEN | ODD | NONE
                    SYSTem:COMMunicate:SERial[:RECeive]:SBITs
                                                                 1 | 2
                    SYSTem:COMMunicate:SERial[:RECeive]:PACE
                                                                XON | NONE
                    SYSTem:COMMunicate:SERial2:CONTrol:DTR
                                                                        OFF
      COM
                                                               IBFull
     PORT 2
                    SYSTem:COMMunicate:SERial2:CONTrol:RTS
                                                              IBFull | OFF
                    SYSTem:COMMunicate:SERial2[:RECeive]:BAUD
                                                                  <numeric_value>
                    SYSTem:COMMunicate:SERial2[:RECeive]:BITS
                                                                  7 | 8
                    SYSTem:COMMunicate:SERial2[:RECeive]:PARity[:TYPE] EVEN | ODD | NONE
                    SYSTem:COMMunicate:SERial2[:RECeive]:SBITs
                                                                  1 | 2
                    SYSTem:COMMunicate:SERial2[:RECeive]:PACE
                                                                  XON | NONE
                                   0...23, 0...59, 0...59
                    SYSTem:TIME
      TIME
                    SYSTem: DATE
                                  <num>,<num>,<num>
     DATE
                    SENSe[1..4]:ROSCillator[:SOURce] EXTernal | INTernal
 REFERENCE
  EXT/INT
                    SENSe[1..4]:ROSCillator:EXTernal:FREQency <numeric_value>
  EXT REF
 FREQUENCY
  SERVICE
                    DIAGnostic:SERVice:RFPower ON | OFF
      RF
      OFF
   DETECTOR
   CORRECTION
```

SERVICE FUNCTION

DIAGnostic:SERVice:FUNCtion <num>, <num>

3.9.2 COPY Key Group

HCOPy[:IMMediate<1|2>] COPY SETTINGS HCOPy: ITEM: ALL COPY SCREEN HCOPy:ITEM:WINDow<1...4><1 | 2>:TRACe:STATe ON | OFF COPY TRACE COPY MEM TRACE HCOPy:ITEM:WINDow<1...4><1 | 2>:TABle:STATe ON | OFF COPY TABLE SELECT HCOPy:PAGE:DIMensions:QUADrant 1 UPPER LEFT HCOPy:PAGE:DIMensions:QUADrant 2 LOWER LEFT HCOPy:PAGE:DIMensions:QUADrant 3 UPPER RIGHT HCOPy:PAGE:DIMensions:QUADrant 4 LOWER RIGHT FULL HCOPy:PAGE:DIMensions:FULL HCOPy:ITEM:LABel:TEXT <string> ENTER TEXT HCOPy:ITEM:WINDow<1...4><1 | 2>:TEXT <string> COMMENT CHANNEL 1 HARDCOPY WMF PCX | HP7470 DEVICE HCOPy:DEVice:COLor ON|OFF COLOR ON / OFF TRC COLOR HCOPy:ITEM:WINDow<1...4>:TRACe:CAINcrement ON | OFF AUTO INC

3.9.3 **MEMORY** Key Group

CONFIG MMEMory: MSIS <device> EDIT MMEMory:CDIRectory <directory_name> PATH MMEMory: COPY <file_source>, <file_destination> COPY MMEMory:DELete <file_name> DELETE MMEMory: RDIRectory <directory_name> MMEMory: MOVE <file_source>, <file_destination> RENAME MMEMory: MDIRectory <directory_name> MAKE DIRECTORY MMEMory: INITialize <msus> FORMAT DISK SAVE MMEMory:STORe:STATe 1,<file_name> EDIT NAME MMEMory:CDIRectory <string> EDIT PATH MMEMory:CDIRectory 'A:\' PATH A: MMEMory:CDIRectory 'C:\' SET PATH C:\. SEL ITEMS TO SAVE MMEMory:SELect[:ITEM]:GSETup ON|OFF SELECT MMEMory:SELect[:ITEM]:HWSettings ON OFF ITEMS MMEMory:SELect[:ITEM]:TRACe<1...4> ON OFF MMEMory:SELect[:ITEM]:MTRace<1...8> ON OFF MMEMory:SELect[:ITEM]:LINes[:ALL] ON OFF ${\tt MMEMory:SELect[:ITEM]:CSETup\ ON|OFF}$ MMEMory:SELect[:ITEM]:HCOPy ON OFF MMEMory:SELect[:ITEM]:CDATa ON OFF MMEMory:SELect[:ITEM]:CKDATa ON OFF MMEMory:SELect[:ITEM]:MACRos ON OFF MMEMory:SELect[:ITEM]:AFILes ON OFF MMEMory:SELect[:ITEM]:SCData ON OFF MMEMory:SELect[:ITEM]:ALL ENABLE ALL ITEMS DISABLE MMEMory:SELect[:ITEM]:NONE ALL ITEMS MMEMory:SELect[:ITEM]:DEFault DEFAULT CONFIG MMEMory:CLEAR:STATe 1,<file_name> DATA SET CLEAR MMEMory: CLEAR: ALL DATA SET CLEAR ALL

PAGE UP	
PAGE DOWN	
EDIT COMMENT	MMEMory:COMMent <string></string>
ASCII FILE	
ASCII	FORMat:DEXport ASCii
TOUCHSTONE	FORMat:DEXport TOUChstone
SUPER COMPACT	FORMat:DEXport SCOMpact
REAL AND IMAGINARY	FORMat:DEXport:FORMat COMPlex
LIN MAG AND PHASE	FORMat:DEXport:FORMat MLPHase
dB MAG AND PHASE	FORMat:DEXport:FORMat MDPHase
APEND NEW	FORMat:DEXport:MODe NEW APPend
DEC SEP . DEC SEP ,	FORMat:DEXport:DSEParator POINt COMMa
DISPLAYED DATA	FORMat:DEXport:SOURce DDATa
MATH	FORMat:DEXport:SOURce MDATa
FORMAT	FORMat:DEXport:SOURce FDATa
TIME DOMAIN	FORMat:DEXport:SOURce TDATa
COMPLEX CONVERS	FORMat:DEXport:SOURce CVData
CAL	FORMat:DEXport:SOURce CDATa

RECALL MMEMory:LOAD:STATe 1,<file_name> EDIT NAME MMEMory:CDIRectory 'A:\' SET PATH SET PATH MMEMory:CDIRectory 'C:\' C:\<u>...</u> SEL ITEMS TO RECALL MMEMory:SELect[:ITEM]:ALL ENABLE ALL ITEMS DISABLE MMEMory:SELect[:ITEM]:NONE ALL ITEMS MMEMory:SELect[:ITEM]:DEFault DEFAULT CONFIG MMEMory:LOAD:AUTO 1,<file_name> AUTO RECALL

3.9.4 STATUS Key Group

LOCAL

Gerätenachricht "Go to LOCAL (GTL)"

*RST

*RST

USER

--

3.9.5 STIMULUS Key Group

START	<pre>SENSe[14]:FREQuency:STARt <numeric_value> SOURCe[14]:POWer:STARt <numeric_value></numeric_value></numeric_value></pre>	(Frequenzsweep) (Leistungssweep)
STOP	<pre>SENSe[14]:FREQuency:STOP <numeric_value> SOURCe[14]:POWer:STOP <numeric_value></numeric_value></numeric_value></pre>	(Frequenzsweep) (Leistungssweep)
CENTER	<pre>SENSe[14]:FREQuency:CENTer <numeric_value> SOURCe[14]:POWer:CENTer <numeric_value></numeric_value></numeric_value></pre>	(Frequenzsweep) (Leistungssweep)
SPAN	<pre>SENSe[14]:FREQuency:SPAN <numeric_value> SOURCe[14]:POWer:SPAN <numeric_value></numeric_value></numeric_value></pre>	(Frequenzsweep) (Leistungssweep)

3.9.6 <i>SWEE</i>	EP Key Group
SWEEP	
SINGLE POINT	SENSe[14]:FREQuency:MODE CW FIXED
LIN SWEEP	SENSe[14]:FREQuency:MODE SWEEP SENSe[14]:SWEep:SPACing LIN
LOG SWEEP	SENSe[14]:FREQuency:MODE SWEEP SENSe[14]:SWEep:SPACing LOG
SEG SWEEP	SENSe[14]:FREQuency:MODE SEGMent
DEF SWEEP SEGMENTS	SENSe[14]:SEGMent:DEFine[150] <numeric_value>,</numeric_value>
DEL ALL SEGMENTS	SENSe[14]:SEGMent:CLEar
DEL ACTIVE SEGMENT	SENSe[14]:SEGMent:DELete[150]
INS NEW SEGMENT	SENSe[14]:SEGMent:INSert[150] <numeric_value>,</numeric_value>
DIVIDED X AXIS	DISPlay[:WINDow[14]]:DIAGram:SEGMented:X[:STATe] ON OFF
X GRID LIN/LOG	SENSe[14]:SWEep:SPACing LIN LOG
NUMBER OF POINTS	
ARBITRARY	SENSe[14]:SWEep:POINts <numeric_value></numeric_value>
STEP SIZE	SENSe[14]:SWEep:STEP <numeric_value></numeric_value>
POINTS/DEC	SENSe[14]:SWEep:PDECade <numeric_value></numeric_value>

DEF TRIGGER TRIGger[:SEQuence]:SOURce IMMediate IMMEDIATE TRIGger[:SEQuence]:SOURce EXTernal EXTERNAL TRIGger[:SEQuence]:SOURce LINE LINE TRIGger[:SEQuence]:SOURce TIMer PERIODIC TIMER TRIGger[:SEQuence]:SOURce RTCLock REAL TIME CLOCK TRIGger[:SEQuence]:SOURce MANual MANUAL MANUAL *TRG TRIGGER TRIGger[:SEQuence]:HOLDoff <numeric_value> TRIGGER DELAY TRIGger[:SEQuence]:LINK 'SWEEP' ,POINt' TRIGGER SWEEP/POINT TRIGger[:SEQuence]:SLOPe POSitive | NEGative SLOPE POS/NEG TRIGger[:SEQuence]:TIMer <numeric_value> EDIT TIMER PERIOD TRIGger[:SEQuence]:RTCLock <numeric_value> EDIT RTC TRIG TIME SWEEP TIME SENSe[1..4]:SWEep:TIME AUTO AUTO/MAN [SENSe[1...4]:]SWEep:TIME <numeric_value> EDIT SWEEP TIME INSTrument:COUPle ALL | NONE COUPLED CHANNELS SENSe[1..4]:SWEep:DIRection UP | DOWN SWEEP DIR FWD/REV SWEEP START/HOLD INITiate: CONTinuous ON CONTINUOUS SWEEP [SENSe[1...4]:]SWEep:COUNt <numeric_value> NUMBER OF SWEEPS INITiate: CONTinuous OFF SINGLE SWEEP INITiate: IMMediate INITiate: IMMediate RESTART

SOURCE	
POWER	SOURce:POWer[:LEVel][:IMMediate][:AMPLitude] <numeric_value></numeric_value>
SLOPE	SOURce:POWer[:LEVel][:IMMediate]:SLOPe <numeric_value></numeric_value>
CAL al POWER	SOURce:POWer[:LEVel][:IMMediate]:CAMPlitude:A1 <numeric_value></numeric_value>
CAL a2 POWER	SOURce:POWer[:LEVel][:IMMediate]:CAMPlitude:A2 <numeric_value></numeric_value>
STEP ATT al	OUTPutl:ATTenuation <numeric_value></numeric_value>
STEP ATT b1	INPut1:ATTenuation <numeric_value></numeric_value>
STEP ATT b2	INPut2:ATTenuation <numeric_value></numeric_value>
STEP ATT a2	OUTPut2:ATTenuation <numeric_value></numeric_value>
STEP ATT a1 AND a2	OUTPut1:ATTenuation <numeric_value></numeric_value>
FREQUENCY	SOURce:FREQuency[:CW FIXed] <numeric_value></numeric_value>
EXT SRC 1 POWER	SOURce:POWer[:LEVel][:IMMediate]:EXTernall [:AMPLitude] <numeric_value></numeric_value>
EXT SRC 1 SLOPE	SOURce:POWer[:LEVel][:IMMediate]:EXTernal1 :SLOPe <numeric_value></numeric_value>
CAL EXT SRC 1 POWER	SOURce:POWer[:LEVel][:IMMediate]:CAMPlitude:ESRC1 <numeric_value></numeric_value>
EXT SRC 2 POWER	SOURce:POWer[:LEVel][:IMMediate]:EXTernal2 [:AMPLitude] <numeric_value></numeric_value>
EXT SRC 2 SLOPE	SOURce:POWer[:LEVel][:IMMediate]:EXTernal2 :SLOPe <numeric_value></numeric_value>
CAL EXT SRC 2 POWER	SOURce:POWer[:LEVel][:IMMediate]:CAMPlitude:ESRC2 <numeric_value></numeric_value>
AVG	
AVERAGE	SENSe[14]:AVERage[:STATe] ON OFF
AVG FACTOR	[SENSe[14]:]AVERage:COUNt <numeric_value></numeric_value>
AVG TYPE SWEEP POINT	[SENSe[14]:]AVERage:MODE SWEEP POINt

AVERAGE RESTART

SENSe[1..4]:AVERage:CLEar

IF [SENSe[1...4]:]BANDwidth|BWIDth[:RESolution] <numeric_value>

3.9.7 MARKER Key Group

MARKER	
MARKER 18	CALCulate[14]:MARKer[18]:X <numeric_value></numeric_value>
MARKER DATA/MEM	CALCulate[14]:MARKer[18]:TRACe CHDATA CHMEM
COUPLED MARKERS	CALCulate[14]:MARKer[18]:COUPled[:STATe] ON OFF
MARKER CONVERS	
S	CALCulate[14]:MARKer[18]:TRANsform:COMPlex S
1/S	CALCulate[14]:MARKer[18]:TRANsform:COMPlex SINV
Z	CALCulate[14]:MARKer[18]:TRANsform:COMPlex Z
Z/Z0	CALCulate[14]:MARKer[18]:TRANsform:COMPlex ZREL
Y	CALCulate[14]:MARKer[18]:TRANsform:COMPlex Y
Y/Y0	CALCulate[14]:MARKer[18]:TRANsform:COMPlex YREL
MARKER FORMAT	
LIN MAGNITUDE	CALCulate[14]:MARKer[18]:FORMat MLINear
dB MAGNITUDE	CALCulate[14]:MARKer[18]:FORMat MDB
PHASE	CALCulate[14]:MARKer[18]:FORMat PHASe
REAL	CALCulate[14]:MARKer[18]:FORMat REAL
IMAGINARY	CALCulate[14]:MARKer[18]:FORMat IMAGinary
SWR	CALCulate[14]:MARKer[18]:FORMat SWR

```
CALCulate[1..4]:MARKer[1..8]:FORMat GDELay
       GROUP
       DELAY
                   CALCulate[1..4]:MARKer[1..8]:FORMat MLPHase
      T.TN MAG
     AND PHASE
      dB MAG
                   CALCulate[1..4]:MARKer[1..8]:FORMat MDPHase
     AND PHASE
                   CALCulate[1..4]:MARKer[1..8]:FORMat COMPlex
     REAL AND
     IMAGINARY
                   CALCulate[1..4]:MARKer[1..8]:FORMat L
         L
                   CALCulate[1..4]:MARKer[1..8]:FORMat C
         С
                   CALCulate[1..4]:MARKer[1..8]:FORMat RLC
        RLC
      ELEMENTS
ALL MARKER
                   CALCulate[1..4]:MARKer[1..8]:AOFF
   OFF
                  CALCulate[1..4]:MARKer[1..8]:MODE CONTinuous|DISCrete
 MARKER
CONT/DISCR
 SEARCH
                   CALCulate[1...4]:MARKer[1...8]:SEARch [:IMMediate]
 SEARCH
                   CALCulate[1...4]:MARKer[1...8]:SEARch:NEXT
 SEARCH
  NEXT
                   CALCulate[1...4]:MARKer[1...8]:SEARch:TRACking
                                                                      ON | OFF
TRACKING
                   CALCulate[1...4]:MARKer[1...8]:FUNCtion[:SELect]
                                                                         MAXimum
   MAX
  MODE
                   CALCulate[1...4]:MARKer[1...8]:FUNCtion[:SELect]
                                                                         MINimum
   MIN
  MODE
                   CALCulate[1...4]:MARKer[1...8]:FUNCtion[:SELect]
                                                                         TARGet
 TARGET
  MODE
                   CALCulate[1...4]:MARKer[1...8]:FUNCtion:TARGet
                                                                      <numeric_value>
BANDFILTER
                   CALCulate[1...4]:MARKer[1...8]:FUNCtion[:SELect]
                                                                         BFILter
  MODE
```

```
DEFINE
B'DFILTER
                   CALCulate[1...4]:MARKer[1...8]:FUNCtion:BWIDth:MODE BPASs
    BANDPASS
                   CALCulate[1...4]:MARKer[1...8]:FUNCtion:BWIDth:MODE BSTOp
    BANDSTOP
                   CALCulate[1...4]:MARKer[1...8]:FUNCtion:BWIDth
                                                                         <numeric_value>
      WIDTH
                   CALCulate[1...4]:MARKer[1...8]:FUNCtion:QFACtor
     OUALITY
     FACTOR
   SHAPE FACT
                   {\tt CALCulate[1...4]:MARKer[1...8]:FUNCtion:SFACtor}
   60dB / 3dB
                                 <numeric_value>,<numeric_value>
                   CALCulate[1...4]:MARKer[1...8]:FUNCtion:SFACtor
   SHAPE FACT
   60dB / 6dB
                                 <numeric_value>,<numeric_value>
 DELTA
                  CALCulate[1...4]:MARKer[1...8]:FUNCtion:DELTa:REFerence MARKer1
 \Delta REF=
MARKER 1
                  CALCulate[1...4]:MARKer[1...8]:FUNCtion:DELTa:REFerence FIXed
 A REF=
FIXED POS
                 CALCulate[1...4]:MARKer[1...8]:FUNCtion:
FIXED POS
 X VAL
                 DELTa:REFerence:RPOSition[:CARTesian]
                                                            <numeric_value>,<numeric_value>
FIXED POS
 Y VAL
                 CALCulate[1...4]:MARKer[1...8]:FUNCtion: PTPeak:STATe
                                                                             ON | OFF
PEAK TO
  PEAK
                  CALCulate[1...4]:MARKer[1...8]:FUNCtion:DELTa :STATe OFF
DELTA OFF
 = MKR
  START
                 CALCulate[1...4]:MARKer[1...8]:FUNCtion:STARt
                 CALCulate[1...4]:MARKer[1...8]:FUNCtion:STOP
  STOP
 =MARKER
 CENTER
                 {\tt CALCulate[1...4]:MARKer[1...8]:FUNCtion:CENTer}
 =MARKER
                 {\tt CALCulate[1...4]:MARKer[1...8]:FUNCtion:REFerence}
 REF VAL
 =MARKER
```

3.9.8 CHANNEL Key Group

INSTrument[:SELect] CHANNEL<1..4>

3.9.9 RESPONSE Key Group

MEAS		
S11 REFL PORT1	[SENSe[14]:]FUNCtion[:ON] [SENSe[14]:]FUNCtion[:ON] [SENSe[14]:]FUNCtion[:ON]	"XFR:POW:S11" "XPOW:POW:S11" "XTIM:POW:S11"
S21 TRANS FWD	[SENSe[14]:]FUNCtion[:ON] [SENSe[14]:]FUNCtion[:ON] [SENSe[14]:]FUNCtion[:ON]	"XFR:POW:S21" "XPOW:POW:S21" "XTIM:POW:S21"
S12 TRANS REV	[SENSe[14]:]FUNCtion[:ON] [SENSe[14]:]FUNCtion[:ON] [SENSe[14]:]FUNCtion[:ON]	"XFR:POW:S12" "XPOW:POW:S12" "XTIM:POW:S12"
S22 REFL PORT2	[SENSe[14]:]FUNCtion[:ON] [SENSe[14]:]FUNCtion[:ON] [SENSe[14]:]FUNCtion[:ON]	"XFR:POW:S22" "XPOW:POW:S22" "XTIM:POW:S22"
WAVE QUANTITY		
a1, , b2	[SENSe[14]:]FUNCtion[:ON]	"XFR:POW:A1 A2 B1 B2"
DRIVE PORT PORT1/PORT2	OUTPut:DPORt PORT1 PORT2	
RATIO		
DEFINE RATIO		
CONV GAIN b1/a1	[SENSe[14]:]FUNCtion[:ON]	"XFR:POW:RAT B1,ABSA1"
CONV GAIN b2/a1	[SENSe[14]:]FUNCtion[:ON]	"XFR:POW:RAT B2,ABSA1"
b1/a1, b2/a2	[SENSe[14]:]FUNCtion[:ON]	"XFR:POW:RAT B1,A1"
DRIVE PORT PORT1/PORT2	OUTPut:DPORt PORT1 PORT2	

```
COMPLEX
 CONVERS
                   CALCulate[1...4]:TRANsform:COMPlex
        S
                   CALCulate[1...4]:TRANsform:COMPlex
                                                           STMV
       1/S
                    CALCulate[1...4]:TRANsform:COMPlex
                                                            ZREL.
       7./7.0
                    CALCulate[1...4]:TRANsform:COMPlex
        Z
                    CALCulate[1...4]:TRANsform:COMPlex
                                                           YREL
       Y/Y0
                   CALCulate[1...4]:TRANsform:COMPlex
        Y
                    [SENSe[1...4]:]FUNCtion[:ON] "XFRequency:POWer:KFACtor"
K-FACTOR
                    [SENSe[1...4]:]FUNCtion[:ON] "XPOWer:POWer:KFACtor"
                    [SENSe[1...4]:]FUNCtion[:ON] "XTIMe:POWer:KFACtor"
                    [SENSe[1...4]:]FUNCtion[:ON] "XFRequency:POWer:MUFactor1"
μ1-FACTOR
                    [SENSe[1...4]:]FUNCtion[:ON] "XPOWer:POWer:MUFactor1"
                    [SENSe[1...4]:]FUNCtion[:ON] "XTIMe:POWer:MUFactor1"
                    [SENSe[1...4]:]FUNCtion[:ON] "XFRequency:POWer:MUFactor2" [SENSe[1...4]:]FUNCtion[:ON] "XPOWer:POWer:MUFactor2"
u2-FACTOR
                    [SENSe[1...4]:]FUNCtion[:ON] "XTIMe:POWer:MUFactor2"
 FORMAT
                    CALCulate[1...4]:FORMat COMPlex
 COMPLEX
                   CALCulate[1...4]:FORMat MAGNitude
MAGNITUDE
                   CALCulate[1...4]:FORMat PHASe
  PHASE
                   CALCulate[1...4]:FORMat REAL
  REAL
                   CALCulate[1...4]:FORMat IMAGinary
IMAGINARY
                   CALCulate[1...4]:FORMat SWR
   SWR
                    CALCulate[1...4]:FORMat GDELay
GROUP DELAY
                   CALCulate[1...4]:GDAPerture:MODE STEP | FREQuency
                   CALCulate[1...4]:GDAPerture:SCOunt <numeric_value>
  STEP
APERTURE
                   CALCulate[1...4]:GDAPerture[:SPAN] <numeric_value>
FREQUENCY
APERTURE
```

L	CALCulate[14]:FORMat L
C	CALCulate[14]:FORMat C
PHASE UNWRAP	CALCulate[14]:FORMat UPHase
SCALE	
AUTOSCALE	DISPlay[:WINDow[14]]:TRACe[14]:Y[:SCALe] :AUTO ONCE
SCALE/DIV	DISPlay[:WINDow[14]]:TRACe[14]:Y[:SCALe] :PDIVision <numeric_value></numeric_value>
REFERENCE VALUE	DISPlay[:WINDow[14]]:TRACe[14]:Y[:SCALe] :RLEVel <numeric_value></numeric_value>
REFERENCE POSITION	DISPlay[:WINDow[14]]:TRACe[14]:Y[:SCALe] :RPOSition 0100 PCT
MAX VALUE	DISPlay[:WINDow[14]]:TRACe[14]:Y[:SCALe] :TOP <numeric_value></numeric_value>
MIN VALUE	DISPlay[:WINDow[14]]:TRACe[14]:Y[:SCALe] :BOTTom <numeric_value></numeric_value>
ADD CONSTANT	DISPlay[:WINDow[14]]:TRACe[14]:Y[:SCALe] :OFFSet <numeric_value></numeric_value>
DIAGRAM	
LIN CARTESIAN	DISPlay[:WINDow<14>]:DIAGram CLIN
LOG CARTESIAN	DISPlay[:WINDow<14>]:DIAGram CLOG
DB CARTESIAN	DISPlay[:WINDow<14>]:DIAGram CDB
SEGMENTED CARTESIAN	DISPlay[:WINDow<14>]:DIAGram CSEG
LIN POLAR	DISPlay[:WINDow<14>]:DIAGram PLIN
LOG POLAR	DISPlay[:WINDow<14>]:DIAGram PLOG
DB POLAR	DISPlay[:WINDow<14>]:DIAGram PDB
SEGMENTED POLAR	DISPlay[:WINDow<14>]:DIAGram PSEG
SMITH	DISPlay[:WINDow<14>]:DIAGram SMITh
INVERTED SMITH	DISPlay[:WINDow<14>]:DIAGram ISMith

DISPlay[:WINDow<1...4>]:DIAGram CHARter CHARTER DISPLAY SINGLE DISPlay:FORMat SINGle CHANNEL DISPlay: FORMat DOVerlay DUAL CHAN OVERLAY DUAL DISPlay: FORMat DSPLit CHAN SPLIT DISPlay: FORMat QOVerlay QUAD CHAN OVERLAY QUAD CHAN DISPlay: FORMat QDSPlit DUAL SPLIT DISPlay: FORMat QQSPlit QUAD CHAN QUAD SPLIT DISPlay:FORMat:EXPand ON OFF EXPAND TRACE MDATa1 | MDATa2 | MDATa3 | MDATa4 | MDATa5 | MDATa6 | MDATa7 | MDATa8,CH1DATA | CH2DATA | CH3DATA | CH4DATA TRACe: COPY DATA TO MEMORY DISPlay[:WINDow<1...4>]:TRACe1:STATe ON | OFF SHOW DATA DISPlay[:WINDow<1...4>]:TRACe2:STATe ON | OFF SHOW MEM CALCulate[1...4]:MATH:STATe ON | OFF SHOW MATH CALCulate[1...4]:SMOothing[:STATe] ON | OFF SMOOTHING SMOOTHING CALCulate[1...4]:SMOothing:APERture <numeric_value> APERTURE CALCulate[1...4]:MATH[:EXPRession][:DEFine] <expr> DEFINE MATH

3.9.10 CAL Key Group

CAL	
START NEW CAL	
FULL TWO PORT	
PORT 1 CONNECTOR	
N 50 Ω FEMALE	[SENSe[14]:]CORRection:COLLect:CONNection[1 2] N50FEMALE
N 50 Ω MALE	[SENSe[14]:]CORRection:COLLect:CONNection[1 2] N50MALE
N 75 Ω FEMALE	[SENSe[14]:]CORRection:COLLect:CONNection[1 2] N75FEMALE
N 75 Ω MALE	[SENSe[14]:]CORRection:COLLect:CONNection[1 2] N75MALE
SMA FEMALE	[SENSe[14]:]CORRection:COLLect:CONNection[1 2] SMAFEMALE
SMA MALE	[SENSe[14]:]CORRection:COLLect:CONNection[1 2] SMAMALE
PC 3.5 FEMALE	[SENSe[14]:]CORRection:COLLect:CONNection[1 2] PC35FEMALE
PC 3.5 MALE	[SENSe[14]:]CORRection:COLLect:CONNection[1 2] PC35MALE
USR CONN 2 FEMALE	$[SENSe[14]:] CORRection: COLLect: CONNection[1 2] \ UFEMALE2$
USR CONN 2 MALE	[SENSe[14]:]CORRection:COLLect:CONNection[1 2] UMALE2
PORT 2 CONNECTOR	
TOM	[SENSe[14]:]CORRection:COLLect:METHod TOM
THROUGH	[SENSe[14]:]CORRection:COLLect[:ACQuire] THRough
OPEN PORT 1	[SENSe[14]:]CORRection:COLLect[:ACQuire] OPEN1
OPEN PORT 2	[SENSe[14]:]CORRection:COLLect[:ACQuire] OPEN2
MATCH PORT 1	[SENSe[14]:]CORRection:COLLect[:ACQuire] MATCH1

```
[SENSe[1...4]:]CORRection:COLLect[:ACQuire] MATCH2
   MATCH
   PORT 2
              [SENSe[1...4]:]CORRection:COLLect[:ACOuire] SLIDE1
   SLIDE
   PORT 1
              [SENSe[1...4]:]CORRection:COLLect[:ACQuire] SLIDE2
   SLIDE
   PORT 2
              [SENSe[1...4]:]CORRection:COLLect:SAVE
   APPLY
    CAL
              [SENSe[1...4]:]CORRection:COLLect:METHod TRM
TRM
              [SENSe[1...4]:]CORRection:COLLect[:ACQuire]
  THROUGH
  REFLECT
              [SENSe[1...4]:]CORRection:COLLect: ACQuire REFL1
   PORT 1
              [SENSe[1...4]:]CORRection:COLLect: ACQuire REFL2
  REFLECT
   PORT 2
              [SENSe[1...4]:]CORRection:COLLect[:ACQuire] MATCH1
   матсн
   PORT 1
              [SENSe[1...4]:]CORRection:COLLect[:ACQuire] MATCH2
   MATCH
   PORT 2
              [SENSe[1...4]:]CORRection:COLLect[:ACOuire] SLIDE1
   SLIDE
   PORT 1
              [SENSe[1...4]:]CORRection:COLLect[:ACQuire] SLIDE2
   SLIDE
   PORT 2
              [SENSe[1...4]:]CORRection:COLLect:SAVE
   APPLY
    CAL
               [SENSe[1...4]:]CORRection:COLLect:METHod TRL
TRL
              [SENSe[1...4]:]CORRection:COLLect[:ACQuire]
  THROUGH
  REFLECT
              [SENSe[1...4]:]CORRection:COLLect: ACQuire REFL1
   PORT 1
              [SENSe[1...4]:]CORRection:COLLect: ACQuire REFL2
  REFLECT
   PORT 2
              [SENSe[1...4]:]CORRection:COLLect[:ACQuire] LINE1
   LINE 1
              [SENSe[1...4]:]CORRection:COLLect[:ACQuire] LINE2
   LINE 2
              [SENSe[1...4]:]CORRection:COLLect[:ACQuire] MATCH1
   MATCH
   PORT 1
              [SENSe[1...4]:]CORRection:COLLect[:ACQuire] MATCH2
   MATCH
   PORT 2
              [SENSe[1...4]:]CORRection:COLLect:SAVE
   APPLY
    CAL
```

1043.0009.50 3.181 E-15

TNA	[SENSe[14]:]CORRection:COLLect:METHod TNA
THROUGH (TNA)	[SENSe[14]:]CORRection:COLLect[:ACQuire] THRough
ATTEN	[SENSe[14]:]CORRection:COLLect[:ACQuire] ATT
APPLY CAL	[SENSe[14]:]CORRection:COLLect:SAVE
TOSM	[SENSe[14]:]CORRection:COLLect:METHod TOSM
THROUGH	[SENSe[14]:]CORRection:COLLect[:ACQuire] THRough
OPEN PORT 1	[SENSe[14]:]CORRection:COLLect[:ACQuire] OPEN1
OPEN PORT 2	[SENSe[14]:]CORRection:COLLect[:ACQuire] OPEN2
SHORT PORT 1	[SENSe[14]:]CORRection:COLLect[:ACQuire] SHORT1
SHORT PORT 2	[SENSe[14]:]CORRection:COLLect[:ACQuire] SHORT2
MATCH PORT 1	[SENSe[14]:]CORRection:COLLect[:ACQuire] MATCH1
MATCH PORT 2	[SENSe[14]:]CORRection:COLLect[:ACQuire] MATCH2
SLIDE PORT 1	[SENSe[14]:]CORRection:COLLect[:ACQuire] SLIDE1
SLIDE PORT 2	[SENSe[14]:]CORRection:COLLect[:ACQuire] SLIDE2
MATCH BOTH PORTS	[SENSe[14]:]CORRection:COLLect[:ACQuire] MATCH12
APPLY CAL	[SENSe[14]:]CORRection:COLLect:SAVE
TOM-X	[SENSe[14]:]CORRection:COLLect:METHod TOMX
THROUGH	[SENSe[14]:]CORRection:COLLect[:ACQuire] THRough
MATCH BOTH PORTS	[SENSe[14]:]CORRection:COLLect[:ACQuire] MATCH12
OPEN BOTH PORTS	[SENSe[14]:]CORRection:COLLect[:ACQuire] OPEN12
MATCH P1 OPEN P2	[SENSe[14]:]CORRection:COLLect[:ACQuire] M102
OPEN P1 MATCH P2	[SENSe[14]:]CORRection:COLLect[:ACQuire] O1M2
APPLY CAL	[SENSe[14]:]CORRection:COLLect:SAVE

[SENSe[1...4]:]CORRection:COLLect:METHod FUNDamental AUTOKAL FUNDAM'TAL TIIIT. -- (ZVR, ZVRE, ZVC, ZVCE) ONE PORT [SENSe[1...4]:]CORRection:COLLect:METHod FOPORT12 BOTH PORTS [SENSe[1...4]:]CORRection:COLLect[:ACQuire] OPEN1 OPEN PORT 1 [SENSe[1...4]:]CORRection:COLLect[:ACQuire] SHORT1 SHORT PORT 1 MATCH [SENSe[1...4]:]CORRection:COLLect[:ACQuire] MATCH1 PORT 1 [SENSe[1...4]:]CORRection:COLLect[:ACOuire] OPEN2 OPEN PORT 2 SHORT [SENSe[1...4]:]CORRection:COLLect[:ACQuire] SHORT2 PORT 2 [SENSe[1...4]:]CORRection:COLLect[:ACOuire] MATCH2 MATCH PORT 2 [SENSe[1...4]:]CORRection:COLLect[:ACQuire] SLIDE1 SLIDE PORT 1 [SENSe[1...4]:]CORRection:COLLect[:ACQuire] SLIDE2 SLIDE PORT 2 [SENSe[1...4]:]CORRection:COLLect:SAVE APPLY CAL [SENSe[1...4]:]CORRection:COLLect:METHod FOPORT1 PORT 1 [SENSe[1...4]:]CORRection:COLLect:METHod FOPORT2 PORT 2 [SENSe[1...4]:]CORRection:COLLect:METHod FOPORT1 FULL ONE PORT (ZVRL) [SENSe[1...4]:]CORRection:COLLect[:ACQuire] OPEN1 OPEN PORT 1 [SENSe[1...4]:]CORRection:COLLect[:ACQuire] SHORT1 PORT 1 [SENSe[1...4]:]CORRection:COLLect[:ACQuire] MATCH1 MATCH PORT 1 [SENSe[1...4]:]CORRection:COLLect[:ACQuire] SLIDE1 SLIDE PORT 1 [SENSe[1...4]:]CORRection:COLLect:SAVE APPLY CAL

ONE PATH TWO PORT	(ZVR, ZVRE, ZVC, ZVCE)
FORWARD	[SENSe[14]:]CORRection:COLLect:METHod FOPTport
REVERSE	[SENSe[14]:]CORRection:COLLect:METHod ROPTport
OPEN PORT 1	[SENSe[14]:]CORRection:COLLect[:ACQuire] OPEN1
SHORT PORT 1	[SENSe[14]:]CORRection:COLLect[:ACQuire] SHORT1
MATCH PORT 1	[SENSe[14]:]CORRection:COLLect[:ACQuire] MATCH1
THROUGH	[SENSe[14]:]CORRection:COLLect[:ACQuire] THRough
OPEN PORT 2	[SENSe[14]:]CORRection:COLLect[:ACQuire] OPEN2
SHORT PORT 2	[SENSe[14]:]CORRection:COLLect[:ACQuire] SHORT2
MATCH PORT 2	[SENSe[14]:]CORRection:COLLect[:ACQuire] MATCH2
SLIDE PORT 1	[SENSe[14]:]CORRection:COLLect[:ACQuire] SLIDE1
SLIDE PORT 2	[SENSe[14]:]CORRection:COLLect[:ACQuire] SLIDE2
APPLY CAL	[SENSe[14]:]CORRection:COLLect:SAVE
ONE PATH TWO PORT	[SENSe[14]:]CORRection:COLLect:METHod FOPTport (ZVRL)
OPEN PORT 1	[SENSe[14]:]CORRection:COLLect[:ACQuire] OPEN1
SHORT PORT 1	[SENSe[14]:]CORRection:COLLect[:ACQuire] SHORT1
MATCH PORT 1	[SENSe[14]:]CORRection:COLLect[:ACQuire] MATCH1
THROUGH	[SENSe[14]:]CORRection:COLLect[:ACQuire] THRough
SLIDE PORT 1	[SENSe[14]:]CORRection:COLLect[:ACQuire] SLIDE1
AUTOKAL FUNDAM'TAL	[SENSe[14]:]CORRection:COLLect:METHod FUNDamental
APPLY CAL	[SENSe[14]:]CORRection:COLLect:SAVE

TRANS NORM [SENSe[1...4]:]CORRection:COLLect:METHod FTRANS FORWARD [SENSe[1...4]:]CORRection:COLLect:METHod RTRANS REVERSE [SENSe[1...4]:]CORRection:COLLect[:ACQuire] THRough THROUGH [SENSe[1...4]:]CORRection:COLLect:SAVE APPLY CAL --(ZVR, ZVRE, ZVC, ZVCE) REFL NORM [SENSe[1...4]:]CORRection:COLLect:METHod REFL12 вотн PORTS [SENSe[1...4]:]CORRection:COLLect:METHod REFL1 PORT 1 [SENSe[1...4]:]CORRection:COLLect:METHod REFL2 PORT 2 [SENSe[1...4]:]CORRection:COLLect[:ACQuire] OPEN1 OPEN PORT 1 [SENSe[1...4]:]CORRection:COLLect[:ACQuire] OPEN2 OPEN PORT 2 [SENSe[1...4]:]CORRection:COLLect:SAVE APPLY CAL TRANS AND (ZVR, ZVRE, ZVC, ZVCE) REFL NORM [SENSe[1...4]:]CORRection:COLLect:METHod TPORT TWO PORT NORM TRANS FWD [SENSe[1...4]:]CORRection:COLLect:METHod FTREF1 REFL P1 [SENSe[1...4]:]CORRection:COLLect:METHod RTREF2 TRANS REV REFL P2 [SENSe[1...4]:]CORRection:COLLect[:ACQuire] THRough THROUGH [SENSe[1...4]:]CORRection:COLLect[:ACQuire] OPEN1 OPEN PORT 1 [SENSe[1...4]:]CORRection:COLLect[:ACOuire] OPEN2 OPEN PORT 2 [SENSe[1...4]:]CORRection:COLLect:SAVE APPLY CAL

```
[SENSe[1...4]:]CORRection:COLLect:METHod FTRans
   TRANS NORM
                            (ZVRL)
                            [SENSe[1...4]:]CORRection:COLLect:METHod FOPTport
          FORWARD
                            [SENSe[1...4]:]CORRection:COLLect[:ACQuire]
                                                                            THRough
            THROUGH
                            [SENSe[1...4]:]CORRection:COLLect:SAVE
            APPLY CAL
                            [SENSe[1...4]:]CORRection:COLLect:METHod REFL1
    REFL NORM
                            (ZVRL)
                            [SENSe[1...4]:]CORRection:COLLect[:ACQuire] OPEN1
           OPEN
          PORT 1
                            [SENSe[1...4]:]CORRection:COLLect:SAVE
        APPLY CAL
                            [SENSe[1...4]:]CORRection:COLLect:METHod FTREF1
    TRANS AND
    REFL NORM
                            (ZVRL)
                            [SENSe[1...4]:]CORRection:COLLect[:ACQuire] OPEN1
           OPEN
          PORT 1
                            [SENSe[1...4]:]CORRection:COLLect[:ACQuire]
                                                                             THRough
         THROUGH
                            [SENSe[1...4]:]CORRection:COLLect:SAVE
        APPLY CAL
                            [SENSe[1...4]:]CORRection:STATe
                                                              ON OFF
 UNCAL
                            [SENSe[1...4]:]CORRection:INTerpolate[:STATe] ON OFF
  CAL
INTERPOL
CAL KITS
                      SELECT
       KIT
                      [SENSe[1...4]:]CORRection:CKIT
                                                         N50
          N 50 Ω
                      [SENSe[1...4]:]CORRection:CKIT
                                                         N75
          N 75 Ω
                      [SENSe[1...4]:]CORRection:CKIT
                                                         PC7
           PC 7
                      [SENSe[1...4]:]CORRection:CKIT SMA
           SMA
                      [SENSe[1...4]:]CORRection:CKIT PC35
          PC 3.5
                      [SENSe[1...4]:]CORRection:CKIT:N50 N75
MMTHrough | MFTHrough | FFTHrough | MMLINE1 | MFLINE1 |
     MODIFY
    STANDARD
                      FFLINE1 | MMLINE2 | MFLINE2 | FFLINE2 | MMATten | MFATten
                      FFATten | MMSNetwork | MFSNetwork | FFSNetwork | MOPEn
FOPEn | MSHort | FSHort | MREFlect | FREFlect | MMATCh
                      FMATch | MSMatch | FSMatch[, <string>]
                      [SENSe[1...4]:]CORRection:POWer[:STATe] ON | OFF
 POWER
 UNCAL
```

