

Software Manual

Pulse Sequencer Software Japan TELEC DFS Signal Generation

V 3.3.6

2010. 6. 15 ローデ・シュワルツ・ジャパン Rohde & Schwarz Japan

目次 Contents

1.	はじめに Introduction	1
2.	VSG オプション VSG Options	2
3.	文献 Literature	3
4.	発生する波形サイズ Generated Waveforms Size	4
5.	VSG への接続 Connecting to the VSG	4
6.	DFS プロジェクトファイルのロード Loading a DFS Project File	6
7.	固定パルス波形の生成 Creating the Static Type Waveforms	8
8.	可変パルス波形の生成 Creating the Varied Type Waveforms	10
9.	FM チャープ波形の生成 Creating the FM Chirp Type Waveforms	12
10.	周波数ホッピング波形の生成 Creating the Frequency Hopping Type Waveforms.	15
11.	トライアルの実施 Conducting the Trials	20
12.	固定パルスの実施 Conducting the Static Type	23
13.	可変パルスの実施 Conducting the Varied Type	27
14.	FM チャープパルスの実施 Conducting the FM Chirp Type	31
15.	周波数ホッピングパルスの実施 Conducting the Frequency Hopping Type	35
16.	テスト信号の確認 Checking the Test Signals	42

ROHDE&SCHWARZ

1. はじめに Introduction

世界的に、2 つの周波数バンド 5.25 - 5.35 GHz, 5.47 - 5.725 GHz は、様々なレーダシステム に使用され、免許不要の WLAN (IEEE802.11a)デバイスに許可されています。この周波数バン ド再利用の要件は DFS (Dynamic Frequency Selection)と呼ばれます。

DFSを要求するシステムは、レーダシステムに干渉することを回避できる必要があります。 要件とテストパターンを定義する異なるスタンダードが世界的に存在します。

- US: FCC06-96
- EU: ETSI EN 301 893 (5 GHz), ETSI EN 302 502 (5.8 GHz)
- Japan: TELEC-T403

R&S パルスシーケンサ ソフトウェアを使用することで、DFS レーダテスト信号用の複雑なパルス パターンを簡単に発生することができます。

このマニュアルは、TELEC スタンダードの要件に対処します。R&S K6 パルスシーケンサ ソフト ウェアオプション付き R&S ベクトルシグナルジェネレータ(VSG)を使用して、どのようにテスト信 号を生成できるかを説明します。

R&S パルスシーケンサ ソフトウェアは、DFS スタンダード用に予め定義されたプロジェクトファイ ル付きスタンドアローン PC ベースソフトウェアです。要求された全ての波形を簡単に生成できま す。

Worldwide, the two frequency bands 5.25 - 5.35 GHz and 5.47 - 5.725 GHz are used by various radar systems and in addition, are allocated to unlicensed WLAN devices. A requirement arising from this frequency band reuse is a method called DFS which stands for Dynamic Frequency Selection.

A system that requires DFS needs to be capable of avoiding interfering with radar systems. Different standards documents exist worldwide that define requirements and test patterns.

- US: FCC06-96
- EU: ETSI EN 301 893 (5 GHz), ETSI EN 302 502 (5.8 GHz)
- Japan: TELEC-T403

The R&S Pulse Sequencer software allows the easy generation of complex pulses and pulse patterns for DFS radar test signals.

This manual deals with the requirements set in the TELEC standard. It describes how the test signals can be generated using a R&S Vector Signal Generator (VSG) with the R&S K6 Pulse Sequencer Software option.

The R&S Pulse Sequencer Software comes as a stand alone PC based software with preconfigured project files for DFS and other standards. It simplifies the generation of all required waveforms.

2. VSG オプション VSG Options

<u>SMU200A</u> SMU-B106 SMU-B9, B10 or B11 SMU-B13 SMU-K6	Vector Signal Generator 100 kHz to 6 GHz Baseband Generator with ARB 128 MS, 64 MS, 16 MS Baseband Main Module Pulse Sequencer License
SMATE200A	Vector Signal Generator
SMATE-B106	100 kHz to 6 GHz
SMATE-B9, B10 or B1	1
	Baseband Generator with ARB 128 MS, 64 MS, 16 MS
SMATE-B13	Baseband Main Module
SMATE-K6	Pulse Sequencer License
SMJ100A	Vector Signal Generator
SMJ-B106	100 kHz to 6 GHz
SMJ-B9, B10, B11, B5	0 or B51
	Baseband Generator with ARB 128 MS, 64 MS, 16 MS
SMU-B13	Baseband Main Module
SMU-K6	Pulse Sequencer License
SMBV100A	Vector Signal Generator
SMBV-B106	9 kHz to 6 GHz
SMBV-B10, B50 or B5	1
	Baseband Generator with ARB 32 MS
SMBV-B92	Removable HDD
	SMU200A SMU-B106 SMU-B9, B10 or B11 SMU-B13 SMU-K6 SMATE200A SMATE-B106 SMATE-B9, B10 or B1 SMATE-B13 SMATE-K6 SMJ-B106 SMJ-B106 SMU-B13 SMU-B13 SMU-B106 SMU-B13 SMU-B106 SMBV-B106 SMBV-B106 SMBV-B106 SMBV-B106 SMBV-B106

3. 文献 Literature

- TELEC-T403: W53/W56 Radio System Conformance Testing, V 9.3, December 1st, 2009
- NTIA (National Telecommunications And Information Administration) DFS information <u>http://ntiacsd.ntia.doc.gov/dfs/</u>
- DFS Signal Generation Manual http://www2.rohde-schwarz.com/file/DFS Manual.pdf
- R&S Pulse Sequencer Software Manual
 <u>http://www2.rohde-schwarz.com/file/Pulse_Sequencer.pdf</u>
- R&S SMU200A Operating Manual <u>http://www2.rohde-schwarz.com/file/SMU200A Operating Manual e.pdf</u>
- R&S SMATE200A Operating Manual <u>http://www2.rohde-schwarz.com/file/SMATE200A_Operating_Manual_e.pdf</u>
- R&S SMJ100A Operating Manual <u>http://www2.rohde-schwarz.com/file/SMJ100A Operating Manual e.pdf</u>
- R&S SMBV100A Operating Manual http://www2.rohde-schwarz.com/file/SMBV100A Operating.pdf
- Application Note 1MA127: Overview of Tests on Radar Systems and Components <u>http://www2.rohde-</u> <u>schwarz.com/en/service_and_support/Downloads/download_search/?searchtype=1&d</u> ownloadtype=all&download_b=1&type=20&downid=4805

4. 発生する波形サイズ Generated Waveforms Size

VSG 要件は、主に発生する波形サイズに依存します。種々の DFS テスト信号用波形サイズをリ ストします。波形サイズは、ARB サンプリングレートにもとづき、メガサンプル(MS)で表され、必 要最大数です。

The VSG requirements mainly depend on the size of the generated waveforms. The table below lists typical waveform sizes for the different DFS test signals. The listed waveform sizes are the maximum number that needs to be expected based on a given ARB sampling rate and provided in mega-samples (MS).

Radar Type for Test Signal	Waveform Size	Sampling Rate
W53 Static Type 1	0.8 MS	20 MHz
W53 Static Type 2	2 MS	20 MHz
W56 Static Type 1	0.8 MS	20 MHz
W56 Static Type 2	0.8 MS	20 MHz
W56 Static Type 3	2 MS	20 MHz
W56 Varied Type 4	8 MS	20 MHz
W56 Varied Type 5	9 MS	20 MHz
W56 Varied Type 6	8 MS	20 MHz
W56 FM chirp Type 1	4 MS	20 MHz
W56 Frequency Hopping Type 1	0.6 MS	100 MHz

5. VSG への接続 Connecting to the VSG

パルスシーケンサ ソフトウェアのインストール後の最初のステップは、VSG 接続を確立することです。VSG 接続は、波形および RF リストファイルの生成に必要です。 PC と VSG 間のリモートコントロール接続は、LAN あるいは GPIB インタフェースです。

The first step after a fresh installation of the Pulse Sequencer Software is to configure the VSG connection. The VSG connection is required for the creation of Waveforms and RF List files.

