3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+
R&S®SMBV-K42/-K43/-K45/-K59
Operating Manual
This document describes the following software options:

- R&S®SMBV-K42/-K43/-K45/-K59
 1415.8048.xx, 1415.8054.xx, 1415.8077.xx, 1415.8219.xx

This manual describes firmware version 4.70.108.xx and later of the R&S®SMBV100A.
Contents

1 Preface.. 11
1.1 About this Manual.. 11
1.2 Documentation Overview... 11
 1.2.1 Quick Start Guide Manual... 12
 1.2.2 Operating Manual and Help... 12
 1.2.3 Service Manual.. 12
 1.2.4 Instrument Security Procedures... 12
 1.2.5 Basic Safety Instructions... 12
 1.2.6 Data Sheets and Brochures... 13
 1.2.7 Release Notes and Open Source Acknowledgment (OSA).......................... 13
 1.2.8 Application Notes, Application Cards, White Papers, etc............................ 13
2 Welcome to the 3GPP FDD Options... 14
 2.1 Accessing the 3GPP FDD Dialog... 15
 2.2 Scope.. 16
 2.3 Notes on Screenshots... 16
3 About the 3GPP FDD Options... 17
 3.1 Required Options.. 17
 3.2 Major 3GPP Parameters Overview... 17
 3.3 Modulation System 3GPP FDD... 18
 3.3.1 Scrambling Code Generator... 19
 3.3.1.1 Downlink Scrambling Code Generator.. 19
 3.3.1.2 Uplink Scrambling Code Generator.. 20
 3.3.2 Scrambling Unit.. 22
 3.3.3 Channelization Code Generator.. 23
 3.3.4 Data Source.. 23
 3.3.5 Slot and Frame Builder... 23
 3.3.6 Timing Offset... 24
 3.3.7 Demultiplexer.. 25
 3.3.8 Power Control... 25
 3.3.9 Summation and Filtering... 26
 3.3.10 Multicode.. 26
3.3.11 Orthogonal Channel Noise (OCNS) .. 27
3.3.11.1 Standard, HSDPA and HSDPA2 modes ... 27
3.3.11.2 3i OCNS mode .. 28
3.3.12 HS-SCCH Less Operation ... 30
3.3.12.1 HS-SCCH Type 2 ... 30
3.3.12.2 HS-SCCH Type Two Fixed Reference Channel: H-Set 7 31
3.3.13 Higher Order Modulation ... 31
3.3.13.1 64QAM in downlink .. 31
3.3.13.2 64QAM Fixed Reference Channel: H-Set 8 .. 32
3.3.13.3 16QAM in uplink ... 32
3.3.14 MIMO in HSPA+ ... 33
3.3.14.1 D-TxAA Feedback signaling: PCI and CQI ... 33
3.3.14.2 MIMO downlink control channel Support .. 34
3.3.14.3 Redundancy Version .. 35
3.3.14.4 HARQ Processes .. 35
3.3.14.5 MIMO uplink control channel Support ... 36
3.3.14.6 CQI Reports: Type A and Type B ... 37
3.3.14.7 PCI Reports ... 37
3.3.14.8 MIMO Fixed Reference Channels: H-Set 9 and H-Set 11 38
3.3.15 Dual Cell HSDPA (DC-HSDPA) .. 38
3.3.15.1 DC-HSDPA Data Acknowledgement (non-MIMO mode) 39
3.3.15.2 DC-HSDPA + MIMO .. 41
3.3.15.3 Dual Cell HSDPA (DC-HSDPA) Fixed Reference Channel: H-Set 12 41
3.3.16 HS-DPCCH Extension for 4C-HSDPA and 8C-HSDPA .. 42
3.3.17 Dual Cell HSUPA (Dual Cell E-DCH) .. 42
3.3.18 UE Capabilities ... 42
3.3.18.1 MIMO and 64QAM UE Capabilities .. 42
3.3.18.2 UL 16QAM UE Capabilities .. 43
3.3.18.3 MIMO and DC-HSDPA Operation UE Capabilities ... 43
3.3.18.4 Dual Cell E-DCH Operation UE Capabilities ... 43
3.3.19 Uplink Discontinuous transmission (UL DTX) ... 43
4 User Interface.. 46
 4.1 General Settings for 3GPP FDD Signals.. 47
 4.2 Configure Base Stations or UE... 52
 4.2.1 Orthogonal Channel Noise (OCNS) Settings.................................... 52
 4.2.2 Common Configuration Settings... 53
 4.2.3 General Power Settings... 56
 4.3 Filtering, Clipping, ARB Settings.. 58
 4.3.1 Filter Settings.. 58
 4.3.2 Clipping Settings... 59
 4.3.3 ARB Settings.. 61
 4.4 Trigger/Marker/Clock Settings... 61
 4.4.1 Trigger In.. 63
 4.4.2 Marker Mode.. 66
 4.4.3 Marker Delay... 67
 4.4.4 Clock Settings.. 68
 4.4.5 Global Settings.. 69
 4.5 Test Setups/Models... 69
 4.6 Predefined Settings - Downlink... 73
 4.7 Additional User Equipment - Uplink... 74
 4.8 Base Station Settings.. 76
 4.8.1 Common Settings... 77
 4.8.2 Channel Table.. 80
 4.9 Compressed Mode.. 85
 4.9.1 Compressed Mode General Settings.. 86
 4.9.2 Compressed Mode Configuration Graph.. 89
 4.9.2.1 Transmission Gaps... 89
 4.9.2.2 Compressed Ranges.. 90
 4.9.2.3 Non-compressed ranges... 90
 4.9.3 Code Domain Graph - BS... 91
 4.10 Channel Graph - BS.. 93
 4.11 HSDPA Settings - BS... 94
 4.11.1 Enhanced HSDPA Mode Settings... 95
 4.11.2 MIMO Configuration... 97
4.13 HSDPA H-Set Mode Settings - BS

4.13.1 HSDPA H-Set General Settings

4.13.2 H-Set Configuration Common Settings

4.13.3 MIMO Settings

4.13.4 Global Settings

4.13.5 Coding Configuration

4.13.6 Signal Structure

4.13.7 HARQ Simulation

4.13.8 Error Insertion

4.13.9 Randomly Varying Modulation and Number of Codes (Type 3i) Settings

4.14 Enhanced Settings for P-CPICH - BS1

4.15 Enhanced Settings for P-CCPCH - BS1

4.15.1 Channel Number and State

4.15.2 Channel Coding - Enhanced P-CCPCH BS1

4.16 Enhanced Settings for DPCHs - BS1

4.16.1 Channel Number and State

4.16.2 Channel Coding

4.16.3 Transport Channel - Enhanced DPCHs BS1

4.16.4 Error Insertion - Enhanced DPCHs BS1

4.16.5 Dynamic Power Control - Enhanced DPCHs BS1

4.17 S-CCPCH Settings - BS Channel Table

4.18 Config AICH/AP-AICH - BS Channel Table

4.19 DPCCH Settings - BS Channel Table

4.19.1 Common Slot Structure (DPCCH)

4.19.2 TPC Settings

4.19.3 DPCCH Power Offset

4.20 Config E-AGCH - BS Channel Table

4.21 Config E-RGCH/E-HICH - BS Channel Table

4.22 Config F-DPCH - BS Channel Table

4.22.1 Common Settings

4.22.2 TPC Settings

4.23 Multi Channel Assistant - BS

4.24 User Equipment Configuration (UE)
4.37.3 DTX Mode Settings... 227
4.37.4 HARQ Simulation Settings.. 228
4.37.5 Bit and Block Error Insertion Settings... 230

4.38 Global Enhanced Channel Settings - UE1.. 231
4.38.1 Enhanced Channels State.. 231
4.38.2 Channel Coding.. 232
4.38.3 Transport Channel... 235
4.38.4 Error Insertion... 238

5 How to Work with the 3GPP FDD Option... 240
5.1 Resolving Domain Conflicts.. 240
5.2 Using the DL-UL Timing Offset Settings... 241
5.3 Configuring UL-DTX Transmission and Visualizing the Scheduling.......................... 242
5.4 How to Configure the HS-DPCCH Settings for 4C-HSDPA Tests.......................... 244

6 Application Sheets... 246
6.1 Uplink Dual Cell HSDPA Test Signal Generation.. 246
6.1.1 Options and Equipment Required... 246
6.1.2 Test Setup... 246
6.1.3 Generating an uplink DC-HSDPA Test Signal (Non-MIMO Mode)... 247
6.1.4 Generating an Uplink Test Signal for Simultaneous Dual Cell and MIMO Operation.. 249

7 Remote-Control Commands.. 250
7.1 General Commands.. 251
7.2 Filter/Clipping Settings... 257
7.3 Trigger Settings... 262
7.4 Marker Settings... 266
7.5 Clock Settings... 268
7.6 Test Models and Predefined Settings.. 270
7.7 Setting Base Stations... 275
7.8 Enhanced Channels of Base Station 1.. 322
7.8.1 General Settings... 323
7.8.2 Channel Coding.. 324
7.8.3 Dynamic Power Control Settings.. 335
7.8.4 Error Insertion... 338
1 Preface

1.1 About this Manual

This operating manual provides all the information specific to the digital standard 3GPP FDD.

The main focus in this manual is on the provided settings and the tasks required to generate a signal. The following topics are included:

- **Welcome to the 3GPP FDD options R&S SMBV-K42/-K83**
 Introduction to and getting familiar with the option

- **About the 3GPP FDD and Basics**
 Background information on basic terms and principles in the context of the signal generation

- **3GPP FDD Configuration and Settings**
 A concise description of all functions and settings available to configure signal generation with their corresponding remote control commands

- **How to generate a Signal with the 3GPP FDD Options**
 The basic procedure to perform signal generation tasks and step-by-step instructions for more complex tasks or alternative methods
 As well as detailed examples to guide you through typical signal generation scenarios and allow you to try out the application immediately

- **Application Examples**
 Example signal generation scenarios in which the option is frequently used.

- **Remote Control Commands**
 Remote commands required to configure and perform signal generation in a remote environment, sorted by tasks
 Programming examples demonstrate the use of many commands and can usually be executed directly for test purposes

- **Annex**
 Reference material, such as extensive lists

- **List of remote commands**
 Alphabetical list of all remote commands described in the manual

- **Index**

1.2 Documentation Overview

This section provides an overview of the R&S SMBV user documentation. Unless specified otherwise, you find the documents on the R&S SMBV product page at:

www.rohde-schwarz.com/manual/smbv100a
1.2.1 **Quick Start Guide Manual**

Introduces the R&S SMBV and describes how to set up and start working with the product. Includes basic operations, typical measurement examples, and general information, e.g. safety instructions, etc. A printed version is delivered with the instrument.

1.2.2 **Operating Manual and Help**

Separate manuals for the base unit and the software options are provided for download:

- **Base unit manual**
 Contains the description of all instrument modes and functions. It also provides an introduction to remote control, a complete description of the remote control commands with programming examples, and information on maintenance, instrument interfaces and error messages. Includes the contents of the quick start guide manual.

- **Software option manual**
 Contains the description of the specific functions of an option. Basic information on operating the R&S SMBV is not included.

The contents of the user manuals are available as help in the R&S SMBV. The help offers quick, context-sensitive access to the complete information for the base unit and the software options.

All user manuals are also available for download or for immediate display on the Internet.

1.2.3 **Service Manual**

Describes the performance test for checking the rated specifications, module replacement and repair, firmware update, troubleshooting and fault elimination, and contains mechanical drawings and spare part lists.

The service manual is available for registered users on the global Rohde & Schwarz information system (GLORIS, https://gloris.rohde-schwarz.com).

1.2.4 **Instrument Security Procedures**

Deals with security issues when working with the R&S SMBV in secure areas. It is available for download on the Internet.

1.2.5 **Basic Safety Instructions**

Contains safety instructions, operating conditions and further important information. The printed document is delivered with the instrument.
1.2.6 Data Sheets and Brochures

The data sheet contains the technical specifications of the R&S SMBV. It also lists the options and their order numbers and optional accessories.

The brochure provides an overview of the instrument and deals with the specific characteristics.

See www.rohde-schwarz.com/brochure-datasheet/smbv100a

1.2.7 Release Notes and Open Source Acknowledgment (OSA)

The release notes list new features, improvements and known issues of the current firmware version, and describe the firmware installation.

The open source acknowledgment document provides verbatim license texts of the used open source software.

See www.rohde-schwarz.com/firmware/smbv100a

1.2.8 Application Notes, Application Cards, White Papers, etc.

These documents deal with special applications or background information on particular topics.

See www.rohde-schwarz.com/application/smbv100a.
2 Welcome to the 3GPP FDD Options

The R&S SMBV provides you with the ability to generate signals in accordance with the WCDMA standard 3GPP FDD.

WCDMA (Wideband CDMA) describes a group of mobile radiocommunication technologies, the details of which differ greatly. The R&S SMBV supports the 3GPP FDD standard developed by the 3GPP (3rd Generation Partnership Project) standardization committee.

The R&S SMBV generates the 3GPP FDD signals in a combination of realtime mode (enhanced channels) and arbitrary waveform mode. Channel coding and simulation of bit and block errors can be activated for the enhanced channels of Release 99 and for H-Sets 1 to 5 generated in real time. Channel coding can also be activated for HSDPA/HSPA+ H-Sets and all HSUPA/HSPA+ FRC channels which are generated in arbitrary wave mode. Data lists can also be used for the data and TPC fields. The enhanced state of realtime channels can be switched off to generate specific test scenarios. In arbitrary waveform mode, the signal is first calculated and then output.

The R&S SMBV simulates 3GPP FDD at the physical channel level and also at the transport layer level for all channels for which channel coding can be activated.

The following list gives an overview of the functions provided by the R&S SMBV for generating a 3GPP FDD signal (option R&S SMBV-K42):

- Configuration of up to four base stations and four user equipment.
- Combination of realtime mode (enhanced channels) and arbitrary waveform mode
- All special channels and up to 512 channels on the downlink, except HSDPA, HSUPA and HSPA+
- Various test models and pre-defined settings for the uplink and the downlink
- Modulation 16QAM and 64QAM (downlink) for configuring high-speed channels in continuous mode (test model 5&6, HSDPA)
- Clipping for reducing the crest factor
- Misuse TPC" parameter for varying the original normal transmit power over time
- Simulation of up to 128 additional user equipment

The following functions are provided specifically for the receiver test:

- Realtime generation of up to four code channels with the option of using data lists for the data and TPC fields
- Channel coding of the reference measurement channels, AMR and BCH in real time
- Feeding through of bit errors (to test a BER tester) and block errors (to test a BLER tester)
- Simulation of orthogonal channel noise (OCNS in accordance with TS 25.101)
- Presettings in accordance with 3GPP specifications
- HSDPA Downlink in continuous mode (test model 5&6 for TX tests)
The following functions are provided by extension R&S SMBV-K43 enhanced BS/MS tests including HSDPA:

- HSDPA uplink
- HSDPA downlink (packet mode and H-Set mode without CPC, 64QAM and MIMO)
- Dynamic Power Control
- Predefined and user-definable H-Sets
- Assistance in the setting of the appropriate sequence length for arbitrary waveform mode

The following functions are provided by extension R&S SMBV-K45 3GPP FDD HSUPA:

- HSUPA Downlink (RX measurements on 3GPP FDD UEs with correct timing)
- HSUPA Uplink (RX measurements on 3GPP FDD node BS supporting HSUPA)
- HSUPA HARQ Feedback support

The following functions are provided by extension R&S SMBV-K59 3GPP FDD HSPA+:

- Downlink 64QAM with channel coding
- Uplink 16QAM (4PAM)
- Downlink MIMO
- Uplink ACK/PCI/CQI feedback for downlink MIMO and/or Dual Cell HSDPA
- CPC in downlink (HS-SCCH less operation, enhanced F-DPCH) and uplink (UL- DTX, Uplink DPCCH slot format 4)
- Support for the generation of 3i OCNS and for randomly varying modulation and the number of HS-PDSCH channels in H-Set over time (type 3i enhanced performance requirements tests).

This operating manual contains a description of the functionality that the application provides, including remote control operation.

All functions not discussed in this manual are the same as in the base unit and are described in the R&S SMBV operating manual. The latest version is available at: www.rohde-schwarz.com/manual/SMBV100A

2.1 Accessing the 3GPP FDD Dialog

To open the dialog with 3GPP FDD settings

► In the block diagram of the R&S SMBV, select "Baseband > 3GPP FDD".

A dialog box opens that display the provided general settings.
The signal generation is not started immediately. To start signal generation with the default settings, select "State > On".

2.2 Scope

Tasks (in manual or remote operation) that are also performed in the base unit in the same way are not described here.

In particular, it includes:

- Managing settings and data lists, like storing and loading settings, creating and accessing data lists, or accessing files in a particular directory.
- Information on regular trigger, marker and clock signals and filter settings, if appropriate.
- General instrument configuration, such as configuring networks and remote operation
- Using the common status registers

For a description of such tasks, see the R&S SMBV operating manual.

2.3 Notes on Screenshots

When describing the functions of the product, we use sample screenshots. These screenshots are meant to illustrate as many as possible of the provided functions and possible interdependencies between parameters. The shown values may not represent realistic usage scenarios.

The screenshots usually show a fully equipped product, that is: with all options installed. Thus, some functions shown in the screenshots may not be available in your particular product configuration.
3 About the 3GPP FDD Options

Some background knowledge on basic terms and principles used in the 3GPP FDD modulation system is provided here for better understanding of the required configuration settings.

3.1 Required Options

The basic equipment layout for generating 3GPP FDD signals includes the:

- Base unit
- Digital standard 3GPP FDD (R&S SMBV-K42)

The following options are required to support all 3GPP-related settings described in this operating manual:

- Option digital standard 3GPP FDD (R&S SMBV-K42)
- Options 3GPP HSDPA, FDD HSUPA and FDD HSPA+ (R&S SMBV-K43/-K45/-K59)

For more information, see data sheet.

3.2 Major 3GPP Parameters Overview

Table 3-1 gives an overview of parameters of the modulation system 3GPP FDD.
Table 3-1: Parameters of the modulation system

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chip rate</td>
<td>3.84 Mcps</td>
</tr>
<tr>
<td>Channel types</td>
<td>Downlink:</td>
</tr>
<tr>
<td></td>
<td>• Primary Common Pilot Channel (P-CPICH)</td>
</tr>
<tr>
<td></td>
<td>• Secondary Common Pilot Channel (S-CPICH)</td>
</tr>
<tr>
<td></td>
<td>• Primary Sync Channel (P-SCH)</td>
</tr>
<tr>
<td></td>
<td>• Secondary Sync Channel (S-SCH)</td>
</tr>
<tr>
<td></td>
<td>• Primary Common Control Phys. Channel (P-CCPCH)</td>
</tr>
<tr>
<td></td>
<td>• Secondary Common Control Phys. Channel (S-CCPCH)</td>
</tr>
<tr>
<td></td>
<td>• Page Indication Channel (PICH)</td>
</tr>
<tr>
<td></td>
<td>• Acquisition Indication Channel (AICH)</td>
</tr>
<tr>
<td></td>
<td>• Access Preamble Acquisition Indication Channel (AP-AICH)</td>
</tr>
<tr>
<td></td>
<td>• Collision Detection Acquisition Indication Channel (CD-AICH)</td>
</tr>
<tr>
<td></td>
<td>• Phys. Downlink Shared Channel (PDSCH)</td>
</tr>
<tr>
<td></td>
<td>• Dedicated Physical Control Channel (DL-DPCCH)</td>
</tr>
<tr>
<td></td>
<td>• Dedicated Phys. Channel (DPCCH)</td>
</tr>
<tr>
<td></td>
<td>• High-Speed Shared Control Channel (HS-SCCH)</td>
</tr>
<tr>
<td></td>
<td>• High-Speed Physical Downlink Shared Channel (HS-PDSCH), Modulation</td>
</tr>
<tr>
<td></td>
<td>QPSK, 16 QAM or 64QAM</td>
</tr>
<tr>
<td></td>
<td>• HSUPA channels (E-AGCH, E-RGCH, E-HICH, F-DPCH)</td>
</tr>
<tr>
<td>Uplink:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Phys. Random Access Channel (PRACH)</td>
</tr>
<tr>
<td></td>
<td>• Phys. Common Packet Channel (PCPCH)</td>
</tr>
<tr>
<td></td>
<td>• Dedicated Physical Control Channel (DPCCH)</td>
</tr>
<tr>
<td></td>
<td>• Dedicated Physical Data Channel (DPDC)</td>
</tr>
<tr>
<td></td>
<td>• High Speed Dedicated Physical Control Channel (HS-DPCCH)</td>
</tr>
<tr>
<td></td>
<td>• E-DCH Dedicated Physical Control Channel (E-DPCCH)</td>
</tr>
<tr>
<td></td>
<td>• E-DCH dedicated physical data channel (E-DPDC)</td>
</tr>
<tr>
<td>Symbol rates</td>
<td>7.5 kbps, 15 kbps, 30 kbps to 960 kbps depending on the channel type</td>
</tr>
<tr>
<td></td>
<td>downlink</td>
</tr>
<tr>
<td></td>
<td>15 kbps, 30 kbps, 60 kbps to 1920 kbps depending on the channel type</td>
</tr>
<tr>
<td></td>
<td>uplink</td>
</tr>
<tr>
<td>Channel count</td>
<td>In downlink 4 base stations each with up to 128 DPCHs and 11 special</td>
</tr>
<tr>
<td></td>
<td>channels. In uplink 4 user equipment either with PRACH or PCPCH or</td>
</tr>
<tr>
<td></td>
<td>a combination of DPDC, up to 6 DPDC, HS-DPDC, E-DPDC and up to 4</td>
</tr>
<tr>
<td></td>
<td>E-DPDC channels.</td>
</tr>
<tr>
<td>Frame structure</td>
<td>Timeslot: 0.667 ms,</td>
</tr>
<tr>
<td></td>
<td>Subframe: 3 timeslots = 2 ms</td>
</tr>
<tr>
<td></td>
<td>Radio frame: 15 timeslots = 10 ms</td>
</tr>
<tr>
<td></td>
<td>The frame structure in symbols depends on the symbol rate.</td>
</tr>
<tr>
<td>Scrambling code</td>
<td>Downlink: 18-bit M sequence</td>
</tr>
<tr>
<td></td>
<td>Uplink: 25-bit M sequence in long mode and 8-bit M sequence in short</td>
</tr>
<tr>
<td></td>
<td>mode</td>
</tr>
<tr>
<td>Channelization code for</td>
<td>"Orthogonal Variable Spreading Factor Code (OVSF)" square matrix of</td>
</tr>
<tr>
<td>most of the channel types</td>
<td>dimension chip rate/symbol rate</td>
</tr>
</tbody>
</table>

3.3 Modulation System 3GPP FDD

The following block diagram shows the components of the 3GPP FDD transmission system.
3.3.1 Scrambling Code Generator

The scrambling code generator (previously called long code generator) is used to scramble the chip sequence as a function of the transmitter.

Depending on the link direction and mode (long or short), the structure and initialization regulation of the generator are different.

3.3.1.1 Downlink Scrambling Code Generator

This generator consists of a pair of shift registers from which the binary sequences for in-phase and orthogonal component of the scrambling code are determined. The Figure 3-2 shows that the I component is produced as EXOR operation of the LSB outputs. However the register contents are first masked and read out for the Q component and then EXORED.

Table 3-2: Generator polynomials of the downlink scrambling code generators

<table>
<thead>
<tr>
<th>Shift register 1</th>
<th>$x^{18}+x^7+1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift register 2</td>
<td>$x^{18}+x^{10}+x^7+x^5+1$</td>
</tr>
</tbody>
</table>
The shift registers are initialized by loading shift register 1 with "0...01" and shift register 2 completely with "1". In addition, shift register 1 is wound forward by n cycles, n being the scrambling code number or scrambling code (SC) for short.

After a cycle time of one radio frame the generators are reset, i.e. the above initialization is carried out again.

3.3.1.2 Uplink Scrambling Code Generator

In the uplink, a differentiation is made between two SC modes. The long SC can be used for all types of channel. The short SC can be used as an alternative to the long SC for all channels except PRACH and PCPCH.

Uplink long scrambling code

Principally, the code generator of the long SC in the uplink is of the same structure as the SC in the downlink. However, the generator polynomials of the shift registers and the type of initialization are different.

Table 3-3: Generator polynomials of the uplink long scrambling code generator

<table>
<thead>
<tr>
<th>Shift register</th>
<th>Polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$x^{25}+x^3+1$</td>
</tr>
<tr>
<td>2</td>
<td>$x^{25}+x^3+x^2+x+1$</td>
</tr>
</tbody>
</table>

The shift registers are initialized by allocating 1 to shift register 1-bit number 24 and the binary form of the scrambling code number n to bits 23 to 0. Shift register 2 is loaded with "1".

The read-out positions for the Q component are defined such that they correspond to an IQ offset of 16.777.232 cycles.

After a cycle time of one radio frame the generators are reset, i.e. the above initialization is carried out again.
Uplink short scrambling code

The code generator of the short SC in the uplink consists of a total of three coupled shift registers.

![Figure 3-3: Structure of uplink short scrambling code generator](image)

Table 3-4: Generator polynomials of uplink short scrambling code generator

<table>
<thead>
<tr>
<th>Shift register 1 (binary)</th>
<th>(x^8+x^7+x^5+x^4+1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift register 2 (binary)</td>
<td>(x^8+x^7+x^2+x+1)</td>
</tr>
<tr>
<td>Shift register 3 (quaternary)</td>
<td>(x^8+x^3+3x^2+x^2+2x+1)</td>
</tr>
</tbody>
</table>

The output sequences of the two binary shift registers are weighted with factor 2 and added to the output sequence of the quaternary shift register. The resulting quaternary output sequence is mapped into the binary complex level by the mapper block.

For initialization, of the three 8-bit shift registers (in a modified way) the binary form of the 24-bit short SC number \(n\) is used. For details see 3GPP TS 25 213, "Spreading and Modulation".

Table 3-5: Mapping of the quaternary output sequence into the binary IQ level

<table>
<thead>
<tr>
<th>(z_v(n))</th>
<th>(S_v(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>+1 + j1</td>
</tr>
<tr>
<td>1</td>
<td>-1 + j1</td>
</tr>
<tr>
<td>2</td>
<td>-1 - j1</td>
</tr>
<tr>
<td>3</td>
<td>+1 - j1</td>
</tr>
</tbody>
</table>

Preamble scrambling code generator

When generating the preambles of the PRACH and PCPCH, a special SC is used. It is based on the Long SC described under a), however only the I component is taken and subsequently a pointer \((e^{j(\pi/4 + \pi/4 * k)\cdot k})\), \(k=0\) to 4095) modulated upon it.
Modification of the long and short scrambling code output sequence

The scrambling code sequence of the Q component is modified as standard to reduce the crest factor of the signal. Zero-crossings can thus be avoided for every second cycle. (This method is often called "HPSK").

For details see 3GPP TS 25 213, "Spreading and Modulation". The R&S SMBV uses a decimation factor of 2.

3.3.2 Scrambling Unit

In the scrambling unit, the output of the scrambling code generator is linked with spread symbols.

The input signal and the scrambling code signal are interpreted as complex signal:

\((C_i, C_q, SC_i, SC_q' \in \{-1, +1\})\)

The output signal is a complex multiplication of two signals:

\(S_i + jS_q = (C_i + jC_q) \ast (SC_i + jSC_q')\)

The following equations apply:

\(S_i = C_iSC_i - C_qSC_q'\)

\(S_q = C_qSC_q' + C_iSC_i\)

The signal thus obtained can be interpreted as a QPSK signal with the following constellation diagram:

![Figure 3-4: Constellation diagram of a channel with 0 dB power](image-url)

There are auxiliary conditions for some types of channels that can result in different constellation diagrams. If, for instance, symbols of the SCH are coded, a BPSK constellation is obtained without the scrambling unit.

Furthermore, with HSDPA and HSPA+, the higher order modulations 4PAM, 16QAM and 64QAM were introduced.
3.3.3 Channelization Code Generator

The channelization code generator cyclically outputs a channel-specific bit pattern. The length of the cycle corresponds to the period of the source symbol to be spread, i.e. the number of bits corresponds to the spread factor. The spreading sequence for the I and Q branch is identical (real value). Spreading is a simple EXOR operation.

Two different channelization code generators are used depending on the type of channel:

Channelization code generator for all channels except SCH

Due to this channelization code, the channel separation takes place in the sum signal. The channelization code number is the line of an orthogonal spreading matrix which is generated according to an iterative scheme ("OVSF").

Channelization code generator SCH

This generator replaces the one described above if the synchronization code symbol of the SCH channels is spread.

The spreading matrix is replaced by a method that forms the spreading sequence. For details, see 3GPP TS 25 213.

3.3.4 Data Source

The data and TPC fields of the enhanced channels (realtime channels) can be filled from data lists containing user-defined data. This allows user information from the physical layer or from higher layers such as the transport layer to be introduced into the signal generation process.

The choice of data sources is crucially important for the signal characteristics. The constellation diagram and the crest factor in particular are modeled to a great extent by a suitable choice of data.

3.3.5 Slot and Frame Builder

The bits from the data source are first entered into a frame structure. The frames are made up of three hierarchical levels:

<table>
<thead>
<tr>
<th>Hierarchy</th>
<th>Length in ms</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeslot</td>
<td>0.667</td>
<td></td>
</tr>
<tr>
<td>Subframe</td>
<td>2 ms</td>
<td>One subframe consists of 3 timeslots.</td>
</tr>
<tr>
<td>Radio frame</td>
<td>10</td>
<td>After a radio frame, pilot symbols are repeated. One radio frame consists of 15 timeslots. A frame is also the length of a scrambling code cycle. Frames are the basic unit. The sequence length is stated in radio frames.</td>
</tr>
</tbody>
</table>
The configuration of the timeslots depends on the channel type and symbol rate. The following components are distinguished:

- **Pilot sequence**
 The pilot sequence characterizes the timeslot position within the radio frame and also depends on the symbol rate, transmit diversity and the pilot length parameter. Channel types DPCH, S-CCPCH, DL-DPCCH, DPCCH, PRACH and PCPCH have a pilot sequence.

- **Synchronization code symbol**
 The synchronization code symbol is the only symbol of the SCH.

- **TPC symbol**
 This symbol is used to control the transmit power. It is used in DPCH, DL-DPCCH and DPCCH.
 A bit pattern for the sequence of TPC symbols can be indicated as a channel-specific pattern.

- **Data symbols**
 These symbols carry the user information and are fed from the data source. They are used in DPCH, P-CCPCH, S-CCPCH, PDSCH, E-AGCH, E-RGCH, E-HICH, DPDCH, PRACH, PCPCH, HS-PDSCH and E-DPDCH.

- **Signature**
 The signature is used in PRACH and PCPCH. 16 fixed bit patterns are defined.

- **TFCI (transport format combination indicator)**
 If enabled, the TFCI is used in DPCH/DPCCH. In this case, a code sequence with the length of 30 is defined using this value and distributed among 15 subsequent timeslots. In PRACH and PCPCH, the TFCI field is provided as standard.

- **FBI**
 Feedback indication bits are only used in DPCCH and PCPCH.

3.3.6 Timing Offset

The symbol stream can be shifted in time relative to the other channels. For this purpose, a timing offset can be entered into the channel table, stating the range of shifting in multiples of 256 chips. Since the generator does not generate infinite symbol streams like a real-time system, this offset is implemented as a rotation.

Example:

DPCH 30 ksps, 1 timeslot, timing offset = 2;

2 x 256 chips = 512 chip offset;

4 data symbols shifting at a symbol rate of 30 ksps (1 symbol corresponds to 3.84 Mcps / 30 ksps = 128 chips).

Previously:

```
11 11 11 00 01 10 11 00 10 01 11 11 01 00 10 11 11 01 00
```

Afterwards:

```
10 11 01 00 11 11 11 00 01 10 11 00 10 01 11 11 01 00 01
```
The use of the timing offset usually causes a reduction of the crest factor of the total signal. This is based on the fact that the spreading chips CH and scramble chips SC_i/SC_q that are applied to the pilot sequences of the channels are not always the same.

3.3.7 Demultiplexer

In the downlink, the symbol stream is divided into 2-bit streams D_i and D_q before processing in the spreading unit.

For example, if QPSK modulation is used for a channel, the symbol stream is processed as follows:

- It is divided by allocating bits 1, 3, 5, to $2n-1$ to the in-phase bitstream D_i
- It is divided by allocating bits 2, 4, 6, $2n$ to the quadrature bitstream D_q.

For the above example with timing offset:

$$D_i = 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 0 0 0$$

$$D_q = 0 1 1 0 1 1 1 1 0 1 0 1 0 0 1 1 1 1 0 1$$

(Left-hand bit is always the first one in the time sequence)

In the uplink, independent data are used for the two paths.

<table>
<thead>
<tr>
<th>PRACH/PCPCH:</th>
<th>Preamble : signature parallel to I and Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPCCH/E-DPCCH:</td>
<td>Message part : data to I, pilot, TPC and TFCI to Q</td>
</tr>
<tr>
<td>DPDCH/HS-DPCCH/E-DPDCH:</td>
<td>all bits to I, Q always unused</td>
</tr>
<tr>
<td>DPDCH/E-DPDCH:</td>
<td>all bits are always to I or Q (dependent on channel number), the other path is unused.</td>
</tr>
</tbody>
</table>

3.3.8 Power Control

After spreading and scrambling, a channel-specific power factor p is applied to the signal. A value of -6 dB therefore results in half the level (or $\frac{1}{4}$ power) and the following diagram (DPCH):
3.3.9 Summation and Filtering

After application of the channel power, the components of the individual channels are summed up.

The constellation diagram of the sum signal is obtained by superposition of the diagrams of the individual channels. If the signal consists of two channels with power of -6 dB and -12 dB and each channel contains independent source data (DPCH), the following constellation diagram is obtained:

3.3.10 Multicode

3GPP FDD supports multicode transmission for downlink-dedicated physical channels (DPCH).

This form of transmission is used for channels intended for the same receiver, i.e. those receivers that belong to a radio link. The first channel of this group is used as a master channel.

Shared parts (pilot, TPC and TCFI) are spread for all channels using the spreading code of the master channel.
Instead of changing the spreading code within a slot several times, the master code
rather than the shared parts can be sent at higher power. Then blank out the other
channels correspondingly.

3.3.11 Orthogonal Channel Noise (OCNS)

With orthogonal channel noise, a practical downlink signal is generated to test the
maximum input levels of user equipment in accordance with standard specifications.
This simulates the data and control signals of the other orthogonal channels in the
downlink. 3GPP TS 25.101 contains a precise definition of the required appearance of
the OCNS signal.

Four different OCNS scenarios are defined in the standard. One standard scenario,
two scenarios for HSDPA test cases and one scenario for type 3i enhanced perfor-
ance requirements tests according to 3GPP TS34.121-1.

When activating OCNS and depending on the selected OCNS mode, different channel
groups with different presetting are assigned as in the following tables. These channels
cannot be edited in the channel table.

3.3.11.1 Standard, HSDPA and HSDPA2 modes

For the “Standard”, "HSDPA" and "HSDPA2" modes, the OCNS channels are all nor-
mal DPCHs. The symbol rate is set at 30 ksps and the pilot length to 8 bits.

The powers of the OCNS channel outputs are relative. In the R&S SMBV, the power of
the OCNS component is set so that OCNS channels supplement the remaining chan-
nels in BS1 to make total power of 0 dB (linear 1).

It is not possible to adapt the OCNS power if the linear power of the remaining chan-
nels is >1, this produces an error message. The OCNS channels are then given the
maximum power (all -80 dB).

The "Total Power" display is updated after automatic calculation of the output; it is not
possible to use "Adjust Total Power" to make the setting.

<table>
<thead>
<tr>
<th>Chan. code</th>
<th>Timing offset (x256Tchip)</th>
<th>Level setting (dB)</th>
<th>Channel type</th>
<th>Symbol rate</th>
<th>Pilot length</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>86</td>
<td>-1</td>
<td>DPCH</td>
<td>30 ksps</td>
<td>8 bit</td>
</tr>
<tr>
<td>11</td>
<td>134</td>
<td>-3</td>
<td>DPCH</td>
<td>30 ksps</td>
<td>8 bit</td>
</tr>
<tr>
<td>17</td>
<td>52</td>
<td>-3</td>
<td>DPCH</td>
<td>30 ksps</td>
<td>8 bit</td>
</tr>
<tr>
<td>23</td>
<td>45</td>
<td>-5</td>
<td>DPCH</td>
<td>30 ksps</td>
<td>8 bit</td>
</tr>
<tr>
<td>31</td>
<td>143</td>
<td>-2</td>
<td>DPCH</td>
<td>30 ksps</td>
<td>8 bit</td>
</tr>
<tr>
<td>38</td>
<td>112</td>
<td>-4</td>
<td>DPCH</td>
<td>30 ksps</td>
<td>8 bit</td>
</tr>
<tr>
<td>47</td>
<td>59</td>
<td>-8</td>
<td>DPCH</td>
<td>30 ksps</td>
<td>8 bit</td>
</tr>
<tr>
<td>55</td>
<td>23</td>
<td>-7</td>
<td>DPCH</td>
<td>30 ksps</td>
<td>8 bit</td>
</tr>
</tbody>
</table>
Table 3-8: Defined settings for the OCNS signal in base station 1 in HSDPA mode

<table>
<thead>
<tr>
<th>Channelization code at SF=128</th>
<th>Relative Level setting (dB)</th>
<th>Channel type</th>
<th>Symbol rate</th>
<th>Pilot length</th>
</tr>
</thead>
<tbody>
<tr>
<td>122</td>
<td>0</td>
<td>DPCH</td>
<td>30 ksps</td>
<td>8 bit</td>
</tr>
<tr>
<td>123</td>
<td>-2</td>
<td>DPCH</td>
<td>30 ksps</td>
<td>8 bit</td>
</tr>
<tr>
<td>124</td>
<td>-2</td>
<td>DPCH</td>
<td>30 ksps</td>
<td>8 bit</td>
</tr>
<tr>
<td>125</td>
<td>-4</td>
<td>DPCH</td>
<td>30 ksps</td>
<td>8 bit</td>
</tr>
<tr>
<td>126</td>
<td>-1</td>
<td>DPCH</td>
<td>30 ksps</td>
<td>8 bit</td>
</tr>
<tr>
<td>127</td>
<td>-3</td>
<td>DPCH</td>
<td>30 ksps</td>
<td>8 bit</td>
</tr>
</tbody>
</table>

Table 3-9: Defined settings for the OCNS signal in base station 1 in HSDPA2 mode

<table>
<thead>
<tr>
<th>Channelization code at SF=128</th>
<th>Relative Level setting (dB)</th>
<th>Channel type</th>
<th>Symbol rate</th>
<th>Pilot length</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>DPCH</td>
<td>30 ksps</td>
<td>8 bit</td>
</tr>
<tr>
<td>5</td>
<td>-2</td>
<td>DPCH</td>
<td>30 ksps</td>
<td>8 bit</td>
</tr>
<tr>
<td>6</td>
<td>-4</td>
<td>DPCH</td>
<td>30 ksps</td>
<td>8 bit</td>
</tr>
<tr>
<td>7</td>
<td>-1</td>
<td>DPCH</td>
<td>30 ksps</td>
<td>8 bit</td>
</tr>
</tbody>
</table>

3.3.11.2 3i OCNS mode

(Requires options R&S SMx/AMU-K43 and -K59)

In the "3i" OCNS mode, 16 DPCH channels are inserted in the BS 1 channel according to 3GPP TS34.121-1, chapter E.5E.

According to 3GPP TS34.121-1, table E.5E.1.3, the channelization code of each of these channels changes randomly on a symbol-by-symbol basis between two possible values.
The power control sequence modeling according to 3GPP TS34.121-1, chapter E.5.E.3 is applied to these channels. The power relationship between these channels is according to 3GPP TS34.121-1, table E.5.E.1.3 only during the first slot. It can deviate in the subsequent slots up to a certain range, but the total power of these channels is maintained constant (by normalization).

If the "3i" OCNS mode is activated, the OCNS channels are automatically leveled to have total power of 0 dB for all channels of BS 1.

Table 3-10: Defined settings for the OCNS signal in base station 1 in 3i mode

<table>
<thead>
<tr>
<th>Slot format</th>
<th>Symbol Rate, kbps</th>
<th>First Ch. code of the channel</th>
<th>Second Ch. code of the channel</th>
<th>Relative Power, dB (before the 0 dB adjustment)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>2</td>
<td>108</td>
<td>-1.7</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>3</td>
<td>103</td>
<td>-2.7</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>5</td>
<td>109</td>
<td>-3.5</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>6</td>
<td>118</td>
<td>-0.8</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>90</td>
<td>4</td>
<td>-6.2</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>94</td>
<td>123</td>
<td>-4.6</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>96</td>
<td>111</td>
<td>-2.3</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>98</td>
<td>106</td>
<td>-4.1</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>99</td>
<td>100</td>
<td>-3.1</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>101</td>
<td>113</td>
<td>-5.1</td>
</tr>
<tr>
<td>12</td>
<td>60</td>
<td>52</td>
<td>44</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>110</td>
<td>124</td>
<td>-4.6</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>114</td>
<td>115</td>
<td>-4.8</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>116</td>
<td>126</td>
<td>-4.8</td>
</tr>
<tr>
<td>12</td>
<td>60</td>
<td>60</td>
<td>46</td>
<td>-1.1</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>125</td>
<td>95</td>
<td>-4.1</td>
</tr>
</tbody>
</table>
3.3.12 HS-SCCH Less Operation

HS-SCCH less operation is a special HSDPA mode of operation which reduces the HS-SCCH overhead and reduces UE battery consumption. It changes the conventional structure of HSDPA data reception. In HSDPA as defined from 3GPP release 5 onwards, UE is supposed to read continuously HS-SCCH where data allocations are being signaled. The UE is being addressed via a UE-specific identity (16-bit H-RNTI / HSDPA radio network temporary identifier) on HS-SCCH. As soon as the UE detects relevant control information on HS-SCCH, it switches to the associated HS-PDSCH resources and receives the data packet.

This scheme is fundamentally changed in HS-SCCH less operation and HS-SCCH less operation is optimized for services with relatively small packets, e.g. VoIP.

In HS-SCCH less operation mode, the base station can decide for each packet again whether to apply HS-SCCH less operation or not, i.e. conventional operation is always possible.

The first transmission of a data packet on HS-DSCH is done without an associated HS-SCCH. The first transmission always uses QPSK and redundancy version of 0. Only four pre-defined transport formats can be used so the UE can blindly detect the correct format. The four possible transport formats are configured by higher layers. Only pre-defined channelization codes can be used for this operation mode and are configured per UE by higher layers: the parameter HS-PDSCH code index provides the index of the first HS-PDSCH code to use. For each of the transport formats, it is configured whether one or two channelization codes are required.

In order to allow detection of the packets on HS-DSCH, the HS-DSCH CRC (Cyclic Redundancy Check) becomes UE specific based on the 16-bit HRNTI. This is called CRC attachment method 2 (CRC attachment method 1 is conventional as of 3GPP release 5).

In case of successful reception of the packet, the UE sends an ACK on HS-DPCCH. If the packet was not received correctly, the UE sends nothing.

If the packet is not received in the initial transmission, the base station retransmits it. The number of retransmissions is limited to two in HS-SCCH less operation.

In contrast to the initial transmission, the retransmissions are using HS-SCCH signaling. However, the coding of the HS-SCCH deviates from release 5, since the bits on HS-SCCH are reinterpreted. This is called HS-SCCH type 2. The conventional HS-SCCH as of 3GPP release 5 is called HS-SCCH type 1.

3.3.12.1 HS-SCCH Type 2

The table below gives a comparison of the HS-SCCH Type 1 (normal operation) and HS-SCCH Type 2 (less operation) formats.
Table 3-11: Comparison of HS-SCCH Type 1 and Type 2

<table>
<thead>
<tr>
<th>HS-SCCH Type 1 (normal operation)</th>
<th>HS-SCCH Type 2 (less operation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channelization code set information (7 bits)</td>
<td>Channelization code set information (7 bits)</td>
</tr>
<tr>
<td>Modulation scheme information (1 bit)</td>
<td>Modulation scheme information (1 bit)</td>
</tr>
<tr>
<td>Transport block size information (6 bits)</td>
<td>Special information type (6 bits)</td>
</tr>
<tr>
<td>HARQ process information (3 bits)</td>
<td>Special information (7 bits)</td>
</tr>
<tr>
<td>Redundancy and constellation version (3 bits)</td>
<td>UE identity (16 bits)</td>
</tr>
<tr>
<td>New data indicator (1 bit)</td>
<td></td>
</tr>
<tr>
<td>UE identity (16 bits)</td>
<td></td>
</tr>
</tbody>
</table>

The special information type on HS-SCCH type 2 must be set to 111110 to indicate HS-SCCH less operation. The 7 bits special information then contains:

- 2-bit transport block size information (one of the four possible transport block sizes as configured by higher layers)
- 3-bit pointer to the previous transmission of the same transport block (to allow soft combining with the initial transmission)
- 1-bit indicator for the second or third transmission
- 1 bit reserved.

QPSK is also used for the retransmissions. The redundancy version for the second and third transmissions are equal to 3 and 4, respectively.

For the retransmissions, also HS-DSCH CRC attachment method 2 is used. ACK or NACK is reported by the UE for the retransmitted packets.

3.3.12.2 HS-SCCH Type Two Fixed Reference Channel: H-Set 7

In order to support HS-SCCH Type 2 (less operation) testing, a fixed reference channel has been introduced. H-Set 7 is specified as reference test channel for HSDPA test cases.

The H-Set 7 consists of one HS-PDSCH and its parameterization and coding chain is based on one code with QPSK modulation and one HARQ process.

3.3.13 Higher Order Modulation

3.3.13.1 64QAM in downlink

With the possibility to use 64QAM in downlink, HSPA+ can achieve downlink data rates of 21 Mbps. This theoretical peak data rate (physical channel bit rate) with 64QAM is calculated as follows:

\[
\text{Peak data rate (64QAM)} = 15 \text{ [codes]} \times 2880 \text{ bits/2 ms [subframe]} = 21.6 \text{ MBps}
\]
3.3.13.2 64QAM Fixed Reference Channel: H-Set 8

In order to support 64QAM testing, a fixed reference channel has been introduced. H-Set 8 is specified as reference test channel for HSPA+ test cases.

The H-Set 8 parameterization and coding chain is based on 15 codes with 64QAM modulation. Six hybrid ARQ processes are used, and HS-DSCH is continuously transmitted.

3.3.13.3 16QAM in uplink

With the possibility to use 16QAM on E-DCH (enhanced dedicated channel) in uplink, HSPA+ can achieve uplink peak data rates of 11.5 Mbps. A new uplink UE category 7 has been introduced which supports 16QAM in addition to BSPK.

Uplink transmission in HSPA+ is based on IQ multiplexing of E-DPDCH (enhanced dedicated physical data channel) physical channels as in HSUPA of 3GPP release 6. In fact, the 16QAM constellation is made up of two orthogonal 4PAM (pulse amplitude modulation) constellations. In case of 4PAM modulation, a set of two consecutive binary symbols \(n_k \) and \(n_{k+1} \) is converted to a real valued sequence following the mapping described in the table below.

Table 3-12: Mapping of E-DPDCH with 4PAM modulation

<table>
<thead>
<tr>
<th>(n_k, n_{k+1})</th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapped real value</td>
<td>0.4472</td>
<td>1.3416</td>
<td>-0.4477</td>
<td>-1.3416</td>
</tr>
</tbody>
</table>

This results in the following symbol mapping:

```
11   10   00   01
```

An E-DPDCH uses BPSK or 4PAM modulation symbols.

3.3.13.4 16QAM Fixed Reference Channel: FRC 8

To support 16QAM (4PAM) testing in the uplink, an E-DPDCH fixed reference channel (FRC 8) has been introduced.

The FRC 8 parameterization and channel coding is based on the following:
- Four physical channel codes (2xSF2 and 2xSF4) with overall symbol rate of 2x960 + 2x1920 ksp
- 4PAM modulation
- E-DCH TTI of 2 ms
- Eight hybrid ARQ processes
3.3.14 **MIMO in HSPA+**

HSPA+ uses full MIMO approach including spatial multiplexing. The approach is called D-TxAA (double transmit antenna array). It is only applicable for the high-speed downlink shared channel, the HS-DSCH.

The figure below shows the basic principle of the 2x2 approach. The figure is taken from 3GPP TS 25.214.

![Figure 3-8: MIMO for HSPA+](image)

With D-TxAA, two independent data streams (transport blocks) can be transmitted simultaneously over the radio channel over the same WCDMA channelization codes. Each transport block is processed and channel coded separately. After spreading and scrambling, **precoding** based on weight factors is applied to optimize the signal for transmission over the mobile radio channel.

Four precoding weights w1 - w4 are available. The first stream is multiplied with w1 and w2, the second stream is multiplied with w3 and w4. The weights can take the following values:

\[
\begin{align*}
 w_3 &= w_1 = \frac{1}{\sqrt{2}}, \\
 w_4 &= -w_2, \\
 w_2 &= \frac{1+j}{2}, \frac{1-j}{2}, -\frac{1+j}{2}, -\frac{1-j}{2}
\end{align*}
\]

Precoding weight w1 is always fixed, and only w2 can be selected by the base station. Weights w3 and w4 are automatically derived from w1 and w2, because they have to be orthogonal.

3.3.14.1 D-TxAA Feedback signaling: PCI and CQI

D-TxAA requires a **feedback signaling** from the UE to assist the base station in taking the right decision in terms of modulation and coding scheme and precoding weight selection. The UE has to determine the preferred primary precoding vector for transport block 1 consisting of w1 and w2. Since w1 is fixed, the feedback message only
consists of a proposed value for \(w_2 \). This feedback is called **precoding control information (PCI)**. The UE also recommends whether one or two streams can be supported in the current channel situation. If dual stream transmission is used, the secondary precoding vector consists of the weights \(w_3 \) and \(w_4 \). It is inferred in the base station, because it has to be orthogonal to the first precoding vector with \(w_1 \) and \(w_2 \). Thus, the UE does not have to report it explicitly. The UE also indicates the optimum modulation and coding scheme for each stream. This report is called **channel quality indicator (CQI)**.

Based on the composite PCI/CQI reports, the base station scheduler decides whether to schedule one or two data streams to the UE. It also decides what packet sizes (transport block sizes) and modulation schemes to use for each stream.

3.3.14.2 MIMO downlink control channel Support

In order to support MIMO operation, changes to the HSDPA downlink control channel have become necessary, i.e. the HS-SCCH.

There is a new **HS-SCCH Type 3** for MIMO operation defined. The table below gives a comparison of the HS-SCCH Type 1 and Type 3 formats.