```
START NEW
POWER CAL
        CAT.
                      SOURce:POWer[:LEVel][:IMMediate]:CAMPlitude:A1 <numeric value>
     al POWER
                      SOURce:POWer[:LEVel][:IMMediate]:CAMPlitude:A2 <numeric_value>
     a2 POWER
                      [SENSe[1...4]: |CORRection: POWer: ACOuire B1
       CAL
     b1 POWER
                       [SENSe[1...4]:]CORRection:POWer:ACQuire B2
       CAL
     b2 POWER
                      SYSTem:COMMunicate:RDEVice:PMETer:TYPe <string>
     POWER MTR
      CONFIG
                      SYSTem:COMMunicate:GPIB:RDEVice:PMETer:ADDRess <numeric_value>
                      SYSTem:COMMunicate:RDEVice:PMETer:AZERo:STATe ON | OFF
    SENSOR CAL
      FACTOR
                      SYSTem:COMMunicate:RDEVice:PMETer:CFACtor[:SELect] ASENsor |
          USE
       SENSOR A/B
                      BSENsor
                      SOURCe[1...4]:POWer:CORRection:NREadings <numeric_value>
     NUMBER OF
     READINGS
                      SOURCe[1...4]:POWer:CORRection[:ACQuire]
       TAKE
                      A1 | A2 | ESRC1 | ESRC2
     CAL SWEEP
                      SOURCe[1...4]:POWer:CORRection:LLISt:STATe ON | OFF
     USE POWER
     LOSS LIST
                      SOURCe[1...4]:POWer:CORRection:LLISt <numeric_value>,
    EDIT POWER
                      <numeric_value>, ...
     LOSS LIST
         INS NEW
                      SYSTem:COMMunicate:RDEVice:PMETer:CFACtor:ASENsor
                      <numeric_value>, <numeric_value>,
         POINT
                      SYSTem:COMMunicate:RDEVice:PMETer:CFACtor:BSENsor
                      <numeric_value>, <numeric_value>, ...
 OFFSET
                      [SENSe[1...4]:]CORRection:OFFSet[1|2]:MAGNitude
                                                                           <numeric value>
MAGNITUDE
                      [SENSe[1...4]:]CORRection:OFFSet[1|2:PHASe
                                                                     <numeric value>
  PHASE
                      [SENSe[1...4]:]CORRection:EDELay[1|2][:TIME]
                                                                        <numeric value>
  DELAY
  TIME
                      [SENSe[1...4]:]CORRection:EDELay[1|2]:ELENgth
                                                                         <numeric value>
ELECTRICAL
 LENGTH
                      [SENSe[1...4]:]CORRection:EDELay[1|2]:DISTance
                                                                          <numeric value>
MECHANICAL
 LENGTH
                      [SENSe[1...4]:]CORRection:EDELay[1|2]: DIELectric
                                                                             <numeric value>
   SET
DIELECTRIC
                      [SENSe[1...4]:]CORRection:EDELay[1|2]:AUTO
  AUTO
 LENGTH
```

ZVx Selftest

4 Maintenance and Troubleshooting

4.1 Maintenance

4.1.1 Mechanical Maintenance

The network analyzer does not require any mechanical maintenance. The front panel should be cleaned occasionally using a soft humid cloth.

4.1.2 Electrical Maintenance

4.1.2.1 Testing the Generator Level

It is recommended to check the accuracy according to section 5 every two years. If tolerances are exceeded, new recording of the detector characteristics or the level correction data is required (see Service Manual).

4.1.2.2 Testing the Receiver Accuracy

It is recommended to check the accuracy according to section 5 every two years. If tolerances are exceeded, new recording of the correction data is required (see Service Manual).

4.1.2.3 Testing the Frequency Accuracy

The accuracy of the reference oscillator is to be checked at least every two years according to section 5 (or even earlier depending on the requirements placed on the frequency accuracy of the instrument). If the instrument is permanently operated from an external reference, this test may be omitted.

Test equipment: Frequency counter, accuracy 1*10⁻⁹

Test setup: > Connect frequency counter to the connector REF OUT

at the rear of the instrument.

Setting at the network analyzer: SETUP FREQUENCY REF INT

4.1.2.4 Verifying the Measuring Accuracy

It is recommended to check the system accuracy of the instrument according to section 5 every 12 months using a Verification Kit.

Selbsttest ZVx

4.2 Monitoring the Function

4.2.1 Switch-on Test

After the instrument has been switched on, a self test of the processor functions is performed first. This is followed by initialization of the transputer network, which then controls the analog modules.

4.2.2 Monitoring the Synthesizers and the Level Control

Note:

The current firmware version doesn't contain the error messages described below. If errors occur in the syntesizers or in the level control, default values are set instead of the respective measured values.

The network analyzer contains a monitoring circuit of the respective phase-locked loop for each synthesizer and for the reference oscillator. Likewise, the phase-locked loop is monitored. Both the static status and the dynamic response are monitored. If an error occurs, a message is output on the screen.

Table 4-1 Possible endi message	Table 4-1	Possible error messages
---------------------------------	-----------	-------------------------

Message	Meaning	see section
REF UNLOCK	50-MHz reference oscillator not synchronized	4.2.3, Synthesizer Error Messages
SO UNLOCK	Source oscillator not synchronized	4.2.3, Synthesizer Error Messages
LO1 UNLOCK	First LO oscillator not synchronized	4.2.3, Synthesizer Error Messages
LO2 UNLOCK	Second LO oscillator not synchronized	4.2.3, Synthesizer Error Messages
AUX UNLOCK	Auxiliary oscillator not synchronized	4.2.3, Synthesizer Error Messages
LEVCTRL UNLOCK	Generator level control not locked in	4.2.3, Synthesizer Error Messages
a1b1a2b2 OVLD	Input signal in channel R1 (a1) and/or channel A (b1) and/or channel R2 (a2, ZVR only and/or channel B (b2) too large	4.2.5, Overload Displays

4.2.3 Synthesizer Error Messages

All phase-locked loops are monitored during operation in order to determine whether the tuning voltages of the oscillators are within the permissible tolerance after a defined settling time (ready signals).

4.2.4 Error Message of Level Control

A check is made to determine whether the level control voltage lies within a permissible tolerance after a defined period of time (level ready signal).

4.2.5 Overload Displays

A comparator is used on Converter A or Converter B, respectively, to determine whether the maximum permissible test voltage is exceeded. A respective message is output either at the end of a sweep or, with a sweep time > 5 s, immediately after the overload has occurred.

ZVx Selftest

4.3 Function Description of the Complete Instrument

The members of the ZVR/ZVC families are vector network analyzers with three measurement channels (ZVRE, ZVRL, ZVCE) or four measurement channels (ZVR, ZVC).

- A Test Set with SWR bridges, power splitters, RF switches and level detectors makes for separation of the test signal, feeding-in and switchover of the generator signal and measurement of the generator level.
- Generation of the test signal is accomplished in three modules, i.e. Synthesizer, Source and **Output Stage.**
- Signal processing is performed by several RF, IF and evaluation modules, a Measurement Control Unit, which carries out both signal evaluation and control of generator, reception and evaluation unit, and a processor unit, consisting of a 586 PC, I/O board with interfaces and a graphics card.

The instruments can be upgraded to meet future requirements by retrofitting options in the analog, digital and software area.

4.3.1 **Description of the Analog Modules**

4.3.1.1 Test Set

The test set mainly consists of an electronic switch, two SWR bridges or couplers (ZVC, ZVCE) with integrated signal attenuator and level detector as well as the test set interface which permits control of the test set by means of the MCU (Measurement Control Unit).

Signal path

The amplified RF signal coming from the output stage is taken via the electronic switch and, depending on the measurement mode (switch position), via one of the two power splitters into the associated SWR bridge (coupler) and thus to the input or output of the DUT connected to the network analyzer. The second path of the respective power splitter feeds the associated reference channel.

The SWR bridges (couplers) separate the signal reflected by the DUT from the signal fed into the DUT (reflection measurement) or transmit the signal coming out of the DUT (transmission measurement) to one of the reception channels.

Extensions/ options

- Up to four independent attenuators can be integrated in the test set. They permit to attenuate both the RF signals fed to the DUT (i.e. test ports port1 or port2) and those transmitted from the DUT in steps of 10 dB up to max. 70 dB.
- The option External Measurements enables additional test applications that avoid the internal SWR bridges (couplers).
- The option Reference Mixer Ports permits to route the RF reference signal for port1 via an RF relay and an externally connected reference mixer to the front end in the case of frequency-converting measurements. This allows for phase and group delay measurements during frequency conversion.

Instrument versions The function of the test sets of models ZVRE, ZVRE and ZVRL mainly corresponds to that of the test set described above. A main difference is the lower number of reception channels: Whereas the ZVR and ZVC are equipped with four channels, the ZVRE, ZVCE and ZVRL feature only three channels. Like the ZVR and ZVC, the ZVRE and ZVCE are bidirectional network analyzers, the test sets of which contain two SWR bridges (couplers) and an RF switch. Thus, all four S-parameters of a DUT can be measured in both directions.

Selbsttest ZVx

The ZVRL, on the other hand, is a unidirectional network analyzer with only one SWR bridge without RF switch. Therefore, the ZVRL only permits measurement of the forward S-parameters (S11 and S21). In order to determine the reverse S-parameters (S22 and S12) as well, it is necessary to turn round the DUT when using the ZVRL.

4.3.1.2 Front End

The front end of the ZVR and ZVC consists of four identical reception channels (two measurement channels and two reference channels), that of models ZVRE, ZVRL and ZVCE features only three channels (two measurement channels and one reference channel). The models of the ZVR(x) family cover an input frequency range from 10 Hz to 4 GHz, whereas ZVC and ZVCE cover the frequency range from 20 kHz to 8 GHz.

Every channel contains:

- Buffer amplifier for de-coupling the input from the 1st mixer,
- LO driver amplifier,
- Mixer converting the input signal to the 1st IF of 21.0244 MHz (for the ZVR(x) models, operating mode mixer for frequencies >20 kHz, signals below 20 kHz are taken via a diplexer directly to the IF path without being converted, see section "Converter" below),
- · Booster amplifier and bandpass filter,
- 2nd mixer converting to 24.4 kHz (exactly: 25 MHz / 1024).

4.3.1.3 Converter

The converter module filters the signal coming from the front end (24.414 kHz in the frequency range 20 kHz to 8 GHz, 10 Hz to 20 kHz in the frequency range < 20 kHz for the ZVR(x) models), automatically selects the optimal gain for the test level (except for FAST MODE) and converts the analog test signals into digital data which are then passed further to the Measurement Control Unit. Two different converter versions are used, i.e. one with two measurement channels and one with only one measurement channel. The four-channel analyzer ZVR uses two two-channel converters, the three-channel analyzers ZVRE and ZVRL each use a two-channel and a one-channel converter.

4.3.1.4 Synthesizer

The synthesizer module contains three independent synthesizers providing the basic signal for generation of the local1 signal (Local module) and of the generator signal (Source module). The local synthesizer uses the frequency range from 1 GHz to 2.015 GHz, the source synthesizer 0.989 GHz to 2 GHz and the auxiliary synthesizer, which is used for frequency conversion in the Source module for frequency ranges below 1 GHz, operates at 1.00 GHz and 1.01 GHz.

ZVx Selftest

4.3.1.5 Local

The Local module provides the LO signals for the two mixers in the front end channels (LO1 signal for the 1st mixer, LO2 signal for the 2nd mixer). In addition, it contains the reference frequency source from which it generates the reference signal for the synthesizers (Synthesizer modules) and the signal for generation of the sampling signals in the converter modules.

- The LO1 signal is derived from the local synthesizer signal by frequency doubling, direct use and frequency division.
- The LO2 signal is generated from a synthesizer from 200 MHz to 210 MHz and by means of frequency division by 10.

4.3.1.6 Source

The source module delivers the generator signal (frequency range 10 Hz to 4 GHz). This signal is amplified in the output stage and applied to the DUT. The source synthesizer signal (0.989 GHz to 2 GHz) is processed by means of frequency doubling, direct use, mixing and frequency division. For frequencies below 2 MHz, the generator level control is performed in the source module (for the frequency range >2 MHz, in the output stage module with level detector in the SWR bridges).

4.3.1.7 Output Stage

The output stage amplifies the signals RFLOW (10 Hz to 10 MHz) and RFHIGH (10 MHz and 4 GHz) coming from the source module to the given nominal output level. For this purpose, it comprises an amplifier and a level control, for the ZVC-models in addition a frequency doubler. The associated level detectors are accommodated on the source module (frequency range 10 Hz to 2 MHz) or in the SWR bridges in the test set (frequency range >2 MHz). For the range 10 Hz to 150 MHz, the control element is also to be found on the source module, for the range > 150 MHz, it is located on the high-band amplifier of the output stage.

4.3.2 Modules of the Digital Unit

The digital unit consists of the following modules:

- Main processor
- · Graphics board
- I/O board (contains the interface drivers such as IEC bus, LPT and COM)
- · Hard disk
- Floppy disk
- LC display
- Keyboard
- VGA card (option controller function)
- 2nd IEC bus (option for option controller function)
- LAN interface (option)

Selbsttest ZVx

4.3.3 Processor Structure

In addition to a 586 CPU, the network analyzer also comprises three 32-bit transputers T805 and one 16-bit transputer T225. Two DSPs are provided for digital signal processing.

The 586 CPU handles the complete data exchange with the peripheral devices, such as e.g. keyboard entry, display of the softkeys and operation via IEC bus. Irrespective of this, the transputers control the measurement run, consider correction factors and represent the trace on the display. For this purpose, the transputers receive the current instrument settings from the 586 CPU via a link adapter, which constitutes the connection between the ISA bus of the CPU board and a transputer link of the T805 on the graphics board (in the following referred to as GTP = graphics transputer). The T225 on the graphics and the two T805 on the Measurement Control Unit (MCU) are coupled to the GTP via further transputer links. The T225 exclusively serves as interface between the GTP and the chip set for the graphics.

4.3.3.1 Measurement Control Unit

The Measurement Control Unit (MCU) performs the following tasks:

Control of the analog modules:

- Via the IBUS (serial bus), the settings of the ZVR that are not critical with respect to time are made by the setting transputer and the self test signals on the modules are selected.
- The FRNBUS is a parallel setting bus for the synthesizer module.
- The GSC(Global Sequence Control) performs the time-critical settings in the network analyzer.

Processing of the measured values:

- The stream of measured data coming from the converters is preprocessed by two DSPs (digital filtering and digital mixer).
- The measurement transputer is intended for further processing, in particular for system error correction.

Recording of selftest signals:

• The selftest signals selected via multiplexer are converted by an A/D converter.

ZVx Selftest

4.4 Self test

The current firmware version does not support an automatic self test yet.

However, the necessary hardware facilities are provided and can be used for troubleshooting with the aid of service functions (see Service Manual).

Each synthesizer and signal module contains one or two 1-out-of-8 analog multiplexer which selects up to 16 test voltages via buffer amplifier and applies them to the common test channel. In order to locate an error, various functions can be monitored:

- Internally generated supply voltages,
- · operating points of amplifiers,
- tuning voltages of oscillators,
- · signal level,
- · signal level with the aid of level detectors.

The test channel is selected via the serial module control. An extra A/D converter on the MCU module enables display of the test signals even during normal measurement mode.

5 Testing the Rated Specifications

5.1 Measuring Instruments and Accessories (R&S ZVR, R&S ZVRE, R&S ZVRL)

Item	Type of Instrument	Required Specifications	Appropriate Device	R&S Order No.	Use
1	Modulation analyzer	1 MHz to 4 GHz	R&S FMB Opt. R&S FMA-B8 Opt.R&S FMA-B10	856.5005.52 855.9007.55 856.3502.52	5.2.1.1 5.2.1.4 5.2.1.5
2	Power meter	10 Hz to 4 GHz	R&S NRVD with power sensor R&S NRV-Z51	857.8008.02 828.3818.02	5.2.1.6 5.2.1.7
3	Attenuator	DC to 4 GHz	R&S RSG	1009.4505.02	5.2.1.2 5.2.1.3 5.2.2.2
4	Matching pad 50/75 Ω (2 pieces)		R&S RAM	358.5424.02	Test Set 75 Ω
5	Calibration kit		R&S ZV-Z21 (50 Ω) R&S ZV-Z22 (75Ω)	1085.7099.02 1085.7182.02	5.2.1.8 5.2.2.4 5.2.3.1 5.2.3.2 5.2.3.4
6	Pair of test port cables		R&S ZV-Z11 (50 Ω) R&S ZV-Z12 (75 Ω)	1085.6505.02 1085.6570.02	

5.2 Test Sequence (R&S ZVR, R&S ZVRE, R&S ZVRL)

The rated specifications of the network analyzer are checked after a warm-up time of at least 30 minutes. This makes sure that the guaranteed data are observed.

The values given in the following sections are not guaranteed, only the technical data of the data sheet are binding.

5.2.1 Testing the Generator Specifications

5.2.1.1 Frequency Accuracy

Test equipment: FMB with option FMA-B10, matching pad RAM for 75 Ω test set

Test setup: > Connect FMB (operating mode COUNTER) to PORT1 of the network analyzer

(RAM to FMB for 75 Ω).

Settings at the network analyzer:

PRESET

CENTER Test frequency
SWEEP SINGLE POINT

SWEEP TIME 500 s

SOURCE POWER Maximum level MEAS INPUT a1

Measurement: > Set test frequencies according to test report.

Deviation: Frequency value displayed on the FMB minus

setting value.

Permissible deviation < 2ppm + 1ppm*time/year

5.2.1.2 Harmonics Suppression

Test equipment: Test cable, option R&S ZVR-B4, attenuator RSG, 2 matching pads RAM for 75 Ω test

set

Test setup: ightharpoonup Connect RSG via test cable between PORT1 and PORT2 (for 75 Ω 1 RAM at the

input and output of the attenuator, respectively).

Settings at the RSG: 30 dB (20 dB for 75 Ω)

Settings at the network analyzer:

PRESET

MODE FREQUENCY CONVERSION, SECOND

HARMONIC, THIRD HARMONIC

MARKER Test frequency

SOURCE POWER 50 Ω : 0 dBm and -10 dBm (+13 dBm and +3 dBm with

Opt. B10)

75 $\Omega\!\!:$ -6 dBm and -10 dBm (+7 dBm and -3 dBm with

Opt. B10)

MEAS INPUT b2, DRIVE PORT 1

Calibration: Power Cal

Measurement

- > Set test frequencies according to test report.
- > Measure at twice and three times the test frequency and calculate the difference from the measured value at the test frequency, report the worse of the two values.

Test frequency range	Harmonics suppression at 0 dBm	-10 dBm
(10Hz)9kHz to 40kHz		-35dBc
40kHz to 70MHz	-22dBc	-35dBc
70MHz to 400MHz	-25dBc	-35dBc
400MHz to 600MHz	-30dBc	-35dBc
600MHz to 4000MHz	-30dBc	-40dBc

With option R&S ZVR-B10:

	+13 dBm	+3 dBm	
(10Hz)9kHz to 40kHz			-30dBc
40kHz to 10MHz	-22dBc		-30dBc
10MHz to to 70MHz	-22dBc		-35dBc
70MHz to 2000MHz	-25dBc		-35dBc
2000MHz to 4000MHz	-20dBc		-35dBc

When the ZVx is used, the 2nd harmonic can be measured only up to 1330 MHz fundamental and the 1st harmonic only up to 2000 MHz fundamental. Due to the large gain drop of the output stage above 4 GHz, no measurement is required above these frequencies.

5.2.1.3 Spurious Suppression

Test equipment: Test cable, option R&S ZVR-B4, attenuator RSG, 2 matching pads RAM for 75 Ω test

set.

Test setup: > Connect RSG via test cable between PORT1 and PORT2 of the network analyzer

(for 75 Ω 1 RAM at the input and output of the attenuator, respectively).

Setting RSG: 30 dB

Settings at the network analyzer:

SWEEP SINGLE POINT

MODE FREQUENCY CONVERSION, ARBITRARY

CENTER Test frequency = INT SRC

REC = spurious wave, see measurement

SOURCE POWER Maximum level

MEAS INPUT b2, DRIVE PORT 1

Reference measurement:

> Record measured values at the test frequencies.

Measurement: > Set test frequencies according to test report.

Mixer range up to 750 MHz: LO=RF+fo (fo = test frequency)

For fo < 50 MHz RF = 63.125 MHz fo = 50 MHz to < 150 MHz RF = 252.5 MHz fo = 150 MHz to 750 MHz RF = 1010 MHz

➤ Perform measurements for f = 2*RF - LO and f = 3*RF - 2*LO.

Permissible spurious suppression < – 40 dBc **Doubled range** > 2000 MHz to 4000 MHz:

➤ Perform measurements for f = fo/2 and f = 3fo/2

Permissible spurious suppression < -40 dBc

5.2.1.4 Phase Noise

Test equipment: Modulation Meter FMB with Option FMA-B8, matching pad RAM for 75 Ω test set

Test setup: ➤ Connect modulation meter (operating mode DEMOD PM PHASENOISE 10 kHz)

to PORT1 of the network analyzer (RAM to FMB for 75 Ω).

Settings at the network analyzer:

PRESET

SWEEP SINGLE POINT
CENTER Test frequency
SOURCE POWER Maximum level

SWEEP TIME 200 s
MEAS INPUT a1

Measurement

Set test frequencies according to test report, read the phase noise value on the modulation meter.

Permissible phase noise values:

1 GHz to 4 GHz $< -90 \text{ dBc} + 20*\log(f / \text{ GHz})$

(< -78 dBc at 4 GHz)

5.2.1.5 Residual FM

Test equipment: Modulation meter FMB, matching pad RAM for 75 Ω test set

Test setup: > Connect modulation meter (operating mode DEMOD FM DET RMS 10 Hz to

3 kHz) to PORT1 of the network analyzer (RAM to FMB for 75 Ω).

Settings at the network analyzer:

PRESET

SWEEP SINGLE POINT
CENTER Test frequency
SOURCE POWER Maximum level

SWEEP TIME 200s
MEAS INPUT a1

Measurement

> Set test frequencies according to test report, read the residual FM values on the modulation meter.

Permissible residual FM:

5.2.1.6 Level Accuracy

Test equipment: Power meter NRVD with power sensor NRV-Z51 (50 Ω) or NRV-Z51 with matching

pad RAM (75 Ω).

Test setup 50 Ω : \triangleright Connect power sensor to PORT1, PORT2 (only R&S ZVR and R&S ZVRE) or

OUTPUTa1 (only with option R&S ZVR-B25, Ext. Measurements) of the network

Test setup 75 Ω :

> Connect power sensor with RAM to PORT1 or PORT2 (only R&S ZVR and R&S ZVRE) of the network analyzer, Option R&S ZVR-B25, External Measurements,

as with 50 Ω .

Settings at the network analyzer:

PRESET

SWEEP SINGLE POINT CENTER Test frequency

SOURCE POWER -10 dBm on PORT 1 and PORT 2

+3 dBm with option R&S ZVR-B10 on PORT 1

SWEEP TIME 200 s

MEAS INPUT a1 (PORT1), INPUT a2 (PORT2)

with Opt. B10 Reference -10 dBm ±0,5 dB 3 dBm ±0,5 dB CENTER 100MHz Port 1: measurement:

Port 2: -10 dBm ±0.5 dB -10dBm±0.5dB -10 dBm ± 0.5 dB 3 dBm ± 0.5 dB

OUTPUT a1:

> Read the level on power meter.

Measurement: > Set test frequencies according to test report, read the level on power meter.

> Calculate the difference between the measured level and the reference level.

With 75 Ω , 5,75 dB must be added to the display of the power meter (since the measurement is made with the 50 Ω power sensor).

Frequency	Attenuation
9 kHz	5,75 dB
1 GHz	5,75 dB
3 GHz	5,8 dB
4 GHz	5,85 dB

Permissible deviations at PORT1/PORT2 at -10 dBm (+3 dBm with Opt. R&S ZVR-

B10):

20 kHz to 2 MHz -1/+1 dB 2 MHz to 4 GHz -0.5/+0.5 dB

Measurement Permissible deviations at output a1 at -10 dBm (+3 dBm with Opt. R&S ZVR-B10):

R&S ZVR-B25: 10 Hz to 2 MHz -1/+1 dB

> 2 MHz to 4 GHz -0.5/+0.5 dB

5.2.1.7 **Level Linearity**

Test equipment: Power meter NRVD with power sensor NRV-Z51 (50 Ω) or NRV-Z51 with matching

pad RAM (75 Ω).

Test setup 50 Ω : \triangleright Connect power sensor to PORT1 of the network analyzer.

Connect power sensor with RAM to PORT1 of the network analyzer. Test setup 75 Ω :

Settings at the network analyzer:

PRESET

SINGLE POINT **SWEEP CENTER** Test frequency

Maximum value to minimum value **SOURCE POWER**

SWEEP TIME 200 s

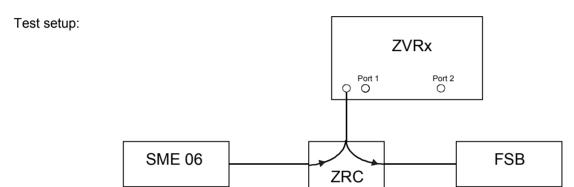
MEAS INPUT a1 (R&S ZVR, R&S ZVRE, R&S ZVRL)

INPUT a2 (R&S ZVR)

Measurement:

> Set test frequencies and levels according to test report, read the level on the power meter.

Permissible deviations referred to the value at -10 dBm (+3 dBm at PORT 1 with Opt. R&S ZVR-B10):


f = 40 kHz to 4 GHz

+10 to -5 dB < 0.4 dB -5 dB to -15 dB < 0.6 dB

5.2.1.7.1 Matching to Output a1

(Only with option R&S ZVR-B25, External Measurements)

Test equipment: Signal generator SME 06, Spectrum Analyzer FSB, VSWR-bridge ZRC

Settings at the network analyzer:

SWEEP SINGLE POINT CENTER Test frequency + Δf

SWEEP TIME 500 s
SOURCE POWER -10 dB
MODE EXTERNAL

Reference measurement:

> Use FSB to record measured values with open circuit and short circuit at the test port of the SWR bridge and take the average.

Measurement:

Test frequency (FSB): Δf : Return loss: $400 \text{ kHz}^{1)}$ to 4000 MHz -100 kHz > 8 dB

Alternative Measurement for R&S ZVR (firmware version 1.50 and higher):

Test equipment: Test cable ZV-Z11, Calibration kit ZV-Z21, for 75 Ω test set: Calibration kit ZCAN-75

and matching pad RAM

Test setup: Connect test cable between PORT2 and Output a1 (for 75 Ω : screw 75 Ω through

male, RAM and 50 Ω through female to PORT2)

Settings at the network analyzer:

PRESET

SWEEP LOG SWEEP

MEAS S22

SERVICE FUNCTION 2.13.1.1.2 (reset after the measurement according to

2.13.0)

MARKER Test frequency

Calibration: Perform one-port calibration at the end of the test cable (towards output-a1).

Measurement: R&S ZVR, R&S ZVRE, R&S ZVRL

Test frequency ¹⁾: Return loss: 400 kHz to 4 GHz > 8 dB

5.2.2 Testing the Receiver Specifications

5.2.2.1 Absolute Accuracy

Test equipment: Test cable ZV-Z11 (50 Ω) or ZV-Z12 (75 Ω)

Calibration: > Perform POWER CAL a1, a2

Test setup: > Connect PORT1 to PORT2 or Output a1 to Input b1 or Input b2 via the test cable.

Settings at the network analyzer:

PRESET

SWEEP LOG SWEEP

MEAS INPUT a1, INPUT a2

MARKER MARKER CONT

MARKER Test frequency

CAL POWER UNCAL off

MEAS INPUT b1, DRIVE PORT2

INPUT b2, DRIVE PORT1

MODE EXTERNAL INPUT b1

INPUT b2

MARKER Marker frequency = test frequency

Measurement below 300 kHz not required because the matching value is uniquely determined by the design at low frequencies. A possible fault is recognized when the level accuracy is measured.

Measurement:

- > Set test frequencies according to test report.
- > Read out marker value on the ZVx

Permissible deviation from the applied nominal level (–10 dBm) at PORT1 or PORT2, respectively:

Passive test set:

Active test set:

Frequency range	R&S ZVR/E/L 50/75Ω	Frequency range	R&S ZVR/E/L 50/75Ω
9 kHz to 100 kHz	+2 dB -2 dB	300 kHz to 1 MHz	+2 dB –2 dB
100 kHz to 4 GHz	+1 dB -1 dB	1 MHz to 4 GHz	+1 dB –1 dB

Measurement R&S ZVR-B25:

Permissible deviation from the applied nominal level (-10 dBm) at Input b1 or Input b2:

10Hz to 100 kHz +1 dB/ -1 dB 100 kHz to 100 MHz +1 dB/ -1 dB 100 MHz to 4 GHz +1 dB/ -1 dB

5.2.2.2 Linearity

Test equipment: Attenuator RSG (alternatively one 10 dB plus two 20 dB attenuation pads), 2

matching pads RAM for 75- Ω test set.

Test setup: Connect RSG between PORT1 and PORT2.

Settings at the network analyzer:

PRESET

CAL POWER UNCAL off

MODE SWEEP MODE : POWER SWEEP

SWEEP NUMBER OF POINTS = 51

SOURCE Test frequency

START -25 dBm
STOP Max
SWEEP TIME Auto
IF BANDWIDTH 10 Hz

MEAS S12 (Lin. PORT1), S21 (Lin. PORT2)

FORMAT MAGNITUDE,PHASE MARKER CONT

MARKER1 = -10 dBm

DELTA MARKER REF MARKER1

MARKER2 Test level

Reference measurement:

ightharpoonup Set RSG to 20 dB (for 75 Ω to 10 dB), set test frequencies and levels according to the performance test report and record measurement results.

Measurement: > Set test frequencies and levels according to test report, report measurement results and subtract the reference values.

Deviation from

reference value (-10 dBm): Permissible deviation:

20 kHz to 200 kHz +10 dB to +3 dB <1 dB

+ 3 dB .to -15 dB <0.2 dB

 \geq 200 kHz +10 dB to +3 dB <1 dB

+ 3 dB to -5 dB <0.2 dB - 5 dB to -60 dB <0.05 dB

5.2.2.3 Noise Level

Test equipment: Test cable ZV-Z11 (ZV-Z12 for 75 Ω test set) MATCH from calibration kit ZV-Z21

(ZCAN for 75 Ω test set).

Calibration: > Connect PORT1 to PORT2 via test cable.

➤ MEAS : INPUT b1, INPUT b2

> TRACE: DATA TO MEMORY: SHOW MATH

Test setup: ➤ MATCH at PORT1 or PORT2.

Settings at the network analyzer:

PRESET

SOURCE POWER -25 dBm

MEAS INPUT b1, INPUT b2
AVG SWEEP AVG 10
MARKER MARKER CONT

MARKER Marker frequency = test frequency

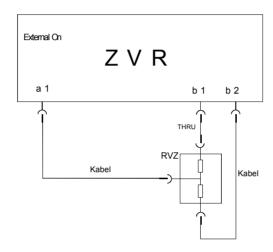
Measurement: > Set test frequencies according to test report.

 \succ Read marker value on the network analyzer taking the SOURCE POWER into

account (–10 dB for 50 Ω test set, –4 dB for 75 Ω test set).

Permissible noise values:

	Test set 50 Ω , passive	Test set 75 Ω , passive
9 kHz to 200 kHz	≤ - 65 dBm	\leq -50 dBm
200 kHz to 20 MHz	≤ -85 dBm	\leq -70 dBm
20 MHz to 3 GHz	≤ - 95 dBm	\leq -80 dBm
3 GHz to 4 GHz	≤ -85 dBm	≤ -80 dBm
	Test set 50 Ω , active	Test set 75 Ω , active
300 kHz to 1 MHz	≤ -82 dBm	≤ -70 dBm


5.2.2.4 Matching Input b1 and Input b2

(Only with Option External Measurements R&S ZVR-B25)

Test equipment, Power Splitter RVZ, Calibration Kit ZV-Z21, Test Port Cable pair ZV-Z11 test set 50 Ω :

Test equipment, Power Splitter RVZ, Calibration Kit ZV-Z22, Test Port Cable pair ZV-Z12, 2 test set 75 Ω : N-adapters 50/75 Ω

Test setup:

Block diagram for measuring the matching of input b1. For measurement of input b2, the connections from RVZ to Input b1/b2 are reversed.

Settings at the network analyzer:

PRESET

MODE EXTERNAL START 10 Hz

SWEEP LOG SWEEP
MARKER test frequency
MEAS S11/S22

Reference measurement:

One-port calibration including THRU over the complete frequency range (for measurement at b1 and b2 an extra calibration each).

Measurement:

- > Set test frequencies according to test report, measure b1 and b2.
- > Record return loss values.

Return loss: > 8 dB

Alternative Measurement (firmware version 1.50 and higher):

Test equipment, Calibration kit ZV-Z21, pair of test cables ZV-Z11.

test set 50 Ω :

Test equipment, Calibration kit ZV-Z21, pair of test cables ZV-Z11, matching pad RAM, calibration kit

test set 75 Ω : ZCAN-75.

Test setup: Connect test cable between PORT2 and Input b1 or between PORT1 and Input b2

(for 75 Ω : screw 75 Ω through male, RAM and 50 Ω through female to PORT2 or

PORT1)

Settings at the network analyzer:

PRESET

SWEEP LOG SWEEP MARKER Test frequency

MEAS S22 for measurement Input b1

S11 for measurement Input b2

SERVICE FUNCTION 2.13.1.2.2 for measurement Input b1 (reset: 2.13.0)

2.13.1.4.2 for measurement Input b2 (reset: 2.13.0)

Calibration: Perform one-port calibration at the end of the test cable (towards Input b1 or Input

b2).

Measurement: > Set test frequencies according to test report, measure b1 and b2.

> Take return loss values.

Test frequency 1): Return loss: 300 kHz to 4 GHz > 8 dB

Measurement below 300 kHz not required because the matching value is uniquely determined by the design at low frequencies. A possible fault is recognized when the level accuracy is measured.

5.2.3 **Testing the Test Set Specifications**

Matching to PORT1 and PORT2 5.2.3.1

• R&S ZVR, R&S ZVRE

Test equipment Calibration Kit ZV-Z21, Test Port Cable pair ZV-Z11

test set 50 Ω :

test set 75 Ω :

Test equipment Calibration Kit ZV-Z22, Test Port Cable pair ZV-Z12

Test setup: Test cable between PORT1 and PORT2.

Settings at the R&S ZVR or R&S ZVRE, respectively:

PRESET

MEAS S22 for matching PORT1

S11 for matching PORT2

MARKER test frequency

Reference measurement: Perform one-port calibration at the end of the cable over the complete frequency range

(measurement PORT1: loosen cable from PORT1 and calibrate;

measurement PORT2: loosen cable from PORT2 and calibrate).

Measurement: > Set marker to test frequencies according to test report.

> Record return loss values.

Passive test set:

Test frequency:	Return loss	
	50Ω:	75Ω:
40 kHz to 100 kHz	> 10 dB	> 6 dB
100 kHz to 100 MHz	> 16 dB	> 12 dB
100 MHz to 3000 MHz	> 18 dB	> 18 dB
3000 MHz to 4000 MHz	> 16 dB	> 15 dB

Active test set:

Test frequency:	Return loss	
	50Ω:	75Ω:
300 kHz to 1 MHz	> 6 dB	> 4 dB
1 MHz to 100 MHz	> 16 dB	> 12 dB
100 MHz to 3000 MHz	> 18 dB	> 18 dB
3000 MHz to 4000 MHz	> 16 dB	> 10 dB

• R&S ZVRL

Measurement PORT2:

As with R&S ZVR and R&S ZVRE

Measurement PORT1

With further network analyzer ZVx as with R&S ZVR and R&S ZVRE.

Measurement:

> Set test frequencies according to test report.

> Record return loss values.

Test frequency:	Return loss		
	PORT1 50 Ω :	PORT1 75 Ω :	PORT2:
40 kHz to 100 kHz	> 10 dB	> 6 dB	> 18 dB
100 kHz to 100 MHz	> 16 dB	>12 dB	> 18 dB
100 MHz to 3000 MHz	> 18 dB	>18 dB	> 18 dB
3000 MHz to 4000 MHz	> 16 dB	>15 dB	> 18 dB

5.2.3.2 Directivity

Test equipment MATCH from calibration kit

Test setup: Connect MATCH at PORT1 or PORT2.

Settings at the network analyzer:

PRESET

SWEEP LOG SWEEP

MEAS S11

S22 (R&S ZVR, R&S ZVRE only)

MARKER test frequency

		50 Ω	75 Ω
Measurement:	Passive test set:		
	Test frequency:	Directivity:	Directivity:
	9 kHz to 40 kHz	\geq 25 dB	\geq 25 dB
	40 kHz to 3 GHz	$\geq 33 \text{ dB}$	\geq 33 dB
	3 GHz to 4 GHz	\geq 29 dB	$\geq 20 \text{ dB}$
	Active test set:		
	Test frequency:	Directivity:	Directivity:
	300 kHz to 1 MHz	$\geq 5 \text{ dB}$	$\geq 5 \text{ dB}$
	1 MHz to 5 MHz	≥ 15 dB	≥ 15 dB
	1 MHz to 3 GHz	\geq 33 dB	\geq 33 dB
	3 GHz to 4 GHz	≥ 29 dB	\geq 20 dB

5.2.3.3 Testing the Attenuators

Test equipment: Connecting cable ZV-Z11 (50 Ω) or ZV-Z12 (75 Ω)

Test setup: Connect cable between PORT1 and PORT2.

Settings at the network analyzer:

PRESET

SWEEP SINGLE POINT CENTER Test frequency

SOURCE POWER -20 dBm for ATT $xx \le 30$ dB

Maximum level for ATT xx > 30 dB

SOURCE ATTxx IF BANDWIDTH 10 Hz MEAS S21

for measurement STEP ATT a1 and STEP ATT b2

S12

for measurement STEP ATT a2 and STEP ATT b1

FORMAT MAGNITUDE

MARKER Marker frequency = test frequency

Reference measurement:

Perform reference measurements at the test frequencies and with an attenuation value of 10 dB.

Reference value = marker value

Measurement:

- > Set test frequencies according to test report.
- ➤ Set ATT xx to 0 dB and SOURCE POWER to -20 dBm. Increase the attenuation in steps of 10 dB up to 30 dB and read out the respective marker value.

Attenuation error = (marker value – reference value)

- ➤ Set ATT xx to 30 dB and SOURCE POWER to maximum value. Determine the difference from the measurement with SOURCE POWER –20 dBm.
- Increase the attenuation in steps of 10 dB up to 70 dB and read out the respective marker value.

Attenuation error = (marker value – reference value – difference value)

Permissible deviations: ATT a1, a2 ATT b1, b2

< 2 dB < 2 dB

5.2.3.4 Crosstalk

Test equipment: 2 N-short-circuits (SHORT male and SHORT female with THRU male from

calibration kit ZV-Z21 or ZV-Z22)

Test setup: Connect N-short-circuits to PORT1 and PORT2.

Settings at the network analyzer:

PRESET

SWEEP LOG SWEEP SOURCE POWER Maximum value

IF BANDWIDTH 1 Hz

AVERAGE POINT AVG 5

MEAS RATIO b1/b2, DRIVE PORT 2 (crosstalk port 1,

R&S ZVR, R&S ZVRE)

RATIO b2/b1, DRIVE PORT 1 (crosstalk port 2,

R&S ZVR, R&S ZVRE, R&S ZVRL)

MARKER Marker frequency = test frequency

Measurement: > Read out marker value on the network analyzer.

Permissible crosstalk values:

	R&S ZVR	R&S ZVRE, R&S ZVRL
Test Set 50Ω		,
	 ≤ -90 dB ≤ -120 dB ≤ -130 dB ≤ -120 dB ≤ -110 dB 	\leq -90 dB \leq -120 dB \leq -125 dB \leq -115 dB \leq -105 dB
Test Set 75 Ω		
20 kHz to 200 kHz 200 kHz to 5 MHz 5MHz to 1 GHz 1 GHz to 3 GHz 3 GHz to 4 GHz	≤ -84 dB ≤ -114 dB ≤ -124 dB ≤ -114 dB ≤ -104 dB	≤ -84 dB ≤ -114 dB ≤ -119 dB ≤ -109 dB ≤ -99 dB
20 kHz to 200 kHz	< – 75 dB	

20 kHz to 200 kHz	\leq –75 dB
200 kHz to 5 MHz	≤ - 100 dB
5MHz to 1 GHz	≤ − 110 dB
1 GHz to 3 GHz	≤ - 100 dB
3 GHz to 4 GHz	≤ - 90 dB

5.3 Performance Test Report (R&S ZVR, R&S ZVRE, R&S ZVRL)

Table 5-1: Performance Test Report – Generator Specifications

Item No.	Characteristic	Measure according to section	Min. value	Actual value	Max. value	Unit
1	Frequency accuracy					
	500 MHz 800 MHz 1500 MHz 2300 MHz 3000 MHz 3999 MHz	5.2.1.1	-0.98 -1.58 -2.89 -4.58 -5.98 -7.98		0.98 1.58 2.89 4.58 5.98 7.98	kHz kHz kHz kHz kHz kHz
2	Harmonics suppression					
Test set passive	Source Level: Max. value 40 kHz 100 kHz	5.2.1.2	22 22		-	dB dB
Test set active/passive	300 kHz 1 MHz 5 MHz 10 MHz 50 MHz 100 MHz 151 MHz 200 MHz 400 MHz 751 MHz 1001 MHz 1501 MHz 1501 MHz 2000 MHz		22 22 22 22 22 22 25 25 25 30 30 30 30 30 30			dB dB dB dB dB dB dB dB dB dB dB dB
Test set passive	Source Level: Max. value –10dB 10 kHz 100 kHz		35 35		:	dB dB
Test set active/passive	300 kHz 1 MHz 5 MHz 10 MHz 50 MHz 100 MHz 151 MHz 200 MHz 400 MHz 751 MHz 1001 MHz 1501 MHz 2000 MHz		35 35 35 35 35 35 35 35 35 40 40 40			dB dB dB dB dB dB dB dB dB dB dB dB dB

Item No.	Characteristic	Measure according to section	Min. value	Actual value	Max. value	Unit
Z Test set passive	Harmonics suppression with Opt. R&S ZVR-B10 Source Level: Max. value 40 kHz 100 kHz	5.2.1.2	22 22		- -	dB dB
Test set active/passive	300 kHz 1 MHz 5 MHz 10 MHz 50 MHz 100 MHz 151 MHz 200 MHz 400 MHz 751 MHz 1001 MHz 1501 MHz 2000 MHz		22 22 22 22 22 25 25 25 25 25 25 25 25 2			dB dB dB dB dB dB dB dB dB dB
Test set passive Test set active/passive	Source Level: Max. value –10dB 10 kHz 100 kHz 300 kHz 1 MHz 5 MHz 10 MHz 50 MHz 100 MHz 151 MHz 200 MHz 400 MHz 1001 MHz 1501 MHz 1501 MHz 2000 MHz		30 30 30 30 30 35 35 35 35 35 35 35 35 35 35 35 35 35			dB dB dB dB dB dB dB dB dB dB dB

Item No.	Characteristic	Measure according to section	Min. value	Actual value	Max. value	Unit
3	Spurious suppression					
R&S ZVRL R&S ZVRE Passive test set Active test set Test set active/passive	ZVx frequ.: Spurious: 10 kHz 63.115 MHz 63.105 MHz 100 kHz 63.025 MHz 62.925 MHz 300 kHz 62.825 MHz 62.525 MHz 1 MHz 62.125 MHz 10 MHz 53.125 MHz 10 MHz 152.5 MHz 10 MHz 152.5 MHz 100 MHz 152.5 MHz 100 MHz 152.5 MHz 150 MHz 152.5 MHz 202.5 MHz 150 MHz 103.5 MHz 45.5 MHz 150 MHz 660 MHz 350 MHz 660 MHz 350 MHz 660 MHz 350 MHz 660 MHz 310 MHz 450 MHz 360 MHz 450 MHz 550 MHz 460 MHz 200 MHz 1000 MHz 2000 MHz 1000 MHz 2000 MHz 1000 MHz 2000 MHz 1000 MHz 3300 MHz 2400 MHz 1200 MHz 3600 MHz 2610 MHz 1305 MHz 3800 MHz 2610 MHz 1305 MHz 3800 MHz 2610 MHz 1305 MHz 3915 MHz 2800 MHz 1300 MHz 3900 MHz 2800 MHz 1300 MHz 3915 MHz 3800 MHz 1500 MHz 3800 MHz	5.2.1.3	40 40 40 40 40 40 40 40 40 40 40 40 40 4			888888888888888888888888888888888888888
4	9.99 MHz 149.9 MHz 1000 MHz 2000 MHz 3000 MHz 4000 MHz	5.2.1.4	- - - -		- 110 - 100 - 90 - 84 - 80.5 - 78	dBc dBc dBc dBc dBc dBc

Item No.	Characteristic	Measure according to section	Min. value	Actual value	Max. value	Unit
5	Residual FM 1 MHz 9.99 MHz 149.9 MHz 750 MHz 1000 MHz 2000 MHz 3000 MHz 4000 MHz	5.2.1.5			1 1 2 5 5 10 20 20	Hz Hz Hz Hz Hz Hz Hz Hz
Port 1 test set passive	Level accuracy Level: -10 dBm w. Opt. ZVR-B10: +3 dBm 9 kHz 20 kHz 40 kHz 100 kHz 1 MHz 2.1 MHz 3 MHz 10 MHz 50 MHz 1000 MHz 1500 MHz 1500 MHz 1500 MHz 2500 MHz 2500 MHz 2500 MHz 3500 MHz 3500 MHz 3500 MHz 4000 MHz	5.2.1.6	-1 -1 -1 -1 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5		1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	888888888888888888888

Item No.	Characteristic	Measure according to section	Min. value	Actual value	Max. value	Unit
Port 2 test set passive	Level: –10 dBm	5.2.1.6				
	9 kHz 20 kHz 40 kHz 100 kHz 1 MHz 2.1 MHz 3 MHz 10 MHz 50 MHz 200 MHz 1000 MHz 1500 MHz 2000 MHz 2000 MHz 2000 MHz 3500 MHz 3500 MHz 3600 MHz 3600 MHz		-1 -1 -1 -1 -1 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5		1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	dB dB dB dB
Port 1 test set active	Level accuracy Level: -10 dBm w. Opt. ZVR-B10: +3 dBm 300 kHz 1 MHz 2.1 MHz 3 MHz 10 MHz 50 MHz 200 MHz 1000 MHz 1500 MHz 1500 MHz 2000 MHz 2500 MHz 3500 MHz 3500 MHz 3500 MHz 3400 MHz 3500 MHz 3500 MHz	5.2.1.6	-1 -1 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5		1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	6B 6

Item No.	Characteristic	Measure according to section	Min. value	Actual value	Max. value	Unit
6 Port 2 test set active	Level accuracy Level: -10 dBm	5.2.1.6				
	300 kHz 1 MHz 2.1 MHz 3 MHz 10 MHz 50 MHz 200 MHz 1000 MHz 1500 MHz 1500 MHz 2000 MHz 2500 MHz 2500 MHz 3000 MHz 3000 MHz 3000 MHz		-1 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5		1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	dB dB
6 Option External Measurements	Level accuracy Level: -10 dBm w. Opt. ZVR-B10: +3 dBm	5.2.1.6				
	10Hz 20 kHz 40 kHz 100 kHz 1 MHz 2.1 MHz 3 MHz 10 MHz 50 MHz 200 MHz 1000 MHz 1500 MHz 1500 MHz 2000 MHz 2000 MHz 2500 MHz 3500 MHz 3500 MHz 3500 MHz 3500 MHz		-1 -1 -1 -1 -1 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5		1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	dB dB <td< td=""></td<>

Item No.	Characteristic	Measure according to section	Min. value	Actual value	Max. value	Unit
7	Level linearity	5047				
R&S ZVR R&S ZVRE R&S ZVRL	Ref. level: -10dBm +3 dBm with Opt. ZVR-B10	5.2.1.7				
test set passive	f = 40 kHz					
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10dB 5dB -5dB -10dB -15dB		10.4 5.4 -5.4 -10.6 -15.6		9.6 4.6 -4.6 -9.4 -14.4	dB dB dB dB dB
test set	f = 300 kHz					
active/passive	10dB 5dB -5dB -10dB -15dB		10.4 5.4 -5.4 -10.6 -15.6		9.6 4.6 -4.6 -9.4 -14.4	dB dB dB dB dB
	f = 1 MHz					
	10dB 5dB –5dB –10dB –15dB		10.4 5.4 -5.4 -10.6 -15.6		9.6 4.6 -4.6 -9.4 -14.4	dB dB dB dB
	f = 100 MHz					
	10dB 5dB -5dB -10dB -15dB		10.4 5.4 -5.4 -10.6 -15.6		9.6 4.6 -4.6 -9.4 -14.4	dB dB dB dB dB
	f = 4000 MHz	5.2.1.7				
	10dB 5dB -5dB -10dB -15dB		10.4 5.4 -5.4 -10.6 -15.6		9.6 4.6 -4.6 -9.4 -14.4	dB dB dB dB dB
8	Matching Output a1	5.2.1.8				
Option External Measurements only	400 kHz 2 MHz 100 MHz 300 MHz 1000 MHz 2000 MHz 3000 MHz 3500 MHz 4000 MHz	J.Z.1.0	8 8 8 8 8 8 8		- - - - - - -	dB dB dB dB dB dB dB dB

Table 5-2 Performance Test Report: Receiver specifications

Item No.	Characteristics	Measurement according to section	Min. value	Actual value	Max. value	Unit
1	Absolute accuracy PORT1					
Test Set passive	INPUT a1: 100 MHz	5.2.2.1	-11		-9	dBm
	INPUT b1: 9 kHz 19 kHz 20 kHz 40 kHz 100 kHz 500 kHz 1 MHz 10 MHz 100 MHz 500 MHz 1000 MHz 2000 MHz 2500 MHz 2500 MHz 2500 MHz 3500 MHz 3500 MHz 4000 MHz		-12 -12 -12 -12 -11 -11 -11 -11 -11 -11		-8 -8 -8 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm
1	Absolute accuracy PORT2 INPUT a2:	5.2.2.1				
Test Set passive	INPUT b2: 9 kHz 19 kHz 20 kHz 40 kHz 100 kHz 500 kHz 1 MHz 10 MHz 100 MHz 500 MHz 1000 MHz 500 MHz 2000 MHz 2500 MHz 2500 MHz 2500 MHz 3500 MHz 3500 MHz 3600 MHz		-11 -12 -12 -12 -12 -11 -11 -11 -11 -11		-9 -8 -8 -8 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	dBm

Item No.	Characteristics	Measurement according to section	Min. value	Actual value	Max. value	Unit
1	Absolute accuracy PORT1					
Test Set active	INPUT a1: 100 MHz INPUT b1: 300 kHz 1 MHz 10 MHz 100 MHz 1000 MHz 1500 MHz 1500 MHz 2000 MHz 2500 MHz 3500 MHz 3500 MHz 3500 MHz	5.2.2.1	-11 -12 -11 -11 -11 -11 -11 -11 -11 -11		-9 -8 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	dBm
1 Test Set active	Absolute accuracy PORT2 INPUT a2: 100 MHz INPUT b2: 300 kHz 1 MHz 10 MHz 100 MHz 1000 MHz 1500 MHz 1500 MHz 2000 MHz 2500 MHz 3500 MHz 3500 MHz 4000 MHz	5.2.2.1	-11 -12 -11 -11 -11 -11 -11 -11 -11 -11		-9 -8 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	dBm

Item No.	Characteristics	Measurement according to section	Min. value	Actual value	Max. value	Unit
1	Absolute accuracy INPUT b1					
Option External Measure-	INPUT a1: 100 MHz	5.2.2.1	-11		-9	dBm
ments	INPUT b1: 10Hz 1kHz 9 kHz 19 kHz 20 kHz 40 kHz 100 kHz 500 kHz 1 MHz 10 MHz 100 MHz 1000 MHz 1500 MHz 1500 MHz 2500 MHz 2500 MHz 3500 MHz 3500 MHz 3500 MHz		-12 -12 -12 -12 -12 -12 -12 -12 -11 -11		-8 -8 -8 -8 -8 -8 -8 -8 -8 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm
1	Absolute accuracy INPUT b2					
Option External	INPUT a2: 100 MHz	5.2.2.1	-11		-9	dBm
Measure- ments	INPUT b2: 10 Hz 1 kHz 9 kHz 19 kHz 20 kHz 40 kHz 100 kHz 500 kHz 1 MHz 10 MHz 100 MHz 100 MHz 1500 MHz 1500 MHz 2500 MHz 2500 MHz 2500 MHz 3500 MHz 3500 MHz 4000 MHz		-12 -12 -12 -12 -12 -12 -12 -12 -11 -11		-8 -8 -8 -8 -8 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm
2	Linearity PORT1 Magnitude Reference: -10 dBm f = 1.5 MHz	5.2.2.2				
	10 dB 3 dB -5 dB -15 dB		-1 -0.2 -0.05 -0.05		1 0.2 0.05 0.05	dB dB dB dB

Item No.	Characteristics	Measurement according to section	Min. value	Actual value	Max. value	Unit
2	Linearity PORT1 Phase Reference: -10 dBm f = 1.5MHz	5.2.2.2				
	10 dB 3 dB -5 dB -15 dB		-6 -1 -0.4 -0.4		6 1 0.4 0.4	degrees degrees degrees degrees
2	Linearity PORT1 Magnitude Reference: -10 dBm f = 4000 MHz	5.2.2.2				
	10 dB 3 dB -5 dB -15 dB		-1 -0.2 -0.05 -0.05		1 0.2 0.05 0.05	dB dB dB dB
2	Linearity PORT1 Phase Reference: -10 dBm f = 4000 MHz	5.2.2.2				
	10 dB 3 dB -5 dB -15 dB		-6 -1 -0.4 -0.4		6 1 0.4 0.4	degrees degrees degrees degrees
2	Linearity PORT2 Magnitude Reference: -10 dBm f = 1.5 MHz	5.2.2.2				
	10 dB 3 dB -5 dB -15 dB		-1 -0.2 -0.05 -0.05		1 0.2 0.05 0.05	dB dB dB dB
2	Linearity PORT2 Phase Reference: -10 dBm f = 1.5 MHz	5.2.2.2				
	10 dB 3 dB -5 dB -15 dB		-6 -1 -0.4 -0.4		6 1 0.4 0.4	degrees degrees degrees degrees

				<u> </u>		1
Item No.	Characteristics	Measurement according to section	Min. value	Actual value	Max. value	Unit
2	Linearity PORT2 Magnitude Reference: -10 dBm f = 4000 MHz	5.2.2.2				
	10 dB 3 dB -5 dB -15 dB		-1 -0.2 -0.05 -0.05		1 0.2 0.05 0.05	dB dB dB dB
2	Linearity PORT2 Phase Reference: -10 dBm f = 4000 MHz	5.2.2.2				
	10 dB 3 dB -5 dB -15 dB		-6 -1 -0.4 -0.4		6 1 0.4 0.4	degrees degrees degrees degrees
3	Noise level PORT1					
R&S ZVR 50Ω R&S ZVRE 50Ω Test Set passive R&S ZVRL R&S ZVR 50Ω R&S ZVRE 50Ω Test Set active/passi ve R&S ZVRL	10 kHz 20 kHz 150 kHz 220 kHz 300 kHz 2 MHz 19 MHz 20 MHz 100 MHz 200 MHz 1000 MHz 1000 MHz 2000 MHz 3000 MHz 4000 MHz	5.2.2.3			-65 -65 -65 -85 -85 -85 -85 -95 -95 -95 -95 -95 -95 -95	dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm
3	Noise level PORT2					
ZVR 50Ω ZVRE 50Ω Test Set passive ZVRL ZVR 50Ω ZVRE 50Ω	10 kHz 20 kHz 150 kHz 220 kHz 300 kHz 2 MHz 19 MHz 20 MHz	5.2.2.3	- - - - -		-65 -65 -65 -85 -85 -85 -85 -85	dBm dBm dBm dBm dBm dBm dBm dBm
Test Set active/passi ve ZVRL	100 MHz 200 MHz 700 MHz 1000 MHz 2000 MHz 3000 MHz 4000 MHz		- - - - -		-95 -95 -95 -95 -95 -95 -85	dBm dBm dBm dBm dBm dBm

Item No.	Characteristics	Measurement according to section	Min. value	Actual value	Max. value	Unit
3 R&S R&S ZVR 75Ω R&S ZVRE 75Ω Test Set passive	Noise level PORT1 10 kHz 20 kHz 150 kHz 220 kHz 300 kHz 2 MHz 19 MHz 20 MHz 100 MHz 200 MHz 1000 MHz 1000 MHz 3000 MHz 3000 MHz 4000 MHz	5.2.2.3			-50 -50 -50 -70 -70 -70 -70 -80 -80 -80 -80 -80 -80 -80	dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm
3 R&S ZVR 75Ω R&S ZVRE 75Ω Test Set passive	Noise level PORT2 10 kHz 20 kHz 150 kHz 220 kHz 300 kHz 2 MHz 19 MHz 20 MHz 100 MHz 200 MHz 700 MHz 1000 MHz 2000 MHz 4000 MHz 4000 MHz	5.2.2.3	- - - - - - - -		-50 -50 -50 -70 -70 -70 -80 -80 -80 -80 -80 -80 -80	dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm
3 R&S ZVR 75Ω R&S ZVRE 75Ω Test Set active	Noise level PORT1 300 kHz 1 MHz 19 MHz 20 MHz 100 MHz 200 MHz 700 MHz 1000 MHz 1000 MHz 3000 MHz 4000 MHz	5.2.2.3	- - - - - -		-70 -80 -80 -80 -75 -75 -75 -75 -75 -75	dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm

Item No.	Characteristics	Measurement according to section	Min. value	Actual value	Max. value	Unit
3 R&S ZVR 75Ω R&S ZVRE 75Ω Test Set active	Noise level PORT2 300 kHz 1 MHz 19 MHz 20 MHz 100 MHz 200 MHz 700 MHz 1000 MHz 1000 MHz 3000 MHz 4000 MHz	5.2.2.3	- - - - - -		-70 -80 -80 -80 -75 -75 -75 -75 -75 -75	dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm
4 R&S ZVR R&S ZVRE Option External Measure- ments	Matching Input b1 400 kHz 1.9 MHz 2 MHz 100 MHz 1000 MHz 2000 MHz 3000 MHz 3500 MHz 4000 MHz	5.2.2.4	8 8 8 8 8 8 8 8		- - - - - -	dB dB dB dB dB dB dB
4 R&S ZVR R&S R&S ZVRE Option External Measure- ments	Matching Input b2 400 kHz 1.9 MHz 2 MHz 100 MHz 1000 MHz 2000 MHz 3000 MHz 3500 MHz 4000 MHz	5.2.2.4	8 8 8 8 8 8 8		- - - - - -	dB dB dB dB dB dB dB

Table 5-3 Performance Test Report: Test Set Specifications

Item No.	Characteristics	Measurement according to section	Min. value	Actual value	Max. value	Unit
1 R&S ZVR 50 Ω R&S ZVRE 50 Ω test set passive R&S ZVRL 50 Ω	Matching PORT1 40 kHz 100 kHz 100 MHz 500 MHz 1000 MHz 1500 MHz 2000 MHz 2500 MHz 2500 MHz 3000 MHz 3500 MHz 4000 MHz	5.2.3.1	10 16 18 18 18 18 18 18 18 16			888888888
1 R&S ZVR 50 Ω R&S ZVRE 50 Ω test set passive	Matching PORT2 40 kHz 100 kHz 100 MHz 500 MHz 1000 MHz 1500 MHz 2000 MHz 2500 MHz 2500 MHz 3000 MHz 3500 MHz 4000 MHz	5.2.3.1	10 16 18 18 18 18 18 18 18 16			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
1 R&S ZVRL 50 Ω	Matching PORT2 40 kHz 100 kHz 100 MHz 500 MHz 1000 MHz 1500 MHz 2000 MHz 2500 MHz 3000 MHz 3500 MHz 34000 MHz	5.2.3.1	18 18 18 18 18 18 18 18 18			GB G

Item No.	Characteristics	Measurement according to section	Min. value	Actual value	Max. value	Unit
1 R&S ZVR 50 Ω R&S ZVRE 50 Ω test set active	Matching PORT1 300 kHz 1 MHz 100 MHz 500 MHz 1000 MHz 1500 MHz 2000 MHz 2500 MHz 2500 MHz 3000 MHz 3500 MHz 4000 MHz	5.2.3.1	6 16 18 18 18 18 18 18 18			dB dB dB dB dB dB dB dB dB
1 R&S ZVR 50 Ω R&S ZVRE 50 Ω test set active	Matching PORT2 300 kHz 1 MHz 100 MHz 500 MHz 1000 MHz 1500 MHz 2000 MHz 2500 MHz 2500 MHz 3000 MHz 3500 MHz 4000 MHz	5.2.3.1	6 16 18 18 18 18 18 18 18 16			dB dB dB dB dB dB dB dB dB
1 R&S ZVR 75 Ω R&S ZVRE 75 Ω test set passive R&S ZVRL 75 Ω	Matching PORT1 40 kHz 100 kHz 100 MHz 500 MHz 1000 MHz 1500 MHz 2500 MHz 2500 MHz 2500 MHz 3500 MHz 3500 MHz 4000 MHz	5.2.3.1	6 12 18 18 18 18 18 18 18 18 15			6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
1 R&S ZVR 75 Ω R&S ZVRE 75 Ω test set passive	Matching PORT2 40 kHz 100 kHz 100 MHz 500 MHz 1000 MHz 1500 MHz 2000 MHz 2500 MHz 2500 MHz 3000 MHz 3500 MHz 4000 MHz	5.2.3.1	6 12 18 18 18 18 18 18 18 15			dB dB dB dB dB dB dB dB dB

Item No.	Characteristics	Measurement according to section	Min. value	Actual value	Max. value	Unit
1 R&S ZVRL 75 Ω	Matching PORT2 40 kHz 100 kHz 100 MHz 500 MHz 1000 MHz 1500 MHz 2000 MHz 2500 MHz 2500 MHz 3000 MHz 3500 MHz 4000 MHz	5.2.3.1	18 18 18 18 18 18 18 18 18 18			dB dB dB dB dB dB dB dB dB
1 R&S ZVR 75 Ω R&S ZVRE 75 Ω test set active	Matching PORT1 300 kHz 1 MHz 100 MHz 500 MHz 1000 MHz 1500 MHz 2000 MHz 2500 MHz 2500 MHz 3000 MHz 3500 MHz 4000 MHz	5.2.3.1	4 12 18 18 18 18 18 18 18 10			dB dB dB dB dB dB dB dB dB
1 R&S ZVR 75 Ω R&S ZVRE 75 Ω test set active	Matching PORT2 300 kHz 1 MHz 100 MHz 500 MHz 1000 MHz 1500 MHz 2000 MHz 2500 MHz 2500 MHz 3000 MHz 3500 MHz 4000 MHz	5.2.3.1	4 12 18 18 18 18 18 18 18 10			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	Directivity PORT1 9 kHz 40 kHz 1 MHz 100 MHz 500 MHz 1000 MHz 1500 MHz 2000 MHz 2500 MHz 2500 MHz 3500 MHz 3500 MHz 4000 MHz	5.2.3.2	25 33 33 33 33 33 33 33 33 33 29 29			6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Item No.	Characteristics	Measurement according to section	Min. value	Actual value	Max. value	Unit
2 R&S ZVR 50 Ω R&S ZVRE 50 Ω test set passive	Directivity PORT2 9 kHz 40 kHz 1 MHz 100 MHz 500 MHz 1000 MHz 1500 MHz 2000 MHz 2500 MHz 2500 MHz 3000 MHz 3500 MHz 4000 MHz	5.2.3.2	25 33 33 33 33 33 33 33 33 33 29 29			68 68 68 68 68 68 68 68 68 68 68 68 68 6
2 R&S ZVR 50 Ω R&S ZVRE 50 Ω test set active	Directivity PORT1 300 kHz 1 MHz 5 MHz 5 MHz 500 MHz 1000 MHz 1500 MHz 2000 MHz 2500 MHz 2500 MHz 3000 MHz 3500 MHz 4000 MHz	5.2.3.2	5 15 33 33 33 33 33 33 33 29 29			68 68 68 68 68 68 68 68 68 68 68 68 68 6
2 R&S ZVR 50 Ω R&S ZVRE 50 Ω test set active	300 kHz 1 MHz 5 MHz 500 MHz 1000 MHz 1500 MHz 2000 MHz 2500 MHz 2500 MHz 3500 MHz 3500 MHz 4000 MHz	5.2.3.2	5 15 33 33 33 33 33 33 33 29 29			888888888888888888888888888888888888888
R&S ZVR 75 Ω R&S ZVRE 75 Ω test set passive	Directivity PORT1 9 kHz 40 kHz 1 MHz 100 MHz 500 MHz 1000 MHz 1500 MHz 2000 MHz 2500 MHz 2500 MHz 3000 MHz 3500 MHz 4000 MHz	5.2.3.2	25 33 33 33 33 33 33 33 33 33 20 20			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Item No.	Characteristics	Measurement according to section	Min. value	Actual value	Max. value	Unit
2 R&S ZVR 75 Ω R&S ZVRE 75 Ω test set passive	Directivity PORT2 9 kHz 40 kHz 1 MHz 100 MHz 500 MHz 1500 MHz 1500 MHz 2000 MHz 2500 MHz 2500 MHz 3000 MHz 3500 MHz 4000 MHz	5.2.3.2	25 33 33 33 33 33 33 33 33 20 20			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
2 R&S ZVR 75 Ω R&S ZVRE 75 Ω test set active	Directivity PORT1 300 kHz 1 MHz 5 MHz 5 MHz 500 MHz 1000 MHz 1500 MHz 2000 MHz 2500 MHz 2500 MHz 3000 MHz 3500 MHz 4000 MHz	5.2.3.2	5 15 33 33 33 33 33 33 33 20 20			68 68 68 68 68 68 68 68 68 68 68 68 68 6
R&S ZVR 75 Ω R&S ZVRE 75 Ω test set active	Directivity PORT2 300 kHz 1 MHz 5 MHz 500 MHz 1000 MHz 1500 MHz 2000 MHz 2500 MHz 2500 MHz 3000 MHz 3500 MHz 4000 MHz	5.3.2.2	5 15 33 33 33 33 33 33 33 20 20			용 용 용 용 용 용 용 용 용 용
3 Option R&S ZVR-B21	Attenuators ATT a1 f = 1 MHz 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB	5.2.3.3	-2 -0.1 -2 -2 -2 -2 -2 -2		2 0.1 2 2 2 2 2 2 2	68 88 88 88 88 88 88 88 88 88 88 88 88 8

Item No.	Characteristics	Measurement according to section	Min. value	Actual value	Max. value	Unit
3 Option R&S ZVR–B21	Attenuators ATT a1 f = 2000 MHz 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB	5.2.3.3	-2 -0.1 -2 -2 -2 -2 -2 -2		2 0.1 2 2 2 2 2 2 2	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
3 Option R&S ZVR–B21	Attenuators ATT a1 f = 4000 MHz 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB	5.2.3.3	-2 -0.1 -2 -2 -2 -2 -2 -2		2 0.1 2 2 2 2 2 2 2	68 68 68 68 68 68 68 68 68 68 68 68 68 6
3 Option R&S ZVR-B22	Attenuators ATT a2 f = 1 MHz 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB	5.2.3.3	-2 -0.1 -2 -2 -2 -2 -2 -2		2 0.1 2 2 2 2 2 2 2	dB dB dB dB dB dB dB dB
3 Option R&S ZVR-B22	Attenuators ATT a2 f = 2000 MHz 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB	5.2.3.3	-2 -0.1 -2 -2 -2 -2 -2 -2		2 0.1 2 2 2 2 2 2 2	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Item No.	Characteristics	Measurement according to section	Min. value	Actual value	Max. value	Unit
3 Option R&S ZVR–B22	Attenuators ATT a2 f = 4000 MHz 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB	5.2.3.3	-2 -0.1 -2 -2 -2 -2 -2 -2		2 0.1 2 2 2 2 2 2 2	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
3 Option R&S ZVR-B23	Attenuators ATT b1 f = 1 MHz 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB	5.2.3.3	-2 -0.1 -2 -2 -2 -2 -2 -2 -2		2 0.1 2 2 2 2 2 2 2 2	8 8 8 8 8 8 8 8
3 Option R&S ZVR–B23	Attenuators ATT b1 f = 2000 MHz 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB	5.2.3.3	-2 -0.1 -2 -2 -2 -2 -2 -2		2 0.1 2 2 2 2 2 2 2	68 68 68 68 68 68 68 68 68 68 68 68 68 6
3 Option R&S ZVR-B23	Attenuators ATT b1 f = 4000 MHz 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB	5.2.3.3	-2 -0.1 -2 -2 -2 -2 -2 -2		2 0.1 2 2 2 2 2 2 2	68 68 68 68 68 68 68

Item No.	Characteristics	Measurement according to section	Min. value	Actual value	Max. value	Unit
3 Option R&S ZVR-B24	Attenuators ATT b2 f = 1 MHz 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB	5.2.3.3	-2 -0.1 -2 -2 -2 -2 -2 -2		2 0.1 2 2 2 2 2 2 2	dB dB dB dB dB dB dB
3 Option R&S ZVR-B24	Attenuators ATT b2 f = 2000 MHz 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB	5.2.3.3	-2 -0.1 -2 -2 -2 -2 -2 -2		2 0.1 2 2 2 2 2 2 2	dB dB dB dB dB dB dB
3 Option R&S ZVR-B24	Attenuators ATT b2 f = 4000 MHz 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB	5.2.3.3	-2 -0.1 -2 -2 -2 -2 -2 -2		2 0.1 2 2 2 2 2 2 2	dB dB dB dB dB dB dB

Table 5-4 Performance Test Report: Crosstalk

Item No.	Characteristics	Measurement according to section	Min. value	Actual value	Max. value	Unit
1	Crosstalk PORT1	5.2.3.4				
R&S ZVR test set passive	20 kHz 201 kHz	3.2.3.4	-		-90 -120	dB dB
test set active/passive	300 kHz 2.5 MHz 5.1 MHz 500 MHz 1000 MHz 2200 MHz 2700 MHz 3000 MHz 3600 MHz 3900 MHz 4000 MHz		- - - - - - -		-120 -120 -130 -130 -130 -120 -120 -120 -110 -110 -110	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
1 R&S ZVR test set passive	Crosstalk PORT2 9 kHz 201 kHz	5.2.3.4	-		-90 -120	dB dB
test set active/passive	300 kHz 2.5 MHz 5.1 MHz 500 MHz 1000 MHz 2200 MHz 2700 MHz 3000 MHz 3300 MHz 3600 MHz 3900 MHz 4000 MHz		- - - - - - -		-120 -120 -130 -130 -130 -120 -120 -120 -110 -110 -110	68 68 68 68 68 68 68 68 68 68 68 68 68 6
1 R&S ZVRE test set passive	Crosstalk PORT1 9 kHz 201 kHz	5.2.3.4	_ _		-90 -120	dB dB
R&S ZVRL test set active/passive R&S ZVRL	300 kHz 2.5 MHz 5.1 MHz 500 MHz 1000 MHz 2200 MHz 3000 MHz 3300 MHz 3600 MHz 3900 MHz 4000 MHz		- - - - - - - -		-120 -120 -125 -125 -125 -115 -115 -115 -105 -105 -105 -105	68 68 68 68 68 68 68 68 68 68 68 68 68 6

Item No.	Characteristics	Measurement according to section	Min. value	Actual value	Max. value	Unit
1	Crosstalk PORT2	5.2.3.4				
R&S ZVR test set passive	9 kHz 201 kHz	0.2.0.1			-90 -120	dB dB
test set active/passive R&S ZVRL	300 kHz 2.5 MHz 5.1 MHz 500 MHz 1000 MHz 2200 MHz 2700 MHz 3000 MHz 3300 MHz 3600 MHz 3900 MHz 4000 MHz		- - - - - - - -		-120 -120 -125 -125 -125 -115 -115 -115 -105 -105 -105	dB dB dB dB dB dB dB dB dB
1 ZVR, ZVRE with Opt. ZVR-B10	Crosstalk PORT1	5.2.3.4				
test set passive	20 kHz 201 kHz		<u>-</u>		-75 -100	dB dB
test set active/passive	300 kHz 2.5 MHz 5.1 MHz 500 MHz 1000 MHz 2200 MHz 2700 MHz 3000 MHz 3300 MHz 3600 MHz 3900 MHz 4000 MHz		- - - - - - - -		-100 -100 -110 -110 -110 -110 -100 -100	dB dB dB dB dB dB dB dB dB dB dB

5.4 Measuring Instruments and Accessories (ZVC, ZVCE)

Item	Type of Instrument	Required Specifications	Appropriate Device	R&S Order No.	Use
1	Modulation analyzer	1 MHz to 5.2 GHz	R&S FMB Opt. R&S FMA-B8 Opt. R&S FMA-B10	0856.5005.52 0855.9007.55 0856.3502.52	5.2.1.1 5.2.1.4 5.2.1.5
2	Power meter	20 kHz to 8 GHz	R&S NRVD or R&S NRVS with sensor R&S NRV-Z51 R&S NRV-Z5	0857.8008.02 1020.1809.02 0857.9004.02 0828.3818.02	5.2.1.6 5.2.1.7
3	Attenuator	DC to 5.2 GHz	R&S RSG *) or R&S RSM	1009.4505.02 1060.3990.02	5.2.1.2 5.2.1.3 5.2.2.3
4	Calibration kit		R&S ZV-Z21 (50 Ω)	1085.7099.02	5.2.1.8 5.2.2.4 5.2.2.5 5.2.3.1 5.2.3.2 5.2.3.4
5	Pair of test port cables		R&S ZV-Z11 (50 Ω)	1085.6505.02	

^{*)} The attenuator is only used for roughly reducing the level of harmonics and spuriae and for linearity measurements. Therefore the attenuation and matching accuracy up to 8 GHz is not important (the attenuation error at 8 GHz and 30 dB is typically <2 dB)

5.5 Test Sequence (R&S ZVC, R&S ZVCE)

The rated specifications of the network analyzer are checked after a warm-up time of at least 30 minutes and after performing the reference oscillator adjustment, recording of detector characteristics and factory calibration. This makes sure that the guaranteed data are observed. The device settings quoted are *PRESET* settings.

The values given in the following sections are not guaranteed, only the technical data of the data sheet are binding.

5.5.1 Testing the Generator Specifications

5.5.1.1 Frequency Accuracy

Test equipment: R&S FMB with Option R&S FMA-B10

Test setup: > Connect FMB (operating mode COUNTER) to PORT1 of the network analyzer.

Settings at the network analyzer:

PRESET

CENTER Test frequency
SWEEP SINGLE POINT

SWEEP TIME 500 s

SOURCE POWER Maximum level MEAS INPUT a1

Measurement: > Set test frequencies according to test report.

Deviation: Frequency value displayed on the FMB minus

setting value.

Permissible deviation < 2ppm + 1ppm/year

5.5.1.2 Harmonics Suppression

Test equipment: Test cable, option R&S ZVR-B4, attenuator RSG or RSM

Test setup: ➤ Connect RSG (RSM) via test cable between PORT1 and PORT2.

Settings of the attenuator: 30 dB

Settings at the network analyzer:

PRESET

MODE FREQUENCY CONVERSION: SECOND

HARMONIC, THIRD HARMONIC

MARKER Test frequency

SOURCE POWER Pmax and –10 dBm (Pmax and 0 dBm with option

R&S ZVR-B10)

MEAS INPUT b2, DRIVE PORT 1

Measurement

- > Set test frequencies according to test report.
- > Measure at twice and three times the test frequency and calculate the difference from the measured value at the test frequency, report the worse of the two values.

Test frequency range	Harmonics suppression at	
	-10 dBm	Pmax
40 kHz to 8 GHz	-35 dBC	-25 dBC

With option R&S ZVR-B10:

	0 dBm	Pmax
20 kHz to 40 kHz	-30 dBc	-20 dBC
40 kHz to 20 MHz	-30 dBC	-22 dBC
20 MHz to 70 MHz	-35 dBC	-22 dBC
70 MHz to 2 GHz	-35 dBC	-25 dBC
2 GHz to 8 GHz	-32 dBC	-20 dBC

If a network analyzer ZVx is used the 2nd harmonic wave can be measured up to 4000 MHz fundamental only. Due to the strong reduction of the Output Stage amplification in the range above 8 GHz, a measurement at higher frequencies is not necessary.

5.5.1.3 Spurious Suppression

Test equipment: Test cable, option R&S ZVR-B4, attenuator RSG or RSM

Test setup: > Connect RSG (RSM) via test cable between PORT1 and PORT2.

Settings of the attenuator: 30 dB

Settings at the network analyzer:

PRESET

MODE FREQUENCY CONVERSION: ARBITRARY

Meas. frequency = INT SRC

REC = spurious wave

SOURCE POWER 0 dBm and -10 dBm

-3 dBm and -10 dBm at f > 6GHz

MEAS INPUT b2, DRIVE PORT 1

Reference measurement:

> Record measured values at the test frequencies.

Measurement: > Set test frequencies according to test report.

Mixer range up to 750 MHz: LO=RF+fo (fo = test frequency)

For fo < 50 MHz RF = 63.125 MHz fo = 50 MHz to < 150 MHz RF = 252.5 MHz RF = 1010 MHz RF = 1010 MHz

 \triangleright Perform measurements for f = 2*RF – LO and f = 3*RF – 2*LO.

Permissible spurious suppression < -40 dBc

Doubled range > 2000 MHz to 4000 MHz:

Perform measurements for f = fo/2 and f = 3fo/2

Permissible spurious suppression < -40 dBc

Quadrupled range > 4000 MHz to 8000 MHz:

> Perform measurements for f = fo/4, f = fo/2, f = 3fo/4 and f = 3fo/2

Permissible spurious suppression < -40 dBc

5.5.1.4 Phase Noise

Test equipment: Modulation meter FMB with Option B8

Test setup: ➤ Connect modulation meter (operating mode DEMOD PM PHASENOISE 10 kHz)

to PORT1 of the spectrum analyzer.

Settings at the network analyzer:

SWEEP SINGLE POINT
CENTER Test frequency
SOURCE POWER Maximum level

SWEEP TIME 200 s MEAS INPUT a1

Measurement

Set test frequencies according to test report, read the phase noise value on the modulation meter.

Permissible phase noise values:

20 kHz to 10 MHz < -110 dBc 10 MHz to 150 MHz < -100 dBc 150 MHz to 1 GHz < -90 dBc

1 GHz to 8 GHz $< -90 \text{ dBc} + 20 \times \log(f / \text{ GHz})$

(< -78 dBc at 4 GHz, <-72 dBc at 8 GHz)

5.5.1.5 Residual FM

est equipment: Modulation meter FMB

Test setup: ➤ Connect modulation meter (operating mode DEMOD FM DET RMS 10 Hz to 3

kHz) to PORT1 of the spectrum analyzer.

Settings at the network analyzer:

SWEEP SINGLE POINT
CENTER Test frequency
SOURCE POWER Maximum level

SWEEP TIME 200 s
MEAS INPUT

MEAS INPUT a1

Measurement > Set test frequencies according to test report, read the residual FM values on the modulation meter.

modulation meter.

Permissible residual FM:

4 GHz to 8 GHz < 40 Hz

5.5.1.6 Level Accuracy

Test equipment: Power meter NRVD with power sensor NRV-Z51 (50 Ω) or NRV-Z51 with adapter

50/75 Ω (75 Ω).

Test setup ➤ Connect power sensor to PORT1, PORT2 or OUTPUT a1 (only with Option R&S

ZVR-B25 Ext. Measurements) of the network analyzer.

Settings at the network analyzer:

SWEEP SINGLE POINT CENTER Test frequency

SOURCE POWER -10 dBm on Port 1 and Port 2

0 dBm with option ZVR-B10 on Port 1

SWEEP TIME 500 s

MEAS INPUT a1/a2

Measurement: > Set test frequencies according to test report, read the level on power meter.

Permissible deviations at PORT1/PORT2:

20 kHz to 2 MHz < 1 dB 2 MHz to 8 GHz < 0.5 dB

Permissible deviations at output a1 (Option ZVR-B25, External Measurements):

20 kHz to 2 MHz < 1 dB 2 MHz to 8 GHz < 0.5 dB

5.5.1.7 Level Linearity

Test equipment: Power meter NRVD with power sensor NRV-Z5

Test setup: > Connect power sensor to PORT1 or PORT2 of the network analyzer.

Settings at the network analyzer:

SWEEP SINGLE POINT CENTER Test frequency

SOURCE POWER Maximum value to minimum value

SWEEP TIME 200 s

MEAS INPUT a1
INPUT a2

Measurement: > Set test frequencies according to test report, read the level on the power meter.

Permissible deviations referred to the value at -10 dBm:

f = 40 kHz to 8 GHz

+10 to -5 dB < 0.4 dB -5 dB to -15 dB < 0.8 dB

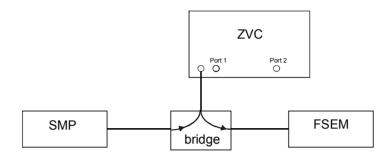
With option ZVR-B10 referred to the value at 0 dBm on PORT 1:

Var. 51, 52, 61, 62 20 kHz to 8 GHz

+6 dB to -9 dB < 0.4 dB -9 dB to -17 dB < 0.6 dB

Var. 50, 60

20 kHz to 8 GHz


+10 dB to -5 dB < 0.4 dB -5 dB to -15 dB < 0.6 dB

5.5.1.8 Matching to Output a1

(Only with Option R&S ZVR-B25, External Measurements)

Test equipment: Signal generator SMP, Spectrum Analyzer FSEM, VSWR-bridge

Test setup:

Settings at the network analyzer:

SWEEP SINGLE POINT CENTER Test frequency + Δf

SWEEP TIME 500 s NUMBER OF POINTS 3

SOURCE POWER -10 dBm

MODE EXTERNAL

Reference measurement:

> Use FSEM to record measured values with open circuit and short circuit at the test port of the SWR bridge and take the average.

Measurement:

Test frequency (SMP, FSEM): Δf : Return loss: 40 kHz to 8000 MHz -100 kHz > 8 dB

Alternative Measurement for ZVC (firmware version 1.50 and higher):

Test equipment: Test cable ZV-Z11, calibration kit ZV-Z21

Test setup: > Connect test cable between PORT2 and Output a1.

Settings at the network analyzer:

PRESET

SWEEP LOG SWEEP

MEAS S22

SERVICE FUNCTION 2.13.1.1.2 (reset after the measurement via 2.13.0)

MARKER Test frequency

Calibration: Perform one-port calibration at the end of the test cable (towards Output a1).

5.5.2 Testing the Receiver Specifications

5.5.2.1 Absolute Accuracy

Test equipment: Test cable ZV-Z11

Calibration: > Perform POWER CAL a1, a2.

Test setup: > Connect PORT1 to PORT 2 or Output a1 to INPUT b1 or to INPUT b2 via test

cable.

Settings at the network analyzer:

PRESET

SWEEP LOG SWEEP

MEAS INPUT a1, INPUT a2

MARKER MARKER CONT

MARKER Test frequency

CAL POWER UNCAL off

MEAS INPUT b1, DRIVE PORT2

INPUT b2, DRIVE PORT1

MODE EXTERNAL INPUT b1

INPUT b2

MARKER Marker frequency = test frequency

Reference measurement:

> Record output power of signal generator at the test frequencies using a power

meter.

Measurement: > Set test frequencies according to test report.

> Read out marker value on the ZVx, take into account reference value.

Permissible deviation from the applied nominal level (-10 dBm) at PORT 1 or PORT

2, respectively:

20 kHz to 8 GHz < 2 dB

Measurement: Permissible deviation from the applied nominal level (-10 dBm) at INPUT b1 or

INPUT b2, respectively:

20 kHz to 8 GHz < 2 dB

5.5.2.2 Linearity

Test equipment: Attenuator RSM

Test setup: Connect RSM between PORT1 and PORT2.

Settings at the network analyzer:

PRESET

CAL POWER UNCAL off

MODE SWEEP MODE: POWER SWEEP

SWEEP NUMBER OF POINTS = 51

SOURCE Test frequency **START** -25 dBm **STOP** Max IF BANDWIDTH 10 Hz

MEAS S12 (Linearity PORT1), S21 (Linearity PORT2)

FORMAT MAGNITUDE, PHASE **MARKER** MARKER CONT MARKER1 = -20 dBm

Measurement:

- > Set test frequencies according to test report.
- ➤ Perform reference measurement at a level of –20 dBm at the test frequency.

SOURCE POWER max. value to min. value

(0 dBm to -25 dBm at f = 20 kHz to 6 GHz,-3 dBm to -25 dBm at f = 6 GHz to 8 GHz)

> Read the marker values (magnitude and phase) on the network analyzer, take into account the reference value.

Values < source power min.:

RSM 10 dB SOURCE POWER -15 dBm New reference value

Marker value +

deviation of the previous measurement

New measurement:

-25 dBm **SOURCE POWER**

New measured value Marker value - new reference value **RSM** Increase attenuation by 10 dB,etc.

Model 50 and 60: Deviation from

	reference value (-20 dBm):	Permissible deviation:	
20 kHz to 10 MHz	+10 dB to +3 dB	<1 dB	<6°
	+ 3 dB to -20 dB	<0.2 dB	<2°
	-20 dB to -30 dB	<0.5 dB	< 4 °
	-30 dB to -45 dB	<1 dB	<6°
10 MHz to 4 GHz	+10 dB to +3 dB	<1 dB	<6°
	+ 3 dB to -50 dB	<0.2 dB	<1°
	− 50 dB to −60 dB	<0.5 dB	<4 °

	-60 dB to -70 dB (ZVCE) -60 dB to -75 dB (ZVC)	<1 dB <1 dB	<6° <6°
4 GHz to 8 GHz	+10 dB to +3 dB	<1 dB	<6°
	+ 3 dB to -45 dB	<0.2 dB	<2°
	45 dB to –55 dB (ZVCE)	<1 dB	<6°
	-45 dB to -60 dB (ZVC)	<1 dB	<6°
Model 51, 52, 61, 62:	Deviation from	De maio allelo alo	
	reference value (-10 dBm):	Permissible de	eviation:
300 kHz to 4 GHz	+ 3 dB to -70 dB	<0.2 dB	viation:
300 kHz to 4 GHz	, ,		
300 kHz to 4 GHz	+ 3 dB to -70 dB	<0.2 dB	<1°
300 kHz to 4 GHz 4 GHz to 8 GHz	+ 3 dB to -70 dB -70 dB to -80 dB (ZVCE)	<0.2 dB <1 dB	<1° <6°
	+ 3 dB to -70 dB -70 dB to -80 dB (ZVCE) -70 dB to -85 dB (ZVC)	<0.2 dB <1 dB <1 dB	<1° <6° <6°

Note:

Obtaining the linearity is made easier by using a set of Excel files available from Rohde & Schwarz. If the measured values are entered in the tables of these files, the linearity deviation is calculated automatically. Please consult our central service department (5SMF).

5.5.2.3 Noise Level

Test equipment: Test cable ZV-Z21, attenuator RSM

Calibration: > Connect PORT1 to PORT2 via test cable and attenuator

Attenuator 0 dB, SOURCE POWER -10 dBm

MEAS: INPUT b1 (INPUT b2)

> TRACE: DATA TO MEMORY: SHOW MATH

Test setup: > Connect PORT1 to PORT2 via test cable and attenuator. Attenuator 110 dB.

Settings at the network analyzer:

PRESET

SOURCE POWER -25 dBm

MEAS INPUT b1, INPUT b2

IF BANDWIDTH 3 kHz

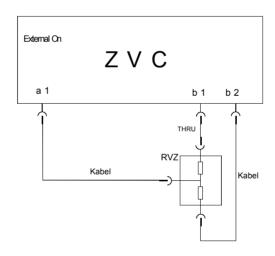
AVG SWEEP AVG 10 MARKER MARKER CONT

MARKER Marker frequency = test frequency

Measurement:

- > Set test frequencies according to test report.
- ➤ Read marker value on the network analyzer taking the SOURCE POWER (-10 dB) into account.

Permissible noise values:


	Model 50, 60	Model 51, 52, 61, 62
20 kHz to 200 kHz	≤ -70 dBm	≤ -64 dBm
200 kHz to 20 MHz	≤ -90 dBm	≤ -84 dBm
20 MHz to 3 GHz	≤ -100 dBm	≤ -94 dBm
3 GHz to 4 GHz	≤ -90 dBm	≤ -84 dBm
4 GHz to 8 GHz	≤ -80 dBm	≤ -74 dBm

5.5.2.4 Matching Input b1 and Input b2

(Only with Option R&S ZVR-B25, External Measurements)

Test equipment, Power Splitter RVZ, Calibration Kit ZV-Z21, Test Port Cable pair ZV-Z11 test set $50~\Omega$:

Test setup:

Block diagram for measuring the matching of input b1. For measurement of input b2, the connections from RVZ to Input b1/b2 are reversed.

Settings at the network analyzer:

MODE EXTERNAL
SWEEP LOG SWEEP
CENTER Test frequency
MEAS \$11/\$22

MARKER = Measured frequency

1043.0009.50 5.51 E-7

Reference measurement:

One-port calibration including THRU over the complete frequency range (for

measurement at b1 and b2 an extra calibration each).

Measurement:

> Set marker frequencies according to test report, measure b1 and b2.

> Record return loss values.

Return loss: > 8 dB

Alternative Measurement (firmware version 1.50 and higher):

Test equipment, Calibration kit R&S ZV-Z21, pair of test cables R&S ZV-Z11 test set 50 Ω :

Test setup: > Connect test PORT2 to Input b1 or PORT1 to Input b2 via test cable.

PRESET

SWEEP LOG SWEEP MARKER Test frequency

MEAS S22 for measurement Input b1

S11 for measurement Input b2

SERVICE FUNCTION 2.13.1.2.2 for measurement Input b1 (reset: 2.13.0)

2.13.1.4.2 for measurement Input b2 (reset: 2.13.0)

Calibration: Perform one-port calibration at the end of the test cable (towards Input b1 or Input b2).

Measurement: > Set test frequencies according to test report, measure b1 and b2.

> Take return loss values.

Return loss 20 kHz¹⁾ to 8 GHz: > 8 dB

¹⁾ Measurement below 20 kHz not required because the matching value is uniquely determined by the design at low frequencies. A possible fault is recognized when the level accuracy is measured.

5.5.3 Testing the Test Set Specifications

5.5.3.1 Matching to PORT1 and PORT2

Test equipment Calibration Kit ZV-Z21, Test Port Cable pair ZV-Z11

Test setup: Test cable between PORT1 and PORT2.

Settings at the ZVC or ZVCE, respectively:

PRESET

Test frequency:

SWEEP LOG SWEEP

MEAS S22 for matching PORT1

Return loss:

S11 for matching PORT2

MARKER Test frequency

Reference measurement:

Perform one-port calibration at the end of the cable over the complete frequency range (measurement PORT1: loosen cable from PORT1 and calibrate;

measurement PORT2: loosen cable from PORT2 and calibrate).

Measurement: > Set marker to test frequencies according to test report.

Record return loss values.

	Mod. 51, 61	Mod. 52, 62	Mod. 50, 60
20 kHz to 40 kHz	> 10 dB		> 6 dB
40 kHz to 300 kHz	> 10 dB		> 6 dB
300 kHz to 5 MHz	> 10 dB	> 6 dB	> 6 dB
5 MHz to 10 MHz	> 10 dB	> 16 dB	> 6 dB
10 MHz to 100 MHz	> 16 dB	> 16 dB	> 6 dB
100 MHz to 1 GHz	> 18 dB	> 18 dB	> 6 dB
1 GHz to 3 GHz	> 18 dB	> 18 dB	> 10 dB
3 GHz to 4 GHz	> 16 dB	> 16 dB	> 10 dB
4 GHz to 8 GHz	> 6 dB	> 6 dB	> 10 dB

5.5.3.2 Directivity

Test equipment MATCH (male) from calibration kit ZV-Z21

Test setup: Connect MATCH from calibration kit at PORT1 or PORT2.

Settings at the network analyzer:

PRESET

SWEEP LOG SWEEP MEAS S11 or S22 FORMAT MAGNITUDE

MARKER marker frequency = test frequency

Test frequency:

Reference measurement: Measurement:

Perform reflection normalization (CAL menu) at PORT1 or PORT2, respectively.

> Set marker to test frequencies according to test report.