The remote control connection between PC and VSG is LAN or GPIB interface.

💠 R&S K6 Pulse Sequencer	8 - 2
<u>Eile Create Project Instrument Options H</u> elp	
Project Trapsfer 00	

• Instrument \rightarrow Manager

- TCP/IP ホスト名や IP アドレス、あるいは GPIB アドレスを指定 Define TCP/IP Host name or IP address, or GPIB address.
- Add Manually
- ・ ダーゲット VSG を選択するためにダブルクリック
 Double click to select the target VSG.
- リモート接続が確立されると、Device Information が表示されます。
 The established remote connection displays Device Information.

6. DFS プロジェクトファイルのロード Loading a DFS Project File

パルス・シーケンサ ソフトウェアは、種々の DFS スタンダード用の予め定義されたプロジェクト・ファイルを含んでいます。

プロジェクトファイルは、パルス定義、レーダテスト信号、およびスタンダードで要求される周波数 ホッピングリストを全て含んでいます。

プロジェクト・ファイルを直接編集できませんが、それらは、様々なテスト信号の生成のためにパ ルスシーケンサ ソフトウェアを設定します。必要に応じて設定変更し、異なるファイル名でプロジ ェクトファイルをセーブできます。

The Pulse Sequencer software contains predefined project files for the different DFS standards.

The project files contain all pulse definitions, radar test signals, and frequency hopping lists that are required by the standard.

The project files cannot be edited directly but they configure the Pulse Sequencer Software for the generation of the various test signals. It is possible for the user to alter settings as needed and save the modified project file under a different name.

RttS K6 Pulse Sequencer	
<u>Eile C</u> reate <u>P</u> roject <u>I</u> nstrument <u>O</u> ptions <u>H</u> elp	
Project Transfer 00	

• File → Load Project

Load Project Fil	e			6	X
Directory History: C:¥ Look in:	Program Files¥Rol	nde-Schwarz¥K6 Pulse Se	quencer V3.3	¥Projects¥DFS ← 🗈 💣 💷+	Ī
My Recent Documents Desktop My Documents My Documents	ETSI-301-89: ETSI-301-89: ETSI-302-50: FCC0696-Tyj FCC0696-Tyj FCC0696-Tyj FCC0696-Tyj FCC0696-Tyj FCC0696-Tyj Japan-TELEC Japan-TELEC Japan-TELEC	3-V141.prj 3-V151.prj 2-V121.prj pe5-4.prj pe5-Sequencer.prj pe6.prj -T403.prj -T403-Chirp.prj -T403-Type6.prj			
My Network Places	File <u>n</u> ame: Files of <u>type</u> :	Japan-TELEC-T403.prj *.prj		•	Load Cancel

適切なファイルを選択
 Select the appropriate file. → Load

TELECJapan-TELEC-T403.prj:TELEC-T403
W53 waveforms
W56 static type waveforms
W56 varied type waveformsJapan-TELEC-T403-Chirp.prj:TELEC-T403
W56 FM chirp type waveformsJapan-TELEC-T403-Type6.prj:TELEC-T403
W56 Frequency hopping type waveform and RF listsFCC
FCC0696-Type6.prj:FCC 06-97

FCC 06-97 including NTIA RF hop lists

7. 固定パルス波形の生成 Creating the Static Type Waveforms

Radar Type	Pulse Width	PRF	PRI	Pulses per	Burst
(W53)	[us]	[Hz]	[us]	Burst	Repetition
					Interval
					[S]
Static Type 1	1	700	1,428	18	15
Static Type 2	2.5	260	3,846	18	15
Radar Type	Pulse Width	PRF	PRI	Pulses per	Burst
(W56)	[us]	[Hz]	[us]	Burst	Repetition
					Interval
					[s]
Static Type 1	0.5	720	1,389	18	15
Static Type 2	1	700	1,428	18	15
Otatia Tura a 2	0	050	4 0 0 0	40	4.5

Test Waveforms

テストを始める前に全ての信号を生成することが賢明です。

It is advisable to create all signals before starting the tests.

- File → Load Project
- 'Japan-TELEC-T403.prj'を選択
 Select 'Japan-TELEC-T403.prj'. → Load
- 'Multi Segment Waveform'ブランチ下の'W53 Static 1, 2', 'W56 Static 1, 2, 3'の1つを選択

Select one of 'W53 Static 1, 2', 'W56 Static 1, 2, 3' under the 'Multi Segment Waveform' branch.

- (Last Seg. 'Back 1st', Trigger Mode 'Armed Retrigger')
- Start MSW build process

次のステップが自動的に実行されます。

- 1. 波形を生成し、VSG (内部 HDD)へ転送
- 2. マルチセグメント波形ファイルに波形を構築
- 3. 設定に準じて、マルチセグメント波形で ARB をスタート

The following steps is performed automatically.

- 1. Create the individual waveforms and transfer to the VSG (internal HDD)
- 2. Assemble waveforms to Multi Segment Waveform file
- 3. Start ARB with Multi Segment Waveform and configure according to settings

💠 R&S K6 Pulse Sequencer (Jap	an-TEL	EC-T403.pr	j)					
Eile Create Project Instrument	Option	s <u>H</u> elp						
Project TELEC-T403	Multi	Segment	Transfer Log					
Date 9.6.2011 Venion 4.0		Name	W53 Static 1					
1- 💀 🦄 🥏 🔺 🔻		Comment	Static pattern using MSW Sequencer					
🗐 Pulse Library 🖉	_		1					-
- 🗐 Sequence Library - 🗐 Multi Segment Waveform	3.		Target Name W53 Type1				% 🕄	
W53 Static 1	No	Rep	Sequence	Samples	Tstart	Tstop	Mode	Sequencer 🛩
W56 Static 1			1 W/53 Static 1	560000	0,00	. 28000.00	Clock Pate	item =
W56 Static 2	1	6304	0 T> (blank filler)	4750	2000.00	15000000.00	CIUCK PARE	User -
W56 Var 4	()						MHZ.	20.000000
1 W56 Var 5	i i						Level	Unchanged 🔻
						-	BB Path	Path A 🔻
E I Plug-in							Last Seg.	Back 1st 🔻
							Trigger Mode	med Retrigger 👻
							Ext. Trigger Mode	Next =
							Trigger Source	Internal =
							Next Segment	
							Defay [samples]	0.00
								Apply
								Trigger
							L	Duery Seg.
ط ال	-						-	1
			Done					

1 burst repetition interval 15 s 長の波形ファイルが生成されます。

The waveform file of one burst repetition interval 15 s length is created.

8. 可変パルス波形の生成 Creating the Varied Type Waveforms

Test Waveforms

Radar Type	Pulse Width	PRF	PRI	Pulses per	Burst
(W56)	[us]	[Hz]	[us]	Burst	Repetition
	randomly	randomly	randomly	randomly	Interval
	(1 us steps)		(1 us steps)	(step 1)	[s]
Varied Type 4	1 ~ 5	4,347 ~ 6,667	150 ~ 230	23 ~ 29	15
Varied Type 5	6 ~ 10	2,000 ~ 5,000	200 ~ 500	16 ~ 18	15
Varied Type 6	11 ~ 20	2,000 ~ 5,000	200 ~ 500	12 ~ 16	15

テストを始める前に全ての信号を生成することが賢明です。

It is advisable to create all signals before starting the tests.

💠 RttS K6 Pulse Sequencer	8	
Eile Create Project Instrument Options Help		
Project Transfer 00		

- File \rightarrow Load Project
- 'Japan-TELEC-T403.prj'を選択 Select 'Japan-TELEC-T403.prj'. → Load
- 'Multi Segment Waveform'ブランチ下の'W56 Var 4, 5, 6'の1つを選択 Select one of 'W56 Var 4, 5, 6' under the 'Multi Segment Waveform' branch.
- Last Seg. 'Back 1st', (Trigger Mode 'Armed Retrigger')
- Start MSW build process

次のステップが自動的に実行されます。

- 1. 波形を生成し、VSG (内部 HDD)へ転送
- 2. マルチセグメント波形ファイルに波形を構築
- 3. 設定に準じて、マルチセグメント波形で ARB をスタート

The following steps is performed automatically.