<table>
<thead>
<tr>
<th>HS-SCCH Type 1 (normal operation)</th>
<th>HS-SCCH Type 3 One transport block</th>
<th>MIMO Two transports blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channelization code set information (7 bits)</td>
<td>Channelization code set information (7 bits)</td>
<td>Channelization code set information (7 bits)</td>
</tr>
<tr>
<td>Modulation scheme information (1 bit)</td>
<td>Modulation scheme and number of transport blocks information (3 bits)</td>
<td>Modulation scheme and number of transport blocks information (3 bits)</td>
</tr>
<tr>
<td>Transport block size information (6 bits)</td>
<td>Precoding weight information (2 bits)</td>
<td>Precoding weight information for primary transport block (2 bits)</td>
</tr>
<tr>
<td>HARQ process information (3 bits)</td>
<td>Transport block size information (6 bits)</td>
<td>Transport block size information for secondary transport block (6 bits)</td>
</tr>
<tr>
<td>Redundancy and constellation version (3 bits)</td>
<td>HARQ process information (4 bits)</td>
<td>HARQ process information (4 bits)</td>
</tr>
<tr>
<td>New data indicator (1 bit)</td>
<td>Redundancy and constellation version for primary transport block (2 bits)</td>
<td>Redundancy and constellation version for primary transport block (2 bits)</td>
</tr>
<tr>
<td>UE identity (16 bits)</td>
<td>UE identity (16 bits)</td>
<td>UE identity (16 bits)</td>
</tr>
</tbody>
</table>

The "Precoding weight info for the primary transport block" contains the information on weight factor \(w_2 \) as described above. Weight factors \(w_1 \), \(w_3 \), and \(w_4 \) are derived accordingly. The number of transport blocks transmitted and the modulation scheme information are jointly coded as shown in **Table 3-13**.
Table 3-13: Interpretation of "Modulation scheme and number of transport blocks info" sent on HS-SCCH

<table>
<thead>
<tr>
<th>Modulation scheme + number of transport blocks info (3 bits)</th>
<th>Modulation for primary transport block</th>
<th>Modulation for secondary transport block</th>
<th>Number of transport blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>16QAM</td>
<td>16QAM</td>
<td>2</td>
</tr>
<tr>
<td>110</td>
<td>16QAM</td>
<td>QPSK</td>
<td>2</td>
</tr>
<tr>
<td>101</td>
<td>64QAM</td>
<td>n.a.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>64QAM</td>
<td>QPSK</td>
<td>2</td>
</tr>
<tr>
<td>100</td>
<td>16QAM</td>
<td>n.a.</td>
<td>1</td>
</tr>
<tr>
<td>011</td>
<td>QPSK</td>
<td>QPSK</td>
<td>2</td>
</tr>
<tr>
<td>010</td>
<td>64QAM</td>
<td>64QAM</td>
<td>2</td>
</tr>
<tr>
<td>001</td>
<td>64QAM</td>
<td>16QAM</td>
<td>2</td>
</tr>
<tr>
<td>000</td>
<td>QPSK</td>
<td>n.a.</td>
<td>1</td>
</tr>
</tbody>
</table>

3.3.14.3 Redundancy Version

Redundancy versions for the primary transport block and for the secondary transport block are signaled. Four redundancy version values are possible (unlike HSDPA in 3GPP release 5 where eight values for the redundancy version could be signaled).

3.3.14.4 HARQ Processes

Also the signaling of the HARQ processes differs from HSDPA in 3GPP release 5. In 3GPP release 5, up to eight HARQ processes can be signaled. Configure a minimum of six HARQ processes to achieve continuous data transmission. Similarly, in MIMO with dual stream transmission, a minimum of 12 HARQ processes would be needed to achieve continuous data transmission.

Each HARQ process has independent acknowledgements and retransmissions. In theory, HARQ processes on both streams can run independently from one another. Independent HARQ processes, however, increases the signaling overhead to 8 bits.

To save signaling overhead, a restriction is introduced: HARQ processes are only signaled for the primary transport block within 4 bits, the HARQ process for the secondary transport block is derived from that according to a fixed rule. According to 3GPP TS 25.212. Thus, there is a one-to-one mapping between the HARQ process used for the primary transport block and the HARQ process used for the secondary transport block. The relation is shown in the table below for the example of 12 HARQ processes configured.

Table 3-14: Combinations of HARQ process numbers for dual stream transmission (12 HARQ processes configured)

<table>
<thead>
<tr>
<th>HARQ process number on primary stream</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>HARQ process number on secondary stream</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
Only an even number of HARQ processes is allowed to be configured with MIMO operation.

3.3.14.5 MIMO uplink control channel Support

Also the uplink control channel for HSDPA operation is affected by MIMO, i.e. the HS-DPCCH (high-speed dedicated physical control channel). In addition to CQI reporting as already defined from 3GPP release 5 onwards, PCI reporting for precoding feedback is introduced. Channel coding is done separately for the composite precoding control indication (PCI) / channel quality indication (CQI) and for HARQ-ACK (acknowledgement or negative acknowledgement information). The figure below shows the principle.

![Diagram of channel coding for HS-DPCCH (MIMO mode)]

The 10 bits of the HARQ-ACK messages are interpreted according to 3GPP TS 25.212 (see table below). ACK/NACK information is provided for the primary and for the secondary transport block.

<table>
<thead>
<tr>
<th>HARQ-ACK message to be transmitted</th>
<th>(w_0)</th>
<th>(w_1)</th>
<th>(w_2)</th>
<th>(w_3)</th>
<th>(w_4)</th>
<th>(w_5)</th>
<th>(w_6)</th>
<th>(w_7)</th>
<th>(w_8)</th>
<th>(w_9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HARQ-ACK in response to a single scheduled transport block</td>
<td></td>
</tr>
<tr>
<td>ACK</td>
<td>1</td>
</tr>
<tr>
<td>NACK</td>
<td>0</td>
</tr>
<tr>
<td>HARQ-ACK in response to two scheduled transport blocks</td>
<td></td>
</tr>
<tr>
<td>Response to primary transport block</td>
<td>Response to secondary transport block</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACK</td>
<td>ACK</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ACK</td>
<td>NACK</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
3.3.14.6 CQI Reports: Type A and Type B

In MIMO case, two types of CQI reports are supported:

- **Type A CQI reports** can indicate the supported transport formats for the number of transport blocks that the UE prefers. Single and dual stream transmissions are supported.

- **Type B CQI reports** are used for single stream transmission according to what has been defined from 3GPP release 5 onwards.

For type A CQI reports, the UE selects the CQI1 and CQI2 values for each transport block in dual stream transmission, or the CQIS value in single stream transmission. Then it creates the CQI value to report on HS-DPCCH as follows:

\[CQI = \begin{cases} \lfloor 5 \times CQI_1 + CQI_2 + 31 \rfloor & \text{when 2 transport blocks are preferred by the UE} \\ CQI_5 & \text{when 1 transport block is preferred by the UE} \end{cases} \]

For dual stream transmission, new CQI tables are specified in 3GPP TS25.214 for correct interpretation of transport formats based on CQI1 and CQI2.

3.3.14.7 PCI Reports

The PCI value to report in the uplink is created in the UE according to the preferred precoding weight \(w_2 \) according to the table below.

Table 3-16: Mapping of preferred precoding weight to PCI values

<table>
<thead>
<tr>
<th>(w_2^{\text{pref}})</th>
<th>(\frac{1+j}{2})</th>
<th>(\frac{1-j}{2})</th>
<th>(\frac{-1+j}{2})</th>
<th>(\frac{-1-j}{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCI value</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

The PCI value is transmitted together with the CQI value as a composite PCI/CQI value. The figure below shows how the composite PCI/CQI report is created.
3.3.14.8 MIMO Fixed Reference Channels: H-Set 9 and H-Set 11

In order to support MIMO testing, two fixed reference channels have been introduced. H-Set 9 and H-Set 11 are specified as reference test channel for HSPA+ test cases.

The H-Set 9 parameterization and coding chain is based on 15 codes with two different modulations, 16QAM and QPSK, for the primary and secondary transport blocks respectively. Six HARQ processes are used, and HS-DSCH is continuously transmitted.

The H-Set 11 parameterization and coding chain is also based on 15 codes and uses two different modulations, six HARQ processes and HS-DSCH is continuously transmitted. The modulation schemes specified for the H-Set 11 are however 64QAM and 16QAM for the primary and secondary transport blocks respectively.

3.3.15 Dual Cell HSDPA (DC-HSDPA)

Within 3GPP Release 7 the peak user throughout was enhanced (MIMO, higher order modulation).

In DC-HSDPA operation, the UE is configured with secondary serving HS-DSCH cell. With one HS-SCCH in each of the two cells scheduling flexibility to have different transport formats depending on CQI feedback on each carrier is maintained.

Figure 3-10: Composite PCI/CQI information (MIMO mode)
The following restrictions apply in case of DC-HSDPA operation:

- The dual cell transmission only applies to HSDPA physical channels
- The two cells belong to the same Node-B
- In Release 8, it is required that the two cells are on adjacent carriers; from Release 9 onwards the paired cells can operate on two different frequency bands.
- The two cells use MIMO to serve UEs configured for dual cell operation

3.3.15.1 DC-HSDPA Data Acknowledgement (non-MIMO mode)

When the UE is configured to work in DC-HSDPA non-MIMO mode, the coding of the HS-DPCCH is performed according to the general coding flow. The HARQ-ACK and the CQI are coded in parallel. The figure below shows the principle.
The 10 bits of the HARQ-ACK messages are interpreted according to 3GPP TS 25.212 (see the table below). ACK/NACK information is provided for the transport block of the serving and secondary serving HS-DSCH cells.

Table 3-17: Interpretation of HARQ-ACK in DC-HSDPA non-MIMO operation

<table>
<thead>
<tr>
<th>HARQ-ACK message to be transmitted</th>
<th>Table 3-17: Interpretation of HARQ-ACK in DC-HSDPA non-MIMO operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACK</td>
<td>Response to transport block from serving HS-DSCH cell</td>
</tr>
<tr>
<td>NACK</td>
<td>Response to transport block from secondary serving HS-DSCH cell</td>
</tr>
<tr>
<td>ACK</td>
<td>ACK</td>
</tr>
<tr>
<td>ACK</td>
<td>NACK</td>
</tr>
<tr>
<td>NACK</td>
<td>ACK</td>
</tr>
<tr>
<td>NACK</td>
<td>NACK</td>
</tr>
</tbody>
</table>

Figure 3-12: Channel coding for HS-DPCCH (non-MIMO mode)
CQI Reports: CQI1 and CQI2

Two individual CQI reports CQI1 and CQI2 are concatenated to form the composite channel quality information. CQI1 corresponds to the serving HS-DSCH cell and CQI2 to the secondary serving cell respectively. The figure below show how the CQI report is constructed.

![Figure 3-13: Composite CQI information (DC-HSDPA operation, non-MIMO mode)](image)

3.3.15.2 DC-HSDPA + MIMO

Channel coding is done separately for the composite PCI/CQI and for HARQ-ACK information.

The principle is shown on figure Figure 3-9.

The composite PCI/CQI report is created as illustrated on figure Figure 3-10.

The HARQ-ACK message is coded to 10 bits according to 3GPP TS 25.212. The standard defines the HARQ-ACK coding for the feedback of the serving and secondary serving HS-DSCH cells for normal and dual stream transmission.

3.3.15.3 Dual Cell HSDPA (DC-HSDPA) Fixed Reference Channel: H-Set 12

In order to support DC-HSDPA testing, a fixed reference channel has been introduced. H-Set 12 is specified as reference test channel for HSDPA test cases.

The H-Set 12 parameterization and coding chain is based on 1 code with QPSK modulation. Six hybrid ARQ processes are used, and HS-DSCH is continuously transmitted.
3.3.16 HS-DPCCH Extension for 4C-HSDPA and 8C-HSDPA

The 3GPP Release 11 extends the dual cell HSDPA (DC-HSDPA) transmission up to 8 cells HSDPA (8C-HSDPA). This extension enables the simultaneous scheduling of HSDPA transmission over four or eight cells, one serving and up to three or up to seven secondary serving cells. The transmissions on the serving cells are independent and are dynamically activated and deactivated.

For each of the cells, MIMO can be enabled. The channel coding of the feedback data transmitted via the HS-DPCCH is based on the same principle as in MIMO single cell transmission.

For detailed description on the channel coding, refer to the 3GPP specification TS 25.212.

The related instrument settings are described in Chapter 4.32, "HS-DPCCH Settings - UE", on page 189.

3.3.17 Dual Cell HSUPA (Dual Cell E-DCH)

The Dual-Cell HSUPA employs carrier aggregation in the uplink. The DC-HSUPA operation is available only in combination with the DC-HSDPA. This operation uses two independent carriers, each assigned to one of the DC-HSDPA "cells".

3.3.18 UE Capabilities

MIMO, 64QAM and DC-HSDPA operation in downlink as well as 16QAM in uplink are UE capability, i.e. not all UEs have to support them.

Several UE categories have been introduced to provide:

- DL MIMO support and support of 64QAM in addition to 16QAM and QPSK in downlink
- 16QAM support in uplink
- Support of dual cell operation and MIMO

The R&S SMBV supports all UE categories.

3.3.18.1 MIMO and 64QAM UE Capabilities

According to 3GPP TS25.306 V8.4.0, the following release 8 HS-DSCH categories with MIMO and 64QAM support are defined:

- Categories 13 and 14:
 - Support of 64QAM
 - No support of MIMO
 - Maximum data rate of category 14 is 21 Mbps

- Categories 15 and 16:
 - Support of MIMO with modulation schemes QPSK and 16QAM
 - No support of 64QAM
 - Maximum data rate of category 16 is 27.6 Mbps
• Categories 17 and 18:
 Support of MIMO with modulation schemes QPSK and 16QAM
 Support of 64QAM and MIMO, but not simultaneously
 Maximum data rate of category 18 is 27.6 Mbps when MIMO is used and 21 Mbps when 64QAM is used

• Categories 19 and 20:
 Simultaneous support of MIMO and all modulation schemes (QPSK, 16QAM and 64QAM)
 Maximum data rate of category 20 is 42.1 Mbps

3.3.18.2 UL 16QAM UE Capabilities

According to 3GPP TS25.306 V9.5.0, the following release 8 E-DCH categories with 16QAM uplink support are defined:

• Category 7 and 9:
 Support of 16QAM in addition to BPSK

3.3.18.3 MIMO and DC-HSDPA Operation UE Capabilities

According to 3GPP TS25.306 V9.0.0, the following release 9 HS-DSCH categories with MIMO and dual cell operation support are defined:

• Categories 21, 22, 23 and 24:
 Support of QPSK, 16QAM and for categories 23 and 24 also 64QAM
 Support of dual cell operation, but without MIMO

• Categories 25, 26, 27 and 28:
 Support of QPSK, 16QAM and for categories 27 and 28 also 64QAM
 Simultaneous support of MIMO and dual cell operation

3.3.18.4 Dual Cell E-DCH Operation UE Capabilities

According to 3GPP TS25.306 V9.5.0, the following release 9 E-DCH categories with Dual-Cell E-DCH support are defined:

• Category 8:
 Supports only QPSK in Dual-Cell E-DCH operation

• Category 9:
 Supports QPSK and 16QAM in Dual-Cell E-DCH operation

3.3.19 Uplink Discontinuous transmission (UL DTX)

Uplink discontinuous transmission (UL DTX) is one of the features of the continuous packet connectivity (CPC) provided to reduce the uplink control channel overhead. UL DTX allows the UE to stop transmission of uplink DPCCH in case there is no transmission activity on E-DCH or HS-DPCCH. This is sometimes also called uplink DPCCH gating.
Uplink DPCCH is not transmitted continuously any more, but it is transmitted from time
to time according to a known activity pattern (UE-DTX cycle). This regular activity is
needed in order to maintain synchronization and power control loop. Gating is only
active if there is no uplink data transmission on E-DCH or HS-DPCCH transmission
ongoing. In case E-DCH or HS-DPCCH is used, the uplink DPCCH is transmitted in
parallel.

The 3GPP specifications define two patterns that can be applied to adapt the DTX
cycle to the traffic conditions, the UE-DTX cycle 1 and the UE-DTX cycle 2 (see also
Chapter 5.3, “Configuring UL-DTX Transmission and Visualizing the Scheduling”,
on page 242). The UE-DTX cycle 1 is applied depending on the duration of E-DCH
inactivity. The UE-DTX cycle 2 has less frequent DPCCH transmission instants and is
applied whenever there is no uplink data transmission. The switching from UE-DTX
cycle 1 to UE-DTX cycle 2 is determined by a configurable period of inactivity.

The transmission of control signaling on the HS-DPCCH is not affected by the UL-DTX
pattern. With enabled UL-DTX, the HARQ-ACK messages and the CQI reporting
remain unchanged and the UE transmits acknowledgment according to the HARQ-
ACK pattern, regardless of the UL-DTX cycle. Transmission of control signals does not
cause switching from UE-DTX cycle 2 to UE-DTX cycle 1.

A preamble and postamble are added to the DPCCH burst for synchronization rea-
sons. The length of the uplink DPCCH preamble and postamble depend whether the
DPCCH burst transmission is caused by user-data transmission on the E-DCH or con-
trol signaling on the HS-DPCCH.

- For the E-DCH transmission
 During the UE-DTX cycle 1, the DPCCH transmission starts two slots before the
 start of E-DPDCH and terminates one slot after it. For the UE-DTX cycle 2, an
 extended preamble of up to 15 slots is applied.

- For the HS-DPCCH transmission
 The preamble length depends whether an HARQ-ACK or CQI report is transmitted.
 Two slots are applied for the HARQ-ACK case (unless an HARQ preamble PRE is
 transmitted) and three in case of CQI reporting. For the latter case, an extended
 preamble is applied too.
 The DPCCH transmission terminates at the end of the first full DPCCH slot after
 the end of the HARQ-ACK/CQI field.

An instrument equipped with the required options provided an UL-DTX functionality,
that is fully compliant with 3GPP TS 25.214. All dependencies from E-DCH transmis-
sions, HARQ-ACK transmissions or CQI transmissions on the DPCCH are respected. The corresponding settings are described in Chapter 4.27, "UL-DTX/User Scheduling - UE", on page 157.

Use the Scheduling List to display the UL-DTX burst pattern and transmissions of E-DCH and HS-DPCCH, as well as the impact on the UL-DPCCH transmissions or the configured uplink user scheduling.

Refer to Chapter 5.3, "Configuring UL-DTX Transmission and Visualizing the Scheduling", on page 242 for an example on how to use the UL-DTX function.
4 User Interface

To access the dialog for setting the 3GPP FDD digital standard, select "Baseband > 3GPP FDD".

The dialog is split into several sections for configuring the standard. The choice of transmission direction determines which displays and parameters are made available in the lower section.

The upper section of the dialog is where the 3GPP FDD digital standard is enabled, the default settings are called and the transmission direction selected. Button "Test Case Wizard" opens a configuration menu with a selection of predefined settings according to test cases in TS 25.141. The valid 3GPP version and the chip rate in use are displayed. Many of the buttons lead to submenus for loading and saving the 3GPP FDD configuration and for setting the filter, trigger and clock parameters.

The lower dialog section is where either the base station signal or the user equipment signal is configured, depending on the transmission direction selected.

The dialog is comprehensive, so a small list of contents is added here to make orientation easier.
The headings are always given a short form of the "dialog path" and the header also shows you your current location in the dialog.

- General Settings for 3GPP FDD Signals
- Configure Base Stations or UE
- Filtering, Clipping, ARB Settings
- Trigger/Marker/Clock Settings
- Test Setups/Models
- Predefined Settings - Downlink
- Additional User Equipment - Uplink
- Base Station Settings
- Compressed Mode
- Code Domain Graph - BS
- Channel Graph - BS
- HSDPA Settings - BS
- HSDPA H-Set Mode Settings - BS
- Enhanced Settings for P-CPICH - BS1
- Enhanced Settings for P-CCPCH - BS1
- Enhanced Settings for DPCHs - BS1
- S-CCPCH Settings - BS Channel Table
- Config AICH/AP-AICH - BS Channel Table
- DPCCH Settings - BS Channel Table
- Config E-AGCH - BS Channel Table
- Config E-RGCH/E-HICH - BS Channel Table
- Config F-DPCH - BS Channel Table
- Multi Channel Assistant - BS
- User Equipment Configuration (UE)
- Code Domain Graph - UE
- Dynamic Power Control - UE
- UL-DTX/User Scheduling - UE
- PRACH Settings - UE
- PCPCH Settings - UE
- DPCCH Settings - UE
- E-DPCCH Settings - UE
- HS-DPCCH Settings - UE
- DPDCH Settings - UE
- E-DPDCH Settings - UE
- E-DCH Scheduling - UE
- Scheduling List
- HSUPA FRC Settings - UE
- Global Enhanced Channel Settings - UE1

4.1 General Settings for 3GPP FDD Signals
The upper menu section is where the 3GPP FDD digital standard is enabled and reset and where all the settings valid for the signal in both transmission directions are made.
State
Activates the standard and deactivates all the other digital standards and digital modulation modes in the same path.

The instrument generates the 3GPP FDD signal as a combination of realtime mode (enhanced channels) and arbitrary waveform mode (all the other channels). The following is a more detailed list of the channels generated in real time:

- **Downlink channels**: P-CCPCH and up to three DPCHs of base station 1 and H-Sets 1 to 5.
- **Uplink channels**: DPCCH and one DPDCH of user equipment 1.

Depending on the actual configurations, other channels of user equipment 1 can also be generated in real time.

Generated in **arbitrary waveform mode** and added to the realtime signal are: PRACH and PCPCH channels and the channels of the other user equipment.

Remote command:
```
[:SOURce<hw>]:BB:W3GPp:STATe
```
on page 254

Set to default
Calls the default settings. Test Model 1 (64 channels) is preset.

The parameter "State" is not affected.

Remote command:
```
[:SOURce<hw>]:BB:W3GPp:PRESet
```
on page 252

Save/Recall
Calls the "Save/Recall" menu.

"From the Save/Recall menu," the "File Select" windows for saving and recalling 3GPP FDD configurations and the "File Manager" can be called.

3GPP FDD configurations are stored as files with the predefined file extension *.3g. The filename and the directory they are user-definable.

The complete settings in the "3GPP FDD" dialog and all subdialogs are saved and recalled.
"Recall 3GPP FDD setting" Opens the "File Select" window for loading a saved 3GPP FDD configuration. The configuration of the selected (highlighted) file is loaded by pressing the "Select" button.

"Save 3GPP FDD setting" Opens the "File Select" window for saving the current 3GPP FDD signal configuration. The name of the file is specified in the "File name" entry field, the directory selected in the "save into" field. The file is saved by pressing the "Save" button. The "Fast Save" function determines whether the instrument performs an absolute or a differential storing of the settings. Enable this function to accelerate the saving process by saving only the settings with values different to the default ones. "Fast Save" is not affected by the "Preset" function.

"File Manager" Calls the "File Manager". The "File Manager" is used to copy, delete and rename files and to create directories.

Remote command:
[:SOURce<hw>]:BB:W3GPp:SETTING:LOAD on page 253
[:SOURce<hw>]:BB:W3GPp:SETTING:STORe on page 253
[:SOURce<hw>]:BB:W3GPp:SETTING:STORe:FAST on page 253
[:SOURce<hw>]:BB:W3GPp:SETTING:DELete on page 252

Data List Management
Calls the "Data List Management" menu. This menu is used to create and edit a data list.

All data lists are stored as files with the predefined file extension *.dm_iqd. The file name and the directory are user-definable.

The data lists must be selected as a data source for the corresponding individual function, e.g. in the channel table of the base stations.

Note: All data lists are generated and edited with the SOURce:BB:DM subsystem commands. Files containing data lists are recognized by the file extension *.dm_iqd. The data lists are selected as a data source for a specific function in the individual subsystems of the digital standard.

Creating and editing the data list
SOUR:BB:DM:DLIS:SEL "3gpp"
SOUR:BB:DM:DLIS:DATA 1,1,0,1,0,1,0,1,1,1,0,0
SOUR:BB:DM:DLIS:DATA:APP 1,1,0,1,0,1,0,1,1,1,1,0,0
Remote command:
[:SOURCE<hw>]:BB:W3GPP:MSTation<st>:CHANnel<ch>:DATA on page 279
[:SOURCE<hw>]:BB:W3GPP:MSTation<st>:CHANnel<ch>:DATA:DSELect on page 279
[:SOURCE<hw>]:BB:W3GPP:MSTation<st>:CHANnel<ch>:DPCCh:TPC:DATA on page 283
[:SOURCE<hw>]:BB:W3GPP:MSTation<st>:CHANnel<ch>:DPDCh:DATA on page 305
[:SOURCE<hw>]:BB:W3GPP:MSTation<st>:CHANnel<ch>:PRACh:DATA on page 386
[:SOURCE<hw>]:BB:W3GPP:MSTation<st>:CHANnel<ch>:PRACh:DATA:DSELect on page 387

Generate Waveform

With enabled signal generation, triggers the instrument to store the current settings as an ARB signal in a waveform file. Waveform files can be further processed by the ARB and/or as a multi-carrier or a multi-segment signal.

The filename and the directory it is stored in are user-definable; the predefined file extension for waveform files is *.wv.

Remote command:
[:SOURCE<hw>]:BB:W3GPP:WAVeform:CREate on page 254

3GPP Version

Displays the current implemented version of the 3GPP FDD standard.

The default settings and parameters provided are oriented towards the specifications of the version displayed.

Remote command:
Chip Rate
Displays the system chip rate, fixed at 3.84 Mcps.
To vary the output chip rate, use the parameters in the "Filter/Clipping/ARB Settings" dialog
See Chapter 4.3, "Filtering, Clipping, ARB Settings", on page 58.
Remote command:
[:SOURce<hw>]:BB:W3GPp:CRATe? on page 259

Link Direction
Selects the transmission direction. Further provided settings are in accordance with
this selection.
"Downlink/Forward Link" The transmission direction selected is base station to user equip-
ment. The signal corresponds to that of a base station.
"Uplink/Reverse Link" The transmission direction selected is user equipment to base sta-
tion. The signal corresponds to that of user equipment.
Remote command:
[:SOURce<hw>]:BB:W3GPp:LINK on page 257

Filtering/Clipping/ARB Settings
Access a dialog for setting baseband filtering, clipping and the sequence length of the
arbitrary waveform component. An indication of the key parameters values is provided.
See Chapter 4.3, "Filtering, Clipping, ARB Settings", on page 58 for detailed descrip-
tion.
Remote command:
n.a.

Trigger/Marker
Calls the menu for selecting the trigger source, for configuring the marker signals and
for setting the time delay of an external trigger signal (see Chapter 4.4, "Trigger/
Marker/Clock Settings", on page 61.
The currently selected trigger source is displayed to the right of the button.
Remote command:
n.a.

Execute Trigger
Executes trigger manually.
A manual trigger can be executed only when an internal trigger source and a trigger
mode other than "Auto" have been selected.
Remote command:
[:SOURce<hw>]:BB:W3GPp:TRIGger:EXECute on page 263

Clock
Calls the menu for selecting the clock source and for setting a delay (see Chapter
4.4.4, "Clock Settings", on page 68).
Remote command:
n.a.
4.2 Configure Base Stations or UE

Depending on the transmission direction selection, the central section of the dialog provides the "Configure Base Station" section or the "Configure User Equipment" section.

4.2.1 Orthogonal Channel Noise (OCNS) Settings

With Orthogonal Channel Noise, a practical downlink signal is generated to test the maximum input levels of user equipment in accordance with standard specifications. This simulates the data and control signals of the other orthogonal channels in the downlink. 3GPP TS 25.101 contains a precise definition of the required appearance of the OCNS signal.

This section describes the provided settings. For detailed information, see Chapter 3.3.11, "Orthogonal Channel Noise (OCNS)", on page 27.

OCNS On
In BS1, activates OCNS channels according to the definition in the 3GPP standard.

The 3GPP specification defines different OCNS scenarios. Select the OCNS scenario with the parameter OCNS Mode.

When activating OCNS and depending on the selected OCNS mode, different channel groups with different presetting are assigned, see tables in Chapter 3.3.11, "Orthogonal Channel Noise (OCNS)", on page 27. These channels cannot be edited in the channel table.

Remote command:
[:SOURce<hw>]:BB:W3GPP:BSTation:OCNS:STATe on page 275

OCNS Mode
Selects the scenario for activating OCNS channels. To activate the selected OCNS scenario, set the check box OCNS > On.
Four different OCNS scenarios are defined in the 3GPP standard; one "standard" scenario, two scenarios for HSDPA test cases and one scenario for type 3i enhanced performance requirements tests according to 3GPP TS34.121-1 ("other user's channels"). For an overview of the provided scenarios and their settings, refer to Chapter 3.3.11, "Orthogonal Channel Noise (OCNS)", on page 27.

Note: If the "3i" OCNS mode is activated and the "3GPP FDD > State > On", the OCNS channels are automatically leveled in order to have total power of 0 dB for all channels of BS 1.

Remote command:
[:SOURce<hw>]:BB:W3Gpp:BSTation:OCNS:MODE on page 275

OCNS Seed
In "OCNS mode > 3i", sets the seed for both the random processes, the power control simulation process and the process controlling the switch over of the channelization codes.

Remote command:
[:SOURce<hw>]:BB:W3Gpp:BSTation:OCNS:SEED on page 276

4.2.2 Common Configuration Settings

The central "Configure Basestations / User Equipments" section in the lower part of the dialog, covers the general parameters for configuring the respective transmission direction.

Reset all Base Stations
Resets all base stations to the predefined settings. The preset value for each parameter is specified in the description of the remote-control commands.

Table 4-1: Overview of the base station predefined settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Off</td>
</tr>
<tr>
<td>State (all channels)</td>
<td>Off</td>
</tr>
<tr>
<td>Scrambling Code</td>
<td>0</td>
</tr>
<tr>
<td>Slot Format DPCH</td>
<td>8</td>
</tr>
<tr>
<td>Symbol Rate DPCH</td>
<td>30 kbps</td>
</tr>
<tr>
<td>Channelization Code (all channels)</td>
<td>0</td>
</tr>
<tr>
<td>Data Source (all channels)</td>
<td>PN9</td>
</tr>
<tr>
<td>Timing Offset (all channels)</td>
<td>0</td>
</tr>
<tr>
<td>Multi-Code State (all channels)</td>
<td>Off</td>
</tr>
</tbody>
</table>

Remote command:
[:SOURce<hw>]:BB:W3Gpp:BSTation:PRESet on page 255
Reset User Equipment
Resets all user equipment to the predefined settings. The preset value for each parameter is specified in the description of the remote-control commands.

Table 4-2: Overview of the user equipment predefined settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Off</td>
</tr>
<tr>
<td>Mode</td>
<td>DPCCH + DPDCCH</td>
</tr>
<tr>
<td>Scrambling Code (hex)</td>
<td>0</td>
</tr>
<tr>
<td>DPCCH Settings</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>0 dB</td>
</tr>
<tr>
<td>DPDCCH Settings</td>
<td></td>
</tr>
<tr>
<td>DPDCCH State</td>
<td>On</td>
</tr>
<tr>
<td>HS-DPCCH, E-DPCCH and E-DPDCH State</td>
<td>Off</td>
</tr>
<tr>
<td>Channel Power</td>
<td>0 dB</td>
</tr>
<tr>
<td>Overall Symbol Rate</td>
<td>60 kbps</td>
</tr>
</tbody>
</table>

Remote command:
[:SOURce<hw>]:BB:W3Gpp:MSTation:PRESet on page 345

Copy Basestation/Copy User Equipment...
Copies the settings of a base station or user equipment to a second base or user equipment. A dialog opens for creating the destination station.

“Copy from Source”
Selects the base station or user equipment whose settings are to be copied.

Remote command:
[:SOURce<hw>]:BB:W3Gpp:COPY:SOURce on page 256
"To Destination"

Selects the base station or user equipment whose settings are to be overwritten.

Remote command:

"Channelization Code Offset (Base Station only)"

Enters the offset to be applied when copying the base station to the channelization codes of the destination base station. The minimum value is 0 (channelization codes are identical), the maximum value is 511.

Remote command:

"Accept"

Starts the copy process.

Remote command:

Test Setups/Models

Provides access to the test models defined in the 3GPP standard and further test setups, see Chapter 4.5, "Test Setups/Models", on page 69.

Remote command:
n.a.

Predefined Settings

Access a dialog for setting predefined configurations, see Chapter 4.6, "Predefined Settings - Downlink", on page 73.

Remote command:
n.a.

Additional User Equipment

Access a dialog for simulating up to 128 additional user equipment, see Chapter 4.7, "Additional User Equipment - Uplink", on page 74.

Remote command:
n.a.

Select Basestation/User Equipment

Selects the base station or user equipment by pressing the accompanying block.

A dialog for editing the selected basestation or user equipment opens (see Chapter 4.8, "Base Station Settings", on page 76 and Chapter 4.24, "User Equipment Configuration (UE)", on page 147).

To activate a base station or user equipment, enable its state.
Remote command:
(the base station or user equipment is selected by the keyword index
BSTation<1|2|3|4> or MSTation<i>)
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:STATe on page 321
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:STATe on page 347

4.2.3 General Power Settings

The power settings are enabled for "3GPP FDD > State = On".

Adjust Total Power to 0dB
Sets the power of the enabled channels so that the total power of all the active channels is 0 dB. This does not change the power ratio among the individual channels.

Remote command:
[:SOURce<hw>]:BB:W3GPp:POWer:ADJust on page 257

Total Power
Displays the total power of the active channels.

The total power is calculated from the power ratio of the powered up code channels with modulation on. If the value is not equal to 0 dB, the individual code channels are internally adapted so that the "Total Power" for achieving the set output level is 0 dB. The power ratios are maintained.

Remote command:
[:SOURce<hw>]:BB:W3GPp:POWer[:TOTal]? on page 257

Power Reference
Determines the power reference for the leveling of the output signal in uplink direction.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Power leveling performed during</th>
<th>Power displayed in "Status bar > Level" is equal to</th>
<th>"Mode" of the first active UE</th>
</tr>
</thead>
<tbody>
<tr>
<td>"RMS Power"</td>
<td>Complete signal</td>
<td>Output signal’s mean power</td>
<td>PRACH Standard, PRACH Preamble only, DPCCH+DPDCH and UL-DTX Off, PCPCH Standard, PCPCH Preamble only</td>
</tr>
<tr>
<td>"First DPCCH"</td>
<td>First slot in which a DPCCH, an E-DCH, an HARQ-ACK or a PCI/CQI is transmitted in the first active UE</td>
<td>Output signal’s mean power during the first active DPCCH</td>
<td>DPCCH+DPDCH and UL-DTX Off, DPCCH+DPDCH and UL-DTX Off, PCPCH Standard, PCPCH Preamble only</td>
</tr>
<tr>
<td>"First E-DCH"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"First HARQ-ACK"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"First PCI/CQI"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"PRACH Message Part"</td>
<td>PRACH message part of the first active UE</td>
<td>Output signal’s mean power during the PRACH message part</td>
<td>PRACH Standard</td>
</tr>
<tr>
<td>"Last PRACH Preamble"</td>
<td>Last PRACH preamble of the first active UE</td>
<td>Output signal’s mean power during the last PRACH preamble</td>
<td>PRACH Standard, PRACH Preamble only</td>
</tr>
</tbody>
</table>
Example:

- "RF Level" = -10 dBm (value displayed in the status bar of the instrument)
- DPCCH is activated
- E-DPCCH and one E-DPDCH are activated in the first subframe of each frame

The Figure 4-1 displays the power versus time for "Power Reference = First DPCCH": the signal level in the first subframe is -10 dBm; the RMS power of the signal is -13.3 dBm.

![Figure 4-1: Example: Power Reference = First DPCCH](image)

The Figure 4-2 displays the power versus time for "Power Reference = RMS": the RMS power of the signal is -10 dBm; the signal level in the first subframe is -6.7 dBm.
Filtering, Clipping, ARB Settings

Access:
- Select "3GPP FDD > Main dialog > Filter/Clipping/ARB Settings".

The dialog comprises the settings necessary to configure the baseband filter, to enable clipping and adjust the sequence length of the arbitrary waveform component.

4.3.1 Filter Settings

Settings:

Filter
Selects the baseband filter.

Remote command:
[:SOURce<hw>]:BB:W3GPp:FILTER:TYPE on page 262

Remote command:
[:SOURce<hw>]:BB:W3GPp:LREFERENCE on page 347

Figure 4-2: Example: Level Reference = RMS

Operating Manual 1178.9761.02 — 25
Roll Off Factor or BxT
Sets the filter parameter.
The filter parameter offered ("Roll Off Factor" or "BxT") depends on the currently
selected filter type. This parameter is preset to the default for each of the predefined
filters.
Remote command:
[:SOURce<hw>]:BB:W3GPP:FILTER:PARAMeter:APCO25 on page 259
[:SOURce<hw>]:BB:W3GPP:FILTER:PARAMeter:COSine on page 260
[:SOURce<hw>]:BB:W3GPP:FILTER:PARAMeter:GAUSS on page 260
[:SOURce<hw>]:BB:W3GPP:FILTER:PARAMeter:RCOSINE on page 261
[:SOURce<hw>]:BB:W3GPP:FILTER:PARAMeter:SPHASE on page 261

Cut Off Frequency Factor
Sets the value for the cut-off frequency factor. The cut-off frequency of the filter can be
adjusted to reach spectrum mask requirements.
Remote command:
[:SOURce<hw>]:BB:W3GPP:FILTER:PARAMeter:LPASS on page 260
[:SOURce<hw>]:BB:W3GPP:FILTER:PARAMeter:LPASSEVM on page 261

Chip Rate Variation
Enter the chip rate. The default settings for the chip rate are 3.84 Mcps.
The chip rate entry changes the output clock and the modulation bandwidth, as well as
the synchronization signals that are output. It does not affect the calculated chip
sequence.
Remote command:
[:SOURce<hw>]:BB:W3GPP:CRATE:VARIation on page 259

4.3.2 Clipping Settings
Provided are the following settings:

Clipping State
Switches baseband clipping on and off.
Baseband clipping is a simple and effective way of reducing the crest factor of the
WCDMA signal.
WCDMA signals can have high crest factors particularly with many channels and
unfavorable timing offsets. High crest factors entail two basic problems:
• The nonlinearity of the power amplifier (compression) causes intermodulation
which expands the spectrum (spectral regrowth).
• Since the level in the D/A converter is relative to the maximum value, the average
value is converted with a relatively low resolution. This results in a high quantiza-

Both effects increase the adjacent-channel power.
With baseband clipping, all the levels are limited to a settable value ("Clipping Level"). This level is specified as a percentage of the highest peak value. Since clipping is done before filtering, the procedure does not influence the spectrum. The EVM however increases.

Since clipping the signal not only changes the peak value but also the average value, the effect on the crest factor is unpredictable. The following example shows the effect of the "Clipping" on the crest factor for typical scenarios.

Example: Clipping effect on the crest factor
The Table 4-3 shows changing the crest factor by clipping (vector mode |I+q|) for signal configurations with different output crest factors.

100% clipping levels mean that clipping does not take place.

Table 4-3: Crest factor values as function of the vector clipping

<table>
<thead>
<tr>
<th>Clipping level</th>
<th>Downlink: 10 DPCHs "Minimum Crest" 30 ksps</th>
<th>Downlink: 10 DPCHs "Worst Crest" 30 ksps</th>
<th>Downlink: 10 DPCHs "Average Crest" 30 ksps</th>
<th>Downlink: 128 DPCHs "Average Crest" 30 ksps</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>9.89 dB</td>
<td>14.7 dB</td>
<td>10.9 dB</td>
<td>21.7 dB</td>
</tr>
<tr>
<td>80%</td>
<td>8.86 dB</td>
<td>13.9 dB</td>
<td>9.39 dB</td>
<td>20.2 dB</td>
</tr>
<tr>
<td>50%</td>
<td>7.50 dB</td>
<td>10.1 dB</td>
<td>8.29 dB</td>
<td>16.9 dB</td>
</tr>
<tr>
<td>20%</td>
<td>5.50 dB</td>
<td>6.47 dB</td>
<td>6.23 dB</td>
<td>12.5 dB</td>
</tr>
<tr>
<td>10%</td>
<td>5.34 dB</td>
<td>6.06 dB</td>
<td>5.80 dB</td>
<td>9.57 dB</td>
</tr>
<tr>
<td>5%</td>
<td>5.34 dB</td>
<td>6.06 dB</td>
<td>5.80 dB</td>
<td>8.17 dB</td>
</tr>
</tbody>
</table>

The pictures in the following table demonstrate the effect of clipping with vector mode (|I+q|), using a signal configuration with 4 DPCH as an example.

The arrows and the circle in the upper illustration show how the levels are mapped during subsequent clipping in vector mode (|I+q|).
Remote command:
[:SOURce<hw>]:BB:W3GPP:CLIPping:STATe on page 259

Clipping Level
Sets the limit for clipping.
This value indicates at what point the signal is clipped. It is specified as a percentage, relative to the highest level. 100% indicates that clipping does not take place.

Remote command:
[:SOURce<hw>]:BB:W3GPP:CLIPping:LEVel on page 258

Clipping Mode
Selects the clipping method. The dialog displays a graphical illustration on how this two methods work.

- "Vector \(| i + jq |\)"
 The limit is related to the amplitude \(| i + q |\). The I and Q components are mapped together, the angle is retained.

- "Scalar \(| i |, | q |\)"
 The limit is related to the absolute maximum of all the I and Q values \(| i | + | q |\).
 The I and Q components are mapped separately, the angle changes.

Remote command:
[:SOURce<hw>]:BB:W3GPP:CLIPping:MODE on page 258

4.3.3 ARB Settings

Provided are the following settings:

Sequence Length ARB
Changes the sequence length of the arbitrary waveform component of the signal. This component is calculated in advance and output in the arbitrary waveform generator. It is added to the realtime signal components.

The maximum number of frames is calculated as follows:
Max. No. of Frames = Arbitrary waveform memory size/(3.84 Mcps x 10 ms).

Tip: In pure amplifier tests with several channels and no enhanced channels, it is possible to improve the statistical properties of the signal by increasing the sequence length.

Remote command:
[:SOURce<hw>]:BB:W3GPP:SLENgth on page 254

4.4 Trigger/Marker/Clock Settings

To access this dialog, select "Main Menu > Trigger/Marker".

The "Trigger In" section is where the trigger for the signal is set. Various parameters are provided for the settings, depending on which trigger source - internal or external -
is selected. The status of signal generation ("Running" or "Stopped") is indicated for all trigger modes.

The "Marker Mode" section is where the marker signals at the [Marker] output connectors are configured.

The "Marker Delay" section is where a marker signal delay can be defined.

The "Clock Settings" section is where the clock source is selected and - in the case of an external source - the clock type.

The buttons in the last section lead to submenu for general trigger, clock and mapping settings.
4.4.1 Trigger In

The trigger functions are available for R&S SMx and R&S AMU instruments only.

The "Trigger In" section is where the trigger for the signal is set. Various parameters are provided for the settings, depending on which trigger source - internal or external - is selected. The status of signal generation ("Running" or "Stopped") is indicated for all trigger modes.

Trigger Mode
Selects trigger mode, i.e. determines the effect of a trigger event on the signal generation.

- "Auto"
 The signal is generated continuously.
- "Retrigger"
 The signal is generated continuously. A trigger event (internal or external) causes a restart.
- "Armed Auto"
 The signal is generated only when a trigger event occurs. Then the signal is generated continuously. An "Arm" stops the signal generation. A subsequent trigger event (internal or external) causes a restart.
- "Armed Retrigger"
 The signal is generated only when a trigger event occurs. Then the signal is generated continuously. Every subsequent trigger event causes a restart. An "Arm" stops signal generation. A subsequent trigger event (internal or external) causes a restart.
- "Single"
 The signal is generated only when a trigger event occurs. The signal is generated once to the length specified at "Signal Duration". Every subsequent trigger event (internal or external) causes a restart.

Remote command:
[:SOURce<hw>:BB:W3GPP]:TRIGger:SEQUence on page 263

Signal Duration Unit
Defines the unit for describing the length of the signal sequence to be output in the "Single" trigger mode.

Remote command:
[:SOURce<hw>:BB:W3GPP]:TRIGger:SLUNit on page 264

Signal Duration
Enters the length of the signal sequence to be output in the "Single" trigger mode.

Use this parameter to output part of the signal deliberately, an exact sequence of the signal, or a defined number of repetitions of the signal.
Remote command:
[:SOURce<hw>]:BB:W3GpP:TRIGger:SLENght on page 264

Running/Stopped
With enabled modulation, displays the status of signal generation for all trigger modes.
- "Running"
 The signal is generated; a trigger was (internally or externally) initiated in triggered mode.
- "Stopped"
 The signal is not generated and the instrument waits for a trigger event.

Remote command:
[:SOURce<hw>]:BB:W3GpP:TRIGger:RMODE? on page 264

Arm
Stops the signal generation until subsequent trigger event occurs.
Remote command:
[:SOURce<hw>]:BB:W3GpP:TRIGger:ARM:EXECute on page 263

Execute Trigger
Executes trigger manually.
A manual trigger can be executed only when an internal trigger source and a trigger mode other than "Auto" have been selected.
Remote command:
[:SOURce<hw>]:BB:W3GpP:TRIGger:EXECute on page 263

Trigger Source
Selects trigger source. This setting is effective when a trigger mode other than "Auto" has been selected.
- "Internal"
 The trigger event is executed by "Execute Trigger".
- "External"
 The trigger event is the active edge of an external trigger signal, supplied at the TRIGGER connector.
 Use the "Global Trigger/Clock Settings" dialog to define the polarity, the trigger threshold and the input impedance of the trigger signal.
Remote command:
[:SOURce<hw>]:BB:W3GpP:TRIGger:SOURce on page 263

Sync. Output to External Trigger
(for "Trigger Source > External")
Enables/disables output of the signal synchronous to the external trigger event.
For two or more R&S SMBVs that work in a master-slave mode, configure this parameter depending on the provided system trigger event and the properties of the output signal. See the table below for an overview of the required settings.
Table 4-4: Typical applications

<table>
<thead>
<tr>
<th>System trigger</th>
<th>Application</th>
<th>"Sync. Output to External Trigger"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common External Trigger event for the master and the slave instruments</td>
<td>All instruments are synchronous to the external trigger event</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td>All instruments are synchronous among themselves but starting the signal from first symbol is more important than synchronicity with external trigger event</td>
<td>Off</td>
</tr>
<tr>
<td>Internal trigger signal of the master R&S SMBV for the slave instruments</td>
<td>All instruments are synchronous among themselves</td>
<td>Off</td>
</tr>
</tbody>
</table>

"On"
Corresponds to the default state of this parameter. The signal calculation starts simultaneously with the external trigger event but because of the instrument’s processing time the first samples are cut off and no signal is outputted. After elapsing of the internal processing time, the output signal is synchronous to the trigger event.

"Off"
The signal output begins after elapsing of the processing time and starts with sample 0, i.e. the complete signal is output. This mode is recommended for triggering of short signal sequences with signal duration comparable with the processing time of the instrument.
Remote command:
on page 264

Trigger Delay
Delays the trigger event of the signal from:
- The external trigger source

Use this setting to:
- Synchronize the instrument with the device under test (DUT) or other external devices

Remote command:
[:SOURce<hw>:BB:W3Gp<pp>:TRIGger[:EXTernal<ch>]:DELay on page 265

Trigger Inhibit
Sets the duration for inhibiting a new trigger event subsequent to triggering. The input is to be expressed in samples.

In the "Retrigger" mode, every trigger signal causes signal generation to restart. This restart is inhibited for the specified number of samples.

This parameter is only available on external triggering.

Remote command:
[:SOURce<hw>:BB:W3Gp<pp>:TRIGger[:EXTernal<ch>]:INHibit on page 265

4.4.2 Marker Mode

The marker output signal for synchronizing external instruments is configured in the marker settings section "Marker Mode".

The R&S SMBV supports only two markers.

Marker Mode
Selects a marker signal for the associated [Marker] output.

- "Slot" A marker signal is generated at the start of each slot (every 2560 chips or 0.667 ms).
- "Radio Frame" A marker signal is generated at the start of each frame (every 38400 chips or 10 ms).
- "Chip Sequence Period (ARB)" A marker signal is generated at the start of every arbitrary waveform sequence (depending on the setting for the arbitrary waveform sequence length). If the signal does not contain an arbitrary waveform component, a radio frame trigger is generated.
- "System Frame Number (SFN) Restart" A marker signal is generated at the start of every SFN period (every 4096 frames).
"ON/OFF Ratio" A regular marker signal that is defined by an on/off ratio is generated. A period lasts one on and off cycle.

Remote command:
[:SOURce<hw>]:BB:W3GPP:TRIGger:OUTPut<ch>:ONTime on page 267
[:SOURce<hw>]:BB:W3GPP:TRIGger:OUTPut<ch>:OFFTime on page 267

"User Period" A marker signal is generated at the beginning of every user-defined period. The period is defined in Period. This can be used, for instance, to generate a pulse at the start of each transport block (e.g. TTI 20 ms or 40 ms).

Remote command:
[:SOURce<hw>]:BB:W3GPP:TRIGger:OUTPut<ch>:PERiod on page 267
Remote command:
[:SOURce<hw>]:BB:W3GPP:TRIGger:OUTPut<ch>:MODE on page 266

4.4.3 Marker Delay

The delay of the signals on the [MARKER] outputs is set in the"Marker Delay" section.
The R&S SMBV supports only two markers.

Marker x Delay
Enters the delay between the marker signal at the marker outputs and the start of the frame or slot.
The input is expressed as a number of symbols/samples. If the setting "Fix marker delay to dynamic range" is enabled, the setting range is restricted to the dynamic range. In this range, the delay of the marker signals can be set without restarting the marker and signal.

Remote command:
[:SOURce<hw>]:BB:W3GPP:TRIGger:OUTPut<ch>:DELay on page 267

Current Range without Recalculation
Displays the dynamic range within which the delay of the marker signals can be set without restarting the marker and signal.
The delay can be defined by moving the setting mark.
Remote command:

Fix marker delay to current range
Restricts the marker delay setting range to the dynamic range. In this range, the delay can be set without restarting the marker and signal.
Remote command:

4.4.4 Clock Settings

The Clock Settings is used to set the clock source and a delay if necessary.

Sync. Mode
(for R&S SMBV only)

Selects the synchronization mode.
This parameter is used to enable generation of precise synchronous signal of several connected R&S SMBVs.

Note: If several instruments are connected, the connecting cables from the master instrument to the slave one and between each two consecutive slave instruments must have the same length and type.
Avoid unnecessary cable length and branching points.

"None" The instrument is working in standalone mode.

"Sync. Master" The instrument provides all connected instrument with its synchronization (including the trigger signal) and reference clock signal.

"Sync. Slave" The instrument receives the synchronization and reference clock signal from another instrument working in a master mode.

Remote command:
[:SOURce<hw>]:BB:W3Gp:CLOCK:SYNChronization:MODE on page 269

Set Synchronization Settings
(for R&S SMBV only)

Performs automatically adjustment of the instrument's settings required for the synchronization mode, selected with the parameter Sync. Mode.

Remote command:
[:SOURce<hw>]:BB:W3Gp:CLOCK:SYNChronization:EXECute on page 269

Clock Source

Selects the clock source.

"Internal" The internal clock reference is used to generate the chip clock.

"External" The external clock reference is fed in as the chip clock or multiple thereof via the [Clock] connector.
The chip rate must be correctly set to accuracy of (2 % (see data sheet).
The polarity of the clock input can be changed with the aid of "Global Trigger/Clock Settings".

Remote command:
[:SOURce<hw>]:BB:W3Gp:CLOCK:SOURce on page 269
Clock Mode
Enters the type of externally supplied clock.

"Chip" A chip clock is supplied via the [CLOCK] connector.

"Multiple Chip" A multiple of the chip clock is supplied via the [CLOCK] connector; the chip clock is derived internally from this. The Multiplier window provided allows the multiplication factor to be entered.

Remote command:
[:SOURce<hw>]:BB:W3GPP:CLOCK:MODE on page 268

Chip Clock Multiplier
Enters the multiplication factor for clock type multiple.

Remote command:
[:SOURce<hw>]:BB:W3GPP:CLOCK:MULTiplier on page 268

Measured External Clock
Provided for permanent monitoring of the enabled and externally supplied clock signal.

Remote command:
CLOck:INPut:FRequency?

4.4.5 Global Settings

This section provides access general trigger, clock and mapping settings.

Global Trigger/Clock Settings
Accesses the "Global Trigger/Clock/Input Settings" dialog.

This dialog is to set the trigger threshold, the input impedance and the polarity of the clock and trigger inputs.

The parameters in this dialog affect all digital modulations and standards, and are described in chapter "Global Trigger/Clock/Input Settings" in the operating manual.

4.5 Test Setups/Models

Access:

- Select "3GPP FFD > Basestation/User Equipment > Test Setup/Models"

The dialog offers various test models, depending on the selected transmission direction. The presetting is defined in the 3GPP standard TS 25.141.

Test Models Downlink
Access a list of test models in accordance with the 3GPP standard TS 25.141.
Selecting a test model for an active base station immediately generates the selected signal configuration.

The Table 4-5 gives an overview of the available test models.