Directivity:

Record directivity values.

40 kHz to 5 MHz	
	Mod. 51, 61
1.5 GHz to 4 GHz > 16 dB > 30 dB >	> 30 dB > 30 dB > 30 dB > 8 dB

5.5.3.3 Testing the Attenuators

Test equipment: Connecting cable ZV-Z11

Test setup: Connect cable between PORT1 and PORT2.

Settings at the network analyzer:

PRESET

SWEEP SINGLE POINT CENTER Test frequency

SOURCE POWER -20 dBm for ATT $xx \le 30$ dB

Maximum level for ATT xx > 30 dB

SOURCE ATTxx IF BANDWIDTH 10 Hz MEAS S21

for measurement STEP ATT a1 and STEP ATT b2

S12

for measurement STEP ATT a2 and STEP ATT b1

FORMAT MAGNITUDE

MARKER Marker frequency = test frequency

Reference measurement:

Perform reference measurements at the test frequencies and with an attenuation value of 10 dB.

Reference value = marker value

Measurement:

- > Set test frequencies according to test report.
- ➤ Set ATT xx to 0 dB and SOURCE POWER to -20 dBm. Increase the attenuation in steps of 10 dB up to 30 dB and read out the respective marker value.

Attenuation error = (marker value – reference value)

- ➤ Set ATT xx to 30 dB and SOURCE POWER to maximum value. Determine the difference from the measurement with SOURCE POWER –20 dBm.
- Increase the attenuation in steps of 10 dB up to 70 dB and read out the respective marker value.

Attenuation error = (marker value – reference value – difference value)

Permissible deviations:

ATT a1, a2 ATT b1, b2

< 2 dB < 2 dB

5.5.3.4 Crosstalk

Test equipment: 2 N-short-circuits

Test setup: Connect N-short-circuits to PORT1 and PORT2.

Settings at the network analyzer:

PRESET

SWEEP LOG SWEEP SOURCE POWER Maximum value

IF BANDWIDTH 1 Hz

AVERAGE POINT AVG 5

MEAS RATIO b1/b2, DRIVE PORT 2 (crosstalk port 1)

RATIO b2/b1, DRIVE PORT 1 (crosstalk port 2)

MARKER Marker frequency = test frequency

Reference measurement:

None

Measurement:

> Read out marker value on the network analyzer.

Permissible crosstalk values:

	Mod. 60	Mod. 50	Mod. 61, 62	Mod. 51, 52	Port2 to Port1 w. opt. ZVR-B10
20 kHz to 200 k	$Hz \leq -90 \text{ dB}$	≤ - 90 dB	≤ – 84 dB	≤ – 84 dB	\leq -75 dB
200 kHz to 5 M	Hz ≤ – 120 dB	\leq –120 dB	≤ –114 dB	≤ –114 dB	\leq -105 dB
5 MHz to 1 GHz	z ≤ – 130 dB	\leq –125 dB	\leq -124 dB	≤ – 119 dB	≤ – 110 dB
1 GHz to 3 GHz	≤ – 120 dB	≤ – 115 dB	≤ –114 dB	≤ – 109 dB	\leq -100 dB
3 GHz to 4 GHz	≤ – 110 dB	\leq –105 dB	≤ – 104 dB	\leq –99 dB	\leq –90 dB
4 GHz to 6 GHz	\leq -105 dB	\leq -100 dB	≤ - 99 dB	≤ – 94 dB	≤ – 90 dB
6 GHz to 8 GHz	z ≤ –100 dB	≤ – 95 dB	≤ – 94 dB	≤ – 89 dB	≤ – 85 dB

5.6 Performance Test Report (ZVC, ZVCE)

Table 5-5: Performance Test Report – Generator Specifications

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
1	Frequency accuracy					
	500 MHz 800 MHz 1500 MHz 2300 MHz 3000 MHz 3999 MHz 4999 MHz	5.2.1.1	-0.98 -1.58 -2.89 -4.58 -5.98 -7.98 -9.98		0.98 1.58 2.89 4.58 5.98 7.98 9.98	MHz MHz MHz MHz MHz MHz MHz
2	Harmon. suppression					
	Source Level: max. value 40 kHz 100 kHz 300 kHz 1 MHz 5 MHz 10 MHz 50 MHz 100 MHz 151 MHz 200 MHz 400 MHz 751 MHz 1001 MHz 1501 MHz 2500 MHz 2500 MHz 2400 MHz 3000 MHz 3000 MHz 4000 MHz 4000 MHz 4000 MHz 5000 MHz 6000 MHz 7000 MHz 8000 MHz	5.2.1.2	25 25 25 25 25 25 25 25 25 25 25 25 25 2			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	Source Level -10 dBm 20 kHz 100 kHz 300 kHz 1 MHz 5 MHz 10 MHz 100 MHz 100 MHz 151 MHz 200 MHz 400 MHz 751 MHz		35 35 35 35 35 35 35 35 35 35 35 35 35		- - - - - - -	6B 6

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
	1001 MHz 1501 MHz 2001 MHz 2500 MHz 3000 MHz 3500 MHz 4000 MHz 4010 MHz 5000 MHz 6000 NHz 7000 MHz 8000 MHz		35 35 35 35 35 35 35 35 35 35 35 35 35 3			dB dB dB dB dB dB dB dB dB dB
2	Harmon. Suppression with option ZVR-B10 Source Level: max. value 20 kHz 40 kHz 300 kHz 1 MHz 5 MHz 10 MHz 20 MHz 70 MHz 151 MHz 200 MHz 400 MHz 400 MHz 1501 MHz 2000 MHz 1501 MHz 2000 MHz 2500 MHz 3000 MHz 3500 MHz 3500 MHz 3500 MHz 4010 MHz 5000 MHz 4010 MHz 5000 MHz 6000 MHz 6000 MHz 7000 MHz 8000 MHz 8000 MHz	5.2.1.2	20 22 22 22 22 22 22 25 25 25 25 25 25 25			6B 6
	Source Level 0 dBm 20 kHz 40 kHz 300 kHz 1 MHz 5 MHz 10 MHz 20 MHz 70 MHz 151 MHz 200 MHz 400 MHz 751 MHz		30 30 30 30 30 30 35 35 35 35 35 35			dB dB dB dB dB dB dB dB dB dB dB

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
	1001 MHz 1501 MHz 2000 MHz 2500 MHz 3000 MHz 3500 MHz 4000 MHz 4010 MHz 5000 MHz 6000 NHz 7000 MHz 8000 MHz		35 35 35 32 32 32 32 32 32 32 32 32 32 32 32			dB dB dB dB dB dB dB dB dB
3	Spurious suppression					
	ZVx-frequ.: spur. wave: 20 kHz 63.105 MHz 63.855 MHz 100 kHz 63.025 MHz 62.925 MHz 1 MHz 62.125 MHz 61.125 MHz 10 MHz 53.125 MHz 50 MHz 202.5 MHz 152.5 MHz 100 MHz 152.5 MHz 152.5 MHz 100 MHz 152.5 MHz 152.5 MHz 150 MHz 860 MHz 150 MHz 860 MHz 250 MHz 760 MHz 350 MHz 660 MHz 350 MHz 660 MHz 350 MHz 660 MHz 350 MHz 460 MHz 450 MHz 360 MHz 450 MHz 360 MHz 2000 MHz 1000 MHz 2000 MHz 1000 MHz 2200 MHz 1000 MHz 2200 MHz 1100 MHz 2400 MHz 1300 MHz 2400 MHz 1300 MHz 2610 MHz 1305 MHz 2800 MHz 1305 MHz 2800 MHz 1400 MHz 2800 MHz 1400 MHz 2800 MHz 1400 MHz 2800 MHz	5.2.1.3	40 40 40 40 40 40 40 40 40 40 40 40 40 4			### ### ### ### ### ### ### ### ### ##

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
	3000 MHz		40 40 40 40 40 40 40 40 40 40 40 40 40 4			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	5400 MHz 8000 MHz 2000 MHz 4000 MHz 6000 MHz		40 40 40 40		- - - -	dB dB dB dB
4	Phase noise 10 MHz 150 MHz 1000 MHz 1970 MHz 3000 MHz 4000 MHz 8000 MHz	5.2.1.4	-		- 110 - 100 - 90 - 84 - 80.5 - 78 - 72	dBc dBc dBc dBc dBc dBc dBc

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
5	Residual FM	5.2.1.5				
	1 MHz 9.99 MHz 149.9 MHz 750 MHz 1000 MHz 2000 MHz 3000 MHz 4000 MHz 8000 MHz				1 1 2 5 5 10 20 20 40	Hz Hz Hz Hz Hz Hz Hz Hz
6	Level accuracy OUTPUT a1	5.2.1.6				
Option External Measurements	Level: -10 dBm 0 dBm w. opt. ZVR-B10					
	20 kHz 40 kHz 100 kHz 1 MHz 2 MHz 3 MHz 10 MHz 50 MHz 500 MHz 1000 MHz 1000 MHz 1500 MHz 2500 MHz 2500 MHz 2500 MHz 2500 MHz 2500 MHz 3500 MHz 3500 MHz 4000 MHz 4500 MHz 5500 MHz 6500 MHz 5500 MHz 7500 MHz 7500 MHz 7500 MHz		-1 -1 -1 -1 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5		1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	dB dB <td< td=""></td<>

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
6	Level accuracy PORT1 Level:	5.2.1.6	-1 -1 -1 -1 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5		1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	6B 6
6	Level accuracy PORT2 Level: -10 dBm 20 kHz 40 kHz 100 kHz 1 MHz 2 MHz 3 MHz 10 MHz 50 MHz 50 MHz 1000 MHz 1500 MHz 1500 MHz 2000 MHz 2500 MHz 3500 MHz 3500 MHz 3500 MHz 4000 MHz 4500 MHz 5500 MHz 6500 MHz 5500 MHz 5700 MHz 6700 MHz 6700 MHz 6700 MHz 6700 MHz 6700 MHz 7700 MHz 7700 MHz 7700 MHz	5.2.1.6	-1 -1 -1 -1 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5		1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	68 68 68 68 68 68 68 68 68 68 68 68 68 6

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
7	Level linearity Reference: –10 dBm	5.2.1.7				
	f = 40 kHz					
	10dB 5dB -5dB -10dB -15dB		9.6 4.6 -5.4 -10.8 -15.8		10.4 5.4 -4.6 -9.2 -14.2	dB dB dB dB
	f = 1 MHz					
	10dB 5dB -5dB -10dB -15dB		9.6 4.6 -5.4 -10.8 -15.8		10.4 5.4 -4.6 -9.2 -14.2	dB dB dB dB
	f = 100 MHz 10 dB 5 dB -5 dB -10 dB -15 dB		9.6 4.6 -5.4 -10.8 -15.8		10.4 5.4 -4.6 -9.2 -14.2	dB dB dB dB
	f = 4000 MHz 10 dB 5 dB -5 dB -10 dB -10 dB -15 dB		9.6 4.6 -5.4 -10.8 -15.8		10.4 5.4 -4.6 -9.2 -14.2	dB dB dB dB
	f = 8000 MHz 7 dB 5 dB -5 dB -10 dB -15 dB		6.6 4.6 -5.4 -10.8 -15.8		7.4 5.4 -4.6 -9.2 -14.2	dB dB dB dB

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
7	Level linearity Model 50 and 60 w. opt. ZVR-B10 Reference: 0 dBm	5.2.1.7				
	f = 20 kHz 10dB 5dB -5dB -10dB -15dB		9.6 4.6 -5.4 -10.6 -15.6		10.4 5.4 -4.6 -9.4 -14.4	dB dB dB dB dB
	f = 1 MHz 10dB 5dB -5dB -10dB -15dB		9.6 4.6 -5.4 -10.6 -15.6		10.4 5.4 -4.6 -9.4 -14.4	dB dB dB dB dB
	f = 100 MHz 10 dB 5 dB -5 dB -10 dB -15 dB		9.6 4.6 -5.4 -10.6 -15.6		10.4 5.4 -4.6 -9.2 -14.2	dB dB dB dB dB
	f = 4000 MHz 10 dB 5 dB -5 dB -10 dB -15 dB		9.6 4.6 -5.4 -10.8 -15.8		10.4 5.4 -4.6 -9.4 -14.4	dB dB dB dB dB
	f = 8000 MHz 7 dB 5 dB -5 dB -10 dB -15 dB		6.6 4.6 -5.4 -10.6 -15.6		7.4 5.4 -4.6 -9.4 -14.4	dB dB dB dB dB

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
7	Level linearity Model 51 and 61 w. opt. ZVR-B10 Reference: 0 dBm	5.2.1.7				
	f = 20 kHz					
	6 dB -4 dB -9 dB -14 dB -17 dB		5.6 -4.4 -9.4 -14.6 -17.6		6.4 -3.6 -8.6 -13.4 -16.4	dB dB dB dB dB
	f = 1 MHz					
	6 dB -4 dB -9 dB -14 dB -17 dB		5.6 -4.4 -9.4 -14.6 -17.6		6.4 -3.6 -8.6 -13.4 -16.4	dB dB dB dB dB
	f = 100 MHz 6 dB -4 dB -9 dB -14 dB -17 dB		5.6 -4.4 -9.4 -14.6 -17.6		6.4 -3.6 -8.6 -13.4 -16.4	dB dB dB dB
	f = 6000 MHz 6 dB -4 dB -9 dB -14 dB -17 dB		5.6 -4.4 -9.4 -14.6 -17.6		6.4 -3.6 -8.6 -13.4 -16.4	dB dB dB dB dB
	f = 8000 MHz 3 dB -4 dB -9 dB -14 dB -17 dB		2.6 -4.4 -9.4 -14.6 -17.6		3.4 -3.6 -8.6 -13.4 -16.4	dB dB dB dB

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
7	Level linearity Model 52 and 62 w. opt. ZVR-B10 Reference: 0 dBm	5.2.1.7				
	f = 300 kHz 6 dB -4 dB -9 dB -14 dB		5.6 -4.4 -9.4 -14.6 -17.6		6.4 -3.6 -8.6 -13.4 -16.4	dB dB dB dB
	-17 dB f = 1 MHz 6 dB -4 dB -9 dB -14 dB -17 dB		5.6 -4.4 -9.4 -14.6 -17.6		6.4 -3.6 -8.6 -13.4 -16.4	dB dB dB dB dB
	f = 100 MHz 6 dB -4 dB -9 dB -14 dB -17 dB		5.6 -4.4 -9.4 -14.6 -17.6		6.4 -3.6 -8.6 -13.4 -16.4	dB dB dB dB
	f = 6000 MHz 6 dB -4 dB -9 dB -14 dB -17 dB		5.6 -4.4 -9.4 -14.6 -17.6		6.4 -3.6 -8.6 -13.4 -16.4	dB dB dB dB
	f = 8000 MHz 3 dB -4 dB -9 dB -14 dB -17 dB		2.6 -4.4 -9.4 -14.6 -17.6		3.4 -3.6 -8.6 -13.4 -16.4	dB dB dB dB

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
8	Matching Output a1					
		5.2.1.8				
Only Option						
External	400 kHz		-		-8	dB
Measurements	2 MHz		-		-8	dB
	100 MHz		-		-8	dB
	300 MHz		-		-8 -8 -8	dB
	1000 MHz		-		-8	dB
	2000 MHz		-		-8 -8 -8 -8 -8 -8	dB
	3000 MHz		-		-8	dB
	3500 MHz		-		-8	dB
	4000 MHz		-		-8	dB
	4500 MHz		-		- 8	dB
	5000 MHz		-		-8	dB
	5500 MHz		-		-8	dB
	6000 MHz		-		-8	dB
	6500 MHz		-		-8 -8	dB
	7000 MHz		-		-8	dB
	7500 MHz		-		-8	dB
	8000 MHz		-		-8	dB

Table 5-6 Performance Test Report: Receiver Specifications

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
1	Absolute Accuracy PORT1 Level: -10 dBm	5.2.2.1				
Model 50, 51,60,61	20 kHz 40 kHz 100 kHz		-8 -8 -8		-12 -12 -12	dBm dBm dBm
All models	300 kHz 1 MHz 10 MHz 100 MHz 500 MHz 1500 MHz 1500 MHz 2500 MHz 2500 MHz 3500 MHz 3500 MHz 4500 MHz 4500 MHz 5500 MHz 5500 MHz 5500 MHz 6500 MHz 6700 MHz		* * * * * * * * * * * * * * * * * * * *		-12 -12 -12 -12 -12 -12 -12 -12 -12 -12	dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm
1	Absolute Accuracy PORT2 Level: -10 dBm	5.2.2.1				
Model 50, 51,60,61	20 kHz 40 kHz 100 kHz		-8 -8 -8		-12 -12 -12	dBm dBm dBm
All models	300 kHz 1 MHz 10 MHz 100 MHz 500 MHz 1500 MHz 1500 MHz 2500 MHz 2500 MHz 3500 MHz 3500 MHz 4500 MHz 4500 MHz 5500 MHz 6500 MHz 6500 MHz 7000 MHz 7500 MHz 8000 MHz		* * * * * * * * * * * * * * * * * * * *		-12 -12 -12 -12 -12 -12 -12 -12 -12 -12	dBm

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
1 Option	Absolute Accuracy Input b1 Level: -10 dBm	5.2.2.1				
Ext. Measureme nts	20 kHz 40 kHz 100 kHz 500 kHz 1 MHz 10 MHz 100 MHz 500 MHz 1000 MHz 1500 MHz 2000 MHz 2500 MHz 2500 MHz 3500 MHz 3500 MHz 4000 MHz 4500 MHz 5500 MHz 5500 MHz 5000 MHz 5500 MHz 5700 MHz 5700 MHz 6800 MHz 6800 MHz 7800 MHz 7800 MHz 7800 MHz				-12 -12 -12 -12 -12 -12 -12 -12 -12 -12	dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm
1 Option Ext. Measure- ments	Absolute Accuracy Input b2 Level: -10 dBm 20 kHz 40 kHz 100 kHz 500 kHz 1 MHz 10 MHz 100 MHz 500 MHz 1000 MHz 2500 MHz 2500 MHz 3500 MHz 3500 MHz 3500 MHz 4500 MHz 4500 MHz 5500 MHz 6500 MHz 5700 MHz 8000 MHz 8000 MHz	5.2.2.1			-12 -12 -12 -12 -12 -12 -12 -12 -12 -12	dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
3	Linearity model 50 and 60 Magnitude Reference: -20 dBm	5.2.2.2				
	f = 1.5 MHz					
	10 dB 3 dB -5 dB		-1 -0.2 -0.2		1 0.2 0.2	dB dB dB
3	Linearity model 50 and 60 Phase	5.2.2.2				
	f = 1.5 MHz					
	10 dB 3 dB -5 dB		-6 -2 -2		6 2 2	degrees degrees degrees
3	Linearity model 50 and 60 Magnitude	5.2.2.2				
	f = 4000 MHz					
	10 dB 3 dB -5 dB		-1 -0.2 -0.2		1 0.2 0.2	dB dB dB
3	Linearity model 50 and 60 Phase	5.2.2.2				
	f = 4000 MHz					
	10 dB 3 dB –5 dB		-6 -1 -1		6 1 1	degrees degrees degrees
3	Linearity model 50 and 60 Magnitude	5.2.2.2				
	f = 8000 MHz					
	10 dB 3 dB -5 dB		-1 -0.2 -0.2		1 0.2 0.2	dB dB dB
3	Linearity model 50 and 60 Phase	5.2.2.2				
	f = 8000 MHz					
	10 dB 3 dB –5 dB		-6 -1 -1		6 1 1	degrees degrees degrees

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
3	Linearity model 51, 52, 61, 62 Magnitude Reference: -10 dBm	5.2.2.2				
	f = 1.5 MHz					
	3 dB -5 dB -15 dB		-0.2 -0.2 -0.2		0.2 0.2 0.2	dB dB dB
3	Linearity model 51, 52, 61, 62 Phase	5.2.2.2				
	f = 1.5 MHz					
	3 dB -5 dB -15 dB		-1 -1 -1		1 1 1	degrees degrees degrees
3	Linearity model 51, 52, 61, 62 Magnitude	5.2.2.2				
	f = 4000 MHz					
	3 dB -5 dB -15 dB		-0.2 -0.2 -0.2		0.2 0.2 0.2	dB dB dB
3	Linearity model 51, 52, 61, 62 Phase	5.2.2.2				
	f = 4000 MHz					
	3 dB -5 dB -15 dB		-1 -1 -1		1 1 1	degrees degrees degrees
3	Linearity model 51, 52, 61, 62 Magnitude	5.2.2.2				
	f = 8000 MHz					
	3 dB -5 dB -15 dB		-0.2 -0.2 -0.2		0.2 0.2 0.2	dB dB dB
3	Linearity model 51, 52, 61, 62 Phase	5.2.2.2				
	f = 8000 MHz					
	3 dB -5 dB -15 dB		-2 -2 -2		2 2 2	degrees degrees degrees

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
4	Noise level b1 Model 50 and 60	5.2.2.3				
	21 kHz 150 kHz 200 kHz		- -		-70 -70 -90	dBm dBm dBm
	300 kHz 19 MHz		- -		_90 _90	dBm dBm
	20 MHz 100 MHz 200 MHz		_ _ _		-100 -100 -100	dBm dBm dBm
	700 MHz 1000 MHz 2000 MHz		_ _ _		-100 -100 -100	dBm dBm dBm
	3000 MHz 4000 MHz 5000 MHz		_ _ _		-100 -90 -80	dBm dBm dBm
	6000 MHz 7000 MHz 8000 MHz		- - -		-80 -80 -80	dBm dBm dBm
4	Noise level b2 Model 50 and 60	5.2.2.3				
	21 kHz 150 kHz		_ _		-70 -70	dBm dBm
	200 kHz 300 kHz 19 MHz		- - -		-90 -90 -90	dBm dBm dBm
	20 MHz 100 MHz 200 MHz		- -		-100 -100 -100	dBm dBm dBm
	700 MHz 1000 MHz 2000 MHz		_ _		-100 -100 -100	dBm dBm dBm
	3000 MHz 4000 MHz		_ _ _		-100 -90	dBm dBm
	5000 MHz 6000 MHz 7000 MHz 8000 MHz		_ _ _		-80 -80 -80 -80	dBm dBm dBm dBm
4	Noise level b1 Model 51, 52, 61, 62	5.2.2.3				ub
Model 51 and 61	21 kHz 150 kHz 200 kHz		- - -		-64 -64 -84	dBm dBm dBm
All models	300 kHz 19 MHz		_ _		-84 -84	dBm dBm
	20 MHz 100 MHz 200 MHz		_ _ _		-94 -94 -94	dBm dBm dBm
	700 MHz 1000 MHz 2000 MHz		- -		-94 -94 -94	dBm dBm dBm
	3000 MHz 4000 MHz		- -		_94 _84	dBm dBm
	5000 MHz 6000 MHz 7000 MHz 8000 MHz		- - -		_74 _74 _74 _74	dBm dBm dBm dBm

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
4	Noise level b2 Model 51, 52, 61, 62	5.2.2.3				
Model 51 and 61	21 kHz 150 kHz 200 kHz		- - -		-64 -64 -84	dBm dBm dBm
All models	300 kHz 19 MHz 20 MHz 100 MHz 200 MHz 700 MHz 1000 MHz 1000 MHz 3000 MHz 3000 MHz 4000 MHz 5000 MHz 6000 MHz 7000 MHz 8000 MHz		- - - - - - - -		-84 -84 -94 -94 -94 -94 -94 -94 -84 -74 -74 -74	dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm
5	Matching Input b1	5.2.2.4				
Option External Measure- ments	20 kHz 1.9 MHz 2 MHz 100 MHz 1000 MHz 2000 MHz 3000 MHz 4000 MHz 5000 MHz 6000 MHz 7000 MHz 8000 MHz		- - - - - -		-8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
5	Matching Input b2	5.2.2.4				
Option External Measure- ments	20 kHz 1.9 MHz 2 MHz 100 MHz 1000 MHz 2000 MHz 3000 MHz 4000 MHz 5000 MHz 6000 MHz 7000 MHz 8000 MHz		- - - - - - -		-8 -8 -8 -9 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Table 5-7 Performance Test Report: Test Set Specifications

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
1	Matching PORT1 Model 50 and 60	5.2.3.1				
	20 kHz 40 kHz 100 kHz 100 MHz 100 MHz 500 MHz 1500 MHz 1500 MHz 2500 MHz 2500 MHz 3000 MHz 3500 MHz 4500 MHz 4500 MHz 4500 MHz 5500 MHz 5500 MHz 5700 MHz 6700 MHz				-6 -6 -6 -6 -6 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10	dB dB dB dB dB dB dB dB dB dB dB dB dB d
1	Matching PORT2 Model 50 and 60	5.2.3.1	-		-6	dB
	40 kHz 100 kHz 10 MHz 100 MHz 100 MHz 1000 MHz 1000 MHz 1500 MHz 2500 MHz 2500 MHz 3500 MHz 3500 MHz 4000 MHz 4500 MHz 5500 MHz 6500 MHz 6500 MHz 6500 MHz 7000 MHz 7500 MHz		- - - - - - - - - - - - - - - - - - -		-6 -6 -6 -6 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10	dB dB dB dB dB dB dB dB dB dB dB dB dB d

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
1	Matching PORT1 Model 51 and 61	5.2.3.1				
	40 kHz 100 kHz 100 MHz 100 MHz 1000 MHz 1500 MHz 1500 MHz 2500 MHz 3500 MHz 3500 MHz 4500 MHz 4500 MHz 5500 MHz 5500 MHz 6500 MHz 6500 MHz 7500 MHz 7500 MHz 8000 MHz 7500 MHz				-10 -10 -16 -18 -18 -18 -18 -18 -18 -18 -16 -6 -6 -6 -6 -6 -6 -6	dB d
1	Matching PORT2 Model 51 and 61 40 kHz 100 kHz 100 MHz 100 MHz 500 MHz 1500 MHz 2500 MHz 2500 MHz 3000 MHz 3500 MHz 4000 MHz 4500 MHz 4500 MHz 4500 MHz 6500 MHz 5500 MHz 6500 MHz 6700 MHz 6700 MHz 6700 MHz 6800 MHz	5.2.3.1	-		-10 -10 -16 -18 -18 -18 -18 -18 -18 -16 -16 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6	dB dB dB dB dB dB dB dB dB dB dB dB dB d

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
1	Matching PORT1 Model 52 and 62	5.2.3.1				
	300 kHz 5 MHz 100 MHz 1000 MHz 1500 MHz 1500 MHz 2500 MHz 2500 MHz 3000 MHz 3000 MHz 4000 MHz 4500 MHz 5500 MHz 5500 MHz 5000 MHz 5500 MHz 6500 MHz 6700 MHz 6700 MHz 6700 MHz 77000 MHz 77000 MHz 7800 MHz				-6 -16 -18 -18 -18 -18 -16 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6	dB dB dB dB dB dB dB dB dB dB dB dB dB d
1	Matching PORT2 Model 52 and 62 300 kHz 5 MHz 100 MHz 1000 MHz 1500 MHz 2000 MHz 2500 MHz 3500 MHz 3500 MHz 4500 MHz 4500 MHz 5500 MHz 5500 MHz 6500 MHz 6500 MHz 6700 MHz	5.2.3.1			-6 -16 -18 -18 -18 -18 -16 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6	68 68 68 68 68 68 68 68 68 68 68 68 68 6

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
2	Directivity PORT1 Model 50 and 60	5.2.3.2				
	1500 MHz 2000 MHz 2500 MHz 3000 MHz 3500 MHz 4000 MHz 4500 MHz 5500 MHz 6000 MHz 6500 MHz 7000 MHz 7500 MHz 7500 MHz		- - - - - - -		-16 -16 -16 -16 -16 -16 -16 -16 -16 -16	dB dB dB dB dB dB dB dB dB dB dB dB dB
2	Directivity PORT2 Model 50 and 60	5.2.3.2				
	1500 MHz 2000 MHz 2500 MHz 3000 MHz 3500 MHz 4000 MHz 4500 MHz 5500 MHz 6000 MHz 6500 MHz 7000 MHz 7500 MHz 7500 MHz		- - - - - - - -		-16 -16 -16 -16 -16 -16 -16 -16 -16 -16	dB dB dB dB dB dB dB dB dB dB dB dB dB
2	Directivity PORT1 Model 51, 52, 61, 62	5.2.3.2				
Model 51 and 61 Model 51, 52, 61, 62	40 kHz 5 MHz 500 MHz 1000 MHz 1500 MHz 2000 MHz 2500 MHz 3000 MHz 3500 MHz 4000 MHz 4500 MHz 5500 MHz 5500 MHz 6500 MHz 6700 MHz 77000 MHz 7800 MHz		-		-30 -30 -30 -30 -30 -30 -30 -30	dB dB

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
2	Directivity PORT2 Model 51, 52, 61, 62	5.2.3.2				
Model 51 and 61	40 kHz		_		-30	dB
Model 51, 52, 61, 62	5 MHz 500 MHz 1000 MHz 1500 MHz 2000 MHz 2500 MHz 3500 MHz 4000 MHz 4500 MHz 5500 MHz 5500 MHz 6000 MHz 6500 MHz 7000 MHz 7000 MHz 8000 MHz				-30 -30 -30 -30 -30 -30 -30 -30 -30 -8 -8 -8 -8 -8 -8 -8 -8	6B 6
3	Attenuators	5.2.3.3				
Option ZVR–B21	ATT a1 f = 1 MHz					
	0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB		-2 -0.1 -2 -2 -2 -2 -2 -2		2 0.1 2 2 2 2 2 2 2	dB dB dB dB dB dB dB
3 Ontion	Attenuators ATT a1	5.2.3.3				
Option ZVR-B21	f = 2000 MHz					
	0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB		-2 -0.1 -2 -2 -2 -2 -2 -2		2 0.1 2 2 2 2 2 2 2 2	dB dB dB dB dB dB dB

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
3 Option R&S ZVR–B21	Attenuators ATT a1 f = 4000 MHz 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB	5.2.3.3	-2 -0.1 -2 -2 -2 -2 -2 -2		2 0.1 2 2 2 2 2 2 2	dB dB dB dB dB dB dB
3 Option R&S ZVR–B21	Attenuators ATT a1 f = 8000 MHz 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB	5.2.3.3	-2 -0.1 -2 -2 -2 -2 -2 -2		2 0.1 2 2 2 2 2 2 2	dB dB dB dB dB dB dB
3 Option R&S ZVR–B22	Attenuators ATT a2 f = 1 MHz 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB	5.2.3.3	-2 -0.1 -2 -2 -2 -2 -2 -2		2 0.1 2 2 2 2 2 2 2	dB dB dB dB dB dB dB
3 Option R&S ZVR–B22	Attenuators ATT a2 f = 2000 MHz 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB	5.2.3.3	-2 -0.1 -2 -2 -2 -2 -2 -2		2 0.1 2 2 2 2 2 2 2	dB dB dB dB dB dB dB

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
3 Option R&S ZVR–B22	Attenuators ATT a2 f = 4000 MHz 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB	5.2.3.3	-2 -0.1 -2 -2 -2 -2 -2 -2 -2		2 0.1 2 2 2 2 2 2 2	dB dB dB dB dB dB
3 Option R&S ZVR–B22	Attenuators ATT a2 f = 8000 MHz 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB	5.2.3.3	-2 -0.1 -2 -2 -2 -2 -2 -2 -2		2 0.1 2 2 2 2 2 2 2	dB dB dB dB dB dB dB
3 Option R&S ZVR–B23	Attenuators ATT b1 f = 1 MHz 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB	5.2.3.3	-2 -0.1 -2 -2 -2 -2 -2 -2		2 0.1 2 2 2 2 2 2 2	dB dB dB dB dB dB dB
3 Option R&S ZVR–B23	Attenuators ATT b1 f = 2000 MHz 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB	5.2.3.3	-2 -0.1 -2 -2 -2 -2 -2 -2		2 0.1 2 2 2 2 2 2 2	dB dB dB dB dB dB dB

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
3 Option R&S ZVR–B23	Attenuators ATT b1 f = 4000 MHz 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB	5.2.3.3	-2 -0.1 -2 -2 -2 -2 -2 -2		2 0.1 2 2 2 2 2 2 2	dB dB dB dB dB dB dB
3 Option R&S ZVR–B23	Attenuators ATT b1 f = 8000 MHz 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB	5.2.3.3	-2 -0.1 -2 -2 -2 -2 -2 -2		2 0.1 2 2 2 2 2 2 2	dB dB dB dB dB dB dB
3 Option R&S ZVR–B24	Attenuators ATT b2 f = 1 MHz 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB	5.2.3.3	-2 -0.1 -2 -2 -2 -2 -2 -2		2 0.1 2 2 2 2 2 2 2	dB dB dB dB dB dB dB
3 Option R&S ZVR–B24	Attenuators ATT b2 f = 2000 MHz 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB	5.2.3.3	-2 -0.1 -2 -2 -2 -2 -2 -2		2 0.1 2 2 2 2 2 2 2	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
3 Option R&S ZVR-B24	Attenuators ATT b2 f = 4000 MHz 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB	5.2.3.3	-2 -0.1 -2 -2 -2 -2 -2 -2		2 0.1 2 2 2 2 2 2 2	dB dB dB dB dB dB dB
3 Option R&S ZVR-B24	Attenuators ATT b2 f = 8000 MHz 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB	5.2.3.3	-2 -0.1 -2 -2 -2 -2 -2 -2		2 0.1 2 2 2 2 2 2 2	dB dB dB dB dB dB

Table 5-8 Performance Test Report: Crosstalk

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
1	Crosstalk PORT1 Model 50	5.2.4				
	20 kHz 201 kHz 2.5 MHz 5.1 MHz 500 MHz 1000 MHz 2200 MHz 2700 MHz 3000 MHz 3300 MHz 3600 MHz 3600 MHz 4000 MHz 4500 MHz 4500 MHz 5500 MHz 5500 MHz 6500 MHz 6700 MHz		- - - - - - - - - - - - - - - - - - -		-90 -120 -120 -125 -125 -125 -115 -115 -115 -105 -105 -105 -100 -100	68 68 68 68 68 68 68 68 68 68 68 68 68 6
1	Crosstalk PORT2 Model 50 20 kHz 201 kHz 2.5 MHz 5.1 MHz 5.00 MHz 1000 MHz 2200 MHz 2700 MHz 3000 MHz 3300 MHz 3600 MHz 3600 MHz 4000 MHz 4500 MHz 4500 MHz 5500 MHz 5500 MHz 6500 MHz 6500 MHz 7500 MHz 7500 MHz 7500 MHz	5.2.4	- - - - - - - - - - - - -		-90 -120 -120 -125 -125 -125 -115 -115 -115 -105 -105 -105 -100 -100	68 68 68 68 68 68 68 68 68 68 68 68 68 6

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
1	Crosstalk PORT1 Model 60	5.2.4				
	20 kHz 201 kHz 2.5 MHz 5.1 MHz 500 MHz 1000 MHz 2200 MHz 2700 MHz 3000 MHz 3300 MHz 3600 MHz 3900 MHz 4000 MHz 4500 MHz 5500 MHz 5500 MHz 6500 MHz 6500 MHz 7500 MHz 7500 MHz 8000 MHz		- - - - - - - - - - - - - - - - - - -		-90 -120 -130 -130 -130 -130 -120 -120 -120 -110 -110 -110 -110 -105 -105 -105 -10	6B 6
1	Crosstalk PORT2 Model 60	5.2.4				
	20 kHz 201 kHz 2.5 MHz 5.1 MHz 500 MHz 1000 MHz 2200 MHz 2700 MHz 3000 MHz 3000 MHz 3600 MHz 3600 MHz 3900 MHz 4000 MHz 4500 MHz 5500 MHz 6000 MHz 6500 MHz 6500 MHz 6700 MHz 6700 MHz 6800 MHz 6800 MHz		- - - - - - - - - - - - - - - - - - -		-90 -120 -120 -130 -130 -130 -130 -120 -120 -120 -110 -110 -110 -110 -11	68 68 68 68 68 68 68 68 68 68 68 68 68 6

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
1	Crosstalk PORT1 Model 51 and 52	5.2.4				
Model 51	20 kHz		_		-84	dB
Model 51 and 52	300 kHz 2.5 MHz 5.1 MHz 500 MHz 1000 MHz 2200 MHz 2700 MHz 3000 MHz 3300 MHz 3600 MHz 3600 MHz 4000 MHz 4500 MHz 4500 MHz 5500 MHz 6500 MHz 6500 MHz 7000 MHz 7500 MHz 7800 MHz		- - - - - - - - - - -		-114 -119 -119 -119 -119 -109 -109 -109 -99 -99 -99 -99 -94 -94 -94 -94 -94 -89 -89 -89	dB d
1	Crosstalk PORT2 Model 51 and 52	5.2.4				
Model 51 Model 51 and 52	20 kHz 300 kHz 2.5 MHz 5.1 MHz 500 MHz 1000 MHz 2200 MHz 2700 MHz 3000 MHz 3300 MHz 3600 MHz 3900 MHz 4500 MHz 4500 MHz 5500 MHz 5500 MHz 6000 MHz 6500 MHz 7000 MHz 7500 MHz 7800 MHz		- - - - - - - - - - - - - -		-84 -114 -119 -119 -119 -119 -109 -109 -109 -99 -99 -99 -99 -99 -94 -94 -94 -94 -89 -89 -89 -89	dB d

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
1	Crosstalk PORT1 Model 61 and 62	5.2.4				
Model 61	20 kHz		_		-84	dB
Model61 and 62	300 kHz 2.5 MHz 5.1 MHz 5.1 MHz 1000 MHz 1000 MHz 2200 MHz 2700 MHz 3000 MHz 3300 MHz 3600 MHz 3900 MHz 4500 MHz 4500 MHz 5500 MHz 6500 MHz 6500 MHz 7000 MHz 7500 MHz 8000 MHz		- - - - - - - - - - - - - - - - - - -		-114 -114 -124 -124 -124 -114 -114 -114 -104 -104 -104 -99 -99 -99 -99 -99 -99 -99 -9	dB dB
1	Crosstalk PORT2 Model 61 and 62	5.2.4				
Model 61	20 kHz		_		-84	dB
Model 61 and 62	300 kHz 2.5 MHz 5.1 MHz 500 MHz 1000 MHz 2200 MHz 2700 MHz 3000 MHz 3300 MHz 3600 MHz 3900 MHz 4000 MHz 4500 MHz 5500 MHz 5000 MHz 6500 MHz 6500 MHz 7000 MHz 7000 MHz 7000 MHz		- - - - - - - - - - - - - - - - - - -		-114 -114 -124 -124 -124 -114 -114 -114 -104 -104 -104 -99 -99 -99 -99 -99 -99 -99 -9	dB d

Item No.	Characteristics	Measuremt. according to section	Min. value	Actual value	Max. value	Unit
1 Model 50, 51	Crosstalk PORT1 w. option ZVR-B10	5.2.4				
Model 50, 51, 60, 61	20 kHz		_		-75	dB
All Models	300 kHz 2.5 MHz 5.1 MHz 500 MHz 1000 MHz 2200 MHz 2700 MHz 3000 MHz 3300 MHz 3600 MHz 4000 MHz 4500 MHz 5500 MHz 5500 MHz 6500 MHz 6500 MHz 7500 MHz 7500 MHz 7500 MHz		- - - - - - - - - - - - -		-105 -105 -110 -110 -110 -110 -100 -100	dB dB dB dB

5 Checking of Rated Specifications

5.1 Measuring Equipment and Accessories (ZVM, ZVK)

Item	Instrument type	Required specifications	Suitable instru- ment	R&S Order No.	Application
1	Spectrum analyzer	10 MHz to 20 GHz (ZVM) 10 MHz to 40 GHz (ZVK), IF output	FSEK30 with FSE-B22	1088.3494.35 1106.3480.02	5.2.1.1 5.2.1.2 5.2.1.3 5.2.1.4 5.2.1.5 5.2.1.7
2	Modulation analyzer	10 MHz to 5.2 GHz	FMB with opt. FMA-B8	856.5005.52 855.9007.55	5.2.1.4 5.2.1.5
3	Power meter	10 MHz to 20 GHz (ZVM) 10 MHz to 40 GHz (ZVK)	NRVD + sensor NRV-Z52 (ZVM), NRV-Z55 (ZVK)	857.8008.02 857.9204.02 1081.2005.02	5.2.1.6 5.2.2.1
4	Signal generator	10 MHz to 20 GHz (ZVM) 10 MHz to 40 GHz (ZVK)	SMR40 with option SMR-B11	1104.0002.40 1104.4250.02	5.2.2.1
5	Power splitter	10 MHz to 20 GHz (ZVM) 10 MHz to 40 GHz (ZVK)	Agilent 11667B Weinschel 1534		5.2.2.1
6	Attenuator pad 20 dB PC2.92mm or SMA	10 MHz to 20 GHz (ZVM) 10 MHz to 40 GHz (ZVK)	Weinschel 54-20		5.2.2.2
7	Calibration kit	10 MHz to 20 GHz (ZVM) 10 MHz to 40 GHz (ZVK)	ZV-Z32 (ZVM) ZV-Z34 (ZVK)	1128.3501.02 1128.3530.02	5.2.2.3 5.2.2.4 5.2.3.1 5.2.3.2 5.2.3.3 5.2.3.5
8	Pair of test cables	10 MHz to 20 GHz (ZVM) 10 MHz to 40 GHz (ZVK)	ZV-Z14 (ZVM) ZV-Z15 (ZVK)	1134.4093.02 1134.4193.02	5.2.2.2 5.2.2.3 5.2.2.4 5.2.3.1 5.2.3.2 5.2.3.4

5.2 Test Procedure (ZVM & ZVK)

The rated specifications of the network analyzer are checked after a warm-up time of at least one hour. Only this warmup ensures that the specifications are complied with.

The values stated in the following are not guaranteed. Only the data sheet specifications shall be binding.

In order to guarantee the specified data, the measured value has to be < specification - expanded uncertainty (k = 2, confidence level of 95%).

The expanded uncertainty (k = 2) obtained with the proposed measuring equipment / test procedures is given in the test record. Influences, which are exclusively within the user's responsibility (e.g. cable attenuation in harmonics measurements), are not taken into account in the specified measurement uncertainty and should be at least estimated by the user.

In case of a deviating test configuration, the user has to calculate the corresponding measurement uncertainties.

5.2.1 Checking the Generator Specifications

5.2.1.1 Frequency Deviation

Test equipment: FSEK30, test cable

Test setup: > Connect FSEK30 (Marker COUNTER mode, resolution 1 Hz) to PORT1 of the

network analyzer.

Settings on network analyzer:

PRESET

CENTER Measurement frequency

SWEEP SINGLE POINT

SWEEP TIME 255 s

SOURCE POWER Level: -10 dBm MEAS INPUT a1

Measurement: > Set measurement frequencies according to test record.

Deviation: Frequency value displayed on FSEK30 minus

setting value.

5.2.1.2 Harmonics

Test equipment: FSEK30, test cable

Test setup: > Connect FSEK30 (delta-marker mode) to PORT1 (PORT2) of the network ana-

lyzer.

Settings on network analyzer:

PRESET

CENTER Measurement frequency

SWEEP SINGLE POINT

SWEEP TIME 255 s

SOURCE POWER ZVM:-10 dBm or maximum level (5 dBm / 2 dBm)

ZVK:-10 dBm or maximum level (0 dBm /-5 dBm)

MEAS INPUT a1 (INPUT a2)

Reference measurement:

> Set marker 1 to generator frequency (fundamental)

Measurement: > Set delta-marker frequency according to test record.

> Measure at double or triple measurement frequency, enter the poorer of the two values in the record.

1127.8500.60 5.3 E-2

5.2.1.3 Spurious

Test equipment: FSEK30, test cable

Test setup: > Connect FSEK30 (delta-marker mode) to PORT1 of the network analyzer.

Settings on network analyzer:

PRESET

CENTER Measurement frequency

SWEEP SINGLE POINT

SWEEP TIME 255 s

SOURCE POWER -20 dBm (minimum level)

MEAS INPUT a1

Reference measurement:

Set marker 1 to generator frequency (fundamental)

Measurement:

> Set measurement frequencies according to test record.

Mixing range up to 750 MHz: LO = RF + fo (fo = measurement frequency)

For fo < 50 MHz RF = 63.125 MHz fo = 50 MHz to < 150 MHz RF = 252.5 MHz fo = 150 MHz to 750 MHz RF = 1010 MHz

 \triangleright Perform measurements for f = 2 x RF - LO and f = 3 x RF - 2 x LO.

Double range > 2 GHz to 4 GHz:

 \triangleright Perform measurements for f = fo/2 and f = 3fo/2

Quadruple range > 4 GHz to 8 GHz:

 \triangleright Perform measurements for f = n x fo/4, n = 1,2,3,5,6,7

Eightfold range > 8 GHz to 16 GHz:

 \triangleright Perform measurements for f = n x fo/8, n = 1,2,3 to 7, 9 to 15

Tenfold range > 16 GHz to 20 GHz (ZVM), to 32 GHZ (ZVK):

 \triangleright Perform measurements for f = n x fo/16, n = 1,2,3 to 15, 17 to 31

Thirtytwofold range > 32 GHz to 40 GHz (ZVK):

 \triangleright Perform measurements for f = n x fo/32, n = 1,2,3 to 31, 33 to 40

5.2.1.4 Phase Noise

Test equipment: Modulation meter FMB with option FMA-B8, FSEK30, BNC connecting cable

Test setup: > Connect modulation meter (mode DEMOD PM PHASENOISE 10 kHz) to PORT1

of the network analyzer.

Settings on network analyzer:

PRESET

SWEEP SINGLE POINT

CENTER Measurement frequency SOURCE POWER 2 dBm (ZVM), -9 dBm (ZVK)

SWEEP TIME 255 s MEAS INPUT a1

Measurement: Set measurement frequencies according to test record, read phase noise on

modulation meter.

5.2.1.5 Residual FM

Test equipment: Modulation meter FMB with option FMA-B8, FSEK30, BNC connecting cable

Test setup: > Connect modulation meter (mode DEMOD FM DET RMS 10 Hz to 3 kHz) to

PORT1 of the network analyzer

Settings on network analyzer:

PRESET

SWEEP SINGLE POINT

CENTER Measurement frequency

SOURCE POWER Maximum level: -2 dBm (ZVM), -9 dBm (ZVK)

SWEEP TIME 255 s MEAS INPUT a1

Measurement: Set measurement frequencies according to test record, read residual FM values

on modulation meter.

5.2.1.6 Level Accuracy

Test equipment: Power Meter NRVD with sensor NRV-Z52 (ZVM), NRV-Z55 (ZVK),

Female-female adapter from calibration kit ZV-Z32 (ZVM) or ZV-Z34 (ZVK)

Test setup:

Connect power sensor to PORT1, PORT2 of the network analyzer.

Settings on network analyzer:

PRESET

(corresponds to a set generator level of -10~dBm)

SWEEP SINGLE POINT

CENTER Measurement frequency

SWEEP TIME 255 s

MEAS INPUT a1 (PORT1), INPUT a2 (PORT2)

Measurement: Set measurement frequencies according to test record, read level on power meter.

Add the correction value associated with the measurement frequency to the meas-

ured value (typ. attenuation of adapter).

Correction value:	Frequency in GHz	Correction value ZVM in dB	Correction value ZVK in dB
	0.010 0.100 0.150 0.500 1.000 1.500 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 22.00 24.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.00 38.00 40.00	0.003 0.009 0.011 0.021 0.029 0.036 0.041 0.050 0.058 0.065 0.071 0.077 0.082 0.087 0.092 0.097 0.101 0.105 0.109 0.113 0.117 0.120 0.124 0.127 0.130	0.002 0.008 0.009 0.017 0.024 0.029 0.034 0.041 0.047 0.053 0.058 0.063 0.067 0.071 0.075 0.079 0.082 0.086 0.089 0.092 0.095 0.098 0.101 0.103 0.106 0.111 0.116 0.121 0.125 0.130 0.134 0.138 0.142 0.146 0.150

5.2.1.7 Level Linearity

Test equipment: FSEK30, test cable, BNC cable for reference frequency

Test setup 50Ω: > Connect FSEK30 to PORT1 (PORT2) of the network analyzer. Synchronize

FSEK30 with network analyzer.

> Important: IF BW on FSEK30 < 1 kHz (digital bandwidths)

Settings on network analyzer:

PRESET

SWEEP SINGLE POINT

CENTER Measurement frequency

SOURCE POWER Min. to max. value -20 dBm to -2/2/5 dBm, ZVM

Min. to max. value -20 dBm to -9/-5/-3/0dBm, ZVK

SWEEP TIME 255 s

MEAS INPUT a1
INPUT a2

Measurement: > Set measurement frequencies and levels according to test record, read level on

spectrum analyzer.

5.2.2 Checking the Receiver Specifications

5.2.2.1 Absolute Accuracy

Test equipment: Signal Generator SMR40 with option SMR-B11

Power Splitter PC 3.5 (ZVM) or Power Splitter PC 2.92 (ZVK)

NRVD with sensor NRV-Z52 (ZVM), NRV-Z55 (ZVK)

Connecting cable SMR40 => power splitter BNC cable to frequency synchronization.

Test setup: ➤ Synchronize SMR40 with network analyzer.

> SMR40 frequency = measurement frequency.

Connect SMR40 to power-splitter input.

➤ Connect an output branch of the power splitter to PORT1 or PORT2 (INPUT B1, INPUT B2 if a suitable receiver step attenuator is installed).

Connect sensor to second output branch of power splitter.

Settings on network analyzer:

PRESET

SWEEP SINGLE POINT

CENTER Measurement frequency

AVG IF BW 100 Hz

MEAS INPUT b1, DRIVE PORT2

INPUT b2, DRIVE PORT1

MODE EXTERNAL INPUT b1

INPUT_{b2}

MARKER Marker

Measurement:

- > Set measurement frequencies (SMR, ZVM/K) according to test record.
- > Set level to -2 dBm on SMR.
- Read marker value on ZVM/K.
- Read measured value on NRVD.

Permissible deviation from nominal level (approx. -10 dBm, "exact" value = measured value on NRVD) applied to PORT1 or PORT2 (INPUT B1, INPUT B2 if a suitable receiver step attenuator is installed).

Deviation = marker value ZVM/K - measured value NRVD

5.2.2.2 Linearity

20 dB attenuator PC 3.5, SMA (ZVM) or PC 2.92 (ZVM, ZVK), Test equipment:

Test Cable ZV-Z14 (ZVM) or ZV-Z15 (ZVK),

Female-female adapter from ZV-Z32 (ZVM) or ZV-Z34 (ZVK)

Test setup: Connect test cable with 20 dB attenuator between PORT1 and PORT2.

Settings on network analyzer:

PRESET

POWER UNCAL off CAL

MODE SWEEP MODE: POWER SWEEP

NUMBER OF POINTS = 26 (ZVM), 21 (ZVK) **SWFFP SOURCE** STEP ATT A1 or STEP ATT A2 to 0 dB

SOURCE Measurement frequency

START -20 dBm

STOP 5 dBm (ZVM), 0 dBm (ZVK)

IF BANDWIDTH 10 Hz

MEAS RATIO B1/A2 (Lin. PORT1) **MEAS** RATIO B2/A1 (Lin. PORT2)

FORMAT MAGNITUDE, PHASE (Phase unwrap)

MARKER MARKER CONT

= -10 dBmMARKER1 **DELTA MARKER REF MARKER1**

MARKER2 Measurement level

Reference measurement: Store trace and use it for normalization:

Magnitude: TRACE: DATA TO MEMORY: SHOW MATH (/) Phase: TRACE: DATA TO MEMORY: SHOW MATH (-)

Measurement:

- Remove attenuator, connect test cable directly to port.
- > Set reference value to 20 dB if required (better representation).
- Record marker value at measurement level according to test record.
- Repeat procedure for the other measurement frequencies.

5.2.2.3 Noise Level

Test equipment: MATCH female from Calibration Kit ZV-Z32 (ZVM) or ZV-Z34 (ZVK)

Calibration: ➤ PRESET

➤ SOURCE Level –20 dBm

Terminate Port 1 and Port 2 with match from ZV-Z32 or ZV-Z34.
 MEAS: INPUT b1, DRIVE PORT 2 or INPUT b2, DRIVE PORT1

Set all receiver step attenuators to 0 dB
 IF bandwidth 10 Hz: AVG IF BW: 10 Hz

Measurement: Settings on network analyzer:

MARKER CONT

MARKER Marker frequency = measurement frequency

5.2.2.4 Match Input b1 and Input b2

(only with option ZVM-B23 / ZVK-B23 or ZVM-B24 / ZVK-B24)

Test equipment: Calibration Kit ZV-Z32, pair of Test Cables ZV-Z14 (ZVM);

Calibration Kit ZV-Z34, pair of Test Cables ZV-Z15 (ZVK)

Test setup: Description for INPUT B2 (for INPUT B1 analogously)

Connect test cable to PORT1,

connect female-female adapter to male end.

Settings on network analyzer:

PRESET

AVG IF BW 100 Hz

Record one-port calibration (OSM) at PORT1 including THRU female-female over

the whole frequency range.

Connect test cables (incl. adapter) with INPUT B2.

MODE EXTERNAL, INPUT B2
MARKER Measurement frequency

MEAS S11 (S22)

Measurement: > Set measurement frequencies according to test record, measure S11 (or S22 for

INPUT B2).

Record return loss values.

5.2.3 Checking the Test Set Specifications

5.2.3.1 Match at PORT1 and PORT2

Test equipment: Calibration Kit ZV-Z32, pair of Test Cables ZV-Z14 (ZVM);

Calibration Kit ZV-Z34, pair of Test Cables ZV-Z15 (ZVK)

Test setup: Description for PORT2 (for PORT1 analogously)

Connect test cable to PORT1,

connect female-female adapter to male end.

Settings on network analyzer:

PRESET

AVG IF BW 100 Hz

Record one-port calibration (OSM) at PORT1 including THRU female-female over

the whole frequency range.

Connect test cables (incl. adapter) with PORT2.

MARKER Measurement frequency

MEAS S11 (S22)

Measurement: > Set measurement frequencies according to test record, measure S11 (or S22 for

INPUT B2).

> Record match values.

5.2.3.2 Matching Reference Channel Inputs R1 and R2 Channel IN

Test equipment: Calibration Kit ZV-Z32, pair of Test Cables ZV-Z14 (ZVM);

Calibration Kit ZV-Z34, pair of Test Cables ZV-Z15 (ZVK)

Test setup: Description for R2 Channel IN (for R1 Channel IN analogously)

Connect test cable to PORT1.

Settings on network analyzer:

PRESET

AVG IF BW 100 Hz

Record one-port calibration (OSM) at PORT1 over the whole frequency range.

Connect test cables (incl. adapter) with R2 Channel IN.

MARKER Measurement frequency

MEAS S11 (S22)

Measurement:

> Set measurement frequencies according to test record, measure S11 (or S22 for R1 Channel IN).

Record match values

5.2.3.3 Raw Directivity

Test equipment: OPEN, SHORT, MATCH female from Calibration Kit ZV-Z32 (ZVM), ZV-Z34 (ZVK)

A broadband termination, e.g. from ZV-Z34, must be used for ZVK.

Reference PRESET

measurement: Connect OPEN female to Port1 (or Port2).

MEAS: RATIO: WAVE QUANTITY: b1/a1 (Port1), b2/a2 (Port2)

Normalizing: TRACE, DATA TO MEM, SHOW MATH (/)

Connect MATCH to Port1 (or Port2).

MARKER Measurement frequency Read measurement results and write them down.

Connect SHORT female to Port1 (or Port2).

MEAS: RATIO: WAVE QUANTITY: b1/a1 (Port1), b2/a2 (Port2)

Normalize: TRACE, DATA TO MEM, SHOW MATH (/)

Connect MATCH to Port1 (or Port2).

MARKER Measurement frequency Read measurement results and write them down.

Calculation of raw directivity

Test record value: average of OPEN and SHORT measurement.

5.2.3.4 Checking the Attenuators

Test equipment: Test Cable ZV-Z14, female-female adapter PC 3.5 from ZV-Z32;

Test Cable ZV-Z15, female-female adapter PC 2.92 from ZV-Z34

Test setup: Connect cable between PORT1 and PORT2.

Settings on network analyzer:

PRESET

SWEEP SINGLE POINT

CENTER Measurement frequency

SOURCE POWER 0 dBm
SOURCE ATTxx
IF BANDWIDTH 10 Hz
MEAS S21

for measurement STEP ATT a1 and STEP ATT b2

S12

for measurement STEP ATT a2 and STEP ATT b1

FORMAT MAGNITUDE

MARKER Marker frequency = measurement frequency

Reference measurement:

> Perform reference measurements at the measurement frequencies and an attenuation value of 10 dB.

Reference value = marker value

Measurement:

> Set measurement frequencies according to test record.

➤ Increase ATT xx attenuation in 10 dB steps from 0 to 70 dB and read out marker

value obtained with each step.

Attenuation error = (marker value - reference value)

5.2.3.5 Dynamic Range

Test equipment: ZVM: 2 PC 3.5 SHORT (e.g. SHORT male and SHORT female with THRU male

from Calibration Kit ZV-Z32);

ZVK: 2 PC 2.92 SHORT (e.g. SHORT male and SHORT female with THRU male

from Calibration Kit ZV-Z34)

Test setup: Connect short-circuits to PORT1 and PORT2.

Settings on network analyzer:

PRESET

SWEEP LIN SWEEP FORMAT MAGNITUDE

SOURCE POWER Maximum value acc. Data Sheet

Note: For the maximum value, check if the instrument is fitted with a generator step attenuator which

may be different for the two channels.

ZVM 5 dBm to -2 dBm, ZVK 0 dBm to -9 dBm

IF BANDWIDTH 10 Hz or 10 kHz AVERAGE POINT AVG 5

SMOOTHING 1%

MEAS RATIO b1/b2, DRIVE PORT 2 (dyn. range Port 1)

RATIO b2/b1, DRIVE PORT 1 (dyn. range Port 2)

MARKER Marker frequency = measurement frequency

Measurement: > Read marker value on network analyzer.

5.3 Performance Test Record (ZVM)

The indicated uncertainties refer to the proposed test setup / test procedure.

The expanded measurement uncertainty amounts to k = 2 (confidence level of 95%, Gauss distribution). Additional measurement uncertainties, which are within the user's responsibility, have not been taken into account (e.g. cable attenuation in harmonics measurements).

We recommend performing a measurement uncertainty analysis for the test setup in question so that the values specified in the data sheet can be reliably checked.

The measurement uncertainties specified for SSB phase noise and matching of inputs are to be regarded as measurement limits.

Table 5-1: Performance Test Record – Generator Specifications

Item	Characteristic	Measure- ment acc. to section	Specification min. value/Hz	Measured value/Hz	Specification max. value/Hz	Uncer- tainty / Hz
1	Frequency deviation 0.010 GHz 0.100 GHz 0.5 GHz 1.5 GHz 1.998 GHz 3 GHz 5 GHz 8 GHz 15 GHz 20 GHz	5.2.1.1	-40 -400 -2000 -6000 -7992 -12000 -20000 -32000 -60000 -80000		+40 +400 +2000 +6000 +7992 +12000 +20000 +32000 +60000 +80000	2.6 25.7 129 386 514 772 1286 2057 3858 5143

Name	Item	Characteri	istic	Measure- ment acc. to section	Specification min. value/dBc	Measured value/dBc	Uncer- tainty / dB
Measurement at source level 5 dBm (2 dBm with ZVM-B21) ZVM frq. Harmonic: 10 MHz 20 MHz 23 1,5 30 MHz 23 1,3 1,3 500 MHz 1000 MHz 23 1,3 1,3 500 MHz 1000 MHz 23 1,3 1,3 1,3 1 GHz 2 GHz 23 1,3 1,3 1 GHz 2 GHz 23 1,3 1,6 1,6 1,5 GHz 3 GHz 23 1,6 1,6 1,7 1,998 GHz 3,996 GHz 23 1,7 1,7 2 GHz 4 GHz 23 1,7 2 GHz 4 GHz 23 1,7 2 GHz 2,5 GHz 23 2,2 2,8 GHz 5,6 GHz 23 2,2 3,8 GHz 2,3 3,8 GHz 1,4 GHz 2,3 3,8 GHz 1,5 GHz 2,3 3,8 GHz 1,6 GHz 2,3 3,8 GHz 7,6 GHz 2,3 3,9 GHz 3,9 GHz 2,3 3,0 5,6 GHz 10 GHz 2,3 3,0 5,7 GHz 10 GHz 2,3 3,0 5,7 GHz 10 GHz 2,3 3,0 5,8 GHz 15,8 GHz 2,3 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3	2	Harmonics	6	5.2.1.2			
10 MHz 20 MHz 30 MHz 23		Measuremelevel 5 dBn	n				
100 MHz		ZVM frq.	Harmonic:				
300 MHz		10 MHz	-				
1500 MHz 1 GHz 2 GHz 3 GHz 3 GHz 23 1.5 GHz 4.5 GHz 23 1.7 1.998 GHz 5.994 GHz 6 GHz 23 23 23 23 23 23 23 23 23 23 23 23 23		100 MHz					
3 GHz 1.5 GHz 3 GHz 4.5 GHz 23 1.998 GHz 3.996 GHz 5.994 GHz 23 23 21 1.7 2 GHz 4 GHz 6 GHz 7.5 GHz 23 23 21 1.7 2.5 GHz 8.4 GHz 9.6 GHz 23 23 2.8 GHz 8.4 GHz 23 23 2.9 2.8 GHz 8.4 GHz 23 23 2.9 3.2 GHz 6 GHz 23 23 2.9 3.8 GHz 7.6 GHz 23 3.0 3.8 GHz 7.6 GHz 11.4 GHz 23 3.0 5.1 GHz 10 2 GHz 15.3 GHz 23 3.0 5.5 GHz 11 GHz 15.3 GHz 23 3.0 6 GHz 12 GHz 18 GHz 23 3.0 6 GHz 12 GHz 18 GHz 23 3.0 6 GHz 19.5 GHz 3.0 6 GHz 12 GHz 3.0 6 GHz 13 GHz 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0		500 MHz					
4.5 GHz 23 1.7 1.998 GHz 3.996 GHz 23 5.994 GHz 23 1.7 2 GHz 4 GHz 23 6 GHz 23 1.7 2.5 GHz 5 GHz 23 7.5 GHz 23 2.9 2.8 GHz 5.6 GHz 23 8.4 GHz 23 2.9 3.2 GHz 6.4 GHz 23 9.6 GHz 23 2.9 3.8 GHz 7.6 GHz 23 11.4 GHz 23 3.0 5 GHz 10 GHz 23 15 GHz 23 3.0 5.1 GHz 10.2 GHz 23 15.3 GHz 23 3.0 5.5 GHz 11 GHz 23 16.5 GHz 23 3.0 6 GHz 12 GHz 23 18 GHz 23 3.0 6.5 GHz 13 GHz 23 19.5 GHz 23 3.0 3.0 3.0 3.0 3.0 3.0 3.0		1 GHz					
5.994 GHz 23 1.7 2 GHz 4 GHz 23 1.7 6 GHz 23 1.7 2.5 GHz 5 GHz 23 2.0 7.5 GHz 23 2.9 2.8 GHz 5.6 GHz 23 2.0 8.4 GHz 23 2.9 3.2 GHz 6.4 GHz 23 2.9 3.8 GHz 7.6 GHz 23 2.9 3.8 GHz 7.6 GHz 23 2.9 3.8 GHz 10 GHz 23 3.0 5 GHz 10 GHz 23 3.0 5 GHz 10 GHz 23 3.0 5.1 GHz 10.2 GHz 23 3.0 5.5 GHz 11 GHz 23 3.0 16.5 GHz 13 GHz 23 3.0 6.5 GHz 13 GHz 23 3.0 19.5 GHz 23 3.0 3.0 3.0 GHz 3.0 3.0 3.0 3.0 GHz 3.0 3.0 3.0 3.0 GHz 3.0 3.0 3.0		1.5 GHz					
6 GHz 23 1.7 2.5 GHz 5 GHz 23 2.0 7.5 GHz 23 2.9 2.8 GHz 5.6 GHz 23 2.0 8.4 GHz 23 2.9 3.2 GHz 6.4 GHz 23 2.9 3.8 GHz 7.6 GHz 23 2.9 3.8 GHz 7.6 GHz 23 3.0 5 GHz 10 GHz 23 3.0 5 GHz 10 GHz 23 3.0 5.1 GHz 10.2 GHz 23 3.0 5.5 GHz 11 GHz 23 3.0 5.5 GHz 11 GHz 23 3.0 6 GHz 12 GHz 23 3.0 6 GHz 13 GHz 23 3.0 6.5 GHz 13 GHz 23 3.0 6.5 GHz 13 GHz 23 3.0 7 GHz 14 GHz 23 3.0		1.998 GHz					
7.5 GHz 23		2 GHz					
8.4 GHz 23 2.9 3.2 GHz 6.4 GHz 9.6 GHz 23 2.0 9.6 GHz 23 2.9 3.8 GHz 7.6 GHz 7.6 GHz 2.3 2.9 11.4 GHz 23 3.0 5 GHz 10 GHz 2.3 3.0 15 GHz 23 3.0 5.1 GHz 10.2 GHz 2.3 3.0 15.3 GHz 23 3.0 5.5 GHz 11 GHz 2.3 3.0 16.5 GHz 23 3.0 6 GHz 12 GHz 2.3 3.0 18 GHz 23 3.0 19.5 GHz 23 3.0 3.4 3.0 3.4		2.5 GHz					
9.6 GHz 23		2.8 GHz					
11.4 GHz 23		3.2 GHz					
15 GHz 23 5.1 GHz 10.2 GHz 15.3 GHz 23 5.5 GHz 11 GHz 16.5 GHz 23 6 GHz 12 GHz 18 GHz 23 6.5 GHz 13 GHz 19.5 GHz 23 7 GHz 14 GHz 23 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0		3.8 GHz					
15.3 GHz 23 3.0		5 GHz					
16.5 GHz 23		5.1 GHz					
18 GHz 23 3.0 6.5 GHz 13 GHz 23 3.0 19.5 GHz 23 3.0 7 GHz 14 GHz 23 3.0 3.0 3.0 3.0 3.0 3.0 3.0		5.5 GHz					
19.5 GHz 23 3.4 7 GHz 14 GHz 23 3.0		6 GHz					
		6.5 GHz					
8 GHz 16 GHz 23 3.6		7 GHz	14 GHz		23		3.0
		8 GHz	16 GHz		23		3.6
10 GHz 20 GHz 23 4.0		10 GHz	20 GHz		23		4.0

Item	Characteri	istic	Measure- ment acc. to section	Specification min. value/dBc	Measured value/dBc	Uncer- tainty / dB
2	Harmonics	s	5.2.1.2			
	level 5 dBn	ent at source n h ZVM-B22)				
	ZVM frq.	Harmonic:				
	10 MHz	20 MHz 30 MHz		23 23		1.5 1.5
	100 MHz	200 MHz 300 MHz		23 23		1.3 1.3
	500 MHz	1000 MHz 1500 MHz		23 23		1.3 1.3
	1 GHz	2 GHz 3 GHz		23 23		1.3 1.6
	1.5 GHz	3 GHz 4.5 GHz		23 23		1.6 1.7
	1.998 GHz	3.996 GHz 5.994 GHz		23 23		1.7 1.7
	2 GHz	4 GHz 6 GHz		23 23		1.7 1.7
	2.5 GHz	5 GHz 7.5 GHz		23 23		2.0 2.9
	2.8 GHz	5.6 GHz 8.4 GHz		23 23		2.0 2.9
	3.2 GHz	6.4 GHz 9.6 GHz		23 23		2.0 2.9
	3.8 GHz	7.6 GHz 11.4 GHz		23 23		2.9 3.0
	5 GHz	10 GHz 15 GHz		23 23		3.0 3.0
	5.1 GHz	10.2 GHz 15.3 GHz		23 23		3.0 3.0
	5.5 GHz	11 GHz 16.5 GHz		23 23		3.0 3.0
	6 GHz	12 GHz 18 GHz		23 23		3.0 3.0
	6.5 GHz	13 GHz 19.5 GHz		23 23		3.0 3.4
	7 GHz	14 GHz		23		3.0
	8 GHz	16 GHz		23		3.6
	10 GHz	20 GHz		23		4.0

Item	Characteri	stic	Measure- ment acc. to section	Specification min. value/dBc	Measured value/dBc	Uncer- tainty / dB
2	Harmonics	S	5.2.1.2			
	PORT 1 Measurement level –10 d	ent at source Bm				
	ZVM frq.	Harmonic:				
	10 MHz	20 MHz 30 MHz		30 30		1.5
	100 MHz	200 MHz 300 MHz		30 30		1.5
	500 MHz	1000 MHz 1500 MHz		30 30		1.3 1.3 1.3
	1 GHz	2 GHz 3 GHz		30 30		1.3
	1.5 GHz	3 GHz 4.5 GHz		30 30		1.6 1.6 1.7
	1.998 GHz	3.996 GHz 5.994 GHz		30 30		1.7 1.7 1.7
	2 GHz	4 GHz 6 GHz		30 30		1.7
	2.5 GHz	5 GHz 7.5 GHz		30 30		2.0
	2.8 GHz	5.6 GHz 8.4 GHz		30 30		2.9
	3.2 GHz	6.4 GHz 9.6 GHz		30 30		2.9
	3.8 GHz	7.6 GHz 11.4 GHz		30 30		2.9
	5 GHz	10 GHz 15 GHz		30 30		3.0
	5.1 GHz	10.2 GHz 15.3 GHz		30 30		3.0
	5.5 GHz	11 GHz 16.5 GHz		30 30		3.0
	6 GHz	12 GHz 18 GHz		30 30		3.0
	6.5 GHz	13 GHz 19.5 GHz		30 30		3.0
	7 GHz	14 GHz		30		3.4
	8 GHz	16 GHz		30		3.0
	10 GHz	20 GHz		30		3.6 4.0

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dBc	Measured value/dBc	Uncer- tainty / dB
2	Harmonics	5.2.1.2			
	PORT 2				
	Measurement at source level –10 dBm ZVM frq. Harmonic:	3			
	10 MHz 20 MHz 30 MHz		30 30		1.5
	100 MHz 200 MHz 300 MHz		30 30		1.5
	500 MHz 1000 MHz 1500 MHz		30 30		1.3
	1 GHz 2 GHz 3 GHz		30 30		1.3
	1.5 GHz 3 GHz 4.5 GHz		30 30		1.6
	1.998 GHz 3.996 GHz 5.994 GHz		30 30		1.7
	2 GHz 4 GHz 6 GHz		30 30		1.7
	2.5 GHz 5 GHz 7.5 GHz		30 30		2.0
	2.8 GHz 5.6 GHz 8.4 GHz		30 30		2.9
	3.2 GHz 6.4 GHz 9.6 GHz		30 30		2.9
	3.8 GHz 7.6 GHz 11.4 GHz		30 30		2.9
	5 GHz 10 GHz 15 GHz		30 30		3.0
	5.1 GHz 10.2 GHz 15.3 GHz		30 30		3.0
	5.5 GHz 11 GHz 16.5 GHz		30 30		3.0
	6 GHz 12 GHz 18 GHz		30 30		3.0
	6.5 GHz 13 GHz 19.5 GHz		30 30		3.0
	7 GHz 14 GHz		30		3.4
	8 GHz 16 GHz		30		3.0
	10 GHz 20 GHz		30		3.6 4.0

Item	Character	istic	Measure- ment acc. to section	Specification min. value/dBc	Measured value/dBc	Uncer- tainty / dB
3	Spurious		5.2.1.3			
	Measurem level –20 d	ent at source Bm				
	ZVM frq.	Spurious:				
	10 MHz	53.125 MHz 43.125 MHz		35 35		1.4 1.5
	50 MHz	202.5 MHz 152.5 MHz		35 35		1.3 1.3
	100 MHz	152.5 MHz 52.5 MHz		35 35		1.3 1.3
	149 MHz	103.5 MHz 45.5 MHz		35 35		1.3 1.4
	150 MHz	860 MHz 710 MHz		35 35		1.3 1.3
	250 MHz	760 MHz 510 MHz		35 35		1.3 1.3
	350 MHz	660 MHz 310 MHz		35 35		1.3 1.4
	450 MHz	560 MHz 110 MHz		35 35		1.3 1.3
	550 MHz	460 MHz 90 MHz		35 35		1.3 1.3
	650 MHz	360 MHz 290 MHz		35 35		1.3 1.3
	749 MHz	261 MHz 488 MHz		35 35		1.3 1.3
	2.0 GHz	1.0 GHz 3.0 GHz		35 35		1.3 1.6
	2.2 GHz	1.1 GHz 3.0 GHz		35 35		1.3 1.6
	2.4 GHz	1.2 GHz 3.6 GHz		35 35		1.6 2.0
	2.6 GHz	1.3 GHz 3.9 GHz		35 35		1.6 2.0
	2.61 GHz	1.305 GHz 3.915 GHz		35 35		1.6 2.0
	2.8 GHz	1.4 GHz 4.2 GHz		35 35		1.6 2.0
	3.0 GHz	1.5 GHz 4.5 GHz		35 35		1.6 2.0
	3.2 GHz	1.6 GHz 4.8 GHz		35 35		1.6 2.0
	3.31 GHz	1.655 GHz 4.965 GHz		35 35		1.6 2.0

Item	Character	ristic	Measure- ment acc. to section	Specification min. value/dBc	Measured value/dBc	Uncer- tainty / dB
3			5.2.1.3			
	3.4 GHz	1.7 GHz 5.1 GHz		35 35		1.6 2.0
	3.6 GHz	1.8 GHz 5.4 GHz		35 35		1.7 2.1
	3.8 GHz	1.9 GHz 5.7 GHz		35 35		1.7 2.1
	4.0 GHz	2.0 GHz 6.0 GHz		35 35		1.7 2.1
	5 GHz	1.250 GHz 2.500 GHz 3.750 GHz 6.250 GHz 7.500 GHz 8.750 GHz		35 35 35 35 35 35		1.7 2.1 2.1 2.1 2.9 3.0
	5.1 GHz	1.275 GHz 2.550 GHz 3.825 GHz 6.375 GHz 7.650 GHz 8.925 GHz		35 35 35 35 35 35		1.7 2.0 2.1 2.1 2.9 3.0
	5.5 GHz	1.375 GHz 2.750 GHz 4.125 GHz 6.875 GHz 8.250 GHz 9.625 GHz		35 35 35 35 35 35		1.7 2.0 2.1 2.1 3.0 3.0
	6.0 GHz	1.500 GHz 3.000 GHz 4.500 GHz 7.500 GHz 9.000 GHz 10.50 GHz		35 35 35 35 35 35 35		1.7 2.0 2.1 2.9 3.0 3.0
	6.5 GHz	1.625 GHz 3.250 GHz 4.875 GHz 8.125 GHz 9.750 GHz 11.375 GHz		35 35 35 35 35 35		1.7 2.0 2.1 2.9 3.0 3.0
	7.0 GHz	1.750 GHz 3.500 GHz 5.250 GHz 8.750 GHz 10.50 GHz 12.25 GHz		35 35 35 35 35 35		1.7 2.0 2.1 3.0 3.0 3.0
	7.8 GHz	1.950 GHz 3.900 GHz 5.850 GHz 9.750 GHz 11.70 GHz 13.65 GHz		35 35 35 35 35 35		2.6 2.9 2.9 3.6 3.6 3.6

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dBc	Measured value/dBc	Uncer- tainty / dB
3	8 GHz 1.00 GHz 2.00 GHz 3.00 GHz 4.00 GHz 5.00 GHz 6.00 GHz 7.00 GHz 10.00 GHz 11.00 GHz 12.00 GHz 12.00 GHz 13.00 GHz 14.00 GHz 15.00 GHz 15.00 GHz 15.00 GHz 15.00 GHz 17.50 G	5.2.1.3	35 35 35 35 35 35 35 35 35 35 35 35 35 3		2.6 2.6 2.8 2.9 2.9 2.9 2.9 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6
	2.550 GHz 3.825 GHz 5.100 GHz 6.375 GHz 7.650 GHz 8.925 GHz 11.475 GHz 12.750 GHz 14.025 GHz 15.300 GHz 16.575 GHz 17.850 GHz 19.125 GHz		35 35 35 35 35 35 35 35 35 35 35 35 35 3		2.9 2.9 2.9 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.7 2.7
	3.00 GHz 4.50 GHz 6.00 GHz 7.50 GHz 9.00 GHz 10.50 GHz 13.50 GHz 15.00 GHz 16.50 GHz 18.00 GHz		35 35 35 35 35 35 35 35 35 35 35 35		2.9 2.9 2.9 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 4.0

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dBc	Measured value/dBc	Uncer- tainty / dB
3	13.8 GHz 1.7250 GHz 3.4500 GHz 5.1750 GHz 6.9000 GHz 8.6250 GHz 10.350 GHz 12.075 GHz 15.525 GHz 17.250 GHz 18.975 GHz	5.2.1.3	35 35 35 35 35 35 35 35 35 35 35		2.6 2.8 2.9 2.9 3.6 3.6 3.6 3.6 3.6 4.0
	15.8 GHz 1.975 GHz 3.950 GHz 5.925 GHz 7.900 GHz 9.875 GHz 11.850 GHz 13.825 GHz 17.775 GHz 19.750 GHz		35 35 35 35 35 35 35 35 35 35		2.6 2.9 2.9 3.5 3.6 3.6 3.6 4.0
	16.2 GHz 1.0125 GHz 2.0250 GHz 3.0375 GHz 4.0500 GHz 5.0625 GHz 6.0750 GHz 7.0875 GHz 8.1000 GHz 9.1125 GHz 10.125 GHz 12.150 GHz 12.150 GHz 13.1625GHz 14.175 GHz 15.1875GHz 17.2125GHz 18.225 GHz 19.2375GHz		30 30 30 30 30 30 30 30 30 30 30 30 30 3		2.6 2.8 2.9 2.9 2.9 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 4.0
	19 GHz 1.1875 GHz 2.3750 GHz 3.5625 GHz 4.7500 GHz 5.9375 GHz 7.1250 GHz 8.3125 GHz 9.5000 GHz 10.6875GHz 11.875 GHz 13.0625GHz 14.250 GHz 15.4375GHz 16.625 GHz 17.8125GHz		30 30 30 30 30 30 30 30 30 30 30 30 30 3		3.2 3.3 3.4 3.4 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dBc	Measured value/dBc	Uncer- tainty / dB
3	20 GHz 1.250 GHz 2.500 GHz 3.750 GHz 5.000 GHz 6.250 GHz 7.500 GHz 8.750 GHz 10.00 GHz 11.25 GHz 12.50 GHz 13.75 GHz 15.00 GHz 16.25 GHz 17.50 GHz 18.75 GHz	5.2.1.3	30 30 30 30 30 30 30 30 30 30 30 30 30 3		3.1 3.3 3.4 3.4 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4
4	0.010 GHz 0.100 GHz 0.100 GHz 1.000 GHz 1.500 GHz 1.500 GHz 1.998 GHz 2.000 GHz 2.500 GHz 2.800 GHz 3.200 GHz 3.200 GHz 3.800 GHz 5.000 GHz 5.100 GHz 6.500 GHz 6.500 GHz 7.000 GHz 8.000 GHz 10.00 GHz 11.00 GHz 11.00 GHz 12.00 GHz 13.00 GHz 15.00 GHz 20.00 GHz	5.2.1.4	100.0 100.0 90.00 90.00 86.50 84.10 84.00 82.10 81.10 79.90 78.50 76.10 75.90 75.20 74.50 73.80 73.10 72.00 70.00 69.90 68.50 67.80 66.50 63.40		3.0 3.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Item	Characteristic	Measure- ment acc. to section	Measured value/Hz	Specification max. value/Hz	Uncer- tainty / Hz
5	Residual FM	5.2.1.5			
	0.010 GHz 0.100 GHz 0.500 GHz 1.000 GHz 1.500 GHz 1.500 GHz 1.998 GHz 2.000 GHz 2.500 GHz 2.800 GHz 3.200 GHz 3.200 GHz 3.800 GHz 5.000 GHz 5.100 GHz 5.500 GHz 6.000 GHz 6.500 GHz 7.000 GHz 8.000 GHz 10.00 GHz 10.00 GHz 11.00 GHz 12.00 GHz 12.00 GHz 13.00 GHz 15.00 GHz 20.00 GHz			2.0 2.0 5.0 5.0 10.0 10.0 20.0 20.0 20.0 20.0 40.0 40.0 40.0 40.0 40.0 40.0 80.0 80.0 80.0 80.0 80.0 80.0	0.71 0.73 0.83 0.97 1.2 1.3 1.6 1.7 1.9 2.1 2.5 2.5 2.7 2.8 3.0 3.2 3.5 4.2 4.3 4.9 5.3 6.0 7.8

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dBm	Measured value/dBm	Specification max. value/dBm	Uncer- tainty / dB
6	Level accuracy PORT1	5.2.1.6				
	0.010 GHz 0.100 GHz 0.150 GHz 0.500 GHz 1.000 GHz 1.500 GHz 2.000 GHz 3.000 GHz 4.000 GHz 5.000 GHz 6.000 GHz 7.000 GHz 8.000 GHz 9.000 GHz 11.00 GHz 11.00 GHz 12.00 GHz 13.00 GHz 11.00 GHz 13.00 GHz 14.00 GHz 15.00 GHz 15.00 GHz 16.00 GHz 17.00 GHz 18.00 GHz 19.00 GHz		-12.0 -12.0 -11.0		-8.0 -8.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9	0.22 0.17 0.17 0.17 0.17 0.18 0.24 0.26 0.26 0.26 0.26 0.33 0.33 0.33 0.40 0.40 0.40 0.40 0.41 0.41 0.47 0.47
6	Level accuracy PORT2	5.2.1.6				
	0.010 GHz 0.100 GHz 0.150 GHz 0.500 GHz 1.000 GHz 1.500 GHz 2.000 GHz 2.000 GHz 3.000 GHz 4.000 GHz 5.000 GHz 6.000 GHz 7.000 GHz 8.000 GHz 8.000 GHz 11.00 GHz		-12.0 -12.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -12.0 -12.0 -12.0 -12.0 -12.0 -12.0		-8.0 -8.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9	0.22 0.17 0.17 0.17 0.17 0.18 0.24 0.26 0.26 0.26 0.26 0.33 0.33 0.33 0.40 0.40 0.40 0.40 0.41 0.41 0.47 0.47

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
8	Level linearity PORT1 Reference: –10 dBm without option ZVM-B21	5.2.1.7				
	f = 0.0101 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		14.0 9.0 4.0 -6.0 -11.0		16.0 11.0 6.0 -4.0 -9.0	0.051 0.051 0.051 0.051 0.051
	f = 0.100 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		14.0 9.0 4.0 -6.0 -11.0		16.0 11.0 6.0 -4.0 -9.0	0.051 0.051 0.051 0.051 0.051
	f = 0.150 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		14.6 9.6 4.6 -5.4 -10.4		15.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 0.500 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		14.6 9.6 4.6 -5.4 -10.4		15.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 1.000 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		14.6 9.6 4.6 -5.4 -10.4		15.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 2.000 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		14.6 9.6 4.6 -5.4 -10.4		15.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 4.000 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		14.6 9.6 4.6 -5.4 -10.4		15.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 8.000 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		14.6 9.6 4.6 -5.4 -10.4		15.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
8	Level linearity PORT1 Reference: –10 dBm without option ZVM-B21	5.2.1.7				
	f = 10.000 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		14.6 9.6 4.6 -5.4 -10.4		15.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 10.200 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		14.6 9.6 4.6 -5.4 -10.4		15.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 12.000 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		14.6 9.6 4.6 -5.4 -10.4		15.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 14.000 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		14.6 9.6 4.6 -5.4 -10.4		15.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 16.000 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		14.6 9.6 4.6 -5.4 -10.4		15.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 18.000 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		11.6 9.6 4.6 -5.4 -10.4		12.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 20.000 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		11.6 9.6 4.6 -5.4 -10.4		12.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
8	Level linearity PORT2 Reference: -10 dBm without opt. ZVM-B22:	5.2.1.7				
	f = 0.0101 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		14.0 9.0 4.0 -6.0 -11.0		16.0 11.0 6.0 -4.0 -9.0	0.051 0.051 0.051 0.051 0.051
	f = 0.100 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		14.0 9.0 4.0 -6.0 -11.0		16.0 11.0 6.0 -4.0 -9.0	0.051 0.051 0.051 0.051 0.051
	f = 0.150 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		14.6 9.6 4.6 -5.4 -10.4		15.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 0.500 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		14.6 9.6 4.6 -5.4 -10.4		15.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 1.000 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		14.6 9.6 4.6 -5.4 -10.4		15.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 2.000 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		14.6 9.6 4.6 -5.4 -10.4		15.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 4.000 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		14.6 9.6 4.6 -5.4 -10.4		15.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 8.000 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		14.6 9.6 4.6 -5.4 -10.4		15.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
8	Level linearity PORT2 Reference: -10 dBm without opt. ZVM-B22:	5.2.1.7				
	f = 10.000 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		14.6 9.6 4.6 -5.4 -10.4		15.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 10.200 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		14.6 9.6 4.6 -5.4 -10.4		15.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 12.000 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		14.6 9.6 4.6 -5.4 -10.4		15.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 14.000 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		14.6 9.6 4.6 -5.4 -10.4		15.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 16.000 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		14.6 9.6 4.6 -5.4 -10.4		15.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 18.000 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		11.6 9.6 4.6 -5.4 -10.4		12.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 20.000 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		11.6 9.6 4.6 -5.4 -10.4		12.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
8	Level linearity PORT1 Reference: -10 dBm with option ZVM-B21	5.2.1.7				
	f = 0.0101 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		12.0 9.0 4.0 -6.0 -11.0		13.0 11.0 6.0 -4.0 -9.0	0.051 0.051 0.051 0.051 0.051
	f = 0.100 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		12.0 9.0 4.0 -6.0 -11.0		13.0 11.0 6.0 -4.0 -9.0	0.051 0.051 0.051 0.051 0.051
	f = 0.150 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		11.6 9.6 4.6 -5.4 -10.4		12.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 0.500 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		11.6 9.6 4.6 -5.4 -10.4		12.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 1.000 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		11.6 9.6 4.6 -5.4 -10.4		12.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 2.000 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		11.6 9.6 4.6 -5.4 -10.4		12.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 4.000 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		11.6 9.6 4.6 -5.4 -10.4		12.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 8.000 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		11.6 9.6 4.6 -5.4 -10.4		12.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
8	Level linearity PORT1 Reference: -10 dBm with option ZVM-B21	5.2.1.7				
	f = 10.000 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		11.6 9.6 4.6 -5.4 -10.4		12.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 10.200 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		11.6 9.6 4.6 -5.4 -10.4		12.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 12.000 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		11.6 9.6 4.6 -5.4 -10.4		12.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 14.000 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		11.6 9.6 4.6 -5.4 -10.4		12.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 16.000 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		11.6 9.6 4.6 -5.4 -10.4		12.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 18.000 GHz 8 dB 5 dB -5 dB -10 dB		7.6 4.6 -5.4 -10.4		8.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 20.000 GHz 8 dB 5 dB -5 dB -10 dB		7.6 4.6 -5.4 –10.4		8.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
8	Level linearity PORT2 Reference: -10 dBm with option ZVM-B22	5.2.1.7				
	f = 0.0101 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		12.0 9.0 4.0 -6.0 -11.0		13.0 11.0 6.0 -4.0 -9.0	0.051 0.051 0.051 0.051 0.051
	f = 0.100 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		12.0 9.0 4.0 -6.0 -11.0		13.0 11.0 6.0 -4.0 -9.0	0.051 0.051 0.051 0.051 0.051
	f = 0.150 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		11.6 9.6 4.6 -5.4 -10.4		12.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 0.500 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		11.6 9.6 4.6 -5.4 -10.4		12.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 1.000 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		11.6 9.6 4.6 -5.4 -10.4		12.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 2.000 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		11.6 9.6 4.6 -5.4 -10.4		12.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 4.000 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		11.6 9.6 4.6 -5.4 -10.4		12.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 8.000 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		11.6 9.6 4.6 -5.4 -10.4		12.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
8	Level linearity PORT2 Reference: –10 dBm with option ZVM-B22	5.2.1.7				
	f = 10.000 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		11.6 9.6 4.6 -5.4 -10.4		12.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 10.200 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		11.6 9.6 4.6 -5.4 -10.4		12.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 12.000 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		11.6 9.6 4.6 -5.4 -10.4		12.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 14.000 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		11.6 9.6 4.6 -5.4 -10.4		12.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 16.000 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		11.6 9.6 4.6 -5.4 -10.4		12.4 10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051 0.051
	f = 18.000 GHz 8 dB 5 dB -5 dB -10 dB		7.6 4.6 -5.4 –10.4		8.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 20.000 GHz 8 dB 5 dB -5 dB -10 dB		7.6 4.6 -5.4 -10.4		8.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
9	Absolute accuracy PORT1 Input level –10 dBm Difference from –10 dBm: 0.010 GHz 0.100 GHz 0.150 GHz 0.500 GHz 1.500 GHz 1.500 GHz 2.000 GHz 3.000 GHz 4.000 GHz 5.000 GHz 6.000 GHz 7.000 GHz 8.000 GHz 9.000 GHz 10.00 GHz 11.00 GHz 11.00 GHz 12.00 GHz 13.00 GHz 14.00 GHz 15.00 GHz 15.00 GHz 17.00 GHz 18.00 GHz 18.00 GHz 19.00 GHz 19.00 GHz	5.2.2.1	-2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0		2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.50 0.43 0.43 0.43 0.43 0.43 0.44 0.44 0.44 0.44 0.50 0.50 0.50 0.51 0.51 0.51 0.51 0.51 0.51 0.62 0.62

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
9	Absolute accuracy PORT2 Input level –10 dBm Difference from –10 dBm: 0.010 GHz 0.100 GHz 0.150 GHz 0.500 GHz 1.500 GHz 1.500 GHz 2.000 GHz 3.000 GHz 4.000 GHz 5.000 GHz 6.000 GHz 7.000 GHz 8.000 GHz 11.00 GHz 11.00 GHz 11.00 GHz 11.00 GHz 12.00 GHz 13.00 GHz 11.00 GHz	5.2.2.1	-2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0		2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.50 0.43 0.43 0.43 0.43 0.43 0.44 0.44 0.44 0.50 0.50 0.50 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.62 0.62

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
9	Absolute accuracy INPUT B1 Input level –10 dBm Difference from –10 dBm: 0.010 GHz 0.100 GHz 0.150 GHz 0.500 GHz 1.500 GHz 1.500 GHz 2.000 GHz 3.000 GHz 4.000 GHz 5.000 GHz 6.000 GHz 7.000 GHz 8.000 GHz 9.000 GHz 11.00 GHz 11.00 GHz 12.00 GHz 11.00 GHz	5.2.2.1	-2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0		2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.51 0.51 0.51 0.51 0.51 0.51 0.62 0.62

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
9	Absolute accuracy INPUT B2 Input level –10 dBm Difference from –10 dBm: 0.010 GHz 0.100 GHz 0.150 GHz 0.500 GHz 1.500 GHz 1.500 GHz 2.000 GHz 3.000 GHz 4.000 GHz 5.000 GHz 6.000 GHz 7.000 GHz 8.000 GHz 10.00 GHz 11.00 GHz	5.2.2.1	-2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0		2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.62 0.62

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
10	Linearity B1 Reference: –10 dBm	5.2.2.2				
	f = 0.0101 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2 -0.2 -0.2		0.2 0.2 0.2 0.2 0.2	0.058 0.058 0.058 0.058 0.058
	f = 0.500 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.1 -0.1		0.2 0.2 0.1 0.1 0.1	0.058 0.058 0.029 0.029 0.029
	f = 1.000 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.1 -0.1		0.2 0.2 0.1 0.1 0.1	0.058 0.058 0.029 0.029 0.029
	f = 2.000 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.1 -0.1		0.2 0.2 0.1 0.1 0.1	0.058 0.058 0.029 0.029 0.029
	f = 4.000 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.1 -0.1		0.2 0.2 0.1 0.1 0.1	0.058 0.058 0.029 0.029 0.029
	f = 8.00 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.1 -0.1		0.2 0.2 0.1 0.1 0.1	0.058 0.058 0.029 0.029 0.029
	f = 10.00 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2 -0.2 -0.2		0.2 0.2 0.2 0.2 0.2	0.058 0.058 0.058 0.058 0.058

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
10	Linearity B1 Reference: –10 dBm	5.2.2.2				
	f = 10.20 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2 -0.2 -0.2		0.2 0.2 0.2 0.2 0.2	0.058 0.058 0.058 0.058 0.058
	f = 16.00 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2 -0.2 -0.2		0.2 0.2 0.2 0.2 0.2	0.058 0.058 0.058 0.058 0.058
	f = 20.00 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		-0.3 -0.3 -0.2 -0.2 -0.2		0.3 0.3 0.2 0.2	0.086 0.086 0.058 0.058 0.058

Item	Characteristic	Measure- ment acc. to section	Specification min. value/°	Measured value/°	Specification max. value/°	Uncer- tainty / °
10	Linearity B1 Reference: –10 dBm	5.2.2.2				
	f = 0.0101 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-2 -2 -2 -2 -2		2 2 2 2 2 2	0.58 0.58 0.58 0.58 0.58
	f = 0.500 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-2 -2 -1 -1		2 2 1 1	0.58 0.58 0.29 0.29 0.29
	f = 1.000 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-2 -2 -1 -1		2 2 1 1	0.58 0.58 0.29 0.29 0.29
	f = 2.000 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-2 -2 -1 -1		2 2 1 1	0.58 0.58 0.29 0.29 0.29
	f = 4.000 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-2 -2 -1 -1		2 2 1 1	0.58 0.58 0.29 0.29 0.29
	f = 8.00 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-2 -2 -1 -1		2 2 1 1	0.58 0.58 0.29 0.29 0.29
	f = 10.00 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-2 -2 -2 -2 -2		2 2 2 2 2	0.58 0.58 0.58 0.58 0.58

Item	Characteristic	Measure- ment acc. to section	Specification min. value/°	Measured value/°	Specification max. value/°	Uncer- tainty / °
10	Linearity B1 Reference: –10 dBm	5.2.2.2				
	f = 10.20 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-2 -2 -2 -2 -2		2 2 2 2 2	0.58 0.58 0.58 0.58 0.58
	f = 16.00 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-2 -2 -2 -2 -2		2 2 2 2 2	0.58 0.58 0.58 0.58 0.58
	f = 20.00 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		-3 -3 -2 -2 -2		3 3 2 2 2	0.86 0.86 0.58 0.58

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. va- lue/dB	Uncer- tainty / dB
10	Linearity B2 Reference: –10 dBm	5.2.2.2				
	f = 0.0101 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2 -0.2 -0.2		0.2 0.2 0.2 0.2 0.2	0.058 0.058 0.058 0.058 0.058
	f = 0.500 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.1 -0.1		0.2 0.2 0.1 0.1 0.1	0.058 0.058 0.029 0.029 0.029
	f = 1.000 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.1 -0.1		0.2 0.2 0.1 0.1 0.1	0.058 0.058 0.029 0.029 0.029
	f = 2.000 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.1 -0.1		0.2 0.2 0.1 0.1	0.058 0.058 0.029 0.029 0.029
	f = 4.000 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.1 -0.1		0.2 0.2 0.1 0.1 0.1	0.058 0.058 0.029 0.029 0.029
	f = 8.00 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.1 -0.1		0.2 0.2 0.1 0.1 0.1	0.058 0.058 0.029 0.029 0.029
	f = 10.00 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2 -0.2 -0.2		0.2 0.2 0.2 0.2 0.2	0.058 0.058 0.058 0.058 0.058

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. va- lue/dB	Uncer- tainty / dB
10	Linearity B2 Reference: –10 dBm	5.2.2.2				
	f = 10.20 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2 -0.2 -0.2		0.2 0.2 0.2 0.2 0.2	0.058 0.058 0.058 0.058 0.058
	f = 16.00 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2 -0.2 -0.2		0.2 0.2 0.2 0.2 0.2	0.058 0.058 0.058 0.058 0.058
	f = 20.00 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		-0.3 -0.3 -0.2 -0.2 -0.2		0.3 0.3 0.2 0.2	0.086 0.086 0.058 0.058 0.058

Item	Characteristic	Measure- ment acc. to section	Specification min. value/°	Measured value/°	Specification max. value/°	Uncer- tainty / °
10	Linearity B2 Reference: –10 dBm	5.2.2.2				
	f = 0.0101 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-2 -2 -2 -2 -2		2 2 2 2 2	0.58 0.58 0.58 0.58 0.58
	f = 0.500 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-2 -2 -1 -1		2 2 1 1	0.58 0.58 0.29 0.29 0.29
	f = 1.000 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-2 -2 -1 -1		2 2 1 1	0.58 0.58 0.29 0.29 0.29
	f = 2.000 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-2 -2 -1 -1		2 2 1 1	0.58 0.58 0.29 0.29 0.29
	f = 4.000 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-2 -2 -1 -1		2 2 1 1	0.58 0.58 0.29 0.29 0.29
	f = 8.00 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-2 -2 -1 -1		2 2 1 1	0.58 0.58 0.29 0.29 0.29
	f = 10.00 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-2 -2 -2 -2 -2		2 2 2 2 2	0.58 0.58 0.58 0.58 0.58

Item	Characteristic	Measure- ment acc. to section	Specification min. value/°	Measured value/°	Specification max. value/°	Uncer- tainty / °
10	Linearity B2 Reference: –10 dBm	5.2.2.2				
	f = 10.20 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-2 -2 -2 -2 -2		2 2 2 2 2	0.58 0.58 0.58 0.58 0.58
	f = 16.00 GHz 15 dB 10 dB 5 dB -5 dB -10 dB		-2 -2 -2 -2 -2		2 2 2 2 2	0.58 0.58 0.58 0.58 0.58
	f = 20.00 GHz 12 dB 10 dB 5 dB -5 dB -10 dB		-3 -3 -2 -2 -2		3 3 2 2 2	0.86 0.86 0.58 0.58 0.58

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
11	Noise level PORT1	5.2.2.3				
	0.010 GHz 0.100 GHz 0.150 GHz 0.500 GHz 1.000 GHz 1.500 GHz 2.000 GHz 3.000 GHz 4.000 GHz 5.000 GHz 6.000 GHz 7.000 GHz 8.000 GHz 9.000 GHz 11.00 GHz				-70.0 -70.0 -70.0 -110.0 -110.0 -110.0 -110.0 -110.0 -110.0 -110.0 -110.0 -105.0 -105.0	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
	11.00 GHz 12.00 GHz 13.00 GHz 14.00 GHz 15.00 GHz 16.10 GHz 17.00 GHz 18.00 GHz 19.00 GHz 20.00 GHz				-105.0 -105.0 -105.0 -105.0 -105.0 -105.0 -95.0 -95.0 -95.0 -95.0	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
11	Noise level PORT2	5.2.2.3				
	IF BW 10 Hz:					
	0.010 GHz 0.100 GHz 0.150 GHz 0.500 GHz 1.000 GHz 1.500 GHz 2.000 GHz 2.000 GHz 3.000 GHz 4.000 GHz 5.000 GHz 6.000 GHz 7.000 GHz 8.000 GHz 9.000 GHz 11.00 GHz 11.00 GHz 11.00 GHz 12.00 GHz 13.00 GHz 14.00 GHz 15.00 GHz 15.00 GHz 16.00 GHz 16.00 GHz 16.00 GHz 16.00 GHz 17.00 GHz 18.00 GHz 19.00 GHz				-70.0 -70.0 -70.0 -70.0 -110.0 -110.0 -110.0 -110.0 -110.0 -110.0 -110.0 -110.0 -105.0	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
12	Match INPUT B1 With ZVM-B23 installed:	5.2.2.4				
	0.050 GHz 0.100 GHz 0.150 GHz 1.500 GHz 1.000 GHz 1.500 GHz 2.000 GHz 2.000 GHz 3.000 GHz 4.000 GHz 5.000 GHz 6.000 GHz 7.000 GHz 8.000 GHz 9.000 GHz 11.00 GHz 11.00 GHz 12.00 GHz 13.00 GHz 14.00 GHz 15.00 GHz 16.00 GHz 16.00 GHz 17.00 GHz 18.00 GHz 19.00 GHz		10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0			0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.45 0.45 0.45 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.7