- 1. Create the individual waveforms and transfer to the VSG (internal HDD)
- 2. Assemble waveforms to Multi Segment Waveform file
- 3. Start ARB with Multi Segment Waveform and configure according to settings

ile <u>C</u> reate Project Instrument	Options	Help									
Project TELEC-T403	Multi S	legment	Transfer Log								
Author Rohde & Schwarz	-										
enion 4.0		Name									
		Comment	30 variable patterns using MSW Sequence		<u>ل</u> ا						
😸 Pulse Library 🖉			1.					-			
Sequence Library			Target Name				A				
Multi Segment Waveform	- 🛃		📐 💙 VV56 Type4				Ma 😡 👘				
W53 Static 1	No	Rep	Sequence	Samples	Tstart	Tstop	Hada	Samanent 🚽			
W56 Static 1	0		1 W56 Var 4	200000	0.00	10000.00	MOGE C	Sequencer •			
W56 Static 2	1	6996	T>I (blank filer)	5000	10000.00	15000000 00	Clock Rafe	User =			
W56 Static 3	2		1 W56 Var 4	200000	15000000.00	15010000-00	MHz.	20.000000			
1 W56 Var 5	3	6996	T>I (blank filer)	5000	15010000.00	30000000 00	Level	Unchanged 👻			
	4		1 W56 Var 4	200000	30000000.00	30010000.00	BB Path	Path A 🔻			
RF List	5	5996	T>] (blank filer)	5000	20010000.00	45000000.00	Last Sea	Back 1st			
Plug-in	6		1 W56 Var 4	200000	45000000.00	45010000.00	Link origi				
	7	6996	T>] (blank filer)	5000	45010000.00	60000000.00					
	- 21		1 W/56 Var 4	200000	60000000.00	60010000.00	Trigger Mode	med Retrigger 🔻			
	e.	5996	T> (blank filler)	5000	60010000.00	7500000.00	Ext. Trigger	Next =			
	10		1 W56 Var 4	200000	75000000.00	75010000.00	Trigger Source	Internal =			
	11	5906	0 T>] (blank filer)	5000	75010000.00	90000000.00					
	12	i	1 W56 Var 4	200000	90000000.00	90010000.00	Next Segment	E 0			
	13	5996	0 T> (blank tiler)	5000	90010000.00	05000000.00	Defay[samples]	0.00			
	1.54		1 W56 Var 4	200000	05000000:00	05010000.00		Arrow 1			
	15	5996	© T> (blank filler)	5000	05010000.00	20000000.00		- Abbiy			
	16		1 W56 Var 4	200000	20000000.00	20010000.00		Trigger			
	17	5996	T> (blank filer)	5000	20010000.00	35000000.00	4	Duery Seg.			

30 burst repetition interval 7 min 30 s 長の波形ファイルが生成されます。 この Multi Segment Waveforms は要求される 30 のランダムバーストを含んでいます。 バースト波形は、パルス幅、PRI およびパルス数のランダム変数を使用します。ゆえに、'Start MSW build process'の実行ごとに、異なるランダムパラメータを組み立てます。

The waveform file of one burst repetition interval 7 min 30 s length is created. This Multi Segment Waveforms contain the required 30 random bursts. The burst waveforms use random variations of the pulse width, the pulse repetition interval and the number of pulses. Therefore, each executing of 'Start MSW build process' assembles a different random parameter.

9. FM チャープ波形の生成 Creating the FM Chirp Type Waveforms

Test Waveforms

Radar	Pulse Width	Chirp	PRF	PRI	Pulses	Bursts
Туре	[us]	Deviation	[Hz]	[us]	per Burst	randomly
(W56)	randomly	[MHz]	randomly	randomly	randomly	(step 1)
	(1 us steps)	Randomly		(1 us	(step 1)	
		(1 MHz		steps)		
		steps)				
FM Chirp	50 ~ 100	5~20	500 ~	1,000 ~	1~3	15
Type 1			1,000	2,000		

テストを始める前に全ての信号を生成することが賢明です。

It is advisable to create all signals before starting the tests.

- File → Load Project
- 'Japan-TELEC-T403-Chirp.prj'を選択 Select 'Japan-TELEC-T403-Chirp.prj'. → Load
- 'Multi Segment Waveform'ブランチ下の使用するバースト数エントリの1つを選択 Select an used number of bursts entry under the 'Multi Segment Waveform' branch.
- (Last Seg. 'Blank', Trigger Mode 'Armed Retrigger')
- Start MSW build process

次のステップが自動的に実行されます。

- 1. 波形を生成し、VSG (内部 HDD)へ転送
- 2. マルチセグメント波形ファイルに波形を構築
- 3. 設定に準じて、マルチセグメント波形で ARB をスタート

The following steps is performed automatically.

- 1. Create the individual waveforms and transfer to the VSG (internal HDD)
- 2. Assemble waveforms to Multi Segment Waveform file
- 3. Start ARB with Multi Segment Waveform and configure according to settings

ther Robde & Schwarz	Multi	segment	Transfer Log					
ate 9.6.2011		Name	TELEC-T403-W56-08					
alon 4.0		Comment	8 random burds in a MSW for use with Sen	nancer				-
💀 🖄 🍠 🔺 💎			The file name determins the trial number.					
🚽 Pulse Library 🖉 🛁								
Sequence Library			Target Name				A. (A)	
Multi Segment Waveform	- 📑		TELEC-T403-W56-08-	TRIAL-1			Ma 😡 🛛	
TELEC-T403-W56-08	No	Rep	Sequence	Samples	Tstart	Tstop	HINDA	Semiencei 🔻
TELEC-T403-W56-10	.0	rand(0,1493,1) 1ms Blank	20000	0.00	555000.00	Clack Pate	
TELEC-T403-W56-11	1	1	W56 Chirp - 1,2,3	140000	555000.00	562000,00	CIUCK Palle	0.5et
TELEC-T403-W56-13	2	35000	T> (blank filer)	. 536.	562000.00	1500000.00	MHZ.	20.000000
TELEC-T403-W56-14	3	rand(0,1493,1) 1ms Blank	20000	1600000.00	2412000.00	Level	Unchanged T
TELEC-T403-W56-16	4	1	W56 Chirp - 1,2,3	140000	2412000.00	2419000.00	BB Path	Path A 🔻
TELEC-T403-W56-17	6	-2075(T> (blank filler)	560	2419000.00	3000000.00	Last Seg.	Blank 🔻
TELEC-T403-W56-18	() G	rand(0,1493,1) 1ms Blank	20000	3000000.00	3060000.00		
TELEC-T403-W56-20	7	1	10/56 Chirp - 1,2,3	140000	3050000.00	3067000.00	20	
RF List	- 2	45150	T> (blank filler)	625	3067000.00	4500000.00	Trigger Mode	med Retrigger
Plug-in	1	rand(0,1493,1) 1ms Blank	20000	4500000.00	5375000.00	Ext. Ingger Mode	Next
	10	1	W56 Chirp - 1,2,3	140000	6375000.00	5382000.00	Trigger Source	Internal -
	- 11	24000	T> (blank filer)	515	5392000.00	6000000.00	Next Seminant	4 0
	12	rand(0,1493,1) 1ms Blank	20000	6000000,00	5418000.00	men se graam	1 1
	13	1	W56 Chirp - 1,2,3	140000	6418000.00	6425000.00	Delay[samples]	3 1000.00
	. 14	34400	T> (blank filer)	625	6425000.00	7500000.00		Apply
	15	rand(0,1493,1) 1ms Blank	20000	7500000.00	\$633000.00		Trigger
	16		W/56 Chirp - 1,2,3	140000	\$633000,00	\$640000.00		Turary Sea
	- 17	12500	T> (blank tiler)	676	1540000.00	9000000.00		samely self.