Table 4-5: Test Models Downlink

<table>
<thead>
<tr>
<th>Test Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Test Model 1 (4/8 channels)"</td>
<td>Test models for Home BS</td>
</tr>
<tr>
<td></td>
<td>- Spectrum emission mask</td>
</tr>
<tr>
<td></td>
<td>- ACLR</td>
</tr>
<tr>
<td></td>
<td>- Spurious emissions</td>
</tr>
<tr>
<td></td>
<td>- Transmit intermodulation</td>
</tr>
<tr>
<td></td>
<td>- Modulation accuracy</td>
</tr>
<tr>
<td></td>
<td>- Peak code domain error</td>
</tr>
<tr>
<td>"Test Model 1 (16/32/64 channels)"</td>
<td>Spectrum emission mask</td>
</tr>
<tr>
<td></td>
<td>- ACLR</td>
</tr>
<tr>
<td></td>
<td>- Spurious emissions</td>
</tr>
<tr>
<td></td>
<td>- Transmit intermodulation</td>
</tr>
<tr>
<td></td>
<td>- Modulation accuracy</td>
</tr>
<tr>
<td></td>
<td>- Peak code domain error</td>
</tr>
<tr>
<td>"Test Model 2"</td>
<td>Output power dynamics</td>
</tr>
<tr>
<td>"Test Model 3 (4/8 channels)"</td>
<td>Peak code domain error test models for Home BS</td>
</tr>
<tr>
<td>"Test Model 3 (16/32 channels)"</td>
<td>Peak code domain error</td>
</tr>
<tr>
<td>"Test Model 4"</td>
<td>Error Vector Magnitude, optional P-CPICH is not active</td>
</tr>
<tr>
<td>"Test Model 4 (CPICH)"</td>
<td>Error Vector Magnitude, optional P-CPICH is active.</td>
</tr>
<tr>
<td>Test Model</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>"Test Model 5 (4 HS-PDSCH + 4 DPCH)"</td>
<td>Error Vector Magnitude test models for Home BS at base stations that support high-speed physical down-link shared channels with 16 QAM</td>
</tr>
<tr>
<td>"Test Model 5 (8 HS-PDSCH + 30 DPCH)"</td>
<td>Error Vector Magnitude at base stations that support high-speed physical down-link shared channels with 16 QAM</td>
</tr>
<tr>
<td>"Test Model 5 (4 HS-PDSCH + 14 DPCH)"</td>
<td></td>
</tr>
<tr>
<td>"Test Model 5 (2 HS-PDSCH + 6 DPCH)"</td>
<td></td>
</tr>
<tr>
<td>"Test Model 6_04_4channels"</td>
<td>Relative Code Domain Error test models for Home BS only applicable for 64QAM modulated codes.</td>
</tr>
<tr>
<td>"Test Model 6_30_8channels"</td>
<td>Relative Code Domain Error only applicable for 64QAM modulated codes.</td>
</tr>
</tbody>
</table>

Remote command:

```
``` on page 273

```
[:SOURce<hw>]:BB:W3Gp:SETTING:TMODEl:BSTation
``` on page 273

Test Models Uplink

Access the predefined test signals.

The 3GPP has not defined any test models for the Uplink transmission direction. This implementation however, provides a list of useful test signals and enables you to generate an uplink signal quickly.

This instrument generates the Uplink test models in the enhanced state of user equipment 1. An exception is the test models for the E-DPCCH and E-DPDCH, these channels are not calculated in real time. The sequence length is not changed.
The following table lists some examples of configurations available for selection.

Table 4-6: Test Models Uplink

<table>
<thead>
<tr>
<th>Test Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"DPCCH + DPDCH 60 ksps"</td>
<td>User equipment 1 is activated in DPCCH + DPDCH mode. 60 ksps is selected as the overall symbol rate. All the other settings correspond to the preset setting.</td>
</tr>
<tr>
<td>"DPCCH + DPDCH 960 ksps"</td>
<td>User equipment 1 is activated in DPCCH + DPDCH mode. 960 ksps is selected as the overall symbol rate. All the other settings correspond to the preset setting.</td>
</tr>
<tr>
<td>"TS34121_R6_Table_C_10_1_4_Subset1 .. 6"</td>
<td>Uplink test model according to 3GPP TS 34.121 Release 6, Table C.10.1.4.</td>
</tr>
<tr>
<td>"TS34121_R8_Table_C_10_1_4_Subset1 .. 4"</td>
<td>Uplink test models for transmitter characteristics tests with HS-DPCCH according to 3GPP TS 34.121 Release 8, Table C.10.1.4.</td>
</tr>
<tr>
<td>"TS34121_R8_Table_C_11_1_3_Subset1 .. 5"</td>
<td>Uplink test models for transmitter characteristics tests with HS-DPCCH and E-DCH according to 3GPP TS 34.121 Release 8, Table C.11.1.3.</td>
</tr>
<tr>
<td>"TS34121_R8_Table_C_11_1_4_Subset1"</td>
<td>Uplink test model for transmitter characteristics tests with HS-DPCCH and E-DCH with 16QAM according to 3GPP TS 34.121 Release 8, Table C.11.1.4.</td>
</tr>
</tbody>
</table>

Remote command:

`:SOURce<hw>:BB:W3GPP:SETTing:TMODEl:MSTation` on page 274
4.6 Predefined Settings - Downlink

With the "Predefined Settings" function, it is possible to create highly complex scenarios with just a few modifications. This function is of use if, say, just the envelope of the signal is of interest.

Access:
1. Select “3GPP FDD > Link Direction > Downlink”.
2. Select "BaseStation > Predefined Settings".

The channel table of base station 1 is filled (preset) with the set parameters. The sequence length of the generated signal is 1 frame.

Use Channels
Selects whether P-CPICH, P-SCH, S-SCH and PCCPCH are used in the scenario or not. These "special channels" are required by user equipment for synchronization.
Remote command:
[:SOURce<hw>]:BB:W3GPp:PPARameter:SCHannels on page 273

Use S-CCPCH
Selects if S-CCPCH is used in the scenario or not.
Remote command:
[:SOURce<hw>]:BB:W3GPp:PPARameter:SCCPch:STATe on page 273

Symbol Rate S-CCPCH
Sets the symbol rate of S-CCPCH.
Remote command:
[:SOURce<hw>]:BB:W3GPp:PPARameter:SCCPch:SRATe on page 272

Number of DPCH
Sets the number of activated DPCHs.
The maximum number is the ratio of the chip rate and the symbol rate (maximum 512 at the lowest symbol rate of 7.5 kbps).
Remote command:
[:SOURce<hw>]:BB:W3GPp:PPARameter:DPCH:COUNt on page 271
Symbol Rate DPCH
Sets the symbol rate of all DPCHs.
Remote command:
[:SOURce<hw>]:BB:W3GPp:PPARameter:DPCH:SRATe on page 272

Crest Factor
Selects desired range for the crest factor of the test scenario. The crest factor of the signal is kept in the desired range by automatically setting appropriate channelization codes and timing offsets.

"Minimum" The crest factor is minimized. The channelization codes are distributed uniformly over the code domain. The timing offsets are increased by 3 per channel.

"Average" An average crest factor is set. The channelization codes are distributed uniformly over the code domain. The timing offsets are all set to 0.

"Worst" The crest factor is set to an unfavorable value (i.e. maximum). The channelization codes are assigned in ascending order. The timing offsets are all set to 0.

Remote command:
[:SOURce<hw>]:BB:W3GPp:PPARameter:CRESt on page 271

Accept
Presets the channel table of basestation 1 with the parameters defined in the Predefined Settings menu. Scrambling Code 0 is automatically selected (as defined in the 3GPP test models).
Remote command:
[:SOURce<hw>]:BB:W3GPp:PPARameter:EXECute on page 272

4.7 Additional User Equipment - Uplink

Access:
1. Select “3GPP FDD > Link Direction > Uplink”.
2. In the “User Equipment” tab, select "Additional User Equipment".
The dialog allows you to simulate up to 128 additional user equipment and thus to generate a signal that corresponds to the received signal for a base station with high capacity utilization.

The fourth user equipment (UE4) serves as a template for all other stations. The following parameters are the only ones modified for the additional user equipment:
- Scrambling code (different for all stations)
- Power (different to UE4, but identical among themselves)

State
Enables/disables all additional user equipment.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation:ADDitional:STATe on page 344

Number of Additional UE
Sets the amount of additional user equipment. As many as 128 additional user equipment can be simulated.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation:ADDitional:COUNT on page 343

Scrambling Code Step
Enters the step width for increasing the scrambling code of the additional user equipment. The start value is the scrambling code of UE4.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation:ADDitional:SCODE:STEP on page 344

Power Offset
Sets the power offset of the active channels of the additional user equipment to the power outputs of the active channels of UE4.
The resultant power must fall within the range 0 dB to - 80 dB. If the value is above or below this range, it is limited automatically.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation:ADDitional:POWer:OFFSet on page 344

Time Delay Step
Enters the step width for the time delay of the additional user equipment to one another. The start value returns the time delay of UE4. Entry is made in chips and can be a maximum of one frame.
The time delay allows user equipment to be simulated even if the arrival of their signals is not synchronized at the base station.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation:ADDitional:TDELay:STEP on page 344
4.8 Base Station Settings

Base stations can be configured independently of one another. Base station 1 (BS1) also includes enhanced channels (Enhanced Channels, Realtime).

Access:
1. Select "3GPP FDD > Link Direction > Downlink / Forward".
2. Select "Base Station > BS 1/2/3/4".

The dialog comprises the following sections:
- "Common Settings" section, in which the general parameters of the base station are set
- A row containing the buttons "Multichannel Assistant", "Code Domain" and "Channel Graph", which call the appropriate submenus graphics
- The channel table with graphical display of the structure of the channel being edited.
4.8.1 Common Settings

The following general parameters of the base station are provided:

State
Activates or deactivates the selected base station.
Remote command:
[:SOURce<hw>]:BB:W3GPP:BSTation<st>:STATe on page 321

2nd Search Code Group
Displays the second search code group.
This parameter is specified in the table defined by the 3GPP standard. This table assigns a specific spreading code to the synchronization code symbol for every slot in the frame. The value is calculated from the scrambling code.
Remote command:
[:SOURce<hw>]:BB:W3GPP:BSTation<st>:SSCG? on page 321

Scrambling Code On
Activates the scrambling code, selected with the parameter Scrambling Code (hex).
The scrambling code can be deactivated for test purposes.
Remote command:
[:SOURce<hw>]:BB:W3GPP:BSTation<st>:SCODe:STATe on page 320

Scrambling Code (hex)
Sets the scrambling code and thus the base station identification.
This value is also the initial value of the scrambling code generator, see Chapter 3.3.1, "Scrambling Code Generator", on page 19.
To activate the scrambling code, set the check box to On.
Remote command:
[:SOURce<hw>]:BB:W3GPP:BSTation<st>:SCODe on page 320

Page Indicators/Frame
Enter the number of page indicators (PI) per frame in the page indicator channel (PICH).
Remote command:
[:SOURce<hw>]:BB:W3GPP:BSTation<st>:PINDicator:COUNt on page 320

Time Delay
For basestation BS2/3/4, sets the time delay of the signal of the selected base station compared to the signal of base station 1.
Remote command:
[:SOURce<hw>]:BB:W3GPP:BSTation<st>:TDELay on page 321

Diversity / MIMO
Selects the antenna and the antenna configuration to be simulated.
The R&S SMBV supports two antenna configurations: a single-antenna system and a two-antenna system. Thus, an instrument equipped with two paths can simulate simultaneously the signals of both antennas of one two-antenna system. Moreover, for this two-antenna system, transmit diversity can be additionally activated or deactivated.

To simulate transmit diversity, a two-antenna system has to be selected and "Open Loop Transmit Diversity" has to be activated.

To configure HS-PDSCH MIMO channels, a two-antenna system has to be selected.

- "Single Antenna"
 The signal of single-antenna system is calculated and applied.

- "Antenna 1 of 2"
 Calculates and applies the output signal for antenna 1 of a two-antenna system.

- "Antenna 2 of 2"
 Calculates and applies the output signal for antenna 2 of a two-antenna system.

Remote command:
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:TDIVersity on page 322

S-CPICH As Phase Reference
Activates or deactivates the use of S-CPICH as reference phase.
If activated the phase of S-CPICH and the phase of all DPCHs is 180 degrees offset from the phase of P-CPICH.

Remote command:
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:SCPich:PREFerence[:STATe] on page 320

Open Loop Transmit Diversity
(Enabled for two-antenna system only)
Activates/deactivates open loop transmit diversity. The antenna whose signal is to be simulated is selected with the parameter "Diversity/MIMO".

Various forms of transmit diversity are described in the 3GPP standard. Different coding is used to divide the signal between the two antennas. As a result, the receiver can decode the traffic signal from the two input signals and is less liable to fading and other interferences.

A fixed diversity scheme is assigned to each channel type:
- TSTD (time switched transmit diversity for SCH) for P-SCH, S-SCH
- STTD (space time block coding transmit antenna diversity) for all other channels, except HS-PDSCH MIMO.
 The HS-PDSCH MIMO channels are precoded as described in *Chapter 3.3.14, "MIMO in HSPA+"*, on page 33.

These two schemes are described in detail in TS 25.211.

Remote command:
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:TDIVersity on page 322
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:OLTDiversity on page 319
Compressed Mode State
Activates compressed mode.

The compressed mode is configured in Chapter 4.9, "Compressed Mode", on page 85.
To access the dialog, use the "Compressed Mode" button.

Remote command:

```
[:SOURce<hw>:BB:W3GPp:BStation<st>:CMODe:STATe]
```
on page 318

```
[:SOURce<hw>:BB:W3GPp:MStation<st>:CMODe:STATe]
```
on page 349

Compressed Mode...
(This feature is enabled for BS 2...4 only.)
Calls the menu for configuring the compressed mode, see Chapter 4.9, "Compressed Mode", on page 85.

Remote command:
n.a.

Reset All Channels
Calls the default settings for the channel table.

Remote command:

```
[:SOURce<hw>:BB:W3GPp:BStation<st>:CHANnel:PRESet]
```
on page 277

Preset HSDPA H-Set
(This feature is available for BS 1 only.)
Calls the default settings of the channel table for the HSDPA H-Set mode.
Channels 12 to 17 are preset for HSDPA H-Set 1.

Remote command:

```
```
on page 276

Multi Channel Assistant
Accesses a dialog for configuring several DPCH channels simultaneously, see Chapter 4.23, "Multi Channel Assistant - BS", on page 144.

Remote command:
n.a.

Code Domain...
Accesses a graphical display of the assigned code domain, see Chapter 4.10, "Code Domain Graph - BS", on page 91.

Remote command:
n.a.

Channel Graph...
Access a channel graph display to check the configured signal visually, see Chapter 4.11, "Channel Graph - BS", on page 93.

Remote command:
n.a.
4.8.2 Channel Table

The channel table allows you to configure the individual channel parameters. The structure of the currently selected channel is displayed graphically in the table header.

The "Channel table" is located in the lower part of the menu.

139 channels are available for each base station. Channels 0 to 10 are assigned to the special channels, with the allocation of channels 0 to 8 being fixed. Channels 9 and 10 can be assigned a PDSCH, a DL-DPCH, an HS-SCCH, an E-AGCH, an E-RGCH, or an E-HICH.

Code channels 11 to 138 can be assigned a DPCH, an HS-SCCH, an HS-PDSCH (QPSK/16QAM/64QAM), an HS-PDSCH (MIMO), an E-AGCH, an E-RGCH, an E-HICH, or an F-DPCH. This makes it possible to simulate the signal of a base station that supports high-speed channels. See also Table A-1.

Channels 4 and 11 to 13 of base station 1 can be generated in realtime (enhanced channels) and are highlighted in color. User-definable channel coding can be activated for these channels. Bit and block errors can be simulated. Data can be added to the data and TPC fields from data lists either at the physical level or in the transport layer.

At the physical level, a downlink DPCH consists of the DPDCH (Dedicated Physical Data Channel) and the DPCCH (Dedicated Physical Control Channel). The channel characteristics are defined by the symbol rate. The DPDCH transports the user data that is fed directly into the data field.

The DPCCH transports the control fields, i.e. TFCI (Transport Format Combination Indicator), TPC (Transmit Power Control) and Pilot field. DPDCH is grouped with DPCCH using time division multiplexing in accordance with 3GPP TS 25.211 (see Figure 4-3). The formation of a downlink reference measurement channel is described in Chapter 4.16, "Enhanced Settings for DPCHs - BS1", on page 116.
Figure 4-3: Structure of a downlink DPCH in the time domain

Channel Number
Displays the consecutive channel numbers from 0 to 138.
All the rows are always displayed, even if the channels are inactive. They are switched on and off by the "On/Off" button in the "State" column.
Remote command:
n.a.
(selected via the suffix to the keyword :CHANnel<n>)

Channel Type
Selects channel type.
The channel type is fixed for channel numbers 0...8; for the remaining channel numbers, the choice lays between the relevant standard channels and the high-speed channels.
The first 11 channels are reserved for special channels.
Remote command:
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:TYPE on page 309

Enhanced Settings / HSDPA Settings
(Enhanced Settings are available for BS1 only.)
Accesses the dialog for configuring the enhanced channels of BS1 or the dialog for configuring the high-speed channels for all base stations.

- Enhanced Settings
 The channel state, "Enhanced On/Off", is displayed in different colors.
 Enhanced channels are generated in real time. Channel coding in accordance with the 'Reference Measurement Channels' definition in TS 25.101, TS 25.104 and TS 25.141 can be activated. Any other user-defined coding can also be configured and stored.
 If data lists are used as the data sources for data fields and TPC fields, it is possible to load external data. You can load, for example:
 - User information from a higher layer
 - TPC lists and use them to generate longer, non-repetitive power profiles
The enhanced settings dialog is different for the P-CCPCH and the DPCHs (see Chapter 4.16, "Enhanced Settings for DPCHs - BS1", on page 116 and Chapter 4.15, "Enhanced Settings for P-CCPCH - BS1", on page 114.

- **HSDPA Settings**
 The available settings and indications of the HSDPA settings dialog depend on the selected high-speed channel type HS-SCCH, HS-PDSCH (QPSK), HS-PDSCH (QAM) or HS-PDSCH (MIMO).
 See Chapter 4.12, "HSDPA Settings - BS", on page 94.

Remote command:

n.a.

Slot Format
Enters the slot formats for the selected channel.

The range of values depends on the channel selected. For DPCH channels, for example, the slot formats are 0 to 16.

For F-DPCH channels, the slot formats 1 to 9 are enabled only for instruments equipped with additional option R&S SMBV-K59. The difference between the F-DPCH slot formats is the position of the 2 bits TPC field.

A slot format defines the complete structure of a slot made of data and control fields and includes the symbol rate.

Parameters set via the slot format can subsequently be changed individually.

The structure of the channel currently selected is displayed in a graphic above the channel table (slot structure).

Remote command:

\[
\text{[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:SFORmat}}
\]

on page 308

Symbol Rate
Sets the symbol rate of the selected channel. The range of values depends on the channel selected.

A change in the symbol rate can lead to a change in the slot format and vice versa.

Remote command:

\[
\text{[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:SRATe}}
\]

on page 308

Channelization Code
Enters the channelization code (formerly the spreading code number).

The code channel is spread with the set channelization code (spreading code). The range of values of the channelization code depends on the symbol rate of the channel. The standard assigns a fixed channelization code to some channels (P-CPICH, for example, always uses channelization code 0).

The range of values runs from 0 to ((Chip Rate/Symbol Rate) – 1), where the Chip Rate is 3.84Mcps.
Remote command:
\[:SOURce<hw>:BB:W3GPp:BSTation<st>:CHANnel<ch0>:CCODe on page 278\n
Power
Sets the channel power in dB.
The power entered is relative to the powers of the other channels. If "3GPP > Adjust Total Power to 0 dB" is executed, all the power data is relative to 0 dB.
The set "Power" value is also the start power of the channel for "Misuse TPC", "Dynamic Power Control" and the power control sequence simulation of the OCNS mode 3i channels.

Note: The maximum channel power of 0 dB applies to non-blanked channels (duty cycle 100%).
With blanked channels, the maximum value can be increased to values greater than 0 dB. Where the maximum value is calculated as:
\[10^{\log_{10}\left(\frac{1}{\text{duty_cycle}}\right)}\]

Remote command:
\[:SOURce<hw>:BB:W3GPp:BSTation<st>:CHANnel<ch0>:POWer on page 307\n
Data
Selects data source.
The following standard data sources are available:
- "All 0, All 1"
 An internally generated sequence containing 0 data or 1 data.
- "PNxx"
 An internally generated pseudo-random noise sequence.
- "Pattern"
 An internally generated sequence according to a bit pattern.
 Use the "Pattern" box to define the bit pattern.
- "Data List/Select DList"
 A binary data from a data list, internally or externally generated.
 Select "Select DList" to access the standard "Select List" dialog.
 - Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
 - Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.
 - Use the standard "File Manager" function to transfer external data lists to the instrument.

 See also "Main Dialog > Data List Management".

Remote command:
Data Config
(This feature is available for BS1 with active channel coding only.)
Accesses a dialog for configuring the data sources of subchannels in the transport layer, see Chapter 4.16, "Enhanced Settings for DPCHs - BS1", on page 116.

Remote command:

t.o.

Timing Offset

Sets the timing offset (T\text{offset}).

The timing offset determines the shift of the source symbols before interleaving.

The absolute starting time of the frame (slot 0) is shifted relative to the start of the scrambling code sequence by the timing offset \(\times 256 \) chips. This means that whatever the symbol rate, the resolution of the timing offset is always 256 chips.

This procedure is used to reduce the crest factor. To obtain a lower crest factor, for example, a good offset from channel to channel is 1. For example, for DPCH11 a timing offset 0, for DPCH12 a timing offset 1, for DPCH13 a timing offset 2.

The illustration below shows the effect of the timing offset parameter. For various scenarios, the scrambling code sequence is shown in time relation to the data slots and to a reference time \(t_0 \). The reference time \(t_0 \) is the starting time from that the signal is calculated in the instrument.

- Timing offset is not used (T\text{offset} = 0).
 The beginning of the frame (slot 0) and the beginning of the scrambling code period are synchronous with starting point \(t_0 \).

- Timing offset is used (T\text{offset} > 0).
 The absolute starting time of the frames (slot 0) is shifted relative to the reference time \(t_0 \) by T\text{offset} \times 256 \) chips. The beginning of the scrambling code sequence is still synchronous with reference time \(t_0 \). The beginning of the scrambling code period and the frame (slot 0) are no longer synchronous.

Remote command:

```
[:SOURce<hw>:BB:W3GpP:BSTation<st>:CHANnel<ch0>:TOFFset
```

on page 309

DPCCH Settings

Access a dialog for configuring the control fields of the selected channel, see Chapter 4.19, "DPCCH Settings - BS Channel Table", on page 132
The selected slot format predetermines the setting of the control fields. So a change is also made to the control fields by changing the slot format and vice versa.

Remote command:
n.a.

Channel State
Activates or deactivates the channel.

Remote command:
[:SOURce<hw>]:BB:W3GpP:BSTation<st>:CHANnel<ch0>:STATE on page 309

Domain Conflict, Resolving Domain Conflicts
Displays whether the channel has a code domain conflict with one of the channels lying above it (with a lower channel number). A special symbol marks a conflict and the column is colored soft orange. If there is no conflict, the column is colored soft blue.

The instrument helps you to resolve code domain conflicts by automatically adapting the channelization code of the channels involved.

To access the required function, in the "3GPP FDD > Base station > Channel Table" select the conflict symbol and trigger "Resolve Domain Conflicts".

Tip: Use the "Code Domain" to visualize the graphical display of code domain assignment by all the active code channels (see Chapter 4.10, "Code Domain Graph - BS", on page 91.

Refer to Chapter 5, "How to Work with the 3GPP FDD Option", on page 240 for step-by-step description.

Remote command:
[:SOURce<hw>]:BB:W3GpP:BSTation<st>:DCONflict[:STATe]? on page 319
[:SOURce<hw>]:BB:W3GpP:BSTation<st>:DCONflict:RESolve on page 318

4.9 Compressed Mode

(This feature is available for BS 2...4 and UE 2...4 only.)

To enable handover of a mobile station from a 3GPP FDD base station/user equipment to another base station/user equipment, (3GPP FDD, 3GPP TDD, GSM or E-UTRA) at a different frequency, transmission and reception of the 3GPP FDD signal must be interrupted for a short time. During this time, the mobile station changes to the frequency of the new base station, for example to measure the receive level of this station or read system information.

To transmit a consistently high data volume also in the remaining (shorter) period of time, the data is compressed. This can be done by halving the spreading factor (SF/2 method) or reducing error protection (puncturing method). In both cases, transmit power in the ranges concerned is increased to maintain adequate signal quality.
Apart from these two methods, there is also the method of "higher layer scheduling". With this method, transmission of the data stream is stopped during the transmission gap. This method is suitable for packet-oriented services; it involves no power increase (power offset) in the active ranges.

4.9.1 Compressed Mode General Settings

Compressed Mode State
Activates compressed mode.

The compressed mode is configured in Chapter 4.9, "Compressed Mode", on page 85. To access the dialog, use the "Compressed Mode" button.
Compressed Mode

Remote command:

[:SOURce<hw>]:BB:W3GPP:BSTation<st>:CMODe:STATe on page 318
[:SOURce<hw>]:BB:W3GPP:MSTation<st>:CMODe:STATe on page 349

Compressed Mode Method - UE
Selects compressed mode method.

"Higher layer scheduling" The data is compressed by stopping the transmission of the data stream during the transmission gap.
"SF/2" The data is compressed by halving the spreading factor.

Remote command:

[:SOURce<hw>]:BB:W3GPP:MSTation<st>:CMODe:METHod on page 348

Compressed Mode Method - BS
Selects compressed mode method.

"Puncturing" The data is compressed by reducing error protection.
"Higher layer scheduling" The data is compressed by stopping the transmission of the data stream during the transmission gap.
"SF/2" The data is compressed by halving the spreading factor.

This method can be demonstrated in the code domain graph. The graph is split into two windows. The upper window shows the code domain assignment with non-compressed slots, the lower window with compressed slots. It can be recognized clearly that the DPCH bars in the lower window are wider, which is due to the reduction of the spreading factor of these channels. The other channels (e.g. CPICH) have the same width in both halves.

Remote command:

[:SOURce<hw>]:BB:W3GPP:BSTation<st>:CMODe:METHod on page 316
DL Frame Structure - BS
Selects frame structure. The frame structure determines the transmission of TPC and pilot field in the transmission gaps.

For 3GPP FDD radio communication to operate, the mobile station receiver requires information in the pilot field for synchronization and channel estimation and in the power control field TPC for control of the mobile station transmit power.

To keep the period during which no channel estimation takes place as short as possible, the pilot is sent in the last slot of each transmission gap.

Optionally, the first TPC field of the transmission gap can be sent in addition.

"Type A (Last Pilot)" The pilot field is sent in the last slot of each transmission gap.
"Type B (First TPC, Last Pilot)" The pilot field is sent in the last slot of each transmission gap. The first TPC field of the transmission gap is sent in addition.

Remote command:
[:SOURce<hw>]:BB:W3GPP:BSTation<st>:CMODe:DLFStructure on page 315

Power Offset Mode
Selects power offset mode.

The compressed slots can be sent with a power offset, i.e. at an increased power level.

"Auto (By Pilot Bit Ratio)" The power offset is obtained as the relation between the Number of pilots bits of non-compressed slots and the Number of pilot bits by compressed slots.

"User" The power offset is defined manually. The value is input in entry field Power offset.

Remote command:
[:SOURce<hw>]:BB:W3GPP:BSTation<st>|MSTation<st>:CMODe:POMode on page 318

Power Offset
Defines power offset. The entered value is only valid for "Power Offset Mode User".

Remote command:
[:SOURce<hw>]:BB:W3GPP:BSTation<st>|MSTation<st>:CMODe:POFFset on page 317
4.9.2 Compressed Mode Configuration Graph

The remaining parameters of the compressed mode are set in the configuration graph. The graph displays the distribution of transmission gaps in a compressed mode signal. The signal generated can be divided into three subranges.

4.9.2.1 Transmission Gaps

A transmission gap has a maximum length of 14 slots. Since at least eight active slots must be sent per frame, gaps comprising seven slots and more have to be distributed over two neighboring frames.

The transmitted signal consists of max. two patterns that are sent alternately. Each pattern comprises two transmission gaps.

The graph includes all parameters necessary to define the transmission gaps in the signal.

The settings in the graph are also valid for the compressed mode graph of the user equipment with the same number. For example, setting a distance of 9 slots for base station 4 also sets the distance to 9 slots for user equipment 4.

The parameters below are interrelated in many ways. For example, the transmission gap distance must be selected so that no frame contains more than one gap. In the event of an invalid entry, the next valid value is automatically set. If the entry is valid but changes the valid range for another parameter, the setting of the parameter is adapted.

At Slot:
Transmission gap slot number.
Remote command:

```
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CMODe:PATTern<ch>:TGSN
```
on page 317
```
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CMODe:PATTern<ch>:TGSN
```
on page 349

Gap Len:
Transmission gap lengths.
Remote command:

```
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CMODe:PATTern<ch>:TGL<di>
```
on page 316
```
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CMODe:PATTern<ch>:TGL<di>
```
on page 348

Distance
Transmission gap distance.
Remote command:
[:SOURce<hw>]:BB:W3GPP:BSTation<st>:CMODE:Pattern<ch>:TGD
on page 316
[:SOURce<hw>]:BB:W3GPP:MSTation<st>:CMODE:Pattern<ch>:TGD
on page 348

Pattern Len:
Transmission gap pattern length. The input range is 1 ... 100 frames for pattern 1 and
0 ... 100 frames for pattern 2. Thus, it is possible to configure transmission gap pattern
with only one pattern.

Remote command:
[:SOURce<hw>]:BB:W3GPP:BSTation<st>:CMODE:Pattern<ch>:TGFL
on page 317
[:SOURce<hw>]:BB:W3GPP:MSTation<st>:CMODE:Pattern<ch>:TGFL
on page 349

4.9.2.2 Compressed Ranges

All slots of a frame that are not blanked are compressed. If the transmission gap is
transmitted within one frame (single-frame method), an envelope as shown by the dia-
gram on Figure 4-4 is obtained:

![Figure 4-4: Envelope of compressed mode signal with single-frame method](image)

If the transmission gap is distributed over two neighboring frames, all slots of the two
frames that are not blanked are compressed (see Figure 4-5):

![Figure 4-5: Envelope of compressed mode signal with double-frame method](image)

A different slot format, usually with a higher number of pilot bits, is used in the com-
pressed ranges.

The transmit power can be increased ("Power Offset Mode") automatically or manually
by defining a power offset.

4.9.2.3 Non-compressed ranges

Frames containing no transmission gaps are sent with the same slot format and the
same power as in the non-compressed mode.
4.10 Code Domain Graph - BS

The channelization codes are taken from a code tree of hierarchical structure (see Figure 4-6).

The higher the spreading factor, the smaller the symbol rate and vice versa. The product of the spreading factor and symbol rate is constant and always yields the chip rate.

The outer branches of the tree (right-most position in the figure) indicate the channelization codes for the smallest symbol rate (and thus the highest spreading factor). Channelization codes with smaller spreading factor are contained in the codes with larger spreading factor in the same code branch. When using such competitive channelization codes at the same time, the signals of associated code channels are mixed such that they can no longer be separated in the receiver. Orthogonality is then lost.

Figure 4-6: Code tree of channelization codes

Example:
If code $c_{2,1}$ is being used, the remaining branch with $c_{4,1}$ and $c_{4,2}$ is blocked.

The domain of a certain channelization code is the outer branch range (with minimum symbol rate and max. spreading factor). It is based on the channelization code selected in the code tree. Using a spreading code means that its entire domain is used.

At a chip rate of 3.84 Mcps, the domain ranges from 0 to 511

$$\text{Chip _ rate} = \frac{\text{min _ Symbol _ rate}}{\text{Chip _ rate}} - 1 = \frac{3.84 \text{ Mcps}}{7.5 \text{ Kbps}} - 1$$

Understanding the displayed information

The "Code Domain" display indicates the assigned code domain. The channelization code is plotted at the X-axis, the colored bars indicate coherent code channels. The colors are assigned to fixed symbol rates, the allocation is shown below the graph. The relative power can be taken from the height of the bar.
If the current settings result in a code domain conflict where the code domains of the active channels intersect, the code domain conflict is indicated by overlapping bars.

The occupied code domain of a channel is calculated as follows:

\[
\text{Domain Factor} = \frac{\text{current symbol rate}}{\text{min symbol rate}(= 7.5\text{kbps})}
\]

As follows:

"Lower domain limit" = \text{current channelization code number} \times \text{domain factor}

"Upper domain limit" = \text{lower domain limit} + \text{domain factor} - 1.
Example:
Channel with symbol rate 30 ksps and channelization code 10:
Domain factor = 30/7.5 = 4,
Lower domain limit = 10 x 4 = 40,
Upper domain limit = 40 + 4 - 1 = 43.
The channel occupies the code domain 40 to 43.

Refer to Chapter 5.1, "Resolving Domain Conflicts", on page 240 for step-by-step description.

4.11 Channel Graph - BS
The channel graph display shows the active code channels.

1. To access the base station channel graph, select "3GPP FDD > Link Direction > Downlink / Forward".
2. Select "Basestation > BS 1/2/3/4".
3. Select "Channel Graph".

![Channel Graph - BS Image]
The channel number is plotted on the X-axis. The red bars represent the special channels (P-CPICH to DL-DPCCH), the green bars the other channels. The height of the bars shows the relative power of the channel. The graph is calculated from the settings that have been made.

4.12 HSDPA Settings - BS

The "MIMO Settings" are only available for enabled two-antenna system (see "Diversity / MIMO" on page 77) and selected HS-PDSCH MIMO channel.

To access "Enhanced HSDPA Mode" dialog, select "Baseband > 3GPP FDD > BS > Channel Table > HSDPA Settings > Config".

The available settings and indications in this dialog depend on the selected HSDPA mode and channel type.

Generation modes of the high-speed channels

The high-speed channels can be generated either continuously as defined in test model 5, in packet mode or in H-Set mode according to TS 25.101, annex A.7.

In packet mode, the start of the channel and the distance between the HSDPA packets can be set. The packet transmissions can start in one of the first five subframes (0 to 4). A subframe has the same length as a packet and is three slots long. An HS-SCCH starts at the beginning of the selected subframe, an HS-PDSCH starts with an offset of two slots to the selected subframe. The active parts of the HS-SCCH and the HS-PDSCH for a specific subframe setting differ by the slot offset of the HS-PDSCH.
Example:
Setting subframe 1
HS-SCCH: slot 3 to 5 active
HS-PDSCH: slot 5 to 7 active.

Figure 4-7: Timing diagram for the HS-SCCH and the associated HS-PDSCH, packet subframe 1 mode and inter-TTI distance = 3

In H-Set mode, the first packet is sent in the HS-SCCH subframe 0. Up to 15 HSDPA channels are coupled to be used in the fixed reference channels. The number of coupled channels depends on the selected H-Set. Channel coding is always performed over a certain number of bits. The resulting packets are distributed evenly over one subframe of all HS-PDSCH channelization codes. Therefore, the data stream is not assigned to a defined channel but to all coupled channels.

4.12.1 Enhanced HSDPA Mode Settings

Provided are the following settings:

HSDPA Mode
Selects the HSDPA mode.

"Continuous" The high-speed channel is generated continuously. This mode is used in test model 5 and 6.

"Subframe 0 1 | 2 | 3 | 4" The high-speed channel is generated in packet mode. The start of the channel is set by selecting the subframe in which the first packet is sent. The distance between subsequent packets is set with parameter "Inter TTI Distance".

"H-Set" (Available for BS1 and HS-SCCH only.) The high-speed channel is generated in packet mode. The first packet is sent in the HS-SCCH subframe 0. The number of the coupled channel in the H-Set can be changed with the parameter "Number of HS-PDSCH Channel Codes".

Remote command:
[:SOURce<hw>]:BB:W3GPP:BSTation<st>:CHANnel<ch0>:HSDPa:MODE
on page 307
Burst Mode
Activates/deactivates burst mode. The signal is bursted when on, otherwise dummy data are sent during transmission brakes.

Remote command:
[:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>:HSDPa:BMODE[:STATe] on page 289

Inter TTI Distance (H-Set)
(Available for "subframe x")
Selects the distance between two packets in HSDPA packet mode.
The distance is set in number of sub-frames (3 slots = 2 ms). An "Inter TTI Distance" of 1 means continuous generation.

Example:
Inter TTI Distance: 3
HARQ Processes: 2
=> Signaling Pattern Stream 1: 0,-,-1,-,-
 Signaling Pattern Stream 2: 2,-,-3,-,-

<table>
<thead>
<tr>
<th>Stream 1</th>
<th>HARQ0</th>
<th>HARQ1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream 2</td>
<td>HARQ2</td>
<td>HARQ3</td>
</tr>
</tbody>
</table>

Inter TTI Distance: 1
HARQ Processes: 5
=> Signaling Pattern: 0,1,2,3,4,-
 Signaling Pattern: 5,6,7,8,9,-

<table>
<thead>
<tr>
<th>Stream 1</th>
<th>HARQ0</th>
<th>HARQ1</th>
<th>HARQ2</th>
<th>HARQ3</th>
<th>HARQ4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream 2</td>
<td>HARQ5</td>
<td>HARQ6</td>
<td>HARQ7</td>
<td>HARQ8</td>
<td>HARQ9</td>
</tr>
</tbody>
</table>

Figure 4-8: Example: Inter TTI Distance in HSDPA H-Set Mode

Remote command:
[:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>:HSDPa:TTIDistance on page 307

Constellation Version Parameter b - BS
(Available for "HS-PDSCH 16QAM" and "64QAM" only)
Switches the order of the constellation points of the 16QAM or 64QAM mapping.
The rearrangement is done according to 3GPP TS25.212.

Remote command:
[:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>:HSDPa:CVPB on page 289
4.12.2 MIMO Configuration

The parameters in this section are available for instruments equipped with option R&S SMBV-K59, BS1 and Channel Type HS-PDSCH (MIMO) only (see "Diversity / MIMO" on page 77).

Precoding Weight Pattern (w2)
Sets the precoding weight parameter w2 for MIMO precoding.

The values of the weight parameters w1, w3 and w4 are calculated based on the value for w2 (see Chapter 3.3.14, "MIMO in HSPA+", on page 33.
Remote command: [:SOURce<hw>]:BB:W3GPP:BSTation<st>:CHANnel<ch0>:HSDPa:MIMO: PWPattern on page 306

Stream 2 Active Pattern
Enables/disables a temporal deactivation of stream 2 per TTI in form of sending pattern.

The stream 2 sending pattern is a sequence of max 16 values of "1" (enables stream 2 for that TTI) and "-" (disabled stream 2 for that TTI).

Modulation Stream 1/2 (HS-PDSCH MIMO)
Sets the modulation for stream 1 and respectively stream 2 to QPSK, 16QAM or 64QAM.

Constellation Version Parameter b Stream 1/2 - BS
Switches the order of the constellation points of the 16QAM or 64QAM mapping.
The rearrangement is done according to 3GPP TS25.212.
Remote command: [:SOURce<hw>]:BB:W3GPP:BSTation<st>:CHANnel<ch0>:HSDPa:MIMO: CVPB<di> on page 305

4.13 HSDPA H-Set Mode Settings - BS

The enhanced HSDPA H-Set mode settings are available for BS1, HS-SCCH and HSDPA Mode set to H-Set only.
Compared to previous releases of the instrument's firmware, much more flexibility in the configuration of H-Sets is provided now. Several former fixed parameters are now configurable, e.g.:

- The channelization codes used for the physical channels are not any more fixed
- A redundancy version sequence can be selected, i.e. varying the RV is possible in case HARQ mode constant NACK is configured.

To let the instrument generate a signal equal to the one generated by an instrument equipped with older firmware, perform the following:

- Set the same "Channelization Codes" as the codes used for your physical channels.
- Set the "HARQ Mode" to "Constant ACK".

A configuration according to an H-Set defined in TS 25.101 can be easily accomplished by selecting one of the predefined H-Sets in the "Enhanced HSDPA H-Set Mode" dialog.

<table>
<thead>
<tr>
<th>HSDPA Mode</th>
<th>Burst Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>H Set</td>
<td>On</td>
</tr>
</tbody>
</table>

H Set Configuration

<table>
<thead>
<tr>
<th>Predefined H Set</th>
<th>9 (16QAM/64QAM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Mode (requires ARB)</td>
<td>On</td>
</tr>
<tr>
<td>Suggested ARB Seq. Length: 6</td>
<td>Current ARB Seq. Length: 12</td>
</tr>
<tr>
<td>Combined Nominal Average Information Bitrate /kbps</td>
<td>13652</td>
</tr>
<tr>
<td>UE Category</td>
<td>15</td>
</tr>
<tr>
<td>HS-SCCH Type</td>
<td>Type 3 (MIMO)</td>
</tr>
</tbody>
</table>

MIMO Settings

<table>
<thead>
<tr>
<th>Predecoding Weight Pattern (w2)</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream 2 Active Pattern</td>
<td>1</td>
</tr>
</tbody>
</table>

Global Settings

<table>
<thead>
<tr>
<th>Data Source (HS-PDSCH)</th>
<th>PN 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>UEID (H-RNTI)</td>
<td>0</td>
</tr>
<tr>
<td>Channelization Code HS-SCCH (SF128)</td>
<td>5</td>
</tr>
<tr>
<td>Number Of HS-PDSCH Channelization Codes</td>
<td>15</td>
</tr>
<tr>
<td>Start Channelization Code HS-PDSCH (SF16)</td>
<td>1</td>
</tr>
<tr>
<td>Total HS-PDSCH Power</td>
<td>-13.24 dB</td>
</tr>
</tbody>
</table>
4.13.1 HSDPA H-Set General Settings

Provided are the following settings:

HSDPA Mode
Selects the HSDPA mode.
"Continuous" The high-speed channel is generated continuously. This mode is used in test model 5 and 6.

"Subframe 0 | 1 | 2 | 3 | 4" The high-speed channel is generated in packet mode. The start of the channel is set by selecting the subframe in which the first packet is sent. The distance between subsequent packets is set with parameter "Inter TTI Distance".

"H-Set" (Available for BS1 and HS-SCCH only.) The high-speed channel is generated in packet mode. The first packet is sent in the HS-SCCH subframe 0. The number of the coupled channel in the H-Set can be changed with the parameter "Number of HS-PDSCH Channel Codes".

Remote command:
[:SOURce<hw>]:BB:W3GPPp:BSTation<st>:CHANnel<ch0>:HSDPa:MODE on page 307

Burst Mode
Activates/deactivates burst mode. The signal is bursted when on, otherwise dummy data are sent during transmission brakes.

Remote command:
[:SOURce<hw>]:BB:W3GPPp:BSTation<st>:CHANnel<ch0>:HSDPa:BMODe[:STATe] on page 289

4.13.2 H-Set Configuration Common Settings

The parameters in this section are available for BS1 and HSDPA H-Set Mode only.

Predefined H-Set
Selects the H-Set and the modulation according to TS 25.101, annex A.7.

Table 4-7: Following combinations are possible:

<table>
<thead>
<tr>
<th>H-Set</th>
<th>Modulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3, 6, 10</td>
<td>QPSK 16QAM</td>
</tr>
<tr>
<td>4, 5, 7, 12</td>
<td>QPSK</td>
</tr>
<tr>
<td>8</td>
<td>64QAM</td>
</tr>
<tr>
<td>9</td>
<td>16QAM (stream 1) QPSK (stream 2)</td>
</tr>
<tr>
<td>11</td>
<td>64QAM (stream 1) 16QAM (stream 2)</td>
</tr>
<tr>
<td>User</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: H-Sets 7 to 9 and H-Set 11 are enabled for instruments equipped with option R&S SMBV-K59 only. H-Set 9 and H-Set 11 are available only for enabled two-antenna system (see "Diversity / MIMO" on page 77).
Several parameters are automatically set, depending on the selection made for the parameter "H-Set". However, it is also possible to change these parameters. In this case, the value of the parameter "H-Set" is automatically set to User.

Note: Use the predefined settings to let the instrument generate a signal equal to the one generated by an instrument equipped with older firmware.

Remote command:

```
[:SOURce<hw>:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:PREDefined on page 296
```

Advanced Mode (requires ARB)

Activates/deactivates the advanced mode in which the H-Set is generated by the ARB. The parameter can be configured only for H-Sets 1 - 5. For H-Sets 6 to 12 and User, it is always enabled.

For an H-Set calculated in arbitrary waveform mode, it is critical to set an appropriate "Current ARB Sequence Length". An appropriate sequence length is required for the generation of signals without unwanted artifacts when pre-calculated sequences are repeated cyclically. In particular, the HARQ cycles have to terminate completely before restarting the signal.

Assistance in setting an appropriate sequence length is provided by the parameter "Suggested ARB Sequence Length" and the "Adjust" button. When working in Advanced Mode, it is recommended to adjust the current ARB sequence length to the suggested one.

Remote command:

```
[:SOURce<hw>:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:AMODE on page 289
```

Suggested ARB sequence length

Displays the suggested ARB sequence length.

The "Suggested ARB Sequence Length" is the calculated minimum length that depends on several parameters: TTI distance, number of HARQ processes, HARQ cycles, HARQ mode, RV parameter sequence, HS-SCCH Type, precoding weight pattern and stream 2 active pattern.

When working in "Advanced Mode", it is recommended to adjust the current ARB sequence length to the suggested one.

It is recommended that you set this suggested ARB sequence length in the instrument.

Remote command:

```
```

Current ARB sequence length

Displays the current ARB sequence length or the adjusted ARB sequence length, set after pressing the button "Adjust".

When working in "Advanced Mode", it is recommended to adjust the current ARB sequence length to the suggested one.
It is recommended that you set this suggested ARB sequence length in the instrument.
Remote command:
[:SOURce<hw>]:BB:W3GPPp:SLENght on page 254

Adjust
Sets the current ARB sequence length to the suggested value.
When working in "Advanced Mode", it is recommended to adjust the current ARB sequence length to the suggested one.
Remote command:
[:SOURce<hw>]:BB:W3GPPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: SLENght:ADJust on page 300

Nominal Average Information Bit Rate
Indicates the average data rate on the transport layer. In case of MIMO, the parameter indicates the combined nominal average information bit rate.
The "Nominal Average Information Bit Rate" is calculated for the ideal case of infinite sequence and with regard of the stream 2 active pattern.
Remote command:

UE Category
Displays the UE category that is minimum required to receive the selected H-Set (see also Chapter 3.3.18, "UE Capabilities", on page 42).
Remote command:
[:SOURce<hw>]:BB:W3GPPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: UECategory? on page 304

HS-SCCH Type
Sets the HS-SCCH type.
"Type 1 (normal)" Normal operation mode.
"Type 2 (HS-SCCH less)" (Available for instruments equipped with option R&S SMBV-K59 only) HS-SCCH less operation mode (see also Chapter 3.3.12, "HS-SCCH Less Operation", on page 30.
"Type 3 (MIMO)"

(Available for instruments equipped with option R&S SMBV-K59 and enabled two-antenna system only)

HS-SCCH Type 3 mode is defined for MIMO operation (see also Chapter 3.3.14.2, "MIMO downlink control channel Support", on page 34.

Enabling this operation mode, enables the parameters in section "MIMO Settings" and the stream 2 parameters in sections "HARQ Simulation, Signal Structure" and "Coding Configuration".

While working in HS-SCCH Type 3 mode and simulating Antenna 2 of one two-antenna system without transmit diversity, no control channel is sent. However, the HS-SCCH is displayed as an active in the channel table. To prove, that there is no control channel transmission, consult the "Code Domain Graph".

The HS-SCCH channel is displayed as DTX.

Remote command:
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:TYPE

on page 303

4.13.3 MIMO Settings

The parameters in this section are available for instruments equipped with option R&S SMBV-K59, BS1, HSDPA H-Set Mode, and for HS-SCCH Type 3 (MIMO) only.

Precoding Weight Pattern (w2)
Selects the sequence for the MIMO precoding weight parameter w2.
The values of the weight parameters \(w_1, w_3 \) and \(w_4 \) are calculated based on the value for \(w_2 \) (see Chapter 3.3.14, "MIMO in HSPA+", on page 33).

Remote command:

```
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:PWPattern
```

Stream 2 Active Pattern

Enables/disables a temporal deactivation of stream 2 per TTI in form of sending pattern.

The stream 2 sending pattern is a sequence of max 16 values of “1” (enables stream 2 for that TTI) and “-.” (disabled stream 2 for that TTI).

Remote command:

```
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:STAPattern
```

4.13.4 Global Settings

The parameters in this section are available for BS1 and HSDPA H-Set Mode only.

Data Source (HS-DSCH)

Selects the data source for the transport channel.

New data is retrieved from the data source each time an initial transmission is performed within one TTI. An initial transmission is performed in case of "HARQ Mode > Constant ACK" or by each new beginning of the "Redundancy Version Sequence".

The following standard data sources are available:

- "All 0, All 1"
 An internally generated sequence containing 0 data or 1 data.
- "PNxx"
 An internally generated pseudo-random noise sequence.
- "Pattern"
 An internally generated sequence according to a bit pattern. Use the "Pattern" box to define the bit pattern.
- "Data List/Select DList"
 A binary data from a data list, internally or externally generated.
 Select "Select DList" to access the standard "Select List" dialog.
 - Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
 - Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.
 - Use the standard "File Manager" function to transfer external data lists to the instrument.

See also "Main Dialog > Data List Management".
Remote command:
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:DATA on page 292
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:DATA:PATTern on page 293
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:DATA:DSElect on page 293

UEID (H-RNTI)
Enters the UE identity which is the HS-DSCH Radio Network Identifier (H-RNTI) defined in 3GPP TS 25.331: "Radio Resource Control (RRC); Protocol Specification".
Remote command:
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:UEID on page 304

Channelization Code HS-SCCH (SF128)
Sets the channelization code of the HS-SCCH.

Note: To let the instrument generate a signal equal to the signal generated by an instrument equipped with older firmware, set the same "Channelization Codes" as the codes used for your physical channels.
Remote command:
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:HSCCode on page 295

Number of HS-PDSCH Channelization Codes
Sets the number of physical HS-PDSCH data channels assigned to the HS-SCCH.
The maximum number of channels assigned to the H-Set depends on the "HS-SCCH Type" and the channel number of the first HS-PDSCH channel in the H-Set.
For HS-SCCH Type 2 (less operation), maximum of two channels can be assigned.
For HS-SCCH Type 1 (normal operation) and Type 3 (MIMO), the maximum number of assigned channels is 15.
Remote command:
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:CLENgth on page 292

Start Channelization Code HS-PDSCH (SF16)
Sets the channelization code of the first HS-PDSCH channel in the H-Set.
The channelization codes of the rest of the HS-PDSCHs in the H-Set are set automatically.

Note: To let the instrument generate a signal equal to the signal generated by an instrument equipped with older firmware, set the same "Channelization Codes" as the codes used for your physical channels.
Remote command:
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:SCCode on page 299
Total HS-PDSCH Power

Sets the total HS-PDSCH power, i.e. sets the total power of all HS-DPSCH channels in the H-Set.

Note: In the 3GPP test specification, e.g. 3GPP TS34.121-1, the HS-PDSCH power is typically given as total power of all HS-PDSCH channels.

Use this parameter to set the HS-PDSCH power level directly as given in the 3GPP test specification.

There are two possibilities to set the power of an H-Set:

- Select "BS1 > Channel Table > HS-PDSCH Channel > Power" and set the power of the individual channels.

 The total power of all HS-PDSCH channels of the H-Set depends on the number of HS-PDSCH Channelization Codes and is calculated as follows:

 \[
 \text{Total Power}_{\text{All HS-PDSCHs}} = \text{Power}_{\text{HS-PDSCH Channel}} + 10 \times \log_{10}(\text{NumberOfHS-PDSCHChannelizationCodes})
 \]

 The calculated total power is displayed with the parameter "Total HS-PDSCH Power"

- Set directly the total power of the H-Set, i.e set the parameter "Total HS-PDSCH Power".