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
12	Match INPUT B2 With ZVM-B24 installed:	5.2.2.4	40.0			0.2
	0.050 GHz 0.100 GHz 0.150 GHz 0.500 GHz 1.000 GHz 1.500 GHz 1.500 GHz 2.000 GHz 3.000 GHz 3.000 GHz 4.000 GHz 5.000 GHz 6.000 GHz 7.000 GHz 8.000 GHz 9.000 GHz 10.00 GHz 11.00 GHz 12.00 GHz 13.00 GHz 14.00 GHz 15.00 GHz 15.00 GHz 16.00 GHz 16.00 GHz 17.00 GHz 17.00 GHz 18.00 GHz 19.00 GHz		10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0			0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.45 0.45 0.45 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.7

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
13	Match PORT 1	5.2.3.1				
	0.010 GHz 0.050 GHz 0.100 GHz 0.500 GHz 1.000 GHz 1.500 GHz 1.500 GHz 2.000 GHz 3.000 GHz 4.000 GHz 4.000 GHz 5.000 GHz 6.000 GHz 7.000 GHz 8.000 GHz 9.000 GHz 11.00 GHz 11.00 GHz 12.00 GHz 13.00 GHz 14.00 GHz 15.00 GHz 15.00 GHz 16.00 GHz 16.00 GHz 17.00 GHz 18.00 GHz 19.00 GHz		10.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0			0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.45 0.45 0.45 0.45 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.7

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
13	Match PORT 2	5.2.3.1				
	0.010 GHz 0.050 GHz 0.100 GHz 0.500 GHz 1.000 GHz 1.500 GHz 1.500 GHz 2.000 GHz 3.000 GHz 4.000 GHz 5.000 GHz 6.000 GHz 7.000 GHz 8.000 GHz 9.000 GHz 11.00 GHz 11.00 GHz 12.00 GHz 13.00 GHz 14.00 GHz 15.00 GHz 15.00 GHz 16.00 GHz 16.00 GHz 17.00 GHz 18.00 GHz 19.00 GHz		10.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0			0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.45 0.45 0.45 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.7

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
14	Match R1 CHANNEL IN	5.2.3.2				
	0.010 GHz 0.100 GHz 0.150 GHz 0.500 GHz 1.000 GHz 1.500 GHz 1.500 GHz 2.000 GHz 3.000 GHz 3.000 GHz 4.000 GHz 5.000 GHz 6.000 GHz 7.000 GHz 8.000 GHz 9.000 GHz 11.00 GHz		12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0			0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.45 0.45 0.45 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.7

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
14	Match R2 CHANNEL IN	5.2.3.2				
	0.010 GHz 0.100 GHz 0.150 GHz 0.500 GHz 1.000 GHz 1.500 GHz 1.500 GHz 2.000 GHz 3.000 GHz 3.000 GHz 4.000 GHz 5.000 GHz 6.000 GHz 7.000 GHz 8.000 GHz 9.000 GHz 10.00 GHz 11.00 GHz 12.00 GHz 13.00 GHz 14.00 GHz 15.00 GHz 15.00 GHz 16.00 GHz 16.00 GHz 16.00 GHz 16.00 GHz 17.00 GHz 18.00 GHz		12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0			0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.45 0.45 0.45 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.7

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
15	Raw directivity PORT1	5.2.3.3				
	0.010 GHz 0.100 GHz 0.150 GHz 0.500 GHz 1.000 GHz 1.500 GHz 2.000 GHz 2.000 GHz 3.000 GHz 4.000 GHz 5.000 GHz 6.000 GHz 7.000 GHz 8.000 GHz 9.000 GHz 11.00 GHz 11.00 GHz 12.00 GHz 13.00 GHz 13.00 GHz 14.00 GHz 15.00 GHz 15.00 GHz 16.00 GHz 16.00 GHz 17.00 GHz 18.00 GHz 19.00 GHz		8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0			0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.45 0.45 0.45 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.7

ltem	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
15	Raw directivity PORT2	5.2.3.3				
	0.010 GHz 0.100 GHz 0.150 GHz 0.500 GHz 1.000 GHz 1.500 GHz 2.000 GHz 3.000 GHz 3.000 GHz 4.000 GHz 5.000 GHz 6.000 GHz 6.000 GHz 8.000 GHz 9.000 GHz 11.00 GHz 11.00 GHz 12.00 GHz 13.00 GHz 13.00 GHz 14.00 GHz 15.00 GHz 15.00 GHz 16.00 GHz 16.00 GHz 17.00 GHz 18.00 GHz 19.00 GHz		8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0			0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
16	Generator step attenuator A1 With ZVM-B21 installed: f = 1.0 GHz, reference value 10 dB 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB f = 15.0 GHz, reference value 10 dB	5.2.3.4	-3.0 -0.2 -3.0 -3.0 -3.0 -3.0 -3.0		3.0 0.2 3.0 3.0 3.0 3.0 3.0 3.0	1.0 Reference 1.0 1.0 1.0 1.0 1.0
	0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB		-3.0 -0.2 -3.0 -3.0 -3.0 -3.0 -3.0		3.0 0.2 3.0 3.0 3.0 3.0 3.0 3.0	1.0 Reference 1.0 1.0 1.0 1.0 1.0

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
16	Generator step attenuator A2 With ZVM-B22 stalled: f = 1.0 GHz, reference value 10 dB 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB f = 15.0 GHz,	5.2.3.4	-3.0 -0.2 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0		3.0 0.2 3.0 3.0 3.0 3.0 3.0 3.0 3.0	1.0 Reference 1.0 1.0 1.0 1.0 1.0
	reference value 10 dB 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB		-3.0 -0.2 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0		3.0 0.2 3.0 3.0 3.0 3.0 3.0 3.0	1.0 Reference 1.0 1.0 1.0 1.0 1.0

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
16	Receiver step attenuator B1 With ZVM-B23 installed f = 1.0 GHz, reference value 10 dB 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB f = 15.0 GHz, reference value 10 dB	5.2.3.4	-3.0 -0.2 -3.0 -3.0 -3.0 -3.0 -3.0		3.0 0.2 3.0 3.0 3.0 3.0 3.0 3.0 3.0	1.0 Reference 1.0 1.0 1.0 1.0 1.0
	0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB		-3.0 -0.2 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0		3.0 0.2 3.0 3.0 3.0 3.0 3.0 3.0	1.0 Reference 1.0 1.0 1.0 1.0 1.0

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
16	Receiver step attenuator B2 With ZVM-B24 installed f = 1.0 GHz, reference value 10 dB 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB f = 15.0 GHz, reference value 10 dB	5.2.3.4	-3.0 -0.2 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0		3.0 0.2 3.0 3.0 3.0 3.0 3.0 3.0	1.0 Reference 1.0 1.0 1.0 1.0 1.0
	0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB		-3.0 -0.2 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0		3.0 0.2 3.0 3.0 3.0 3.0 3.0 3.0	1.0 Reference 1.0 1.0 1.0 1.0 1.0

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
17	Dynamic range PORT 1	5.2.3.5				
	IF BW 10 Hz: 0.010 GHz 0.100 GHz 0.500 GHz 1.000 GHz 2.000 GHz 4.000 GHz 6.000 GHz 10.00 GHz 12.00 GHz 12.00 GHz 14.00 GHz 14.00 GHz 14.00 GHz 16.00 GHz 16.10 GHz 17.00 GHz 18.00 GHz 19.00 GHz 20.00 GHz		75.0 75.0 115.0 115.0 115.0 115.0 115.0 110.0 110.0 110.0 110.0 100.0 100.0 100.0			

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
17	Dynamic range PORT 1 With option ZVM-Z2x installed. IF BW 10 Hz: 0.010 GHz 0.100 GHz 0.500 GHz 1.000 GHz 2.000 GHz 4.000 GHz 6.000 GHz 8.000 GHz 10.00 GHz 12.00 GHz 12.00 GHz 14.00 GHz	5.2.3.5	75.0 75.0 115.0 115.0 115.0 115.0 115.0 115.0 110.0 105.0			
	16.00 GHz 16.10 GHz 17.00 GHz 18.00 GHz 19.00 GHz 20.00 GHz		105.0 100.0 100.0 100.0 100.0 100.0			

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
17	Dynamic range PORT 1 IF BW 10 kHz:	5.2.3.5				
	0.010 GHz 0.100 GHz 0.500 GHz 1.000 GHz 2.000 GHz 4.000 GHz 6.000 GHz 8.000 GHz 10.00 GHz 12.00 GHz 14.00 GHz 14.00 GHz 16.00 GHz 16.00 GHz 16.00 GHz 17.00 GHz 18.00 GHz 19.00 GHz		45.0 45.0 85.0 85.0 85.0 85.0 85.0 80.0 80.0 8			

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
17	Dynamic range PORT 2 IF BW 10 Hz:	5.2.3.5				
	0.010 GHz 0.100 GHz 0.500 GHz 1.000 GHz 2.000 GHz 4.000 GHz 6.000 GHz 8.000 GHz 10.00 GHz 12.00 GHz 12.00 GHz 14.00 GHz 14.00 GHz 16.00 GHz 16.10 GHz 17.00 GHz 18.00 GHz 19.00 GHz		75.0 75.0 115.0 115.0 115.0 115.0 115.0 110.0 110.0 110.0 110.0 100.0 100.0 100.0			

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
17	Dynamic range PORT 2 With option ZVM-Z2x installed. IF BW 10 Hz: 0.010 GHz 0.100 GHz 0.500 GHz 1.000 GHz 2.000 GHz 4.000 GHz 6.000 GHz 8.000 GHz 10.00 GHz 11.000 GHz 12.00 GHz 14.000 GHz 14.000 GHz	5.2.3.5	75.0 75.0 115.0 115.0 115.0 115.0 115.0 115.0 110.0 105.0			
	16.00 GHz 16.10 GHz 17.00 GHz 18.00 GHz 19.00 GHz 20.00 GHz		105.0 100.0 100.0 100.0 100.0 100.0			

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
17	Dynamic range PORT 2 IF BW 10 kHz:	5.2.3.5				
	0.010 GHz 0.100 GHz 0.500 GHz 1.000 GHz 2.000 GHz 4.000 GHz 6.000 GHz 8.000 GHz 10.00 GHz 12.00 GHz 14.00 GHz 16.00 GHz 16.10 GHz 17.00 GHz 18.00 GHz 19.00 GHz		45.0 45.0 85.0 85.0 85.0 85.0 85.0 80.0 80.0 8			

5.4 Performance Test Record (ZVK)

The indicated uncertainties refer to the proposed test setup / test procedure.

The expanded measurement uncertainty amounts to k = 2 (confidence level of 95%, Gauss distribution). Additional measurement uncertainties, which are within the user's responsibility, have not been taken into account (e.g. cable attenuation in harmonics measurements).

We recommend performing a measurement uncertainty analysis for the test setup in question so that the values specified in the data sheet can be reliably checked.

Table 5-2: Performance Test Record – Generator Specifications

Item	Characteristic	Measure- ment acc. to section	Specification min. value/Hz	Measured value/Hz	Specification max. value/Hz	Uncer- tainty / Hz
1	Frequency accuracy 0.010 GHz 0.100 GHz 0.5 GHz 1.5 GHz 1.998 GHz 3 GHz 5 GHz 8 GHz 15 GHz 20 GHz 25 GHz 30 GHz	5.2.1.1	-40 -400 -2000 -6000 -7992 -12000 -20000 -32000 -60000 -80000 -100000 -120000		+40 +400 +2000 +6000 +7992 +12000 +20000 +32000 +60000 +80000 +100000 +120000	3 26 129 386 514 772 1286 2058 3858 5143 6429 7715
	36 GHz 40 GHz		-144000 -160000		+144000 +160000	9258 10287

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dBc	Measured value/dBc	Uncer- tainty / dB
2	Harmonics PORT1 Measurement at source level 0 dBm (-3 dBm with ZVK-B21) ZVK frq. Harmonic:	5.2.1.2			
	10 MHz		20 20 20 20 20 20 20 20 20 20 20 20 20 2		1.5 1.5 1.3 1.3 1.3 1.3 1.2 1.6 1.6 1.7 1.7 1.7 1.7 1.7 2.0 2.9 2.0 2.9 2.0 2.9 2.0 2.9 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3
	24 GHz 10 GHz 20 GHz 30 GHz		20 20 20 20 20		3.6 4.0 4.0 4.5

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dBc	Measured value/dBc	Uncer- tainty / dB
2	Harmonics PORT1 Measurement at source level 0 dBm (-3 dBm with ZVK-B21) ZVK frq. Harmonic: 10.2 GHz 20.4 GHz 30.6 GHz 12 GHz 24 GHz 36 GHz 13.8 GHz 27.6 GHz 15.8 GHz 31.6 GHz 16 GHz 32 GHz Measurement at source level –5 dBm (-9 dBm with ZVK-B21) 16.8 GHz 33.6 GHz 19 GHz 38 GHz 20 GHz 40 GHz	5.2.1.2	15 15 15 15 15 15 15 15 25		4.1 4.5 4.1 4.5 4.5 4.5 4.5 4.5 4.5

Item	Characteristic	c	Measure- ment acc. to section	Specification min. value/dBc	Measured value/dBc	Uncer- tainty / dB
2	Harmonics Po	ORT2	5.2.1.2			
	Measurement level 0 dBm (-3 dBm with Z					
	ZVK frq. Ha	armonic:				
) MHz) MHz		20		1.5
		00 MHz 00 MHz		20 20		1.5 1.3
		000 MHz 500 MHz		20 20		1.3
		GHz GHz		20		1.3 1.2
		GHz 5 GHz		20 20		1.6 1.6
	1.998 GHz 3.9 5.9	996 GHz 994 GHz		20		1.7
		GHz GHz		20		1.7
		GHz 5 GHz		20		2.0
		6 GHz 4 GHz		20		2.9
		4 GHz 6 GHz		20		2.9
		6 GHz 1.4 GHz		20		2.9
) GHz 5 GHz		20		3.0
		0.2 GHz 5.3 GHz		20		3.0
		1 GHz 6.5 GHz		20		3.0
		2 GHz 3 GHz		20		3.0
		3 GHz 9.5 GHz		20		3.0
		1 GHz 1 GHz		20		3.4
		6 GHz 4 GHz		20		3.5
) GHz) GHz		20		4.0
				20		4.5

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dBc	Measured value/dBc	Uncer- tainty / dB
2	Harmonics PORT2 Measurement at source level 0 dBm (-3 dBm with ZVK-B21) ZVK frq. Harmonic: 10.2 GHz 20.4 GHz 30.6 GHz 12 GHz 24 GHz 36 GHz 13.8 GHz 27.6 GHz 15.8 GHz 31.6 GHz 16 GHz 32 GHz Measurement at source level –5 dBm (-9 dBm with ZVK-B21) 16.8 GHz 33.6 GHz 19 GHz 38 GHz 20 GHz 40 GHz	5.2.1.2	15 15 15 15 15 15 15 15 25		4.1 4.5 4.1 4.5 4.5 4.5 4.5 4.5 4.5

Characteristic		Measure- ment acc. to section	Specification min. value/dBc	Measured value/dBc		Uncer- tainty / dB
Harmonics Measurement level –10 dB ZVK frq. 10 MHz 100 MHz 1 GHz 1.5 GHz 1.998 GHz 2 GHz 2.5 GHz 3.2 GHz 3.8 GHz 5 GHz 5 GHz	PORT1 Int at source 8m Harmonic: 20 MHz 30 MHz 300 MHz 1000 MHz 1500 MHz 1500 MHz 3 GHz 3 GHz 4.5 GHz 3.996 GHz 5.994 GHz 4 GHz 6 GHz 5 GHz 7.5 GHz 7.5 GHz 6.4 GHz 9.6 GHz 11.4 GHz 10 GHz 10 GHz 11.9 GHz	ment acc.	30 30 30 30 30 30 30 30 30 30 30 30 30 3			1.5 1.5 1.3 1.3 1.3 1.2 1.6 1.6 1.7 1.7 1.7 1.7 2.0 2.9 2.0 2.9 2.9 2.9 3.0 3.0 3.0
5.5 GHz	15.3 GHz 11 GHz 16.5 GHz		30 30 30 30 30			3.0 3.0 3.0 3.0 3.0
6.5 GHz 7.0 GHz 8 GHz	18 GHz 13 GHz 19.5 GHz 14 GHz 21 GHz 16 GHz 24 GHz 20 GHz		30 30 30 30 30 30 30 30 30			3.0 3.0 3.4 3.0 3.5 3.6 4.0 4.0 4.5
	Measureme level –10 de level –1	10 MHz 20 MHz 30 MHz 100 MHz 200 MHz 300 MHz 1000 MHz 1500 MHz 1500 MHz 1 GHz 2 GHz 3 GHz 4.5 GHz 1.998 GHz 3.996 GHz 5.994 GHz 5.994 GHz 2 GHz 4 GHz 6 GHz 7.5 GHz 2.8 GHz 5.6 GHz 8.4 GHz 9.6 GHz 3.2 GHz 6.4 GHz 9.6 GHz 11.4 GHz 5 GHz 10 GHz 15 GHz 15 GHz 5.1 GHz 10.2 GHz 15.3 GHz 15.3 GHz 5.5 GHz 11 GHz 16.5 GHz 18 GHz 6 GHz 13 GHz 19.5 GHz 14 GHz 1 GHz 14 GHz 1 GHz 14 GHz 1 GHz 16 GHz 24 GHz 24 GHz	Harmonics PORT1 Measurement at source level −10 dBm ZVK frq. Harmonic: 10 MHz 20 MHz 30 MHz 100 MHz 1500 MH	Harmonics PORT1 Measurement at source level −10 dBm ZVK frq. Harmonic: 10 MHz 20 MHz 30 MHz 300 MHz 100 MHz 200 MHz 1500 MHz 1500 MHz 1500 MHz 30 1 GHz 3 GHz 4.5 GHz 30 1.5 GHz 3 GHz 5.994 GHz 2.5 GHz 7.5 GHz 7.5 GHz 3.2 GHz 30 3.2 GHz 3.3 GHz 3.3 GHz 3.3 GHz 4.5 GHz 3.0 GH	Harmonics PORT1 Measurement at source level −10 dBm ZVK frq. Harmonic: 10 MHz	Harmonics PORT1 Measurement at source level −10 dBm ZVK frq. Harmonic: 10 MHz

Item	Characteristic		Measure- ment acc. to section	Specification min. value/dBc	Measured value/dBc	Uncer- tainty / dB
2	2VK frq. 10.2 GHz 12 GHz 13.8 GHz 15.8 GHz 16 GHz 19 GHz	Harmonic: 20.4 GHz 30.6 GHz 24 GHz 36 GHz 27.6 GHz	5.2.1.2	25 25 25 25 25 25 25 25 25 25		4.1 4.5 4.1 4.5 4.5 4.5 4.5 4.5 4.5 4.5

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dBc	Measured value/dBc	Uncer- tainty / dB
Item 2	Harmonics PORT2 Measurement at source level –10 dBm ZVK frq. Harmonic: 10 MHz 20 MHz 30 MHz 100 MHz 200 MHz 300 MHz 500 MHz 1000 MHz 1500 MHz 1 GHz 2 GHz 3 GHz 4.5 GHz 1.998 GHz 3.996 GHz 5.994 GHz 2 GHz 4 GHz 6 GHz 2.5 GHz 5 GHz 7.5 GHz 2.8 GHz 5.6 GHz 8.4 GHz 3.2 GHz 6.4 GHz 9.6 GHz 3.8 GHz 7.6 GHz	ment acc.	min.		1.5 1.5 1.5 1.3 1.3 1.3 1.2 1.6 1.6 1.7 1.7 1.7 1.7 2.0 2.9 2.0 2.9
	11.4 GHz 5 GHz 10 GHz 15 GHz 5.1 GHz 10.2 GHz 15.3 GHz 5.5 GHz 11 GHz 16.5 GHz 6 GHz 12 GHz 18 GHz 6.5 GHz 13 GHz 7.0 GHz 14 GHz 21 GHz 8 GHz 16 GHz 24 GHz 10 GHz 20 GHz 30 GHz		30 30 30 30 30 30 30 30 30 30 30 30 30 3		2.9 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dBc	Measured value/dBc	Uncer- tainty / dB
2	10.2 GHz 20.4 30.6 12 GHz 24 0 36 0 13.8 GHz 27.6 15.8 GHz 31.6 16 GHz 32 0 16.8 GHz 33.6	5.2.1.2	25 25 25 25 25 25 25 25 25 25		4.1 4.5 4.1 4.5 4.5 4.5 4.5 4.5 4.5 4.5

Item	Characteri	stic	Measure- ment acc. to section	Specification min. value/dBc	Measured value/dBc	Uncer- tainty / dB
3	Spurious		5.2.1.3			
	Measureme level –20 di	ent at source Bm				
	ZVK frq.	Spurious:				
	10 MHz	53.125 MHz 43.125 MHz		35 35		1.4 1.5
	50 MHz	202.5 MHz 152.5 MHz		35 35		1.3 1.3
	100 MHz	152.5 MHz 52.5 MHz		35 35		1.3 1.3
	149 MHz	103.5 MHz 45.5 MHz		35 35		1.3 1.4
	150 MHz	860 MHz 710 MHz		35 35		1.3 1.3
	250 MHz	760 MHz 510 MHz		35 35		1.3 1.3
	350 MHz	660 MHz 310 MHz		35 35		1.3 1.4
	450 MHz	560 MHz 110 MHz		35 35		1.3 1.3
	550 MHz	460 MHz 90 MHz		35 35		1.3 1.3
	650 MHz	360 MHz 290 MHz		35 35		1.3 1.3
	749 MHz	261 MHz 488 MHz		35 35		1.3 1.3
	2.0 GHz	1.0 GHz 3.0 GHz		35 35		1.3 1.6
	2.2 GHz	1.1 GHz 3.0 GHz		35 35		1.3 1.6
	2.4 GHz	1.2 GHz 3.6 GHz		35 35		1.6 2.0
	2.6 GHz	1.3 GHz 3.9 GHz		35 35		1.6 2.0
	2.61 GHz	1.305 GHz 3.915 GHz		35 35		1.6 2.0
	2.8 GHz	1.4 GHz 4.2 GHz		35 35		1.6 2.0
	3.0 GHz	1.5 GHz 4.5 GHz		35 35		1.6 2.0
	3.2 GHz	1.6 GHz 4.8 GHz		35 35		1.6 2.0
	3.31 GHz	1.655 GHz 4.965 GHz		35 35		1.6 2.0

Item	Characte	ristic	Measure- ment acc. to section	Specification min. value/dBc	Measured value/dBc	Uncer- tainty / dB
3			5.2.1.3			
	3.4 GHz	1.7 GHz 5.1 GHz		35 35		1.6 2.0
	3.6 GHz	1.8 GHz 5.4 GHz		35 35		1.7 2.0
	3.8 GHz	1.9 GHz 5.7 GHz		35 35		1.7 2.1
	4.0 GHz	2.0 GHz 6.0 GHz		35 35		1.7 2.1
	5 GHz	1.250 GHz 2.500 GHz 3.750 GHz 6.250 GHz 7.500 GHz 8.750 GHz		35 35 35 35 35 35 35		1.7 2.1 2.1 2.1 2.9 3.0
	5.1 GHz	1.275 GHz 2.550 GHz 3.825 GHz 6.375 GHz 7.650 GHz 8.925 GHz		35 35 35 35 35 35 35		1.7 2.0 2.0 2.0 2.0 2.9 3.0
	5.5 GHz	1.375 GHz 2.750 GHz 4.125 GHz 6.875 GHz 8.250 GHz 9.625 GHz		35 35 35 35 35 35 35		1.7 2.0 2.1 2.1 3.0 3.0
	6.0 GHz	1.500 GHz 3.000 GHz 4.500 GHz 7.500 GHz 9.000 GHz 10.50 GHz		35 35 35 35 35 35 35		1.7 2.0 2.1 2.9 3.0 3.0
	6.5 GHz	1.625 GHz 3.250 GHz 4.875 GHz 8.125 GHz 9.750 GHz 11.375 GHz		35 35 35 35 35 35 35		1.7 2.0 2.1 2.9 3.0 3.0
	7.0 GHz	1.750 GHz 3.500 GHz 5.250 GHz 8.750 GHz 10.50 GHz 12.25 GHz		35 35 35 35 35 35 35		1.7 2.0 2.0 3.0 3.0 3.0
	7.8 GHz	1.950 GHz 3.900 GHz 5.850 GHz 9.750 GHz 11.70 GHz 13.65 GHz		35 35 35 35 35 35 35		2.6 2.9 2.9 3.6 3.6 3.6

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dBc	Measured value/dBc	Uncer- tainty / dB
3	8 GHz 1.00 GHz 2.00 GHz 3.00 GHz 4.00 GHz 5.00 GHz 6.00 GHz 7.00 GHz 10.00 GHz 11.00 GHz 12.00 GHz 13.00 GHz 14.00 GHz 15.00 GHz	5.2.1.3	35 35 35 35 35 35 35 35 35 35 35 35 35 3		2.6 2.6 2.8 2.9 2.9 2.9 2.9 3.6 3.6 3.6 3.6 3.6 3.6 3.6
	10 GHz 1.25 GHz 2.50 GHz 3.75 GHz 5.00 GHz 6.25 GHz 7.50 GHz 8.75 GHz 11.25 GHz 12.50 GHz 13.75 GHz 15.00 GHz 16.25 GHz 17.50 GHz 17.50 GHz 18.75 GHz 18.75 GHz		35 35 35 35 35 35 35 35 35 35 35 35 35 3		2.7 2.8 2.9 2.9 2.9 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 4.0
	10.2 GHz 1.275 GHz 2.550 GHz 3.825 GHz 5.100 GHz 6.375 GHz 7.650 GHz 8.925 GHz 11.475 GHz 12.750 GHz 14.025 GHz 15.300 GHz 16.575 GHz 17.850 GHz 19.125 GHz		35 35 35 35 35 35 35 35 35 35 35 35 35 3		2.7 2.8 2.9 2.9 2.9 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 4.0
	12 GHz 1.50 GHz 3.00 GHz 4.50 GHz 6.00 GHz 7.50 GHz 9.00 GHz 10.50 GHz 13.50 GHz 15.00 GHz 16.50 GHz 18.00 GHz 19.50 GHz 21.00 GHz 22.50 GHz		35 35 35 35 35 35 35 35 35 35 35 35 35 3		2.7 2.8 2.9 2.9 3.6 3.6 3.6 3.6 3.6 3.6 4.0 4.0

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dBc	Measured value/dBc	Uncer- tainty / dB
3	13.8 GHz 1.7250 GHz 3.4500 GHz 5.1750 GHz 6.9000 GHz 8.6250 GHz 10.350 GHz 12.075 GHz 15.525 GHz 17.250 GHz 18.975 GHz 20.700 GHz 22.425 GHz 24.150 GHz 25.875 GHz	5.2.1.3	35 35 35 35 35 35 35 35 35 35 35 35 35 3		2.6 2.8 2.9 2.9 3.6 3.6 3.6 3.6 4.0 4.0 4.0 4.0 4.0
	15.8 GHz 1.975 GHz 3.950 GHz 5.925 GHz 7.900 GHz 9.875 GHz 11.850 GHz 13.825 GHz 17.775 GHz 19.750 GHz 21.725 GHz 23.700 GHz 25.675 GHz 27.650 GHz 29.625 GHz		35 35 35 35 35 35 35 35 35 35 35 35 35 3		2.6 2.9 2.9 3.6 3.6 3.6 3.6 4.0 4.0 4.0 4.0 4.0
	16.2 GHz 1.0125 GHz 2.0250 GHz 3.0375 GHz 4.0500 GHz 5.0625 GHz 6.0750 GHz 7.0875 GHz 8.1000 GHz 9.1125 GHz 10.125 GHz 12.150 GHz 12.150 GHz 13.1625GHz 14.175 GHz 15.1875GHz 15.25 GHz 19.2375GHz 20.250 GHz 21.2625GHz 22.275 GHz 23.2875GHz 24.300 GHz 25.3125GHz 26.325 GHz 27.3375GHz 29.3625GHz 30.375 GHz 31.3875GHz 31.3875GHz 31.3875GHz		30 30 30 30 30 30 30 30 30 30 30 30 30 3		2.6 2.9 2.9 2.9 2.9 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dBc	Measured value/dBc	Uncer- tainty / dB
3	20 GHz 1.25 GHz 2.50 GHz 3.75 GHz 5.00 GHz 6.25 GHz 7.50 GHz 8.75 GHz 10.00 GHz 11.25 GHz 12.50 GHz 13.75 GHz 15.00 GHz 15.00 GHz 16.25 GHz 17.50 GHz 21.25 GHz 22.50 GHz 22.50 GHz 23.75 GHz 25.00 GHz 26.25 GHz 27.50 GHz 33.75 GHz 33.75 GHz 33.75 GHz 35.00 GHz 36.25 GHz 37.50 GHz 36.25 GHz 37.50 GHz 37.50 GHz 38.75 GHz 37.50 GHz 38.75 GHz 37.50 GHz 37.50 GHz 38.75 GHz 37.50 GHz 38.75 GHz 37.50 GHz 38.75 GHz 37.50 GHz 38.75 GHz	5.2.1.3	30 30 30 30 30 30 30 30 30 30 30 30 30 3		3.1 3.3 3.4 3.4 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4
3	26 GHz 1.625 GHz 3.250 GHz 4.875 GHz 6.500 GHz 8.125 GHz 9.750 GHz 11.375 GHz 13.000 GHz 14.625 GHz 16.250 GHz 17.875 GHz 19.500 GHz 21.125 GHz 22.750 GHz 22.750 GHz 24.375 GHz 27.625 GHz 29.250 GHz 30.875 GHz 32.500 GHz 34.125 GHz 35.750 GHz 37.375 GHz 39.000 GHz	5.2.1.3	30 30 30 30 30 30 30 30 30 30 30 30 30 3		3.2 3.3 3.4 4.0 4.0 4.0 4.0 4.0 4.0 4.4 4.4 4.4 4

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dBc	Measured value/dBc	Uncer- tainty / dB
3	36 GHz 1.125 GHz 2.250 GHz 3.375 GHz 4.500 GHz 5.625 GHz 6.750 GHz 7.875 GHz 9.000 GHz 10.125 GHz 11.250 GHz 11.250 GHz 13.500 GHz 14.625 GHz 15.750 GHz 16.875 GHz 18.000 GHz 19.125 GHz 20.250 GHz 21.375 GHz 22.500 GHz 23.625 GHz 24.750 GHz 25.875 GHz 27.000 GHz 25.875 GHz 27.000 GHz 28.125 GHz 30.375 GHz 31.500 GHz 31.500 GHz 32.625 GHz 33.750 GHz 34.875 GHz 37.125 GHz 37.125 GHz 37.125 GHz 38.250 GHz 38.250 GHz 39.375 GHz 38.250 GHz 39.375 GHz	5.2.1.3	30 30 30 30 30 30 30 30 30 30 30 30 30 3		3.8 3.9 3.9 4.0 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dBc	Measured value/dBc	Uncer- tainty / dB
3	40 GHz 1.25 GHz 2.50 GHz 3.75 GHz 5.00 GHz 6.25 GHz 7.50 GHz 8.75 GHz 10.00 GHz 11.25 GHz 12.50 GHz 13.75 GHz 15.00 GHz 15.00 GHz 16.25 GHz 17.50 GHz 20.00 GHz 21.25 GHz 22.50 GHz 23.75 GHz 22.50 GHz 23.75 GHz 25.00 GHz 25.00 GHz 21.25 GHz 25.00 GHz 31.25 GHz 37.50 GHz 38.75 GHz 30.00 GHz 31.25 GHz 31.25 GHz 31.25 GHz 33.75 GHz 33.75 GHz 33.75 GHz 35.00 GHz 36.25 GHz 37.50 GHz 36.25 GHz 37.50 GHz 37.50 GHz 38.75 GHz	5.2.1.3	30 30 30 30 30 30 30 30 30 30 30 30 30 3		3.8 3.9 4.0 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.9 4.9 4.9 4.9 4.9 5.6 5.6 5.6 5.6 5.6 5.6

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dBc	Measured value/dBc	Uncer- tainty / dB
4	SSB phase noise	5.2.1.4			
	0.010 GHz 0.100 GHz 0.500 GHz 1.000 GHz 1.500 GHz 1.500 GHz 1.998 GHz 2.000 GHz 2.500 GHz 2.800 GHz 3.200 GHz 3.200 GHz 3.800 GHz 5.000 GHz 5.000 GHz 5.000 GHz 6.000 GHz 6.000 GHz 6.000 GHz 10.00 GHz 10.00 GHz 10.00 GHz 12.00 GHz 12.00 GHz 13.00 GHz 12.00 GHz 20.10 GHz 20.10 GHz 21.00 GHz		100.0 100.0 90.00 90.00 86.50 84.10 84.00 82.10 81.10 79.90 78.50 76.10 75.90 75.20 74.50 73.80 73.10 72.00 70.00 69.90 68.50 67.80 66.50 64.00 63.90 63.60 62.00 61.70 60.40 58.90 58.00		2.0 2.0 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0

Item	Characteristic	Measure- ment acc. to section	Measured value/Hz	Specification max. value Hz	Uncer- tainty / Hz
5	Residual FM	5.2.1.5			
	0.010 GHz 0.100 GHz 0.500 GHz 1.000 GHz 1.500 GHz 1.598 GHz 2.000 GHz 2.500 GHz 2.800 GHz 3.200 GHz 3.800 GHz 5.000 GHz 5.100 GHz 5.500 GHz 6.000 GHz 6.500 GHz 7.000 GHz 10.00 GHz 10.20 GHz 12.00 GHz 13.00 GHz 15.00 GHz 21.00 GHz 21.00 GHz 20.00 GHz 20.10 GHz 20.10 GHz 20.10 GHz 20.10 GHz 21.00 GHz			2.0 2.0 5.0 5.0 10.0 10.0 10.0 20.0 20.0 20.0 20.0 40.0 40.0 40.0 40.0 40.0 40.0 80.0 80.0 80.0 80.0 80.0 80.0 160.0 160.0 160.0 160.0 160.0	0.7 0.7 0.8 1.0 1.1 1.3 1.5 1.7 1.8 2.1 2.5 2.5 2.7 2.8 3.0 3.2 3.5 4.2 4.3 4.9 5.3 6.0 7.8 7.8 8.1 9.6 9.9 13.3 18.9 22.6

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dBm	Measured value/dBm	Specification max. value/dBm	Uncer- tainty / dB
6	Level accuracy Port1	5.2.1.6				
	0.010 GHz 0.100 GHz 0.150 GHz 0.500 GHz 1.500 GHz 1.500 GHz 1.500 GHz 2.000 GHz 3.000 GHz 4.000 GHz 5.000 GHz 5.000 GHz 6.000 GHz 7.000 GHz 8.000 GHz 11.00 GHz 11.00 GHz 11.00 GHz 11.00 GHz 12.00 GHz 13.00 GHz 14.00 GHz 15.00 GHz 15.00 GHz 16.00 GHz 17.00 GHz 18.00 GHz 19.00 GHz 20.00 GHz 22.00 GHz 24.00 GHz 29.00 GHz 20.00 GHz 21.00 GHz 21.00 GHz 21.00 GHz 21.00 GHz 22.00 GHz 23.00 GHz 24.00 GHz 24.00 GHz 25.00 GHz 26.00 GHz 26.00 GHz 27.00 GHz 28.00 GHz 28.00 GHz 28.00 GHz 28.00 GHz 28.00 GHz 28.00 GHz 38.00 GHz 38.00 GHz 38.00 GHz		-12.0 -12.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -12.0		-8.0 -8.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9	0.23 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.24 0.24 0.32 0.32 0.32 0.40 0.40 0.40 0.40 0.46 0.46 0.46 0.47 0.47 0.52 0.52 0.66 0.66 0.66 0.75 0.75 0.75 0.75 0.75 0.75 0.75

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dBm	Measured value/dBm	Specification max. value/dBm	Uncer- tainty / dB
6	Level accuracy Port2	5.2.1.6				
	0.010 GHz 0.100 GHz 0.150 GHz 0.500 GHz 1.000 GHz 1.500 GHz 1.500 GHz 2.000 GHz 2.000 GHz 3.000 GHz 4.000 GHz 5.000 GHz 6.000 GHz 6.000 GHz 8.000 GHz 9.000 GHz 11.00 GHz 11.00 GHz 11.00 GHz 12.00 GHz 13.00 GHz 14.00 GHz 15.00 GHz 15.00 GHz 16.00 GHz 17.00 GHz 18.00 GHz 19.00 GHz 20.00 GHz 20.00 GHz 22.00 GHz 23.00 GHz 24.00 GHz 23.00 GHz 33.00 GHz 34.00 GHz 34.00 GHz 336.00 GHz 336.00 GHz 338.00 GHz		-12.0 -12.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -12.0		-8.0 -8.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9	0.23 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.24 0.24 0.32 0.32 0.32 0.32 0.40 0.40 0.40 0.40 0.46 0.46 0.46 0.46

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
8	Level linearity Port1 Reference: -10 dBm Without option ZVK-B21:	5.2.1.7				
	f = 0.010 GHz 10 dB 5 dB -5 dB -10 dB		9.0 4.0 -6.0 -11.0		11.0 6.0 -4.0 -9.0	0.051 0.051 0.051 0.051
	f = 0.100 GHz 10 dB 5 dB -5 dB -10 dB		9.0 4.0 -6.0 -11.0		11.0 6.0 -4.0 -9.0	0.051 0.051 0.051 0.051
	f = 0.150 GHz 10 dB 5 dB -5 dB -10 dB		9.6 4.6 -5.4 -10.4		10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 0.500 GHz 10 dB 5 dB -5 dB -10 dB		9.6 4.6 -5.4 -10.4		10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 1.000 GHz 10 dB 5 dB -5 dB -10 dB		9.6 4.6 -5.4 -10.4		10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 2.000 GHz 10 dB 5 dB -5 dB -10 dB		9.6 4.6 -5.4 -10.4		10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 4.000 GHz 10 dB 5 dB -5 dB -10 dB		9.6 4.6 -5.4 -10.4		10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 8.000 GHz 10 dB 5 dB -5 dB -10 dB		9.6 4.6 -5.4 -10.4		10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 10.000 GHz 10 dB 5 dB -5 dB -10 dB		9.6 4.6 -5.4 -10.4		10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
8	Level linearity Port1 Reference: -10 dBm Without option ZVK-B21:	5.2.1.7				
	f = 10.200 GHz 10 dB 5 dB -5 dB -10 dB		9.6 4.6 -5.4 -10.4		10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 12.000 GHz 10 dB 5 dB -5 dB -10 dB		9.6 4.6 -5.4 -10.4		10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 14.000 GHz 10 dB 5 dB -5 dB -10 dB		9.6 4.6 -5.4 -10.4		10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 16.000 GHz 10 dB 5 dB -5 dB -10 dB		9.6 4.6 -5.4 -10.4		10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 18.000 GHz 5 dB -5 dB -10 dB		4.6 -5.4 -10.4		5.4 -4.6 -9.6	0.051 0.051 0.051
	f = 20.000 GHz 5 dB -5 dB -10 dB		4.6 -5.4 -10.4		5.4 -4.6 -9.6	0.051 0.051 0.051
	f = 25.000 GHz 5 dB -5 dB -10 dB		4.6 -5.4 -10.4		5.4 -4.6 -9.6	0.051 0.051 0.051
	f = 30.000 GHz 5 dB -5 dB -10 dB		4.6 -5.4 -10.4		5.4 -4.6 -9.6	0.051 0.051 0.051
	f = 36.000 GHz 5 dB -5 dB -10 dB		4.6 -5.4 -10.4		5.4 -4.6 -9.6	0.051 0.051 0.051
	f = 40.000 GHz 5 dB -5 dB -10 dB		4.6 -5.4 -10.4		5.4 -4.6 -9.6	0.051 0.051 0.051

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
8	Level linearity Port1 Reference: -10 dBm Without option ZVK-B21:	5.2.1.7				
	f = 0.010 GHz 7 dB 5 dB -5 dB -10 dB		6.0 4.0 -6.0 -11.0		8.0 6.0 -4.0 -9.0	0.051 0.051 0.051 0.051
	f = 0.100 GHz 7 dB 5 dB -5 dB -10 dB		6.0 4.0 -6.0 -11.0		8.0 6.0 -4.0 -9.0	0.051 0.051 0.051 0.051
	f = 0.150 GHz 7 dB 5 dB -5 dB -10 dB		6.6 4.6 -5.4 -10.4		7.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 0.500 GHz 7 dB 5 dB -5 dB -10 dB		6.6 4.6 -5.4 -10.4		7.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 1.000 GHz 7 dB 5 dB -5 dB -10 dB		6.6 4.6 -5.4 -10.4		7.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 2.000 GHz 7 dB 5 dB -5 dB -10 dB		6.6 4.6 -5.4 -10.4		7.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 4.000 GHz 7 dB 5 dB -5 dB -10 dB		6.6 4.6 -5.4 -10.4		7.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 8.000 GHz 7 dB 5 dB -5 dB -10 dB		6.6 4.6 -5.4 -10.4		7.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 10.000 GHz 7 dB 5 dB -5 dB -10 dB		6.6 4.6 -5.4 -10.4		7.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
8	Level linearity Port1 Reference: -10 dBm With option ZVK-B21:	5.2.1.7				
	f = 10.200 GHz 7 dB 5 dB -5 dB -10 dB		6.6 4.6 -5.4 -10.4		7.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 12.000 GHz 7 dB 5 dB -5 dB -10 dB		6.6 4.6 -5.4 -10.4		7.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 14.000 GHz 7 dB 5 dB -5 dB -10 dB		6.6 4.6 -5.4 -10.4		7.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 16.000 GHz 7 dB 5 dB -5 dB -10 dB		6.6 4.6 -5.4 -10.4		7.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 18.000 GHz 1 dB -5 dB -10 dB		0.6 -5.4 -10.4		1.4 -4.6 -9.6	0.051 0.051 0.051
	f = 20.000 GHz 1 dB -5 dB -10 dB		0.6 -5.4 -10.4		1.4 -4.6 -9.6	0.051 0.051 0.051
	f = 25.000 GHz 1 dB -5 dB -10 dB		0.6 -5.4 -10.4		1.4 -4.6 -9.6	0.051 0.051 0.051
	f = 30.000 GHz 1 dB -5 dB -10 dB		0.6 -5.4 -10.4		1.4 -4.6 -9.6	0.051 0.051 0.051
	f = 36.000 GHz 1 dB -5 dB -10 dB		0.6 -5.4 -10.4		1.4 -4.6 -9.6	0.051 0.051 0.051
	f = 40.000 GHz 1 dB -5 dB -10 dB		0.6 -5.4 -10.4		1.4 -4.6 -9.6	0.051 0.051 0.051

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
8	Level linearity Port2 Reference: –10 dBm Without option ZVK-B22:	5.2.1.7				
	f = 0.010 GHz 10 dB 5 dB -5 dB -10 dB		9.0 4.0 -6.0 -11.0		11.0 6.0 -4.0 -9.0	0.051 0.051 0.051 0.051
	f = 0.100 GHz 10 dB 5 dB -5 dB -10 dB		9.0 4.0 -6.0 -11.0		11.0 6.0 -4.0 -9.0	0.051 0.051 0.051 0.051
	f = 0.150 GHz 10 dB 5 dB -5 dB -10 dB		9.6 4.6 -5.4 -10.4		10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 0.500 GHz 10 dB 5 dB -5 dB -10 dB		9.6 4.6 -5.4 -10.4		10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 1.000 GHz 10 dB 5 dB -5 dB -10 dB		9.6 4.6 -5.4 -10.4		10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 2.000 GHz 10 dB 5 dB -5 dB -10 dB		9.6 4.6 -5.4 -10.4		10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 4.000 GHz 10 dB 5 dB -5 dB -10 dB		9.6 4.6 -5.4 -10.4		10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 8.000 GHz 10 dB 5 dB -5 dB -10 dB		9.6 4.6 -5.4 -10.4		10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 10.000 GHz 10 dB 5 dB -5 dB -10 dB		9.6 4.6 -5.4 -10.4		10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
8	Level linearity Port2 Reference: -10 dBm Without option ZVK-B22:	5.2.1.7				
	f = 10.200 GHz 10 dB 5 dB -5 dB -10 dB		9.6 4.6 -5.4 -10.4		10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 12.000 GHz 10 dB 5 dB -5 dB -10 dB		9.6 4.6 -5.4 -10.4		10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 14.000 GHz 10 dB 5 dB -5 dB -10 dB		9.6 4.6 -5.4 -10.4		10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 16.000 GHz 10 dB 5 dB -5 dB -10 dB		9.6 4.6 -5.4 -10.4		10.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 18.000 GHz 5 dB -5 dB -10 dB		4.6 -5.4 –10.4		5.4 -4.6 -9.6	0.051 0.051 0.051
	f = 20.000 GHz 5 dB -5 dB -10 dB		4.6 -5.4 -10.4		5.4 -4.6 -9.6	0.051 0.051 0.051
	f = 25.000 GHz 5 dB -5 dB -10 dB		4.6 -5.4 -10.4		5.4 -4.6 -9.6	0.051 0.051 0.051
	f = 30.000 GHz 5 dB -5 dB -10 dB		4.6 -5.4 -10.4		5.4 -4.6 -9.6	0.051 0.051 0.051
	f = 36.000 GHz 5 dB -5 dB -10 dB		4.6 -5.4 -10.4		5.4 -4.6 -9.6	0.051 0.051 0.051
	f = 40.000 GHz 5 dB -5 dB -10 dB		4.6 -5.4 -10.4		5.4 -4.6 -9.6	0.051 0.051 0.051

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
8	Level linearity Port2 Reference: –10 dBm With option ZVK-B22:	5.2.1.7				
	f = 0.010 GHz 7 dB 5 dB -5 dB -10 dB		6.0 4.0 -6.0 -11.0		8.0 6.0 -4.0 -9.0	0.051 0.051 0.051 0.051
	f = 0.100 GHz 7 dB 5 dB -5 dB -10 dB		6.0 4.0 -6.0 -11.0		8.0 6.0 -4.0 -9.0	0.051 0.051 0.051 0.051
	f = 0.150 GHz 7 dB 5 dB -5 dB -10 dB		6.6 4.6 -5.4 -10.4		7.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 0.500 GHz 7 dB 5 dB -5 dB -10 dB		6.6 4.6 -5.4 -10.4		7.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 1.000 GHz 7 dB 5 dB -5 dB -10 dB		6.6 4.6 -5.4 -10.4		7.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 2.000 GHz 7 dB 5 dB -5 dB -10 dB		6.6 4.6 -5.4 -10.4		7.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 4.000 GHz 7 dB 5 dB -5 dB -10 dB		6.6 4.6 -5.4 -10.4		7.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 8.000 GHz 7 dB 5 dB -5 dB -10 dB		6.6 4.6 -5.4 -10.4		7.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 10.000 GHz 7 dB 5 dB -5 dB -10 dB		6.6 4.6 -5.4 -10.4		7.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
8	Level linearity Port2 Reference: –10 dBm With option ZVK-B22:	5.2.1.7				
	f = 10.200 GHz 7 dB 5 dB -5 dB -10 dB		6.6 4.6 -5.4 -10.4		7.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 12.000 GHz 7 dB 5 dB -5 dB -10 dB		6.6 4.6 -5.4 -10.4		7.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 14.000 GHz 7 dB 5 dB -5 dB -10 dB		6.6 4.6 -5.4 -10.4		7.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 16.000 GHz 7 dB 5 dB -5 dB -10 dB		6.6 4.6 -5.4 -10.4		7.4 5.4 -4.6 -9.6	0.051 0.051 0.051 0.051
	f = 18.000 GHz 1 dB -5 dB -10 dB		0.6 -5.4 -10.4		1.4 -4.6 -9.6	0.051 0.051 0.051
	f = 20.000 GHz 1 dB -5 dB -10 dB		0.6 -5.4 -10.4		1.4 -4.6 -9.6	0.051 0.051 0.051
	f = 25.000 GHz 1 dB -5 dB -10 dB		0.6 -5.4 -10.4		1.4 -4.6 -9.6	0.051 0.051 0.051
	f = 30.000 GHz 1 dB -5 dB -10 dB		0.6 -5.4 -10.4		1.4 -4.6 -9.6	0.051 0.051 0.051
	f = 36.000 GHz 1 dB -5 dB -10 dB		0.6 -5.4 -10.4		1.4 -4.6 -9.6	0.051 0.051 0.051
	f = 40.000 GHz 1 dB -5 dB -10 dB		0.6 -5.4 -10.4		1.4 -4.6 -9.6	0.051 0.051 0.051

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
9	Characteristic Absolute accuracy PORT1 Input level –10 dBm Difference from -10 dBm: 0.010 GHz 0.100 GHz 0.150 GHz 0.500 GHz 1.000 GHz 1.500 GHz 2.000 GHz 3.000 GHz 4.000 GHz 5.000 GHz 6.000 GHz 7.000 GHz 8.000 GHz 9.000 GHz 11.00 GHz 11.00 GHz 12.00 GHz 11.00 GHz	ment acc.			max.	
	20.00 GHz 20.10 GHz 21.00 GHz 25.00 GHz 26.00 GHz 28.00 GHz 30.00 GHz 35.00 GHz 36.00 GHz 40.00 GHz		-3.0 -3.0 -3.0 -3.0 -3.0 -4.0 -4.0 -4.0		3.0 3.0 3.0 3.0 4.0 4.0 4.0 4.0	0.75 0.75 0.75 0.75 1.42 1.42 1.42 1.42

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
9	Absolute accuracy PORT2	5.2.2.1				
	Input level -10 dBm					
	Difference from					
	-10 dBm:					
			-2.0		2.0	0.70
	0.010 GHz		-2.0		2.0	0.70
	0.100 GHz		-2.0		2.0	0.70
	0.150 GHz 0.500 GHz		-2.0 -2.0		2.0 2.0	0.70 0.70
	1.000 GHz		-2.0 -2.0		2.0	0.70
	1.500 GHz		-2.0 -2.0		2.0	0.70
	2.000 GHz		-2.0		2.0	0.70
	3.000 GHz		-2.0		2.0	0.70
	4.000 GHz		-2.0		2.0	0.70
	5.000 GHz		-2.0		2.0	0.70
	6.000 GHz		-2.0		2.0	0.70
	7.000 GHz		-2.0		2.0	0.70
	8.000 GHz		-2.0		2.0	0.70
	9.000 GHz		-2.0		2.0	0.70
	10.00 GHz		-2.0		2.0	0.70
	11.00 GHz 12.00 GHz		-2.0 -2.0		2.0 2.0	0.70 0.70
	13.00 GHz		-2.0 -2.0		2.0	0.70
	14.00 GHz		-2.0		2.0	0.70
	15.00 GHz		-2.0		2.0	0.70
	16.00 GHz		-2.0		2.0	0.70
	16.10 GHz		-2.0		2.0	0.71
	17.00 GHz		-2.0		2.0	0.71
	18.00 GHz		-2.0		2.0	0.75
	19.00 GHz		-2.0		2.0	0.75
	20.00 GHz		-3.0		3.0	0.75
	20.10 GHz		-3.0		3.0	0.75
	21.00 GHz 25.00 GHz		-3.0 -3.0		3.0 3.0	0.75 0.75
	26.00 GHz		-3.0 -3.0		3.0	1.42
	28.00 GHz		-3.0 -4.0		4.0	1.42
	30.00 GHz		-4.0 -4.0		4.0	1.42
	35.00 GHz		-4.0		4.0	1.42
	36.00 GHz		-4.0		4.0	1.42
	40.00 GHz					

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
9	Absolute accuracy INPUT B1 With receiver step at-	5.2.2.1				
	tenuator ZVK-B23 in- stalled Input level –10 dBm Difference from –10 dBm:		-2.0		2.0	0.70
	0.010 GHz 0.100 GHz 0.150 GHz 0.500 GHz 1.000 GHz 1.500 GHz 2.000 GHz 3.000 GHz 4.000 GHz 5.000 GHz 6.000 GHz 7.000 GHz 8.000 GHz 9.000 GHz 11.00 GHz 11.00 GHz 12.00 GHz 13.00 GHz 14.00 GHz 15.00 GHz 15.00 GHz		-2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0		2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70
	16.10 GHz 17.00 GHz 18.00 GHz 19.00 GHz 20.00 GHz 20.10 GHz 21.00 GHz 25.00 GHz 26.00 GHz 28.00 GHz 30.00 GHz 35.00 GHz 36.00 GHz 40.00 GHz		-2.0 -2.0 -3.0 -3.0 -3.0 -3.0 -3.0 -4.0 -4.0 -4.0 -4.0		2.0 2.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0	0.71 0.75 0.75 0.75 0.75 0.75 0.75 1.42 1.42 1.42 1.42

Absolute accuracy INPUT B2 With receiver step attenuator ZVK-B24 installed Input level –10 dBm Difference from –10 dBm: -2.0	Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
20.10 GHz 21.00 GHz 25.00 GHz 26.00 GHz 28.00 GHz 3.00 -3.0 -4.0	9	With receiver step attenuator ZVK-B24 installed Input level –10 dBm Difference from –10 dBm: 0.010 GHz 0.100 GHz 0.150 GHz 0.150 GHz 1.500 GHz 1.500 GHz 2.000 GHz 2.000 GHz 3.000 GHz 4.000 GHz 5.000 GHz 5.000 GHz 6.000 GHz 7.000 GHz 8.000 GHz 11.00 GHz 12.00 GHz 13.00 GHz 14.00 GHz 15.00 GHz 16.10 GHz 17.00 GHz 18.00 GHz 17.00 GHz 18.00 GHz 20.00 GHz 20.10 GHz 20.10 GHz 20.10 GHz 20.10 GHz 21.00 GHz 22.00 GHz 23.00 GHz 36.00 GHz 36.00 GHz	5.2.2.1	-2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0		2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
10	Linearity B1 Reference: -10 dBm Without opt. ZVK-B22	5.2.2.2				
	f = 0.010 GHz 10 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2 -0.2		0.2 0.2 0.2 0.2	0.058 0.058 0.058 0.058
	f = 0.500 GHz 10 dB 5 dB -5 dB -10 dB		-0.2 -0.1 -0.1 -0.1		0.2 0.1 0.1 0.1	0.058 0.029 0.029 0.020
	f = 1.000 GHz 10 dB 5 dB -5 dB -10 dB		-0.2 -0.1 -0.1 -0.1		0.2 0.1 0.1 0.1	0.058 0.029 0.029 0.020
	f = 2.000 GHz 10 dB 5 dB -5 dB -10 dB		-0.2 -0.1 -0.1 -0.1		0.2 0.1 0.1 0.1	0.058 0.029 0.029 0.020
	f = 4.000 GHz 10 dB 5 dB -5 dB -10 dB		-0.2 -0.1 -0.1 -0.1		0.2 0.1 0.1 0.1	0.058 0.029 0.029 0.020
	f = 8.00 GHz 10 dB 5 dB -5 dB -10 dB		-0.2 -0.1 -0.1 -0.1		0.2 0.1 0.1 0.1	0.058 0.029 0.029 0.020
	f = 10.00 GHz 10 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2 -0.2		0.2 0.2 0.2 0.2	0.058 0.058 0.058 0.058
	f = 10.20 GHz 10 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2 -0.2		0.2 0.2 0.2 0.2	0.058 0.058 0.058 0.058

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
10	Linearity B1 Reference: –10 dBm Without opt. ZVK-B22	5.2.2.2				
	f = 16.00 GHz 10 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2 -0.2		0.2 0.2 0.2 0.2	0.058 0.058 0.058 0.058
	f = 20.00 GHz 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2		0.2 0.2 0.2	0.058 0.058 0.058
	f = 28.00 GHz 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2		0.2 0.2 0.2	0.058 0.058 0.058
	f = 36.00 GHz 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2		0.2 0.2 0.2	0.058 0.058 0.058
	f = 40.00 GHz 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2		0.2 0.2 0.2	0.058 0.058 0.058

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
10	Linearity B1 Reference: –10 dBm With option ZVK-B22	5.2.2.2				
	f = 0.010 GHz 7 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2 -0.2		0.2 0.2 0.2 0.2	0.058 0.058 0.058 0.058
	f = 0.500 GHz 7 dB 5 dB -5 dB -10 dB		-0.2 -0.1 -0.1 -0.1		0.2 0.1 0.1 0.1	0.058 0.029 0.029 0.029
	f = 1.000 GHz 7 dB 5 dB -5 dB -10 dB		-0.2 -0.1 -0.1 -0.1		0.2 0.1 0.1 0.1	0.058 0.029 0.029 0.029
	f = 2.000 GHz 7 dB 5 dB -5 dB -10 dB		-0.2 -0.1 -0.1 -0.1		0.2 0.1 0.1 0.1	0.058 0.029 0.029 0.029
	f = 4.000 GHz 7 dB 5 dB -5 dB -10 dB		-0.2 -0.1 -0.1 -0.1		0.2 0.1 0.1 0.1	0.058 0.029 0.029 0.029
	f = 8.00 GHz 7 dB 5 dB -5 dB -10 dB		-0.2 -0.1 -0.1 -0.1		0.2 0.1 0.1 0.1	0.058 0.029 0.029 0.029
	f = 10.00 GHz 7 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2 -0.2		0.2 0.2 0.2 0.2	0.058 0.058 0.058 0.058
	f = 10.20 GHz 7 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2 -0.2		0.2 0.2 0.2 0.2	0.058 0.058 0.058 0.058

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
10	Linearity B1 Reference: -10 dBm with option ZVK-B22	5.2.2.2				
	f = 16.00 GHz 7 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2 -0.2		0.2 0.2 0.2 0.2	0.058 0.058 0.058 0.058
	f = 20.00 GHz 1 dB -5 dB -10 dB		-0.2 -0.2 -0.2		0.2 0.2 0.2	0.058 0.058 0.058
	f = 28.00 GHz 1 dB -5 dB -10 dB		-0.2 -0.2 -0.2		0.2 0.2 0.2	0.058 0.058 0.058
	f = 36.00 GHz 1 dB -5 dB -10 dB		-0.2 -0.2 -0.2		0.2 0.2 0.2	0.058 0.058 0.058
	f = 40.00 GHz 1 dB -5 dB -10 dB		-0.2 -0.2 -0.2		0.2 0.2 0.2	0.058 0.058 0.058

Item	Characteristic	Measure- ment acc. to section	Specification min. value/°	Measured value/°	Specification max. value/°	Uncer- tainty / °
10	Linearity B1 Reference: -10 dBm Without opt. ZVK-B22	5.2.2.2				
	f = 0.010 GHz 10 dB 5 dB -5 dB -10 dB		-2 -2 -2 -2		+2 +2 +2 +2	0.58 0.58 0.58 0.58
	f = 0.500 GHz 10 dB 5 dB -5 dB -10 dB		-2 -1 -1 -1		+2 +1 +1 +1	0.58 0.29 0.29 0.29
	f = 1.000 GHz 10 dB 5 dB -5 dB -10 dB		-2 -1 -1 -1		+2 +1 +1 +1	0.58 0.29 0.29 0.29
	f = 2.000 GHz 10 dB 5 dB -5 dB -10 dB		-2 -1 -1 -1		+2 +1 +1 +1	0.58 0.29 0.29 0.29
	f = 4.000 GHz 10 dB 5 dB -5 dB -10 dB		-2 -1 -1 -1		+2 +1 +1 +1	0.58 0.29 0.29 0.29
	f = 8.00 GHz 10 dB 5 dB -5 dB -10 dB		-2 -1 -1 -1		+2 +1 +1 +1	0.58 0.29 0.29 0.29
	f = 10.00 GHz 10 dB 5 dB -5 dB -10 dB		-2 -1 -1 -1		+2 +1 +1 +1	0.58 0.29 0.29 0.29
	f = 10.20 GHz 10 dB 5 dB -5 dB -10 dB		-2 -1 -1 -1		+2 +1 +1 +1	0.58 0.29 0.29 0.29

Item	Characteristic	Measure- ment acc. to section	Specification min. value/°	Measured value/°	Specification max. value/°	Uncer- tainty / °
10	Linearity B1 Reference: -10 dBm Without opt. ZVK-B22	5.2.2.2				
	f = 16.00 GHz 10 dB 5 dB -5 dB -10 dB		-2 -2 -2 -2		+2 +2 +2 +2	0.58 0.58 0.58 0.58
	f = 20.00 GHz 5 dB -5 dB -10 dB		-2 -2 -2		+2 +2 +2	0.58 0.58 0.58
	f = 28.00 GHz 5 dB -5 dB -10 dB		-2 -2 -2		+2 +2 +2	0.58 0.58 0.58
	f = 36.00 GHz 5 dB -5 dB -10 dB		-2 -2 -2		+2 +2 +2	0.58 0.58 0.58
	f = 40.00 GHz 5 dB -5 dB -10 dB		-2 -2 -2		+2 +2 +2	0.58 0.58 0.58

Item	Characteristic	Measure- ment acc. to section	Specification min. value/°	Measured value/°	Specification max. value/°	Uncer- tainty / °
10	Linearity B1 Reference: –10 dBm With option ZVK-B22	5.2.2.2				
	f = 0.010 GHz 7 dB 5 dB -5 dB -10 dB		-2 -2 -2 -2		+2 +2 +2 +2	0.58 0.58 0.58 0.58
	f = 0.500 GHz 7 dB 5 dB -5 dB -10 dB		-2 -1 -1 -1		+2 +1 +1 +1	0.58 0.29 0.29 0.29
	f = 1.000 GHz 7 dB 5 dB -5 dB -10 dB		-2 -1 -1 -1		+2 +1 +1 +1	0.58 0.29 0.29 0.29
	f = 2.000 GHz 7 dB 5 dB -5 dB -10 dB		-2 -1 -1 -1		+2 +1 +1 +1	0.58 0.29 0.29 0.29
	f = 4.000 GHz 7 dB 5 dB -5 dB -10 dB		-2 -1 -1 -1		+2 +1 +1 +1	0.58 0.29 0.29 0.29
	f = 8.00 GHz 7 dB 5 dB -5 dB -10 dB		-2 -1 -1 -1		+2 +1 +1 +1	0.58 0.29 0.29 0.29
	f = 10.00 GHz 7 dB 5 dB -5 dB -10 dB		-2 -1 -1 -1		+2 +1 +1 +1	0.58 0.29 0.29 0.29
	f = 10.20 GHz 7 dB 5 dB -5 dB -10 dB		-2 -1 -1 -1		+2 +1 +1 +1	0.58 0.29 0.29 0.29

Item	Characteristic	Measure- ment acc. to section	Specification min. value/°	Measured value/°	Specification max. value/°	Uncer- tainty / °
10	Linearity B1 Reference: -10 dBm With option ZVK-B22	5.2.2.2				
	f = 16.00 GHz 7 dB 5 dB -5 dB -10 dB		-2 -2 -2 -2		+2 +2 +2 +2	0.58 0.58 0.58 0.58
	f = 20.00 GHz 1 dB -5 dB -10 dB		-2 -2 -2		+2 +2 +2	0.58 0.58 0.58
	f = 28.00 GHz 1 dB -5 dB -10 dB		-2 -2 -2		+2 +2 +2	0.58 0.58 0.58
	f = 36.00 GHz 1 dB -5 dB -10 dB		-2 -2 -2		+2 +2 +2	0.58 0.58 0.58
	f = 40.00 GHz 1 dB -5 dB -10 dB		-2 -2 -2		+2 +2 +2	0.58 0.58 0.58

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
10	Linearity B2 Reference: -10 dBm Without opt. ZVK-B21	5.2.2.2				
	f = 0.010 GHz 10 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2 -0.2		0.2 0.2 0.2 0.2	0.058 0.058 0.058 0.058
	f = 0.500 GHz 10 dB 5 dB -5 dB -10 dB		-0.2 -0.1 -0.1 -0.1		0.2 0.1 0.1 0.1	0.058 0.029 0.029 0.020
	f = 1.000 GHz 10 dB 5 dB -5 dB -10 dB		-0.2 -0.1 -0.1 -0.1		0.2 0.1 0.1 0.1	0.058 0.029 0.029 0.020
	f = 2.000 GHz 10 dB 5 dB -5 dB -10 dB		-0.2 -0.1 -0.1 -0.1		0.2 0.1 0.1 0.1	0.058 0.029 0.029 0.020
	f = 4.000 GHz 10 dB 5 dB -5 dB -10 dB		-0.2 -0.1 -0.1 -0.1		0.2 0.1 0.1 0.1	0.058 0.029 0.029 0.020
	f = 8.00 GHz 10 dB 5 dB -5 dB -10 dB		-0.2 -0.1 -0.1 -0.1		0.2 0.1 0.1 0.1	0.058 0.029 0.029 0.020
	f = 10.00 GHz 10 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2 -0.2		0.2 0.2 0.2 0.2	0.058 0.058 0.058 0.058
	f = 10.20 GHz 10 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2 -0.2		0.2 0.2 0.2 0.2	0.058 0.058 0.058 0.058

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
10	Linearity B2 Reference: –10 dBm Without opt. ZVK-B21	5.2.2.2				
	f = 16.00 GHz 10 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2 -0.2		0.2 0.2 0.2 0.2	0.058 0.058 0.058 0.058
	f = 20.00 GHz 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2		0.2 0.2 0.2	0.058 0.058 0.058
	f = 28.00 GHz 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2		0.2 0.2 0.2	0.058 0.058 0.058
	f = 36.00 GHz 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2		0.2 0.2 0.2	0.058 0.058 0.058
	f = 40.00 GHz 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2		0.2 0.2 0.2	0.058 0.058 0.058

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
10	Linearity B2 Reference: –10 dBm With opt. ZVK-B21	5.2.2.2				
	f = 0.010 GHz 7 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2 -0.2		0.2 0.2 0.2 0.2	0.058 0.058 0.058 0.058
	f = 0.500 GHz 7 dB 5 dB -5 dB -10 dB		-0.2 -0.1 -0.1 -0.1		0.2 0.1 0.1 0.1	0.058 0.029 0.029 0.029
	f = 1.000 GHz 7 dB 5 dB -5 dB -10 dB		-0.2 -0.1 -0.1 -0.1		0.2 0.1 0.1 0.1	0.058 0.029 0.029 0.029
	f = 2.000 GHz 7 dB 5 dB -5 dB -10 dB		-0.2 -0.1 -0.1 -0.1		0.2 0.1 0.1 0.1	0.058 0.029 0.029 0.029
	f = 4.000 GHz 7 dB 5 dB -5 dB -10 dB		-0.2 -0.1 -0.1 -0.1		0.2 0.1 0.1 0.1	0.058 0.029 0.029 0.029
	f = 8.00 GHz 7 dB 5 dB -5 dB -10 dB		-0.2 -0.1 -0.1 -0.1		0.2 0.1 0.1 0.1	0.058 0.029 0.029 0.029
	f = 10.00 GHz 7 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2 -0.2		0.2 0.2 0.2 0.2	0.058 0.058 0.058 0.058
	f = 10.20 GHz 7 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2 -0.2		0.2 0.2 0.2 0.2	0.058 0.058 0.058 0.058

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
10	Linearity B2 Reference: –10 dBm With option ZVK-B21	5.2.2.2				
	f = 16.00 GHz 7 dB 5 dB -5 dB -10 dB		-0.2 -0.2 -0.2 -0.2		0.2 0.2 0.2 0.2	0.058 0.058 0.058 0.058
	f = 20.00 GHz 1 dB -5 dB -10 dB		-0.2 -0.2 -0.2		0.2 0.2 0.2	0.058 0.058 0.058
	f = 28.00 GHz 1 dB -5 dB -10 dB		-0.2 -0.2 -0.2		0.2 0.2 0.2	0.058 0.058 0.058
	f = 36.00 GHz 1 dB -5 dB -10 dB		-0.2 -0.2 -0.2		0.2 0.2 0.2	0.058 0.058 0.058
	f = 40.00 GHz 1 dB -5 dB -10 dB		-0.2 -0.2 -0.2		0.2 0.2 0.2	0.058 0.058 0.058

Item	Characteristic	Measure- ment acc. to section	Specification min. value/°	Measured value/°	Specification max. value/°	Uncer- tainty / °
10	Linearity B2 Reference: –10 dBm Without option ZVK- B21	5.2.2.2				
	f = 0.010 GHz 10 dB 5 dB -5 dB -10 dB		-2 -2 -2 -2		+2 +2 +2 +2	0.58 0.58 0.58 0.58
	f = 0.500 GHz 10 dB 5 dB -5 dB -10 dB		-2 -1 -1 -1		+2 +1 +1 +1	0.58 0.29 0.29 0.29
	f = 1.000 GHz 10 dB 5 dB -5 dB -10 dB		-2 -1 -1 -1		+2 +1 +1 +1	0.58 0.29 0.29 0.29
	f = 2.000 GHz 10 dB 5 dB -5 dB -10 dB		-2 -1 -1 -1		+2 +1 +1 +1	0.58 0.29 0.29 0.29
	f = 4.000 GHz 10 dB 5 dB -5 dB -10 dB		-2 -1 -1 -1		+2 +1 +1 +1	0.58 0.29 0.29 0.29
	f = 8.00 GHz 10 dB 5 dB -5 dB -10 dB		-2 -1 -1 -1		+2 +1 +1 +1	0.58 0.29 0.29 0.29
	f = 10.00 GHz 10 dB 5 dB -5 dB -10 dB		-2 -1 -1 -1		+2 +1 +1 +1	0.58 0.29 0.29 0.29
	f = 10.20 GHz 10 dB 5 dB -5 dB -10 dB		-2 -1 -1 -1		+2 +1 +1 +1	0.58 0.29 0.29 0.29

Item	Characteristic	Measure- ment acc. to section	Specification min. value/°	Measured value/°	Specification max. value/°	Uncer- tainty / °
10	Linearity B2 Reference: -10 dBm Without opt. ZVK-B21	5.2.2.2				
	f = 16.00 GHz 10 dB 5 dB -5 dB -10 dB		-2 -2 -2 -2		+2 +2 +2 +2	0.58 0.58 0.58 0.58
	f = 20.00 GHz 5 dB -5 dB -10 dB		-2 -2 -2		+2 +2 +2	0.58 0.58 0.58
	f = 28.00 GHz 5 dB -5 dB -10 dB		-2 -2 -2		+2 +2 +2	0.58 0.58 0.58
	f = 36.00 GHz 5 dB -5 dB -10 dB		-2 -2 -2		+2 +2 +2	0.58 0.58 0.58
	f = 40.00 GHz 5 dB -5 dB -10 dB		-2 -2 -2		+2 +2 +2	0.58 0.58 0.58

Item	Characteristic	Measure- ment acc. to section	Specification min. value/°	Measured value/°	Specification max. value/°	Uncer- tainty / °
10	Linearity B2 Reference: -10 dBm With option ZVK-B21	5.2.2.2				
	f = 0.010 GHz 7 dB 5 dB -5 dB -10 dB		-2 -2 -2 -2		+2 +2 +2 +2	0.58 0.58 0.58 0.58
	f = 0.500 GHz 7 dB 5 dB -5 dB -10 dB		-2 -1 -1 -1		+2 +1 +1 +1	0.58 0.29 0.29 0.29
	f = 1.000 GHz 7 dB 5 dB -5 dB -10 dB		-2 -1 -1 -1		+2 +1 +1 +1	0.58 0.29 0.29 0.29
	f = 2.000 GHz 7 dB 5 dB -5 dB -10 dB		-2 -1 -1 -1		+2 +1 +1 +1	0.58 0.29 0.29 0.29
	f = 4.000 GHz 7 dB 5 dB -5 dB -10 dB		-2 -1 -1 -1		+2 +1 +1 +1	0.58 0.29 0.29 0.29
	f = 8.00 GHz 7 dB 5 dB -5 dB -10 dB		-2 -1 -1 -1		+2 +1 +1 +1	0.58 0.29 0.29 0.29
	f = 10.00 GHz 7 dB 5 dB -5 dB -10 dB		-2 -1 -1 -1		+2 +1 +1 +1	0.58 0.29 0.29 0.29
	f = 10.20 GHz 7 dB 5 dB -5 dB -10 dB		-2 -1 -1 -1		+2 +1 +1 +1	0.58 0.29 0.29 0.29

Item	Characteristic	Measure- ment acc. to section	Specification min. value/°	Measured value/°	Specification max. value/°	Uncer- tainty / °
10	Linearity B2 Reference: –10 dBm With option ZVK-B21	5.2.2.2				
	f = 16.00 GHz 7 dB 5 dB -5 dB -10 dB		-2 -2 -2 -2		+2 +2 +2 +2	0.58 0.58 0.58 0.58
	f = 20.00 GHz 1 dB -5 dB -10 dB		-2 -2 -2		+2 +2 +2	0.58 0.58 0.58
	f = 28.00 GHz 1 dB -5 dB -10 dB		-2 -2 -2		+2 +2 +2	0.58 0.58 0.58
	f = 36.00 GHz 1 dB -5 dB -10 dB		-2 -2 -2		+2 +2 +2	0.58 0.58 0.58
	f = 40.00 GHz 1 dB -5 dB -10 dB		-2 -2 -2		+2 +2 +2	0.58 0.58 0.58

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dBm	Uncer- tainty / dB
11	Noise level PORT1	5.2.2.3				
	IF BW 10 Hz:					
	0.010 GHz				-70.0	2.5
	0.100 GHz 0.150 GHz				-70.0 -70.0	2.5 2.5
	0.500 GHz				-110.0	2.5
	1.000 GHz				-110.0	2.5
	1.500 GHz				-110.0	2.5
	2.000 GHz				-110.0	2.5
	3.000 GHz				-110.0	2.5
	4.000 GHz				-110.0	2.5
	5.000 GHz				-110.0	2.5
	6.000 GHz				-110.0	2.5
	7.000 GHz				-110.0	2.5
	8.000 GHz				-110.0	2.5
	9.000 GHz				-105.0 -105.0	2.5 2.5
	10.00 GHz 11.00 GHz				-105.0 -105.0	2.5
	12.00 GHz				-105.0	2.5
	13.00 GHz				-105.0	2.5
	14.00 GHz				-105.0	2.5
	15.00 GHz				-105.0	2.5
	16.00 GHz				-105.0	2.5
	16.10 GHz				-95.0	2.5
	17.00 GHz				-95.0	2.5
	18.00 GHz				-95.0	2.5
	19.00 GHz				-95.0	2.5
	20.00 GHz				-95.0	2.5
	20.10 GHz				-95.0	3.16
	21.00 GHz 25.00 GHz				-95.0 -95.0	3.16 3.16
	26.00 GHz				-95.0 -95.0	3.16
	28.00 GHz				-95.0 -95.0	3.16
	30.00 GHz				-85.0	4.12
	35.00 GHz				-85.0	4.12
	36.00 GHz				-85.0	4.12
	40.00 GHz				-85.0	4.12

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dBm	Uncer- tainty / dB
11	Noise level PORT2	5.2.2.3				
	IF BW 10 Hz:					
	0.010 GHz 0.100 GHz 0.150 GHz 0.500 GHz 1.000 GHz 1.500 GHz 2.000 GHz 3.000 GHz 3.000 GHz 4.000 GHz 5.000 GHz 6.000 GHz 7.000 GHz 8.000 GHz 9.000 GHz 10.00 GHz 11.00 GHz 11.00 GHz 12.00 GHz 13.00 GHz 14.00 GHz 15.00 GHz 15.00 GHz 15.00 GHz 15.00 GHz 16.00 GHz 16.00 GHz 17.00 GHz 17.00 GHz 18.00 GHz 19.00 GHz				-70.0 -70.0 -70.0 -110.0 -110.0 -110.0 -110.0 -110.0 -110.0 -110.0 -110.0 -105.0 -95.0 -95.0 -95.0	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
	20.10 GHz 21.00 GHz 25.00 GHz 26.00 GHz 28.00 GHz 30.00 GHz 35.00 GHz 36.00 GHz 40.00 GHz				-95.0 -95.0 -95.0 -95.0 -95.0 -85.0 -85.0 -85.0	3.16 3.16 3.16 3.16 3.16 4.12 4.12 4.12 4.12

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
12	Match INPUT B1 With ZVK-B23 installed	5.2.2.4				
	0.050 GHz 0.100 GHz 0.150 GHz 0.500 GHz 1.000 GHz 1.000 GHz 2.000 GHz 4.000 GHz 8.000 GHz 8.000 GHz 10.00 GHz 12.00 GHz 12.00 GHz 14.00 GHz 16.00 GHz 16.00 GHz 16.00 GHz 20.00 GHz 22.00 GHz 24.00 GHz 24.00 GHz 24.00 GHz 24.00 GHz 30.00 GHz 30.00 GHz 30.00 GHz 31.00 GHz		8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0			0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
12	Match INPUT B2 With ZVK-B24 installed	5.2.2.4				
	0.050 GHz 0.100 GHz 0.150 GHz 0.150 GHz 1.000 GHz 1.000 GHz 2.000 GHz 4.000 GHz 4.000 GHz 8.000 GHz 10.00 GHz 12.00 GHz 12.00 GHz 14.00 GHz 16.00 GHz 16.00 GHz 18.00 GHz 20.00 GHz 22.00 GHz 22.00 GHz 22.00 GHz 23.00 GHz 23.00 GHz 33.00 GHz 34.00 GHz 36.00 GHz 38.00 GHz 38.00 GHz 38.00 GHz 38.00 GHz		8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0			0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
13	Match PORT1	5.2.3.1				
	0.010 GHz 0.050 GHz 0.100 GHz 0.150 GHz 1.000 GHz 1.000 GHz 2.000 GHz 4.000 GHz 4.000 GHz 8.000 GHz 8.000 GHz 12.00 GHz 12.00 GHz 14.00 GHz 14.00 GHz 16.00 GHz 16.00 GHz 18.00 GHz 20.00 GHz 22.00 GHz 24.00 GHz 23.00 GHz 24.00 GHz 24.00 GHz 24.00 GHz 25.00 GHz 26.00 GHz 27.00 GHz 28.00 GHz 28.00 GHz 38.00 GHz 38.00 GHz 38.00 GHz 38.00 GHz 38.00 GHz		10.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0			0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
13	Match PORT2	5.2.3.1				
	0.010 GHz 0.050 GHz 0.100 GHz 0.150 GHz 0.150 GHz 1.000 GHz 1.000 GHz 2.000 GHz 4.000 GHz 8.000 GHz 8.000 GHz 10.00 GHz 12.00 GHz 12.00 GHz 14.00 GHz 14.00 GHz 16.00 GHz 16.00 GHz 18.00 GHz 20.00 GHz 22.00 GHz 24.00 GHz 23.00 GHz 24.00 GHz 24.00 GHz 23.00 GHz 33.00 GHz 34.00 GHz 36.00 GHz 36.00 GHz 38.00 GHz 38.00 GHz 38.00 GHz		10.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0			0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
14	Match R1 CHANNEL IN	5.2.3.2				
	0.010 GHz 0.050 GHz 0.100 GHz 0.150 GHz 0.500 GHz 1.000 GHz 1.000 GHz 2.000 GHz 4.000 GHz 8.000 GHz 10.00 GHz 12.00 GHz 12.00 GHz 14.00 GHz 16.00 GHz 16.00 GHz 16.00 GHz 16.00 GHz 20.00 GHz 22.00 GHz 23.00 GHz 24.00 GHz 23.00 GHz 23.00 GHz 33.00 GHz 33.00 GHz 33.00 GHz 36.00 GHz 38.00 GHz 38.00 GHz 38.00 GHz		8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0			0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
14	Match R2 CHANNEL IN	5.2.3.2				
	0.010 GHz 0.050 GHz 0.100 GHz 0.150 GHz 0.150 GHz 1.000 GHz 1.000 GHz 2.000 GHz 4.000 GHz 4.000 GHz 8.000 GHz 10.00 GHz 12.00 GHz 12.00 GHz 14.00 GHz 16.00 GHz 16.00 GHz 16.00 GHz 18.00 GHz 20.00 GHz 22.00 GHz 22.00 GHz 23.00 GHz 23.00 GHz 23.00 GHz 33.00 GHz 34.00 GHz 36.00 GHz 36.00 GHz 38.00 GHz 38.00 GHz 38.00 GHz		8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0			0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
15	Raw directivity PORT1	5.2.3.3				
	0.010 GHz 0.100 GHz 0.100 GHz 0.150 GHz 1.000 GHz 1.500 GHz 1.500 GHz 2.000 GHz 3.000 GHz 3.000 GHz 4.000 GHz 5.000 GHz 6.000 GHz 7.000 GHz 8.000 GHz 9.000 GHz 11.00 GHz 11.00 GHz 12.00 GHz 13.00 GHz 14.00 GHz 15.00 GHz 15.00 GHz 16.00 GHz 17.00 GHz 18.00 GHz 17.00 GHz 18.00 GHz 19.00 GHz 19.00 GHz 20.00 GHz 22.00 GHz 22.00 GHz 24.00 GHz 24.00 GHz 30.00 GHz 30.00 GHz 30.00 GHz 30.00 GHz 31.00 GHz		8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0			0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
15	Raw directivity PORT2	5.2.3.3				
	0.010 GHz 0.100 GHz 0.150 GHz 0.150 GHz 1.000 GHz 1.500 GHz 1.500 GHz 2.000 GHz 3.000 GHz 3.000 GHz 4.000 GHz 5.000 GHz 6.000 GHz 7.000 GHz 8.000 GHz 10.00 GHz 11.00 GHz 11.00 GHz 12.00 GHz 13.00 GHz 14.00 GHz 15.00 GHz 15.00 GHz 16.10 GHz 17.00 GHz 18.00 GHz 18.00 GHz 21.00 GHz 22.00 GHz 20.00 GHz 22.00 GHz 23.00 GHz 24.00 GHz 23.00 GHz 23.00 GHz 34.00 GHz 34.00 GHz 36.00 GHz 38.00 GHz 38.00 GHz 38.00 GHz 38.00 GHz		8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0			0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
16	Generator step attenuator A1 With ZVK-B21 installed f = 1.0 GHz, reference value 10 dB 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB f = 15.0 GHz, reference value 10 dB	5.2.3.4	-3.0 -0.2 -3.0 -3.0 -3.0 -3.0 -3.0		3.0 0.2 3.0 3.0 3.0 3.0 3.0 3.0 3.0	1.0 Reference 1.0 1.0 1.0 1.0 1.0
	0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB		-3.0 -0.2 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0		3.0 0.2 3.0 3.0 3.0 3.0 3.0 3.0	1.0 Reference 1.0 1.0 1.0 1.0 1.0

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
16	Generator step attenuator A2 with ZVK-B22 installed f = 1.0 GHz, reference value 10 dB 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB f = 15.0 GHz, reference value 10 dB	5.2.3.4	-3.0 -0.2 -3.0 -3.0 -3.0 -3.0 -3.0		3.0 0.2 3.0 3.0 3.0 3.0 3.0 3.0	1.0 Reference 1.0 1.0 1.0 1.0 1.0
	0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB		-3.0 -0.2 -3.0 -3.0 -3.0 -3.0 -3.0		3.0 0.2 3.0 3.0 3.0 3.0 3.0 3.0 3.0	1.0 Reference 1.0 1.0 1.0 1.0 1.0

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
16	Receiver step attenuator B1 With ZVK-B23 installed f = 1.0 GHz, reference value 10 dB 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB f = 15.0 GHz, reference value 10 dB 0 dB 10 dB 20 dB	5.2.3.4	-3.0 -0.2 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0		3.0 0.2 3.0 3.0 3.0 3.0 3.0 3.0 0.2	1.0 Reference 1.0 1.0 1.0 1.0 1.0 1.0
	30 dB 40 dB 50 dB 60 dB 70 dB		-3.0 -3.0 -3.0 -3.0 -3.0		3.0 3.0 3.0 3.0 3.0	1.0 1.0 1.0 1.0 1.0

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
16	Receiver step attenuator B2 With ZVK-B24 installed f = 1.0 GHz, reference value 10 dB 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB f = 15.0 GHz, reference value 10 dB	5.2.3.4	-3.0 -0.2 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0		3.0 0.2 3.0 3.0 3.0 3.0 3.0 3.0	1.0 Reference 1.0 1.0 1.0 1.0 1.0
	0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB		-3.0 -0.2 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0		3.0 0.2 3.0 3.0 3.0 3.0 3.0 3.0	1.0 Reference 1.0 1.0 1.0 1.0 1.0

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
17	Dynamic range PORT 1 IF BW 10 Hz:	5.2.3.5				
	0.010 GHz		70.0			
	0.100 GHz		70.0			
	0.500 GHz 1.000 GHz		110.0 110.0			
	2.000 GHz		110.0			
	4.000 GHz		110.0			
	6.000 GHz		110.0			
	8.000 GHz		110.0			
	10.00 GHz		105.0			
	12.00 GHz		105.0			
	14.00 GHz		105.0			
	16.00 GHz		105.0			
	16.10 GHz		90.0			
	17.00 GHz		90.0			
	18.00 GHz		90.0 90.0			
	19.00 GHz 20.00 GHz		90.0			
	22.00 GHz		90.0			
	24.00 GHz		90.0			
	26.00 GHz		90.0			
	28.00 GHz		90.0			
	30.00 GHz		80.0			
	32.00 GHz		80.0			
	34.00 GHz		80.0			
	36.00 GHz		80.0			
	38.00 GHz		80.0			
	40.00 GHz		80.0			

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
17	Dynamic range PORT 1	5.2.3.5				
	IF BW 10 kHz:					
	0.010 GHz		40.0			
	0.100 GHz		40.0			
	0.500 GHz		80.0			
	1.000 GHz		80.0			
	2.000 GHz		80.0			
	4.000 GHz		80.0			
	6.000 GHz		80.0			
	8.000 GHz		80.0			
	10.00 GHz		75.0			
	12.00 GHz		75.0			
	14.00 GHz		75.0			
	16.00 GHz		75.0			
	16.10 GHz 17.00 GHz		60.0 60.0			
	17.00 GHz 18.00 GHz		60.0			
	19.00 GHz		60.0			
	20.00 GHz		60.0			
	22.00 GHz		60.0			
	24.00 GHz		60.0			
	26.00 GHz		60.0			
	28.00 GHz		60.0			
	30.00 GHz		50.0			
	32.00 GHz		50.0			
	34.00 GHz		50.0			
	36.00 GHz		50.0			
	38.00 GHz		50.0			
	40.00 GHz		50.0			

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
17	Dynamic range PORT 2 IF BW 10 Hz: 0.010 GHz 0.100 GHz 0.500 GHz 1.000 GHz 2.000 GHz 4.000 GHz 8.000 GHz 10.00 GHz 10.00 GHz 10.00 GHz 11.00 GHz 12.00 GHz 12.00 GHz 14.00 GHz 14.00 GHz 15.00 GHz 16.10 GHz 17.00 GHz 18.00 GHz 19.00 GHz 19.00 GHz 20.00 GHz 22.00 GHz 24.00 GHz 24.00 GHz 24.00 GHz 25.00 GHz 26.00 GHz 28.00 GHz 30.00 GHz 30.00 GHz 30.00 GHz 31.00 GHz	5.2.3.5	70.0 70.0 110.0 110.0 110.0 110.0 110.0 110.0 105.0 105.0 105.0 90.0 80.		Value	
	36.00 GHz 38.00 GHz 40.00 GHz		80.0 80.0 80.0			

Item	Characteristic	Measure- ment acc. to section	Specification min. value/dB	Measured value/dB	Specification max. value/dB	Uncer- tainty / dB
17	Dynamic range PORT 2	5.2.3.5				
	IF BW 10 kHz:					
	0.010 GHz 0.100 GHz 0.500 GHz 1.000 GHz 2.000 GHz 4.000 GHz 4.000 GHz 8.000 GHz 10.00 GHz 11.000 GHz		40.0 40.0 80.0 80.0 80.0 80.0 80.0 80.0 75.0 75.0 75.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 50.0 50.0 50.0 50.0			
	38.00 GHz 40.00 GHz		50.0 50.0 50.0			

Annex A - Interfaces

A.1 IEC Bus Interface (SCPI IEC625, SYSTEM BUS)

The standard network analyzer is equipped with twp IEC/IEEE bus connectors. The IEEE 488 interface connector is located on the rear panel of the instrument. An external controller for remote control of the networkanalyzer can be connected via the IEEE 488 interface connector using a shielded cable.

The third IEC Bus interface is assigned to the MS-DOS processor, with an installed processor option. This interface can be controlled by standard software (R&S-Basic, QUICK-Basic, etc.) under MS-DOS as well as under WINDOWS (VISUAL BASIC, etc.) with the delivered driver software. The IEC Bus interface allows the remote control of the network analyzer via an external connection to both IEC Bus interfaces and, in addition, the control of other instruments via the IEC Bus interface located on the rear panel (e.g., control of a complete measurement system).

The following section describes the first IEC Bus interface over which the network analyzer can be remotely controlled. The characteristics of the PC2A/PC-AT controller interface depend upon the user-installed software running on the MS-DOS processor and is, therefore, not described here.

Interface Characteristics

- 8-bit parallel data transfer
- bidirectional data transfer
- three-line handshake
- high data transfer rate of max. 350 kbyte/s
- up to 15 instruments can be connected
- maximal length of the interconnecting cables 15 m (single connection, 2m)
- wired-OR connection if several instruments are connected in parallel.

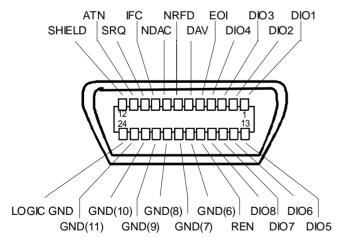


Fig. A-1 Pin assignment of IEC-Bus interface

Bus Lines

1. Data bus with 8 lines DIO 1 to DIO 8.

The transmission is bit-parallel and byte-serial in the ASCII/ISO code. DIO1 is the least significant, DIO8 the most significant bit.

2. Control bus with 5 lines.

IFC (Interface Clear),

active low resets the interfaces of the devices connected to the default setting.

ATN (Attention),

active low signals the transmission of interface messages inactive high signals the transmission of device messages.

SRQ (Service Request),

active low enables a device connected to send a service request to the controller.

REN (Remote Enable),

active low permits the switch over to remote control.

EOI (End or Identify),

has two functions in connection with ATN: active low marks the end of data transmission when ATN=high active low triggers a parallel poll when ATN=low.

3. Handshake bus with three lines.

DAV (Data Valid),

active low signals a valid data byte on the data bus.

NRFD (Not Ready For Data),

active low signals that one of the devices connected is not ready for data transfer .

NDAC (Not Data Accepted),

active low as long as the device connected is accepting the data present on the data bus.

Interface Functions

Instruments which can be remote controlled via the IEC bus can be equipped with different interface functions. Table A-1 lists the interface functions appropriate for the instrument.

Table A-1 Interface functions

Control character	Interface function
SH1	Handshake source function (source handshake), full capability
AH1	Handshake sink function (acceptor handshake), full capability
L4	Listener function, full capability, deaddressed by MTA.
Т6	Talker function, full capability, ability to respond to serial poll, deaddressed by MLA
SR1	Service request function (Service Request), full capability
PP1	Parallel poll function, full capability
RL1	Remote/Local switch over function, full capability
DC1	Reset function (Device Clear), full capability
DT1	Trigger function (Device Trigger), full capability
C12	Controller function, capability to send interface messages, to accept or relinquish the controller function

IEC Bus Messages

The messages transferred via the data lines of the IEC bus can be divided into two groups:

- interface messages and
- instrument messages.

Interface Messages

Interface messages are transferred on the data lines of the IEC Bus when the "ATN" control line is active (LOW). They are used for communication between controller and instruments and can only be sent by the controller which currently has control of the IEC Bus.

Universal Commands

The universal commands are encoded 10 - 1F hex. They affect all instruments connected to the bus without addressing.

Table A-2 Universal Commands

Comn	nand	QuickBASIC command	Effect on the instrument	
DCL	(Device Clear)	IBCMD (controller%, CHR\$(20))	Aborts the processing of the commands just received and sets the command processing software to a defined initial state. Does not change the instrument settings.	
IFC	(Interface Clear)	IBSIC (controller%)	Resets the interfaces to the default setting.	
LLO	(Local Lockout)	IBCMD (controller%, CHR\$(17))	The LOC/IEC ADDR key is disabled.	
SPE	(Serial Poll Enable)	IBCMD (controller%, CHR\$(24))	Ready for serial poll.	
SPD	(Serial Poll Disable)	IBCMD (controller%, CHR\$(25))	End of serial poll.	
PPU Uncon	(Parallel Poll figure)	IBCMD (controller%, CHR\$(21))	End of the parallel-poll state.	

Addressed Commands

The addressed commands are encoded 00 - 0F hex. They are only effective for instruments addressed as listeners.

Table A-3 Addressed Commands

Command	QuickBASIC command	Effect on the instrument	
SDC (Selected Device Clear)	IBCLR (device%)	Aborts the processing of the commands just received and sets the command processing software to a defined initial state. Does not change the instrument setting.	
GTL (Go to Local)	IBLOC (device%)	Transition to the "Local" state (manual control).	
PPC (Parallel Poll Configure)	IBPPC (device%, data%)	Configure instrument for parallel poll. Additionally, the QuickBASIC command executes PPE/PPD.	

Instrument Messages

Instrument messages are transferred on the data lines of the IEC bus when the "ATN" control line is not active. ASCII code is used.

Structure and syntax of the instrument messages are described in Chapter 3, Section 3.5. The commands are listed and explained in detail in Chapter 3, Section 3.6.

A.2 RS-232-C Interface (COM1, COM2)

The standard instrument is equipped with two serial interfaces (RS-232-C). The RS-232-C interfaces are two independent, remote-control channels, both of which may be active at the same time. The programming and interrogation commands affect the same instrument hardware. The interfaces can be set up manually in the *SETUP-GENERAL SETUP* menu in the *COM PORT1/2* table or, via remote control, switched on/off with the command SYSTem:COMMunication:SERial1|2:STATe.

Each of the active RS-232-C interfaces is assigned to one of the 9-pin connectors located on the rear panel. Interface 1 is assigned to the connector COM1 and Interface 2 is assigned to the connector COM2.

Interface Characteristics

- · Serial data transmission in asynchronous mode
- Bidirectional data transfer via two separate lines
- Transmission rate selectable from 110 to 19200 baud
- Logic '0' signal from+3 V to +15 V
- Logic '1' signal from -15 V to -3 V
- An external instrument (controller) can be connected.
- Software handshake (XON, XOFF)
- Hardware handshake

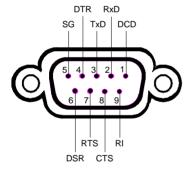


Fig. A-2 Pin assignment of the RS-232-C interface

Signal Lines

1. Data lines

The data transmission is bit-serial in ASCII code starting with the LSB. Two lines, **RxD** and **TxD** are necessary as the minimum requirement for transmission; however, no hardware handshake is possible. For handshaking, only the XON/XOFF software handshake protocol can be used .

RxD (Receive Data)

Input, LOW = logic '1', HIGH = logic '0'.

Data line, local terminal receives data from remote station.

TxD (Transmit Data)

Output, LOW = logic '1', HIGH = logic '0'.

Data line, local terminal transmits data to remote station.

2. Control lines

DCD (Data Carrier Detect),

Not used in this instrument.

Input; active LOW.

Using this signal, the local terminal recognises that the modem of the remote station receives valid signals with sufficient level. DCD is used to disable the receiver in the local terminal and prevent reading of false data if the modem cannot interpret the signals of the remote station.

DTR (Data Terminal Ready),

Output, active LOW.

Indicates that the local terminal is ready to receive data.

DSR (Data Set Ready),

Input, active LOW,

Indicates that the remote station is ready to receive data.

RTS (Request To Send),

Output, active LOW.

Indicates that the local terminal wants to transmit data.

CTS (Clear To Send),

Input, active LOW.

Used to tell the local terminal that the remote station is ready to receive data.

RI (Ring Indicator),

Not used in this instrument.

Input, active LOW.

Used by a modem to indicate that a remote station wants to establish a connection.

Transmission Parameters

To ensure error-free data transmission, the parameters of the instrument and the controller must have the same settings. The parameters are defined in the *SETUP-GENERAL SETUP* menu.

Transmission rate the following transmission rates can be set in the analyzer:

(baud rate) 110, 300, 600, 1200, 2400, 4800, 9600, 19200.

Data bitsData transmission is in 7- or 8-bit ASCII code. The first bit

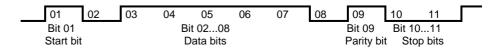
transmitted is the LSB (least significant bit).

Start bit Each data byte starts with a start bit. The falling edge of the start

bit indicates the beginning of the data byte.

Parity bit In order to detect errors, a parity bit may be transmitted. No

parity, even parity or odd parity may be selected. In addition, the


parity bit can be set to logic '0' or to logic '1'.

Stop bits The transmission of a data byte is terminated by 1, 1,5 or 2 stop

bits.

Example:

Transmission of character 'A' (41 hex) in 7-bit ASCII code, with even parity and 2 stop bits:

Interface Functions

For interface control, several strings are defined and control characters are reserved which are based upon IEC Bus control.

Table A-4 Control strings or control characters of the RS-232 interface

Control string or character	Function	
"@REM"	Switch over to remote	
"@LOC"	Switch over to local	
"@SRQ"	Service Request SRQ (SRQ is sent by the instrument)	
"@GET"	Group Execute Trigger (GET)	
"@DCL"	Reset instrument (Device Clear DCL)	
<ctrl q=""> 11 Hex</ctrl>	Enables character output	
<ctrl s=""> 13 Hex</ctrl>	Inhibits character output	
0D Hex, 0A Hex	Terminator <cr>, <lf></lf></cr>	

Handshake

Software handshake

In the software handshake mode of operation, the data transfer is controlled using the two control characters XON / XOFF.

The instrument uses the control character XON to indicate that it is ready to receive data. If the receive buffer is full, it sends the XOFF character via the interface to the controller. The controller then interrupts the data output until it receives another XON from the instrument. The controller indicates to the instrument that it is ready to receive data in the same way.

Cable required for software handshake

The connection of the instrument with a controller for software handshake is made by crossing the data lines. The following wiring diagram applies to a controller with a 9-pin or 25-pin configuration.

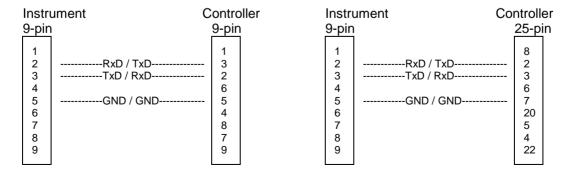


Fig. A-3 Wiring of the data lines for software handshake

Hardware handshake

For hardware handshake, the instrument indicates that it is ready to receive data via the lines DTR and RTS. A logic '0' on both lines means "ready" and a logic '1' means "not ready". The RTS line is always active (logic '0') as long as the serial interface is switched on. The DTR line thus controls the readiness of the instrument to receive data.

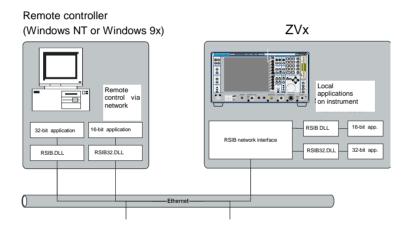
The readiness of the remote station to receive data is reported to the instrument via the CTS and DSR line. A logic '0' on both lines activates the data output and a logic '1' on both lines stops the data output of the instrument. The data output takes place via the TxD line.

Cable for hardware handshake

The connection of the instrument to a controller is made with a so-called zero modem cable. Here, the data, control and acknowledge lines must be crossed. The following wiring diagram applies to a controller with a 9-pin or 25-pin configuration.

Instrument C		ontroller	Instru	ument Co	ontroller
9-pir	1	<u>9-pin</u>	<u>9-pin</u>		<u>25-pi</u> n
1 2 3 4 5 6 7 8	RxD / TxD	1 3 2 6 5 4 8 7	1 2 3 4 5 6 7	RxD / TxD	3 6 7
9	C137 K13	9	9		22

Fig. A-4 Wiring of the data, control and acknowledge lines for hardware handshake


A.3 RSIB Interface

The instrument is equipped with an RSIB interface as standard, which enables controlling of the instrument by means of Visual C++ and Visual Basic programs. The control applications run on an external computer in the network.

A Unix operating system can be installed on an external computer in addition to a Windows operating system. In this case, the control applications are created either in C or C++. The supported Unix operating systems include:

- Sun Solaris 2.6 Sparc Station
- Sun Solaris 2.6 Intel Platform
- Red Hat Linux 6.2 x86 Processors

With local control, the name '@local' is specified for link setup by means of function RSDLLibfind(). If '@local' is not specified, the RSIB.DLL interprets the name as an IP address and attempts to set up a link to the device via the Winsock interface.

Windows Environment

In order to be able to access the measuring instruments via the RSIB interface, the file RSIB32.DLL must be copied into the Windows system32 directory or into the directory of the control applications. For 16-bit applications, the file RSIB.DLL must be additionally copied into the directories mentioned.

The DLLs are already installed in the corresponding directories on the measuring instruments.

For the different programming languages there are files available that contain the declarations of the DLL functions and the definition of the error codes.

Visual Basic (16 bit): 'RSIB.BAS' (C:\R_S\Instr\RSIB)
Visual Basic (32 bit): 'RSIB32.BAS' (C:\R_S\Instr\RSIB)
C: 'RSIB.H' (C:\R_S\Instr\RSIB)

The RSIB directory also contains the program RSIBCNTR.EXE with which SCPI commands can be sent to the instrument via the RSIB interface. This program can be used to test the function of the interface. Required for the test is delay module VBRUN300.DLL in the path or in the Windows directory.

The control is performed with Visual C++ or Visual Basic programs. The local link to the internal controller is established with the name '@local'. If a remote controller is used, the instrument IP address is to be indicated here.

Via VisualBasic: internal controller: ud = RSDLLibfind ("@local", ibsta, iberr, ibcntl)

remote controller: ud = RSDLLibfind ("82.1.1.200", ibsta, iberr, ibcntl)

The return to manual operation can be performed via the front panel (LOCAL key) or the RSIB interface.

Via RSIB:

ud = RSDLLibloc (ud, ibsta, iberr, ibcntl);

...

Unix Environment

In order to access the measuring equipment via the RSIB interface, copy the librsib.so.X.Y file to a directory for which the control application has read rights. X.Y in the file name indicates the version number of the library, for example 1.0.

The librsib.so.X.Y library is created as a *shared library*. The applications using the library have nothing to do with versions. They simply link the library with the lrsib option. The following instructions have to be observed so that linking can be successfully performed and the library can be found during the program run:

File link:

• Use the operating system command *In* to create a file with the link name librsib.so and pointing to librsib.so.X.Y in a directory for which the control application has read rights. Example:

```
$ ln -s /usr/lib/librsib.so.1.0 /usr/lib/librsib.so
```

Linker options for creating applications:

- -lrsib: import library
- -Lxxx: path information where the import library can be found. This is where the above file link has been created. Example: -L/usr/lib.

Additional linker options for creating applications (only under Solaris):

• -Rxxx: path information where the library is searched for during the program run: -R/usr/lib.

Run-time environment:

• Set environment variable LD_RUN_PATH to the directory in which the file link has been created. This is necessary only if librsib.so cannot be found in the standard search path of the operating system and the -R linker option (only Solaris) was not specified.

For C/C++ programming, the declarations of the library functions and the definition of error codes are contained in:

```
C/C++: 'RSIB.H' (C:\R_S\Instr\RSIB)
```

RSIB Interface Functions

This chapter lists all functions of the DLL "RSIB.DLL" or "RSIB32.DLL" or "librsib.so", which allow to produce control applications.

Variables ibsta, iberr, ibcntl

Same as with the National Instruments interface, successful execution of a command can be checked by means of the variables <code>ibsta</code>, <code>iberr</code> and <code>ibcntl</code>. To this end, references to the three variables are transferred to all RSIB functions. In addition, the status word <code>ibsta</code> is returned as a function value by all functions.

Status word ibsta

All functions send back a status word that provides information on the status of the RSIB interface. The following bits are defined:

Bit name	Bit	Hex code	Description
ERR	15	8000	This bit is set if an error occurs during a function call. If this bit is set, iberr contains an error code which specifies the error.
TIMO	14	4000	This bit is set if a timeout occurs during a function call. A timeout may occur in the following situations:
			• while waiting for an SRQ with the function RSDLLWaitSrq().
			• if no acknowledgment is received for data sent to an instrument with RSDLLibwrt() or RSDLLilwrt().
			• if no response from server to a data request with function RSDLLibrd() or RSDLLilrd().
CMPL	8	0100	This bit is set if the reply of the IEC/IEEE-bus parser is completely read. If a reply of the parser is read with the function RSDLLilrd() and the buffer length is not sufficient, the bit is cleared.

Error variable iberr

If the ERR bit (8000h) is set in the status word, iberr contains an error code that specifies the error. The RSIB has error codes of its own independent of the National Instrument interface.

Error	Error code	Description
IBERR_DEVICE_REGISTER	1	RSIB.DLL cannot register any new device.
IBERR_CONNECT	2	Link to the device has failed.
IBERR_NO_DEVICE	3	An interface function was called with an invalid device handle.
IBERR_MEM	4	No free memory available.
IBERR_TIMEOUT	5	Timeout has occurred.
IBERR_BUSY	6	The RSIB interface is blocked by a function not yet completed. Windows is not blocked, for example, by function RSDLLibrd() if data are still to be transmitted in response to this function. In this case a new call is possible. Further calls are however rejected by RSIB.DLL with error code IBERR_BUSY.
IBERR_FILE	7	Error in reading from or writing to a file.
IBERR_SEMA	8	Error upon creating or assigning a semaphore (only under Unix)

Count variable - ibcntl

The variable ibcntl is updated with the number of bytes transmitted on every read and write function call.

Overview of Interface Functions

The library functions are adapted to the interface functions of National Instruments for GPIB programming. The functions supported by the libraries are listed in the following table.

Function	Description	
RSDLLibfind()	Provides a handle for access to a device.	
RSDLLibwrt()	Sends a zero-terminated string to a device.	
RSDLLilwrt()	Sends a certain number of bytes to a device.	
RSDLLibwrtf()	Sends the contents of a file to a device.	
RSDLLibrd()	Reads data from a device into a string.	
RSDLLilrd()	Reads a certain number of bytes from a device.	
RSDLLibrdf()	Reads data from a device into a file.	
RSDLLibtmo()	Sets timeout for RSIB functions	
RSDLLibsre()	Switches a device into the local or remote state	
RSDLLibloc() Temporarily switches a device into the local state		
RSDLLibeot()	Enables/disables the END message for write operations.	
RSDLLibrsp()	Performs a serial poll and provides the status byte.	
RSDLLibclr	Sends the command SDC (Device Clear) to the instrument.	
RSDLLibonI() Sets the device On/Offlline.		
RSDLLTestSrq()	Checks whether a device has generated an SRQ.	
RSDLLWaitSrq()	Waits until a device generates an SRQ.	
RSDLLSwapBytes	Swaps the byte sequence for binary numeric display (only required for non-Intel platforms)	

Description of Interface Functions

RSDLLibfind()

The function provides a handle for access to the device with the name udName.

VB format: Function RSDLLibfind (ByVal udName\$, ibsta%, iberr%, ibcntl&)

As Integer

C-format: short WINAPI RSDLLibfind(char far *udName, short far *ibsta,

short far *iberr, unsigned long far *ibcntl)

C format (Unix): short RSDLLibfind(char *udName, short *ibsta, short *iberr,

unsigned long *ibcntl)

Parameter: udName IP address of device

Example: ud = RSDLLibfind ("89.10.38.97", ibsta, iberr, ibcntl)

The function must be called prior to all other functions of the interface.

As return value, the function provides a handle that must be indicated in all functions for access to the device. If the device with the name udName is not found, the handle has a negative value.

RSDLLibwrt

This function sends data to the device with the handle ud.

VB format: Function RSDLLibwrt (ByVal ud%, ByVal Wrt\$, ibsta%, iberr%,

ibcntl&) As Integer

C format: short WINAPI RSDLLibwrt(short ud, char far *Wrt, short far

*ibsta, short far *iberr, unsigned long far *ibcntl)

C format (Unix): short RSDLLibwrt(short ud, char *Wrt, short *ibsta, short

*iberr, unsigned long *ibcntl)

Parameter: ud Device handle

Wrt String sent to the device.

Example: RSDLLibwrt(ud, "SENS:FREQ:STAR?", ibsta, iberr, ibcntl)

This function allows to send setting and query commands to the measuring instruments. Whether the data is interpreted as a complete command can be set using the function RSDLLibeot().

Interfaces ZVx

RSDLLilwrt

This function sends Cnt bytes to a device with the handle ud.

VB format: Function RSDLLilwrt (ByVal ud%, ByVal Wrt\$, ByVal Cnt&,

ibsta%, iberr%, ibcntl&) As Integer

C format: short WINAPI RSDLLilwrt(short ud, char far *Wrt,

unsigned long Cnt, short far *ibsta, short far *iberr,

unsigned long far *ibcntl)

C format (Unix): short RSDLLilwrt(short ud, char *Wrt, unsigned long Cnt,

short *ibsta, short *iberr, unsigned long *ibcntl)

Parameter: ud Device handle

Wrt String sent to the GPIB parser.
Cnt Number of bytes sent to the device.

Example: RSDLLilwrt (ud, '....', 100, ibsta, iberr, ibcntl)

Like RSDLLibwrt() this function sends data to a device. The only difference is that binary data can be sent as well. The length of the data is not determined by a zero-terminated string, but by the indication of Cnt bytes. If the data is to be terminated with EOS (0Ah), the EOS byte must be appended to the string.

RSDLLibwrtf

This function sends the contents of a file file\$ to the device with the handle ud.

VB format: Function RSDLLibwrtf (ByVal ud%, ByVal file\$, ibsta%, iberr%,

ibcntl&) As Integer

C format: short WINAPI RSDLLibwrt(short ud, char far *Wrt, short far

*ibsta, short far *iberr, unsigned long far *ibcntl)

C format (Unix): short RSDLLibwrt(short ud, char *Wrt, short *ibsta, short

*iberr, unsigned long *ibcntl)

Parameter: ud Device handle

file File the contents of which are sent to the device.

Example: RSDLLibwrtf(ud, "C:\db.sav", ibsta, iberr, ibcntl)

This function allows to send setting and query commands to the measuring instruments. Whether the data is interpreted as complete command can be set using the function RSDLLibeot().

ZVx Interfaces

RSDLLibrd()

The function reads data from the device with the handle ud into the string Rd.

VB format: Function RSDLLibrd (ByVal ud%, ByVal Rd\$, ibsta%, iberr%,

ibcntl&) As Integer

C format: short WINAPI RSDLLibrd(short ud, char far *Rd, short far

*ibsta, short far *iberr, unsigned long far *ibcntl)

C format (Unix): short RSDLLibrd(short ud, char *Rd, short *ibsta, short

*iberr, unsigned long *ibcntl)

Parameter: ud Device handle

Rd String into which the read data is copied.

Example: RSDLLibrd (ud, Rd, ibsta, iberr, ibcntl)

This function fetches the responses of the GPIB parser to a query.

In the case of Visual Basic programming, a string of sufficient length must be generated before. This can be done during the definition of the string or using the command Space\$().

Generation of a string of the length 100: - Dim Rd as String * 100

- Dim Rd as String
Rd = Space\$(100)

RSDLLilrd

This function reads Cnt bytes from the device with the handle ud.

VB format: Function RSDLLilrd (ByVal ud%, ByVal Rd\$, ByVal Cnt&, ibsta%,

iberr%, ibcntl&) As Integer

C format: short WINAPI RSDLLilrd(short ud, char far *Rd, unsigned long

Cnt, short far *ibsta, short far *iberr, unsigned long far

*ibcntl)

C format (Unix): short RSDLLilrd(short ud, char *Rd, unsigned long Cnt, short

*ibsta, short *iberr, unsigned long *ibcntl)

Parameter: ud Device handle

cnt Maximum number of bytes copied from the DLL into the target

string Rd.

Example: RSDLLilrd (ud, RD, 100, ibsta, iberr, ibcntl)

Like the function $\mathtt{RSDLLibrd}()$, this function reads data from a device. The only difference is that in this case the maximum number of bytes to be copied into the target string \mathtt{Rd} can be indicated by means of \mathtt{Cnt} . This function prevents writing beyond the end of the string.

Interfaces ZVx

RSDLLibrdf()

Reads data from the device with the handle ud into the file file.

VB format: Function RSDLLibrdf (ByVal ud%, ByVal file\$, ibsta%, iberr%,

ibcntl&) As Integer

C format: short WINAPI RSDLLibrd(short ud, char far *file, short far

*ibsta, short far *iberr, unsigned long far *ibcntl)

C format (Unix): short RSDLLibrd(short ud, char *file, short *ibsta, short

*iberr, unsigned long *ibcntl)

Parameter: ud Device handle

file File into which the read data is written.

Example: RSDLLibrdf (ud, "c:\db.sav", ibsta, iberr, ibcntl)

The file name may as well include a drive or path specification.

RSDLLibtmo

This function defines the timeout for a device. The default value for the timeout is set to 5 seconds.

VB format: Function RSDLLibtmo (ByVal ud%, ByVal tmo%, ibsta%, iberr%,

ibcntl&) As Integer

C format: short WINAPI RSDLLibtmo(short ud, short tmo, short far

*ibsta, short far *iberr, unsigned long far *ibcntl)

C format (Unix): short RSDLLibtmo(short ud, short tmo, short *ibsta, short

*iberr, unsigned long *ibcntl)

Parameter: ud Device handle

tmo Timeout in seconds

Example: RSDLLibtmo (ud, 10, ibsta, iberr, ibcntl)

ZVx Interfaces

RSDLLibsre

This function sets the device to the 'LOCAL' or 'REMOTE' state.

VB format: Function RSDLLibsre (ByVal ud%, ByVal v%, ibsta%, iberr%,

ibcntl&) As Integer

C format: short WINAPI RSDLLibsre(short ud, short v, short far *ibsta,

short far *iberr, unsigned long far *ibcntl)

C format (Unix): short RSDLLibsre(short ud, short v, short *ibsta, short

*iberr, unsigned long *ibcntl)

Parameter: ud Device handle

v State of device

0 - local 1 - remote

Example: RSDLLibsre (ud, 0, ibsta, iberr, ibcntl)

RSDLLibloc

This function temporarily switches the device to the 'LOCAL' state.

VB format: Function RSDLLibloc (ByVal ud%, ibsta%, iberr%, ibcntl&) As

Integer

C format: short WINAPI RSDLLibloc(short ud, short far *ibsta, short far

*iberr, unsigned long far *ibcntl)

C format (Unix): short RSDLLibloc(short ud, short *ibsta, short *iberr,

unsigned long *ibcntl)

Parameter: ud Device handle

Example: RSDLLibloc (ud, ibsta, iberr, ibcntl)

After switchover to LOCAL state, the instrument can be manually operated via the front panel. On the next access to the instrument by means of one of the functions of the library the instrument is switched again to the REMOTE state.

RSDLLibeot

This function enables or disables the END message after write operations.

VB format: Function RSDLLibeot (ByVal ud%, ByVal v%, ibsta%, iberr%,

ibcntl&) As Integer

C format: short WINAPI RSDLLibsre(short ud, short v, short far *ibsta,

short far *iberr, unsigned long far *ibcntl)

C format (Unix): short RSDLLibsre(short ud, short v, short *ibsta, short

*iberr, unsigned long *ibcntl)

Parameter: ud Device handle.

v 0 - no END message

1 – send END message

Example: RSDLLibeot (ud, 1, ibsta, iberr, ibcntl)

If the END message is disabled, the data of a command can be sent with several successive calls of write functions. The END message must be enabled again before sending the last data block.

Interfaces ZVx

RSDLLibrsp

This function performs a serial poll and provides the status byte of the device.

VB format: Function RSDLLibrsp(ByVal ud%, spr%, ibsta%, iberr%, ibcntl&)

As Integer

C format: short WINAPI RSDLLibrsp(short ud, char far* spr, short far

*ibsta, short far *iberr, unsigned long far *ibcntl)

C format (Unix): short RSDLLibrsp(short ud, char *spr, short *ibsta, short

*iberr, unsigned long *ibcntl)

Parameter: ud Device handle

spr Pointer to status byte

Example: RSDLLibrsp(ud, spr, ibsta, iberr, ibcntl)

RSDLLibclr

Sends the command SDC (Device Clear) to the instrument.

VB format: Function RSDLLibclr(ByVal ud%, spr%, ibsta%, iberr%, ibcntl&)

As Integer

C format: short WINAPI RSDLLibclr(short ud, short far *ibsta, short far

*iberr, unsigned long far *ibcntl)

C format (Unix): short RSDLLibclr(short ud, short *ibsta, short *iberr,

unsigned long *ibcntl)

Parameter: ud Device handle

Example: RSDLLibclr(ud, ibsta, iberr, ibcntl)

RSDLLibonI

This function switches the device to 'online' or 'offline' mode. When it is switched to 'offline' mode, the interface is released and the device handle becomes invalid. By calling RSDLLibfind again, the communication is set up again.

VB format: Function RSDLLibonl (ByVal ud%, ByVal v%, ibsta%, iberr%,

ibcntl&) As Integer

C format: short WINAPI RSDLLibonl(short ud, short v, short far *ibsta,

short far *iberr, unsigned long far *ibcntl)

C format: short RSDLLibonl(short ud, short v, short *ibsta, short

*iberr, unsigned long *ibcntl)

Parameter: ud Device handle

v Device state

0 - local 1 - remote

Example: RSDLLibonl(ud, 0, ibsta, iberr, ibcntl)

ZVx Interfaces

RSDLLTestSRQ

This function checks the status of the SRQ bit.

VB format: Function RSDLLTestSrq (ByVal ud%, Result%, ibsta%, iberr%,

ibcntl&) As Integer

C format: short WINAPI RSDLLTestSrq(short ud, short far *result, short

far *ibsta, short far *iberr, unsigned long far *ibcntl)

C format (Unix): short RSDLLTestSrq(short ud, short *result, short *ibsta,

short *iberr, unsigned long *ibcntl)

Parameter: ud Device handle

result Reference to an integer value in which the library returns

the status of the SRQ bit.

0 - no SRQ

1 - SRQ active, device requests service

Example: RSDLLTestSrq (ud, result*, ibsta, iberr, ibcntl)

This function corresponds to the function RSDLLWaitSrq. The only difference is that RSDLLTestSRQ immediately returns the current status of the SRQ bit, whereas RSDLLWaitSrq waits for an SRQ to occur.

RSDLLWaitSrq

This function waits until the device triggers an SRQ with the handle ud.

VB format: Function RSDLLWaitSrq (ByVal ud%, Result%, ibsta%, iberr%,

ibcntl&) As Integer

C format: short WINAPI RSDLLWaitSrq(short ud, short far *result, short

far *ibsta, short far *iberr, unsigned long far *ibcntl)

C format (Unix): short RSDLLWaitSrg(short ud, short *result, short *ibsta,

short *iberr, unsigned long *ibcntl)

Parameter: ud Device handle

result Reference to an integer value in which the library returns the

status of the SRQ bit.

0 - No SRQ has occurred during the timeout1 - SRQ has occurred during the timeout

Beispiel: RSDLLWaitSrq(ud, result, ibsta, iberr, ibcntl);

The function waits until one of the following two events occurs.

- The measuring instrument triggers an SRQ
- No SRQ occurs during the timeout defined with RSDLLibtmo()

Interfaces ZVx

RSDLLSwapBytes

This function changes the display of binary numbers on non-Intel platforms.

VB format: Not provided at present since it is required only on non-Intel platforms.

C format: void WINAPI RSDLLSwapBytes(void far *pArray, const long size,

const long count)

C format (Unix): void RSDLLSwapBytes(void *pArray, const long size, const long

count)

Parameter: parray Array in which modifications are made

Size Size of a single element in pArray count Number of elements in pArray

Example: RSDLLSwapBytes(Buffer, sizeof(float), ibcntl/sizeof(float))

This function swaps the display of various elements from *Big Endian* to *Little Endian* and vice versa. It is expected that a coherent storage area of elements of the same file type (size byte) is transferred to parray. This function has no effect on Intel platforms.

Different types of processor architecture store data in different byte sequences. For example, Intel processors store data in the reverse order of Motorola processors. Comparison of byte sequences:

Byte sequence	Use in	Display in memory	Description
Big Endian	Motorola processors, network standard	Most significant byte at least significant address	The most significant byte is at the left end of the word.
Little Endian	Intel processors	Least significant byte at least significant address	The most significant byte is at the right end of the word.

ZVx Interfaces

A.4 User Interface (USER)

The user interface, located on the rear panel of the ZVx, is a 25 pin Cannon connector which provides access to the two user ports (Port A and Port B). Each port is 8 bits wide (A0 - A7 and B0 -B7) and can be configured either as output or as input. The voltage levels are TTL levels (Low < 0,4 V, High > 2 V).

In addition, an internal +5 V power supply voltage is provided. The maximum load current is 100 mA.

In addition, two supply voltages are provided:

- + 5 V Max. current 100mA, protected by multifuse.
- + 28 V Max. current 100mA, the voltage is applied to pin 25 only if pin 22 and pin 24 are connected.

The pin assignments for the USER connector can be seen in the following diagram:

The configuration of the user ports takes place in the SETUP menu (SETUP key) in the GENERAL SETUP sub-menu.

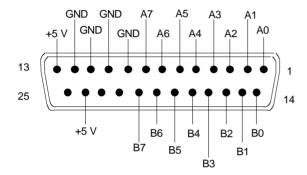
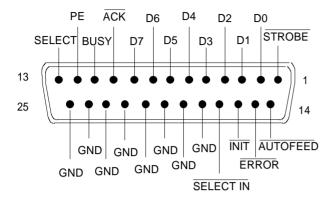



Fig. A-5 Pin assignments for the USER connector

Interfaces ZVx

A.5 Printer Interface (LPT)

The 25-pin LPT connector on the rear panel of the ZVx is provided for the connection of a printer. The LPT interface is compatible with the CENTRONICS printer interface.

Pin	Signal	Input (I) Output (O)	Description
1	STROBE	0	Pulse for transmitting a data byte, min. 1µs pulse width (active LOW)
2	D0	0	Data Line 0
3	D1	0	Data Line 1
4	D2	0	Data Line 2
5	D3	0	Data Line 3
6	D4	0	Data Line 4
7	D5	0	Data Line 5
8	D6	0	Data Line 6
9	D7	0	Data Line 7
10	ACK	I	Indicates that the printer is ready to receive the next byte. (active LOW)
11	BUSY	I	Signal is active when the printer cannot accept data. (active HIGH)
12	PE	1	Signal is active when the paper tray is empty. (active HIGH)
13	SELECT	I	Signal is active when the printer is selected. (active HIGH)
14	AUTOFEED	0	When signal is active, the printer automatically performs a linefeed after each line. (active LOW)
15	ERROR	I	This signal is high when the printer has no paper, is not selected or has an error status. (active LOW)
16	INIT	0	Initialise the printer. (active LOW)
17	SELECT IN	0	If signal is active, the codes DC1/DC3 are ignored by the printer. (active LOW).
18 - 25	GND		Ground connection.

Fig. A-6 Pin assignments for the LPT connector.

ZVx Interfaces

A.6 Probe Connectors (PROBE 1, PROBE 2)

To allow the connection of probes, the ZVx has the supply voltage connectors PROBE 1 and PROBE 2. They deliver the power supply voltages +15 V, -12 V and ground.

The connectors are also suited for powering the high-impedance probes from Hewlett Packard.

A.7 Reference Input (REF IN)

A high-precision external reference oscillator, used to increase the frequency accuracy and to improve the stability of the internal reference, can be connected here. The internal reference oscillator synchronizes to the frequency of the external oscillator when the frequency is n · 1 MHz, with n being an integer between 1 and 15. The permissable frequency error of the external reference oscillator is 6 ppm. It must be able to supply between 0.1 V und 3 V at 1 k Ω . Switching between internal and external reference is accomplished in the SETUP menu.

A.8 Reference Output (REF OUT)

When the ZVx is operated with its internal reference, the 10-MHz reference signal is available at the REF OUT connector and thus provides the capability of, e.g., synchronisation of external instruments to the ZVx. The signal is a sinewave with a level of 12 dBm \pm 3 dB when connected to 50 Ω .

A.9 External Trigger Input (EXT TRIGGER)

The EXT TRIGGER connector is used for controlling the measurement via an external TTL signal. The edge of the signal is used for triggering, whereby either the positive or negative edge can be selected. The pulse width of the external trigger signal must be at least 1 μ s.

A.10 External Level Control Input (LEVEL)

Frequency range: 0 to 100 kHz Voltage range: 0 to 10 V Input impedance: $> 10 \text{ k}\Omega$

A.11 DC Voltage Input for PORT 1 and PORT 2 (PORT BIAS 1 / 2)

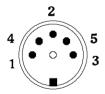
Optional rear panel interfaces (only by active test sets). < 200 mA or < 30 V

Interfaces ZVx

A.12 Connectors for Controlling an External Generator of the R&S Family SME / SMP and other (BLANK, TRIGGER)

A special feature for of the signal generators of the Rohde & Schwarz SME and SMP families is the so-called "list mode" which serves to accelerate the sweep in the case of external control. In this mode a list containing a series of frequency points with the corresponding level is transmitted to the generator, e.g. via IEC-bus. During the sweep, the generator switches from one frequency point to the next via hardware handshake using the TRIGGER and BLANK signals: By means of a HIGH pulse of the TRIGGER signal the network analyzer causes the generator to go to the next frequency. During the switchover procedure, the generator intermediately sets the BLANK signal to HIGH level. After this signal has returned to LOW, an additional delay time is inserted and the measurement starts.

TRIGGER (output) TTL signal BLANK (input) TTL signal


A.13 External Reference Mixer Connector (a1 EXT OUT, a1 EXT IN)

The sockets at EXT OUT and at EXT IN belong to option ZVR-B6, "Reference Channel Ports". This option is used, e.g., for comparing two mixers in a vector measurement. See the description of the *REFERENCE MIXER* softkey in chapter 2.

a1 EXT OUT (output) a1 EXT IN (input)

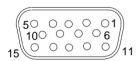
A.14 External Keyboard (KEYBOARD)

A 5-pin DIN connector is provided to allow connecting an external keyboard. Because of its low interference radiation, the PSA-Z1 keyboard is recommended (Order No. 1009.5001.31). However, any other multi-function keyboard may also be used.

Pin	Signal
1	Keyboard Clock
2	Data
3	Free
4	Ground
5	+5-V-Power Supply

Fig. A-7 Pin assignments of the KEYBOARD connector.

ZVx Interfaces


A.15 Mouse Connector (MOUSE)

Pin	Signal
1	MOUSEDATA
2	NC
3	MOUSEGND
4	MOUSEVD5
5	MOUSECLK
6	NC

Fig A-8 Pin assignments for the MOUSE connector.

A.16 Monitor Connectors (PC MONITOR, ANALYZER MONITOR)

Pin	Signal
1	R
2	G
3	В
4	MID2
5	NC
6	R-GND
7	G-GND
8	B-GND
9	NC
10	GND
11	MID0
12	MID1
13	HSYNC
14	VSYNC
15	NC

Fig. A-9 Pin assignments of the MONITOR connector.

Annex B – List of Error Messages

The following list contains all error messages for errors occurring in the instrument. The meaning of negative error codes is defined in SCPI, positive error codes mark errors specific of the instrument.

The table contains the error code in the left-hand column. In the right-hand column the error text being entered into the error/event queue or being displayed is printed in bold face. Below the error text, there is an explanation as to the respective error.

B.1 SCPI-Specific Error Messages

No Error

Error code	Error text in the case of queue poll Error explanation
0	No error This message is output if the error queue does not contain any entries.

Command Error - Faulty command; sets bit 5 in the ESR register.

Error code	Error text in the case of queue poll Error explanation
-100	Command Error The command is faulty or invalid.
-101	Invalid Character The command contains an invalid sign. Example: A header contains an ampersand, "SENSe&".
-102	Syntax error The command is invalid. Example: The command contains block data the instrument does not accept.
-103	Invalid separator The command contains an impermissible sign instead of a separator. Example: A semicolon is missing after the command.
-104	Data type error The command contains an invalid value indication. Example: ON is indicated instead of a numeric value for frequency setting.
-105	GET not allowed A Group Execute Trigger (GET) is within a command line.
-108	Parameter not allowed The command contains too many parameters. Example: Command SENSe: FREQuency: CENTer permits only one frequency indication.

Continuation: Command Error

Error code	Error text in the case of queue poll Error explanation
-109	Missing parameter The command contains too few parameters. Example: The command SENSe: FREQuency: CENTer requires a frequency indication.
-110	Command header error The header of the command is faulty.
-111	Header separator error The header contains an impermissible separator. Example: the header is not followed by a "White Space", "*ESE255"
-112	Program mnemonic too long The header contains more than 12 characters.
-113	Undefined header The header is not defined for the instrument. Example: *XYZ is undefined for every instrument.
-114	Header suffix out of range The header contains an impermissible numeric suffix. Example: SENSe3 does not exist in the instrument.
-120	Numeric data error The command contains a faulty numeric parameter.
-121	Invalid character in number A number contains an invalid character. Example: An "A" in a decimal number or a "9" in an octal number.
-123	Exponent too large The absolute value of the exponent is greater than 32000.
-124	Too many digits The number includes too many digits.
-128	Numeric data not allowed The command includes a number which is not allowed at this position. Example: The command INPut: COUPling requires indication of a text parameter.
-130	Suffix error The command contains a faulty suffix.
-131	Invalid suffix The suffix is invalid for this instrument. Example: nHz is not defined.
-134	Suffix too long The suffix contains more than 12 characters.
-138	Suffix not allowed A suffix is not allowed for this command or at this position of the command. Example: The command *RCL does not permit a suffix to be indicated.
-140	Character data error The command contains a faulty text parameter
-141	Invalid character data The text parameter either contains an invalid character or it is invalid for this command. Example: Write error with parameter indication; INPut: COUPling XC.

Continuation: Command Error

Error code	Error text in the case of queue poll Error explanation
-144	Character data too long The text parameter contains more than 12 characters.
-148	Character data not allowed The text parameter is not allowed for this command or at this position of the command. Example: The command *RCL requires a number to be indicated.
-150	String data error The command contains a faulty string.
-151	Invalid string data The command contains a faulty string. Example: An END message has been received prior to the terminating apostrophe.
-158	String data not allowed The command contains a valid string at a position which is not allowed. Example: A text parameter is set in quotation marks, INPut:COUPling "DC"
-160	Block data error The command contains faulty block data.
-161	Invalid block data The command contains faulty block data. Example: An END message was received prior to reception of the expected number of data.
-168	Block data not allowed The command contains valid block data at an impermissible position. Example: The command *RCL requires a number to be indicated.
-170	Expression error The command contains an invalid mathematical expression.
-171	Invalid expression The command contains an invalid mathematical expression. Example: The expression contains mismatching parentheses.
-178	Expression data not allowed The command contains a mathematical expression at an impermissible position.
-180	Macro error A faulty macro has been defined, or an error has occurred during execution of a macro.
-181	Invalid outside macro definition A macro parameter placeholder was encountered outside of a macro definition.
-183	Invalid inside macro definition A macro definition is syntactically wrong.
-184	Macro parameter error A command inside the macro definition has the wrong number or type of parameters.

Execution Error - Error on execution of a command; sets bit 4 in the ESR register

Error code	Error text in the case of queue poll Error explanation
-200	Execution error Error on execution of the command.
-201	Invalid while in local The command is not executable while the device is in local due to a hard local control. Example: The device receives a command which would change the rotary knob state, but the device is in local so the command can not be executed.
-202	Settings lost due to rtl A setting associated with hard local control was lost when the device changed to LOCS from REMS or to LWLS from RWLS.
-210	Trigger error Error on triggering the device.
-211	Trigger ignored The trigger (GET, *TRG or trigger signal) was ignored because of device timing considerations. Example: The device was not ready to respond.
-212	Arm ignored An arming signal was ignored by the device.
-213	Init ignored Measurement initialisation was ignored as another measurement was already in progress.
-214	Trigger deadlock The trigger source for the initiation of measurement is set to GET and subsequent measurement is received. The measurement cannot be started until a GET is received, but the GET would cause an interrupted-error)
-215	Arm deadlock The trigger source for the initiation of measurement is set to GET and subsequent measurement is received. The measurement cannot be started until a GET is received, but the GET would cause an interrupted-error.
-220	Parameter error The command contains a faulty or invalid parameter.
-221	Settings conflict There is a conflict between setting of parameter value and instrument state.
-222	Data out of range The parameter value lies out of the permissible range of the instrument.
-223	Too much data The command contains too many data. Example: The instrument does not have sufficient storage space.
-224	Illegal parameter value The parameter value is invalid. Example: The text parameter is invalid, TRIGger: SWEEp: SOURCE TASTE

Continuation: Execution Error

Error code	Error text in the case of queue poll Error explanation
-230	Data corrupt or stale The data are incomplete or invalid. Example: The instrument has aborted a measurement.
-231	Data questionable The measurement accuracy is suspect.
-240	Hardware error The command cannot be executed due to problems with the instrument hardware.
-241	Hardware missing Hardware is missing. Example: An option is not fitted.
-250	Mass storage error A mass storage error occured.
-251	Missing mass storage The mass storage is missing. Example: An option is not installed.
-252	Missing media The media is missing. Example: There is no floppy in the floppy disk drive.
-253	Corrupt media The media is corrupt. Example: The floppy is bad or has the wrong format.
-254	Media full The media is full. Example: There is no room on the floppy.
-255	Directory full The media directory is full.
-256	File name not found The file name cannot be found on the media.
-257	File name error The file name is wrong. Example: An attempt is made to copy to a duplicate file name.
-258	Media protected The media is protected. Example: The write-protect tab on the floppy is present.
-260	Expression error The expression contains an error.
-261	Math error in expression The expression contains a math error. Example: Divide-by-zero.

Continuation: Execution Error

Error code	Error text in the case of queue poll Error explanation
-270	Macro error Error on the execution of a macro.
-271	Macro syntax error The macro definition contains a syntax error.
-272	Macro execution error The macro definition contains an error.
-273	illegal macro label An illegal macro label is defined in the *DMC command. Example: The label is too long. The label is identical with the common command header or contains an invalid header syntax.
-274	Macro parameter error The macro definition improperly uses a macro parameter placeholder.
-275	Macro definition too long The macro definition is too long.
-276	Macro recursion error The command sequence defined by the macro is trapped in a program loop. Example: The event that would allow the loop to be exited does not occur.
-277	Macro redefinition not allowed The macro label defined in the *DMC command is already defined elsewhere.
-278	Macro header not found The macro label in the *GMC? query is not yet defined.
-280	Program error Error on the execution of a down-loaded program.
-281	Cannot create program The program cannot be created.
-282	illegal program name The name of the programm is illegal. Example: The name relates to a non-existing program.
-283	illegal variable name The inputted variable does not exist in the program.
-284	Program currently running The desired operation is not possible while the program is running. Example: A running program cannot be deleted.
-285	Program syntax error The down-loaded program contains a syntax error.
-286	Program runtime error

Device Specific Error; sets bit 3 in the ESR register

Error code	Error test in the case of queue poll Error explanation
-300	Device-specific error FSE-specific error not defined in greater detail.
-310	System error This error message suggests an error within the instrument. Please inform the R&S Service.
-311	Memory error Error in the instrument memory.
-312	PUD memory lost Loss of the protected user data stored using the *PUD command.
-313	Calibration memory lost Loss of the non-volatile calibration data stored using the *CAL? command.
-314	Save/recall memory lost Loss of the non-volatile data stored using the *SAV command.
-315	Configuration memory lost Loss of the non-volatile configuration data stored by the instrument.
-330	Self-test failed The selftest could not be executed.
-350	Queue overflow This error code is entered in the queue instead of the actual error code if the queue is full. It indicates that an error has occurred but not been accepted. The queue can accept 5 entries.

Query Error - Error in data request; sets bit 2 in the ESR register

Error code	Error text in the case of queue poll Error explanation
-400	Query error General error occurring when data are requested by a query.
-410	Query INTERRUPTED The query has been interrupted. Example: After a query, the instrument receives new data before the response has been sent completely.
-420	Query UNTERMINATED The query is incomplete. Example: The instrument is addressed as a talker and receives incomplete data.
-430	Query DEADLOCKED The query cannot be processed. Example: The input and output buffers are full, the instrument cannot continue operation.
-440	Query UNTERMINATED after indefinite response A query is in the same command line after a query which requests an indefinite response.

ZVx List of Commands

Annex C – List of Commands

Command	Parameters	Page
CALCulate[14]: FILTer[:GATE]:TIME:STARt	<numeric_value></numeric_value>	3.20
CALCulate[14]: FILTer[:GATE]:TIME:STATe	<boolean></boolean>	3.20
CALCulate[14]:FILTer[:GATE]:TIME:CENTer	<numeric_value></numeric_value>	3.21
CALCulate[14]:FILTer[:GATE]:TIME:DCHebyshev	<numeric_value></numeric_value>	3.21
CALCulate[14]:FILTer[:GATE]:TIME:SPAN	<numeric_value></numeric_value>	3.21
CALCulate[14]:FILTer[:GATE]:TIME:STOP	<numeric_value></numeric_value>	3.20
CALCulate[14]:FILTer[:GATE]:TIME:WINDow	RECT HAMMing HANNing BOHMan DCHebyshev	3.21
CALCulate[14]:FORMat	COMPlex MAGNitude PHASe UPHase REAL IMAGinary SWR GDELay SWR	3.22
CALCulate[14]:GDAPerture:MODE	STEP FREQuency	3.23
CALCulate[14]:GDAPerture:SCOunt	<numeric_value></numeric_value>	3.23
CALCulate[14]:GDAPerture[:SPAN]	<numeric_value></numeric_value>	3.23
CALCulate[14]:LIMit[18]: RDOMain:COMPlex	S SINV Y Z YREL ZREL	3.25
CALCulate[14]:LIMit[18]:CENTer	<numeric_value>,<numeric_value></numeric_value></numeric_value>	3.26
CALCulate[14]:LIMit[18]:CENTer:SHIFt	<numeric_value>,<numeric_value></numeric_value></numeric_value>	3.26
CALCulate[14]:LIMit[18]:CLEar		3.28
CALCulate[14]:LIMit[18]:CONTrol:DOMain	FLIN FLOG TLIN TLOG PLIN PLOG	3.25
CALCulate[14]:LIMit[18]:CONTrol:SHIFt	<numeric_value></numeric_value>	3.26
CALCulate[14]:LIMit[18]:CONTrol[:DATA]	<numeric_value>,<numeric_value></numeric_value></numeric_value>	3.25
CALCulate[14]:LIMit[18]:FAIL?		3.28
CALCulate[14]:LIMit[18]:LOWer:SHIFt	<numeric_value></numeric_value>	3.27
CALCulate[14]:LIMit[18]:LOWer:STATe	ON OFF	3.27
CALCulate[14]:LIMit[18]:LOWer[:DATA]	<numeric_value>,<numeric_value></numeric_value></numeric_value>	3.27
CALCulate[14]:LIMit[18]:RDOMain:FORMat	COMPlex MAGNitude PHASe REAL IMAGinary SWR GDELay	3.25
CALCulate[14]:LIMit[18]:RDOMain:SPACing	LINear LOGarithmic DB	3.25
CALCulate[14]:LIMit[18]:STATe	ON OFF	3.24
CALCulate[14]:LIMit[18]:UPPer:RADius	<numeric_value></numeric_value>	3.27
CALCulate[14]:LIMit[18]:UPPer:SHIFt	<numeric_value></numeric_value>	3.26
CALCulate[14]:LIMit[18]:UPPer:STATe	ON OFF	3.27
CALCulate[14]:LIMit[18]:UPPer[:DATA]	<numeric_value>,<numeric_value></numeric_value></numeric_value>	3.26
CALCulate[14]:MARKer[18]:AOFF		3.30
CALCulate[14]:MARKer[18]:COUPled[:STATe]	ON OFF	3.30
CALCulate[14]:MARKer[18]:FORMat	MLOGarithmic MLINear PHASe IMAGinary REAL SWR GDELay	3.31
CALCulate[14]:MARKer[18]:FUNCtion: PTPeak:STATe	ON OFF	3.36
CALCulate[14]:MARKer[18]:FUNCtion:BWIDth	<numeric_value></numeric_value>	3.33
CALCulate[14]:MARKer[18]:FUNCtion:BWIDth:MODE	BPASs BSTOp	3.33
CALCulate[14]:MARKer[18]:FUNCtion:CENTer	_	3.36
CALCulate[14]:MARKer[18]:FUNCtion:DELTa:REFerence	MARKer1 MARKer2 MARKer3 MARKer4 MARKer5 MARKer6 MARKer7 MARKer8 FIXed	3.35
CALCulate[14]:MARKer[18]:FUNCtion:DELTa:REFerence: RPOSition[:CARTesian	<numeric_value>,<numeric_value></numeric_value></numeric_value>	3.35

Command	Parameters	Page
CALCulate[14]:MARKer[18]:FUNCtion:DELTa:REFerence: RPOSition:POLar	<numeric_value>,<numeric_value>,<numeric_value></numeric_value></numeric_value></numeric_value>	3.35
CALCulate[14]:MARKer[18]:FUNCtion:DELTa:STATe	ON OFF	3.35
CALCulate[14]:MARKer[18]:FUNCtion:PTPeak:RESult?		3.36
CALCulate[14]:MARKer[18]:FUNCtion:QFACtor		3.34
CALCulate[14]:MARKer[18]:FUNCtion:REFerence	-	3.37
CALCulate[14]:MARKer[18]:FUNCtion:RESULT?		3.34
CALCulate[14]:MARKer[18]:FUNCtion:EDELay	TIME DISTance ELENgth OFF	3.34
CALCulate[14]:MARKer[18]:FUNCtion:EDELay:VALue?		3.35
CALCulate[14]:MARKer[18]:FUNCtion:SFACtor	<numeric_value>,<numeric_value></numeric_value></numeric_value>	3.34
CALCulate[14]:MARKer[18]:FUNCtion:STARt	_	3.36
CALCulate[14]:MARKer[18]:FUNCtion:STOP	-	3.36
CALCulate[14]:MARKer[18]:FUNCtion:TARGet	<numeric_value></numeric_value>	3.34
CALCulate[14]:MARKer[18]:FUNCtion[:SELect]	MAXimum MINimum TARGet BFILter	3.33
CALCulate[14]:MARKer[18]:MAXimum		3.33
CALCulate[14]:MARKer[18]:MINimum		3.33
CALCulate[14]:MARKer[18]:MODE	CONTinuous DISCrete	3.30
CALCulate[14]:MARKer[18]:SEARch:LEFT	·	3.32
CALCulate[14]:MARKer[18]:SEARch:NEXT		3.32
CALCulate[14]:MARKer[18]:SEARch:RIGHt		3.32
CALCulate[14]:MARKer[18]:SEARch:TRACking	ON OFF	3.32
CALCulate[14]:MARKer[18]:SEARch[:IMMediate]	· ·	3.32
CALCulate[14]:MARKer[18]:TRACe	CHDATA CHMEM	3.31
CALCulate[14]:MARKer[18]:TRANsform:COMPlex	S INVS Z ZREL Y YREL	3.31
CALCulate[14]:MARKer[18]:X:MODE	ABS REL	3.30
CALCulate[14]:MARKer[18]:X	0 MAX (Frequenz) MAX (Sweepzeit)	3.31
CALCulate[14]:MARKer[18]:Y?		3.31
CALCulate[14]:MARKer[18][:STATe]	ON OFF	3.30
CALCulate[14]:MATH:STATe	ON OFF	3.38
CALCulate[14]:MATH[:EXPRession][:DEFine]	<expr></expr>	3.38
CALCulate[14]:SMOothing:APERture	<numeric_value></numeric_value>	3.39
CALCulate[14]:SMOothing[:STATe]	ON OFF	3.39
CALCulate[14]:TRANsform:COMPlex	S SINV Y Z YREL ZREL	3.40
CALCulate[14]:TRANsform:COMPlex:ZREFerence	<numeric_value></numeric_value>	3.40
CALCulate[14]:TRANsform:TIME: SPAN	<numeric_value></numeric_value>	3.42
CALCulate[14]:TRANsform:TIME:CENTer	<numeric_value></numeric_value>	3.42
CALCulate[14]:TRANSform:TIME:DCHebychev	<numeric_value></numeric_value>	3.42
CALCulate[14]:TRANsform:TIME:LPASs	KFSTop KDFRequency MINStep	3.41
CALCulate[14]:TRANsform:TIME:LPASs:DCSParam	<numeric_value></numeric_value>	3.41
CALCulate[14]:TRANsform:TIME:METHod	FFT CHIRp	3.41
CALCulate[14]:TRANsform:TIME:STARt	<numeric_value></numeric_value>	3.41
CALCulate[14]:TRANsform:TIME:STATe	<boolean></boolean>	3.40
CALCulate[14]:TRANsform:TIME:STIMulus	IMPulse STEP	3.41
CALCulate[14]:TRANsform:TIME:STOP	<numeric_value></numeric_value>	3.42
CALCulate[14]:TRANSform:TIME:WINDow	RECT HAMMing HANNing BOHMan DCHebychev	3.42

Command	Parameters	Page
CALCulate[14]:TRANSform:TIME:XAXis	TIME DISTance HDIStance	3.42
CALCulate[14]:TRANsform:TIME[:TYPE]	BPASs LPASs	3.41
CALCulate[14]:UNIT:POWer:A1 A2 B1 B2	MW W UV MV V DBM DBW DBUV DBMV DBV	3.43
DIAGnostic:SERVice:FUNCtion	<numeric_value>,</numeric_value>	3.44
DIAGnostic:SERVice:RFPower	ON OFF	3.44
DISPlay:FORmat	SINGle DOVerlay QOVerlay DSPLit QDSPlit QQSPlit	3.45
DISPlay:FORmat:EXPand	ON OFF	3.46
DISPlay:PROGram[:MODE]	ON OFF	3.46
DISPlay:PSAVe:HOLDoff	<numeric_value></numeric_value>	3.46
DISPlay:PSAVe[:STATe]	ON OFF	3.46
DISPlay[:WINDow[14]]:TRACe[1 2]:R:SPACing	LINear LOGarithmic dB	3.50
DISPlay[:WINDow[14]]:TRACe[1 2]:R[:SCALe]:CPOint	<numeric_value></numeric_value>	3.50
DISPlay[:WINDow[14]]:TRACe[1 2]:R[:SCALe]:OEDGe	<numeric_value></numeric_value>	3.50
DISPlay[:WINDow[14]]:TRACe[1 2]:X:SPACing	LINear LOGarithmic	3.47
DISPlay[:WINDow[14]]:TRACe[1 2]:Y:SPACing	LINear LOGarithmic dB	3.50
DISPlay[:WINDow[14]]:TRACe[1 2]:Y[:SCALe]:AUTO	ONCE	3.47
DISPlay[:WINDow[14]]:TRACe[1 2]:Y[:SCALe]:BOTTom	<numeric_value></numeric_value>	3.49
DISPlay[:WINDow[14]]:TRACe[1 2]:Y[:SCALe]:OFFSet	<numeric_value></numeric_value>	3.50
DISPlay[:WINDow[14]]:TRACe[1 2]:Y[:SCALe]:PDIVision	<numeric_value></numeric_value>	3.48
DISPlay[:WINDow[14]]:TRACe[1 2]:Y[:SCALe]:RLEVel	<numeric_value></numeric_value>	3.48
DISPlay[:WINDow[14]]:TRACe[1 2]:Y[:SCALe]:RPOSition	0100 PCT	3.48
DISPlay[:WINDow[14]]:TRACe[1 2]:Y[:SCALe]:TOP	<numeric_value></numeric_value>	3.49
DISPlay[:WINDow[14]]:TRACe[1 2][:STATe]	ON OFF	3.51
DISPlay[:WINDow<14>]:DIAGram	CLIN CLOG CDB CSEG PLIN PLOG PDB PSEG CHARter SMITh ISMith	3.46
DISPlay[:WINDow<14>]:DIAGram:SEGMented:X[:STATe]	ON OFF	3.46
DISPlay[:WINDow<14>]:DIAGram:SEGMented:R	<numeric_value></numeric_value>	3.47
DISPlay[:WINDow<14>]:DIAGram:SEGMented:Y	<numeric_value></numeric_value>	3.47
DISPlay[:WINDow<14>]:TRACe2:X:OFFSet	<numeric_value></numeric_value>	3.47
FORMat:DEXPort	ASCii TOUChstone SCOMpact	3.53
FORMat:DEXPort:DSEParator	POINt COMMa	3.53
FORMat:DEXPort:FORMat	COMPlex MLPHase MDPHase	3.53
FORMat:DEXPort:MODe	NEW APPend	3.53
FORMat:DEXPort:SOURce	CDATa DDATa SDATa FDATa	3.54
FORMat[:DATA]	ASCii REAL[,32]	3.52
HCOPy:ABORt		3.56
HCOPy:DESTination[1 2]	'SYST:COMM:PRIN' 'SYST:COMM:CLIP' 'MMEM'	3.56
HCOPy:DEVice:COLor	ON OFF	3.56
HCOPy:DEVice:LANGuage[1 2]	HPGL PCL4 PCL4_C PCL4_C3 PCL5 LASERJ DESKJ DESKJ_C DESKJ_C3 POSTscript EPSON24 EPSON24C WMF PCX	3.57
HCOPy:ITEM:ALL		3.58
HCOPy:ITEM:FFEed[1 2]:STATe	ON OFF	3.58
HCOPy:ITEM:LABel:TEXT	<string></string>	3.58

Command	Parameters	Page
HCOPy:ITEM:PFEed[1 2]:STATe	ON OFF	3.58
HCOPy:ITEM:WINDow[14]:TRACe[1 2]:LTYPe	SOLid STYLe <n></n>	3.59
HCOPy:ITEM:WINDow[14]:TRACe[1 2]:LTYPe:AINCrement	ON OFF	3.60
HCOPy:ITEM:WINDow[14]:TRACe[1 2]:LTYPe:STATe	ON OFF	3.59
HCOPy:ITEM:WINDow<1 2>:TABLe:STATe	ON OFF	3.58
HCOPy:ITEM:WINDow<1 2>:TEXT	<string></string>	3.59
HCOPy:ITEM:WINDow<1 2>:TRACe:CAINcrement	ON OFF	3.59
HCOPy:ITEM:WINDow<1 2>:TRACe:STATe	ON OFF	3.59
HCOPy:PAGE:DIMensions:FULL		3.60
HCOPy:PAGE:DIMensions:QUADrant[14]		3.60
HCOPy:PAGE:ORIentation[1 2]	LANDscape PORTrait	3.60
HCOPy[:IMMediate]	ON OFF	3.57
INITiate:CONTinuous	ON OFF	3.61
INITiate[:IMMediate]	INTernal DVDaga FDOD:	3.61
INPut:BRIDge INPut:UPORt<1 2>:STATe	INTernal BYPass FPORt ON OFF	3.62
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	ON OFF	3.62
INPut:UPORt<1 2>[:VALue]? INPut[1 2]:ATTenuation	<numeric_value></numeric_value>	3.62
INSTrument:COUPle	ALL NONE	3.63
INSTrument:NSELect	1. .2	3.63
INSTrument[:SELect]	CHANNEL<14>	3.63
MMEMory:CATalog?	_	3.65
MMEMory:CDIRectory	directory name	3.65
MMEMory:CLear:ALL		3.69
MMEMory:CLear:STATe	1, path	3.68
MMEMory:COMMent	<string></string>	3.71
MMEMory:COPY	path, file name	3.65
MMEMory:DATA	path, file name	3.66
MMEMory:DELete	path, file name	3.66
MMEMory:INITialize	'A:'	3.66
MMEMory:LOAD:AUTO	1,path	3.66
MMEMory:LOAD:STATe	1,path	3.67
MMEMory:MDIRectory	path	3.67
MMEMory:MOVE	path	3.67
MMEMory:MSIS	'A:' 'C:'	3.67
MMEMory:NAME	path, file name	3.68
MMEMory:RDIRectory	directory name	3.68
MMEMory:SELect[:ITEM]:AFILes	ON OFF	3.71
MMEMory:SELect[:ITEM]:ALL		3.71
MMEMory:SELect[:ITEM]:CDATa	ON OFF	3.70
MMEMory:SELect[:ITEM]:CKData	ON OFF	3.70
MMEMory:SELect[:ITEM]:CSETup	ON OFF	3.70
MMEMory:SELect[:ITEM]:DEFault		3.71
MMEMory:SELect[:ITEM]:GSETup	ON OFF	3.69
MMEMory:SELect[:ITEM]:HCOPy	ON OFF	3.70

Command	Parameters	Page
MMEMory:SELect[:ITEM]:HWSettings	ON OFF	3.69
MMEMory:SELect[:ITEM]:LINes[:ALL]	ON OFF	3.69
MMEMory:SELect[:ITEM]:MACRos	ON OFF	3.70
MMEMory:SELect[:ITEM]:MTRace<18>	ON OFF	3.69
MMEMory:SELect[:ITEM]:NONE		3.71
MMEMory:STORe:STATe	1, path	3.68
OUTPut:DPORt	PORT1 PORT2	3.72
OUTPut[1 2]:POWer	NORMal HIGH	3.72
OUTPut:RMIXer	ON OFF	3.72
OUTPut:UPORt<1 2>:STATe	ON OFF	3.73
OUTPut:UPORt<1 2>[:VALue]	binary data	3.73
OUTPut[1 2]:ATTenuation	<numeric_value></numeric_value>	3.72
PROGram[:SELected]:EXECute	<cmdname></cmdname>	3.75
PROGram[:SELected]:NAME	ZVR_K9 PROG	3.74
PROGram[:SELected]:STRing	<varname>,<string></string></varname>	3.74
[SENSe:]ROSCillator[:SOURce]	INTernal EXTernal	3.109
[SENSe:]ROSCillatorEXTernal:FREQuency	<numeric_value></numeric_value>	3.109
[SENSe[14]:]AVERage:CLEar		3.76
[SENSe[14]:]AVERage:COUNt	032767	3.76
[SENSe[14]:]AVERage:MODE	SWEep POINt	3.77
[SENSe[14]:]AVERage[:STATe]	ON OFF	3.76
[SENSe[14]:]BANDwidth BWIDth[:RESolution]		3.77
[SENSe[14]:]CORRection: STATe	ON OFF	3.98
[SENSe[14]:]CORRection: DATA	<string>,<block> <numeric_value></numeric_value></block></string>	3.98
[SENSe[14]:]CORRection: DATE?		3.99
[SENSe[14]:]CORRection:AKAL:SELect	<string></string>	3.91
[SENSe[14]:]CORRection:AKAL:EXPort	<string></string>	3.91
[SENSe[14]:]CORRection:AKAL:IMPort	<string></string>	3.91
[SENSe[14]:]CORRection:AKAL:CLEar	<string></string>	3.92
[SENSe[14]:]CORRection:AKAL:REName	<string>,<string></string></string>	3.92
[SENSe[14]:]CORRection:CKIT	N50 N75 SMA PC7 PC35 USER1 USER2	3.93
[SENSe[14]:]CORRection:CKIT:INSTall	<filename></filename>	3.94
[SENSe[14]:]CORRection:CKIT: <cal-kit-typ>:<standard></standard></cal-kit-typ>	<string>, <numeric_value></numeric_value></string>	3.94
[SENSe[14]:]CORRection:CKIT: <cal-kit-typ>:SELect</cal-kit-typ>	<string></string>	3.95
[SENSe[14]:]CORRection:CKIT:USER<1 2>:IMPedance	<numeric_value></numeric_value>	3.95
[SENSe[14]:]CORRection:CKIT:USER<1 2>:WGUIde[:STAT e]	ON OFF	3.95
[SENSe[14]:]CORRection:CKIT:USER<1 2>:CFRequency	<numeric_value></numeric_value>	3.95
[SENSe[14]:]CORRection:CKIT:N50 75	MMTHrough MFTHrough FFTHrough MMLINE1 MFLINE1 FFLINE1 MMLINE2 MFLINE2 FFLINE2 MMATten MFATten FFATten MMSNetwork MFSNetwork FFSNetwork MOPEn FOPEn MSHort FSHort MREFlect FREFlect MMATch FMATch MSMatch FSMatch[, <string>]</string>	3.95

Command	Parameters	Page
[SENSe[14]:]CORRection:CKIT:PC[7 35]	MMTHrough MFTHrough FFTHrough MMLINE1 FLINE1 FFLINE1 MMLINE2 MFLINE2 FFLINE2 MMATten MFATten FFATten MMSNetwork MFSNetwork FFSNetwork MOPEn FOPEn MSHort FSHort MREFlect FREFlect MMATch FMATch MSMatch FSMatch[, <string>]</string>	3.96
[SENSe[14]:]CORRection:CKIT:SMA	MMTHrough MFTHrough FFTHrough MMLINE1 MFLINE1 FFLINE1 MMLINE2 MFLINE2 FFLINE2 MMATten MFATten FFATten MMSNetwork MFSNetwork FFSNetwork MOPEn FOPEn MSHort FSHort MREFlect REFlect MMATch FMATch MSMatch FSMatch[, <string>]</string>	3.96
[SENSe[14]:]CORRection:COLLect:CONNection[1 2]	N50FEMALE N50MALE N75FEMALE N75MALE PC7 SMAFEMALE SMAMALE PC35FEMALE PC35MALE UFEMALE1 UMALE1 UFEMALE2 UMALE2	3.93
[SENSe[14]:]CORRection:COLLect:METHod	FTRans RTRans FRTRans TOM TRM TRL TNA TOMX TOSM FUNDamental FOPORT1 FOPORT2 FOPORT12 FOPTport ROPTport REFL1 REFL2 REFL12 TPORT FTREF1 RTREF2	3.93
[SENSe[14]:]CORRection:COLLect:SAVE		3.93
[SENSe[14]:]CORRection:COLLect[:ACQuire]	THRough OPEN1 OPEN 2 SHORT1 SHORT2 SHORT12 MATCH1 MATCH2 MATCH12 NET ATT IMATCH12 SLIDE1 SLIDE2 SLIDE12 LINE1 LINE2 M1S2 S1M2	3.92
[SENSe[14]:]CORRection:EDELay[1 2]:AUTO	ONCE	3.97
[SENSe[14]:]CORRection:EDELay[1 2]:DIELectric	<numeric value=""></numeric>	3.97
[SENSe[14]:]CORRection:EDELay[1 2]:DISTance	<numeric value=""></numeric>	3.96
[SENSe[14]:]CORRection:EDELay[1 2]:ELENgth	<numeric value=""></numeric>	3.97
[SENSe[14]:]CORRection:EDELay[1 2]:STATe	ON OFF	3.97
[SENSe[14]:]CORRection:EDELay[1 2][:TIME]	<numeric value=""></numeric>	3.96
[SENSe[14]:]CORRection:INTerpolate[:STATe]	ON OFF	3.92
[SENSe[14]:]CORRection:OFFSet[1 2:PHASe	<numeric value=""></numeric>	3.98
[SENSe[14]:]CORRection:OFFSet[1 2]:MAGNitude	<numeric value=""></numeric>	3.98
[SENSe[14]:]CORRection:OFFSet[1 2]:STATe	ON OFF	3.97
[SENSe[14]:]CORRection:POWer:ACQuire	B1 B2 IFRef	3.99
[SENSe[14]:]CORRection:POWer[:STATe]	ON OFF	3.99
[SENSe[14]:]CORRection:POWer:DATA	<string>,<block> <numeric_value></numeric_value></block></string>	3.100
[SENSe[14]:]CORRection:POWer:DATE?		3.100
[SENSe[14]:]DETector[:FUNCtion]	FAST NORMal	3.101
[SENSe[14]:]FREQuency:CENTer	<numeric_value></numeric_value>	3.103
[SENSe[14]:]FREQuency:CONVersion	FUNDamental SHARmonic THARmonic MIXer	3.104
[SENSe[14]:]FREQuency:CONVersion:ARBitrary	<pre><numeric_value>,<numeric_value>,<numeric_value> , CW FIXed SWEep</numeric_value></numeric_value></numeric_value></pre>	3.104
[SENSe[14]:]FREQuency:CONVersion:MIXer:FUNDamental	RF LO IF	3.105
[SENSe[14]:]FREQuency:CONVersion:MIXer:IFFixed		3.105
[SENSe[14]:]FREQuency:CONVersion:MIXer:LOEXternal	SOURCE1 SOURCE2	3.105
[SENSe[14]:]FREQuency:CONVersion:MIXer:LOFixed		3.105
[SENSe[14]:]FREQuency:CONVersion:MIXer:RFFixed		3.105
[SENSe[14]:]FREQuency:CONVersion:MIXer:TFRequency		3.106
[SENSe[14]:]FREQuency:CW FIXed	<numeric_value></numeric_value>	3.104
[SENSe[14]:]FREQuency:MODE	CW FIXed SWEep SEGMent	3.104

Command	Parameters	Page
[SENSe[14]:]FREQuency:NLINear:COMP:STIMe	<numeric_value></numeric_value>	3.106
[SENSe[14]:]FREQuency:NLINear:SOI:STIMe	<numeric_value></numeric_value>	3.106
[SENSe[14]:]FREQuency:NLINear:TOI:STIMe	<numeric_value></numeric_value>	3.106
[SENSe[14]:]FREQuency:SPAN	<numeric_value></numeric_value>	3.103
[SENSe[14]:]FREQuency:STARt	<numeric_value></numeric_value>	3.103
[SENSe[14]:]FREQuency:STOP	<numeric_value></numeric_value>	3.103
[SENSe[14]:]FUNCtion[:ON]	<string></string>	3.107
[SENSe[14]:]SEGMent: CLEar		3.111
[SENSe[14]:]SEGMent:COUNt?		3.111
[SENSe[14]:]SEGMent:DEFine[150]	<numeric_value>,<numeric_value>,<numeric_value> ,<numeric_value>,<numeric_value> AUTO,<numeric_value>,<numeric_value>,<numeric_ value=""></numeric_></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value>	3.110
[SENSe[14]:]SEGMent:DELete [150]		3.111
[SENSe[14]:]SEGMent:INSert [150]	<pre><numeric_value>,<numeric_value>,<numeric_value> ,<numeric_value>,<numeric_value> AUTO,<numeric_value>,<numeric_value>,<numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></pre>	3.111
[SENSe[14]:]SEGMent:OVERlap	ON OFF	3.111
[SENSe[14]:]SWEep:COUNt	0 32767	3.112
[SENSe[14]:]SWEep:DIRection	UP DOWN	3.113
[SENSe[14]:]SWEep:PDECade	<numeric_value></numeric_value>	3.113
[SENSe[14]:]SWEep:POINts	0 32767	3.113
[SENSe[14]:]SWEep:SPACing	LINear LOGarithmic	3.113
[SENSe[14]:]SWEep:STEP	<numeric_value></numeric_value>	3.113
[SENSe[14]:]SWEep:TIME	5ms 1000s	3.112
[SENSe[14]:]SWEep:TIME:AUTO	ON OFF	3.112
SOURce[14]: POWer:ALC[:STATe]	ON OFF	3.117
SOURce[14]:FREQuency:NLINear:COMP	INT ESRC1 ESRC2	3.122
SOURce[14]:FREQuency:NLINear:SOI	IESRC1 IESRC2 ESRC12	3.122
SOURce[14]:FREQuency:NLINear:SOI:OFFSet	<numeric_value></numeric_value>	3.122
SOURce[14]:FREQuency:NLINear:TOI	IESRC1 IESRC2 ESRC12	3.122
SOURce[14]:FREQuency:NLINear:TOI:OFFSet	<numeric_value></numeric_value>	3.122
SOURce[14]:POWer:NLINear:COMP:RANGe:LOWer	<numeric_value></numeric_value>	3.117
SOURce[14]:POWer:NLINear:COMP:RANGe:UPPer	<numeric_value></numeric_value>	3.117
SOURce[14]:POWer:NLINear:SOI:RANGe:LOWer	<numeric_value></numeric_value>	3.118
SOURce[14]:POWer:NLINear:SOI:RANGe:UPPer	<numeric_value></numeric_value>	3.117
SOURce[14]:POWer:NLINear:TOI:RANGe:LOWer	<numeric_value></numeric_value>	3.118
SOURce[14]:POWer:NLINear:TOI:RANGe:UPPer	<numeric_value></numeric_value>	3.118
SOURce<14>: POWer:CENTer	<numeric_value></numeric_value>	3.118
SOURce<14>: POWer:SPAN	<numeric_value></numeric_value>	3.119
SOURce<14>:FREQuency:CONVersion:ARBitrary:EFRequency<1 2>	<numeric_value>,<numeric_value>,<numeric_value> , CW FIXed SWEep</numeric_value></numeric_value></numeric_value>	3.121
SOURce<14>:FREQuency:CONVersion:ARBitrary:IFRequency	<pre><numeric_value>,<numeric_value>,<numeric_value> , CW FIXed SWEep</numeric_value></numeric_value></numeric_value></pre>	3.121
SOURce<14>:FREQuency[:CW FIXed]	<numeric_value></numeric_value>	3.121
SOURce<14>:POWer:CORRection:DATA	<string>,<block> <numeric_value></numeric_value></block></string>	3.119
SOURce<14>:POWer:CORRection:EXT<1 2>:SWEep	<pre><numeric_value>,<numeric_value>,<numeric_value> , LIN LOG</numeric_value></numeric_value></numeric_value></pre>	3.120

Command	Parameters	Page
SOURce<14>:POWer:CORRection:LLISt	<numeric_value>,<numeric_value>,<numeric_value></numeric_value></numeric_value></numeric_value>	3.120
SOURce<14>:POWer:CORRection:LLISt:STATe	ON OFF	3.121
SOURce<14>:POWer:CORRection:NREadings	<numeric_value>.</numeric_value>	3.120
SOURce<14>:POWer:CORRection[:ACQuire]	A1 A2 ESRC1 ESRC2	3.120
SOURce<14>:POWer:STARt	<numeric_value></numeric_value>	3.119
SOURce<14>:POWer:STOP	<numeric_value></numeric_value>	3.119
SOURce<14>:POWer[:LEVel][:IMMediate]:CAMPlitude:A<1 2	<numeric_value></numeric_value>	3.116
SOURce<14>:POWer[:LEVel][:IMMediate]:CAMPlitude:ESR C<1 2>	<numeric_value></numeric_value>	3.116
SOURce<14>:POWer[:LEVel][:IMMediate]:EXTernal<1 2>:A MPLitude	<numeric_value></numeric_value>	3.116
SOURce<14>:POWer[:LEVel][:IMMediate]:EXTernal<1 2>:SLOPe	<numeric_value></numeric_value>	3.116
SOURce<14>:POWer[:LEVel][:IMMediate]:SLOPe	<numeric_value></numeric_value>	3.116
SOURce<14>:POWer[:LEVel][:IMMediate][:AMPLitude]	<numeric_value></numeric_value>	3.115
STATus:OPERation:CONDition?		3.124
STATus:OPERation:ENABle	065535	3.124
STATus:OPERation:NTRansition	065535	3.124
STATus:OPERation:PTRansition	065535	3.124
STATus:OPERation[:EVENt?]		3.123
STATus:PRESet		3.124
STATus:QUEStionable:CONDition?		3.125
STATus:QUEStionable:ENABle	065535	3.125
STATus:QUEStionable:FREQuency:CONDition?		3.126
STATus:QUEStionable:FREQuency:ENABle	065535	3.126
STATus:QUEStionable:FREQuency:NTRansition	065535	3.126
STATus:QUEStionable:FREQuency:PTRansition	065535	3.126
STATus:QUEStionable:FREQuency[:EVENt?]		3.126
STATus:QUEStionable:LIMit:CONDition?		3.127
STATus:QUEStionable:LIMit:ENABle	065535	3.127
STATus:QUEStionable:LIMit:NTRansition	065535	3.127
STATus:QUEStionable:LIMit:PTRansition	065535	3.127
STATus:QUEStionable:LIMit[:EVENt?]		3.127
STATus:QUEStionable:NTRansition	065535	3.125
STATus:QUEStionable:POWer:CONDition?		3.128
STATus:QUEStionable:POWer:ENABle	065535	3.128
STATus:QUEStionable:POWer:NTRansition	065535	3.128
STATus:QUEStionable:POWer:PTRansition	065535	3.128
STATus:QUEStionable:POWer[:EVENt?]		3.128
STATus:QUEStionable:PTRansition	065535	3.125
STATus:QUEStionable[:EVENt?]		3.125
STATus:QUEue[:NEXT?]		3.129
SYSTem:COMMunicate:AKAL[:STATe]	ON OFF	3.131
SYSTem:COMMunicate:GPIB:RDEVice:GENerator<1 2>:ADD Ress	030	3.132

Command	Parameters	Page
SYSTem:COMMunicate:GPIB:RDEVice:PMETer:ADDRess	030	3.132
SYSTem:COMMunicate:GPIB:RDEVice<1 2>:ADDRess	030	3.131
SYSTem:COMMunicate:GPIB[:SELF]:ADDRess	030	3.131
SYSTem:COMMunicate:GPIB[:SELF]:RTERminator	LFEOI EOI	3.131
SYSTem:COMMunicate:PRINter<1 2>:ENUMerate:FIRSt?		3.132
SYSTem:COMMunicate:PRINter<1 2>:ENUMerate:NEXT?		3.132
SYSTem:COMMunicate:PRINter<1 2>:SELect <printer_name></printer_name>	<pri><printer_name></printer_name></pri>	3.133
SYSTem:COMMunicate:RDEVice:GENerator<1 2>:CONTrol	REMote LOCal	3.133
SYSTem:COMMunicate:RDEVice:GENerator<1 2>:LINK	GPIB TTL	3.133
SYSTem:COMMunicate:RDEVice:GENerator<1 2>:TYPE	HP8340A HP_ESG HP_ESG_B SME02 SME03 SME06 SMG SMGL SMGU SMH SMHU SMIQ02 SMIQ02E SMIQ03 SMIQ03E SMP02 SMP03 SMP04 SMP22 SMR20 SMR20B11 SMR27 SMR27B11 SMR40 SMR40B11 SMT02 SMT03 SMT06 SMY01 SMY02	3.134
SYSTem:COMMunicate:RDEVice:PMETer:TYPE	NRVD	3.135
SYSTem:COMMunicate:RDEVice:PMETer:AZERo[:STATe]	ON OFF	3.135
SYSTem:COMMunicate:RDEVice:PMETer:CFACtor:ASENsor	<numeric_value>,<numeric_value>,<numeric_value></numeric_value></numeric_value></numeric_value>	3.135
SYSTem:COMMunicate:RDEVice:PMETer:CFACtor:BSENsor	<numeric_value>,<numeric_value>,<numeric_value></numeric_value></numeric_value></numeric_value>	3.135
SYSTem:COMMunicate:RDEVice:PMETer:CFACtor[:SELect]	ASENsor BSENsor	3.134
SYSTem:COMMunicate:SERial<1 2>:CONTrol:DTR	IBFull OFF	3.136
SYSTem:COMMunicate:SERial<1 2>:CONTrol:RTS	IBFull OFF	3.136
SYSTem:COMMunicate:SERial<1 2>[:RECeive]:BAUD	<numeric_value></numeric_value>	3.136
SYSTem:COMMunicate:SERial<1 2>[:RECeive]:BITS	7 8	3.136
SYSTem:COMMunicate:SERial<1 2>[:RECeive]:PACE	XON NONE	3.137
SYSTem:COMMunicate:SERial<1 2>[:RECeive]:PARity[:TYPE]	EVEN ODD NONE	3.136
SYSTem:COMMunicate:SERial<1 2>[:RECeive]:SBITs	1 2	3.137
SYSTem:DATE	00009999, 112, 131	3.137
SYSTem:DISPlay:UPDate	ON OFF ONCE	3.137
SYSTem:ERRor:ALL?		3.138
SYSTem:ERRor[:NEXT]?		3.138
SYSTem:FIRMware:UPDate	<string></string>	3.138
SYSTem:PASSword[:CENable]	'Passwort'	3.138
SYSTem:PRESet		3.139
SYSTem:SET		3.139
SYSTem:TIME	023, 059, 059	3.139
SYSTem:VERSion?		3.139
TRACe:CLEar	MDATA1 MDATA2 MDATA3 MDATA4 MDATA5 MDATA6 MDATA7 MDATA8	3.141
TRACe:COPY	MDATA1 MDATA2 MDATA3 MDATA4 MDATA5 MDATA6 MDATA7 MDATA8,CH1DATA CH2DATA CH3DATA CH4DATA	3.141
TRACe:FEED	CH1MEM CH2MEM CH3MEM CH4MEM[, MDATA1 MDATA2 MDATA3 MDATA4 MDATA5 MDATA6 MDATA7 MDATA8]	3.143

List of Commands ZVx

Command	Parameters	Page
TRACe[:DATA]:STIMulus:BODY?	CH1DATA CH2DATA CH3DATA CH4DATA CH1MEM CH2MEM CH3MEM CH4MEM MDATA1 MDATA2 MDATA3 MDATA4 MDATA5 MDATA6 MDATA7 MDATA8	3.142
TRACe[:DATA]:STIMulus:PREamble?	CH1DATA CH2DATA CH3DATA CH4DATA CH1MEM CH2MEM CH3MEM CH4MEM MDATA1 MDATA2 MDATA3 MDATA4 MDATA5 MDATA6 MDATA7 MDATA8	3.142
TRACe[:DATA]:STIMulus[:ALL]?	CH1DATA CH2DATA CH3DATA CH4DATA CH1MEM CH2MEM CH3MEM CH4MEM MDATA1 MDATA2 MDATA3 MDATA4 MDATA5 MDATA6 MDATA7 MDATA8	3.142
TRACe[:DATA][:RESPonse]:BODY?	CH1DATA CH2DATA CH3DATA CH4DATA CH1MEM CH2MEM CH3MEM CH4MEM MDATA1 MDATA2 MDATA3 MDATA4 MDATA5 MDATA6 MDATA7 MDATA8	3.142
TRACe[:DATA][:RESPonse]:PREamble?	CH1DATA CH2DATA CH3DATA CH4DATA CH1MEM CH2MEM CH3MEM CH4MEM MDATA1 MDATA2 MDATA3 MDATA4 MDATA5 MDATA6 MDATA7 MDATA8	3.141
TRACe[:DATA][:RESPonse][:ALL]?	CH1DATA CH2DATA CH3DATA CH4DATA CH1MEM CH2MEM CH3MEM CH4MEM MDATA1 MDATA2 MDATA3 MDATA4 MDATA5 MDATA6 MDATA7 MDATA8	3.141
TRIGger[:SEQuence]:HOLDoff	<numeric value=""></numeric>	3.145
TRIGger[:SEQuence]:LINK	<string></string>	3.145
TRIGger[:SEQuence]:RTCLock	023, 059, 059	3.144
TRIGger[:SEQuence]:SLOPe	POSitive NEGative	3.145
TRIGger[:SEQuence]:SOURce	IMMediate EXTernal LINE TIMer MANual RTCLock	3.144
TRIGger[:SEQuence]:TIMer	<numeric value=""></numeric>	3.144

Annex D – Programming Examples

The following examples explain the programming of the instrument and can serve as a basis to solve more complex programming tasks.

QuickBASIC has been used as programming language. However, the programs can be translated into other languages.

D.1 Including IEC-Bus Library for QuickBasic