各トライアルごとに、全期間 12 s のシングル Multi-Segment 波形が生成されます。 プロジェクトは、8 ~ 20 バーストの波形種別を含んでいます。これらの波形はトライアル 1 ~ 13 を 表わします。それ以上のトライアルでは、'Target Name'に、既存の Multi-Segment 波形種別を

まわします。それ以上のドライアルでは、Target Name に、既存の Multi-Segment 波形種別 コピーし、トライアル番号を変更し、容易に生成することができます。

ファイル名の一部としてトライアル番号接尾語を提供することが確実です:

• TELEC-T403-W56-<バースト数>-TRIAL-<トライアル番号>

For each trial, a single Multi-Segment waveform for a total duration of 12 s is created. The project contains waveform descriptions between 8 and 20 bursts. These waveforms represent the trials 1 through 13. Further trials can easily be created by copying an existing Multi-Segment waveform description and changing the trial number in the target name.

It must be ensured that a valid trial number suffix is provided as part of the file name:

TELEC-T403-W56-<bursts>-TRIAL-<number>

💠 R&S K6 Pulse Sequencer (Jap	an-TELEC-T403-CI	irp.prj)	
Eile Create Project Instrument	Options Help		
Project TELEC T403 Chirp Author: Rohde & Schwarz	Multi Segment	Transfer Log	
Date 11.4.2011 Version 4.0	Name	TELEC-T403-W56-08	
1	Comment	8 random bursts in a MSW for use with Sequencer The file name determins the trial number.	20
Pulse Library		Tarriet Manua	
Sequence Library Multi Segment Waveform	- 📑 📑 🖓	TELEC-T403-W56-08-TRIAL-14 Start MSW build process	
TELEC-T403-W56-08 TELEC-T403-W56-09	No Rep	Sequence Samples Tstart Tstop	Sequencer 🕶

10. 周波数ホッピング波形の生成 Creating the Frequency Hopping Type Waveforms

テストを始める前に全ての信号とRF ホップリストを生成することが賢明です。

It is advisable to create all signals and RF hop lists before starting the tests.

Res K6 Pulse Sequencer
 Elle <u>Oreate</u> Project Instrument <u>Options</u> Help
 Project
 Transfer
 Log

- File → Load Project
- 'Japan-TELEC-T403-Type6.prj'を選択 Select 'Japan-TELEC-T403-Chirp.prj'. → Load
- 'Multi Segment Waveform'ブランチ下の'TELEC-T403-T6'を選択
 Select the 'TELEC-T403-T6' under the 'Multi Segment Waveform' branch.
- (Last Seg. 'Blank', Trigger Mode 'Armed Retrigger')
- Start MSW build process

次のステップが自動的に実行されます。

- 1. 波形を生成し、VSG (内部 HDD)へ転送
- 2. マルチセグメント波形ファイルに波形を構築
- 3. 設定に準じて、マルチセグメント波形で ARB をスタート

The following steps is performed automatically.

- 1. Create the individual waveforms and transfer to the VSG (internal HDD)
- 2. Assemble waveforms to Multi Segment Waveform file
- 3. Start ARB with Multi Segment Waveform and configure according to settings

💠 R&S K6 Pulse Sequencer (Jap	an-TEL	EC-T403-Ty	/pe6.prj)					
Eile Create Project Instrument	Option:	s <u>H</u> elp						
Project TELEC-T403 Author Rohde & Schwarz	Multi	Segment	Transfer Log					
Date 9.6.2011 Version 4.0		Name	TELEC-T403-T6 All 100 burds as Multi Segment Waveform					-
A 🕶 🗋 🥏 🔺 🔻								
B Pulse Library	-							
- 😸 Sequence Library 🖃 🍔 Multi Segment Waveform	3,		Target Name TELEC-T403-W56-Hop	9			6 😳	
TELEC-T403-T6 TELEC-T403-T6-simulat	No	Rep	Sequence	Samples	Tstart	Tstop	Mode	Sequencer 👻
😑 🍘 RF List	.0	10	10 T6 - any	299700	0,00	299700.00	Clock Rate	User =
Random Hop List	1		1 T6 - end	15000	299700.00	302700.00	MHz	100.000000
🕀 🎆 Plug-in					<u> </u>			100.000000
							Level	Unchanged T
							BB Path	Path A 💌
							Last Seg.	Blank 🔻
							Trigger Mode	med Retrigger 💌
							Ext. Trigger	Next =
							Mode	
							ingger Source	internar -
							Next Segment	<u> </u>
							Delay [samples]	0.00
								Apply
	_							Trigger
						ر ا		Duery Seg.
الد الــــــــــــــــــــــــــــــــــ	-						5	
1 contract of the second se			Done					

1 burst 0.3 s 長の固定パルス波形ファイルが生成されます。

波形は固定パルスであり、生成は全トライアルのために一度だけ要します。代わりに、この波形は、トライアルごとに使用される様々な周波数リストを利用します。

ランダムホップリストにてトライアル 1 ~ 40 用リストファイルを生成する代わりに、NTIA ホップリストを生成することが賢明です。

NTIA (National Telecommunications and Information Administration)は、次のリンク下の RF ホップリスト例を提供します。

http://ntiacsd.ntia.doc.gov/dfs/

の'HopFreqInRlanBW.txt'ファイル

これらの 40 リストは、FCC0696-Type6 プロジェクトファイル内の NTIA リスト 1 ~ 40 として利用可能です。

RF List エディタは、周波数とレベルのペアの RF List を含んでいるテーブルです。Limits は、 Min – Max 範囲内に入るアイテムをマークできます。これらのアイテムはリスト内で緑にマークさ れます。

The static pulse waveform file of one burst 0.3 s length is created.

The waveform is static and the generation is only required once for all trials. Instead, this waveform makes use of various frequency lists that are used for the different trials.

It is advisable to create the NTIA hop lists, instead of a random hop list creating the list files for trials 1 through 40.

The NTIA (National Telecommunications And Information Administration) provides example RF hop lists under the following link:

http://ntiacsd.ntia.doc.gov/dfs/

under the file 'HopFreqInRlanBW.txt'.

The contents of these 40 lists is available as the NTIA List 1 through 40 in the FCC0696-Type6 project file.

The RF List editor provides a table that contains the frequency and level pairs of the RF List. Limits can be set to mark items that fall within the limit range. These items are marked green in the list.

		1	Remote List File FCC0696-Random.lsw
Entry	Frequency [GHz]	Level [dBn	n]
1	5.300000	0.00	
2	5.474000	0.00	
3	5.304000	0.00	
4	5.676000	0.00	
5	5.336000	0.00	
6	5.373000	0.00	
7	5.711000	0.00	
<u>a</u>	5.597000	0.00	
ä.	E 700000	0.00	