 The individual power levels of the HS-PDSCHs are calculated automatically and displayed in the "BS1 > Channel Table > HS-PDSCH Channel > Power".

Example:

Select "BS1 > HSDPA H-Set".

The default H-Set with five channelization codes ("BS1 > Channel table > HSDPA Settings > Config > Enhanced HSDPA Mode > Number of HS-PDSCH Channelization Codes") is configured.

The default individual power levels of the HS-PDSCH channels are -20 dB. The "Total HS-PDSCH Power" is -13.01 dB.

Set the "Total HS-PDSCH Power" to -10 dB. The individual power levels of the HS-PDSCH channels are -16.99 dB.

Remote command:

\[[:\text{SOURce<hw>}:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:TPower\] on page 301

4.13.5 Coding Configuration

The parameters in this section are available for BS1 and HSDPA H-Set Mode only. The parameters for stream 2 are available for instruments equipped with option R&S SMBV-K59 and for HS-SCCH Type 3 only.

HS-PDSCH Modulation Stream1/2

Sets the HS-PDSCH modulation for stream 1 and stream 2 to QPSK, 16QAM or 64QAM.
Note: The modulation 64QAM is available for instruments equipped with option R&S SMBV-K59 only.
For HS-SCCH Type 2, the available modulation scheme is QPSK only.
For HS-SCCH Type 3 (MIMO), the modulation selected for stream 1 has to be the higher-order one, i.e. combination 16QAM/64QAM is not allowed.

Remote command:
```
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: MODulation<di> on page 295
```

UE Supports 64QAM
(Available for BS1, "HSDPA H-Set Mode", "HS-SCCH Type 1" and "16QAM" only)
Enables/disables UE support of 64QAM.
In case this parameter is disabled, i.e. the UE does not support 64QAM, the 7 bit is used for channelization information.
Remote command:
```
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: S64Qam on page 299
```

Binary Channel Bits per TTI (Physical Layer) Stream1/2
Displays the coded binary channel bits per TTI and per stream.
The value displayed is calculated upon the values and selections for the parameters "HS-PDSCH Modulation", "Symbol Rate" and "Number of HS-PDSCH Channel Codes".
Remote command:
```
```

Transport Block Size Table Stream1/2
Selects Table 0 or Table 1 as described in 3GPP TS 25.321.
For "HS-PDSCH Modulation" set to 64QAM, only Table 1 is available.
Remote command:
```
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:TBS: TABLe<di> on page 303
```

Transport Block Size Index Stream1/2
Selects the index \(k \) for the corresponding table and stream, as described in 3GPP TS 25.321.
Remote command:
```
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:TBS: INDex<di> on page 302
```

Transport Block Size Reference Stream1/2
(Available for BS1, HSDPA H-Set Mode and HS-SCCH Type 2 only)
While working in less operation mode, this parameter is signaled instead of the parameter "Transport Block Size Index".
Remote command:
[:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:TBS:REFerence on page 302

Information Bit Payload (TB-Size) Stream 1/2
Displays the payload of the information bit. This value determines the number of transport layer bits sent in each TTI before coding.
Remote command:

Coding Rate Stream 1/2
Displays the resulting coding rate per stream.
The coding rate is calculated as a relation between the "Information Bit Payload" and "Binary Channel Bits per TTI".
Remote command:
[:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:CRATe<di>? on page 292

Virtual IR Buffer Size (per HARQ Process) Stream1/2
Sets the size of the virtual IR buffer (number of SMLs per HARQ process) per stream.
Remote command:
[:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:VIBSize<di> on page 305

4.13.6 **Signal Structure**

The parameters in this section are available for BS1 and HSDPA H-Set Mode only. The parameters for stream 2 are available for instruments equipped with option R&S SMBV-K59 and for HS-SCCH Type 3 only.

Inter TTI Distance (H-Set)
(Available for "subframe x")
Selects the distance between two packets in HSDPA packet mode.
The distance is set in number of sub-frames (3 slots = 2 ms). An "Inter TTI Distance" of 1 means continuous generation.
Remote command:
[:SOUR<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>:HSDPa:TTIDistance on page 307

Number of HARQ Processes per Stream
Sets the number of HARQ processes. This value determines the distribution of the payload in the subframes and depends on the Inter "TTI Distance" (see figure).
A minimum of six HARQ Processes are required to achieve continuous data transmission.
Remote command:
[:SOUR<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:HARQ:LENGth on page 294

Signaling Pattern Stream1/2
Displays the distribution of packets over time. The "Signaling Pattern" displays a HARQ-Process cycle and is a sequence of HARQ-IDs and ".-". An HARQ-ID indicates a packet, a "." indicates no packet (see figure). The signaling pattern is cyclically repeated.
Long signaling patterns with regular repeating groups of HARQ-ID and ".-" are not displayed completely. The signaling pattern is shortened and ". . ." is displayed but the scheduling is performed according to the selected "Inter TTI Distance". Long signaling patterns with irregularity in the HARQ-ID and ".-" groups are displayed completely.
Depending on the selected "Burst Mode", a dummy TTI is sent within the no packet subframes.
Remote command:
[:SOUR<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:SPATtern<di>? on page 300
4.13.7 HARQ Simulation

The parameters in this section are available for BS1 and HSDPA H-Set Mode only. The parameters for stream 2 are available for instruments equipped with option R&S SMBV-K59 and for HS-SCCH Type 3 only.

Mode (HARQ Simulation)
Sets the HARQ simulation mode.

Note: To let the instrument generate a signal equal to the one generated by an instrument equipped with older firmware, set the "HARQ Mode" to "Constant ACK".

"Constant ACK"
New data is used for each new TTI. This mode is used to simulate maximum throughput transmission.

"Constant NACK" (enabled in "Advanced Mode" only)
Enables NACK simulation, i.e. depending on the sequence selected with parameter "Redundancy Version Parameter Sequence" packets are retransmitted. This mode is used for testing with varying redundancy version.

Remote command:
```
[:SOURce<hw>:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: HARQ:MODE on page 294
```

Redundancy Version Stream 1/2
The parameter is enabled for "HARQ Simulation Mode > Constant ACK".

Enters the redundancy version per stream. This value determines the processing of the Forward Error Correction and constellation arrangement (16/64QAM modulation), see TS 25.212 4.6.2.

For HS-SCCH Type 2 (less operation), the redundancy version is always 0.

Remote command:
```
```

Redundancy Version Sequence Stream 1/2
The parameter is enabled for "HARQ Simulation Mode > Constant NACK".

Enters a sequence of redundancy version per stream. The value of the RV parameter determines the processing of the Forward Error Correction and constellation arrangement (16/64QAM modulation), see TS 25.212 4.6.2.

The sequence has a length of maximum 30 values. The sequence length determines the maximum number of retransmissions. New data is retrieved from the data source after reaching the end of the sequence.

For HS-SCCH Type 2 (less operation), the redundancy version sequence is always "0, 3, 4".
4.13.8 Error Insertion

The parameters in this section are available for BS1, HSDPA H-Set Mode and disabled Advanced Mode only.

In the “Bit/Block Error Insertion” sections, errors can be inserted into the data source and into the CRC checksum. This can be used for example to test the bit and block error rate testers.

Bit Error State (HSDPA H-Set)
Activates or deactivates bit error generation.

Bit errors are inserted into the data stream of the coupled HS-PDSCHs. It is possible to select the layer in which the errors are inserted (physical or transport layer).

When the data source is read out, bits are deliberately inverted at random points in the data bitstream at the specified error rate so that an invalid signal is simulated.

Remote command:

```
[:SOUR<ch>:BB:W3Gp:BSta<en>:CH<ch0>:HSDP:HSET:RVFSe<di> on page 297
```

Bit Error Rate (HSDPA H-Set)
Sets the bit error rate.

Remote command:

```
```

Insert Errors On (HSDPA H-Set)
Selects the layer at which bit errors are inserted.

"Transport layer"

Bit errors are inserted in the transport layer.

"Physical layer"

Bit errors are inserted in the physical layer.

Remote command:

```
```

Block Error State (HSDPA H-Set)
Activates or deactivates block error generation.

The CRC checksum is determined and then the last bit is inverted at the specified error probability in order to simulate an invalid signal.
Remote command:
[:SOURce<hw>:BB:W3Gp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:
DERRor:BLOCk:STATe on page 342

Block Error Rate (HSDPA H-Set)
Sets the block error rate.
Remote command:
[:SOURce<hw>:BB:W3Gp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:
DERRor:BLOCk:RATE on page 342

4.13.9 Randomly Varying Modulation and Number of Codes (Type 3i) Settings

(Available for enabled Advanced Mode, HS-SCCH Type 1 and for instruments equipped with option R&S SMBV-K59)

The used modulation and number of HS-PDSCH codes in an H-Set is randomly selected every HSDPA TTI among four options with equal probability (see Table 4-8).

Table 4-8: Used modulation and number of HS-PDSCH codes

<table>
<thead>
<tr>
<th>Option</th>
<th>Modulation</th>
<th>Number of HS-PDSCH codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HS-PDSCH Modulation</td>
<td>Alternative Number of HS-PDSCH Channelization Codes</td>
</tr>
</tbody>
</table>
| 2 | "Alternative HS-PDSCH Modula-
| | tion" on page 113 | Alternative Number of HS-PDSCH Channelization Codes |
| 3 | HS-PDSCH Modulation | Number of HS-PDSCH Channelization Codes |
| 4 | "Alternative HS-PDSCH Modula-
| | tion" on page 113 | Number of HS-PDSCH Channelization Codes |

Although the number of active HS-PDSCH channels varies over time, the overall power of the HS-PDSCH channels in the H-Set stays constant. This is because the power of the individual HS-PDSCH channels is raised when the number is reduced. The channel powers displayed in the "BS > Channel Table" are the channel powers during the TTIs in which the Number of HS-PDSCH Channelization Codes is applied.

The ARB sequence length suggestion does not consider the statistical process of the selection among the four options. It can be necessary that you further increase the ARB sequence length to achieve the desired statistical properties.

See Suggested ARB sequence length.

To generate a signal without unwanted artifacts, select "3GPP FDD > Filter/Clipping/ARB Settings" and set the parameter Sequence Length ARB to a multiple of the suggested length.
The configured transport block size table and transport block size index are used in all TTIs, no matter which of the four options is used. The payload size can vary over time and can deviate from the value displayed with the parameter Information Bit Payload (TB-Size) Stream 1/2.

Randomly Varying Modulation And Number Of Codes
Enables/disables the random variation of the modulation and codes.
Remote command:
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:RVSTate on page 298

Alternative HS-PDSCH Modulation
Sets the alternative modulation (see Table 4-8).
Remote command:
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:ALTModulation on page 290

Alternative Number of HS-PDSCH Channelization Codes
Sets the alternative number of HS-PDSCH channelization codes (see Table 4-8).
Remote command:
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:ACLength on page 290

Random Seed
Sets the seed for the random process deciding between the four options (see Table 4-8).
Remote command:
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:SEED on page 298

4.14 Enhanced Settings for P-CPICH - BS1

Access:
► Select “3GPP FDD > BS > Channel Table > P-CPICH > Enhanced Settings > Config”.

P-CPICH Pattern
Sets the P-CPICH pattern (channel 0).
4.15 Enhanced Settings for P-CCPCH - BS1

Access:

- Select “3GPP FDD > BS1 > Channel Table > P-CCPCH > Enhanced Settings > Config”.

The dialog comprises the settings for configuring the enhanced state of this displayed channel and the channel coding settings. Interleaver states 1 and 2 can be activated separately.

The settings for the enhanced P-CCPCH channel and the enhanced DPCH channels are different (see Chapter 4.16, "Enhanced Settings for DPCHs - BS1", on page 116.

4.15.1 Channel Number and State

Channel Number (Enhanced P-CCPCH)
Displays the channel number and the channel type.
Remote command:
n.a.

State (Enhanced P-CCPCH)
Switches the P-CCPCH (Primary Common Control Phys. Channel) to the enhanced state. The channel signal is generated in real time.
Remote command:
[:SOURce<hw>]:BB:W3GPP:BSTation:ENHanced:PCCPch:STATe on page 323
4.15.2 Channel Coding - Enhanced P-CCPCH BS1

The "Channel Coding" section is where the channel coding settings are made.

The channel-coded P-CCPCH (Broadcast Channel BCH) with System Frame Number is generated according to the following principle.

The data blocks of the BCH at transport-channel level comprise data determined for 20 ms of the PCCPCH (i.e. 2 frames) after channel coding. The first field of such a data block is an 11bit long field for the system frame number (SFN). The SFN is automatically incremented by 1 (as stipulated in the standard) from transport block to transport block. This is equivalent to a step width of 2 frames due to the transport time interval length of 20 ms. After 2048 transport blocks (equivalent to 4096 frames), the SFN is reset and starts again at 0 (SFN restart). An output trigger indicating the SFN restart can be generated.

The SFN format is defined in the standard; it is MSB-first coded.

The remaining system information (a 235-bit long field per block) is filled from the data source selected for the P-CCPCH.

A data list can be used to transmit further specific system information in addition to the SFN. If only the SFN is required, "ALL 0" is recommended as data source for P-CCPCH.
The BCH transport blocks are then channel-coded. A coded transport block comprises the data sequence for two P-CCPCH frames.

Channel Coding State
Activates or deactivates channel coding.
The coding scheme is displayed in the field below.
Remote command:
```
```
on page 335

Channel Coding Type
Displays the coding scheme.
The coding scheme of P-CCPCH (BCH) is specified in the standard. The channel is generated automatically with the counting system frame number (SFN). The system information after the SFN field is completed from the selected data source.
Remote command:
```
```
on page 335

Interleaver
Activates or deactivates channel coding interleaver states 1 and 2.
Note: The interleaver states do not cause the symbol rate to change
Remote command:
```
```
on page 334

4.16 Enhanced Settings for DPCHs - BS1

Access:
- Select “3GPP FDD > BS1 > Channel Table > DPCH > Enhanced/HSDPA Settings > Config...”.

The "Enhanced Channel" dialog comprises information on the selected channel and settings for activating the enhanced state of this channel.

The "Channel Coding" section comprises the settings to enable the channel coding, select the coding type or display more information, like details on the transport channel.
Available are settings to enable and configure "Bit/Block Error Insertion".

The "Dynamic Power Control" section comprises the settings necessary to configure the power of the selected enhanced channel and to increase or decrease it within the predefined dynamic range ("Up Range + Down Range") and with the predefined step size ("Power Step").

The settings for the enhanced P-CCPCH channel (see Chapter 4.15, "Enhanced Settings for P-CCPCH - BS1", on page 114) and the enhanced DPCH channels are different. This section describes the settings for the enhanced DPCH channels (channels#11 to 13). The channels can be configured independently.

Use the **HSDPA Settings - BS** dialog to configure the high-speed channels.

4.16.1 Channel Number and State

Provided are the following settings:

Enhanced State

Switches the DPCH channel to the enhanced state.
In the enhanced state, the modulation signal of the selected channel is generated in real time. It is possible to activate channel coding and simulate bit and block errors or use dynamic power control. Data lists, for example with user data for the transport layer, can be used as the data source.

Remote command:
[:SOURce<hw>:BB:W3Gp:BStation:ENHanced:CHANnel<ch0>:DPCH:STATE on page 323

4.16.2 Channel Coding

The "Channel Coding" section is where the channel coding settings are made. You can choose between a reduced display and the detailed setting options display. With the reduced display, it is only possible to select the coding scheme and this selection sets the associated parameters to the presetting prescribed in the standard. The "Transport Channel" section for detailed setting and for defining a user coding can be revealed with the "Show Details" button and hidden with the "Hide Details" button.

According to 3GPP TS 25.101, a downlink reference measurement channel is generated when the transport channels DTCH and DCCH are mapped to a DPCH with a different data rate after channel coding and multiplexing. The figure below is taken from the standard (TS 25.101). It illustrates the generation of a 12.2 kbps reference measurement channel from the DTCH and DCCH transport channels (see standard for figures and tables of other reference measurement channels).

Figure 4-11: Channel coding of the 12.2 kbps reference measurement channel (downlink)

The Table 4-9 shows a summary of the transport channel parameters of the 12.2 kpbs reference measurement channel
Table 4-9: Transport channel parameters (12.2 kbps reference measurement channel)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DCCH</th>
<th>DTCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Source</td>
<td>All 0</td>
<td>All 0</td>
</tr>
<tr>
<td>Transport Block Size</td>
<td>100</td>
<td>244</td>
</tr>
<tr>
<td>Transmission Time Interval</td>
<td>40 ms</td>
<td>20 ms</td>
</tr>
<tr>
<td>Type of Error Protection</td>
<td>Convolution Coding</td>
<td>Convolution Coding</td>
</tr>
<tr>
<td>Coding Rate</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td>Rate Matching attribute</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>Size of CRC</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>Interleaver 1/2</td>
<td>On</td>
<td>On</td>
</tr>
</tbody>
</table>

Channel Coding State
Activates or deactivates channel coding.
Channel-coded measurement channels - so-called "reference measurement channels" - are required for many test procedures specified by the standard.
When channel coding is activated, the slot format, the symbol rate, the pilot length and the TFCI state are predetermined. The corresponding parameters in the channel table are disabled.
Remote command:
[:SOURce<hw>]:BB:W3GpP:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:STATe on page 326

Channel Coding Type
Selects channel coding.
The 3GPP specification defines 4 reference measurement channel coding types, which differ in the input data bit rate bit to be processed (12.2, 64, 144 and 384 kbps). The additional AMR CODER coding scheme generates the coding of a voice channel.
The BTFD coding types with different data rates are also defined in the 3GPP specification (TS 34.121). They are used for the receiver quality test Blind Transport Format Detection. DTX (discontinuous transmission) bits are included in the data stream between rate matching and interleaving 1.
User coding can be defined as required in the detailed coding settings menu section revealed with button "Show Details". They can be stored and loaded in the "User Coding" submenu. Selection User is indicated as soon as a coding parameter is modified after selecting a predefined coding type.
The input data bits are taken for channel coding from the data source specified in the "Transport Channel" dialog section. The bits are available with a higher rate at the channel coding output. The allocations between the measurement input data bit rate and the output symbol rate are fixed, that is to say, the symbol rate is adjusted automatically.
The following are available for selection:
"RMC 12.2 kbps"
"RMC 64 kbps" 64 kbps measurement channel
"RMC 144 kbps" 144 kbps measurement channel
"RMC 384 kbps" 384 kbps measurement channel
"AMR 12.2 kbps" Channel coding for the AMR coder
"BTFD Rate 1 12.2ksps" Blind Transport Format Detection Rate 1 (12.2 kbps)
"BTFD Rate 2 7.95ksps" Blind Transport Format Detection Rate 2 (7.95 kbps)
"BTFD Rate 3 1.95ksps" Blind Transport Format Detection Rate 3 (1.95 kbps)

Remote command:
[:SOURce<hw>]:BB:W3GpP:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:TYPE on page 327

Show Details
Reveals the detailed setting options for channel coding.

Once the details are revealed, the labeling on the button changes to "Hide Details". Use this to hide the detailed setting options display again.
Remote command:
n.a.

User Coding
Calls the "User Coding" menu.

From the "User Coding" menu, the "File Select" windows for saving and recalling user-defined channel coding and the "File Manager" can be called.

Files with user coding are files with the predefined file extension `.3g_ccod_dl`. The filename and the directory they are stored in are user-definable; the file extension is assigned automatically.

The complete channel coding settings are saved and recalled.

Remote command:
```
```
on page 328
```
```
```
```

Slot Format (DPDCH)
Enter the slot format. The slot format (and thus the symbol rate, the pilot length and the TFCI state) depends on the coding type selected.

Remote command:
```
[:SOURce<hw>]:BB:W3Gp:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:SFORmat
```
on page 325

Symbol Rate (DPDCH)
Displays the symbol rate.

The symbol rate is determined by the slot format set.

Remote command:
```
[:SOURce<hw>]:BB:W3Gp:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:SRATe?
```
on page 326

Bits per Frame (DPDCH)
Displays the data bits in the DPDCH component of the DPCH frame at physical level. The value depends on the slot format.

Remote command:
```
[:SOURce<hw>]:BB:W3Gp:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:BFFrame?
```
on page 325

4.16.3 Transport Channel - Enhanced DPCHs BS1

In the "Transport Channel" section, up to seven transport channels (TCHs) can be configured. The first one is always a DCCH; the other six are DTCHs (DTCH1 to 6). The most important parameters of the TCH are displayed (data source and transport block
size). The associated parameters shown in the section below depend on which TCH is selected.

A wide arrow beneath the block indicates which TCH is selected.

Transport Channel State
Activates or deactivates the transport channel.

Remote command:
```
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TCHannel<di0>:STATE
```

In case of remote control, DCCH corresponds to `:TChannel0`, DTCH1 to `:TChannel1`, etc.

Data Source
Selects the data source for the transport channel.

The following standard data sources are available:
- "All 0, All 1"
 An internally generated sequence containing 0 data or 1 data.
- "PNxx"
 An internally generated pseudo-random noise sequence.
- "Pattern"
 An internally generated sequence according to a bit pattern.
 Use the "Pattern" box to define the bit pattern.
- "Data List/Select DList"
 A binary data from a data list, internally or externally generated.
 Select "Select DList" to access the standard "Select List" dialog.
 - Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
 - Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.
Use the standard “File Manager” function to transfer external data lists to the instrument.

See also "Main Dialog > Data List Management".

Remote command:
[:SOURce<hw>]:BB:W3Gpp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TChannel<di0>:DATA on page 330
[:SOURce<hw>]:BB:W3Gpp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TChannel<di0>:DATA:PATTern on page 331
[:SOURce<hw>]:BB:W3Gpp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TChannel<di0>:DATA:DSElect on page 331

Transport Time Interval
Sets the number of frames into which a TCH is divided. This setting also defines the interleaver depth.

Remote command:
[:SOURce<hw>]:BB:W3Gpp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TChannel<di0>:TTINterval on page 334

Transport Block
Sets the number of transport blocks for the TCH.

Remote command:
[:SOURce<hw>]:BB:W3Gpp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TChannel<di0>:TBCount on page 333

Transport Block Size
Sets the size of the transport block at the channel coding input.

Remote command:
[:SOURce<hw>]:BB:W3Gpp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TChannel<di0>:TBSize on page 334

Size of CRC
Defines the type (length) of the CRC. Checksum determination can also be deactivated (setting "None").

Remote command:
[:SOURce<hw>]:BB:W3Gpp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TChannel<di0>:CRCSize on page 330

Rate Matching Attribute
Sets data rate matching.

Remote command:
[:SOURce<hw>]:BB:W3Gpp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TChannel<di0>:RMATtribute on page 333
DTX Indication Bits
Sets the number of DTX (discontinuous transmission) bits. These bits are entered in the data stream between rate matching and interleaver 1. Channel coding of BTFD reference measurement channels Rate 2 and Rate 3 includes DTX267 and DTX644, respectively (see 3GPP TS 34.121).

Remote command:
```
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TChannel<di0>:DTX
```
on page 332

Error Protection
Selects error protection.
- "None" No error protection
- "Turbo 1/3" Turbo coder of rate 1/3 in accordance with the 3GPP specifications.
- "Conv 1/2 | 1/3" Convolution coder of rate 1/2 or 1/3 with generator polynomials defined by 3GPP.

Remote command:
```
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TChannel<di0>:EPRotion
```
on page 332

Interleaver 1 State
Activates or deactivates channel coding interleaver state 1 of the transport channel. Interleaver state 1 can be set independently in each TCH. Activation does not change the symbol rate.

Remote command:
```
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TChannel<di0>:INTerleaver
```
on page 332

Interleaver 2 State
Activates or deactivates channel coding interleaver state 2 of all the transport channels. Interleaver state 2 can only be set for all the TCHs together. Activation does not change the symbol rate.

Remote command:
```
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:INTerleaver2
```
on page 329

4.16.4 Error Insertion - Enhanced DPCHs BS1
In the "Bit/Block Error Insertion" sections, errors can be inserted into the data source and into the CRC checksum, for example, to check the bit and block error rate testers.

Bit Error State (Enhanced DPCHs)
Activates or deactivates bit error generation.
Bit errors are inserted into the data fields of the enhanced channels. When channel coding is active, it is possible to select the layer in which the errors are inserted (physical or transport layer).
When the data source is read out, individual bits are deliberately inverted at random points in the data bitstream at the specified error rate so that invalid signal is simulated.

Remote command:

Bit Error Rate
Sets the bit error rate.

Remote command:

Insert Errors On
Selects the layer in the coding process at which bit errors are inserted.

- "Transport layer" Bit errors are inserted in the transport layer. This selection is only available when channel coding is active.
- "Physical layer" Bit errors are inserted in the physical layer.

Remote command:

Block Error State
Activates or deactivates block error generation.
The CRC checksum is determined and then the last bit is inverted at the specified error probability in order to simulate an invalid signal.

Remote command:
`[:SOURce<hw>]:BB:W3Gp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor:BLOCk:STATe` on page 340

Block Error Rate
Sets block error rate.

Remote command:

4.16.5 **Dynamic Power Control - Enhanced DPCHs BS1**

The "Dynamic Power Control" section comprises the settings necessary to configure the power of the selected enhanced channel. Power can be increased or decreased within the predefined dynamic range ("Up Range + Down Range") and with the predefined step size ("Power Step") depending on a control signal.

The control signal can be provided:
- Internally (TPC pattern)
- Manually
See Mode.

The "Dynamic Power Control" is suitable for testing of closed (inner) loop Power Control in two test constellations:

- To test whether the DUT (receiver) correctly performs the SIR (signal to interference ratio) measurement and inserts the corresponding bits into the TPC field of its transmitting signal. The TPC control information is provided by an external "Dynamic Power Control" signal.

- To test whether the DUT (transmitter) responds with the correct output power to received TPC bits. To perform this test, use a data list adapted to the test condition as TPC data source. The TPC pattern is defined in the channel table.

The power change of the channels is performed by a switchover of a mapping table, controlled by the "Dynamic Power Control" signal. This signal is queried at the beginning of the pilot field. The limited number of mappings restricts the maximum dynamic range to 30 dB and the step width to min. 0.5 dB. The output power of each channel is thus limited to the dynamic range around the channel-specific start power.

Obtaining optimum signal quality

Do not set the "Power Up Range" higher than necessary because the mapping of the I/Q level in this range must be maintained as a level margin.

Example: Principle of the downlink dynamic power control

"Power Up Range = Power Down Range"

Channel#11/13, "Direction > Up"

Channel#12, "Direction > Down"

External control signal is provided

The Figure 4-12 illustrates the adjustment in the channel power of these three enhanced channels.
Figure 4-12: Dynamic Power Control (downlink)

1a, 1b, 1c = Start power of the corresponding channel #11 to 13
2a, 2b, 2c = Resulting channel power of channel #11 to 13 at high level of the control signal at the beginning of the pilot field.

The available mappings are shown on the X-axis with Map_M being the starting point. In this point, all channels have the start power as selected in the channel table.

At the beginning of the pilot field, the provided control signal is queried in each time-slot. Receiving of a logical "1" results in a switchover to the right mapping Map_{M+1}. This means an increase of the output power by "Power Step" for all channels with "Power Control Mode Up". In this example, the power of channel 12 is decreased by the same value (see Figure 4-12).

Receiving of a logical "0" results in a switchover to the left mapping Map_{M-1}. This means a reduction of the output power by "Power Step" for all channels with "Power Control Mode Down". The power of channel 12 is increased by the same value.

The "Dynamic Power Control" settings are performed in the "Enhanced Settings" menu of the channel table.
Dynamic Power Control State
Activates or deactivates the "Dynamic Power Control" for the selected enhanced channel.

With activated Dynamic Power Control, the power of the enhanced channel can be increased or decreased within the predefined dynamic range ("Up Range" + "Down Range"). The power is varied with the predefined step size ("Power Step").

The "Direction" settings determine if the channel power is increased or decreased by a high level of the control signal.

Remote command:
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DPControl:STATe on page 337

Mode
Selects the control signal for Dynamic Power Control.

- **"TPC"** The TPC pattern is used for Dynamic Power Control. This selection corresponds to selection mis-use TPC for not enhanced DPCHs.
- **"Manual"** The control signal is manually produced by selecting one of the buttons 0 or 1. Button 1 corresponds to a positive control signal, button 0 to a negative control signal. The channel power is increased or decreased depending on the "Direction" setting by the selected power step.

Remote command:

Direction
Determines whether the channel power is increased or decreased by a high level of the control signal (see Figure 4-12).

- **"Up"** A high level of the control signal leads to an increase of channel power.
- **"Down"** A high level of the control signal leads to a decrease of channel power.
Remote command:
[:SOURce<hw>]:BB:W3Gp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DPControl:DIRection on page 336

Power Step
Sets step width by which the channel power of the selected enhanced channel in the timeslot grid is increased or decreased. The variation applies to the set dynamic range ("Up Range + Down Range") and if "Dynamic Power Control" is enabled.
The start power of the channel is set in the "Power" column of the channel table.

Remote command:

Up Range / Down Range
Sets dynamic range by which – with "Dynamic Power Control" switched on – the channel powers of the enhanced channels can be increased. The resulting "Dynamic Power Control" dynamic range ("Up Range" + "Down Range") depends on the selected "Power Step" and is as follows:

- For "Power Step" < 1 dB, the dynamic range ("Up Range" + "Down Range") <= 30 dB
- For "Power Step" => 1 dB, the dynamic range ("Up Range" + "Down Range") <= 60 dB

Remote command:

Power Control Graph
Indicates the deviation of the channel power (delta POW) from the set power start value of the corresponding enhanced channels.
The graph is automatically displayed with "Dynamic Power Control" switched on.

Note: A realtime update of the display in the timeslot (= 0.667 ms) is not possible and is performed in a coarser time interval. The power control graph does not display fast channel power changes. The settled state of the control loop is however easy to recognize.

Remote command:
[:SOURce<hw>]:BB:W3Gp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DPControl[:POWer]? on page 338
4.17 S-CCPCH Settings - BS Channel Table

Access:

- Select “3GPP FDD > BS > Channel Table > Channel type > S-CCPCH > DPCCH Settings > Config...”.

![S-CCPCH Settings - BS Channel Table](image)

The selected slot format determines the provided settings. Whenever the "TFCI State" and [Pilot Length] settings are changed, the slot format is adjusted accordingly.

Slot Structure (S-CCPCH)
Displays the slot structure.

![Slot Structure](image)

The structure of the slot depends on the selected slot format (see also 3GPP TS 25.211, Table 18: Secondary CCPCH fields)

Slot Format (S-CCPCH)
Displays the slot format.

The slot format displayed changes when a change is made to the TFCI and Pilot control field settings.

Remote command:

n.a.

Use TFCI
Activates TFCI field usage.

Remote command:

`:SOURce<hw>:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TFCI:STATe` on page 282

The remote-control command is not valid for multi channel mode.

TFCI Value
Enters the value of the TFCI field (Transport Format Combination Indicator). This value is used to select a combination of 30 bits, which is divided into two groups of 15 successive slots.
Remote command:
[:SOURce<hw>:BB:W3GPP:BSTation<st>:CHANnel<ch0>:DPCCh:TFCI on page 282

The remote-control command is not valid for multi channel mode.

Pilot Length

Sets the length of the pilot fields.

The range of values for this parameter depends on the channel type and the symbol rate.

To achieve a constant slot length, the data fields are lengthened or shortened depending on the pilot length, as defined in the standard.

Note: The pilot fields of all active power-controlled DPCHs must be of the same length if Dynamic Power Control State with external control signal is active.

Remote command:
[:SOURce<hw>:BB:W3GPP:BSTation<st>:CHANnel<ch0>:DPCCh:PLENgth on page 281

The remote-control command is not valid for multi channel mode.

4.18 Config AICH/AP-AICH - BS Channel Table

Access:

- Select “3GPP FDD > BS > Channel Table > AICH/AP-AICH > DPCCH Sett > Config...”.

The dialog comprises the parameters for configuring the signature pattern and selecting the slot.

Signature ACK/NACK Pattern

Enters the 16-bit pattern for the ACK/NACK field.

This field is used by the base station to acknowledge, refuse or ignore requests of up to 16 user equipment.

Note: Pattern + is entered using the numeric key 1. Pattern - is entered via the numeric key +/-.

- ""+" = ACK" The ACK is sent. Transmission was successful and correct.
- ""-" = NACK" The NACK is sent. Transmission was not correct.
- ""0" = DTX" Nothing is sent. Transmission is interrupted (Discontinuous Transmission (DTX)).

Remote command:
[:SOURce<hw>:BB:W3GPP:BSTation<st>:CHANnel<ch0>:AICH:SAPattern on page 277

[:SOURce<hw>:BB:W3GPP:BSTation<st>:CHANnel<ch0>:APAIch:SAPattern on page 278
Access Slot
Selects the slot in which the burst is transmitted.
Remote command:
\[
[:\text{SOURce}\langle\text{hw}\rangle]:\text{BB}:\text{W3GPp}:\text{BSTation}\langle\text{st}\rangle:\text{CHANnel}\langle\text{ch0}\rangle:\text{AICH}:\text{ASLOt}
\]
on page 277
\[
[:\text{SOURce}\langle\text{hw}\rangle]:\text{BB}:\text{W3GPp}:\text{BSTation}\langle\text{st}\rangle:\text{CHANnel}\langle\text{ch0}\rangle:\text{APAIch}:\text{ASLOt}
\]
on page 277

4.19 DPCCH Settings - BS Channel Table

- To access the dialog for configuring the fields of the dedicated physical control channel, select "3GPP FDD > BS > Channel Table > DPCH > DPCCH Settings > Config...".

The selected slot format determines the provided settings. Whenever the "TFCI State" and "Pilot Length" settings are changed, the slot format is adjusted accordingly.

The "TPC Settings" section is where the TPC field is set.

The "DPCCH Power Offset" section is where the power offset of the control fields to the set channel power is set.
4.19.1 Common Slot Structure (DPCCH)

The upper section of the dialog shows the structure. It depends on the slot format-selected (see also 3GPP TS 25.211, Table 11: DPDCH and DPCCH fields)

Slot Format (DPCCH)
Displays the slot format.
The slot format displayed changes when a change is made to the TFCI and Pilot control field settings.
Remote command: n.a.

Use TFCI
Activates TFCI field usage.
Remote command: [:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>:DPCCh:TFCI:STATe on page 282
The remote-control command is not valid for multi channel mode.

TFCI Value
Enters the value of the TFCI field (Transport Format Combination Indicator). This value is used to select a combination of 30 bits, which is divided into two groups of 15 successive slots.
Remote command: [:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>:DPCCh:TFCI on page 282
The remote-control command is not valid for multi channel mode.

Pilot Length
Sets the length of the pilot fields.
The range of values for this parameter depends on the channel type and the symbol rate.
To achieve a constant slot length, the data fields are lengthened or shortened depending on the pilot length, as defined in the standard.
Note: The pilot fields of all active power-controlled DPCHs must be of the same length if Dynamic Power Control State with external control signal is active.
Remote command: [:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>:DPCCh:PLENgth on page 281
The remote-control command is not valid for multi channel mode.

Multicode State (DPCCH)
Activates multicode transmission.
Multicode transmission can be activated for a group of channels destined for the same receiver that is to say, belonging to a radio link. The first channel of this group is used as the master channel.

With multicode transmission, the common components (Pilot, TPC and TCFI) for all the channels are spread using the spreading code of the master channel.

This parameter is only available for the DPCHs.

Note: The remote-control command is not valid for multichannel mode.

Remote command:
```
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:MCODe
```
on page 280

4.19.2 **TPC Settings**

Access:
1. Select “3GPP FDD > BS > Channel Table > DPCH > DPCCH Settings > Config...”.
2. Select "TPC Settings".

The "TPC Settings" section is where the TPC data source and read out mode are set.

TPC Data Source (DPCCH)

Selects the data source for the TPC field (Transmit Power Control). This field is used to control the transmit power.

The following standard data sources are available:
- "All 0, All 1"
 An internally generated sequence containing 0 data or 1 data.
- "Pattern"
 An internally generated sequence according to a bit pattern.
 Use the "Pattern" box to define the bit pattern.
- "Data List / Select TPC List"
 A binary data from a data list, internally or externally generated.
 Select "Select TPC List" to access the standard "Select List" dialog.
 See also "Main Dialog > Data List Management".

Remote command:
```
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:DATA
```
on page 283
```
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:DATA:PATTern
```
on page 284
TPC Read Out Mode (DPCCH)
Defines TPC data usage.

The TPC bits are used to signal the increase or reduction in transmit power to the called station. For all read out modes, 1 bit is taken from the data stream for the TPC field for each slot. The bit is entered into the bitstream several times, depending on the symbol rate. The difference between the modes lies in the usage of the TPC bits.

The different modes can be used to set a specific output power and then let the power oscillate around this value. For example, if the power is the pattern 11111, the power can be varied with "Single + alt. 01" and "Single + alt. 10". Thus, power measurements can be carried out at quasi-constant power.

- "Continuous:"
 The TPC bits are used cyclically.
- "Single + All 0"
 The TPC bits are used once, and then the TPC sequence is continued with 0 bits.
- "Single + All 1"
 The TPC bits are used once, and then the TPC sequence is continued with 1 bit.
- "Single + alt. 01"
 The TPC bits are used once and then the TPC sequence is continued with 0 bits and 1 bit alternately. Bits as appended in multiples, depending on the symbol rate, for example, 00001111.
- "Single + alt. 10"
 The TPC bits are used once and then the TPC sequence is continued with 1 bit and 0 bits alternately. Bits as appended in multiples, depending on by the symbol rate, for example, 11110000.

Use the parameter "Read Out Mode" together with the option "TPC For Output Power Control (Mis-) Use" to generate various output power profiles.

Remote command:
[:SOURce<hw>]:BB:W3Gpp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:READ
on page 285
The remote-control commands are not valid for multichannel mode.

Misuse TPC for Output Power Control (DPCCH)
Defines "mis-" use of the TPC data.

The TPC bits are used to signal the increase or reduction in transmit power to the called station.

If "(Mis-) use TPC for output power control" is activated, the specified pattern is used to vary the intrinsic transmit power over time. A bit of this pattern is removed for each slot in order to increase (bit = "1") or reduce (bit = "0") the channel power by the specified power step ("Power Step"). The upper limit is 0 dB and the lower limit -60 dB.

The following envelope is produced with the settings:
- Channel power = 0 dB
- Power step = 0.1 dB
- Pattern = "0011101010101010"

Remote command:
[:SOURce<hw>]:BB:W3Gpp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:DATA: DSELect on page 284
The remote-control command is not valid for multichannel mode.
“TPC Read Out Mode = Continuous”

![Figure 4-13: Dynamic change of channel power (continuous)](image)

Note: The change in power is always carried out (as stipulated in the standard) at the start of the slot pilot field. Misuse TPC for Output Power Control is not available for enhanced DPCHs. Power Control via TPC pattern for enhanced channels can be selected for active Dynamic Power Control (see Chapter 4.16.5, “Dynamic Power Control - Enhanced DPCHs BS1”, on page 125).

Remote command:

```plaintext
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:MISuse
```

The remote-control command is not valid for multichannel mode.

TPC Power Step (DPCCH)

Sets the step width of the power change in dB for "(Mis-) use TPC for output power control".

Note: Misuse TPC for Output Power Control is not available for enhanced DPCHs. Power Control via TPC pattern for enhanced channels can be selected for active Dynamic Power Control (see Chapter 4.16.5, "Dynamic Power Control - Enhanced DPCHs BS1", on page 125).

Remote command:

```plaintext
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:PSstep
```

The remote-control command is not valid for multichannel mode.

4.19.3 DPCCH Power Offset

![DPCCH Power Offset Table]

This section provides the parameters for configuring power offsets of the control fields to the channel power.

Power Offset Pilot (DPCCH)

Sets the power offset of the pilot field to the channel power in dB.
Remote command:
[:SOURce<hw>]:BB:W3GPP:BSTation<st>:CHANnel<ch0>:DPCCh:POFFset:PIlot on page 281
The remote-control command is not valid for multichannel mode.

Power Offset TPC (DPCCH)
Sets the power offset of the TPC field to the channel power in dB.
Remote command:
[:SOURce<hw>]:BB:W3GPP:BSTation<st>:CHANnel<ch0>:DPCCh:POFFset:TPC on page 282
The remote-control command is not valid for multichannel mode.

Power Offset TFCI (DPCCH)
Sets the power offset of the TFCI field to the channel power in dB.
Remote command:
[:SOURce<hw>]:BB:W3GPP:BSTation<st>:CHANnel<ch0>:DPCCh:POFFset:TFCI on page 281
The remote-control command is not valid for multichannel mode.

4.20 Config E-AGCH - BS Channel Table

Access:

- Select “3GPP FDD > BS > Channel Table > E-AGCH > DPCCH Settings > Config...”.

The dialog provides the parameter required to configure the HSUPA control channels.
E-AGCH Information Field Coding
Enables/disables the information coding. Disabling this parameter corresponds to a standard operation, i.e. no coding is performed and the data is sent uncoded. Enabling this parameter allows you to configure the way the data is coded.
Remote command:
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[[:HSUPa]:EAGCh:IFCoding on page 310

E-DCH TTI
Switches between 2 ms and 10 ms. The processing duration also influences the number of used slots.
Remote command:
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[[:HSUPa]:EAGCh:TTIEdch on page 311

Number of Configurable TTIs
Sets the number of configurable TTIs.
Remote command:
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[[:HSUPa]:EAGCh:TTICount on page 311

E-AGCH Table
Comprises the parameters provided for an E-AGCH channel.

UEID (A-GCH) ← E-AGCH Table
Sets the UE Id for the selected TTI.
Remote command:
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[[:HSUPa]:EAGCh:TTI<di0>:UEID on page 311

Absolute Grant Value Index ← E-AGCH Table
Sets the Index for the selected TTI. According to the TS 25.212 (4.10.1 A.1), there is a cross-reference between the grant index and the grant value. The TTI configuration of the table is used cyclically. Depending on the selection made for the parameter "E-DCH TTI", each table row corresponds to a 2ms TTI or to a 10ms TTI.
Remote command:
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[[:HSUPa]:EAGCh:TTI<di0>:AGVIndex on page 311

Absolute Grant Scope ← E-AGCH Table
Sets the scope of the selected grant. According to the TS 25.321, the impact of each grant on the UE depends on this parameter.
For E-DCH TTI = 10ms, the "Absolute Grant Scope" is always All HARQ Processes.
Remote command:
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[[:HSUPa]:EAGCh:TTI<di0>:AGSCope on page 310
4.21 Config E-RGCH/E-HICH - BS Channel Table

Access:
- Select "3GPP FDD > BS > Channel Table > E-RGCH/E-HICH > DPCCH Settings > Config...".

The dialogs provide the parameters for configuring the corresponding HSUPA control channels.

Type of Cell
Switches between Serving Cell and Non-Serving Cell. The cell type determines the number of used slots.
Remote command:
`:SOURce<hw>:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:ERGCh:CTYPe` on page 314
`:SOURce<hw>:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICh:CTYPe` on page 312

E-DCH TTI
Switches between 2 ms and 10 ms. The processing duration also influences the number of used slots.
Remote command:
`:SOURce<hw>:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:ERGCh:TTIEdch` on page 315
`:SOURce<hw>:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICh:TTIEdch` on page 314

Signature Hopping Pattern Index – HSUPA BS
Enters a value that identifies the user equipment. The values are defined in TS 25.211.
Remote command:
`:SOURce<hw>:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:ERGCh:SSINdex` on page 315
`:SOURce<hw>:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICh:SSINdex` on page 313
Relative Grant Pattern
(This feature is available for E-RGCH only.)
Enters a pattern: 0 = Hold, + = Up, - = Down.

Note: Pattern + is entered using the numeric key 1. Pattern - is entered via the numeric key +/-.
For Non-Serving Cell, "1" is not allowed.
Remote command:
[:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>[:HSUPa]:ERGCh: RGPAttern on page 315

ACK/NACK Pattern
(This feature is available for E-HICH only.)
Enters the pattern for the ACK/NACK field.
For Non-Serving Cell, only "+" (ACK) and "0" (no signal) is allowed. For Serving Cells only "+" (ACK) and "-" (NACK) is allowed.
Note: Pattern + is entered using the numeric key 1. Pattern - is entered via the numeric key +/-.
Remote command:
[:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICH: RGPAttern on page 313

Tau DPCH
Enters the offset of the downlink dedicated offset channels.
Remote command:
[:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICH: DTAU on page 312
[:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>[:HSUPa]:ERGCh: DTAU on page 314

Tau E-RGCH/E-HICH
Displays the offset of the P-CCPCH frame boundary.
Remote command:
[:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICH: ETAU? on page 313
[:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>[:HSUPa]:ERGCh: ETAU? on page 314

4.22 Config F-DPCH - BS Channel Table

This section provides the description of the setting parameters for the fractional dedicated physical control channel.

To access the dialog, select "3GPP FDD > BS > Channel Table > F-DPCH > DPCCH Settings > Config".
4.22.1 Common Settings

The upper section of the dialog shows the slot structure and format.

Slot Format (F-DPCH)
Displays the slot format as selected with the parameter "Slot Format" in the Channel Table.

The corresponding slot structure is displayed above the parameter.

The difference between the F-DPCH slot formats is the position of the 2 bits TPC field.

Remote command: n.a.

4.22.2 TPC Settings

The TPC settings in the lower section contain the parameters for configuring TPC data source and read out mode.

TPC Source
Selects the data source for the F-DPCH channel.

The following standard data sources are available:
- "All 0, All 1"
 An internally generated sequence containing 0 data or 1 data.
- "PNxx"
 An internally generated pseudo-random noise sequence.
- "Pattern"
 An internally generated sequence according to a bit pattern.
 Use the "Pattern" box to define the bit pattern.
- "Data List/Select DList"
 A binary data from a data list, internally or externally generated.
Select "Select DList" to access the standard "Select List" dialog.

- Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
- Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.
- Use the standard "File Manager" function to transfer external data lists to the instrument.

See also "Main Dialog > Data List Management".

Remote command:

\[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCh:DPCCh:TPC:DATA\] on page 286
\[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCh:DPCCh:TPC:DATA:DSELe\]ct on page 286
\[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCh:DPCCh:TPC:DATA:PATTern\] on page 287

TPC Read Out Mode (F-DPCH)

Defines TPC data usage.

The TPC bits are used to signal the increase or reduction in transmit power to the called station. For all read out modes, 1 bit is taken from the data stream for the TPC field for each slot. The bit is entered into the bitstream several times, depending on the symbol rate. The difference between the modes lies in the usage of the TPC bits.

The different modes can be used to set a specific output power and then let the power oscillate around this value. For example, if the power is the pattern 11111, the power can be varied with "Single + alt. 01" and "Single + alt. 10". Thus, power measurements can be carried out at quasi-constant power.

- "Continuous:"
 The TPC bits are used cyclically.
- "Single + All 0"
 The TPC bits are used once, and then the TPC sequence is continued with 0 bits.
- "Single + All 1"
 The TPC bits are used once, and then the TPC sequence is continued with 1 bit.
- "Single + alt. 01"
 The TPC bits are used once and then the TPC sequence is continued with 0 bits and 1 bit alternately. Bits as appended in multiples, depending on the symbol rate, for example, 00001111.
- "Single + alt. 10"
 The TPC bits are used once and then the TPC sequence is continued with 1 bit and 0 bits alternately. Bits as appended in multiples, depending on the symbol rate, for example, 11100000.

Use the parameter "Read Out Mode" together with the option "TPC For Output Power Control (Mis-) Use" to generate various output power profiles.

Remote command:

\[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCh:DPCCh:TPC:READ\] on page 288
TPC For Output Power Control (Mis-) Use
Defines "mis-" use of the TPC data.

The TPC bits are used to signal the increase or reduction in transmit power to the called station.

If "(Mis-) use TPC for output power control" is activated, the specified pattern is used to vary the intrinsic transmit power over time. A bit of this pattern is removed for each slot in order to increase (bit = "1") or reduce (bit = "0") the channel power by the specified power step ("Power Step"). The upper limit is 0 dB and the lower limit -60 dB.

The following envelope is produced with the settings:
- Channel power = 0 dB
- Power step = 1.0 dB
- Pattern = "00110100000011"
- "TPC Read Out Mode = Continuous"

Remote command:
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCh:DPCCh:TPC:MISuse on page 287

TPC Power Step (F-DPCH)
Sets the step width of the power change in dB for "(Mis-) use TPC for output power control".

Remote command:
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCh:DPCCh:TPC:PSTep on page 288
4.23 Multi Channel Assistant - BS

Access:

► Select "3GPP FDD > BS > Channel Table > Multi Channel Assistant".

The "Multi Channel Assistant" allows several channels to be set simultaneously and is only available for the channel types DPCH, HS-SCCH, HS QPSK, HS 16QAM and HS 64QAM. Enhanced state is automatically deactivated. The channel table is only filled with new values when the "Accept" button is pressed.

Start Channel Number
Enters the index for the start channel of the channel range that is set jointly.
Remote command:
n.a.

Stop Channel Number
Enters the index for the stop channel of the channel range that is set jointly.
Remote command:
n.a.

Channel Type
Enter the channel type for the channel range that is set jointly. Available for selection are DPCH, HS-SCCH, HS QPSK, HS 16QAM, or HS 64QAM.
Remote command:
n.a.

Channelization Code
Sets the channelization code for the start channel.
The channel is spread with the specified channelization code (spreading code).
The range of values of the channelization code depends on the symbol rate of the channel.
The range of values runs from 0 to (chip_rate/symbol_rate) - 1
Remote command: n.a.

Channelization Code Step
Sets the step width for the channelization code from channel to channel.
The valid range of values for the channelization code of an individual channel must not be exceeded. If the range of values is exceeded, the channelization code is limited automatically.
Remote command: n.a.

Power
Sets the channel power of the start channel in dB.
The power entered is relative to the powers of the other channels and does not initially relate to the "Level" power display. If Adjust Total Power to 0dB is executed (top level of the 3GPP dialog), all the power data is relative to 0 dB.
Note: The maximum channel power of 0 dB applies to non-blanked channels (duty cycle 100%). With blanked channels, the maximum value can be increased to values greater than 0 dB.
To increase the value, use the parameter "Adjust Total Power" where the maximum value is calculated as 10*log_{10}(1/duty_cycle).
The "Power" value is also the starting power of the channel for "Misuse TPC" and "Dynamic Power Control".
Remote command: n.a.

Power Step
Enters the step width for the change of channel power from channel to channel.
The valid range of values must not be exceeded. If the range of values is exceeded, the power is automatically limited to the permissible of -80 dB to 0 dB.
Remote command: n.a.

Data Source
Selects data source.
The following standard data sources are available:
- "All 0, All 1"
 An internally generated sequence containing 0 data or 1 data.
- "PNxx"
 An internally generated pseudo-random noise sequence.
- "Pattern"
 An internally generated sequence according to a bit pattern.
Use the "Pattern" box to define the bit pattern.

- "Data List/Select DList"
 A binary data from a data list, internally or externally generated.
 Select "Select DList" to access the standard "Select List" dialog.
 - Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
 - Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.
 - Use the standard "File Manager" function to transfer external data lists to the instrument.
 See also "Main Dialog > Data List Management".

Remote command:
 n.a.

Channel State
Activates or deactivates all the channels in the set channel range.

Remote command:
 n.a.

Accept
Executes automatic completion of the channel table in accordance with the parameters set.

Remote command:
 n.a.

DPCH
Access:
Select "3GPP FDD > BS > Channel Table > Multi Channel Assistant > DPCH"

Slot Format ← DPCH
Enters the slot format.
For DPCH channels, the slot formats are 0 to 16.
A slot format defines the structure of a slot made of data and control fields and includes the symbol rate.
The individual parameters of a slot can later be changed, with the slot format being adjusted, if necessary.
This parameter is not available for high-speed channels.

Note: For the "DPCCH Settings", this value is read-only.

Remote command:
 n.a.