```
REM --- Include IEC-bus library for quickbasic -.Example for path definition
'$INCLUDE: 'c:\qbasic\qbdecl4.bas'
```

D.2 Initialization and Default Status

The IEC bus as well as the settings of the instrument are brought into a defined default status at the beginning of every program. Subroutines "InitController" and "InitDevice" are used to this effect.

D.2.1 Initiate Controller

D.2.2 Initiate Instrument

The IEC-bus status registers and instrument settings of the analyzer are brought into the default status.

D.3 Transmission of Instrument Setting Commands

Center frequency, span, and reference level of the analyzer are set in this example.

D.4 Switchover to Manual Control

D.5 Reading out Instrument Settings

The settings made in example 3 are read out here. The abbreviated commands are used.

```
REM ----- Reading out instrument settings ------
CFfrequency$ = SPACE$(20)
                                  'Provide text variables (20 characters)
CALL IBWRT (analyzer*, "FREQ:CENT?") 'Request center frequency
CALL IBRD(analyzer%, CFfrequency$)
                                  'Read value
CFspan$ = SPACE$(20)
                                  'Provide text variables (20 characters)
CALL IBWRT(analyzer%, "FREQ:SPAN?") 'Request span
CALL IBRD(analyzer%, CFspan$)
                                  'Read value
                                  'Provide text variables (20 characters)
RLevel$ = SPACE$(20)
CALL IBWRT(analyzer%, "DISP:TRAC:Y:RLEV?")
                                  'Request reference level
CALL IBRD(analyzer%, RLevel$)
                                  'Read value
REM ----- Display values on the screen ------
PRINT "Center frequency: "; CFfrequency$,
PRINT "Span:
                       "; CFspan$,
PRINT "Scaling: "; RLspace$,
```

D.6 Positioning a Marker and Displaying Values

D.7 Command synchronization

The possibilities for synchronization implemented in the following example are described in Section 3.7.6, Command Order and Command Synchronization.