1

NTIA ホップリストにてトライアル 1 ~ 40 用リストファイルを生成する場合

For the NTIA hop lists creating the list files for trials 1 through 40

💠 R&S K6 Pulse Sequencer									8	
<u>File Create Project Instrument</u>	<u>O</u> ptions	<u>H</u> elp								
Project	Transfe	r log l								
 File → Load Pr 'FCC0696-Typ Select 'FCC069 RF List 下の'N Select one of 'I □ Activate Level Min [-**.* 所望の出力レベ Enter the desir Level 'Fill' 	roject e6.prj 96-Ty TIA Li NTIA I ** dBn *ノレ dBr マーロ	'を選択 pe6.prj'. → st 1 ~ 40'の List 1 ~ 40' n] 3m を入力 tput level d	Load)1 つをテ under F Bm.	選択 RF List						
- Sond DI	E lict t	o instrumo	ot							
	r list t		i i t							
		n na haanawa								
File Create Project Instrument	Ontions	Helo								
Project FCC 15:407 / FCC 08-96A	RF List	Transfer Log								
Author Rohde & Schwarz		Transfer Log								
Date 12.4.2010		Name NTIA List	1							
Version 4.0	C	ommerit Data extracte	d from file HopFre	qinRlan8W.td					1	
A- 🗣 🖞 🏈 🔺 💙									-	
🕘 Pulse Library 🔶									0.00	
- 😸 Sequence Library	1.00			Remote List File				<u> </u>	Activate	0
🖃 🍔 Multi Segment Waveform	- 🛃 - E	A 🗸 🗸	🧯 💕	FCC0696-NTIA-1.Isw			9	Ma 📰	Path A 🔻	69
FCC0696-T6	Paters	-	Lumiter		U					
FCC0696-T6-sim	Entry	Frequency [GHZ]	Level fab	ml			Set Length	5	1	
RF LISI	1	5.506000	-62.00							
NTIA LIST 1	4	5.555000	-62.00			Dwe	ell Time	3	100.0	1115
NTIA List 2	-	5.673000	-62.00							
NTIA List 3	#-2	5.265000	-62.00		Fr	equency	7.	Level		
NTIA LISE 4		5.362000	-62.00			oto E	All Camp -	Made	All San	
KIA List 6	-	5.327000	-02.00		5.00	Jule	All Same •	mode	PM 5140	1e •
NTIA List 7	<u></u>	5.380000	-02.00		M	in:	0.000000	Min	-62.000	0000
NTIA LISE8	-	5.335000	-62.00		14	аж	0.000000	Мах	0.000	000
NTIA List 10	100	5.307000	-62.00		S	ер	0.001000	Step	0.001	000
NTIA List 11		5.718000	62.00							
NTIA LIST 12	17	5.379000	62.00				Fill		Fill	
NTIA List 14	11.0	0.570000	-02.00		1212	11				
	11	5.426000	62.00			and the second se				
NTIA List 15	12	5 426000	-62.00		En	nns				
TIA List 15	13	5.426000 5.529000 5.432000	-62.00 -62.00		M	nas	5.592500		-62.000	1000
NTIA List 15 NTIA List 16 NTIA List 17 NTIA List 18	13 74 15	5.426000 5.529000 5.432000 5.573000	-62.00 -62.00 -62.00		M	nns	5.592500		-62.000	000
NTIA List 15 NTIA List 16 NTIA List 17 NTIA List 17 NTIA List 18 NTIA List 19	13 7.4 15 16	5 426000 5 529000 5 432000 5 573000 5 625000	-62.00 -62.00 -62.00 -62.00		M M	nits n ax	 5.592500 5.607500 		-62.000 -62.000	000
NTIA List 15 NTIA List 16 NTIA List 17 NTIA List 17 NTIA List 18 NTIA List 19 NTIA List 20	13 7.4 15 16 17	5.426000 5.529000 5.432000 5.573000 5.625000 5.344000	-62.00 -62.00 -62.00 -62.00 -62.00		M	nits n nx	\$ 5.592500 \$ 5.607500		-62.000 -62.000	000
NTIA List 15 NTIA List 16 NTIA List 17 NTIA List 17 NTIA List 19 NTIA List 20 NTIA List 21 NTIA List 21 NTIA List 22	13 74 15 16 17 18	5.426000 5.529000 5.432000 5.573000 5.625000 5.344000 5.465000	-62.00 -62.00 -62.00 -62.00 -62.00 -62.00 -62.00		M	nits n nx	\$5.592500 \$5.607500		-62.000 -62.000	000

ランダムホップリストにてトライアル1~40 用リストファイルを生成する場合

For random hop lists creating the list files for trials 1 through 40

- 'Random Hop List' under RF List
- Frequency 'Fill' ランダム 100 周波数ホップリストが定義されます。 The random 100 frequencies hop list is defined.
- Level Min [-**.** dBm] 所望の出カレベル dBm を入力 Enter the desired output level dBm.
- Level 'Fill'
- 'Remote List File'
 トライアル番号接尾語を加えます。
 Add the trial number suffix.

ファイル名の一部としてトライアル番号接尾語を提供することが確実です:

• TELEC-T403-Random-<トライアル番号>

It must be ensured that a valid trial number suffix is provided as part of the file name:

• TELEC-T403-Random-<trial number>

Send RF list to instrument

💠 R&S K6 Pulse Sequencer (Japa	in-TELEC	-T403-Type6.prj)					😸 🔲 🖂 🔀
Eile Create Project Instrument	Options	Help					
Project TELEC-T403	RF List	Transfer Log					
Author Rohde & Schwarz Date 9.6.2011 Version 4.0	C	Name Random Formment List with rand	top List om frequencies.				
JL-4# -] 🤛 🔺 🔻							. <u>160</u>
😸 Pulse Library 🧧	1						
- 🗐 Sequence Library			-	Remote List File			Activate
🖃 鬪 Multi Segment Waveform	<u> </u>	A 🔻	🤳 🗳	TELEC-T403-Random-1.lsw		9	Path A 🔻 💔
TELEC-T403-T6 TELEC-T403-T6-simulat	Entry	Frequency [GHz]	Level [dBn	a 🛛	1		
RF List	1	5.300000	-62.00			Set Length	100
Random Hop List	2	5.474000	-62.00		D	well Time	3 100.0 ms
🕀 🍘 Plug-in	3	5.304000	-62.00			inco rario	
	4	5.676000	-62.00				1
	5	5.336000	-62.00		Frequer	юу	Level
	0	5:373000	-62.00		Mode	Unique Rand 🔻	Mode All Same 🔻
	7	5.711000	-62.00		1.50	5 250000	Min 4,62,000000
	1	6 597000	-62.00		Panti -	5.20000	11xx 0.000000
		5.720000	-62.00		INTOX	5.724000	max 0.000000
	18	5.267000	-62.00		Step	0.001000	Step 3 0.001000
	11.	5.399000	-62.00			Fill	Fill
	12	5.433000	-62.00				
	10	5.504000	-62.00		Limits		
	14	5.591000	-62.00		Later V		
	15	5.678000	-62.00		Min	5.592500	-62,000000
	16	5.675000	-62.00		Max	5.607500	5 -62,000000
	17	5.419000	-62.00				4
	18	5.611000	-62.00				
	19	5.636000	-62.00				
41 3 ^[2]							

11. トライアルの実施 Conducting the Trials

本章は、DFS テストをどのように手動で実行するか説明します。波形、Multi Segment 波形、あ るいは RF ホッピングリストが、既に VSG(内部 HDD)に転送されていることを前提とします。 操作プロシジャは、[Preset]後のデフォルト設定(下記スクリーン)から説明します。ただし、周波数 ホッピングトライアルを除く全てのトライアルでは、既に[Freq]と[Level]を設定する必要があります。

This chapter describes how the DFS tests are executed manually. It is assumed that the waveforms, Multi Segment Waveforms, or RF hopping lists are already transferred to the VSG (internal HDD).

Operation procedure is described from the default setting after [Preset] (the following screen). However, [FREQ] and [LEVEL] must be set in all the trials except frequency hopping trials.

ROHDE&SCHWARZ

DFS テスト中のレベルまたは周波数変更において、特別な注意をする必要のある VSG 特有の機能の詳細を説明します。

これは、SMJ100A、SMU200A、SMATE200A だけに関連します。SMBV100A は、RF 信号をALC 中 50 dB 抑圧します。

テスト中に、単一 DFS テスト信号を送り、DUT のレスポンスを観察し、検出成功で新たなチャネ ル周波数へ変更することが要求されます。これは、レーダ信号がこの周波数上で検出された場 合、DUT がチャネルをブラックリストするに違いないからです。

ベースバンドモードが、'Execute Trigger'ボタンによるマニュアルトリガに設定される場合、ベースバンドがトリガ待ちで、レベルまたは周波数が変更されるとき、VSGは、正確なレベルにするために内部校正信号を発生します。この校正信号は、瞬間に、設定周波数とレベルでRF出力にも現われます。

DFS テストの場合には、DUT はこの校正信号をレーダパターンとして解釈し、利用可能チャネル ヘホップするかもしれません。

この校正信号を抑圧するために、VSG には、設定 RF レベルの 40 dB 以下まで RF 出力を低減 する機能があります。DUT の検出しきい値以下の十分なレベルです。デフォルトでは、この機能 は無効であり、レベル抑圧を有効にすることは、VSG の RF ブロックから Automatic Level Control ダイアログ内で設定できます。

This paragraph contains detailed information about specific VSG functions that need to be paid special attention for changing Level or Frequency during DFS testing. This is only relevant for the SMJ100A, SMU200A and SMATE200A. The SMBV100A suppresses the RF signal during its ALC by 50 dB.