Symbol Rate ← DPCH
Sets the symbol rate. The range of values depends on the channel selected.
The symbol rate is determined by the slot format set. A change in the symbol rate leads automatically to an adjustment of the slot format.
Remote command:
n.a.

DPCCH Settings ← DPCH
Accesses the dialog for configuring DPCCH channels, see Chapter 4.19, "DPCCH Settings - BS Channel Table", on page 132.

Remote command:
n.a.

In contrast to setting a single channel, the remote control commands are not available.

Timing Offset ← DPCH
Sets the timing offset for the start channel.

The timing offset determines the shift of the source symbols before interleaving.

The absolute starting time of the frame (slot 0) is shifted relative to the start of the scrambling code sequence by the timing offset \(\times 256 \) chips. This means that whatever the symbol rate, the resolution of the timing offset is always 256 chips.

This procedure is used to reduce the crest factor. A good way to obtain a lower crest factor is to use an offset of 1 from channel to channel, for example.

Remote command:
n.a.

Timing Offset Step ← DPCH
Sets the step width for the timing offset from channel to channel.

The valid range of values must not be exceeded. If the range of values is exceeded, the timing offset is automatically limited to the permissible range.

Remote command:
n.a.

4.24 User Equipment Configuration (UE)

In the standard, the term "Mobile Station" has been replaced by the term "User Equipment". This is done to account the fact that there is a great variety of mobile terminal equipment available to users, with functionality that is constantly being enhanced.

Access:

1. Select "3GPP FFD > Link Direction > Uplink".
2. Select “3GPP FDD > User Equipment > UE 1/2/3/4”.

A user equipment has a maximum of 6 DPDCHs, with parameters largely prescribed by the 3GPP specification TS 25.211. To simplify operation, the settings are grouped into three modes with following main differences:

- With the “DPCCH + DPDCH” mode, the HSDPA channel HS-DPCCH and the HSUPA channels E-DPCCH and E-DPDCH can be activated.
- With the "PRACH only" and "PCPCH only" modes, there is also a choice between "Standard" (all parameters can be set) and "Preamble only" (only the preamble can be set).

The dialog of each particular mode only displays the parameters that are relevant.

The DPCCH and one DPDCH of user equipment 1 are generated in real time (enhanced mode). Depending on the actual configurations, other channels of user equipment 1 can also be generated in real time. The PRACH and PCPCH channels are not generated in real time.

The dialog comprises an upper section “Common Settings”, with central sections depending on the set mode, e.g. "PRACH Settings" or "DPCCH Settings". When "DPCCH + DPDCH" modes are selected, only the channel structure, the state and the channel power are indicated. The "E-DCH Scheduling" section also appears below.
The section for detailed setting and the channel tables (for DPDCH and E-DPDCH channels) can be revealed with the "Show Details" button and hidden with the "Hide Details" button.

In the menu for user equipment 1, under "DPDCH settings", there is a button for accessing the dialog for setting the enhanced channel parameters. When "PRACH Standard" or "PCPCH Standard" mode is selected, the "Channel Coding" section also appears below.

In the menus for user equipment 2, 3 and 4, the compressed mode can be activated and configured ("Compressed Mode").

4.24.1 General Settings

The "Common Settings" section is where the general settings for the selected user equipment are made.

State
Activates or deactivates the selected user equipment. The number of the selected user equipment is specified in the menu header.

Remote command:
```
[:SOURce<hw>]::BB:W3GPP:MSTation<st>:STATe
```
on page 347

Mode
Selects the mode in which the user equipment is to work. The lower part of the menu changes in accordance with the mode. The following modes are available:

"PRACH only - Standard"
In this mode, the instrument generates a single physical random access channel (PRACH). This channel is needed to set up the connection between the user equipment and the base station. All the PRACH parameters can be set in the PRACH Settings section (see Chapter 4.28, "PRACH Settings - UE", on page 160).

"PRACH only - Preamble only"
In this mode, the instrument only generates the preamble of a physical random access channel (PRACH). Only the PRACH preamble parameters can be set in the PRACH Settings section. This mode is needed for test case 8.8, according to 3GPP TS 25.141.

"PCPCH only - Standard"
In this mode, the instrument generates a single physical common packet channel (PCPCH). This channel is used to transmit packet-oriented services (e.g. SMS). The specific PCPCH parameters can be set in the PCPCH Settings section (see Chapter 4.29, "PCPCH Settings - UE", on page 170).

"PCPCH only - Preamble only"
In this mode, the instrument only generates the preamble of a physical common packet channel (PCPCH). Only the PRACH preamble parameters can be set in the PCPCH Settings section. This mode is needed for test case 8.9, according to 3GPP TS 25.141.
"DPCCH + DPDCH"
In this mode, the instrument generates a control channel (DPCCH) and up to six data channels (DPDCH). This mode corresponds to the standard mode of user equipment during voice and data transmission.
In addition, the HS-DPCCH, E-DPCCH and E-DPDCH channels can be activated.
Channel-specific parameters can be set in the section of the individual channels.
The DPCCH and one DPDCH of user equipment 1 are generated in real-time (enhanced mode). Depending on the actual configurations, other channels of user equipment 1 can also be generated in real time.

Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:MODE on page 345

Scrambling Code (hex)
Sets the scrambling code.
The scrambling code is used to distinguish the transmitter (UE) by transmitter-dependent scrambling. Hexadecimal values are entered. Long or short scrambling codes can be generated (see also Chapter 3.3.1, "Scrambling Code Generator", on page 19).

Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:SCoDe on page 346

Scrambling Mode
Sets the type of scrambling code.
With scrambling code, a distinction is made between long and short scrambling code (see also Section Scrambling Code Generator).
"Off" Disables scrambling code for test purposes.
"Long Scrambling Code"
Sets the long scrambling code.
"Short Scrambling Code" (only modes "DPCCH + DPDCH" and "PCPCH only")
Sets short scrambling code.
The short scrambling code is only standardized for DPCCH and DPDCH channels. But it can also be generated for the PCPCH channel for test purposes.

Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:SCoDe:MODE on page 346

Time Delay
Enters the time delay of the signal of the selected user equipment compared to the signal of user equipment 1.

Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:TDELay on page 347

Compressed Mode
(This feature is available for UE 2...4 and "DPCCH+DPDCH" Mode only.)
Opens the "Compressed Mode" dialog, see Chapter 4.9, "Compressed Mode", on page 85.
Remote command:
n.a.

UL-DTX .../ User Scheduling
(for instruments equipped with option R&S SMBV-K45 and R&S SMBV-K59, UE 1 and DPCCH+DPDCH mode only)
Accesses the dialog for configuring an uplink discontinuous transmission (UL-DTX) or applying user scheduling, see Chapter 4.27, "UL-DTX/User Scheduling - UE", on page 157.
Remote command:
n.a.

Dynamic Power Control
(for UE 1 and DPCCH+DPDCH mode only)
Accesses the dialog for configuring the "Dynamic Power Control" settings, see Chapter 4.26, "Dynamic Power Control - UE", on page 152.
Remote command:
n.a.

4.25 Code Domain Graph - UE

Access:
- Select "3GPP FDD > User Equipment > UE > Code Domain".

 The "Code Domain" dialog enables you to check the uplink signal visually.

Understanding the display information

The "Code Domain" display indicates the assigned code domain. The channelization code is plotted at the X axis; the colored bars indicate coherent code channels. The colors are assigned to fixed symbol rates; the allocation is shown below the graph. The relative power can be taken from the height of the bar. The symbols on so-called I- and Q-branches are spread independently. The channelization codes are fixed for the channels.
Use the code domain graph to evaluate whether there is a code domain conflict or not; a domain conflict arises when the code domains of the active channels intersect. A code domain conflict is indicated by overlapping bars. A conflict can occur only when the parameter "Force Channelization Code to I/Q" is activated.

4.26 Dynamic Power Control - UE

In the "Dynamic Power Control" dialog, the power of the enhanced channels can be changed within the predefined dynamic range. The dynamic range is set as the sum of the parameters "Up Range" and "Down Range". The power is varied with the predefined step size ("Power Step") and with an external, internal or manual control signal.
Dynamic Power Control State
Activates or deactivates the "Dynamic Power Control".

With activated "Dynamic Power Control", the power of the enhanced channels can be increased or decreased within the predefined dynamic range. The dynamic range is set as the sum of the parameters "Up Range" and "Down Range".

The power is varied with the predefined step size ("Power Step") and with an internal or manual control signal.

Supply the external control signal via the LEVATT input of the AUX I/O connector.

Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:STATe on page 423

Mode
Selects the control signal for "Dynamic Power Control".

"By TPC Pattern"
The TPC pattern is used for "Dynamic Power Control". This selection corresponds to selection "(Mis) Use TPC" for not enhanced channels.

"Manual" The control signal is manually produced by pushing one of the buttons 0 or 1. The channel power is increased or decreased depending on the "Direction" setting by the set power step.

Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:MODE on page 422
[:SOURce<hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:STEP:MANual on page 424

Direction
Selects the Dynamic Power Control mode.

"Up" A high level of the control signal leads to an increase of channel power.
"Down" A high level of the control signal leads to a decrease of channel power. Remote command: [:SOURce<hw>]:BB:W3GPP:MSTation[:ENHanced:DPDCh]:DPControl: DIRECTION on page 422

Power Step
If "Dynamic Power Control > On", sets the step width by which the channel powers of the enhanced channels in the timeslot grid are changed within the set dynamic range. The dynamic range is set as the sum of "Up Range" and "Down Range". The start power of the channel is set in the "Channel Power" entry field of the menu. Remote command: [:SOURce<hw>]:BB:W3GPP:MSTation[:ENHanced:DPDCh]:DPControl: STEP[:EXTernal] on page 424

Up Range / Down Range
Sets dynamic range by which – with "Dynamic Power Control" switched on – the channel powers of the enhanced channels can be increased. The resulting "Dynamic Power Control" dynamic range ("Up Range" + "Down Range") depends on the selected "Power Step" and is as follow:
- For "Power Step" < 1 dB, the dynamic range ("Up Range" + "Down Range") <= 30 dB
- For "Power Step" => 1 dB, the dynamic range ("Up Range" + "Down Range") <= 60 dB

Power Control Graph
Indicates the deviation of the channel power (delta POW) from the set power start value of the enhanced channels. The graph is automatically displayed if "Dynamic Power Control > State > On".

Note: Since a realtime update of the window in the timeslot (= 0.667 ms) is not possible for reasons of speed, an update can be performed in a coarser time interval. Fast channel power changes are not displayed but the settled state of the control loop can be recognized easily.
Remote command:
```
[:SOURce<hw>]:BB:W3GPr:MSStation[:ENHanced:DPDCh]:DPControl[:POWer]? on page 423
```

Assignment Mode for UL-DTX

The parameter is enabled only for activated UL-DTX... / User Scheduling State.

The power control recognizes the UL-DPCCH gaps according to 3GPP TS 25.214. Some of the TPC commands sent to the instrument over the external line or by the TPC pattern are ignored, whereas others are summed up and applied later. The processing of the TPC commands depends only on whether the BS sends the TPC bits on the F-DPCH with slot format 0/ slot format 9 or not. It is not necessary to distinguish between the cases „DL-DPCH“ and „F-DPCH Slot format different than 9 and 0“. In both of these cases, the downlink TPC commands are sent (to a real UE via the air interface) later than in the first 512 chips of the downlink slot. Thus, the treatment of the TPC commands by the UE is identical.
The feedback sent to the instrument corresponds to the parameter „TPC_cmd“ defined in the 3GPP standard. It represents the TPC information of the last (already completed) „TPC command combining period“. This is true even if the TPC information of the ongoing „TPC command combining period“ is already known by the BS before the feedback transmission over the binary feedback line.

Note: The provided external binary feedback has to be stable at least between 0.1 ms before and after the UL DPCCH slot boundary.

Remote command:

```plaintext
[:SOURce<hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:ASSignment on page 422
```
4.27 UL-DTX/User Scheduling - UE

Option: R&S SMBV-K45 and -K59.

1. To access the "UL-DTX" settings, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE".
2. Select "Mode > DPCCH + DPDCH".
3. Select "UL-DTX / User Scheduling..."
4. Select "Mode > UL-DTX".

The "UE /UL-DTX" contains the parameters for adjusting the UL-DTX settings. The provided UL-DTX functionality is fully compliant with 3GPP TS 25.214. All dependencies from E-DCH transmissions, HARQ-ACK transmissions or CQI transmissions on the DPCCH are respected.

For UL-DTX, the dialog provides settings to configure the start offset, the threshold time for switching to UE-DTX cycle 2 and the DPCCH activity patterns for UE-DTX cycle 1/2. You can set the frequentness of the DPCCH bursts, the DPCCH bursts length (without pre- and postamble) and configure the length of the longer preamble for the UE-DTX cycle 2.
In this instrument, the signal generation starts with UE-DTX cycle 2. To trigger a switching to a UE-DTX cycle 1, activate the channels E-DPCCH/E-DPDCH and configure the "E-DCH Scheduling" parameters.

Use the Scheduling List to display the UL-DTX burst pattern and transmissions of E-DCH and HS-DPCCH, as well as the impact on the UL-DPCCH transmissions or the configured uplink user scheduling.

Detailed information

For detailed information on the provided functions, like explanation of the UL-DTX principle, description of the user scheduling file format, possible interdependencies, refer to:

- Chapter 3.3.19, "Uplink Discontinuous transmission (UL DTX)", on page 43

For an example on how to use these functions, refer to:

- Chapter 5.3, "Configuring UL-DTX Transmission and Visualizing the Scheduling", on page 242

UL-DTX... / User Scheduling State

Depending on the selected "Mode", enables/disables:

- Uplink discontinuous transmission (UL-DTX), i.e. uplink DPCCH gating
 Enabling the UL-DTX deactivates the DPDCH and the HSUPA FRC.

Remote command:

```
[:SOURce<hw>]:BB:M3Gpp:MStation:UDTX:STATe on page 418
```

Mode

The parameter is fixed to "UL-DTX".

Remote command:

```
[:SOURce<hw>]:BB:M3Gpp:MStation:UDTX:MODE on page 417
```

Scheduling

This section comprises the common settings for both UL-DTX cycles.

E-DCH TTI ← Scheduling

Sets the duration of an E-DCH TTI.

By enabled UL-DTX, the value configured with this parameter sets the value for the parameter "E-DCH TTI" in the "UE1 > E-DCH Scheduling" dialog.

Remote command:

```
[:SOURce<hw>]:BB:M3Gpp:MStation:UDTX:TTIEdch on page 418
```

Offset ← Scheduling

Sets the parameter UE_DTX_DRX_Offset and determines the start offset in subframes of the first uplink DPCCH burst (after the preamble). The offset is applied only for bursts belonging to the DPCCH burst pattern; HS-DPCCH or E-DCH transmissions are not affected.
The parameter UE_DTX_DRX_Offset is used to calculate the first subframe in each UL DPCCH burst pattern.

- For DTX cycle 1:
 \[(5 \times \text{CFN-UE_DTX_DRX_Offset} + \text{Subframe#}) \mod \text{UE_DTX_Cycle_1} = 0\]
- For DTX cycle 2:
 \[(5 \times \text{CFN-UE_DTX_DRX_Offset} + \text{Subframe#}) \mod \text{UE_DTX_Cycle_2} = 0\]

The offset is used to shift the DPCCH burst pattern of the different UEs so that they have the DPCCH transmission phase in their DTX cycles at different times.

Remote command:

\[[:\text{SOURce<hw>}:\text{BB:W3GPp:MSTation:UDTX:OFFSet}}\] on page 418

Inactivity Threshold for Cycle 2 ← Scheduling

Defines the number of consecutive E-DCH TTIs without an E-DCH transmission, after which the UE moves immediately from UE-DTX cycle 1 to using UE-DTX cycle 2 (see Figure 5-2).

Note: In this implementation, the signal generation starts with UE-DTX cycle 2. To trigger a switching to a UE-DTX cycle 1, activate the channels E-DPCCH/E-DPDCH and configure the "E-DCH Scheduling" parameters.

Remote command:

\[[:\text{SOURce<hw>}:\text{BB:W3GPp:MSTation:UDTX:ITHReshold}}\] on page 419

Long Preamble Length ← Scheduling

Determines the length in slots of the preamble associated with the UE-DTX cycle 2.

Remote command:

\[[:\text{SOURce<hw>}:\text{BB:W3GPp:MSTation:UDTX:LPLength}}\] on page 419

Cycle 1 / Cycle 2 Configuration

Comprises the settings for configuring the frequentness of the DPCCH bursts and the DPCCH bursts length (without pre- and postamble).

DTX Cycle 1 / DTX Cycle 2 ← Cycle 1 / Cycle 2 Configuration

Sets the offset in subframe between two consecutive DPCCH bursts within the corresponding UE-DTX cycle, i.e. determines how often the DPCCH bursts are transmitted (see Figure 5-2).

The UE-DTX cycle 2 is an integer multiple of the UE-DTX cycle 1, i.e. has less frequent DPCCH transmission instants.

Remote command:

\[[:\text{SOURce<hw>}:\text{BB:W3GPp:MSTation:UDTX:CYCLE<ch>}}\] on page 419

DPCCH Burst Length 1 / DPCCH Burst Length 2 ← Cycle 1 / Cycle 2 Configuration

Determines the uplink DPCCH burst length in subframes without the preamble and postamble, when the corresponding UE-DTX cycle is applied.

Remote command:

\[[:\text{SOURce<hw>}:\text{BB:W3GPp:MSTation:UDTX:BURST<ch>}}\] on page 420
Preamble Length 1 / Preamble Length 2 ← Cycle 1 / Cycle 2 Configuration
Displays the preamble length in slots, when the corresponding UE-DTX cycle is applied.

The preamble length is fixed to two slots.
Remote command:
```
[:SOURce<hw>]:BB:W3GPPp:MSTation:UDTX:PREamble<ch>?
```
on page 420

Postamble Length 1 / Postamble Length 2 ← Cycle 1 / Cycle 2 Configuration
Displays the postamble length in slots, when the corresponding UE-DTX cycle is applied.

The postamble length is fixed to one slot.
Remote command:
```
[:SOURce<hw>]:BB:W3GPPp:MSTation:UDTX:POSTamble<ch>?
```
on page 420

4.28 **PRACH Settings - UE**

Access:

1. Select “3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE 1”.

2. Select "Mode > PRACH Standard/PRACH Preamble Only".

The PRACH settings are available in two modes:
- In “Standard” mode, the instrument generates a single physical random access channel (PRACH). This channel is used during the connection set up between the user equipment and the base station.
- In “Preamble only” mode, the instrument only generates the preamble of a physical random access channel (PRACH). This mode is required for test case 8.8, according to 3GPP TS 25.141.
In this mode, only the preamble parameters are available.

Figure 4-15: Standard PRACH Structure: Understanding the displayed information

1a = "Preamble Power Step"; subtract this value from 1b to calculate the power of the other preambles

1b = "Delta Power (Preamble)", i.e. correction value for the last preamble before the message part

2 = "Delta Power (Message Part)", i.e. correction value for the message part overall

2a, 2b = Correction values for the data and control part of the message part

3a = Current "Structure Length"

3b = User-defined repetition of the PRACH structure, i.e. the same structure is repeated three times within the current ARB sequence length

4 = Current ARB sequence length (in slots); set with the parameter Sequence Length ARB
The dialog comprises a graphical representation of the PRACH structure, including the timing parameters, the "Preamble Settings" and "Message Part" sections. The last sections comprise the preamble settings for the parameters of the data part of the channel. Some settings are made directly in the input fields of the graphical display.

In the "Channel Coding" section, channel coding can be activated.

Power settings and power calculation

- Calculating the power of the preamble
 The correction value for the last preamble before the message part (indication in the preamble block) is indicated in the graphical display of the PRACH structure. The power of the other preambles is calculated by subtracting the selected "Preamble Power Step".

- Calculating the power of the message part
 The correction values for the message part overall and separately for data and control part (indications in the message part block) are also indicated.

 For one active UE and if the "Level Reference" is set to "RMS Power", the RF power of the message part is calculated as:

 "Message Part Power" = "RF Level" + "Delta Power Message Part"

Example: Calculating the power of the message part

- "3GPP > User Equipment > Level Reference > RMS Power"
- "Level = 5 dBm"
- "Delta Power Message Part = 5.79 dB"

 The resulting "Message Part Power" = 5 + 5.79 = 10.79 dBm

4.28.1 Graphical Display

The graphical display shows either the complete PRACH including the message part or only the preamble depending on the selected mode.

PRACH standard

1. To access these settings, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE 1".
2. Select "Mode > PRACH Standard".
PRACH Preamble Only

- Select "Mode > PRACH Preamble Only".

![PRACH Settings](Figure 4-16: PRACH mode preamble-only)

Some of the parameter values can be input directly in the input fields of the graphical display. The indicated structure length and the power correction values match the real settings; the number of preambles, however, is shown as an example, to explain the parameter function.

Use the power correction values to calculate the correct settings for the desired RF level, see "Power settings and power calculation" on page 162.

Delta Power (Preamble)

Indicates the level correction value for the last preamble before the message part.

The level of the other preambles can be calculated by subtracting the set "Preamble Power Step".

Remote command:

```
```

Delta Power (Message Part)

Indicates the level correction value for the message part, together with the power offsets of the data and control part.

The indication of the total value is important for measurements where just the envelope of the signal is of interest whereas the separate indication is useful for receiver tests.

See also "Power settings and power calculation" on page 162.
Remote command:

[:SOURce<hw>]:BB:W3GPP:MSTation<st>:PRACH:TIMing:DPower:MPArt?
on page 396

Start Offset #
Enters the start offset of the PRACH in access slots or slots.
The starting time delay in timeslots is then equal to 2"Start Offset #"
Remote command:

[:SOURce<hw>]:BB:W3GPP:MSTation<st>:PRACH:TIMing:SOFFset on page 398

Time Pre->Pre
Enters the time difference between two successive preambles in access slots.
Remote command:

[:SOURce<hw>]:BB:W3GPP:MSTation<st>:PRACH:TIMing:TIME:PREPre on page 399

Time Pre->MP
Enters the time difference between the last preamble and the message part in access slots.
Two modes are defined in the standard. In mode 0, the preamble to message part difference is 3 access slots, in mode 1 it is 4 access slots.
Remote command:

Structure Length
Indicates the structure length:
- In "PRACH only - Preamble" mode, the structure length is defined as:
 "Structure Length" = "Start Offset (Slots)" + "Preamble Repetition""Time Pre->Pre"

Example: Calculating the structure length in PRACH preamble only mode
"Start Offset # = 1 Access Slots", i.e. two slots
"Preamble Repetition = 2"
"Time Pre->Pre = 2 Access Slots", i.e. four slots
"Structure Length" = 2 Slots + 2 x 4 Slots = 10 Slots

- In "PRACH only - Standard" mode, the structure length is defined as:
 "Structure Length" = "Start Offset (Slots)" + "Preamble Repetition""Time Pre->Pre" + "Time Pre->MP" + 15"Message Part Length (Frames)"
Example: Calculating the structure length in PRACH Standard mode

"Start Offset # = 2 Access Slots", i.e. four slots
"Preamble Repetition = 3"
"Time Pre->Pre = Time Pre->MP = 3 Access Slots", i.e. six slots
"Message Part Length = 2 Frames"
"Structure Length" = 4 Slots + 2 x 6 Slots + 6 Slots + 15 x 2 = 52 Slots

See also "Repeat Structure After ARB Sequence Length" on page 165.

Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:SPERiod?
on page 398

ARB Sequence Length
Indicates the ARB sequence length.

Note: A caution message is displayed, if the structure length is longer than the selected ARB sequence length.
The change the ARB sequence length, use the parameter Sequence Length ARB.

Remote command:
[:SOURce<hw>]:BB:W3GPp:SLENgh on page 254

Repeat Structure After ARB Sequence Length
Enables/disables repeating the selected PRACH structure during one ARB sequence.

"On" Within one ARB sequence, the selected PRACH structure is repeated once.

Figure 4-17: "Repeat Structure after ARB sequence length = On"

"Off" The selected PRACH structure can be repeated several times, depending on the structure length and the Repeat Structure After (x Acc. Slots).

Figure 4-18: "Repeat Structure after ARB sequence length = Off"
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:RAR on page 394

Repeat Structure After (x Acc. Slots)
If "Repeat Structure After ARB Sequence Length > Off", sets the number of access slots after that the selected PRACH structure is repeated, see Figure 4-18.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:RAF on page 394

4.28.2 Preamble Settings

1. To access these settings, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE 1".
2. Select "Mode > PRACH Standard/PRACH Preamble Only".
 The "Preamble Settings" section provides the parameters for configuring the PRACH preamble.

Preamble Power
Sets the power of the preamble component of the PRACH channel.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:POW on page 393

Preamble Power Step
Sets the power by which the preamble is increased from repetition to repetition. The power set with the parameter Preamble Power is the "target power", used during the last repetition of the preamble.
Example:
"Preamble Power = 0 dB"
"Preamble Repetition = 3"
"Preamble Power Step = 3 dB"

Figure 4-19: Generated power sequence

Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:POW:STEP on page 393

Preamble Repetition
Sets the preamble count.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:PREP on page 394
Signature
Selects the signature to be used for the PRACH channel.
The signature defines the code domain for the channelization code being used. 16 fixed bit patterns are defined.
Remote command:

4.28.3 Message Part Settings

Access:
1. Select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE 1".
2. Select "Mode > PRACH Standard".

The "Message Part" section comprises the settings for the data part of the PRACH.

Data Power
Sets the power of the data component of the PRACH channel.
Remote command:
[[:SOURce<hw>:BB:W3GPp:MSTation<st>:PRACH:DPOWer on page 392

Control Power
Sets the power of the control component of the PRACH channel.
Remote command:
[[:SOURce<hw>:BB:W3GPp:MSTation<st>:PRACH:CPOWer on page 391

Message Length
Sets the length of the message component of the PRACH channel in frames.
Remote command:
[[:SOURce<hw>:BB:W3GPp:MSTation<st>:PRACH:MLENgth on page 393

Slot Format
Selects the slot format.
Slot formats 0 to 3 are available for the PRACH channel. The slot format defines the symbol rate of the message component.
Remote command:
[[:SOURce<hw>:BB:W3GPp:MSTation<st>:PRACH:SFORmat on page 395

Symbol Rate
Sets the symbol rate of the PRACH channel.
The symbol rate is determined by the slot format set. A change in the symbol rate leads automatically to an adjustment of the slot format.
Remote command:
[[:SOURce<hw>:BB:W3GPp:MSTation<st>:PRACH:SRATe on page 395
TFCI

Enters the value of the TFCI field (transport format combination indicator) in the control component of the PRACH channel.

Remote command:

```
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:TFCI on page 396
```

Data Source

Selects the data source for the data component of the PRACH channel.

The following standard data sources are available:

- "All 0, All 1"
 An internally generated sequence containing 0 data or 1 data.
- "PNxx"
 An internally generated pseudo-random noise sequence.
- "Pattern"
 An internally generated sequence according to a bit pattern.
 Use the "Pattern" box to define the bit pattern.
- "Data List/Select DList"
 A binary data from a data list, internally or externally generated.
 Select "Select DList" to access the standard "Select List" dialog.
 - Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
 - Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.
 - Use the standard "File Manager" function to transfer external data lists to the instrument.

See also "Main Dialog > Data List Management".

Remote command:

```
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:DATA on page 391
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:DATA:PATTern on page 392
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:DATA:DSELeect on page 392
```

4.28.4 Channel Coding State

Channel coding of PRACH is possible for all UEs.

1. To access these settings, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE 1".
2. Select "Mode > PRACH Standard".

The "Channel Coding" section is where the channel coding for the PRACH channel is activated and deactivated and the coding type is defined. The fixed settings for the channel coding parameters are displayed.

Coding State
Activates or deactivates channel coding for the PRACH channel.
If enabled, the "Message Part Length" automatically is set to 2. It cannot be changed.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:ENHanced:PRACh:CCODing:STATe on page 436

Coding Type
Selects the predefined reference measurement channel coding types for the PRACH channel.
"RACH RMC (TB size 168 bit)"
Reference Measurements Channel Coding with transport block size of 168 bit.
"RACH RMC (TB size 360 bit)"
Reference Measurements Channel Coding with transport block size of 360 bit.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:ENHanced:PRACh:CCODing:TYPE on page 436

Show Coding
Calls the menu for displaying the channel coding settings. The reference measurement channel parameters are set to fixed values.
The following parameters are displayed:
"Data Source" The data source is displayed in the transport channel graphical display.
"Transport Block Size" Size of the transport block at the channel coding input.
"Transport Block"
Transport block count.

"Transport Time Interval"
Number of frames into which a TCH is divided.

"Size of CRC"
CRC type (length).

"Error Protection"
Error protection.

"Interleaver 1 / 2 State"
Channel coding interleaver state

Remote command:
n.a.

4.29 PCPCH Settings - UE

Access:
1. Select “3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE 1”.
2. Select "Mode > PCPCH Standard/PCPCH Preamble Only".

The PCPCH settings are available in two modes:
- In "PCPCH Standard” mode, the instrument generates a single physical common packet channel (PCPCH). This channel is used to transmit packet-oriented services (e.g., SMS).
- In "PCPCH Preamble only" mode, the instrument only generates the preamble of a physical common packet channel (PCPCH). This mode is needed for test case 8.9, according to 3GPP TS 25.141.
In this mode, only the preamble parameters are available.

Figure 4-20: Standard PCPCH Structure: Understanding the displayed information

1a, 1b = "Delta Power (Preamble)", i.e. correction values for the last AICH preamble before the message part and the CD Preamble
1c = "Preamble Power Step"; subtract this value from 1b to calculate the power of the other preambles
2 = "Delta Power (Message Part)", i.e. correction value for the message part overall
2a, 2b = Correction values for the data and control part of the message part
3a = Current "Structure Length"
3b = User-defined repetition of the PCPCH structure, i.e. the same structure is repeated three times within the current ARB sequence length
4 = Current ARB sequence length (in slots); set with the parameter Sequence Length ARB

The dialog comprises a graphical display of the PCPCH structure including the timing parameters, the "Preamble Settings" and "Message Part" sections. The last sections comprise the preamble settings and the parameters for the data part of the channel. Some settings are made directly in the input fields of the graphical display.

The "Channel Coding" settings for activating channel coding are available for UE1.

Power settings and power calculation

- Calculating the power of the preamble
The graphical display of the PCPCH structure indicates:
- The correction value for the last AICH preamble before the message part
- The CD Preamble (indication in the AICH and CD Preamble block)

The power of the other preambles is calculated by subtracting the selected "Preamble Power Step".

- Calculating the power of the message part
 The power correction value of the message part is indicated in the message part settings.
 For one active UE, the RF power of the message part is calculated as:
 "Message Part Power" = "RF Level" + "Delta Power Message Part"
 For PCPCH, the parameter "Level Reference" is always "RMS Power".

Example: Calculating the power of the message part

- "Level = 5 dBm"
- "Delta Power Message Part = 5.58 dB"

The resulting "Message Part Power" = 5 + 5.58 = 10.58 dBm

4.29.1 Graphical Display

The graphical display shows either the complete PCPCH including the message part or only the preamble depending on the selected mode.

PCPCH Standard

1. To access these settings, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE 1".
2. Select "Mode > PCPCH Standard"
PCPCH preamble-only

- Select "Mode > PCPCH Preamble Only".

![PCPCH Settings](image)

Figure 4-21: PCPCH Structure in "Mode > PCPCH preamble-only"

Some of the parameter values can be input directly in the input fields of the graphical display. The indicated structure length and the power correction values match the real settings; the number of preambles, however, is shown as an example, to explain the parameter function.

Use the power correction values to calculate the correct settings for the desired RF level (see "Power settings and power calculation" on page 171).

Delta Power (Preamble)

Indication of the level correction value for the last AICH preamble before the message part. This value is identical to the correction value for the CD preamble.

The level of the other preambles can be calculated by subtracting the set "Preamble Power Step".

Remote command:

```
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TIMing:DPOWer:PREAMble?
```

Delta Power (Message Part)

Indicates the level correction value for the message part, together with the power offsets of the data and control part.

See also Example "Calculating the power of the message part" on page 172.

Remote command:

```
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TIMing:DPOWer:MPARt?
```

Start Offset #

Enters the start offset of the PCPCH in access slots.
Note: The PCPCH only transmitted once, at the start of the sequence.
The starting time delay in timeslots is calculated according to TS 25 211, chapter 7.3
PCPCH/AICH timing relation and is $2^{\text{Start Offset #}}$.
Remote command:
[:SOURce<hw>:]BB:W3Gp:MSTation<st>:PCPCh:TIMing:SOFFset
on page 387

Transmission Timing (Preamble)
Enteres the time difference between two successive preambles in access slots.
Remote command:
[:SOURce<hw>:]BB:W3Gp:MSTation<st>:PCPCh:TIMing:TIME:PREPre
on page 388

Transmission Timing (Message Part)
Enteres the time difference between the last preamble and the message part in access slots.
Two modes are defined in the standard. In mode AICH transmission timing 0, the pre-
amble to message part difference is three access slots. In mode AICH transmission timing 1, it is four access slots.
Remote command:
on page 387

Structure Length
Indicates the structure length:
• In "PCPCH only - Preamble" mode, the structure length is defined as:
 "Structure Length" = "Start Offset (Slots)" + "Preamble Repetition" + "Time Pre->Pre"

Example: Calculating the structure length in PCPCH preamble-only mode
"Start Offset # = 2 access slots", i.e. = 4 slots
"Preamble Repetition = 2"
"Time Pre->Pre = 2 access slots", i.e. = 4 slots
"Structure Length" = 4 slots + 2 x 4 slots = 12 slots

• In "PCPCH only - Standard" mode, the structure length is defined as:
 "Structure Length" = "Start Offset (Slots)" + "Preamble Repetition" + "Time Pre->Pre"
 + "Time Pre->MP" + "Power Control Preamble Length (Frames)"
In PCPCH mode, the CD preamble has to be accounted. Therefore, preamble repetition instead of (preamble repetition - 1) is used.
Example: Calculating the structure length in PCPCH Standard mode
"Start Offset = 2 access slots", i.e. four slots
"Preamble Repetition = 3"
"Time Pre - Pre = Time Pre - MP = 3 access slots", i.e. six slots
"Power Control Preamble Length = 8 slots"
"Message Part Length = 2 frames"
"Structure Length" = 4 slots + 3 x 6 slots + 6 slots + 8 + 15 x 2 = 66 slots

Remote command:
[:SOURce<hw>]:BB:W3GPPp:MSTation<st>:PCPCh:TIMing:SPERiod?
on page 387

ARB Sequence Length
Indication of the ARB sequence length.
Note: A caution message is displayed, if the structure length is longer than the selected ARB sequence length.
The change the ARB sequence length, use the parameter Sequence Length ARB.
Remote command:
[:SOURce<hw>]:BB:W3GPPp:SLENght on page 254

Repeat Structure After ARB Sequence Length
Enables/disables repeating the selected PCPCH structure during one ARB sequence.
"On" Within one ARB sequence, the selected PCPCH structure is repeated once.
See Figure 4-17 for illustration of the principle.
"Off" The selected PCPCH structure can be repeated several times, depending on the structure length and the Repeat Structure After (x Acc. Slots).
See Figure 4-18 for illustration of the principle.

Remote command:
[:SOURce<hw>]:BB:W3GPPp:MSTation<st>:PCPCh:RARB on page 384

Repeat Structure After (x Acc. Slots)
If "Repeat Structure After ARB Sequence Length > Off", sets the number of access slots after that the selected PCPCH structure is repeated, see Figure 4-18.
Remote command:
[:SOURce<hw>]:BB:W3GPPp:MSTation<st>:PCPCh:RAFTer on page 384

4.29.2 Preamble Settings

1. To access these settings, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE 1".
2. Select "Mode > PCPCH Standard/PCPCH Preamble Only".

The "Preamble Settings" section provides the parameters for configuring the PCPCH preamble.

Preamble Power
Sets the power of the preamble component of the PCPCH channel.
Remote command:

Preamble Repetition
Sets the preamble count.
Remote command:

Preamble Power Step
Sets the power by which the preamble is increased from repetition to repetition. The power set under Preamble Power is the "target power", used during the last repetition of the preamble.

Example:
"Preamble Power" = 0 dB
"Preamble Repetition" = 3
"Preamble Power Step" = 3 dB

![Figure 4-22: Generated power sequence](image)

Remote command:

Power Control Preamble Length
Sets the length of the power control preamble in slots.
Remote command:

Signature
Selects the signature to be used for the PCPCH channel. The signature defines the code domain for the channelization code being used.
Remote command:
4.29.3 Message Part Settings

Access:

1. Select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE 1".
2. Select "Mode > PCPCH Standard".

The "Message Part" section comprises the settings for the data part of the PCPCH.

Data Power
Sets the power of the data component of the PCPCH channel.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:DPOWer on page 381

Control Power
Sets the power of the control component of the PCPCH channel.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:CPOWer on page 379

Message Length
Sets the length of the message component of the PCPCH channel in frames.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:MLENgth on page 382

Slot Format
Selects the slot format of the control component of the PCPCH channel.
Slot formats 0 to 2 are available for the PCPCH channel. The slot format defines the structure of the control component, the FBI mode.
When channel coding is active, the FBI mode and the slot format are prescribed.
"Slot format 0" No FBI field
"Slot format 1" 1 FBI field
"Slot format 2" 2 FBI fields
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:CPSFormat on page 380
FBI Mode
Selects the FBI (feedback information) mode.
The FBI mode is determined by the slot format set. A change in the FBI mode leads automatically to an adjustment of the slot format.
"FBI Off" The FBI field is not in use.
"FBI On 1 Bit" The FBI field is used with a length of 1 bit.
"FBI On 2 Bits" The FBI field is used with a length of 2 bits.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:FBI:MODE on page 382

FBI Pattern
Enters the bit pattern for the FBI field in the control part (of the message part) of the PCPCH.
The FBI field is filled cyclically with a pattern of up to 32 bits in length.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:FBI:PATTern on page 382

Symbol Rate
Sets the symbol rate of the PCPCH channel.
The symbol rate is determined by the slot format set. A change in the symbol rate leads automatically to an adjustment of the slot format.
When channel coding is active, the symbol rate is prescribed.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:SRATe on page 385

Data Source
Selects the data source for the data component of the PCPCH channel.
The following standard data sources are available:
- "All 0, All 1"
 An internally generated sequence containing 0 data or 1 data.
- "PNxx"
 An internally generated pseudo-random noise sequence.
- "Pattern"
 An internally generated sequence according to a bit pattern.
 Use the "Pattern" box to define the bit pattern.
- "Data List/Select DList"
 A binary data from a data list, internally or externally generated.
 Select "Select DList" to access the standard "Select List" dialog.
 – Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
 – Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.
 – Use the standard "File Manager" function to transfer external data lists to the instrument.
See also "Main Dialog > Data List Management".
Remote command:
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:PCPCh:DATA on page 380
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:PCPCh:DATA:PATTern on page 381
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:PCPCh:DATA:DSELect on page 381

TFCI
Enters the value of the TFCI field (transport format combination indicator) in the control component of the PCPCH channel.

Remote command:
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:PCPCh:TFCI on page 386

TPC Data Source
Defines the data source for the TPC field of the PCPCH channel.

The following standard data sources are available:
- "All 0, All 1"
 An internally generated sequence containing 0 data or 1 data.
- "Pattern"
 An internally generated sequence according to a bit pattern.
 Use the "Pattern" box to define the bit pattern.
- "Data List/Select TPC Data List"
 A binary data from a data list, internally or externally generated.
 Select "Select DList" to access the standard "Select List" dialog.
 - Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
 - Use the standard "File Manager" function to transfer external data lists to the instrument.

See also "Main Dialog > Data List Management".

Remote command:

Read Out Mode
Defines TPC data usage.

The TPC bits are used to signal the increase or reduction in transmit power to the called station. For all read out modes, 1 bit is taken from the data stream for the TPC field for each slot. The bit is entered into the bitstream several times, depending on the symbol rate. The difference between the modes lies in the usage of the TPC bits.

The different modes can be used to set a specific output power and then let the power oscillate around this value. For example, if the power is the pattern 11111, the power can be varied with "Single + alt. 01" and "Single + alt. 10". Thus, power measurements can be carried out at quasi-constant power.

- "Continuous;"
 The TPC bits are used cyclically.
- "Single + All 0"
The TPC bits are used once, and then the TPC sequence is continued with 0 bits.

- "Single + All 1"
 The TPC bits are used once, and then the TPC sequence is continued with 1 bit.

- "Single + alt. 01"
 The TPC bits are used once and then the TPC sequence is continued with 0 bits and 1 bit alternately. Bits as appended in multiples, depending on the symbol rate, for example, 00001111.

- "Single + alt. 10"
 The TPC bits are used once and then the TPC sequence is continued with 1 bit and 0 bits alternately. Bits as appended in multiples, depending on by the symbol rate, for example, 11110000.

Remote command:

[:SOURce<hw>]:BB:W3GPPp:MSTation<st>:PCPCh:TPC:READ on page 389

4.29.4 Channel Coding Settings

Access:

1. Select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE 1".

2. Select "Mode > PCPCH Standard".

The "Channel Coding" section is where the channel coding for the PCPCH channel is activated and deactivated and the coding type is defined. The fixed settings for the channel coding parameters are displayed.

Channel Coding State

Activates or deactivates channel coding for the PCPCH channel.

Remote command:

[:SOURce<hw>]:BB:W3GPPp:MSTation:ENHanced:PCPCh:CCODing:STATe on page 435
Channel Coding Type
Selects the predefined reference measurement channel coding types for the PCPCH channel.

"CPCH RMC (TB size 168 bit)"
Reference Measurements Channel Coding with transport block size of 168 bit.

"CPCH RMC (TB size 360 bit)"
Reference Measurements Channel Coding with transport block size of 360 bit.

Remote command:
\[
[:\text{SOURce<hw>:BB:W3Gp:MS\text{T}ation:ENHanced:PCPCh:CCODing:TYPE}\text{ on page 436}
\]

Show Coding
Calls the menu for displaying channel coding. The reference measurement channel parameters are set to fixed values.

The following parameters are displayed:

"Data Source" The data source is displayed in the transport channel graphical display.

"Transport Block Size" Size of the transport block at the channel coding input.

"Transport Block" Transport blocks count.

"Transport Time Interval" Number of frames into which a TCH is divided.

"Size of CRC" CRC type (length).

"Error Protection" Error protection.

"Interleaver 1 / 2 State" Channel coding interleaver state

Remote command:
\[
n.a.
\]

4.30 DPCCH Settings - UE
The DPCCH settings section is where the settings are made for the DPCCH channel. This section is only available if DPCCH + DPDCH mode is activated (see also Chapter 4.33, "DPDCH Settings - UE", on page 210).

In the upper section, the settings of the DPCCH parameters are made. The channel structure is displayed.
In UE1, the DPCCH is generated in real time (enhanced).

About the dedicated physical channels

At the physical level, an uplink DPCH consists of the DPDCH (Dedicated Physical Data Channel) and the DPCCH (Dedicated Physical Control Channel). The channel characteristics are defined by the symbol rate.

The DPDCH transports the user data that is fed directly into the data field. The DPCCH carries the control fields (Pilot field; TPC = Transmit Power Control, FBI (Feedback Information) and TFCI = Transport Format Combination Indicator). DPDCH is grouped with DPCCH I/Q code multiplexing in accordance with 3GPP TS 25.211, see diagram below. The generation of an uplink reference measurement channel is described in Chapter 4.38, "Global Enhanced Channel Settings - UE1", on page 231.

![Diagram of Uplink DPCH in Time Domain](image)

Channelization Code

Displays the channelization code and the modulation branch (I or Q) of the DPCCH. The code channel is spread with the set channelization code (spreading code). The standard assigns a fixed channelization code to the DPCCH.
Remote command:

Power
Sets the power of the DPCCH channel.

Test cases defined in the 3GPP standard often use notation “Signaling values for β_c and β_d”. The quantization of the gain parameters is shown in the following table which is taken from 3GPP TS 25.213 (left columns) and supplemented by the instrument-specific values (right column).

<table>
<thead>
<tr>
<th>Signaling values for β_c and β_d</th>
<th>Quantized amplitude ratios β_c and β_d</th>
<th>Power to be set / dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>14</td>
<td>14/15</td>
<td>-0.60</td>
</tr>
<tr>
<td>13</td>
<td>13/15</td>
<td>-1.24</td>
</tr>
<tr>
<td>12</td>
<td>12/15</td>
<td>-1.94</td>
</tr>
<tr>
<td>11</td>
<td>11/15</td>
<td>-2.69</td>
</tr>
<tr>
<td>10</td>
<td>10/15</td>
<td>-3.52</td>
</tr>
<tr>
<td>9</td>
<td>9/15</td>
<td>-4.44</td>
</tr>
<tr>
<td>8</td>
<td>8/15</td>
<td>-5.46</td>
</tr>
<tr>
<td>7</td>
<td>7/15</td>
<td>-6.62</td>
</tr>
<tr>
<td>6</td>
<td>6/15</td>
<td>-7.96</td>
</tr>
<tr>
<td>5</td>
<td>5/15</td>
<td>-9.54</td>
</tr>
<tr>
<td>4</td>
<td>4/15</td>
<td>-11.48</td>
</tr>
<tr>
<td>2</td>
<td>2/15</td>
<td>-17.52</td>
</tr>
<tr>
<td>1</td>
<td>1/15</td>
<td>-23.52</td>
</tr>
<tr>
<td>0</td>
<td>Switch off</td>
<td>Switch channel off or -80 dB</td>
</tr>
</tbody>
</table>

Remote command:
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:DPCCh:POWER on page 351

DL-UL Timing Offset
Sets the timing offset between the downlink and the uplink.

The timing offset determines the time delay in chips between the downlink signal timing and transmission of the uplink signal.

Note: The signals of all UEs have the same uplink slot timing. The parameters “DL-UL Timing Offset” are coupled and by changing this parameter for one of the UEs, the values for the other UEs are automatically adjusted.
"1024 Chips" The uplink signal is generated according to the 3GPP specification. The signal is calculated synchronously to the downlink reference timing, i.e. the first uplink frame starts at chip position 1024 of the simulated signal.

"0 Chips" No timing offset is applied, i.e. there is no timing delay between receipt of the downlink signal and transmission of the uplink signal. See also "To generate a continuous uplink signal composed of multiple separately generated uplink frames" on page 241.

Remote command:
[:SOURce<hw>]:BB:W3GPP:MSTation<st>:DPCCh:TOFFset on page 353

Slot Format #
Selects the slot format.

The slot format defines the structure of the DPCCH slots and the control fields. Depending on the selected slot format, the slot structure is displayed.

Slot formats 0 to 4 are available for the DPCCH channel as defined in the 3GPP Rel. 7 specification TS 25.211.

Note: The former slot formats 4 and 5 according to 3GPP Rel. 4 specification TS 25.211 are not supported.

The slot format selection adjusts the DPCCH slot structure according to the 3GPP specification. However, it is also possible to adjust this structure by configuration of each of the control fields separately.

The table below gives an overview of the cross-reference between the slot format and the structure of the DPCCH slot.

<table>
<thead>
<tr>
<th>Slot format #</th>
<th>Pilot, bits</th>
<th>NTPC, bits (TPC Mode)</th>
<th>NTFCI, bits (Use TFCI)</th>
<th>NFBI, bits (FBI Mode)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

"Slot format 0"
"FBI Mode" = Off, i.e. no FBI field
"TFCI Mode" = 2 bits
"Use TFCI" = On, i.e. TFCI field = 2 bits

"Slot format 1"
"FBI Mode" = Off, i.e. no FBI field
"TFCI Mode" = 2 bits
"Use TFCI" = Off, i.e. no TFCI field
"Slot format 2"

"FBI Mode" = 1 bit
"TFCI Mode" = 2 bits
"Use TFCI" = On, i.e. TFCI field = 2 bits

"Slot format 3"

"FBI Mode" = 1 bit
"TFCI Mode" = 2 bits
"Use TFCI" = Off, i.e. no TFCI field

"Slot format 4"

Option: R&S SMBV-K59
"FBI Mode" = Off, i.e. no FBI field
"TFCI Mode" = 4 bits
"Use TFCI" = Off, i.e. no TFCI field

Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:SFORmat on page 351

Use TFCI
Activates the TFCI (transport format combination indicator) field.
The status of the TFCI field is determined by the "Slot Format" set. A change leads automatically to an adjustment of the slot format.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TFCI:STATe on page 352

TFCI
Enters the value of the TFCI field (transport format combination indicator) of the DPCCH channel.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TFCI on page 352

FBI Mode
Selects the FBI (feedback information) mode.
The FBI mode is determined by the "Slot Format" set. A change in the FBI mode leads automatically to an adjustment of the slot format.

Note: The former 2-bits long FBI Mode according to 3GPP Rel. 4 specification TS 25.211 is not supported.
"Off" The FBI field is not in use.
"1 Bit" The FBI field with a length of 1 bit is used.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:FBI:MODE on page 350

FBI Pattern (bin)
Enters the bit pattern for the FBI field.
The FBI field is filled cyclically with a pattern of up to 32 bits in length.
Remote command:

TPC Mode
Selects the TPC (Transmit Power Control) mode.
The TPC mode is determined by the "Slot Format" set. A change in the TPC mode leads automatically to an adjustment of the slot format.

"2 Bits" A TPC field with a length of 2 bits is used.
"4 Bits" Option: R&S SMBV-K59
 A TPC field with a length of 4 bits is used.
 A 4 bits long TPC field can be selected, only for Slot Format 4 and disabled FBI and TFCI fields.

Remote command:

TPC Data Source
Defines the data source for the TPC field of the DPCCH channel.
The following standard data sources are available:

- "All 0, All 1"
 An internally generated sequence containing 0 data or 1 data.
- "Pattern"
 An internally generated sequence according to a bit pattern.
 Use the "Pattern" box to define the bit pattern.
- "Data List / Select TPC Data List"
 A binary data from a data list, internally or externally generated.
 Select "Select TPC Data List" to access the standard "Select List" dialog.
 See also "Main Dialog > Data List Management".

Remote command:

TPC Read Out Mode
Defines TPC data usage.
The TPC bits are used to signal the increase or reduction in transmit power to the called station. For all read out modes, 1 bit is taken from the data stream for the TPC field for each slot. The bit is entered into the bitstream several times, depending on the symbol rate. The difference between the modes lies in the usage of the TPC bits.
The different modes can be used to set a specific output power and then let the power oscillate around this value. For example, if the power is the pattern 11111, the power can be varied with "Single + alt. 01" and "Single + alt. 10". Thus, power measurements can be carried out at quasi-constant power.

- "Continuous:"
 The TPC bits are used cyclically.
- "Single + All 0"
The TPC bits are used once, and then the TPC sequence is continued with 0 bits.

- "Single + All 1"
 The TPC bits are used once, and then the TPC sequence is continued with 1 bit.

- "Single + alt. 01"
 The TPC bits are used once and then the TPC sequence is continued with 0 bits and 1 bit alternately. Bits as appended in multiples, depending on the symbol rate, for example, 00001111.

- "Single + alt. 10"
 The TPC bits are used once and then the TPC sequence is continued with 1 bit and 0 bits alternately. Bits as appended in multiples, depending on the symbol rate, for example, 11110000.

Use the parameter "Read Out Mode" together with the option "TPC For Output Power Control (Mis-) Use" to generate various output power profiles.

Remote command:

\[
[:SOURce<hw>:BB:W3GPPp:MSTation<st>:DPCCh:TPC:READ
\]

on page 356

Misuse TPC for Output Power Control
(available for UE2, UE3 and UE4 only)

Defines "mis-" use of the TPC data.

The TPC bits are used to signal the increase or reduction in transmit power to the called station.

If "(Mis-) use TPC for output power control" is activated, the specified pattern is used to vary the intrinsic transmit power over time. A bit of this pattern is removed for each slot in order to increase (bit = "1") or reduce (bit = "0") the channel power by the specified power step ("Power Step"). The upper limit is 0 dB and the lower limit -60 dB.