```
REM ----- Examples of command synchronization ------
REM The command INITiate[:IMMediate] starts a single sweep if the command
REM INIT: CONT OFF was previously sent. It should be ensured that the next
REM command is only then executed when the entire sweep is complete.
CALL IBWRT(analyzer%, "INIT:CONT OFF")
REM ----- First possibility: Use of *WAI ------
CALL IBWRT(analyzer%, "ABOR; INIT: IMM; *WAI")
REM ----- Second possibility: Use of *OPC? ------
OpcOk$ = SPACE$(2)
                                  'Space for *OPC? - Provide response
CALL IBWRT(analyzer%, "ABOR; INIT: IMM; *OPC?")
REM ----- here the controller can service other instruments -----
                                  'Wait for "1" from *OPC?
CALL IBRD(analyzer%, OpcOk$)
REM ----- Third possibility: Use of *OPC -----
REM In order to be able touse the service request function in conjugation
REM with a National Instruments GPIB driver, the setting "Disable
REM Auto Serial Poll" must be changed to "yes" by means of IBCONF!
CALL IBWRT(analyzer%, "*SRE 32")
                                   'Permit service request for ESR
CALL IBWRT (analyzer%, "*ESE 1")
                                   'Set event-enable bit for
                                   'operation-complete bit
ON PEN GOSUB OpcReady
                                   'Initialization of the
                                   'service request routine
PEN ON
CALL IBWRT(analyzer%, "ABOR; INIT: IMM; *OPC")
REM Continue main program here
STOP
                                   'End of program
OpcReady:
REM As soon as the sweep has ended, this subroutine is activated
REM Program suitable reaction to the OPC service request.
ON PEN GOSUB OpcReady
                                   'Enable service request routine again
RETURN
```

D.8 Service Request

The service request routine requires an extended initialization of the instrument in which the respective bits of the transition and enable registers are set.

In order to use the service request function in conjugation with National Instruments GPIB driver, the setting "Disable Auto Serial Poll" must be changed to "yes" by means of IBCONF!