During manual testing, it is mostly required to send a single DFS test signal, observe the response of the DUT and in case of successful detection change to a new channel frequency. This is because the DUT must blacklist the channel if radar signals were detected on this frequency.

If the baseband mode is set to a manual trigger that is issued via 'Execute Trigger' button, in a mode where the baseband is waiting for a trigger event and the level or frequency is changed, the VSG generates an internal CAL signal for correct leveling. This CAL signal also appears at the RF output for a short period of time and with the set frequency and level.

In case of DFS testing, this CAL signal could be interpreted by the DUT as a radar pattern and cause another hop to the next available channel.

In order to suppress this CAL signal, the VSG offer an function that reduces the RF output by 40 dB below the set RF level. This should lead to a level well below the detection threshold of the DUT. By default, this function is disabled and enabling the level suppression can be done in the Automatic Level Control dialog from the VSG RF block.

	—Automatic Level Control	
State	Auto	-
	Search Once	
Protect RF O	utput	~

内部アッテネータの一時的変更は、内部レベルセンサに軽度の作用があるので、この機能を有効にすることは、わずかにレベル確度を低下させます。これがデフォルトでこの機能が無効である理由です。作用はわずかなので、DFS テストではレベル確度の低下を無視できます。

Enabling this function slightly decreases the level accuracy because the temporary change of the internal attenuator has minor effects on the internal level sensor. This is the reason why this function is disabled by default. Since the effect is minor, the degradation of level accuracy can be ignored for DFS testing.

12. 固定パルスの実施 Conducting the Static Type

Load Waveform

- Next Segment Mode 'Sequencer'
- Next Segment Mode Sequencing List

•	Seq	luencing	List

uenci	ing List	W53 Ty	pe1		Assigned to I	Multi Seg.	Waveform	W53 Type1
				Sequencing Play List	}	ni :	N 195	
ld#	State	Seg.#	Waveform	Rep. Cycles	Next	Go To	Info	
0	On	0	W53 Type1-seg1.wv	া	Next Id#		Info	
1	On	1	W53 Type1-seg2.wv	63 040	Next Id#		info	
	Append		Delete	Shift I	d#	Up		Down
	Append		Delete	Shift	d#	Up 1 [63	3040]	Down

Load Sequencing List

Select Sequencing List		
R	cent files	
 TELEC-T403-W56-11-TRIAL-4 TELEC-T403-W56-12-TRIAL-5 TELEC-T403-W56-13-TRIAL-6 TELEC-T403-W56-13-TRIAL-6 TELEC-T403-W56-15-TRIAL-8 TELEC-T403-W56-16-TRIAL-9 TELEC-T403-W56-16-TRIAL-9 TELEC-T403-W56-18-TRIAL-10 TELEC-T403-W56-19-TRIAL-110 TELEC-T403-W56-19-TRIAL-12 TELEC-T403-W56-20-TRIAL-13 W53 Type1 W53 Type2 W56 Type3 W56 Type4 		
W56 Type4 W56 Type5 W56 Type6	File Managerd: (DATA)/1	telec-t403 →
W53 Type1 ~ 2 or W53 Type 1 [,] [ESC] Sequencing List を閉じる Exit Sequencing List Trigger/Marker	- 3 → Select	
Arbitrary Waveform Modulation A: Trigge	r/Marker/Clock	
т	igger In	
Mode	Armed Retrig	jger
Execute Trigger		Stopped
		245
Source	Internal	

•

Trigger In Mode ⁻Armea [ESC] Trigger/Marker を閉じる Exit Trigger/Marker

波形の変更には、上記の全てのステップを繰り返す必要はありません。Multi Segment 波形とシ ーケンサリストをリロードすることで十分です。

For changing a waveform, it is not required to repeat all of the above steps. It is sufficient to reload the Multi-Segment waveform along with the sequencer list.

Execute Trigger

13. 可変パルスの実施 Conducting the Varied Type

Load Waveform

	Recent files
ec-t403	
- TELEC-T403-W5	56-20-TRIAL-13-seg56 🔺
TELEC-T403-WS	56-20-TRIAL-13-seg57
TELEC-T403-W5	56-20-TRIAL-13-seg58
- TELEC-T403-WS	56-20-TRIAL-13-seg59
- TELEC-T403-WS	56-20-TRIAL-13-seg6
TELEC-T403-WS	56-20-TRIAL-13-seg60
- TELEC-T403-W	56-20-TRIAL-13-seg7
- TELEC-T403-WS	56-20-TRIAL-13-seg8
TELEC-T403-W	56-20-TRIAL-13-seg9
TELEC-T403-WS	56-20-TRIAL-13
- W53 Type1	
W53 Type2	
W56 Type1	
- W56 Type2	
W56 Type3	
W56 Type4	
W56 Type5	
W56 Type6	-
	File
ect	Manager

- W56 Type 4 ~ 6 → Select
 Next Segment Mode 'Sequencer'
 Sequencing List

•

encin	g List 🛛	W56 Typ	e4	102 - S. 41	1	Assigned to	Multi Seg. V	Vaveforn	W56 Type4	
	((Sequen	cing Play List –					
ld#	State	Seg.#	Waveform		Rep. Cycles	Next	Go To	info		
0	On	0	W56 Type4-seg1.w∨		া	Next Id#		Info		
1	On	1	W56 Type4-seg2.wv		59 960	Next Id#		Info		
2	On	2	W56 Type4-seg3.wv		া	Next Id#		Info		
3	On	3	W56 Type4-seg4.wv		59 960	Next Id#		Info		
4	On	4	W56 Type4-seg5.wv		्न	Next Id#		Info		
5	On	5	W56 Type4-seg6.wv		59 960	Next Id#		Info		
6	On	6	W56 Type4-seg7.wv		া	Next Id#		Info		
7	On	7	W56 Type4-seg8.wv		59 960	Next Id#		Info		
8	On	8	W56 Type4-seg9.wv		া	Next Id#		Info		
9	On	9	W56 Type4-seg10.wv		59 960	Next Id#		Info		
10	On	10	W56 Type4-seg11.wv		া	Next Id#		Info		
11	On	11	W56 Type4-seg12.wv		59 960	Next Id#		Info		
12	On	12	W56 Type4-seg13.wv		া	Next Id#		Info		
1 martine		12				247 - 2787411		1.00		
Aj	opend		Delete		Shift Id	#	Up		Down	
11	1 [5996	0] 2[1] 3 [59960] 4 [1] 5	5 [59960]	6 [1] 7 [5996	0] 8[1]	9 [59960]	10 [1]	11 [59960]	12[1
		0.00								
1	lew	. 1			Load	Sa	ve Sequ.	1	Save	

Load Sequencing List

拱 Select Sequencing List		
	Recent files	
d:/telec-t403		
TELEC-T403-W56-11-	TRIAL-4	
- TELEC-T403-W56-12-	TRIAL-5	
	TRIAL-6	
TELEC-T403-W56-14-	TRIAL-7	
TELEC-T403-W56-15-	TRIAL-8	
- TELEC-T403-W56-16-	TRIAL-9	
	TRIAL-10	
TELEC-T403-W56-18-	TRIAL-11	
TELEC-T403-W56-19-	TRIAL-12	
- TELEC-T403-W56-20-	TRIAL-13	
- W53 Type1		
- W53 Type2		
W56 Type1		
- W56 Type2		
- W56 Type3		
W56 Type4		
··· W56 Type5		
W56 Type6	-	
Select	File Manager	
		d: (DATA)/telec-t403 →
W53 Type 4 ~ 6 → Select	t	
FSCI		
 Sequencing List を閉じる		
Exit Sequencing List		
Frigger/Marker		
	As Tringer Marker (*1e)	
arbitrary waverorm modulation	A. Trigger Marker Clo	ch e
	Trigger in-	
ode		Armed Retrigger
Execute Trigger		Stopped<
ource		Internal

- ٠ •
- Trigger In Mode 'Armed Retrigger' [ESC] Trigger/Marker を閉じる Exit Trigger/Marker

ARB 'On' •

波形の変更には、上記の全てのステップを繰り返す必要はありません。Multi Segment 波形とシ ーケンサリストをリロードすることで十分です。

For changing a waveform, it is not required to repeat all of the above steps. It is sufficient to reload the Multi-Segment waveform along with the sequencer list.