The following envelope is produced with the settings:

- Channel power = 0 dB
- Power step = 1.0 dB
- Pattern = "00110110000011"
- "TPC Read Out Mode = Continuous"

Figure 4-24: Dynamic change of channel power (continuous)

Note: Power control works both on the DPCCH and all the active DPDCCHs. The change in power is always carried out (as stipulated in the standard) at the start of the slot pilot field.

Remote command:

\[
\]

on page 354
TPC Power Step
(available for UE2, UE3 and UE4 only)
Sets the step width of the power change in dB for "(Mis-) use TPC for output power control".
Remote command:
\[:SOURce<hw>:BB:W3GPP:MStation<st>:DPCCh:TPC:PSTep\] on page 355

4.31 E-DPCCH Settings - UE

Access:
1. Select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE".
2. Select "Mode > DPCCH + DPDCH".
3. Select "E-DPCCH Settings > Show Details".

The dialog displays the channel structure and the available parameters.

State (E-DPCCH)
Activates or deactivates the E-DPCCH channel.
If an FRC is set for the channel, this field is activated automatically.
Remote command:
\[:SOURce<hw>:BB:W3GPP:MStation<st>:HSUPa:DPCCh:E:STATe\] on page 413

Power
Sets the power of the E-DPCCH channel.
The value range is -80 dB to 0 dB.
Remote command:
\[:SOURce<hw>:BB:W3GPP:MStation<st>:HSUPa:DPCCh:E:POWer\] on page 412

Retransmission Sequence Number
Sets the retransmission sequence number.
The value range is 0 to 3.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:RSNumber on page 413

Channelization Code
Displays the channelization code and the modulation branch (always I) of the E-DPCCH. The code channel is spread with the set channelization code (spreading code). The standard assigns a fixed channelization code to the E-DPCCH.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:CCODe? on page 412

E-TFCI Information
Sets the value for the TFCI (Transport Format Combination Indicator) field.
The value range is 0 to 127.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:TFCI on page 413

Happy Bit
Activating the happy bit. This bit is indicating whether the UE could use more resources (Not Happy/deactivated) or not (Happy/activated).
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:HBIT on page 412

HSUPA FRC...
For UE1, accesses the dialog for configuring the FRC (Fixed Reference Channel), see Chapter 4.37, "HSUPA FRC Settings - UE", on page 223.
Remote command:
 n.a.

4.32 HS-DPCCH Settings - UE

Access:
1. Select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE".
2. Select "HS-DPCCH".

The dialog contains the general parameters required for configuring the channel, and displays the channel structure.

Realtime signal generation

To enable realtime signal generation for UE1:
- Select "3GPP FDD > User Equipment > UE1> HS-DPCCH"
- Select "Compatibility Mode > Up to Release 7"

4.32.1 About HS-DPCCH

HS-DPCCH Structure

The HS-DPCCH carries uplink feedback signaling related to the accuracy and quality of downlink HS-DSCH transmission. Hybrid-ARQ Acknowledgment (HARQ-ACK) is transmitted in the first subframe slot. Channel quality Indication (CQI) and if UE configured in MIMO mode, also precoding control indication (PCI) are transmitted in the second and third subframe slot. Only one HS-DPCCH can be transmitted on each radio link. The HS-DPCCH can only exist together with an uplink DPCCH.
The HS-DPCCH subframe starts $256 \times m$ chips after the start of an uplink DPCCH slot. The value m is selected such that the subframe transmission starts within the first 0 to 255 chips after 7.5 slots following the end of the received HS-PDSCH subframe.

Table 4-10: Calculating of the HARQ-ACK power

<table>
<thead>
<tr>
<th>Mode</th>
<th>HARQ-ACK</th>
<th>Offset parameter</th>
<th>Resulting power</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>ACK/NACK pattern</td>
<td>Power Offset ACK</td>
<td>Power + Power Offset ACK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power Offset NACK</td>
<td>Power + Power Offset NACK</td>
</tr>
<tr>
<td>Single ACK</td>
<td>Power Offset ACK</td>
<td>Power + Power Offset ACK</td>
<td></td>
</tr>
</tbody>
</table>
4.32.2 HS-DPCCH Common Settings

The displayed channel structure depends on whether the UE is working in MIMO mode or not.

State (HS-DPCCH)
Activates or deactivates the HS-DPCCH channel.

Remote command:

```
[:SOURce<hw>]:BB:W3Gp:MSTation<st>:DPCCh:HS:STATE
```

on page 357
Power (HS-DPCCH)
Sets the power in dB.

- In a "Compatibility Mode > Release 8 and Later" mode, this parameter represents the reference power used to calculate:
 - The power used during the HARQ-ACK slot
 - The power used during the PCI/CQI slots

- In a "Compatibility Mode > Up to Release 7" mode, this parameter represents the CQI power of a UE that:
 - Is configured in a normal mode
 - Is configured in MIMO mode and sending CQI Type B report.

The CQI Power is the reference power used to calculate:
- The power used during the HARQ-ACK slot
- The power used during the PCI/CQI slots of a UE configured in MIMO mode and sending CQI Type A reports.

The power entered is relative to the powers of the other channels and does not initially relate to the "Level" power display. If Adjust Total Power to 0dB is executed, all the power data is relative to the "Level" display.

Remote command:
[:SOURce<hw>:BB:W3GPp:MSTation<st>:DPCCh:HS:POWer on page 357

Compatibility Mode (HS-DPCCH)
Switches between the following modes:

- "Up to Release 7"
 Switches to the display of the HS-DPCCH settings provided for backwards compatibility.

- "Release 8 and Later"
 The concept of the graphical user interface for the configuration of HS-DPCCH has been adapted to support simultaneous DC-HSDPA and MIMO operation, as required in 3GPP Release 9 onwards. This mode is disabled, if Dynamic Power Control State is On.

- "Release 8 and Later RT"
 Enables generation of the HS-DPCCH in real-time even for Release 8/9 content. Real-time signals are useful for complex HS-DPCCH scheduling and are required while using dynamic power control with the HS-DPCCH.

Remote command:

Start Delay
Sets the delay between the uplink HS-DPCCH and the frame of uplink DPCH.
Thus, the channel can be synchronized with the associated downlink HS-PDSCH.
The delay is entered as a multiple m of 256 chips according to TS 25.211 7.7:
\[m = \left(\frac{T_{TX_{\text{diff}}}}{256} \right) + 101 \]
Where \(T_{TX_{\text{diff}}} \) is the difference in chips (\(T_{TX_{\text{diff}}} = 0, 256, ..., 38144 \)).
The value range of m is 0 to 250 (2 frames +1024 chips)
Remote command:
[:SOURce<hw>:]:BB:W3GPp:MSTation<st>:DPCCh:HS:SDELay on page 358

Inter TTI Distance (Interval)
Selects the distance between two HSDPA packets. The distance is set in number of subframes (3 slots = 2 ms). An "Inter TTI Distance" of 1 means continuous generation.
Regarding the HS-DPCCH uplink transmission, this parameter determines where HS-DPCCH transmissions are possible in principle.
To have actual HS-DPCCH transmissions, HARQ-ACK and/or PCI/CQI transmissions have to be scheduled as described in:
● 4.32.3
● 4.32.4
● 4.32.5
Remote command:
[:SOURce<hw>:]:BB:W3GPp:MSTation<st>:DPCCh:HS:TTIDistance on page 358

Channelization Code (HS-DPCCH)
Displays the channelization code and the modulation branch (I or Q) of the HS-DPCCH.
The code channel is spread with the set channelization code (spreading code). The channelization code of the high-speed channel depends on the number of activated DPDCHs, i.e. on the overall symbol rate.
For "Secondary Cell Enabled ≥ 4", two HS-DPCCHs, i.e. two channelization codes are used.
Example:
Enable the following settings:
- "DPDCH State = On"
- "DPDCH Overall Symbol Rate = 60 ksps"
- "HS-DPCCH State = On"
- "Secondary Cell Enabled = 0"
 The used channelization code is "HS-DPCCH > Channelization Code = Q / 64".
 Open the "User Equipment > Code Domain" dialog
- Enable "Secondary Cell Enabled = 4"

Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:CCODe? on page 358

Slot Format
Displays the used slot format.
The specified slot format for "Secondary Cell Enabled < 2" is "Slot Format 0 (15 ksps)".
With more than 2 secondary cells or with 2 secondary cells and "MIMO Mode = On",
the "Slot Format 1 (30 ksps)" is required, i.e. slot format with higher symbol rate.
Remote command:

4.32.3 HS-DPCCH Scheduling Table (Release 8 and Later/RT)

These settings are available for "Compatibility Mode > Release 8 and Later/Release 8 and Later RT".
The configuration of MIMO settings and DC-HSDPA/4C-HSDPA/8C-HSDPA requires R&S SMBV-K59.

With the provided settings, you can adjust the HS-DPCCH signal of a UE configured for one of the following operations: normal operation, DC-HSDPA or 4C/8C-HSDPA operation, MIMO mode or for a simultaneous secondary cell + MIMO operation.

The HS-DPCCH structure can be configured with the parameters "Inter TTI Distance", "Number of Table Rows", "From/To" and "Repeat After". The HARQ-ACK and CQI/PCI information can be configured with the parameters of the HS-DPCCH scheduling tables. The scheduling for the HARQ-ACK and PCI/CQI reports can be performed independently; different repetition cycles can be specified.

Example: HS-DPCCH scheduling
The following is a simple example intended to explain the principle. Configured is an HS-DPCCH scheduling in "MIMO Mode = Off" and with "Secondary Cell Enabled = 0".

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Delay</td>
<td>101 * 256 Chips</td>
</tr>
<tr>
<td>Compatibility Mode (HS-DPCCH)</td>
<td>Release 8 and later (RT)</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Inter TTI Distance (Interval)</td>
<td>5 Subframes</td>
</tr>
<tr>
<td>HARQ-ACK scheduling</td>
<td></td>
</tr>
<tr>
<td>Number of Rows</td>
<td>2</td>
</tr>
<tr>
<td>HARQ-ACK Repeat After</td>
<td>4 intervals</td>
</tr>
<tr>
<td>Row#0</td>
<td></td>
</tr>
<tr>
<td>HARQ-ACK From Interval/ HARQ-ACK To Interval</td>
<td>from HARQ-ACK interval 0 to 1</td>
</tr>
<tr>
<td>HS-DPCCH 1/2, HARQ-ACK 1/2/3/4</td>
<td>A</td>
</tr>
<tr>
<td>Row#1</td>
<td></td>
</tr>
<tr>
<td>HARQ-ACK From Interval/ HARQ-ACK To Interval</td>
<td>from HARQ-ACK interval 3 to 3</td>
</tr>
<tr>
<td>HS-DPCCH 1/2, HARQ-ACK 1/2/3/4</td>
<td>N</td>
</tr>
<tr>
<td>PCI/CQI scheduling</td>
<td></td>
</tr>
<tr>
<td>Number of Rows</td>
<td>2</td>
</tr>
<tr>
<td>PCI/CQI Repeat After</td>
<td>3 intervals</td>
</tr>
<tr>
<td>Row#0</td>
<td></td>
</tr>
<tr>
<td>PCI-CQI From Interval/ PCI-CQI To Interval</td>
<td>from PCI/CQI interval 0 to 0</td>
</tr>
<tr>
<td>HS-DPCCH 1/2, PCI/CQI 1/2/3/4 Type</td>
<td>DTX</td>
</tr>
<tr>
<td>Row#1</td>
<td></td>
</tr>
<tr>
<td>PCI-CQI From Interval/ PCI-CQI To Interval</td>
<td>from PCI/CQI interval 1 to 1</td>
</tr>
<tr>
<td>HS-DPCCH 1/2, PCI/CQI 1/2/3/4 Type</td>
<td>CQI</td>
</tr>
<tr>
<td>CQI/CQI1/CQI1/CQI2</td>
<td>5</td>
</tr>
</tbody>
</table>

Use the Scheduling List to display the configured scheduling.

![Figure 4-27: Example of HS-DPCCH Scheduling](image)

"Inter TTI Distance (Interval)" = Five subframes
"HARQ-ACK Cycle" = "Inter TTI Distance (Interval)"*HARQ-ACK Repeat After = 5*4=20 Intervals"
"CQI Cycle" = "Inter TTI Distance (Interval)"*CQI Repeat After = 5*3=15 Intervals"
MIMO Mode
Enables/disables working in MIMO mode for the selected UE.
Remote command:
[:SOURce<hw>]:BB:W3GFp:MSTation<st>:DPCCh:HS:MMODe on page 368

Secondary Cell Enabled
Enables the selected number of secondary cells for the selected UE. Secondary cells are used for working in DC-/4C/8C-HSDPA mode.
See also Chapter 3.3.15, "Dual Cell HSDPA (DC-HSDPA)", on page 38, Chapter 3.3.16, "HS-DPCCH Extension for 4C-HSDPA and 8C-HSDPA", on page 42 and Chapter 5.4, "How to Configure the HS-DPCCH Settings for 4C-HSDPA Tests", on page 244.
Remote command:

Secondary Cell Active
Sets the number of active secondary cells for the selected UE.
See also Chapter 3.3.15, "Dual Cell HSDPA (DC-HSDPA)", on page 38, Chapter 3.3.16, "HS-DPCCH Extension for 4C-HSDPA and 8C-HSDPA", on page 42 and Chapter 5.4, "How to Configure the HS-DPCCH Settings for 4C-HSDPA Tests", on page 244.
Remote command:
[:SOURce<hw>]:BB:W3GFp:MSTation<st>:DPCCh:HS:SC:ACTive on page 369

HARQ-ACK
Comprises the parameters provided for the independent configuration of the HARQ-ACK scheduling.

Number of Rows ← HARQ-ACK
Determines the number of the rows in the HARQ-ACK scheduling table.
Each row represents one TTI interval, as configured with the parameter Inter TTI Distance (Interval). The parameters set in the table are read out cyclically.
See also Figure 4-27.
Remote command:
[:SOURce<hw>]:BB:W3GFp:MSTation<st>:DPCCh:HS:HACK:ROWS on page 369

HARQ-ACK Repeat After ← HARQ-ACK
Defines the cycle length after that the information in the HS-DPCCH scheduling table is read out again from the beginning.
The parameter together with the parameter Inter TTI Distance (Interval) defines the repetition cycle of the HARQ-ACK pattern:
HARQ-ACK cycle = Inter TTI Distance (Interval) * "HARQ-ACK Repeat After"
Remote command:
HARQ-ACK From Interval/ HARQ-ACK To Interval ← HARQ-ACK

Defines the beginning/end of the HARQ-ACK transmissions inside the HARQ-ACK cycle (specified by **HARQ-ACK Repeat After**). The range is specified in multiples of intervals, determined by **Inter TTI Distance (Interval)**.

See also [Figure 4-27](#).

Remote command:

```
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:DPCCh:HS:ROW<ch0>:HACK:FROM
```

on page 370

```
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:DPCCh:HS:ROW<ch0>:HACK:TO
```

on page 370

HS-DPCCH 1/2, HARQ-ACK 1/2/3/4 ← HARQ-ACK

Per HS-DPCCHs, sets the information transmitted during the HARQ-ACK slots of the TTIs during the corresponding specified "HARQ-ACK From/To" range.

Two HS-DPCCHs are transmitted, if "Secondary Cell Enabled > 3".

The number of enabled HARQ-ACKs depends on the combination of enabled and active secondary cells. In this implementation, the activated cells are mapped from left to right.

The processing of HS-DPCCH is defined for four different main cases (see Table 4-12).

Table 4-12: HS-DPCCH processing

<table>
<thead>
<tr>
<th>Mode</th>
<th>"MIMO Mode"</th>
<th>"Secondary Cell Enabled"</th>
<th>"Secondary Cell Active"</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal operation</td>
<td>Off</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>MIMO only</td>
<td>On</td>
<td>0</td>
<td>0</td>
<td>see Chapter 3.3.14.5, "MIMO uplink control channel Support", on page 36</td>
</tr>
<tr>
<td>DC-HSDPA only</td>
<td>Off</td>
<td>1</td>
<td>0, 1</td>
<td>see Chapter 3.3.15.1, "DC-HSDPA Data Acknowledgement (non-MIMO mode)", on page 39</td>
</tr>
<tr>
<td>4C/8C-HSDPA only</td>
<td>Off</td>
<td>1</td>
<td>2 to 7</td>
<td>see Chapter 3.3.16, "HS-DPCCH Extension for 4C-HSDPA and 8C-HSDPA", on page 42</td>
</tr>
<tr>
<td>DC-HSDPA +MIMO</td>
<td>On</td>
<td>1</td>
<td>1</td>
<td>see Chapter 3.3.15.2, "DC-HSDPA + MIMO", on page 41</td>
</tr>
<tr>
<td>4C/8C-HSDPA +MIMO</td>
<td>On</td>
<td>1</td>
<td>2 to 7</td>
<td>see Chapter 3.3.16, "HS-DPCCH Extension for 4C-HSDPA and 8C-HSDPA", on page 42</td>
</tr>
</tbody>
</table>

Meaning of the used abbreviations:

- **A** indicates an ACK response; **N** - an NACK
- **D** means no transmission (DTX), i.e. no transport block was sent on the corresponding HS-DSCH downlink transmission.
- Single letter, e.g. an **A** indicates a response to a single scheduled transport block (TB)
- A letter's couple, e.g. an **AA** indicates two MIMO streams, i.e. the response on two TBs
• / is a separation mark between the response to the serving and secondary cells, where the feedback related to the serving HS-DSCH cell is the one before the divider sign.

Example: Understanding the syntax
For better representation of the principle, the sending of ACK only messages is assumed.

<table>
<thead>
<tr>
<th>HARQ-ACK value</th>
<th>Description</th>
</tr>
</thead>
</table>
| A/A/A | "MIMO Mode = Off" (single letters only)
Three active cells, one serving and two secondary serving cells; one single TB transmission per cell |
| AA/A | "MIMO Mode = On"
Two active cells, one serving with two MIMO streams and one secondary serving cell with single TB transmission |
| AA/AA | "MIMO Mode = On"
Two active cells, each transmitting two MIMO streams |
| AA/AA, AA/D | "MIMO Mode = On"
Three active cells, each transmitting two MIMO streams |
| AA/AA, AA/AA | "MIMO Mode = On"
Four active cells, each transmitting two MIMO streams |

"DTX" No HARQ-ACK feedback information is sent.
"A, N" Selects an ACK or NACK response to a single scheduled transport block.
"AA, AN, NA, NN"
("MIMO Mode > On", "Secondary Cell Enabled/Active = 0")
Selects the response to two scheduled transport blocks, i.e. feedback on the primary and secondary stream in a dual stream transmission.
"A/D, N/A, … (different combinations possible)"
("MIMO Mode > Off", "Secondary Cell Enabled < 2")
Selects the response to a single scheduled transport block on each of the serving and secondary serving HS-DSCH cells.
"A/D/D, N/D/D, … (different combinations possible)"
("MIMO Mode > Off", "Secondary Cell Enabled = 2")
Selects the response to a single scheduled transport block on each of the serving and the two secondary serving HS-DSCH cells.
"AN/NN, D/AA, … (different combinations possible)"
("MIMO Mode > On", "Secondary Cell Active = On")
Selects the response to two scheduled transport blocks on each of the serving and secondary serving HS-DSCH cells.
"PRE, POST" PRE or POST is sent in the HARQ-ACK slots of the corresponding TTI.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:HACK<di>
on page 370

Power Offset HARQ-ACK ← HARQ-ACK
Sets the power offset of an HARQ-ACK response relative to the "Power".
The power used during all HARQ-ACK slots during the corresponding specified "HARQ-ACK From/To" range is calculated as:
\[
P_{\text{HARQ-ACK}} = \text{Power} + P_{\text{off_HARQ-ACK}}
\]
The value range is -10 dB to 10 dB.
The parameter is enabled for HARQ-ACK different than DTX.
While generating the HS-DPCCH signal in real time, the HARQ-ACK power offsets of all configured HARQ-ACK responses are set to the same value.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:POHAck
on page 371

PCI / CQI
Comprises the parameters provided for the independent configuration of the PCI/CQI reports scheduling.

Number of Rows ← PCI / CQI
This parameter determines the number of the rows in the PCI / CQI scheduling table. Each row represents one TTI interval, as configured with the parameter Inter TTI Distance (Interval). The parameters set in the table are read out cyclically.
See also Figure 4-27.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:PCQI:ROWS
on page 369

PCI/CQI Repeat After ← PCI / CQI
Defines the cycle length after that the information in the HS-DPCCH scheduling table is read out again from the beginning.
The parameter together with the parameter Inter TTI Distance (Interval) defines the repetition cycle of the PCI/CQI pattern:
\[
\text{PCI/CQI cycle} = \text{Inter TTI Distance (Interval)} \times \text{"PCI/CQI Repeat After"}
\]
Remote command:
on page 374

PCI-CQI From Interval/ PCI-CQI To Interval ← PCI / CQI
Defines the beginning/ end of the PCI/CQI transmissions inside the PCI/CQI cycle (specified by PCI/CQI Repeat After). The range is specified in multiples of intervals, defined by Inter TTI Distance (Interval).
See also Figure 4-27.
Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI:FROM
on page 372

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI:TO
on page 372

HS-DPCCH 1/2, PCI/CQI 1/2/3/4 Type ← PCI / CQI

Per HS-DPCCH, selects the type of the PCI/CQI report (see CQI Reports: Type A and Type B and CQI Reports: CQI1 and CQI2).

Two HS-DPCCHs are required, if "Secondary Cell Enabled > 3".

The number of enabled PCI/CQIs depends on the number of required HS-DPCCHs and the "Slot Format". In this implementation, the activated cells are mapped from left to right.

The available values depend on the state of the parameters "MIMO Mode", "Secondary Cell Enabled" and "Secondary Cell Active".

- **"DTX"** No PCI/CQI feedback information is sent.
- **"CQI"** Selects CQI report for the normal operation.
- **"Type A Single TB"** (MIMO Mode On)
 Selects CQI Type A report with information that one transport block is preferred.
- **"Type A Double TB"** (MIMO Mode On)
 Selects CQI Type A report with information that two transport blocks are preferred.
- **"Type B"** (MIMO Mode On)
 Selects CQI Type B report.
- **"Composite CQI"** (MIMO Mode Off, "Secondary Cell Enabled = Secondary Cell Active ≤ 2")
 Selects a composite CQI, constructed from the two individual reports CQI1 and CQI2 of the serving and secondary serving HS-DSCH cell.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI<di>:TYPE on page 372

Power Offset PCI/CQI ← PCI / CQI

Sets the power offset $P_{\text{off,PCI/CQI}}$ of all PCI/CQI slots during the corresponding specified PCI/CQI From/To range relative to the **Power**.

The power $P_{\text{PCI/CQI}}$ used during the PCI/CQI slots is calculated as:

$$P_{\text{PCI/CQI}} = \text{Power} + P_{\text{off,PCI/CQI}}$$

The value range is -10 dB to 10 dB.

While generating the HS-DPCCH signal in real time, the PCI/CQI power offsets of all configured PCI/CQI slots are set to the same value.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:POPCqi
on page 373

PCI/CQI 1/2/3/4 Content ← PCI / CQI
Accesses a dialog for configuring the PCI and CQI report. The provided settings
depend on the selected "PCI/CQI Type".

CQI/CQI1/CQI2 ← PCI/CQI 1/2/3/4 Content ← PCI / CQI
Sets the CQI report transmitted during the PCI/CQI slots of the TTIs during the corre-
sponding specified PCI/CQI From/To range (see Chapter 3.3.14.6, "CQI Reports: Type
A and Type B", on page 37 and "CQI Reports: CQI1 and CQI2" on page 41).
"CQI" Sets the CQI value for CQI Type B report and the CQI in normal oper-
ation.
"CQI1" Sets the CQI value in case a CQI Type A report when one transport
block is preferred.
"CQI2" Sets the CQI1 value of CQI Type A report when two transport blocks
are preferred or the CQI1 value of a composite CQI report of a dual
cell only operation.
"CQI2" Sets the CQI2 value of CQI Type A report when two transport blocks
are preferred or the CQI2 value of a composite CQI report of a dual
cell only operation.

Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI<di>:
CQI<us> on page 373

PCI ← PCI/CQI 1/2/3/4 Content ← PCI / CQI
Selects the PCI value transmitted during the PCI/CQI slots of the TTIs during the corre-
sponding specified PCI/CQI From/To range (see PCI Reports).
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI<di>:
PCI on page 373

Suggested / Current ARB Seq. Length (HS-DPCCH)
Displays the suggested and current ARB sequence length, in case the signal is not
generated in real time.

The "Suggested ARB Sequence Length" is the calculated minimum length that
depends on the Inter TTI Distance (Interval), the Number of Rows/Number of Rows,
the HARQ-ACK Repeat After and the PCI/CQI Repeat After. The current ARB
sequence length is adjusted by pressing the button "Adjust ARB Sequence Length".
Example: Effect of the ARB sequence length

- Preset the instruments and adjust the settings as described in Example "HS-DPCCH scheduling" on page 195.
 Use the Scheduling List to show the HS-DPCCH scheduling (see also Figure 4-27).
- Change the Compatibility Mode (HS-DPCCH) to "Release 8 and Later" and compare the displayed HS-DPCCH scheduling in the "Scheduling List".

Real-time signal generation

- The "Suggested / Current ARB Sequence Length" is 12 / 1. Press the Adjust ARB Sequence Length (HS-DPCCH).
 The "Current ARB Seq. Length" is adjusted, the channel restarts after 12 frames and the "Scheduling List" shows the HS-DPCCH scheduling in all frames as in the real-time mode.

Tip: To ensure a long enough ARB sequence, select "3GPP FDD > Filter/Clipping/ARB Settings" and adjust the Sequence Length ARB so that the ARB sequence length is multiple or equal the scheduling repetition.

Remote command:

Adjust ARB Sequence Length (HS-DPCCH)
Sets the current ARB sequence length to the suggested value (see also Example “Effect of the ARB sequence length” on page 203).

Remote command:
[:SOURce<hw>]:BB:W3GPP:MSTation<st>:DPCCh:HS:SLENgt:ADJust
on page 374

4.32.4 HS-DPCCH Settings for Normal Operation (Up to Release 7)
The R&S SMBV supports also the parameters for backward compatibility.

Access:
1. Select “3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE”
2. Select “HS-DPCCH”.
3. Select “Compatibility Mode > Up to Release 7”.

The dialog contains the parameters that were available up to the selected release.

Power Offset ACK
Sets the power offset \(P_{\text{off,ACK}} \) of an ACK response to a single scheduled transport block relative to the CQI Power \(P_{\text{CQI}} \).

The power PACK used during the HARQ-ACK slot is calculated as:
\[
P_{\text{ACK}} = P_{\text{CQI}} + P_{\text{off,ACK}}
\]

The value range is -10 dB to 10 dB.

Remote command:
[:SOURce<hw>]:BB:W3GPP:MSTation<st>:DPCCh:HS:POACK on page 359
Power Offset NACK

Sets the power offset $P_{\text{off_NACK}}$ of an NACK response to a single scheduled transport block relative to the CQI Power P_{CQI}.

The power P_{NACK} used during the HARQ-ACK slot is calculated as:

$$P_{\text{NACK}} = P_{\text{CQI}} + P_{\text{off_NACK}}$$

The value range is -10 dB to 10 dB.

Remote command:

ACK/NACK Pattern

(for "MIMO Mode > Off")

Enters the pattern for the HARQ-ACK field (Hybrid-ARQ Acknowledgment).

After receiving a transmission packet, the user equipment returns feedback information in the HARQ-ACK field that is related to the accuracy of downlink HS-DSCH transmission.

1 bit is used per HS-DPCCH packet. The maximum length of the pattern is 32 bits.

"1" = ACK

The HARQ ACK is sent. Transmission was successful and correct.

"0" = NACK

The NACK is sent. Transmission was not correct. With an NACK, the UE requests retransmission of the incorrect data.

"-" = DTX

Nothing is sent. Transmission is interrupted (discontinuous transmission (DTX)).

Remote command:

`[:SOURce<hw>:BB:W3GPp:MSTation<st>:DPCCh:HS:HAPattern` on page 360

CQI Pattern Length

(for "MIMO Mode > Off")

Sets the length of the CQI sequence. The values of the CQI sequence are entered in input fields "CQI Values". The pattern is generated cyclically.

With the CQI (channel quality indicator), the user equipment informs the base station about the receive quality of the downlink HS-PDSCH.

Thus, the base station can adapt the modulation and coding scheme to improve the signal quality. The instrument supports the control of the base station HS-PDSCH by CQI sequences with a length of 1 to 10 values.

Remote command:

CQI Values

(for "MIMO Mode > Off")

Enters the values of the CQI sequence. Value -1 means that no CQI is sent (DTX).

The length of the CQI sequence is set at input field CQI Length. The pattern is generated cyclically.
With the CQI, the user equipment informs the base station about the receive quality of the downlink HS-PDSCH. Thus, the base station can adapt the modulation and coding scheme to improve the signal quality. The instrument supports the control of the base station HS-PDSCH by CQI sequences with a length of 1 to 10 values.

Remote command:
```
[:SOURce<hw>]:BB:W3GPPp:MSTation<st>:DPCCh:HS:CQI<ch>[:VALues]
on page 361
```

MIMO Mode (Up to Release 7)

(requires R&S SMBV-K59)

Enables/disables working in MIMO mode for the selected UE.

When MIMO mode is enabled, the parameters ACK/NACK pattern, CQI pattern length and CQI values are not available. Several MIMO-specific parameters are enabled for configuration (see Chapter 4.32.5, "MIMO Settings HS-DPCCH (Up to Release 7)", on page 206s).

Remote command:
```
[:SOURce<hw>]:BB:W3GPPp:MSTation<st>:DPCCh:HS:MIMO[:MODE]
on page 361
```

4.32.5 MIMO Settings HS-DPCCH (Up to Release 7)

The configuration of MIMO settings requires R&S SMBV-K59 and "MIMO Mode > On".

Access:

1. Select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE"
2. Select "HS-DPCCH".
3. Select "Compatibility Mode > Up to Release 7".
4. Select "MIMO Mode > On".

The available settings allow you to adjust the HS-DPCCH configuration for UE configured in MIMO mode.

The HS-DPCCH structure can be configured with the parameters Inter TTI Distance and Number of TTIs. The HS-DPCCH structure can also be configured by changing the HARQ-ACK and CQI/PCI information per TTI by means of the parameters of the HS-DPCCH scheduling table. Any combination of single or dual transport block HARQ-ACK, PCI value, CQI Type and corresponding CQI value(s), as well as channel power can be configured.

Power Offset ACK/ACK

Sets the power offset $P_{\text{off,ACK/ACK}}$ of an ACK/ACK response to two scheduled transport blocks relative to the CQI P_{CQI}.

The power $P_{\text{ACK/ACK}}$ used during the HARQ-ACK slots is calculated as:

$$P_{\text{ACK/ACK}} = P_{\text{CQI}} + P_{\text{off,ACK/ACK}}$$

The value range is -10 dB to 10 dB.

Remote command:

```
[:SOURce<hw>:BB:W3GPP:MSTation<st>:DPCCh:HS:MIMO:POAAck
```

on page 361

Power Offset ACK/NACK

Sets the power offset $P_{\text{off,ACK/NACK}}$ of an ACK/NACK response to two scheduled transport blocks relative to the CQI P_{CQI}.
The power $P_{\text{ACK/NACK}}$ used during the HARQ-ACK slots is calculated as:

$$P_{\text{ACK/NACK}} = P_{\text{CQI}} + P_{\text{off_ACK/NACK}}$$

The value range is -10 dB to 10 dB.

Remote command:

\[
{:\text{SOURce<hw>}:\text{BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:POANack}}
\]
on page 362

Power Offset NACK/ACK

Sets the power offset $P_{\text{off_NACK/ACK}}$ of an NACK/ACK response to two scheduled transport blocks relative to the CQI power P_{CQI}.

The power $P_{\text{NACK/ACK}}$ used during the HARQ-ACK slots is calculated as:

$$P_{\text{NACK/ACK}} = P_{\text{CQI}} + P_{\text{off_NACK/ACK}}$$

The value range is -10 dB to 10 dB.

Remote command:

\[
{:\text{SOURce<hw>}:\text{BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:PONAck}}
\]
on page 362

Power Offset NACK/NACK

Sets the power offset $P_{\text{off_NACK/NACK}}$ of an NACK/NACK response to two scheduled transport blocks relative to the CQI power P_{CQI}.

The power $P_{\text{NACK/NACK}}$ used during the HARQ-ACK slots is calculated as:

$$P_{\text{NACK/NACK}} = P_{\text{CQI}} + P_{\text{off_NACK/NACK}}$$

The value range is -10 dB to 10 dB.

Remote command:

\[
{:\text{SOURce<hw>}:\text{BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:PONNack}}
\]
on page 363

Power Offset CQI Type A

Sets the power offset $P_{\text{off_CQI Type A}}$ of the PCI/CQI slots in case a CQI Type A report is sent relative to the CQI power P_{CQI}.

The power $P_{\text{CQI Type A}}$ used during the PCI/CQI slots is calculated as:

$$P_{\text{CQI Type A}} = P_{\text{CQI}} + P_{\text{off_CQI Type A}}$$

Since the CQI Type B reports are used in a single stream transmission (see Chapter 3.3.14.6, "CQI Reports: Type A and Type B", on page 37), the power $P_{\text{CQI Type B}} = P_{\text{CQI}}$.

The value range is -10 dB to 10 dB.

Remote command:

\[
{:\text{SOURce<hw>}:\text{BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:POCA}}
\]
on page 364

Number of TTIs (Up to Release 7)

Selects the number of configurable TTIs.

This parameter determines the number of the rows in the HS-DPCCH scheduling table. Each row represents one TTI. The parameters set in the table are read out cyclically.
Remote command:
[:SOURce<hw>]:BB:W3Gp:MSTation<st>:DPCCh:HS:MIMO:TTICount
on page 364

MIMO Settings Table
Comprises the parameters provided for active MIMO Mode.

HARQ-ACK (Up to Release 7) ← MIMO Settings Table
Selects the information transmitted during the HARQ-ACK slot of the corresponding TTI (see Chapter 3.3.14.5, "MIMO uplink control channel Support", on page 36).

"DTX" Selects discontinuous transmission (DTX) for the corresponding TTI. During that TTI, no feedback information is sent, i.e. all other parameters in the feedback signaling table are disabled.

"Single TB: ACK/Single TB: NACK"
Selects an ACK or NACK response to a single scheduled transport block.

Selects the response to two scheduled transport blocks.

Remote command:
[:SOURce<hw>]:BB:W3Gp:MSTation<st>:DPCCh:HS:MIMO:TTI<ch0>:HACK
on page 365

PCI (Up to Release 7) ← MIMO Settings Table
Selects the PCI value transmitted during the PCI/CQI slots of the corresponding TTI (see Chapter 3.3.14.7, "PCI Reports", on page 37).

Remote command:
[:SOURce<hw>]:BB:W3Gp:MSTation<st>:DPCCh:HS:MIMO:TTI<ch0>:PCI
on page 365

CQI Type (Up to Release 7) ← MIMO Settings Table
Selects the type of the CQI report (see Chapter 3.3.14.6, "CQI Reports: Type A and Type B", on page 37).

"Type A Single TB"
Selects CQI Type A report with information that one transport block is preferred.

"Type A Double TB"
Selects CQI Type A report with information that two transport blocks are preferred.

"Type B"
Selects CQI Type B report.

Remote command:
[:SOURce<hw>]:BB:W3Gp:MSTation<st>:DPCCh:HS:MIMO:TTI<ch0>:CQIType
on page 365

CQI/CQI_{1}/CQI_{2} (Up to Release 7) ← MIMO Settings Table
Selects the CQI report transmitted during the PCI/CQI slots of the corresponding TTI (see Chapter 3.3.14.6, "CQI Reports: Type A and Type B", on page 37).
"CQI" Sets the CQI value for CQI Type B report.
"CQI_1" Sets the CQI value in case a CQI Type A report when one transport block is preferred.
"CQI_2" Sets the CQI value of CQI Type A report when two transport blocks are preferred.
"CQI_3" Sets the CQI value of CQI Type A report when two transport blocks are preferred.

Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:TTI<ch0>:CQI<di> on page 366

4.33 DPDCH Settings - UE

The "DPDCH Settings" section is where the settings are made for the DPDCH channels. This section is only available if "DPCCH + DPDCH" mode is activated (see also Chapter 4.30, "DPCCH Settings - UE", on page 181).

The DPDCH is configured in form of "Channel Table". The number of active channels depends on the overall symbol rate set. The data sources for the data part of the individual channels can be selected in the channel table. The remaining parameters are only displayed and their value depends on the overall symbol rate set.

In UE1, the DPDCH is generated in real time (enhanced), if only one DPDCH is selected by the overall symbol rate setting.

The "Global Enhanced Channels" accesses a dialog for configuring the enhanced parameters.
4.33.1 DPDCH Common Settings

State (DPDCH)
Activates or deactivates all the DPDCH channels.
Remote command:
[:SOURce<hw>]:BB:W3Gp:MSTation<st>:DPDCh:STATe on page 378

Channel Power
Sets the channel power in dB.
The power entered is relative to the powers of the other channels and does not initially relate to the "Level" power display. If Adjust Total Power to 0dB is executed, all the power data is relative to "Level".

Note: The uplink channels are not blanked in this mode (duty cycle 100%).
Test cases defined in the 3GPP standard often use notation "Signaling values for β_c and β_d". The quantization of the gain parameters is shown in the following table which is taken from 3GPP Spec 25.213 (left columns) and supplemented by the instrument-specific values (right column).

<table>
<thead>
<tr>
<th>Signaling values for β_c and β_d</th>
<th>Quantized amplitude ratios β_c and β_d</th>
<th>Power to be set / dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>14</td>
<td>14/15</td>
<td>-0.60</td>
</tr>
<tr>
<td>13</td>
<td>13/15</td>
<td>-1.24</td>
</tr>
<tr>
<td>12</td>
<td>12/15</td>
<td>-1.94</td>
</tr>
<tr>
<td>11</td>
<td>11/15</td>
<td>-2.69</td>
</tr>
<tr>
<td>10</td>
<td>10/15</td>
<td>-3.52</td>
</tr>
<tr>
<td>9</td>
<td>9/15</td>
<td>-4.44</td>
</tr>
<tr>
<td>8</td>
<td>8/15</td>
<td>-5.46</td>
</tr>
<tr>
<td>7</td>
<td>7/15</td>
<td>-6.62</td>
</tr>
<tr>
<td>6</td>
<td>6/15</td>
<td>-7.96</td>
</tr>
<tr>
<td>5</td>
<td>5/15</td>
<td>-9.54</td>
</tr>
<tr>
<td>4</td>
<td>4/15</td>
<td>-11.48</td>
</tr>
<tr>
<td>2</td>
<td>2/15</td>
<td>-17.52</td>
</tr>
<tr>
<td>1</td>
<td>1/15</td>
<td>-23.52</td>
</tr>
<tr>
<td>0</td>
<td>Switch off</td>
<td>Switch channel off or -80 dB</td>
</tr>
</tbody>
</table>

Remote command:
[:SOURce<hw>]:BB:W3Gp:MSTation<st>:DPDCh:POWer on page 378
Force Channelization Code To I/O

Sets the channelization code to I/O.

This mode can only be activated if the "Overall Symbol Rate < 2 x 960 kbps".

It is provided for test purposes. Using an oscilloscope, the data bits of the DPDCH are visible on the I/Q signal for the following settings:

- "Force Channelization Code to I/Q > On"
- "Scrambling Code Mode > Off"
- "DPDCH Channel Power = - 80 dB"

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPDCh:FCIO on page 377

Overall Symbol Rate

Sets the overall symbol rate of all the DPDCH channels.

The structure of the DPDCH channel table depends on this parameter. The overall symbol rate determines which DPDCHs are active, which symbol rate they have and which channelization codes they use (see Table A-2).

DPDCHs that are not active by virtue of the overall rate are also disabled for operation.

Note: Up to an overall rate of 960 kbps, only DPDCH 1 is active, its symbol rate is the same as the overall symbol rate and the channelization code is the same as spreading factor/4 (spreading factor = chip rate / symbol rate).

With an overall symbol rate greater than 960 kbps, all the active DPDCH channels have the symbol rate 960 kbps.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPDCh:ORATe on page 378

Global Enhanced Channels

Accesses the dialog for configuring all the enhanced channel settings of user equipment UE1, see Chapter 4.38, "Global Enhanced Channel Settings - UE1", on page 231.

Remote command:

n.a.

4.33.2 Channel Table

The channel table allows you to configure the individual parameters for the DPDCH channels. The structure of the currently selected channel is displayed graphically in the table header.

The number of active channels depends on the selected overall symbol rate. You can select the data sources for the individual channels. The remaining parameters are only displayed and their values depend also on the overall symbol rate. See also Table A-2.

Channel Number

Displays the channel number.
User Interface

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Remote command:
n.a.
(the channel is selected by the suffix at keyword CHANnel<n>)

Channel Type
Displays the channel type.
Remote command:
n.a.

Symbol Rate / State
Displays the symbol rate and the state of the DCDCH channel.
The symbol rate and the state of channel 2 to 6 are dependent on the overall symbol rate set and cannot be modified.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CHANnel<ch>:DPDCh:SRATe?
on page 377

Channelization Code
Displays the channelization code and the modulation branch (I or Q) of the DPDCH channel.
The channelization code is dependent on the overall symbol rate set and cannot be modified.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CHANnel<ch>:DPDCh:CCODe?
on page 375

DPDCH Data Source
For UE2, UE3 and UE4 and UE1 without channel coding, selects the data source for the DPDCH channel.
When channel coding is active, the data source for the DTCH1 component in the transport layer is selected here. In this situation, the display reads "DTCH data Source" and the "DCCH Data" entry field is enabled for selecting the data source of the DCCH channel. The data sources of the other DTCH channels can be set in the "Global Enhanced Channel Settings > Transport Channel" dialog, see Chapter 4.38, "Global Enhanced Channel Settings - UE1", on page 231.
The following standard data sources are available:

- "All 0, All 1"
 An internally generated sequence containing 0 data or 1 data.
- "PNxx"
 An internally generated pseudo-random noise sequence.
- "Pattern"
 An internally generated sequence according to a bit pattern.
 Use the "Pattern" box to define the bit pattern.
- "Data List/Select DList"
 A binary data from a data list, internally or externally generated.
 Select "Select DList" to access the standard "Select List" dialog.
 - Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.
Use the standard "File Manager" function to transfer external data lists to the instrument.

See also "Main Dialog > Data List Management".

Remote command:
[:SOURce<hw>]:BB:W3GPP:MSTation<st>:CHANnel<ch>:DPDCh:DATA

DCCH Data Source

For UE1 for enhanced channels with active channel coding, selects the data source for the DCCH component.

The following standard data sources are available:
- "All 0, All 1"
 An internally generated sequence containing 0 data or 1 data.
- "PNxx"
 An internally generated pseudo-random noise sequence.
- "Pattern"
 An internally generated sequence according to a bit pattern.
 Use the "Pattern" box to define the bit pattern.
- "Data List/Select DList"
 A binary data from a data list, internally or externally generated.
 Select "Select DList" to access the standard "Select List" dialog.
 - Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
 - Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.
 - Use the standard "File Manager" function to transfer external data lists to the instrument.

See also "Main Dialog > Data List Management".

4.34 E-DPDCH Settings - UE

Access:
1. Select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE".
2. Select "Mode > DPCCH + DPDCH".
3. Select "E-DPDCH Settings > Show Details".

The dialog displays the channel structure and the available parameters.

The E-DPDCH channels are defined in form of a "Channel Table". The number of active channels depends on the overall symbol rate. The data sources for the data part of the individual channels can be selected in the channel table. The remaining parameters are only displayed and their value depends on the overall symbol rate.

4.34.1 E-DPDCH Common Settings

State (E-DPDCH)
Activates or deactivates all the E-DPDCH channels.
If an FRC is set for the channel, this field is activated automatically.

Remote command:
```
[:SOURce<hw>]:BB:W3GPP:MSTation<st>[:HSUPa]:DPDCh:E:STATe
```
on page 415

Force Channelization Code To I/0
Sets the channelization code to I/0.
This mode can only be activated if the overall symbol rate is less than 2 x 960 kbps.
It is provided for test purposes. Using an oscilloscope, the data bits of the E-DPDCH are visible on the I/Q signal if:
- "Force Channelization Code to I/0 > On"
- "Scrambling Code Mode > Off"
- "DPDCH Power = -80 dB"

Remote command:
```
[:SOURce<hw>]:BB:W3GPP:MSTation<st>[:HSUPa]:DPDCh:E:FCIO
```
on page 414

Overall Symbol Rate
Sets the overall symbol rate of all the E-DPDCH channels.
The structure of the E-DPDCH channel table depends on this parameter. The overall symbol rate determines which E-DPDCHs are active, which symbol rate they have and which channelization codes they use.

E-DPDCHs that are not active by virtue of the overall rate are also disabled for operation.

If an FRC is set for the channel, this field is read-only.

Note: If the Dynamic Power Control State and/or the UL-DTX... / User Scheduling State is enabled, the E-DPDCH is generated in real time. Then only the overall symbol rates with one E-DPDCH channel or those that restrict the E-DPDCHs to the I or Q branch are enabled for configuration.

To send simultaneously multiple physical E-DPDCH, set the Overall Rate to one of the predefined two-channel configurations. For some special applications, it is necessary to split up the generation of these channels to two baseband blocks. The instrument provides also special non-standard overall symbol rates, that enable the instrument to generate only the E-DPDCH channels of the I branch or of the Q branch per baseband block.

Remote command:
```
[:SOURce<hw>]:BB:W3Gp:MSTation<st>[[:HSUPa]:DPDCh:E:ORATe
```
on page 414

Modulation

Sets the modulation of the E-DPDCH.

There are two possible modulation schemes specified for this channel, BPSK and 4PAM (4 Pulse-Amplitude Modulation). The latter one is available only for Overall Symbol Rates using two channels, e.g 2x960 ksps and/or 2x1920 ksps.

Note: Modulation scheme 4PAM requires R&S SMBV-K59.

Remote command:
```
[:SOURce<hw>]:BB:W3Gp:MSTation<st>[[:HSUPa]:DPDCh:E:MODulation
```
on page 414

4.34.2 Channel Table

The channel table allows you to configure the individual parameters for the E-DPDCH channels. The structure of the currently selected channel is displayed graphically in the table header.

The number of active channels depends on the selected overall symbol rate. You can select the data sources for the individual channels. The remaining parameters are only displayed and their values depend also on the overall symbol rate. See also Table A-3 and Table A-4.

Channel Number

Displays the channel number.

Remote command:
```
n.a.
```

(the channel is selected by the suffix at keyword CHAnnel<n>)
Channel Type
Displays the channel type.
Remote command:
n.a.

Symbol Rate / State
Displays the symbol rate and the state of the E-DPDCH channel.
The symbol rate and the state of the channels depend on the overall symbol rate and cannot be modified.
Remote command:
[:SOURce<hw>]:BB:W3GPP:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E:SRATe?
on page 402

Channelization Code
Displays the channelization code and the modulation branch (I or Q) of the DPDCH channel.
The channelization code depends on the overall symbol rate and cannot be modified.
Remote command:
[:SOURce<hw>]:BB:W3GPP:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E:CCODE?
on page 400

Channel Power / dB
Sets the power of the selected E-DPDCH channel.
The power entered is relative to the powers of the other channels and does not initially relate to the "Level" power display. If Adjust Total Power to 0dB is executed, all the power data is relative to "Level"
Remote command:
[:SOURce<hw>]:BB:W3GPP:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E:POWer on page 402

E-DPDCH Data Source
Selects the data source for the E-DPDCH channel.
The data source for the DPDCH is also entered here for the enhanced channels of UE1 without channel coding.
The following standard data sources are available:
- "All 0, All 1"
 An internally generated sequence containing 0 data or 1 data.
- "PNxx"
 An internally generated pseudo-random noise sequence.
- "Pattern"
 An internally generated sequence according to a bit pattern.
 Use the "Pattern" box to define the bit pattern.
- "Data List/Select DList"
 A binary data from a data list, internally or externally generated.
 Select "Select DList" to access the standard "Select List" dialog.
 – Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
4.35 E-DCH Scheduling - UE

(requires option R&S SMBV-K45)

Access:

1. Select "3GPP FDD > User Equipment > link Direction > Uplink / Reverse > User Equipments > UE"
2. Select "E-DCH Settings > Show Details".

This dialog comprises the settings necessary to configure the common time schedule of the E-DPDCH and E-DPCCH. The settings enable you to configure single E-DCH packets or "bursts" of variable length consisting of several successive E-DCH packets and to decide upon the E-DCH packets distribution.

Use the Scheduling List to display and verify the configured uplink scheduling for every UE.
Real time vs. ARB signal generation

The E-DCH channels are generated in real time or as an ARB signal.

- If the E-DCH channels are generated as ARB signal, the ARB sequence length has to be long enough and a multiple or equal the scheduling repetition.
- The instrument generates the channels in real time if UL-DTX... / User Scheduling State and/or Dynamic Power Control State is activated.
 - During generation of E-DCH channels in real-time, channel coding (i.e. activation of FRCs) is disabled. Use pre-channel-coded data list as "Data Source" if channel coded data on the E-DCH is required.
 - The E-DPDCH can be generated in realtime only for overall symbol rates with one E-DPDCH channel or those that restrict the E-DPDCHs to the I or Q branch.

Example: E-DCH Scheduling

To configure an E-DCH transmission in TTIs 3-6, 128-156, 1003-1006, 1128-1156, etc. perform the settings listed in Table 4-13.

Table 4-13: E-DCH scheduling example

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select "3GPP FDD > Filter/Clipping/ARB Settings" and adjust the Sequence Length ARB</td>
<td>200 frames</td>
<td>If the E-DCH channels are generated as ARB signal, the ARB sequence length has to be long enough and a multiple or equal the scheduling repetition.</td>
</tr>
<tr>
<td>E-DCH TTI</td>
<td>2 ms</td>
<td></td>
</tr>
<tr>
<td>Number of Table Rows</td>
<td>2</td>
<td>two scheduled E-DCH bursts</td>
</tr>
<tr>
<td>E-DCH Schedule Repeats After</td>
<td>1000 TTIs</td>
<td>each E-DCH burst is repeated every 1000 TTIs</td>
</tr>
<tr>
<td>Row#0</td>
<td></td>
<td>E-DCH burst (4 E-DCH packets)</td>
</tr>
<tr>
<td>"E-DCH TTI From"</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>"E-DCH TTI To"</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Row#1</td>
<td></td>
<td>E-DCH burst (29 E-DCH packets)</td>
</tr>
<tr>
<td>"E-DCH TTI From"</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>"E-DCH TTI To"</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>E-DPCCH State</td>
<td>On</td>
<td>Enables E-DPCCH</td>
</tr>
<tr>
<td>E-DPDCH State</td>
<td>On</td>
<td>Enables E-DPDCH</td>
</tr>
</tbody>
</table>

Open the Scheduling List to display the E-DCH scheduling.
E-DCH TTI
Sets the size for the TTI (Transmission Time Interval).

If an FRC is set for the E-DPCCH or UL-DTX / User Scheduling State is enabled, this field is read-only.

Remote command:
[:SOURce<hw>]:BB:W3GPPp:MSTation<st>[:HSUPa]:EDCH:TTIEdch

Number of Table Rows
Sets the number of the rows in the scheduling table, i.e. determines the number of the E-DCH "bursts" enabled for configuration. An E-DCH "burst" is built of several successive E-DCH packets.