```
REM ---- Example of initialization of the SRQ in the case of errors
CALL IBWRT(analyzer%, "*CLS")
                                               'Reset Status Reporting System
CALL IBWRT(analyzer%, "*SRE 168")
                                               'Permit service request for
                                               'STAT:OPER, STAT:QUES and ESR
                                               'register
CALL IBWRT(analyzer%, "*ESE 60")
                                               'Set event-enable bit for
                                               'command, execution, device-
                                               'dependent and query error
                                               'Set OPERation enable bit for
CALL IBWRT(analyzer%, "STAT:OPER:ENAB 32767")
                                               'all events
CALL IBWRT(analyzer%, "STAT:OPER:PTR 32767")
                                               'Set appropriate OPERation
                                               'Ptransition bits
CALL IBWRT(analyzer%, "STAT:QUES:ENAB 32767")
                                               'Set questionable enable bits
                                               'for all events
                                               'Set appropriate questionable
CALL IBWRT(analyzer%, "STAT:QUES:PTR 32767")
                                               'Ptransition bits
ON PEN GOSUB Srq
                                               'Initialization of the service
                                               'request routine
PEN ON
REM Continue main program here
```

A service request is then processed in the service request routine. Note: the variables userN% and userM% must be pre-assigned usefully!

```
REM ----- Service request routine -----
DO
  SROFOUND\% = 0
  FOR I% = userN% TO userM%
                                            'Poll all bus users
      ON ERROR GOTO nouser
                                            'No user existing
       CALL IBRSP(I%, STB%)
                                            'Serial poll, read status byte
       IF STB% > 0 THEN
                                            'This instrument has bits set
                                            'in the STB
         SRQFOUND% = 1
         IF (STB% AND 16) > 0 THEN GOSUB Outputqueue
         IF (STB% AND 4) > 0 THEN GOSUB Failure
         IF (STB% AND 8) > 0 THEN GOSUB Questionablestatus
         IF (STB% AND 128) > 0 THEN GOSUB Operationstatus
         IF (STB% AND 32) > 0 THEN GOSUB Esrread
      END IF
nouser:
  NEXT I%
LOOP UNTIL SRQFOUND% = 0
ON ERROR GOTO error handling
ON PEN GOSUB Srq: RETURN
                                            'Enable SRQ routine again
                                            'End of SRQ routine
```

Reading out the status event registers, the output buffer and the error/event queue is effected in subroutines

```
REM ----- Subroutines for the individual STB bits -----
Outputqueue:
                                           'Reading the output buffer
Message = SPACE$(100)
                                           'Make space for response
CALL IBRD(analyzer%, Message$)
PRINT "Message in output buffer :"; Message$
RETURN
Failure:
                                           'Read error queue
ERROR$ = SPACE$(100)
                                           'Make space for error variable
CALL IBWRT(analyzer%, "SYSTEM:ERROR?")
CALL IBRD(analyzer%, ERROR$)
PRINT " Error text : "; ERROR$
RETURN
Questionablestatus:
                                       'Read questionable status register
Oues$ = SPACE$(20)
                                      'Preallocate blanks to text variable
CALL IBWRT (analyzer%, "STATus:OUEStionable:EVENt?")
CALL IBRD (analyzer%, Ques$)
PRINT "Questionable Status:"; Ques$
RETURN
Operationstatus:
                                      'Read operation status register
Oper$ = SPACE$(20)
                                      'Preallocate blanks to text variable
CALL IBWRT (analyzer%, "STATus:OPERation:EVENt?")
CALL IBRD (analyzer%, Oper$)
PRINT "Operation Status:"; Oper$
RETURN
Esrread:
                                      'Read event status register
Esr$ = SPACE$(20)
                                      'Preallocate blanks to text variable
CALL IBWRT(analyzer%, "*ESR?")
                                      'Read ESR
CALL IBRD (analyzer%, Esr$)
IF (VAL(Esr$) AND 1) > 0 THEN PRINT "Operation complete"
IF (VAL(Esr$) AND 4) > 0 THEN GOTO Failure
IF (VAL(Esr$) AND 8) > 0 THEN PRINT "Device dependent error"
IF (VAL(Esr$) AND 16) > 0 THEN GOTO Failure
IF (VAL(Esr$) AND 32) > 0 THEN GOTO Failure
IF (VAL(Esr$) AND 64) > 0 THEN PRINT "User request"
IF (VAL(Esr$) AND 128) > 0 THEN PRINT "Power on"
RETURN
REM ----- Error routine -----
Error handling:
PRINT "ERROR
                                        'Output error message
STOP
                                        'Stop software
```

D.9 Programming via the RSIB Interface

The following hints apply to both the 16-bit and the 32-bit DLL versions (RSIB.DLL and RSIB32.DLL) unless an explicit distinction is made.

The RSIB interface supports links to max. 16 measuring instruments at the same time.

D.9.1 Visual Basic

Programming hints:

Access to the functions of the RSIB.DLL

To create Visual Basic control applications, the file RSIB.BAS must be added to a project for 16-bit Basic programs and the file RSIB32.BAS for 32-bit Basic programs (C:\R_S\INSTR\RSIB) so that the functions of the RSIB.DLL or RSIB32.DLL can be accessed.

· Generating a response buffer

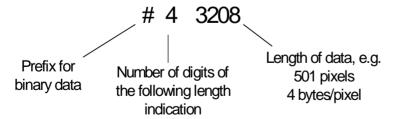
Prior to calling the functions RSDLLibrd() and RSDLLilrd(), a string of sufficient length must be generated. This is possible either by defining the string or using the command Space\$().

```
Generating a string of the length 100:

- Dim Response as String * 100

- Dim Response as String
Response = Space$(100)
```

If a response is to be output as a string from the measuring instrument, the appended blanks can be removed using the Visual Basic Function RTrim().


Example:

```
Response = Space$(100)
Call RSDLLibrd(ud, Response, ibsta, iberr, ibcntl)
Response = RTrim(Response)
'Output of Response
```

Reading out trace data in real format

Using the function declarations in the file RSIB.BAS or RSIB32.BAS the responses of the device can be assigned to one string only. If the data are to be read into an array with float values, the header and the useful data must be read out with separate function calls.

Example of a header

In order to enable the trace data to be directly read into a float array, a special function declaration must be created.

```
Declare Function RSDLLilrdTraceReal Lib "rsib32.dll" Alias "RSDLLilrd" (ByVal ud%, Rd As Single, ByVal Cnt&, ibsta%, iberr%, ibcntl&) As Integer
```

Example:

```
′ Status variable
Dim ibsta As Integer
                                ' Error variable
Dim iberr As Integer
Dim ibcntl As Long
                                ' Count variable
                               ' Handle for measuring instrument
Dim ud As Integer
Dim Result As String
                             ' Buffer for simple results
                               ' Number of digits of length indication
Dim Digits As Byte
Dim Digits As Byte 'Number of digits of length in Dim TraceBytes As Long 'Length of trace data in bytes
Dim TraceData(401) As Single 'Buffer for floating point
                               ' Binary data
' Set up connection to instrument
ud = RSDLLibfind("89.10.38.97", ibsta, iberr, ibcntl)
' Query trace data in real format
Call RSDLLibwrt(ud, "FORM:DATA REAL,32", ibsta, iberr, ibcntl)
Call RSDLLibwrt(ud, "TRACE? CH1DATA", ibsta, iberr, ibcntl)
'Read number of digits of length indication
Result = Space$(20)
Call RSDLLilrd(ud, Result, 2, ibsta, iberr, ibcntl)
Digits = Val(Mid$(Result, 2, 1))
'Read length indication
Result = Space$(20)
Call RSDLLilrd(ud, Result, Digits, ibsta, iberr, ibcntl)
TraceBytes = Val(Left$(Result, Digits))
                                           'and store
' Read out trace data
Call RSDLLilrdTraceReal(ud, TraceData(0), TraceBytes, ibsta, iberr,ibcntl)
```

Programming examples:

• In this example, the start frequency of the instrument is queried.

```
Dim ibsta As Integer 'Status variable
Dim iberr As Integer 'Error variable
Dim ibcntl As Long
                         ' Count variable
                       ' Handle for measuring instrument
Dim ud As Integer
Dim Response As String ' Response string
' Set up connection to measuring instrument
ud = RSDLLibfind("89.10.38.97", ibsta, iberr, ibcntl)
If (ud < 0) Then
   ' Error treatment
End If
' Send query command
Call RSDLLibwrt(ud, "FREQ:START?", ibsta, iberr, ibcntl)
' Provide space for response
Response = Space$(100)
' Read response from measuring instrument
Call RSDLLibrd(ud, Response, ibsta, iberr, ibcntl)
```

• In this example, a Save/Recall of the instrument setups is performed.

```
' Status variable
   Dim ibsta As Integer
   Dim iberr As Integer 'Error variable
Dim ibentl As Long 'Count variable
   Dim ibcntl As Long
   Dim ud As Integer
                            ' Handle for measuring instrument
                            ' Command string
   Dim Cmd As String
   ' Set up connection to measuring instrument
   ud = RSDLLibfind("89.10.38.97", ibsta, iberr, ibcntl)
   If (ud < 0) Then
       ' Error treatment
   End If
   ' Request instrument settings
   Cmd = "SYST:SET?"
   Call RSDLLibwrt (ud, Cmd, ibsta, iberr, ibcntl)
' Store instrument response in file
   Call RSDLLibrdf(ud, "C:\db.sav", ibsta, iberr, ibcntl)
    ' Reset instrument
   Call RSDLLibwrt(ud, "*RST", ibsta, iberr, ibcntl)
    ' and restore the previous settings
   ' to this end disable the END message
   Call RSDLLibeot(ud, 0, ibsta, iberr, ibcntl)
    ' first send off command
   Call RSDLLibwrt(ud, "SYST:SET ", ibsta, iberr, ibcntl)
   ' enable the END message again
   Call RSDLLibeot(ud, 1, ibsta, iberr, ibcntl)
    ' and send the data
   Call RSDLLibwrtf(ud, "C:\db.sav", ibsta, iberr, ibcntl)
```

D.9.2 Visual Basic for Applications (Winword and Excel)

Programming hints:

The programming language Visual Basic for Applications (VBA) is supported as a macro language by various manufacturers. The programs Winword and Excel use this language for the versions Winword 97 or Excel 5.0 and higher.

For macros created with Visual Basic for Applications, the same hints are valid as for Visual Basic Applications.

Programming example:

• Using the macro QueryMaxPeak a single sweep with subsequent query of the maximum peak is performed. The result is entered in a Winword or Excel document.

```
Sub QueryMaxPeak()
                             ' Status variable
    Dim ibsta As Integer
    Dim iberr As Integer ' Error variable
    Dim ibcntl As Long
                            ' transferred characters
                            ' Unit Descriptor (handle) for instrument
    Dim ud As Integer
    Dim Response As String ' Response string
    ' Set up connection to measuring instrument
    ud = RSDLLibfind("89.10.38.97", ibsta, iberr, ibcntl)
    If (ud < 0) Then
      Call MsqBox("Device with address 89.10.38.97 could" &
                   "not be found", vbExclamation)
      End
    End If
    ' Determine maximum peak in the range 1-2MHZ
    Call RSDLLibwrt(ud, "*RST", ibsta, iberr, ibcntl)
    Call RSDLLibwrt (ud, "INIT: CONT OFF", ibsta, iberr, ibcntl)
    Call RSDLLibwrt(ud, "FREQ:START 1MHZ", ibsta, iberr, ibcntl)
    Call RSDLLibwrt(ud, "FREQ:STOP 2MHZ", ibsta, iberr, ibcntl)
Call RSDLLibwrt(ud, "INIT:IMM; *WAI", ibsta, iberr, ibcntl)
    Call RSDLLibwrt(ud, "CALC:MARK:MAX;Y?", ibsta, iberr, ibcntl)
    Response = Space$(100)
    Call RSDLLibrd(ud, Response, ibsta, iberr, ibcntl)
    Response = RTrim(Response) ' Cut off space
    ' Insert value in current document (Winword)
    Selection.InsertBefore (Response)
    Selection.Collapse (wdCollapseEnd)
    ' Terminate connection to measuring instrument
    Call RSDLLibonl(ud, 0, ibsta, iberr, ibcntl)
End Sub
```

The entry of the peak value in the Winword document can be replaced as follows for Excel:

```
' Insert value in current document (Excel)
ActiveCell.FormulaR1C1 = Response
```

D.9.3 C / C++

Programming hints:

Access to the functions of the RSIB32.DLL (Windows platforms)

The functions of the RSIB32.DLL are declared in the header file RSIB.H. The DLL functions can be linked to a C/C++ program in different ways.

- 1. Enter one of the supplied import libraries (RSIB.LIB or RSIB32.LIB) into the linker options.
- 2. Load the library using the function LoadLibrary() during runtime and determine the function pointers of the DLL functions using GetProcAddress(). Before the end of the program, the RSIB.DLL must be unloaded again using the function FreeLibrary().

When import libraries are used, the DLL is automatically loaded immediately before the application is started. At the end of the program, the DLL is unloaded again unless it is still used by other applications.

Access to librsib.so functions (Unix platforms)

The functions of librsib.so are declared in the header file RSIB.H. Upper/lower case characters for file names are typically observed under Unix. The library functions are linked to a C/C++ program by entering the -lrsib linker option.

The shared library librsib.so is automatically loaded on starting the application. The accessibility (for example via standard path) of the library must be ensured. Refer to the beginning of this main chapter under "Unix Environment".

· Query of strings

If instrument responses are to be further processed as strings, a zero termination must be appended.

```
Example:
```

```
char buffer[100];
...
RSDLLibrd( ud, buffer, &ibsta, &iberr, &ibcntl );
buffer[ibcntl] = 0;
```

Programming example:

In the following C program example, a single sweep is started on the device with the IP address 89.10.38.97 and subsequently a marker is set to maximum level. Prior to the search for maximum, a synchronization to the end of the sweep is performed. For this purpose the command "*OPC" (Operation complete) is used to create a service request at the end of the sweep, for which the control program waits with the function RSDLLWaitSrq(). Then the maximum is determined ("CALC:MARK:MAX") and the level read out ("Y?").

```
#define MAX RESP LEN 100
                ibsta, iberr;
short
unsigned long
               ibcntl;
short
               ud;
short
               srq;
char
               MaxPegel [MAX RESP LEN];
char
                spr;
// Determine handle for instrument
ud = RSDLLibfind( "89.10.38.97", &ibsta, &iberr, &ibcntl );
// if instrument exists
if (ud >= 0)
  // Set timeout for RSDLLWaitSrq() to 10 seconds
  RSDLLibtmo(ud, 10, &ibsta, &iberr, &ibcntl);
  // Activate SRO generation via event status register (ESR)
  // and enable ESB bit in SRE register
  RSDLLibwrt( ud, "*ESE 1;*SRE 32", &ibsta, &iberr, &ibcntl );
  // Set single sweep, trigger sweep and use "*OPC" to cause
  // the generation of a service request at the end of the sweep
  RSDLLibwrt( ud, "INIT:CONT off; INIT; *OPC", &ibsta, &iberr, &ibcntl );
  // Wait for SRQ (end of sweep)
  RSDLLWaitSrg( ud, &srg, &ibsta, &iberr, &ibcntl );
  // Clear ROS/MSS bit
  RSDLLibrsp(ud, &spr, &ibsta, &iberr, &ibcntl);
  // if sweep is terminated
  if (srq)
    // then set marker to first maximum and query the level
    RSDLLibwrt( ud, "CALC:MARK:MAX;Y?", &ibsta, &iberr, &ibcntl );
    RSDLLilrd( ud, MaxPegel, MAX RESP LEN, &ibsta, &iberr, &ibcntl );
   MaxPegel[ibcntl] = 0;
  // End connection to instrument
  RSDLLibonl (ud, 0, &ibsta, &iberr, &ibcntl);
else
   // Error Instrument not found
```

ZVx Mouse Control

Annex E - Emulations

E.1 Mouse Control of Display Elements

The network analyzer can be optionally equipped with a mouse (see Chapter 1 "Connecting a Mouse").

All display and control elements (enhancement labels, softkeys, function fields, display and limit lines) which can be displayed on the display screen can also be controlled by the mouse. Each softkey or key is assigned to a display element.

The following table lists the controllable display elements and the assigned keys

Display element for mouse control	Assigned soft key or key
Display field for Softkey 1 to Softkey 10	Softkey 1 to Softkey 10
Display field for menu arrow: right/center/left	Key right/center/left supplementary menu
Enhancement labels * MAC GAT WND EXT H=2 H=3 MIX ARB CMP SOI TOI FST CAL CAI CA? OFS PC PCO PCI PC? CPL HLD TRG AVG FIL MAC SMO	USER key
Display fields above the diagram CH14 S11/S21/S12/S22 Z/Z ₀ , Y/Y ₀ LIN/LOG MAG, ϕ , Re, Im, SWR, L, C, DLY /DIV Reference Marker Display fields below the diagram Start Stop Center Span /Div	MEAS key COMPLEX CONVERS key (MEAS menu) DIAGRAM key FORMAT key SCALE key SCALE key START key STOP key CENTER key SPAN key

E.2 Front Panel Keyboard Emulation

The network analyzer can be equipped with an optional external keyboard (see Chapter 1 "Connecting an External Keyboard"). The following table shows the external keyboard key combinations through which the functions of the front panel keys can be emulated. In addition, the keys which are only available on the external keyboard are shown.

Note:

- The key combination <ALT><S-Abf> (German keyboard) or <ALT> <SYSREQ> (English keyboard) switches between the instrument display screen and the DOS display screen.(for an installed processor option ZVR-B15).
- -In instrument mode, the key combination <ALT> <F1> switches the keyboard between the US-American language and the language selected in the GENERAL SETUP menu.
- The tab key and the insert key on the external keyboard have no function.

Front panel keys		Key assignments for the external keyboard
Soft keys:	SK1 SK2 SK3 SK4 SK5 SK6 SK7 SK8 SK9 SK10	F1 F2 F3 F4 F5 F6 F7 F8 F9
Menu select:	Menu left Menu right Menu up	CTRL ← CTRL → CTRL ↑
Cursor control:	Cursor left Cursor right Cursor up Cursor down— —	← → ↑ ↓ Home End
Roll-key:	Turn left Turn right	Shift ↑ Shift ↓
Numeric keys:	0 1 2 3 4 5 6 7 8	0 1 2 3 4 5 6 7 8
Alphabetic and special characters — — —		A to Z a to z Spec. characters
Units keys:	GHz MHz kHz ×1	ALT-G ALT-M ALT-K <enter></enter>
Edit keys:	Clear Backspace —	<esc> BACK Del</esc>

Front panel keys		Key assignments for the external keyboard
Si	s: kponent "Exp" gn "+/-" ecimal point"."	ALT-E -
Hold key:	HOLD	SHIFT-F1
Step key:	STEP	SHIFT-F7
User menu:	USER	SHIFT-F2
System key group:	MODE SETUP INFO	ALT-F2 SHIFT-F8 SHIFT-F5
Copy key group:	COPY SETTINGS	SHIFT-F9 SHIFT-F6
Memory key group:	SAVE RECALL CONFIG	SHIFT-F10 SHIFT-F11 SHIFT-F12
Status key group:	LOCAL PRESET	SHIFT-F3 SHIFT-F4
Channel key group:	1 2 3 4	ALT-1 ALT-2 ALT-3 ALT-4
Stimulus key group:	START STOP CENTER SPAN	CTRL-F7 CTRL-F8 CTRL-F9 CTRL-F10
Sweep key group:	SWEEP RESTART SOURCE AVG	CTRL-F11 CTRL-F12 ALT-F11 ALT-F12
Marker key group:	MARKER SEARCH DELTA → MKR	CTRL-F1 CTRL-F2 CTRL-F3 CTRL-F4
Lines key group:	DISPLAY LIMIT	CTRL-F5 CTRL-F6
Response key group	: MEAS FORMAT SCALE DIAGRAM DISPLAY TRACE	ALT-F3 ALT-F4 ALT-F5 ALT-F6 ALT-F7 ALT-F8
Cal key group:	CAL OFFSET	ALT-F9 ALT-F10