• Execute Trigger

14. FM チャープパルスの実施 Conducting the FM Chirp Type

Load Waveform

TELEC-T403-W56-08 ~ 20-TRIAL-1 ~ * → Select

- Next Segment Mode 'Sequencer' •
- Sequencing List

			4	Sequen	cing Play List—		<i>14</i>	w	
ld#	State	Seg.#	Waveform		Rep. Cycles	Next	Go To	info	
0	On	0	TELEC-T403-W56-08-T	RIAL-1-seg1.wv	120	Next Id#		Info	
1	On	1	TELEC-T403-W56-08-T	RIAL-1-seg2.wv	1	Next Id#		Info	
2	On	2	TELEC-T403-W56-08-T	RIAL-1-seg3.wv	43 936	Next Id#		Info	
3	On	3	TELEC-T403-W56-08-T	RIAL-1-seg4.wv	286	Next Id#		Info	
4	On	4	TELEC-T403-W56-08-T	RIAL-1-seg5.wv	1	Next Id#		Info	
5	On	5	TELEC-T403-W56-08-T	RIAL-1-seg6.wv	44 375	Next Id#		Info	
6	On	6	TELEC-T403-W56-08-T	RIAL-1-seg7.wv	1 078	Next Id#		Info	
7	On	7	TELEC-T403-W56-08-T	RIAL-1-seg8.wv	1	Next Id#		Info	
8	On	8	TELEC-T403-W56-08-T	RIAL-1-seg9.wv	13 280	Next Id#		Info	
9	On	9	TELEC-T403-W56-08-T	RIAL-1-seg10.wv	1 136	Next Id#		Info	
10	On	10	TELEC-T403-W56-08-T	RIAL-1-seg11.wv	<u>)</u>	Next Id#	-	Info	
11	On	11	TELEC-T403-W56-08-T	RIAL-1-seg12.wv	13 600	Next Id#		Info	
12	On	12	TELEC-T403-W56-08-T	RIAL-1-seg13.wv	1 0 3 9	Next Id#		Info	
A	ppend		Delete		Shift Id	#	Up		Down
20]	1 [1]	2 [43	<mark>936]</mark> 3 [286] 4 [1]	5 [44375] 6 [1078] 7 [1]	<mark>8 [13280]</mark>	9 [1136]	10 [1]	11 [13600] 12 [1

Load Sequencing List •

📰 Select Sequencing List 🔤 🗆 🔯	
Recent files	
d:/telec-t403	
📉 d: (DATA)	
🖶 🔍 FCC-0696 🥂 🛒	
🗄 🖏 telec-t403	
TELEC-T403-W56-10-TRIAL-3	
TELEC-T403-W56-11-TRIAL-4	
TELEC-T403-W56-12-TRIAL-5	
- TELEC-T403-W56-13-TRIAL-6	
- TELEC-T403-W56-14-TRIAL-7	
- TELEC-T403-W56-15-TRIAL-8	
TELEC-T403-W56-16-TRIAL-9	
- TELEC-T403-W56-17-TRIAL-10	
TELEC-T403-W56-18-TRIAL-11	
TELEC-T403-W56-19-TRIAL-12	
TELEC-T403-W56-20-TRIAL-13	
- W53 Type1	
File	
Select Manager	
	d: (DATA)/telec-t403 →
「ELEC-T403-W56-08 ~ 20-TRIAL-1 ~ * →	Select
FSCI	
 Sequencing Listを閉じる	
-xit Sequencing List	
List Frigger/Marker	
Arbitrary Waveform Modulation A: Trigger Marker Clo	ck
Triager In	
rigger m	[
ode	Armed Retrigger
Execute Trigger	Stopped
Execute Trigger	Stopped<

- Trigger In Mode 'Armed Retrigger' •
- •
- [ESC] Trigger/Marker を閉じる Exit Trigger/Marker

波形の変更には、上記の全てのステップを繰り返す必要はありません。Multi Segment 波形とシ ーケンサリストをリロードすることで十分です。

For changing a waveform, it is not required to repeat all of the above steps. It is sufficient to reload the Multi-Segment waveform along with the sequencer list.

• Execute Trigger

15. 周波数ホッピングパルスの実施 Conducting the Frequency Hopping Type

バーストごとに波形ファイルから、次のホップに RF リストを切替える始めで、トリガパルスを発生します。 Marker 2 出力を Instr. Trigger 入力に接続します。

RFリストの外部トリガで、オペレーションモードを'Extern Step'に設定します。さらに、'Blank RF Output'を、最初のパルスの欠損回避するために無効にします。

'Blank RF Output'設定は、SMJ100A、SMU200A、SMATE200A だけに関連します。 SMBV100A はバーストの最初のパルスの欠損回避できません。

Each burst from the waveform file initiates a trigger pulse at the beginning that switches the RF list from a hop to the next one. The Marker 2 output is connected with the Instr. Trigger input.

For the external triggering of the RF list, the operation mode must be set to 'Extern Step'. In addition the check box 'Blank RF Output' must be disabled to avoid the truncation of the very first pulse.

Setting the 'Blank RF Output' is only relevant for the SMJ100A, SMU200A and SMATE200A. The SMBV100A cannot avoid the truncation of the first pulse from the burst.

- \frown config \rightarrow List Mode
- Mode 'Extern Step'
- Blank RF Output (Default ON) 'Off' (□ On)

State	Off
Mode	Extern Step 👱
Dwell Time	10.000 ms 💌
Current Index	

VSGは、周波数変更で、内部シンセサイザを再調整するので、ある程度の時間を必要とすること を、特に注意しなければなりません。デフォルトでは、この間、不確定信号からデバイスを保護す るために、VSGはRF出力を抑えます。新たな周波数が規定確度に収まると、信号は再びアク ティブになります。安全のために、ブランク時間は付加マージンを含みます。

ROHDE&SCHWARZ

DFS テストでは、VSG で使われるデフォルトブランク時間がわずかに長く、バーストの最初のパルスが欠損します。この用途で、VSG スペック内に収める難しい要求ではなく、短縮時間で周波数がチャネル帯域幅内に収まるため、ブランク時間の短縮が可能です。

Special care must be taken since changing the frequency requires the VSG to readjust the internal synthesizer and this takes a small amount of time. By default, the VSG suppresses any RF output during this time period to protect devices from an undefined or unwanted signal. The signal is activated again, once the new frequency has settled to the specified accuracy. For safety, an additional margin is added to the blanking time. For the DFS testing, the default blanking time used by the VSG is slightly too long and the first pulse from the burst will be truncated. Shorter blanking times are sufficient because the frequency will settle well within the channel bandwidth at a much shorter time and the tough requirement to reach the VSG specification limits is not required in this case.