Remote command:
[:SOURce<hw>]:BB:W3GPPp:MSTation<st>[:HSUPa]:EDCH:ROWCount
E-DCH Schedule Repeats After
Determine the number of TTIs after that the E-DCH scheduling is repeated.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:REPeat
on page 416

E-DCH Scheduling Table
Enables flexible configuration of single E-DCH packets or E-DCH “bursts” of variable length consisting of several successive E-DCH packets

E-DCH TTI From ← E-DCH Scheduling Table
Determines the start TTI of the corresponding E-DCH burst.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:ROW<ch0>:FROM
on page 416

E-DCH TTI To ← E-DCH Scheduling Table
Determines the end TTI of the corresponding E-DCH burst.
Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:ROW<ch0>:TO
on page 416

4.36 Scheduling List
Opens a display of the current uplink scheduling per UE.
Figure 4-28: Example of Scheduling List (UE1)

1 = E-DCH TTI is three slots long, i.e. E-DCH TTI = 2ms
2 = DPCCH shows busts pattern, i.e. UL-DTX is activated
3 = HS-DPCCH is active and the scheduled HARQ-ACK and PCI/CQI messages have different patterns
4 = E-DPCH and E-DPDCH are active; both channels have the same E-DCH scheduling
5 = ARB Sequence Length = 2 frames

Frame Start
Defines the start frame of the displayed UL scheduling.

Number of Frames
Defines number of frames for that the UL scheduling is displayed.
4.37 HSUPA FRC Settings - UE

The "UE HSUPA FRC" dialog provides the parameters for configuring the fixed reference channel (FRC) and the settings for the HARQ simulation.

4.37.1 FRC General Settings

Access:
1. Select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE"
2. Select "E-DPCCH Settings > Show Details > HSUPA FRC..."

The dialog comprises the common settings for the fixed reference channel (FRC).

State (HSUPA FRC)
Activates or deactivates the FRC state for the E-DCH channels.
If FRC is activated, the channels E-DPCCH and E-DPDCH are automatically activated.
The following parameters of these channels are set automatically, depending on the configured FRC:
- For E-DPCCH:
 - "Retransmission Sequence Number" is set to 0
 - "E-TFCI"
- For E-DPDCH:
 - Overall Symbol Rate is set according to the correspondent parameter of FRC.
 The "Modulation" is set according to the "Modulation" used for the selected FRC.
 The E-DPDCH Data Source is set according to the Data Source (E-DCH) used for the selected FRC.
- For E-DCH scheduling:
 - E-DCH TTI is set according to the E-DCH TTI of the selected FRC
 If the "HARQ Simulation" is disabled and the state in the DTX mode section is activated, the "E-DCH Scheduling Table" is configured according to the "DTX Pattern" specified.
 By enabled "HARQ Simulation", the settings in the "E-DCH Scheduling Table" are configured to ensure a continuous E-DCH transmission.

Note: HSUPA FRCs are disabled, if UL-DTX... / User Scheduling State or Dynamic Power Control State are activated.
Remote command:
\[:SOURce<hw>:BB:W3Gpp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:STATe\]
on page 410

Fixed Reference Channel (FRC)
Selects the FRC according to TS 25.141, annex A.10.
Additionally, user defined FRC can be configured.
FRC8 is available only for instruments equipped with R&S SMBV-K59.
Remote command:
\[:SOURce<hw>:BB:W3Gpp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:CHANnel\]
on page 403

Maximum Information Bitrate/kbps
Displays the maximum information bit rate.
Remote command:
\[:SOURce<hw>:BB:W3Gpp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:MIBRate?\]
on page 408

UE Category
Displays the UE category that is minimum required for the selected FRC (see also Chapter 3.3.18.2, "UL 16QAM UE Capabilities", on page 43).
Remote command:
\[:SOURce<hw>:BB:W3Gpp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:UECategory?\]
on page 412

4.37.2 Coding and Physical Channels Settings

Access:
1. Select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE"
2. Select "E-DPCCH Settings > Show Details > HSUPA FRC... > Coding And Physical Channels".

<table>
<thead>
<tr>
<th>Coding And Physical Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Source (E-DCH)</td>
</tr>
<tr>
<td>Overall Symbol Rate</td>
</tr>
<tr>
<td>Modulation</td>
</tr>
<tr>
<td>E-DCH TTI</td>
</tr>
<tr>
<td>Number Of HARQ Processes</td>
</tr>
<tr>
<td>Binary Channel Bits / TTI (Nbin)</td>
</tr>
<tr>
<td>Transport Block Size Table</td>
</tr>
<tr>
<td>Transport Block Size Index</td>
</tr>
<tr>
<td>Information Bit Payload (Ninf)</td>
</tr>
<tr>
<td>Coding Rate (Ninf/Nbin)</td>
</tr>
</tbody>
</table>

This dialog comprises the parameters required for configuring the physical channel settings and coding.

Data Source (E-DCH)
Selects the data source for the E-DCH channels, i.e. this parameter affects the corresponding parameter of the E-DPDCH.

The following standard data sources are available:

- "All 0, All 1"
 An internally generated sequence containing 0 data or 1 data.
- "PNxx"
 An internally generated pseudo-random noise sequence.
- "Pattern"
 An internally generated sequence according to a bit pattern.
 Use the "Pattern" box to define the bit pattern.
- "Data List/Select DList"
 A binary data from a data list, internally or externally generated.
 Select "Select DList" to access the standard "Select List" dialog.
 - Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
 - Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.
 - Use the standard "File Manager" function to transfer external data lists to the instrument.

See also "Main Dialog > Data List Management".

Remote command:

```plaintext
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DATA
```

on page 403

```plaintext
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DATA: PATTern
```

on page 404

```plaintext
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DATA: DSELect
```

on page 404
Overall Symbol Rate
Sets the overall symbol rate for the E-DCH channels, i.e. this parameter affects the corresponding parameter of the E-DPDCH.

Remote command:
`:SOURce<hw>:BB:W3GPP:MSTation<st>[:HSUPa]:DPCCh:E:FRC:ORATe`
on page 409

Modulation
Sets the modulation of the FRC, i.e. this parameter affects the corresponding parameter of the E-DPDCH.

There are two possible modulation schemes specified, BPSK and 4PAM (4 Pulse Amplitude Modulation). The latter one is available only for the following Overall Symbol Rates:
- 2x960 kbps
- 2x1920 kbps
- 2x960 + 2x1920 kbps.

Note: Modulation scheme 4PAM is available only for instruments equipped with the HSPA+ option R&S SMBV-K59.

Remote command:
`:SOURce<hw>:BB:W3GPP:MSTation<st>[:HSUPa]:DPCCh:E:FRC:MODulation`
on page 409

E-DCH TTI
Sets the size of the TTI (Transmission Time Interval) for the E-DCH channels, i.e. this parameter affects the corresponding parameter of the E-DCH scheduling configuration.

Remote command:
`:SOURce<hw>:BB:W3GPP:MSTation<st>[:HSUPa]:DPCCh:E:FRC:TTIEdch`
on page 411

Number Of HARQ Processes
Displays the number of HARQ (Hybrid-ARQ acknowledgement) processes. This value determines the distribution of the payload in the subframes.

Remote command:
`:SOURce<hw>:BB:W3GPP:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HPROcesses?`
on page 408

Binary Channel Bits / TTI (Nbin)
Displays the number of binary bits per TTI.

Transport Block Size Table
Selects the transport block size table from 3GPP TS 25.321, annex B according to that the transport block size is configured.

The transport block size is determined also by the parameter "Transport Block Size Index".

The allowed values of this parameter depend on the selected "E-DCH TTI" and "Modulation" scheme.
E-DCH TTI

<table>
<thead>
<tr>
<th>Modulation</th>
<th>Transport block size table</th>
<th>Transport block size index (E-TFCI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPSK</td>
<td>Table 0</td>
<td>0 .. 127</td>
</tr>
<tr>
<td></td>
<td>Table 1</td>
<td>0 .. 125</td>
</tr>
<tr>
<td>4PAM</td>
<td>Table 2</td>
<td>0 .. 127</td>
</tr>
<tr>
<td></td>
<td>Table 3</td>
<td>0 .. 124</td>
</tr>
<tr>
<td>10 ms</td>
<td>-</td>
<td>Table 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 .. 127</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Table 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 .. 120</td>
</tr>
</tbody>
</table>

Remote command:
```
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:TBS:TABLE on page 410
```

Transport Block Size Index (E-TFCI)

Selects the transport block size index (E-TFCI) for the corresponding table, as described in 3GPP TS 25.321, annex B.

The value range of this parameter depends on the selected "Transport Block Size Table".

Remote command:
```
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:TBS:INDEX on page 410
```

Information Bit Payload (Ninf)

Displays the payload of the information bit. This value determines the number of transport layer bits sent in each HARQ process.

Remote command:
```
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:PAYBits? on page 409
```

Coding Rate (Ninf/Nbin)

Displays the relation between the information bits to binary channel bits.

Remote command:
```
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:CRATe? on page 403
```

4.37.3 DTX Mode Settings

Access:

1. Select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE"
2. Select "E-DPCCH Settings > Show Details > HSUPA FRC...> DTX Mode".

This dialog comprises the parameters required for enabling and defining user data.

State (DTX)
Activates or deactivates the DTX (discontinuous transmission) mode.

Note: If activated, the "E-DCH Scheduling Table" in the "E-DPCCH Settings" dialog is configured according to the "DTX Pattern" specified.

Remote command:

```
[:SOURce<hw>]:BB:W3Gp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DTX:STATe
```
on page 406

User Data (DTX Pattern)
Sets the user-definable the bit pattern for the DTX. The maximum length is 64 bits.

The following values are allowed:

- 1: Data transmission
- -: DTX

Note: If activated, this setting overwrites the "E-DCH Scheduling Table" in the "E-DPCCH Settings" dialog.

Example:
"User Data (DTX Pattern) = 1-11-" sets the "E-DCH Scheduling" settings as follow:

Remote command:

```
[:SOURce<hw>]:BB:W3Gp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DTX:PATTern
```
on page 406

4.37.4 HARQ Simulation Settings

This section describes the HARQ settings. The provided settings depend on the selected "HARQ Simulation > Mode".

R&S SMBV instruments do not support "HARQ Simulation > Mode > HARQ Feedback".

Access:

1. Select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE".
2. Select "E-DPCCH Settings > Show Details > HSUPA FRC...> HARQ Simulation".

3. Select "Mode > Virtual HARQ".

State (HARQ)
Activates or deactivates the HARQ simulation mode.

Remote command:

Mode (HARQ)
Selects the HARQ simulation mode.
"Virtual HARQ" This mode simulates base station feedback. For every HARQ process (either 4 or 8), a bit pattern can be defined to simulate ACKs and NACKs.

Remote command:

Virtual HARQ Mode
Simulates a base station feedback with the following settings:

Always Use Redundancy Version 0 (HARQ) ← Virtual HARQ Mode
If activated, the same redundancy version is sent, that is, the redundancy version is not adjusted for the next retransmission in case of a received NACK.

Remote command:

HARQ1..8: ACK/NACK ← Virtual HARQ Mode
("HARQ Mode > Virtual HARQ")
Enters the pattern for the HARQ (Hybrid-ARQ acknowledgement).
The maximum length of the pattern is 32 bits.

"1" = ACK" New data is transmitted and the RSN (retransmission sequences number) is set to 0.
""0" = NACK" The data is retransmitted and the RSN is increased with 1. The maximum value of RSN is 3, i.e. even if more than three retransmissions are configured, the RSN remains 3.

Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ[:SIMulation]:PATTer<n> on page 408

4.37.5 Bit and Block Error Insertion Settings

Access:
1. Select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE"
2. Select "E-DPCCH Settings > Show Details > HSUPA FRC...> Bit/Block Error Insertion".

 The dialogs provide the parameters for inserting errors into the data source and into the CRC checksum.

Bit Error State
Activates or deactivates bit error generation.

Bit errors are inserted into the data fields of the enhanced channels. It is possible to select the layer in which the errors are inserted (physical or transport layer).

When the data source is read out, bits are deliberately inverted at random points in the data bitstream at the specified error rate so that an invalid signal is simulated.

Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DERRor:BIT:STATe on page 405

Bit Error Rate
Sets the bit error rate. The value range is 10E-1 to 10E-7.

Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DERRor:BIT:RATe on page 405

Insert Errors On
Selects the layer in the coding process at which bit errors are inserted.

"Transport layer"
 Bit errors are inserted in the transport layer.

"Physical layer"
 Bit errors are inserted in the physical layer.

Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DERRor:BIT:LAYer on page 405
Block Error State
Activates or deactivates block error generation.
The CRC checksum is determined and then the last bit is inverted at the specified error probability in order to simulate an invalid signal.
Remote command:
```
[:SOURce<hw>]:BB:W3GPPp:MSTation<st>[[:HSUPa]:DPCh:E:FRC:DERRor:BLOCk:STATe on page 406
```

Block Error Rate
Sets block error rate.
Remote command:
```
[:SOURce<hw>]:BB:W3GPPp:MSTation<st>[[:HSUPa]:DPCh:E:FRC:DERRor:BLOCk:RATE on page 406
```

4.38 Global Enhanced Channel Settings - UE1

The "Global Enhanced Channel" settings are only available for user equipment 1 (UE1).

Access:
1. Select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE 1".
2. Select "DPDCH Settings > Show Details > Global Enhanced Channels...".

4.38.1 Enhanced Channels State

On top of the dialog, you can activate the global enhanced settings.

Enhanced Channels State
Displays the enhanced state of the station. As at least the DPCCH of UE1 is always calculated in real time, the enhanced state is always on for UE1.

The DPCCH and one DPDCH of user equipment 1 are generated in real time. Depending on the actual configurations, other channels of user equipment 1 can also be generated in real time.

It is possible to activate channel coding and simulate bit and block errors. Data lists, for example with user data for the transport layer, can be used as the data source.
Remote command:
[:SOURce<hw>:BB:W3GpMSta:ENHanced:DPDC:STAte](on page 431)

4.38.2 Channel Coding

Access:

1. Select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE 1".
2. Select "DPDCH Settings > Show Details > Global Enhanced Channels... > Show Details".

<table>
<thead>
<tr>
<th>Channel Coding</th>
</tr>
</thead>
<tbody>
<tr>
<td>State: On</td>
</tr>
<tr>
<td>Coding Type: RMC (12.2 kbps)</td>
</tr>
<tr>
<td>Show Details >>></td>
</tr>
</tbody>
</table>

The "Channel Coding" section is where the channel coding settings are made. You can choose between a reduced display and the detailed setting options display. With the reduced display, it is only possible to select the coding scheme and this selection sets the associated parameters to the presetting prescribed in the standard. The "Transport Channel" section for detailed setting and for defining a user coding can be revealed with the "Show Details" button and hidden with the "Hide Details" button.

According to 3GPP TS 25.141, an uplink reference measurement channel is generated when the transport channels DTCH and DCCH are mapped to a DPDCH with a different data rate. The mapping is performed after channel coding and multiplexing. Figure 4-29 illustrates the generation of a 12.2 kbps reference measurement channel from the DTCH and DCCH transport channels.
Channel Coding State
Activates or deactivates channel coding.

Note: Annex A.1, 3GPP TS 25.141, lists the recommended DPCCH-settings.

Remote command:

Coding Type
Selects channel coding.

The 3GPP specification defines 4 reference measurement channel coding types, which differ in the input data bit rate bit to be processed (12.2, 64, 144 and 384 kbps). The additional AMR CODER coding scheme generates the coding of a voice channel.

"User" coding can be defined as required in the detailed coding settings menu section revealed with button "Show Details". They can be stored and loaded in the "User Coding" submenu. Selection "User" is indicated as soon as a coding parameter is modified after selecting a predefined coding type.

The input data bits are taken from the data source specified for the "Transport Channels" for channel coding. The bits are available with a higher rate at the channel coding output. The allocations between the measurement input data bit rate and the output symbol rate are fixed, that is to say, the overall symbol rate is adjusted automatically.

The following are available for selection:

"RMC 12.2" 12.2 kbps measurement channel kbps"

"RMC 64 kbps" 64 kbps measurement channel
"RMC 144 144 kbps measurement channel kbps"
"RMC 384 384 kbps measurement channel kbps"
"AMR 12.2 Channel coding for the AMR coder kbps"

Remote command:
on page 426

Show Details
Reveals the detailed setting options for channel coding.

<table>
<thead>
<tr>
<th>Coding Type</th>
<th>On</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMC (12.2 kbps)</td>
<td></td>
</tr>
</tbody>
</table>

Remote command: n.a.

User Coding ...
Accesses files with user codings and the standard "File Select" function.
User codings of UE1 are stored as files with the predefined file extension *.3g_ccod_ul. The filename and the directory they are stored in are user-definable; the file extension is assigned automatically.
The complete channel coding settings are saved and recalled.
Remote command:

Overall Symbol Rate
Sets the overall symbol rate of the DPDCH.
The structure of the DPDCH channel table depends on this parameter. The overall symbol rate determines which DPDCHs are active, which symbol rate they have and which channelization codes they use.

DPDCHs that are not active by virtue of the overall rate, are also disabled for operation.

Note: Up to an overall rate of 960 ksps, only DPDCH 1 is active. Its symbol rate is the same as the overall rate and the channelization code is the same as spreading factor/4 (spreading factor = chip rate / symbol rate).

With an overall symbol rate greater than 960 ksps, all the active DPDCHs have the symbol rate 960 ksps.

Remote command:

Bits per Frame (DPDCH)
Displays the data bits in the DPDCH component of the frame at physical level. The value depends on the overall symbol rate.

Remote command:

4.38.3 Transport Channel

Access:

1. Select “3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE 1”.

2. In the "DPDCH Settings" section, select "Show Details > Transport Channel".
3. Select one of the transport channels, for example "DTCH1".

<table>
<thead>
<tr>
<th>Transport Channel</th>
<th>DTCH 1</th>
<th>DTCH 2</th>
<th>DTCH 3</th>
<th>DTCH 4</th>
<th>DTCH 5</th>
<th>DTCH 6</th>
<th>DCCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>244</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>PN 9</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
</tbody>
</table>

The dialog provides access to the settings of up to seven transport channels (TCHs), the DTCHs (DTCH1 to 6) and the DCCH. A wide arrow beneath the block indicates which TCH is selected.

Transport Channel State
Activates or deactivates the transport channel.

Remote command:

```
[:SOURce<hw>]:BB:3GPPp:MSTation:ENHanced:DPDCh:TChannel<di0>:STATe
```

In case of remote control, DCCH corresponds to :TChannel0, DTCH1 to :TChannel1, etc.

Data Source
Selects the data source for the transport channel.

The data source for the DCCH and DTCH1 can also be selected in the main dialog in the channel table.

The following standard data sources are available:

- "All 0, All 1"
 An internally generated sequence containing 0 data or 1 data.
- "PNxx"
 An internally generated pseudo-random noise sequence.
- "Pattern"
 An internally generated sequence according to a bit pattern. Use the "Pattern" box to define the bit pattern.
- "Data List/Select DList"
 A binary data from a data list, internally or externally generated. Select "Select DList" to access the standard "Select List" dialog.
 - Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.

Use the standard "File Manager" function to transfer external data lists to the instrument.

See also "Main Dialog > Data List Management".

Remote command:
[:SOURce<hw>]:BB:W3GPP:MSTation:ENHanced:DPDCh:TChannel<di0>:DATA on page 433
[:SOURce<hw>]:BB:W3GPP:MSTation:ENHanced:DPDCh:TChannel<di0>:DATA:DSElect on page 434

Transport Time Interval
Sets the number of frames into which a TCH is divided. This setting also defines the interleaver depth.

Remote command:
[:SOURce<hw>]:BB:W3GPP:MSTation:ENHanced:DPDCh:TChannel<di0>:TTINterval on page 432

Number of Transport Blocks
Sets the number of transport blocks for the TCH.

Remote command:
[:SOURce<hw>]:BB:W3GPP:MSTation:ENHanced:DPDCh:TChannel<di0>:TBCount on page 432

Transport Block Size
Sets the size of the transport block at the channel coding input.

Remote command:
[:SOURce<hw>]:BB:W3GPP:MSTation:ENHanced:DPDCh:TChannel<di0>:TBSize on page 432

Size of CRC
Defines the type (length) of the CRC. Checksum determination can also be deactivated (setting "None").

Remote command:
[:SOURce<hw>]:BB:W3GPP:MSTation:ENHanced:DPDCh:TChannel<di0>:CRCSize on page 433

Rate Matching Attribute
Sets data rate matching.

Remote command:
[:SOURce<hw>]:BB:W3GPP:MSTation:ENHanced:DPDCh:TChannel<di0>:RMATtribute on page 431

Error Protection
Selects error protection.
"None" No error protection
"Turbo 1/3" Turbo coder of rate 1/3 in accordance with the 3GPP specifications.
"Conv 1/2 | 1/3" Convolution coder of rate 1/2 or 1/3 with generator polynomials defined by 3GPP.

Remote command:
[:SOURce<hw>:]:BB:W3Gp:MSTation:ENHanced:DPDCh:TChannel<di0>:EPRotection on page 434

Interleaver 1 State
Activates or deactivates channel coding interleaver state 1 of the transport channel. Interleaver state 1 can be set independently in each TCH. Activation does not change the symbol rate.

Remote command:
[:SOURce<hw>:]:BB:W3Gp:MSTation:ENHanced:DPDCh:TChannel<di0>:INTerleaver on page 435

Interleaver 2 State
Activates or deactivates channel coding interleaver state 2 of all the transport channels. Interleaver state 2 can only be set for all the TCHs together. Activation does not change the symbol rate.

Remote command:
[:SOURce<hw>:]:BB:W3Gp:MSTation:ENHanced:DPDCh:INTerleaver2 on page 430

4.38.4 Error Insertion

Access:
1. Select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE 1".
2. Select "DPDCH Settings > Show Details > Global Enhanced Channels...".
3. Select "Bit Error Insertion / Block Error Insertion".

In the "Bit/Block Error Insertion" sections, errors can be inserted into the data source and into the CRC checksum.

Bit Error State
Activates or deactivates bit error generation.
Bit errors are inserted into the data fields of the enhanced channels. When channel coding is active, it is possible to select the layer in which the errors are inserted (physical or transport layer).

When the data source is read out, individual bits are deliberately inverted at random points in the data bitstream at the specified error rate so that invalid signal is simulated.

Remote command:
[:SOURce<hw>]:BB:W3GPP:MSTation:ENHanced:DPDCh:DERRor:BIT:STATe on page 429

Bit Error Rate TCH1
Sets the bit error rate.
Remote command:
[:SOURce<hw>]:BB:W3GPP:MSTation:ENHanced:DPDCh:DERRor:BIT:RATE on page 429

Insert Errors On
Selects the layer at which bit errors are inserted.
"Transport layer" Bit errors are inserted in the transport layer.
"Physical layer" Bit errors are inserted in the physical layer.

Remote command:
[:SOURce<hw>]:BB:W3GPP:MSTation:ENHanced:DPDCh:DERRor:BIT:LAYer on page 428

Block Error State
Activates or deactivates block error generation.

The CRC checksum is determined and then the last bit is inverted at the specified error probability in order to simulate an invalid signal.
Block error generation is only available when channel coding is active.

Remote command:
[:SOURce<hw>]:BB:W3GPP:MSTation:ENHanced:DPDCh:DERRor:BIT:STATe on page 429

Block Error Rate
Sets the block error rate.

Remote command:
[:SOURce<hw>]:BB:W3GPP:MSTation:ENHanced:DPDCh:DERRor:BLOck:RATE on page 430
5 How to Work with the 3GPP FDD Option

The following step-by-step instructions demonstrate how to perform some signal generation tasks with the 3GPP FDD option.

5.1 Resolving Domain Conflicts

To resolve code domain conflicts

1. To recognize a downlink domain conflict, use one of the following methods:
 a) Select "3GPP FDD > Base Station > Channel Table"
 A conflict symbol in the column "Dom Conf" of the channel table indicates a code domain conflict.
 The term domain conflict describes that channels overlay.

 b) Select "3GPP FDD > Base Station > Code Domain"
 A code domain conflict is indicated by overlapping bars.

2. The instrument helps you to resolve code domain conflicts by automatically adapting the channelization code of the channels involved.
 To access the required function, in the "3GPP FDD > Base Station > Channel Table" select the conflict symbol and trigger "Resolve Domain Conflicts".
5.2 Using the DL-UL Timing Offset Settings

To generate a continuous uplink signal composed of multiple separately generated uplink frames:

1. Adjust the uplink settings as required and set "User Equipment > UE > DPCCH > DL-UL Timing Offset = 0 Chips".
2. Enable generation of the 3GPP FDD signal, i.e. "3GPP FDD > State > On".
3. Use the Generate Waveform function to save the current signal as an ARB signal in a waveform file.
4. Reconfigure the uplink settings
5. Save the signal as an ARB file.
6. Use the "Baseband > ARB > Multi Segment" function to assemble a common signal from the several uplink signals.
7. If necessary, readjust the "Marker" settings. Use for example a sequence list to configure the order the waveforms are processed or to set how many times each of them is repeated.

5.3 Configuring UL-DTX Transmission and Visualizing the Scheduling

To configure the instrument to generate an UL DPCCH DTX signal
1. Enable "Baseband > 3GPP FDD > Transmission Direction > Uplink".
2. Select "User Equipment > UE1 > UL-DTX".
3. Enable "Mode > UL-DTX". Configure the following settings:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-DCH TTI</td>
<td>2 ms</td>
</tr>
<tr>
<td>Offset</td>
<td>2 Subframes</td>
</tr>
<tr>
<td>Inactivity Threshold for Cycle 2</td>
<td>8 TTls</td>
</tr>
<tr>
<td>Long Preamble Length</td>
<td>4 Slots</td>
</tr>
<tr>
<td>DTX Cycle 1 / DTX Cycle 2</td>
<td>4 Subframes and 8 Subframes respectively</td>
</tr>
<tr>
<td>DPCCH Burst Length 1 / DPCCH Burst Length 2</td>
<td>1 Subframe (3 Slots)</td>
</tr>
</tbody>
</table>

The figure below shows the generated UL DPCCH DTX bursts pattern.

4. Use the Scheduling List to display the configured burst pattern.

![Figure 5-1: Example for UL DPCCH DTX burst pattern as generated by the R&S SMBV (E-DCH TTI=2ms, beginning at CFN0, UE_DTX_DRX_Offset=2, DTX Cycle 2=8 subframes)](image)

Note: In this implementation, the signal generation starts with UE-DTX cycle 2.
The UL DPCCH DTX burst pattern is offset with two subframes. The burst is six slots long (2 slots Preamble + 3 slots DPCCH Burst Length 2 + 1 slot postamble). They are generated every eight subframes.

5. Select "User Equipment > UE1 > E-DCH Scheduling Settings".

6. Configure the settings as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Table Rows</td>
<td>1</td>
</tr>
<tr>
<td>E-DCH Schedule Repeats After</td>
<td>24 TTIs</td>
</tr>
<tr>
<td>E-DCH TTI From</td>
<td>10</td>
</tr>
<tr>
<td>E-DCH TTI To</td>
<td>10</td>
</tr>
</tbody>
</table>

7. Select "UE1 > E-DPDCH Settings > State > On" to enable the generation of E-DPDCH.

The "UE1 > Scheduling List" shows the updated UL DPCCH DTX bursts pattern (see also Figure 5-2).

8. Configure the "UE1 > HS-DPCCH Settings" as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compatibility Mode (HS-DPCCH)</td>
<td>"Release 8 and Later RT"</td>
</tr>
<tr>
<td>Inter TTI Distance (Interval)</td>
<td>1 subframe</td>
</tr>
<tr>
<td>Number of Rows</td>
<td>1</td>
</tr>
<tr>
<td>HARQ-ACK Repeat After</td>
<td>40 intervals</td>
</tr>
<tr>
<td>HARQ-ACK From Interval/ HARQ-ACK To Interval</td>
<td>20 / 20</td>
</tr>
<tr>
<td>HS-DPCCH 1/2, HARQ-ACK 1/2/3/4</td>
<td>A</td>
</tr>
<tr>
<td>Number of Rows</td>
<td>1</td>
</tr>
</tbody>
</table>
Parameter | Value
--- | ---
PCI/CQI Repeat After | 40 intervals
PCI-CQI From Interval/PCI-CQI To Interval | 2/2
HS-DPCCH 1/2, PCI/CQI 1/2/3/4 Type | CQI
CQI/CQI/CQI/CQI | 5

9. Select "UE1 > HS-DPCCH Settings > State > On" to enable the transmission of control signaling.

Figure 5-3 shows the generated UL DPCCH DTX bursts pattern.

![Figure 5-3: Example for UL DPCCH DTX burst pattern in case of E-DCH and HS-DPCCH transmissions](image)

A = DPCCH burst caused by the transmission of a CQI report
B = DPCCH burst caused by the transmission of an HARQ-ACK message

Although there is an HS-DPCCH transmission, the UE does not switch from UE-DTX cycle 2 to UE-DTX cycle 1.

5.4 How to Configure the HS-DPCCH Settings for 4C-HSDPA Tests

The following is an example on how to use the provided settings to configure the instrument to send ACK only messages. This transmission is required in the ACK mis-detection test for 4C-HSDPA, according to 3GPP TS 25.141, section 8.11A.3 and 8.11A.4.

The example is based on the test configuration specified in 3GPP TS 25.141, annex A. 9A.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HS-DPCCH spreading factor</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td>256</td>
</tr>
<tr>
<td>Secondary cell enabled</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
To configure the 4C-HSDPA HS-DPCCH Reference Measurement Channel

The example lists only the related setting and is based on Test Configuration = 3/3/3, see Table 5-4.

1. Enable "Baseband > 3GPP FDD > Link Direction > Uplink".
2. For "User Equipment > UE1", enable "HS-DPCCH > State > On".
3. Select "HS-DPCCH > MIMO Mode > On".
4. Select "HS-DPCCH > Secondary Cell Enabled > 2".
5. Select "HS-DPCCH > Secondary Cell Active > 2".
6. Use the default values "HS-DPCCH > HARQ-ACK Scheduling > Number of Rows > 1" and "HS-DPCCH > HARQ-ACK Scheduling > HARQ-ACK Repeat After > 1".
7. Select "HS-DPCCH > HARQ-ACK Scheduling > HS-DPCCH 1 HARQ-ACK 1 > AA/AA".
8. Select "HS-DPCCH > HARQ-ACK Scheduling > HS-DPCCH 1 HARQ-ACK 2 > AA/D".
6 Application Sheets

Application sheets describe short application examples for selected issues and provide related background information.

6.1 Uplink Dual Cell HSDPA Test Signal Generation

The R&S SMBV supports the generation of feedback messages for HSDPA data acknowledgment and channel quality indication as defined in the 3GPP TS 25.212 release 8 and release 9.

This application sheet describes how to configure the instrument to generate an uplink test signal for basic tests on Dual Cell HSDPA (DC-HSDPA) operation.

6.1.1 Options and Equipment Required

The following equipment is required:

- Vector Signal Generator R&S SMU, R&S AMU, R&S SMJ, R&S SMATE or R&S SMBV, equipped with:
 - Firmware version 2.15.085.47 (R&S SMBV) and 2.10.111.53 (other instruments) or later. Latest firmware version recommended.
 - One of the baseband options, e.g. R&S SMx/AMU-B10
 - One of the frequency options, e.g. R&S SMx-B103
- Option R&S SMx/AMU-K42, "Digital Standard 3GPP FDD"
- Option R&S SMx/AMU-K43, "3GPP FDD enhanced MS/BS tests incl. HSDPA"
- Option R&S SMx/AMU-K59, "Digital Standard HSPA+

6.1.2 Test Setup

Figure 6-1: Test Setup (example with R&S SMU)
6.1.3 Generating an uplink DC-HSDPA Test Signal (Non-MIMO Mode)

To generate an uplink test signal corresponding to the signal of a UE configured to work in DC-HSDPA non-MIMO mode, configure the uplink HS-DPCCH as follows:

1. Preset the instrument to ensure a defined instrument state.
2. Open the 3GPP FDD dialog (e.g. "Baseband Block > 3GPP FDD"). Select "Link Direction > Uplink".
3. Select "UE1" and open the corresponding "User Equipment" dialog.
4. Set the "Scrambling Code" as required.
5. Navigate to the "HS-DPCCH Settings" section. Expand the display of detailed settings.
 a) Set the "Compatibility Mode" to "Release 8 and Later".
 b) Select the "Secondary Cell Enabled = 1" and "Secondary Cell Active = 1" to configure dual cell HSDPA mode for the selected UE.
 c) Configure the HS-DPCCH structure with the parameters "Inter TTI Distance" and "Number of HARQ-ACK or PCI/CQI Rows". Configure the HARQ-ACK and CQI/PCI information per interval by means of the parameters in the table.
 d) Set the parameter "HS-DPCCH 1 HARQ-ACK 1" as required to adjust the information transmitted during the HARQ-ACK slot of the corresponding TTI. For example, an A/N feedback means that an ACK is sent to the serving cell and a NACK to the secondary serving cell.
 e) To include composite CQI messages in the signal as specified in 3GPP TS 25.212:
 - Select "HS-DPCCH 1 PCI/CQI Type > Composite CQI"
 - Select "PCI/CQI 1 Content > Config".
 - Set the values of the parameters "CQI1" and "CQI2"
 f) Adjust the power settings as required.
 g) Execute "Adjust ARB Sequence Length".
 h) Set the "HS-DPCCH > State > On".
 i) Close the dialog.
6. In the "3GPP FDD > Trigger/Marker/Clock" dialog, adjust the settings as required. For example, to synchronize the instrument to the frame timing of the DUT, feed the frame marker signal of the DUT to the instrument. Enable trigger mode "Armed Auto". Select an "External Source".

7. In the "3GPP FDD" dialog, set the "State > On" to enable the generation of the 3GPP FDD uplink (UL) signal.

8. In the "RF > RF Frequency > Reference Frequency" dialog, adjust the settings as required. For example, if you use a common reference signal or if the DUT provides the reference frequency, connect the reference signal source to the instrument. Select "Source External". Adjust the "External Reference Frequency".

9. Press the [FREQ] key. Enter the required RF frequency, e.g. 1950 MHz.

10. Adjust the output signal level as required. Press the [RF ON/OFF] key to activate the RF output.
6.1.4 Generating an Uplink Test Signal for Simultaneous Dual Cell and MIMO Operation

► Perform the steps described above.
 Enable the parameter "3GPP FDD > UE1 > HS-DPCCH Settings > MIMO Mode".
 You are enabled to configure the HARQ-ACK feedback messages for up to four simultaneously transmitted downlink transport blocks.

For background information about the dual cell operation and processing of HARQ-ACK feedback messages, refer to Chapter 3.3.15, "Dual Cell HSDPA (DC-HSDPA)", on page 38.
7 Remote-Control Commands

The following commands are required to perform signal generation with the 3GPP FDD options in a remote environment. We assume that the R&S SMBV has already been set up for remote operation in a network as described in the R&S SMBV documentation. Knowledge about the remote control operation and the SCPI command syntax are assumed.

Conventions used in SCPI command descriptions
For a description of the conventions used in the remote command descriptions, see section “Remote Control Commands” in the R&S SMBV operating manual.

Common suffixes
The following common suffixes are used in remote commands:

<table>
<thead>
<tr>
<th>Suffix</th>
<th>Value range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURce<hw></td>
<td>1</td>
<td>available baseband signals</td>
</tr>
<tr>
<td>OUTPut<ch></td>
<td>1 .. 2</td>
<td>available markers</td>
</tr>
<tr>
<td>EXTernal<ch></td>
<td>1</td>
<td>external trigger connector</td>
</tr>
<tr>
<td>BSTation<st></td>
<td>1 to 4</td>
<td>Base station</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the suffix is omitted, BS1 is selected.</td>
</tr>
<tr>
<td>CHANnel<ch></td>
<td>0 to 138</td>
<td>channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the suffix is omitted, Channel1 is selected.</td>
</tr>
<tr>
<td>MSTation<st></td>
<td>1 to 4</td>
<td>user equipment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the suffix is omitted, MS1 is selected.</td>
</tr>
</tbody>
</table>

Placeholder <root>
For commands that read out or save files in the default directory, the default directory is set using command MMEM:CDIRectory. The examples in this description use the place holder <root> in the syntax of the command.

- D:\ - for selecting the internal hard disk of a Windows instrument
- E:\ - for selecting the memory stick which is inserted at the USB interface of a Windows instrument
- /var/user/ - for selecting the internal flash card of a Linux instrument
- /usb/ - for selecting the memory stick which is inserted at the USB interface of a Linux instrument.

Tasks (in manual or remote operation) that are also performed in the base unit in the same way are not described here.

In particular, this includes:

- Managing settings and data lists, i.e. storing and loading settings, creating and accessing data lists, accessing files in a particular directory, etc.
Remote-Control Commands

- Information on regular trigger, marker and clock signals as well as filter settings, if appropriate.
- General instrument configuration, such as configuring networks and remote operation
- Using the common status registers

For a description of such tasks, see the R&S SMBV operating manual.

The commands in the `SOURce:BB:W3GPp` subsystem are described in several sections, separated into general remote commands, commands for base station settings and commands for user equipment settings.

This subsystem contains commands for the primary and general settings of the 3GPP FDD standard. These settings concern activation of the standard, setting the transmission direction, filter, clock, trigger and clipping settings, defining the chip rate and the sequence length, as well as the preset and power adjust setting.

The commands for setting the base station and the user equipment, the enhanced channels of the base and user equipment, as well as the commands for selecting the test models and the test setups, are described in separate sections. The commands are divided up in this way to make the comprehensive `SOURce:BB:W3GPp` subsystem clearer.

The following commands specific to the 3GPP FDD options are described here:

- General Commands .. 251
- Filter/Clipping Settings .. 257
- Trigger Settings ... 262
- Marker Settings ... 266
- Clock Settings ... 268
- Test Models and Predefined Settings .. 270
- Setting Base Stations .. 275
- Enhanced Channels of Base Station 1 .. 322
- User Equipment Settings .. 342
- Enhanced Channels of the User Equipment .. 424

7.1 General Commands

`[:SOURce<hw>]:BB:W3GPp:PRESet` .. 252
`[:SOURce<hw>]:BB:W3GPp:SETTing:CATalog?` ... 252
`[:SOURce<hw>]:BB:W3GPp:SETTing:DELeete` .. 252
`[:SOURce<hw>]:BB:W3GPp:SETTing:LOAD` .. 253
`[:SOURce<hw>]:BB:W3GPp:SETTing:STORe` .. 253
`[:SOURce<hw>]:BB:W3GPp:SETTing:STORe:FAST` ... 253
`[:SOURce<hw>]:BB:W3GPp:SLENgth` ... 254
`[:SOURce<hw>]:BB:W3GPp:STATe` ... 254
`[:SOURce<hw>]:BB:W3GPp:WAveform:CREate` ... 254
`[:SOURce]:BB:W3GPp:GPP3:VERSion?` ... 255
`[:SOURce<hw>]:BB:W3GPp:BSTation:PRESet` .. 255
`[:SOURce<hw>]:BB:W3GPp:COPY:COFFset` ... 255
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

General Commands

[:SOURce<hw>]:BB:W3GPp:COPY:DEStination...255
[:SOURce<hw>]:BB:W3GPp:COPY:EXECute.. 256
[:SOURce<hw>]:BB:W3GPp:COPY:SOURce..256
[:SOURce<hw>]:BB:W3GPp:LINK... 257
[:SOURce<hw>]:BB:W3GPp:POWER:ADJust...257
[:SOURce<hw>]:BB:W3GPp:POWER[\TOtal]...257

[:SOURce<hw>]:BB:W3GPp:PRESet
Sets the parameters of the digital standard to their default values (*RST values specified for the commands).
Not affected is the state set with the command SOURce<hw>:BB:W3GPp:STATe.

Example: SOURce1:BB:W3GPp:PRESet
Usage: Event
Manual operation: See “Set to default” on page 48

[:SOURce<hw>]:BB:W3GPp:SETTing:CATalog?
This command reads out the files with 3GPP FDD settings in the default directory. The default directory is set using command MMEM:CDIRectory. Only files with the file extension *.3g are listed.

Return values:
<string>
Example: MMEM:CDIR '/var/user/temp/3gpp
Sets the default directory.
BB:W3GP:SETT:CAT?
Reads out all the files with 3GPP FDD settings in the default directory.
Response: UPLINK, DOWNLINK
The files UPLINK and DOWNLINK are available.

Usage: Query only
Manual operation: See “Save/Recall” on page 48

[:SOURce<hw>]:BB:W3GPp:SETTing:DELete <Filename>
This command deletes the selected file with 3GPP FDD settings. The directory is set using command MMEM:CDIREctory. A path can also be specified, in which case the files in the specified directory are read. The file extension can be omitted. Only files with the file extension *.3g are deleted.

Setting parameters:
<Filename> <file_name>

Example: BB:W3GP:SETT:DEL 'UPLINK'
Deletes file UPLINK.
3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Remote-Control Commands

General Commands

Usage: Setting only

Manual operation: See "Save/Recall" on page 48

```
[:SOURce<hw>]:BB:W3GPp:SETT:LOAD <Filename>
```

This command loads the selected file with 3GPP FDD settings. The directory is set using command `MMEM:CDIRectory`. A path can also be specified, in which case the files in the specified directory are read. The file extension can be omitted. Only files with the file extension `*.3g` are loaded.

Setting parameters:
- `<Filename>`: `<file_name>`

Example:
```
BB:W3GP:SETT:LOAD 'UPLINK'
```

Loads file `UPLINK`.

Usage: Setting only

Manual operation: See "Save/Recall" on page 48

```
[:SOURce<hw>]:BB:W3GPp:SETT:STOR <Filename>
```

This command stores the current 3GPP FDD settings into the selected file. The directory is set using command `MMEM:CDIRectory`. A path can also be specified, in which case the files in the specified directory are read. Only enter the file name. 3GPP FDD settings are stored as files with the specific file extensions `*.3g`.

Setting parameters:
- `<Filename>`: `string`

Example:
```
BB:W3GP:SETT:STOR 'UPLINK'
```

Stores the current 3GPP FDD settings into file `UPLINK`.

Usage: Setting only

Manual operation: See "Save/Recall" on page 48

```
[:SOURce<hw>]:BB:W3GPp:SETT:STOR:FAST <Fast>
```

Determines whether the instrument performs an absolute or a differential storing of the settings.

Enable this function to accelerate the saving process by saving only the settings with values different to the default ones.

Note: This function is not affected by the "Preset" function.

Parameters:
- `<Fast>`: `0 | 1 | OFF | ON`

 RST: 1

Manual operation: See "Save/Recall" on page 48
[:SOURce<hw>]:BB:W3GPp:SLENth <SLength>
Defines the sequence length of the arbitrary waveform component of the 3GPP signal in the number of frames. This component is calculated in advance and output in the arbitrary waveform generator. It is added to the realtime signal components (Enhanced Channels).

When working in Advanced Mode (W3GP:BST1:CHAN:HSDP:HSET:AMOD ON), it is recommended to adjust the current ARB sequence length to the suggested one.

Parameters:

- **<SLength>**
 - Type: integer
 - Range: 1 to Max. No. of Frames = Arbitrary waveform memory size/(3.84 Mcps x 10 ms).
 - *RST: 1

Example:

```
BB:W3GPp:SLEN 10
```
sets the sequence length to 10 frames.

Manual operation: See "Sequence Length ARB" on page 61

[:SOURce<hw>]:BB:W3GPp:STATe <State>
Activates the standard and deactivates all the other digital standards and digital modulation modes in the same path.

Parameters:

- **<State>**
 - Values: 0 | 1 | OFF | ON
 - *RST: 0

Example:

```
SOURcel:BB:W3GPp:STATe ON
```

Manual operation: See "State" on page 48

[:SOURce<hw>]:BB:W3GPp:WAVeform:CREate <Filename>
This command creates a waveform using the current settings of the 3GPP FDD menu. The file name is entered with the command. The file is stored with the predefined file extension *.wv. The file name and the directory it is stored in are user-definable.

Setting parameters:

- **<Filename>**
 - <file_name>

Example:

```
MMEM:CDIR '/var/user/temp/waveform'
BB:W3GPp:WAV:CRE 'gpp3_bs'
```
creates the waveform file gpp3 bs.wv in the default directory.

Usage: Setting only

Manual operation: See "Generate Waveform" on page 50
[:SOURce]:BB:W3GPp:GPP3:VERSion?

The command queries the version of the 3GPP standard underlying the definitions.

Return values:
- `<Version>`: string

Example:

```
BB:W3GP:GPP3:VERS?
```

queries the 3GPP version.

Usage:
- Query only

Manual operation:
- See "3GPP Version" on page 50

[:SOURce<hw>]:BB:W3GPp:BSTation:PRESet

The command produces a standardized default for all the base stations. The settings correspond to the *RST values specified for the commands.

All base station settings are preset.

Example:

```
BB:W3GP:BST:PRES
```

resets all the base station settings to default values.

Usage:
- Event

Manual operation:
- See "Reset all Base Stations" on page 53

[:SOURce<hw>]:BB:W3GPp:COPY:COFFset <Offset>

Sets the offset for the channelization code in the destination base station.

Parameters:
- `<Offset>`: integer
 - Range: 0 to 511
 - *RST: 0

Example:

```
BB:W3GP:COPY:COFF 10
```

the channelization code is shifted by 10 when the source base station is copied to the destination base station.

Manual operation:
- See "Copy Basestation/Copy User Equipment..." on page 54

[:SOURce<hw>]:BB:W3GPp:COPY:DESTination <Destination>

The command selects the station to which data is to be copied. Whether the data is copied to a base station or a user equipment depends on which transmission direction is selected (command W3GPp:LINK UP | DOWN).

Parameters:
- `<Destination>`: 1 | 2 | 3 | 4
 - Range: 1 to 4
 - *RST: 2
Remote-Control Commands

Example:

BB:W3GP:LINK DOWN
selects the downlink transmit direction (base station to user equipment).
BB:W3GP:COPY:SOUR 1
selects base station 1 as the source.
BB:W3GP:COPY:DEST 4
selects base station 4 as the destination.
BB:W3GP:COPY:EXEC
starts copying the parameter set of base station 1 to base station 4.

Manual operation: See "Copy Basestation/Copy User Equipment..." on page 54

[:SOURce<hw>]:BB:W3GPp:COPY:EXECute

The command starts the copy process. The dataset of the source station is copied to the destination station. Whether the data is copied to a base station or a user equipment depends on which transmission direction is selected (command W3GPp:LINK UP | DOWN).

Example:

BB:W3GP:COPY:EXEC
starts copying the parameter set of the selected source station to the selected destination station.

Usage: Event

Manual operation: See "Copy Basestation/Copy User Equipment..." on page 54

[:SOURce<hw>]:BB:W3GPp:COPY:SOURce <Source>

The command selects the station that has data to be copied. Whether the station copied is a base or user equipment depends on which transmission direction is selected (command W3GPp:LINK UP | DOWN).

Parameters:

<table>
<thead>
<tr>
<th><Source></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>1 to 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*RST:</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example:

BB:W3GP:LINK UP
selects the uplink transmit direction (user equipment to base station).
BB:W3GP:COPY:SOUR 1
selects user equipment 1 as the source.
BB:W3GP:COPY:DEST 4
selects user equipment 4 as the destination.
BB:W3GP:COPY:EXEC
starts copying the parameter set of user equipment 1 to user equipment 4.

Manual operation: See "Copy Basestation/Copy User Equipment..." on page 54
[:SOURce<hw>]:BB:W3GPp:LINK <Link>

The command defines the transmission direction. The signal either corresponds to that of a base station (FORWard|DOWN) or that of a user equipment (REVerse|UP).

Parameters:

Example: BB:W3GP:LINK DOWN
the transmission direction selected is base station to user equipment. The signal corresponds to that of a base station.

Manual operation: See "Link Direction" on page 51

[:SOURce<hw>]:BB:W3GPp:POWer:ADJust

The command sets the power of the active channels in such a way that the total power of the active channels is 0 dB. This does not change the power ratio among the individual channels.

Example: BB:W3GP:POW:ADJ
The total power of the active channels is set to 0 dB, the power ratio among the individual channels is unchanged.

Usage: Event
Manual operation: See "Adjust Total Power to 0dB" on page 56

[:SOURce<hw>]:BB:W3GPp:POWer[:TOTal]?

The command queries the total power of the active channels. After "Power Adjust", this power corresponds to 0 dB.

Return values:

Example: BB:W3GP:POW?
queries the total power of the active channels.
Response: -22.5
the total power is -25 dB.

Usage: Query only
Manual operation: See "Total Power" on page 56

7.2 Filter/Clipping Settings

[:SOURce<hw>]:BB:W3GPp:ClIPPING:LEVEL 258
[:SOURce<hw>]:BB:W3GPp:ClIPPING:MODE 258
[:SOURce<hw>]:BB:W3GPp:ClIPPING:STATE 259
[:SOURce<hw>]:BB:W3GPp:CREATE? 259
Remote-Control Commands

Filter/Clipping Settings

The command sets the limit for level clipping (Clipping). This value indicates at what point the signal is clipped. It is specified as a percentage, relative to the highest level. 100% indicates that clipping does not take place.

Level clipping is activated with the command SOUR:BB:W3GP:CLIP:STAT ON

Parameters:

<Level>

integer

Range:

1 to 100

*RST:

100

Example:

BB:W3GP:CLIP:LEV 80PCT

sets the limit for level clipping to 80% of the maximum level.

BB:W3GP:CLIP:STAT ON

activates level clipping.

Manual operation:

See "Clipping Level" on page 61

The command sets the method for level clipping (Clipping).

Parameters:

<Mode>

VECTor | SCALar

VECTor

The reference level is the amplitude |i+jq|

SCALar

The reference level is the absolute maximum of the I and Q values.

*RST:

VECTor

Example:

BB:W3GP:CLIP:MODE SCAL

selects the absolute maximum of all the I and Q values as the reference level.

BB:W3GP:CLIP:LEV 80PCT

sets the limit for level clipping to 80% of this maximum level.

BB:W3GP:CLIP:STAT ON

activates level clipping.

Manual operation:

See "Clipping Mode" on page 61
[:SOURce<hw>:]:BB:W3GPp:CLIPping:STATe <State>
Activates level clipping.

Parameters:
<State>
0 | 1 | OFF | ON
*RST: 0

Manual operation: See "Clipping State" on page 59

[:SOURce<hw>:]:BB:W3GPp:CRATe?
The command queries the set system chip rate. The output chip rate can be set with the command SOUR:BB:W3GP:CRAT:VAR.

Return values:
<CRate> R3M8
*RST: R3M8

Example: BB:W3GP:CRAT? queries the system chip rate. Response: R3M8 the system chip rate is 3.8 Mcps.

Usage: Query only

Manual operation: See "Chip Rate" on page 51

[:SOURce<hw>:]:BB:W3GPp:CRATe:VARiation <Variation>
Sets the output chip rate.

The chip rate entry changes the output clock and the modulation bandwidth, as well as the synchronization signals that are output. It does not affect the calculated chip sequence.

Parameters:
<Variation> float
Range: 400 to 5E6
Increment: 0.001
*RST: 3.84 MCps

Example: BB:W3GP:CRAT:VAR 4086001 sets the chip rate to 4.08 Mcps.

Manual operation: See "Chip Rate Variation" on page 59

[:SOURce<hw>:]:BB:W3GPp:FILTer:PARameter:APCO25 <Apco25>
The command sets the roll-off factor for filter type APCO25.
Remote-Control Commands

Parameters:
<Apco25>
 float
 Range: 0.05 to 0.99
 Increment: 0.01
 *RST: 0.2

Example:
BB:W3GP:FILT:PAR:APCO25 0.2
sets the roll-off factor to 0.2 for filter type APCO25.

Manual operation:
See "Roll Off Factor or BxT" on page 59

[::SOURce<hw>]:BB:W3GPp:FILTer:PARameter:COSinE <Cosine>
The command sets the roll-off factor for the Cosine filter type.

Parameters:
<Cosine>
 float
 Range: 0 to 1
 Increment: 0.01
 *RST: 0.35

Example:
BB:W3GP:FILT:PAR:COS 0.35
sets the roll-off factor to 0.35 for filter type Cosine.

Manual operation:
See "Roll Off Factor or BxT" on page 59

[::SOURce<hw>]:BB:W3GPp:FILTer:PARameter:GAUSs <Gauss>
The command sets the roll-off factor for the Gauss filter type.

Parameters:
<Gauss>
 float
 Range: 0.15 to 2.5
 Increment: 0.01
 *RST: 0.5

Example:
BB:W3GP:FILT:PAR:GAUS 0.5
sets B x T to 0.5 for the Gauss filter type.