Load Waveform

TELEC-T403-W56-Hop → Select

- Next Segment Mode 'Sequencer'
- Sequencing List

•

ienci	ing List	TELEC.	T403-W56-Hop	-Somoncing Diav List	Assigned to N	lulti Seg. ¹	Waveform	TELEC-T403-W56
ld#	State	Seg.#	Waveform	Rep. Cycles	Next	Go To	Info	
0	On	0	TELEC-T403-W56-Hop-seg1.wv	100	Next Id#	1	Info	
1	On	1	TELEC-T403-W56-Hop-seg2.wv	1	Blank		info	
	Append		Delete	Shift	ld#	Up		Down
j.	Append		Delete	Shift	ld#	Up 1[1]+BI	Down

Load Sequencing List

- Trigger In Mode 'Armed Retrigger'
- [ESC]

Trigger/Marker を閉じる Exit Trigger/Marker

- \longrightarrow config \rightarrow Automatic Level Control
- Protect RF Output '∅'

ROHDE&SCHWARZ

• List Mode Data → Select List

• Execute Trigger

•

次のトライアルのために新たな RF リストをリロード

Reloading a new RF list for the next trial

- config \rightarrow List Mode
- List Mode State 'Off'
- List Mode Data → Select List
- Learn List Mode Data
- List Mode 'On'

•

• Execute Trigger

'Learn List Mode Data'は、RF'ON'と適切なベースバンドセットアップで実行されなければなりま せん。ラーニングシーケンス中に VSG が内部測定を実行するからです。ラーニング測定値は、 設定した周波数、レベル、およびベースバンドモードにだけ関連します。これらのパラメータのうち 1 つでも変更すると、ラーニング測定値が無効になります。

The list learning must be done with the RF signal enabled and the baseband properly setup. This is required because the VSG performs internal measurement during the learning sequence. The learned values are only valid for the set frequency, level and baseband mode. Changing one of these parameters makes the learned values invalid.

16. テスト信号の確認 Checking the Test Signals

Static Type

• Burst Interval

• 18 Pulses per Burst (W53 Static Type 1)

Spectrum 🌺	
RefLevel -10.00 dBm CRBW 40 MHz	
● Att 0 dB ● SWT 30 ms VBW 40 MHz	
SGL TRG: VID	
O 1AP Cirw	
	D1[1] 0.00 dB
M1 D1	1.42800 ms
-20 dBm 7	M1[1] -20.01 dBm
-30 dBm	
-40-dBm-TRG -40.000 dBm	
50 d9m	
-30 (1811)	
60 dBm - bellevin a set of the set with the set with the set with a set of the set of th	والمستعمل فراج فراج ومعرفا والمعاد ومراجع والمنافعة والمراجع والمتحاط والمحاط والمراجع والمراجع والمحاص والمتعاد والمتحاط والمراجع
le de la collecte de la collecte de la contribution de trivite	and the termine of the second seco
na a tha bhaile a llian ta mar i shini na shi bhaile an ta bhaile a tha bhaile a tha bhaile a bhaile a bhaile	
CF 5.0 GHz 10001	pts 3.0 ms/
	Ready 03.06.2011

• Pulse Width (W53 Static Type 1)

Varied Type (W56 Varied Type 4)

• Burst Interval

Spectrum 🌺				
Ref Level -10.00 dBm	RBW 40 MHz			
oAtt OdBoSWT 2	20 s VBW 40 MHz			
SGL TRG: VID				,
o 1AP Clrw	r r			
		D1[1]		-0.01 dB
-20 dBm		M1[1]	D1	-20.03 dBm
		240 L 04	Î	0.00000 s
-30-d8m-TRG -30.000 d8m				
-40 dBm				
-50 d8m				
-50 dbm				
at the of State over the next State of the second harden and second states	in a sea bar bar a statut anna da ni de anda ann	a second		where an attack and a second by
CF 5.0 GHz	1000	1 pts		2.0 s/
t di		Ready		03.06.2011

• 1 ~ 5 us Pulse Width (W56 Varied Type 4)

FM Chirp Type

• 10 Bursts

Spectrum						
Ref Level -10.00 c	iBm i	RBW 40 MHz				
SGL U	I GB 😇 SWI 12 S	VBW 40 MHz				
01AP Clrw		155. II				
-20 dBm						
-30 dBm					_	
-40 dBm						
-50 dBm						
AD AD AS AS AN AREA SHOWING A		stores data a bat new last direct		hall to be seen a short of	endets Jon See	testin et contra de
CF 5.0 GHz		1000	1 pts			1.2 s/
			Re	ady 📒	14	18:08:45

• 1 ~ 3 Pulses per Burst

Spectrum								
Ref Level	-10.00 dBm	e RBW	40 MHz					
🗢 Att	0 dB 💿 SWT 10	Oms VBW	40 MHz					
SGL TRG: VI	D							
01AP View 💿	2AP View 💿 3AP Clrw							
00 d0m								
-20 aBm-		ſ						
	RG -30.000 dBm							
-40 dBm								
-50 dBm								
-60 dBm				tra tra				
the weight the stands in the set		of the four set of the set	in the plan of the fit	And Andrew Philes	Mesta and the second state	(* * March & Keylor &	Little all the states	and the second second
11.			N I		1			
the fail for a	energi de al la solitit de la	att of the off	a altal	diat of	Light	and in h		1 diamat
			10001-0					1.0 ms/
GF 3.0 GHZ	T		10001 b		and he a		(ANO) 0	3.06.2011
				R	eady [18:21:00

• FM Chirp 5 ~ 20 MHz Deviation, 50 ~ 100 us Pulse Width

Frequency Hopping Type

• 0.3 s burst within 40 MHz IF filter

• 30 hops within 40 MHz IF filter

Spectrum	Real-Time S	pectrum 🛞	Spectrur	n 2 🛛 🔊		
Ref Level -10.	00 dBm	RBW 40	MHz			
😑 Att	0 dB 😑 SWT 9	0 ms VBW 40	MHz			
TRG: VID						
O1AP Clrw						
-20 dBm						
-40 dBm						
- RO	-50.000 dBm	dullation .				
A CARLEN AND A CARLEND	and the second			towethe full the second shadow	deski hanga kini aitalik kikadat	eterini ya ditini dan kani ka ya di kini k
	a)					
	hu attal militati ar	ale kulli don dhar ad		The shift of the second	السرابان السالي م	d An Million Hillindin i
CF 5.5 GHz			10001 pts			9.0 ms/
			l l w	ait for Trigger		03.06.2011

• 9 Pulses per Hop

Spectrum 👋 Real-Time Spectrum	8	
Ref Level -10.00 dBm © RBW	40 MHz	
Att UdB SWI 3 ms VBW TRG:VID	40 MHz	
• 1AP Clrw		
-20 dBm		
-30 dBm		-
-40 dBm		
-+o dbiii		
-50 dBm TRG -50.000 dBm		-
160 BBO was a date a parate a pallar a tana a take or a parate	والمراجع والمحافظ والمحافظ والمحافظ والمحافظ والمتعالية والمتعاد والمحافظ والمحاف والمحاف والمحاف والمحاف والمتافية	al and a state of
i in the second s	controller and for some filling the day	Name
l la su si baharat da de isani. A ili su subati di di tu di a isani a	, a dha ba dhidh a sha dhi an mad da a dhidh dhalan dha ha ail a dha a ail a dhidhidhidhi	hulan
A A A A A A A A A A A A A A A A A A A		
CE 5 5 GHz	10001 pts	
		3.06.2011

• 1 us Pulse Width

• Hopping

ローデ・シュワルツ・ジャパン株式会社

We're here to pull you through - live with real experts

At Rohde & Schwarz you talk to people. >find your local contact

- 本社/東京オフィス
 〒160-0023 東京都新宿区西新宿 7-20-1 住友不動産西新宿ビル 27 階
 TEL: 03-5925-1288/1287 FAX: 03-5925-1290/1285
- 神奈川オフィス

〒222-0033 神奈川県横浜市港北区新横浜 2-13-13 KM 第一ビルディング 8 階 TEL: 045-477-3570 FAX: 045-471-7678

- 大阪オフィス 〒564-0063 大阪府吹田市江坂町 1-23-20 TEK 第2ビル8階 TEL: 06-6310-9651
 FAX: 06-6330-9651
- サービスセンター
 〒330-0075 埼玉県さいたま市浦和区針ヶ谷 4-2-20 浦和テクノシティビル 3 階 TEL: 048-829-8061
 FAX: 048-822-3156

サービス受付: 2000 120-138-065 service.rsjp@rohde-schwarz.com

技術サポート受付: Technical-Support.Japan@rohde-schwarz.com 各種問合せ: info.rsjp@rohde-schwarz.com

http://www.rohde-schwarz.co.jp