Manual operation:
See "Roll Off Factor or BxT" on page 59

[::SOURce<hw>]:BB:W3GPp:FILTer:PARameter:LPASs <LPass>
Sets the cut off frequency factor for the Lowpass (ACP opt.) filter type. The minimum/maximum values depend on the current symbol rate:

Parameters:
<LPass>
 float
 Range: 0.05 to 2
 Increment: 0.01
 *RST: 0.5
Example: \(\text{BB:W3GP:FILT:PAR:LPAS 0.5} \)
the cut of frequency factor is set to 0.5.

Manual operation: See "Cut Off Frequency Factor" on page 59

\[:\text{SOURce<hw>}:BB:W3GPp:FILTer:PARameter:LPASSEVM \text{<LPassEvm>}\]
Sets the cut off frequency factor for the Lowpass (EVM opt.) filter type.

Parameters:
<\text{LPassEvm}>
float
Range: \(0.05\) to \(2\)
Increment: \(0.01\)
*RST: \(0.5\)

Example: \(\text{BB:W3GP:FILT:PAR:LPASSEVM 0.5} \)
the cut of frequency factor is set to 0.5.

Manual operation: See "Cut Off Frequency Factor" on page 59

\[:\text{SOURce<hw>}:BB:W3GPp:FILTer:PARameter:RCOSine \text{<RCosine>}\]
The command sets the roll-off factor for the Root Cosine filter type.

Parameters:
<\text{RCosine}>
float
Range: \(0\) to \(1.0\)
Increment: \(0.01\)
*RST: \(0.22\)

Example: \(\text{BB:W3GP:FILT:PAR:RCOS 0.22} \)
sets the roll-off factor to 0.22 for filter type Root Cosine.

Manual operation: See "Roll Off Factor or BxT" on page 59

\[:\text{SOURce<hw>}:BB:W3GPp:FILTer:PARameter:SPHase \text{<SPhase}>\]
The command sets B x T for the Split Phase filter type.

Parameters:
<\text{SPhase}>
float
Range: \(0.15\) to \(2.5\)
Increment: \(0.01\)
*RST: \(2\)

Example: \(\text{BB:W3GP:FILT:PAR:SPH 0.5} \)
sets B x T to 0.5 for the Split Phase filter type.

Manual operation: See "Roll Off Factor or BxT" on page 59
[:SOURce<hw>]:BB:W3GPPp:FILTer:TYPE <Type>

Selects the filter type.

Parameters:

<Type>
RCOSine | COSine | GAUSs | LGAuss | CONE | COF705 | COEQualizer | COFequalizer | C2K3x | APCO25 | SPHase | RECTangle | LPASs | DIRac | ENPShape | EWPShape | LPASSEVM | PGAuss

COSine = "Cosine" = Raised Cosine
RCOSine = "Root Cosine" = Root Raised Cosine (RRC)

*RST:
RCOSine

Example:
SOURce1:BB:W3GPPp:FILTer:TYPE RCOS
Select RRC filter.

Manual operation:
See "Filter" on page 58

7.3 Trigger Settings

Example: Trigger configuration

SOURce1:BB:W3GPPp:TRIGger:SOURce INTernal
SOURce1:BB:W3GPPp:TRIGger:SEQuence ARETriger
SOURce1:BB:W3GPPp:STAT ON
SOURce1:BB:W3GPPp:TRIGger:EXECute
SOURce1:BB:W3GPPp:TRIGger:ARM:EXECute
SOURce1:BB:W3GPPp:TRIGger:RMODE?

// stopped
SOURce1:BB:W3GPPp:TRIGger:EXECute
SOURce1:BB:W3GPPp:TRIGger:RMODE?

// run

// SOURce1:BB:W3GPPp:TRIGger:SEQuence SING
// SOURce1:BB:W3GPPp:TRIGger:SLUNit SEQuence
// SOURce1:BB:W3GPPp:TRIGger:SLENgth 2

// SOURce1:BB:W3GPPp:TRIGger:SEQuence AAUT
// SOURce1:BB:W3GPPp:TRIGger:SEQuence EXT
// SOURce1:BB:W3GPPp:TRIGger:SEQuence EXTernal:SYNChronize:OUTPut 1
// SOURce1:BB:W3GPPp:TRIGger:SEQuence EXTernal:INHibit 100

[:SOURce<hw>]:BB:W3GPPp:TRIGger:SEQuence..263
[:SOURce<hw>]:BB:W3GPPp:TRIGger:SOURce...263
[:SOURce<hw>]:BB:W3GPPp:TRIGger:ARM:EXECute...263
[:SOURce<hw>]:BB:W3GPPp:TRIGger:EXECute...263
[:SOURce<hw>]:BB:W3GPPp:TRIGger:RMODE?...264
Trigger Settings

- **[:SOURce<hw>]:BB:W3GPp:TRIGger:SLENgth**: 264
- **[:SOURce<hw>]:BB:W3GPp:TRIGger:SLUNit**: 264
- **[:SOURce<hw>]:BB:W3GPp:TRIGger[:EXTernal<ch>]:DELay**: 265
- **[:SOURce<hw>]:BB:W3GPp:TRIGger[:EXTernal<ch>]:INHibit**: 265

[:SOURce<hw>]:BB:W3GPp[:TRIGger]:SEQUence `<Sequence>`

Selects the trigger mode:
- **AUTO** = auto
- **RETRigger** = retrigger
- **AAUTo** = armed auto
- **ARETrigger** = armed retrigger
- **SINGle** = single

Parameters:
- `<Sequence>`: AUTO | RETRigger | AAUTo | ARETrigger | SINGle
- *RST*: AUTO

Example: See Example "Trigger configuration" on page 262

Manual operation: See "Trigger Mode" on page 63

[:SOURce<hw>]:BB:W3GPp[:TRIGger]:SOURce `<Source>`

Selects the trigger source:
- **INTernal**: manual trigger or *TRG.
- **EXTernal**: trigger signal on the TRIGGER connector.

Parameters:
- `<Source>`: INTernal|EXTernal
- *RST*: INTernal

Example: SOURc1:BB:W3GPp:TRIGger:SOURce EXTernal

sets external triggering via the TRIGGER connector.

Manual operation: See "Trigger Source" on page 64

[:SOURce<hw>]:BB:W3GPp:TRIGger:ARM:EXECute

Stops signal generation; a subsequent trigger event restarts signal generation.

Example: See Example "Trigger configuration" on page 262

Usage: Event

Manual operation: See "Arm" on page 64

[:SOURce<hw>]:BB:W3GPp:TRIGger:EXECute

Executes a trigger.
Example: See Example "Trigger configuration" on page 262

Usage: Event

Manual operation: See "Execute Trigger" on page 51

[:SOURce<hw>]:BB:W3GPp:TRIGger:EXTernal:SYNChronize:OUTPut <Output>

Enables signal output synchronous to the trigger event.

Parameters:

<Output> 0 | 1 | OFF | ON
*RST: 1

Example: See Example "Trigger configuration" on page 262

Manual operation: See "Sync. Output to External Trigger" on page 64

[:SOURce<hw>]:BB:W3GPp:TRIGger:RMODe?

Queries the signal generation status.

Return values:

<RMode> STOP | RUN
*RST: STOP

Example: See Example "Trigger configuration" on page 262

Usage: Query only

Manual operation: See "Running/Stopped" on page 64

[:SOURce<hw>]:BB:W3GPp:TRIGger:SLENgth <SLength>

Defines the length of the signal sequence that is output in the SINGLe trigger mode.

Parameters:

<SLength> integer
Range: 1 to 4293120000
*RST: 1

Example: See Example "Trigger configuration" on page 262

Manual operation: See "Signal Duration" on page 63

[:SOURce<hw>]:BB:W3GPp:TRIGger:SLUNit <SLunit>

Defines the unit for the entry of the signal sequence length.

Parameters:

<SLunit> CHIP | FRAMe | SLOT | SEQuence
*RST: SEQuence

Example: See Example "Trigger configuration" on page 262
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Trigger Settings

Manual operation: See "Signal Duration Unit" on page 63

[:SOURce<hw>]:BB:W3Gp:TRIGger[:EXTernal<ch>]:DELa y <Delay>

Specifies the trigger delay (expressed as a number of chips) for external triggering.

Parameters:

<Delay> float
 Range: 0 to 65535
 Increment: 0.01
 *RST: 0

Example: BB:W3GP:TRIG:SOUR EXT
 BB:W3GP:TRIG:DEl 50

Manual operation: See "Trigger Delay" on page 66

[:SOURce<hw>]:BB:W3Gp:TRIGger[:EXTernal<ch>]:INHibit <Inhibit>

The command specifies the number of chips by which a restart is to be inhibited following a trigger event. This command applies only in the case of external triggering.

Parameters:

<Inhibit> integer
 Range: 0 chips to 2^32-1 chips
 Increment: 1 chip
 *RST: 0 chips

Example: BB:W3GP:TRIG:SOUR EXT
 select an external trigger via the TRIGGER 1 connector.
 BB:W3GP:TRIG:INH 200
 sets a restart inhibit for 200 chips following a trigger event.

Manual operation: See "Trigger Inhibit" on page 66
7.4 Marker Settings

Example: Marker configuration

```markdown
SOURcel:BB:W3GPp:TRIGger:OUTPut1:PERiod 38400

SOURcel:BB:W3GPp:TRIGger:OUTPut1:ONTime 1
SOURcel:BB:W3GPp:TRIGger:OUTPut1:OFFTime 1
// defines the on/off ratio

// Marker delay configuration
// restricts the marker signal delay
// 0
// 2000
```

```
[:SOURce<hw>:]BB:W3GPp:TRIGger:OUTPut<ch>:MODE ................................................266
[:SOURce<hw>:]BB:W3GPp:TRIGger:OUTPut<ch>:ONTime ............................................. 267
[:SOURce<hw>:]BB:W3GPp:TRIGger:OUTPut<ch>:OFFTime ............................................267
[:SOURce<hw>:]BB:W3GPp:TRIGger:OUTPut<ch>:PERiod .............................................. 267
[:SOURce<hw>:]BB:W3GPp:TRIGger:OUTPut<ch>:DELay ............................................. 267
```

```
[:SOURce<hw>:]BB:W3GPp:TRIGger:OUTPut<ch>:MODE <Mode>
```

Defines the signal for the selected marker output.

Parameters:

- `<Mode>`
 - SLOT | RFrame | CSPeriod | SFNR | RATio | USER | TRIGger
 - SLOT = Slot
 - RFrame = Radio Frame
 - CSPeriod = Chip Sequence Period (ARB)
 - SFNR = System Frame Number (SFN) Restart
 - RATio = ON/OFF Ratio
 - USER = User

TRIGger

A received internal or external trigger signal is output at the marker connector.

*RST: RFrame

Example:

```markdown
```

selects the slot marker for the corresponding marker signal.
Manual operation: See "Marker Mode" on page 66

[:SOURce<hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:ONTime <OnTime>
[:SOURce<hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:OFFTime <OffTime>

Sets the number of chips during which the marker output is on or off.

Parameters:
<OffTime> integer
 Range: 1 to 16777215
 *RST: 1
 Default unit: chip

Example: See Example "Marker configuration" on page 266

Manual operation: See "Marker Mode" on page 66

[:SOURce<hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:PERiod <Period>

Sets the repetition rate for the signal at the marker outputs.

Parameters:
<Period> integer
 Range: 1 to 2^32-1 chips
 *RST: 38400

Example: See Example "Marker configuration" on page 266.

Manual operation: See "Marker Mode" on page 66

Defines the delay between the signal on the marker outputs and the start of the signals.

Parameters:
<Delay> float
 Range: 0 to 16777215
 *RST: 0

Example: See Example "Marker configuration" on page 266

Manual operation: See "Marker x Delay" on page 67

Restricts the marker delay setting range to the dynamic range.

Parameters:
<Fixed> 0 | 1 | OFF | ON
 *RST: 0

Example: See Example "Marker configuration" on page 266
Manual operation: See "Fix marker delay to current range" on page 67

Queries the min/max marker delay.

Return values:
<Maximum> float
Increment: 0.001

Example: See Example "Marker configuration" on page 266

Usage: Query only

Manual operation: See "Current Range without Recalculation" on page 67

7.5 Clock Settings

[:SOURce<hw>:BB:W3GPp:CLOCk:MODE <Mode>]
Sets the type of externally supplied clock.

Parameters:
<Mode> CHIP | MCHip
*RST: CHIP

Example: SOURc1:BB:W3GPp:CLOCk:MODE CHIP
Selects clock type chip.

Manual operation: See "Clock Mode" on page 69

[:SOURce<hw>:BB:W3GPp:CLOCk:MULTiplier <Multiplier>]
Sets the multiplier for clock type Multiplied.

Parameters:
<Multiplier> integer
Range: 1 to 64
*RST: 4
Example: SOURce1:BB:W3GPp:CLOCk:SOURce EXT selects the external clock source.
SOURce1:BB:W3GPp:CLOCk:MODE MCHip selects clock type multiplied, i.e. the supplied clock has a rate which is a multiple of the chip rate.
SOURce1:BB:W3GPp:CLOCk:MULTiplier 12 the multiplier for the external clock rate is 12.

Manual operation: See "Chip Clock Multiplier" on page 69

[:SOURce<hw>]:BB:W3GPp:CLOCk:SOURce <Source>
Sets the clock source.

Parameters:
<Source>
INTernal | EXTernal
INTernal
The internal clock reference is used.
EXTernal
The external clock reference is supplied to the CLOCK connector.
*RST: INTernal

Example:
BB:W3GP:CLOC:MODE CHIP specifies that a chip clock is supplied via the clock connector.

Manual operation: See "Clock Source" on page 68

[:SOURce<hw>]:BB:W3GPp:CLOCk:SYNChronization:EXECute
Performs automatically adjustment of the instrument's settings required for the synchronization mode, set with the command BB:W3GP:CLOC:SYNC:MODE.

Example:
:BB:W3GP:CLOC:SYNC:MODE MAST the instrument is configured to work as a master one.
:BB:W3GP:CLOC:SYNC:EXEC all synchronization's settings are adjusted accordingly.

Usage: Event
Manual operation: See "Set Synchronization Settings" on page 68

[:SOURce<hw>]:BB:W3GPp:CLOCk:SYNChronization:MODE <Mode>
Selects the synchronization mode.
This parameter is used to enable generation of precise synchronous signal of several connected R&S SMBVs.
Note: If several instruments are connected, the connecting cables from the master instrument to the slave one and between each two consecutive slave instruments must have the same length and type. This applies for all connections, the REF OUT to REF IN connection, the MARKER 1 to TRIGGER connection and the CLOCK OUT to CLOCK IN connection. Avoid unnecessary cable length and branching points.

Parameters:

<table>
<thead>
<tr>
<th><Mode></th>
<th>NONE</th>
<th>MASTer</th>
<th>SLAVe</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The instrument is working in stand-alone mode.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MASTer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The instrument provides all connected instrument with its synchronization (including the trigger signal) and reference clock signal.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLAVe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The instrument receives the synchronization and reference clock signal from another instrument working in a master mode.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RST: NONE

Example:

:BB:W3GP:CLOC:SYNC:MODE MAST

The instrument is configured to work as a master one.

Manual operation: See "Sync. Mode" on page 68

7.6 Test Models and Predefined Settings

The provided commands give you the opportunity to generate standardized or predefined test settings:

- **Test Models:**
 - Selection of test models for the downlink in accordance with 3GPP standard 25.141.
 - Selection of non-standardized test models for the uplink.

- **Predefined Settings:**
 Definition of Predefined Settings for base station 1 which enable the creation of highly complex scenarios for the downlink by presetting the channel table of base station 1. The settings take effect only after execution of command BB:W3GPp:PPARameter:EXECute.

```
[:SOURce<hw>]:BB:W3GPp:PPARameter:CRESt
[:SOURce<hw>]:BB:W3GPp:PPARameter:DPCH:COUNt
[:SOURce<hw>]:BB:W3GPp:PPARameter:DPCH:SRATe
[:SOURce<hw>]:BB:W3GPp:PPARameter:EXECute
[:SOURce<hw>]:BB:W3GPp:PPARameter:SCCPch:SRATe
[:SOURce<hw>]:BB:W3GPp:PPARameter:SCCPch:STATe
[:SOURce<hw>]:BB:W3GPp:PPARameter:SCHannels
[:SOURce<hw>]:BB:W3GPp:SETTIng:TMODel:BSTation
```
[:SOURce<hw>]:BB:W3GPp:PPARameter:CRES\text{t} <\text{Crest}>

This command selects the desired range for the crest factor of the test scenario. The crest factor of the signal is kept in the desired range by automatically setting appropriate channelization codes and timing offsets.

The setting takes effect only after execution of command BB:W3GPp:PPARameter:EXECute.

The settings of commands
- BB:W3GP:BST<n>:CHAN<n>:CCODe
- BB:W3GP:BST<n>:CHAN<n>:TOFFset

Are adjusted according to the selection.

Parameters:

\text{<\text{Crest}>}

- MINimum: The crest factor is minimized. The channelization codes are distributed uniformly over the code domain. The timing offsets are increased by 3 per channel.
- AVERage: An average crest factor is set. The channelization codes are distributed uniformly over the code domain. The timing offsets are all set to 0.
- WORSt: The crest factor is set to an unfavorable value (i.e. maximum). The channelization codes are assigned in ascending order. The timing offsets are all set to 0.

\text{*RST: MINimum}

Example:

BB:W3GP:PPAR:CRES WORS

Sets the crest factor to an unfavorable value.

Manual operation:

See "Crest Factor" on page 74

[:SOURce<hw>]:BB:W3GPp:PPARameter:DPCH:COUNt <\text{Count}>

Sets the number of activated DPCHs. The maximum number is the ratio of the chip rate and the symbol rate (maximum 512 at the lowest symbol rate of 7.5 ksps).

Parameters:

\text{<\text{Count}>}

- integer
- Range: 0 \text{ to } 512 (Max depends on other settings)
- \text{*RST: 10}
Example: \[\text{BB:W3GP:PPAR:DPCH:COUN 21} \]
the predefined signal contains 21 DPCHs.
\[\text{BB:W3GPp:PPARameter:EXECute} \]

Manual operation: See "Number of DPCH" on page 73

\[[:\text{SOURce<hw>}:BB:W3GPp:PPARameter:DPCH:SRATe} <\text{SRate}> \]
This command sets the symbol rate of DPCHs.
The setting takes effect only after execution of command
\[\text{BB:W3GPp:PPARameter:EXECute} \].

Parameters:
\[<\text{SRate}> \]
D7K5 | D15K | D30K | D60K | D120k | D240k | D480k | D960k
*RST: D30K

Example: \[\text{BB:W3GP:PPAR:DPCH:SRAT D240K} \]
sets the symbol rate of the DPCHs to 240ksps.

Manual operation: See "Symbol Rate DPCH" on page 74

\[[:\text{SOURce<hw>}:BB:W3GPp:PPARameter:EXECute} \]
This command presets the channel table of base station 1 with the parameters defined
by the PPARameter commands.

Example: \[\text{BB:W3GP:PPAR:EXEC} \]
configures the signal sequence as defined by the :PPARameter
commands.

Usage: Event

Manual operation: See "Accept" on page 74

\[[:\text{SOURce<hw>}:BB:W3GPp:PPARameter:SCCPch:SRATe} <\text{SRate}> \]
The command sets the symbol rate of S-CCPCH.
The setting takes effect only after execution of command
\[\text{BB:W3GPp:PPARameter:EXECute} \].

Parameters:
\[<\text{SRate}> \]
D15K | D30K | D60K | D120k | D240k | D480k | D960k
*RST: D30K

Example: \[\text{BB:W3GP:PPAR:SCCP:SRAT D240K} \]
sets the SCCPCH to 240 kbps.

Manual operation: See "Symbol Rate S-CCPCH" on page 73
[:SOURce<hw>]:BB:W3GPp:PPARameter:SCCPch:STATe <State>
Activates/deactivates the S-CCPCH.

Parameters:
<State> 0 | 1 | OFF | ON
*RST: 0

Example:
BB:W3GPp:PPAR:SCCP:STAT ON
S-CCPCH is activated.
BB:W3GPp:PPARameter:EXECute

Manual operation: See "Use S-CCPCH " on page 73

[:SOURce<hw>]:BB:W3GPp:PPARameter:SCHannels <SChannels>
The command activates/deactivates the PCPICH, PSCH, SSCH and PCCPCH. These "special channels" are required by a user equipment for synchronization.
The setting takes effect only after execution of command

Parameters:
<SChannels> 0 | 1 | OFF | ON
*RST: 0

Manual operation: See " Use Channels " on page 73

[:SOURce<hw>]:BB:W3GPp:SETTing:TMODel:BSTation <BStation>
Selects a standard test model for the downlink.

Parameters:
<BStation> string

Example:
SOURcel:BB:W3GPp:SETTing:TMODel:BSTation:
CATalog?
queries the list of available test models for the downlink transmission direction.
Response: Test_Model_1_16channels,...
SOURcel:BB:W3GPp:SETTing:TMODel:BSTation:
"Test_Model_1_64channels"
selects the test model Measurement: Spectrum emission mask ACLR; 64 Channels.

Manual operation: See "Test Models Downlink" on page 69

[:SOURce<hw>]:BB:W3GPp:SETTing:TMODel:BSTation:CATalog?
Queries the list of test models defined by the standard for the downlink.

Return values:
<Catalog> string
Example: see [:SOURce<hw>]:BB:W3GPp:SETTing:TMODEl:BSTation on page 273

Usage: Query only

Manual operation: See "Test Models Downlink" on page 69

[:SOURce<hw>]:BB:W3GPp:SETTing:TMODEl:MSTation <MStation>

The command selects a test model that is not defined by the standard for the uplink.

Parameters:

- `<MStation>`
 - string
 - **DPCCH_DPDCH_60ksps**
 - Preset, Uplink, UE1 on, DPDCH + DPCCH, Overall symbol rate 60 kbps.
 - **DPCCH_DPDCH960ksps**
 - Preset, Uplink, UE1 on, DPDCH + DPCCH, Overall symbol rate 960 kbps
 - **TS34121_R6_Table_C_10_1_4_Subtest4**
 - Uplink test model according to 3GPP TS 34.121 Release 6, Table C.10.1.4.
 - **TS34121_R8_Table_C_10_1_4_Subtest3**
 - Uplink test models for transmitter characteristics tests with HS-DPCCH according to 3GPP TS 34.121 Release 8, Table C.10.1.4.
 - **TS34121_R8_Table_C_11_1_3_Subtest2**
 - Uplink test models for transmitter characteristics tests with HS-DPCCH and E-DCH according to 3GPP TS 34.121 Release 8, Table C.11.1.3.
 - **TS34121_R8_Table_C_11_1_4_Subtest1**
 - Uplink test model for transmitter characteristics tests with HS-DPCCH and E-DCH with 16QAM according to 3GPP TS 34.121 Release 8, Table C.11.1.4.

Example:

BB:W3GP:SETT:TMOD:MST 'DPCCH_DPDCH960ksps'

selects the test model with a symbol rate of 960 kbps.

Manual operation: See "Test Models Uplink" on page 71

[:SOURce<hw>]:BB:W3GPp:SETTing:TMODEl:MSTation:CATalog?

The command queries the list of non-standardized test models for the uplink.

Return values:

- `<Catalog>`
 - string

Example:

queries the list of available test models

Response: DPCCH_DPDCH960ksps, DPCCH_DPDCH_60ksps
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Setting Base Stations

Usage: Query only
Manual operation: See "Test Models Uplink" on page 71

7.7 Setting Base Stations

The SOURce:BB:W3Gpp:BSTation system contains commands for setting base stations. The commands of this system only take effect if the 3GPP FDD standard is activated, the DOWN transmission direction is selected and the particular base station is enabled:

SOURce:BB:W3Gpp:STATe ON
SOURce:BB:W3Gpp:LINK DOWN
SOURce:BB:W3Gpp:BSTation2:STATe ON
BSTation<st>

The numeric suffix to BSTation determines the base station. The value range is 1 .. 4. If the suffix is omitted, BS1 is selected.

CHANnel<ch>

In case of remote control, suffix counting for channels corresponds to the suffix counting with 3GPP FDD (channel 0 to channel 138). SCPI prescribes that suffix 1 is the default state and used when no specific suffix is specified. Therefore, channel 1 (and not channel 0) is selected when no suffix is specified.

The commands for setting the enhanced channels of base station 1 are described in Chapter 7.8, "Enhanced Channels of Base Station 1", on page 322.

[:SOURce<hw>]:BB:W3Gpp:BSTation:OCNS:STATe <State>

Activates OCNS channels according to the scenario selected with the command [:SOURce<hw>]:BB:W3Gpp:BSTation:OCNS:MODE.

Parameters:

<State> 0 | 1 | OFF | ON
*RST: 0

Manual operation: See "OCNS On" on page 52

[:SOURce<hw>]:BB:W3Gpp:BSTation:OCNS:MODE <Mode>

Selects the scenario for setting the OCNS channels.

To activate the selected scenario, send the command [:SOURce<hw>]:BB:W3Gpp:BSTation:OCNS:STATe.
Parameters:

<table>
<thead>
<tr>
<th><Mode></th>
<th>STANdard</th>
<th>HSDPa</th>
<th>HSDP2</th>
<th>M3I</th>
</tr>
</thead>
</table>

Four different OCNS scenarios are defined in the standard; one standard scenario, two scenarios for testing HSDPA channels and one for enhanced performance type 3i tests.

*RST: STANdard

Example:

BB:W3GP:BST:OCNS:MODE HSDP

Selects the scenario for testing the high-speed channels.

BB:W3GP:BST:OCNS:STAT ON

Activates the OCNS channels with the settings defined in the standard.

Options: M3I requires option R&S SMBV-K43 and R&S SMBV-K59

Manual operation: See "OCNS Mode " on page 52

[:SOURce<hw>]:BB:W3GPp:BSTation:OCNS:SEED <Seed>

In "3i" OCNS mode, sets the seed for both the random processes, the power control simulation process and the process controlling the switch over of the channelization codes.

Parameters:

<table>
<thead>
<tr>
<th><Seed></th>
<th>integer</th>
</tr>
</thead>
</table>

Range: 0 to 65535

*RST: dynamic

Options: R&S SMx/AMU-K43 and -K59

Manual operation: See "OCNS Seed" on page 53

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel:HSDPa:HSET:PRESet

Sets the default settings of the channel table for the HSDPA H-Set mode. Channels 12 to 17 are preset for HSDPA H-Set 1.

Example:

SOURcel1:BB:W3GPp:BSTation1:CHANnel12:HSDPa:MODE HSET

selects H-Set mode.

presets the H-Set.

SOURcel1:BB:W3GPp:BSTation1:CHANnel12:TYPE?

Response: HSSC

Response: P1QPSK

Usage: Event

Manual operation: See "Preset HSDPA H-Set " on page 79
[:SOURce<hw>]:BB:W3GPP:BSTation<st>:CHANnel:PRESet

The command calls the default settings of the channel table.

Example: BB:W3GP:BST:CHAN:PRES
presets all channels of the base station.

Usage: Event

Manual operation: See "Reset All Channels" on page 79

[:SOURce<hw>]:BB:W3GPP:BSTation<st>:CHANnel<ch0>:AICH:ASLOt <ASlot>

Selects the slot in which the burst is transmitted.

Suffix:
<ch0> 7..7

Parameters:
<ASlot> integer
Range: 0 to 15
*RST: 0

defines the slot to transmit the burst.

Manual operation: See " Access Slot " on page 132

[:SOURce<hw>]:BB:W3GPP:BSTation<st>:CHANnel<ch0>:AICH:SAPattern <SaPattern>

Enters the 16 bit pattern for the ACK/NACK field.

Parameters:
<SaPattern> <16 bit pattern>
*RST: +000000000000

Example: SOURcel:BB:W3GPP:BSTation1:CHANnel17:AICH:SAPattern "+000000000000"
sets the bit pattern to "+000000000000" (ACK).

Manual operation: See " Signature ACK/NACK Pattern " on page 131

[:SOURce<hw>]:BB:W3GPP:BSTation<st>:CHANnel<ch0>:APAiCh:ASLOt <ASlot>

Selects the slot in which the burst is transmitted.

Suffix:
<ch0> 8..8
Parameters:

<ASlot>
integer
Range: 0 to 15
*RST: 0

Example:
defines the slot to transmit the burst.

Manual operation:
See " Access Slot " on page 132

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:APAIch:SAPattern <SaPattern>

Enters the 16-bit pattern for the ACK/NACK field.
This field is used by the base station to acknowledge, refuse or ignore requests of up to 16 user equipment.

Parameters:

<SaPattern>
<16 bit pattern>
*RST: +000000000000

Example:
SOUR:BB:W3GP:BST1:CHAN8:APAI:SAP
"+000000000000"
Sets the bit pattern to '+' (ACK).

Manual operation:
See " Signature ACK/NACK Pattern " on page 131

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:CCODe <CCode>

The command sets the channelization code (formerly the spreading code number).
The range of values of the channelization code depends on the symbol rate of the channel. The standard assigns a fixed channelization code to some channels (P-CPICH, for example, always uses channelization code 0).

\[
\text{chip-rate}(=3.84\text{Mcps}) / \text{symbol_rate} - 1
\]

The slot format determines the symbol rate (and thus the range of values for the channelization code), the TFCI state and the pilot length. If the value of any one of the four parameters is changed, all the other parameters are adapted as necessary.

In the case of enhanced channels with active channel coding, the selected channel coding also affects the slot format and thus the remaining parameters. If these parameters are changed, the channel coding type is set to user.

Parameters:

<CCode>
integer
Range: 0 to 511
Increment: 1
*RST: depends on channel type

Example:
BB:W3GP:BST1:CHAN15:CCOD 123
Sets channelization code 123 for channel 15 of base station 1.
Manual operation: See "Channelization Code" on page 82

[:SOURce<hw>:]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DATA <Data>

The command determines the data source for the data fields of the specified channel.

For enhanced channels with channel coding, the data source is set with the command [:SOURce<hw>:>:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TCHannel<di0>:DATA on page 330.

Parameters:

<Data>

- PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 | DLISt | ZERO | ONE | PATTern

- PNxx
 The pseudo-random sequence generator is used as the data source. Different random sequence lengths can be selected.

- DLISt
 A data list is used. The data list is selected with the command :BB:W3GPp:BST:CHANnel:DATA:DSELect.

- ZERO | ONE
 Internal 0 and 1 data is used.

- PATTern
 Internal data is used. The bit pattern for the data is defined by the command :BB:W3GPp:BST:CHANnel:DATA:PATTern.

*RST: PN9

Example:

BB:W3GP:BST2:CHAN13:DATA PATT

Selects as the data source for the data fields of channel 13 of base station 2, the bit pattern defined with the following command.

Defines the bit pattern.

Manual operation: See "Data List Management" on page 49

[:SOURce<hw>:>:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DATA:DSELect

The command selects the data list for the DLISt data source selection.

The lists are stored as files with the fixed file extensions *.dm_iqd in a directory of the user's choice. The directory applicable to the following commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Parameters:

<DSelect> string
Example:
`BB:W3GP:BST2:CHAN13:DATA DLIS`
selects the Data Lists data source.
`MMEM:CDIR '/var/user/temp/IqData'`
selects the directory for the data lists.
`BB:W3GP:BST2:CHAN13:DATA:DSEL '3gpp_list1'`
selects file '3gpp_list1' as the data source. This file must be in the directory `/var/user/temp/IqData` and have the file extension `*.dm_iqd`.

Manual operation: See "Data List Management" on page 49

[:SOURce<hw> :BB:W3GPP :BSTation<st> :CHANnel<ch0> :DATA :PATTern <Pattern>, <BitCount>]

The command determines the bit pattern for the PATTern selection. The maximum length is 64 bits.

Parameters:
- `<Pattern>`: numeric
 *RST: #H0
- `<BitCount>`: integer
 Range: 1 to 64
 *RST: 1

Example:
defines the bit pattern.

Manual operation: See "Data" on page 83

[:SOURce<hw> :BB:W3GPP :BSTation<st> :CHANnel<ch0> :DPCCh :MCODe <MCode>]

The command activates multicode transmission for the selected channel (ON) or deactivates it (OFF). The multicode channels are destined for the same receiver, that is to say, are part of a radio link. The first channel of this group is used as the master channel. The common components (Pilot, TPC and TCFI) for all the channels are then spread using the spreading code of the master channel.

Parameters:
- `<MCode>`:
 0 | 1 | OFF | ON
 *RST: 0

Example:
`BB:W3GP:BST2:CHAN112:DPCC:MCOD ON`
activates the simulation in multicode mode for channel 12 of base station 2.
activates the simulation in multicode mode for channel 13 of base station 2. Channel 12 is the master channel.

Manual operation: See "Multicode State (DPCCCH)" on page 133
[:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>:DPCCh:PLENgth
<PLength>

Sets the length of the pilot fields.

The range of values for this parameter depends on the channel type and the symbol rate. The slot format determines the symbol rate (and thus the range of values for the channelization code), the TFCI state and the pilot length. If the value of any one of the four parameters is changed, all the other parameters are adapted as necessary.

In the case of enhanced channels with active channel coding, the selected channel coding also affects the slot format and thus the remaining parameters. If these parameters are changed, the channel coding type is set to user.

Parameters:

- `<PLength>`
 - BIT2 | BIT4 | BIT8 | BIT16 | BIT0
 - *RST:* BIT4, bei S-CCPCH 0

Example: SOURce1:W3Gp:BSTation1:CHANnel12:DPCCh:PLENgth
BIT8
Sets the length of the pilot fields for channel 12 of base station 1.

Manual operation: See "Pilot Length" on page 131

[:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>:DPCCh:POFFset:Pilot
<Pilot>

Sets an offset to the set channel power for the pilot field.

Parameters:

- `<Pilot>`
 - float
 - Range: -10 to 10
 - Increment: 0.01
 - *RST:* 0

in the pilot field, sets an offset of -2 dB relative to the channel power.

Manual operation: See "Power Offset Pilot (DPCCH)" on page 136

[:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>:DPCCh:POFFset:TFCI
<Tfci>

The command sets an offset to the set channel power for the TFCI field.

Parameters:

- `<Tfci>`
 - float
 - Range: -10 to 10
 - Increment: 0.01
 - *RST:* 0
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Example:

in the TFCI field, sets an offset of -2 dB relative to the channel power.

Manual operation: See "Power Offset TFCI (DPCCH)" on page 137

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:POFFset:TPC <Tpc>

The command sets an offset to the set channel power for the TPC field.
This setting is only valid for the DPCHs.

Parameters:

<Tpc> float
Range: -10 to 10
Increment: 0.01
*RST: 0

Example:
in the TPC field, sets an offset of -2 dB relative to the channel power.

Manual operation: See "Power Offset TPC (DPCCH)" on page 137

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TFCI <Tfci>

The command enters the value of the TFCI field (Transport Format Combination Indicator) for the selected channel of the specified base station. The TFCI field is always filled with exactly 10 bits with leading zeros.

Parameters:

<Tfci> integer
Range: 0 to 1023
*RST: 0

Example:
sets the value 22 for the TFCI field of channel 12 of base station 2.

Manual operation: See "TFCI Value" on page 130

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TFCI:STATe <State>

The command activates the TFCI field (Transport Format Combination Identifier) for the selected channel of the specified base station.

The slot format determines the symbol rate (and thus the range of values for the channelization code), the TFCI state and the pilot length. If the value of any one of the four parameters is changed, all the other parameters are adapted as necessary.
In the case of enhanced channels with active channel coding, the selected channel coding also affects the slot format and thus the remaining parameters. If these parameters are changed, the channel coding type is set to user.

Parameters:

<State>

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td></td>
</tr>
</tbody>
</table>

RST: OFF

Example:

```
```

Sets that the TFCI field of channel 12 of base station 2 is not used.

Manual operation: See "Use TFCI" on page 130

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:DATA <Data>

Determines the data source for the TPC field of the channel.

Parameters:

<Data>

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZERO</td>
<td></td>
</tr>
<tr>
<td>ONE</td>
<td></td>
</tr>
<tr>
<td>PATTern</td>
<td></td>
</tr>
<tr>
<td>DLIST</td>
<td></td>
</tr>
</tbody>
</table>

DLIST

A data list is used. Use the command [:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TFC:DATA:DSELect to define the data list file.

ZERO | ONE

Internal 0 and 1 data is used.

PATTern

Internal data is used. Use the command [:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TFC:DATA:PATTern to define the bit pattern.

RST: ZERO

Example:

```
```

Selects as the data source for the TPC field of channel 13 of base station 2.

```
```

Defines the bit pattern.

```
```

Selects the data source.

```
MMEM:CDIR '/var/user/IqData'
```

Selects the directory for the data lists.

```
```

Selects the file tpc_ch4 as the data source.
Manual operation: See "Data List Management" on page 49

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:DATA: DSELect <DSelect>

Selects the data list for the DLIST data source selection.

The lists are stored as files with the fixed file extensions
*.dm_iqd in a directory of the user’s choice. The directory is defined with the command MMMemory:CDIR. To access
the files in this directory, you only have to give the file name, without the path and the
file extension.

Parameters:
<DSelect> <data list name>

Example: see [:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:DATA on page 283

Manual operation: See "Data List Management" on page 49

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:DATA: PATTern <Pattern>, <BitCount>

Determines the bit pattern.

Parameters:
<Pattern> numeric
 *RST: #H0

<BitCount> integer
 Range: 1 to 64
 *RST: 1

Example: see [:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:DATA on page 283

Manual operation: See " TPC Data Source (DPCCH) " on page 134

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:MISuse <MisUse>

The command activates "mis-" use of the TPC field (Transmit Power Control) of the
selected channel for controlling the channel powers of these channels of the specified
base station.

The bit pattern (see commands ::W3GPp:BSTation<n>:CHANnel<n>:DPCCh:TPC...) of the TPC field of
each channel is used to control the channel power. A "1" leads to an increase of channel
powers, a "0" to a reduction of channel powers. Channel power is limited to the
range 0 dB to -60 dB. The step width of the change is defined with the command [: SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:PSTep.
Parameters:

<MisUse>
ON | OFF
*RST: 0

Manual operation: See "Misuse TPC for Output Power Control (DPCCH)" on page 135

[<Source<hw>:|]:BB:W3GPPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:PSTep
<PowerStep>

The command defines the step width for the change of channel powers in the case of "mis-" use of the TPC field.

Parameters:

<PowerStep>
float
Range: -10 to 10
Increment: 0.01
*RST: 0

Example:
sets the step width for the change of channel powers for channel 13 of base station 2 to 1 dB.

Manual operation: See "TPC Power Step (DPCCH)" on page 136

[<Source<hw>:|]:BB:W3GPPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:READ
<Read>

The command sets the read out mode for the bit pattern of the TPC field.

The bit pattern is defined with the commands BB:W3GPPp:BST<i>:CHANnel<n>:DPCCh:TPC:...

Parameters:

<Read>
CONTinuous | S0A | S1A | S01A | S10A

CONTinuous
The bit pattern is used cyclically.

S0A
The bit pattern is used once, then the TPC sequence continues with 0 bits.

S1A
The bit pattern is used once, then the TPC sequence continues with 1 bit.

S01A
The bit pattern is used once and then the TPC sequence is continued with 0 bits and 1 bit alternately (in multiples, depending on by the symbol rate, for example, 00001111).
S10A
The bit pattern is used once and then the TPC sequence is continued with 1 bit and 0 bits alternately (in multiples, depending on by the symbol rate, for example, 11110000).

*RST: CONTInuous

Example:
BB:W3GP:BST2:CHAN13:DPCC:TPC:READ S0A
The bit pattern is used once, after which a 0 sequence is generated (applies to channel 13 of base station 2).

Manual operation: See "TPC Read Out Mode (DPCCH)" on page 135

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCCh:DPCCh:TPC:DATA <Data>

The command determines the data source for the TPC field of the channel.

Parameters:

<Data>
DLISt | ZERO | ONE | PATTern

DLISt
A data list is used. The data list is selected with the command [:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCCh:DPCCh:TPC:DATA:DSELect.

ZERO | ONE
Internal 0 and 1 data is used.

PATTern
Internal data is used. The bit pattern for the data is defined by the command [:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCCh:DPCCh:TPC:DATA:PATTern.

*RST: PATTern

Example:
BB:W3GP:BST1:CHAN11:FDPC:DPCC:TPC:DATA PATT selects as the data source for the TPC field of channel 11 of base station 1, the bit pattern defined with the following command:
defines the bit pattern.

Manual operation: See "TPC Source" on page 141

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCCh:DPCCh:TPC:DATA:DSELect <DSelect>

The command selects the data list for the DLISt data source selection.

The lists are stored as files with the fixed file extensions *.dm_iqd in a directory of the user's choice. The directory applicable to the following commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.
Parameters:

<DSelect>

Example:

```
```

selects the "Data Lists" data source.

```
MMEM:CDIR '/var/user/temp/IqData'
```

selects the directory for the data lists.

```
```

selects the file 'tpc_ch4' as the data source. This file must be in the directory `/var/user/temp/IqData` and have the file extension `.dm_iqd`.

Manual operation: See "**TPC Source**" on page 141

```
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCCh:DPCCh:TPC:DATA:PATTern <Pattern>, <BitCount>
```

The command determines the bit pattern for the PATTern selection. The maximum bit pattern length is 32 bits.

Parameters:

<Pattern> numeric

RST: #H0

<BitCount> integer

Range: 1 to 64

RST: 1

Example:

```
```

defines the bit pattern for the TPC field of channel 11 of base station 1.

Manual operation: See "**TPC Source**" on page 141

```
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCCh:DPCCh:TPC:MIUse <Misuse>
```

The command activates "mis-" use of the TPC field (Transmit Power Control) of the selected channel for controlling the channel powers of these channels of the specified base station.

The bit pattern (see command `[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCCh:DPCCh:TPC:DATA:PATTern`) of the TPC field of each channel is used to control the channel power. A "1" leads to an increase of channel powers, a "0" to a reduction of channel powers. Channel power is limited to the range 0 dB to -60 dB. The step width of the change is defined with the command `[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCCh:DPCCh:TPC:PSTep`.
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Parameters:

<Misuse> ON | OFF
*RST: 0

Example:
activates regulation of channel power for channel 11 of base station 1 via the bit pattern of the associated TPC field.
sets the step width for the change of channel powers for channel 11 of base station 1 to 1 dB.

Manual operation: See "TPC For Output Power Control (Mis-) Use" on page 143

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCh:DPCCh:TPC:PSTep <PStep>
The command defines the step width for the change of channel powers in the case of "mis-" use of the TPC field.

Suffix:
<ch0> 11..138

Parameters:

<PStep> float
Range: -10.0 dB to 10.0 dB
Increment: 0.01 dB
*RST: 0 dB

Example:
sets the step width for the change of channel powers for channel 11 of base station 1 to 1.5 dB.

Manual operation: See "TPC Power Step (F-DPCH)" on page 143

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCh:DPCCh:TPC:READ <Read>
The command sets the read out mode for the bit pattern of the TPC field.

Parameters:

<Read> CONTinuous | S0A | S1A | S01A | S10A
CONTinuous
The bit pattern is used cyclically.
S0A
The bit pattern is used once, then the TPC sequence continues with 0 bits.
S1A
The bit pattern is used once, then the TPC sequence continues with 1 bit.
S01A
The bit pattern is used once and then the TPC sequence is continued with 0 bits and 1 bit alternately (in multiples, depending on by the symbol rate, for example, 00001111).

S10A
The bit pattern is used once and then the TPC sequence is continued with 1 bit and 0 bits alternately (in multiples, depending on by the symbol rate, for example, 11100000).

*RST: CONTInuous

The bit pattern is used once, after which a 0 sequence is generated (applies to channel 11 of base station 1).

Manual operation: See "TPC Read Out Mode (F-DPCH)" on page 142

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:BMODe[:STATe] <State>

The command activates/deactivates burst mode. The signal is bursted when on, otherwise dummy data are sent during transmission brakes.

Parameters:
<State> ON | OFF
*RST: 1

deactivates burst mode, dummy data are sent during the transmission brakes.

Manual operation: See "Burst Mode" on page 96

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:CVPB <Cvpb>

The command switches the order of the constellation points of the 16QAM and 64QAM mapping. The re-arrangement is done according to 3GPP TS25.212.

Parameters:
<Cvpb> integer
Range: 0 to 3
*RST: 0

Example: BB:W3GP:BST1:CHAN12:HSDP:CVPB 1
selects interchange of MSBs with LSBs.

Manual operation: See "Constellation Version Parameter b - BS" on page 96

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:AMODe <AMode>

Activates/deactivates the advanced mode in which the H-Set is generated by the ARB.
The parameter can be configured only for H-Sets 1 - 5.
For H-Sets 6 to 12 and User, it is always enabled.

Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><AMode></td>
<td>ON</td>
</tr>
<tr>
<td>RST:</td>
<td>OFF (H-Sets 1..5); ON (H-Sets 6..12, User);</td>
</tr>
</tbody>
</table>

Example:

BB:W3GP:BST1:CHAN12:HSDP:MODE HSET
Selects H-Set mode.
BB:W3GP:BST1:CHAN12:HSDP:HSET:PRED P1QAM16
Selects H-Set 1 (16QAM).
BB:W3GP:BST1:CHAN12:HSDP:HSET:AMOD ON
Enables advanced mode for the selected H-Set.

Manual operation: See "Advanced Mode (requires ARB)" on page 101

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:ACLength <AcLength>

Sets the alternative number of HS-PDSCH channelization codes (see Chapter 4.13.9, "Randomly Varying Modulation and Number of Codes (Type 3i) Settings", on page 112).

Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><AcLength></td>
<td>integer</td>
</tr>
<tr>
<td>Range:</td>
<td>1 to 15 (max depends on other values)</td>
</tr>
<tr>
<td>RST:</td>
<td>5</td>
</tr>
</tbody>
</table>

Example:

Options: R&S SMx/AMU-K59

Manual operation: See "Alternative Number of HS-PDSCH Channelization Codes" on page 113

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:ALTModulation <ALTModulation>

Sets the alternative modulation (see Chapter 4.13.9, "Randomly Varying Modulation and Number of Codes (Type 3i) Settings", on page 112).

Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><ALTModulation></td>
<td>QPSK</td>
</tr>
<tr>
<td>RST:</td>
<td>QAM16</td>
</tr>
</tbody>
</table>

Example:

:SOURce:BB:W3GPp:BSTation1:CHANnel12:HSDPa:
HSET:ALTModulation QPSK

Options: R&S SMx/AMU-K59
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Setting Base Stations

Manual operation: See "Alternative HS-PDSCH Modulation" on page 113

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:BCBTi<di>?

Displays the binary channel bits per TTI and per stream.

The value displayed is calculated upon the values sets with the commands:

- [:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:MODulation<di>,
- [:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:SRATe and

Return values:

<Bcbtti> float

Response: "4800"

Usage: Query only

Manual operation: See "Binary Channel Bits per TTI (Physical Layer) Stream 1/2" on page 107

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:BPAYload<di>?

The command queries the payload of the information bit. This value determines the number of transport layer bits sent in each subframe.

Return values:

<BPayload> float

Range: 1 to 5000

Response: "256"

Usage: Query only

Manual operation: See "Information Bit Payload (TB-Size) Stream 1/2" on page 108
The command queries the number of physical HS-PDSCH data channels assigned to the HS-SCCH.

Parameters:

- `<CLength>`: integer
 - Range: 1 to 15
 - *RST:* 5

Example:

```
BB:W3GP:BST1:CHAN12:HSDP:MODE HSET
selects H-Set mode.
queries the number of physical HS-PDSCH data channels assigned to the HS-SCCH.
Response: "4"
```

Manual operation:
See "Number of HS-PDSCH Channelization Codes" on page 105

Queries the resulting coding rate per stream.

The coding rate is calculated as a relation between the "Information Bit Payload" and "Binary Channel Bits per TTI".

Return values:

- `<CRate>`: float

Example:

```
BB:W3GP:BST1:CHAN12:HSDP:MODE HSET
selects H-Set mode.
queries the coding rate of stream 2.
Response: "0.658"
```

Usage:
Query only

Manual operation:
See "Coding Rate Stream 1/2" on page 108

Selects the data source for the transport channel.

Parameters:

- `<Data>`: ZERO | ONE | PATTern | PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 | DLIS
 - *RST:* 0

Example:

```
selects the data source for the transport channel.
```

Manual operation:
See "Number of HS-PDSCH Channelization Codes" on page 105
PATTern
Internal data is used. Use the command [:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:DATA:PATTern to set the pattern.

DLISt
A data list is used. Use the command [:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:DATA:DSELect to select the data list file.

*RST: PN9

Example:
BB:W3GP:BST1:CHAN11:HSDP:HSET:DATA PATT selects as the data source for the transport channel

Manual operation: See "Data Source (HS-DSCH)" on page 104

[:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:DATA: DSELect <DSelect>

The command selects the data list for the DLISt data source selection.

The lists are stored as files with the fixed file extensions *.dm_iqd in a directory of the user's choice. The directory applicable to the following commands is defined with the command MMEM:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Parameters:
<DSelect> string

Example:
MMEM:CDIR '/var/user/temp/H-Sets' selects the directory for the data lists.
BB:W3GP:BST1:CHAN11:HSDP:HSET:DATA:DSEL 'hset_ch11' selects the file hset_ch11 as the data source. This file must be in the directory /var/user/temp/H-Sets and have the file extension *.dm_iqd.

Manual operation: See "Data Source (HS-DSCH)" on page 104

[:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:DATA: PATTern <Pattern>, <BitCount>

Determines the bit pattern for the PATTern selection.

Parameters:

Pattern> numeric

*RST: #H0
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Setting Base Stations

<BitCount> integer
Range: 1 to 64
*RST: 1

Example:
BB:W3GP:BST1:CHAN11:HSDP:HSET:DATA PATT selects as the data source for the H-set

Manual operation: See "Data Source (HS-DSCH)" on page 104

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:HARQ:LENGTH <Length>

Sets the number of HARQ processes. This value determines the distribution of the payload in the subframes.

Parameters:
<Length> integer
Range: 1 to 6
*RST: 0

Example:
queries the number of HARQ processes.
Response:2

Manual operation: See "Number of HARQ Processes per Stream" on page 109

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:HARQ:MODE <Mode>

Sets the HARQ Simulation Mode.

Parameters:
<Mode> CACK | CNACk

CACK
New data is used for each new TTI.

CNACk
Enables NACK simulation, i.e. depending on the sequence selected for the parameter Redundancy Version Parameter Sequence packets are retransmitted.

*RST: CACK
Example:

BB:W3GP;BST1:CHAN12:HSDP:MODE HSET
selects H-Set mode.
BB:W3GP;BST1:CHAN12:HSDP:HSET:AMOD ON
enables advanced mode.
sets Constant NACK HARQ Mode.

Manual operation: See "Mode (HARQ Simulation)" on page 110

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:
HSCCode <HsCCode>

Sets the channelization code of the HS-SCCH.

Note: To let the instrument generate a signal equal to the one generated by an instrument equipped with older firmware, set the same Channelization Codes as the codes used for your physical channels.

Parameters:

<HsCCode> float
Range: 0 to 127

Example:

BB:W3GP;BST1:CHAN12:HSDP:MODE HSET
Selects H-Set mode.
BB:W3GP;BST1:CHAN12:HSDP:HSET:HSCC 10
Sets channelization code 10 for the HS-SCCH.

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:
MODulation<di> <Modulation>

Sets the modulation for stream 1 and stream 2 to QPSK, 16QAM or 64QAM.
The modulation 64QAM is available for instruments equipped with option R&S SMBV-K59 only.
For HS-SCCH Type 2, the available modulation scheme is QPSK only.

Parameters:

<Modulation> QPSK | QAM16 | QAM64
*RST: QPSK

Example:

BB:W3GP;BST1:CHAN12:HSDP:HSET:TYPE MIMO
BB:W3GP;BST1:CHAN12:HSDP:HSET:MOD1 QAM64

Manual operation: See "HS-PDSCH Modulation Stream1/2" on page 106

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:
NAIBitrate?

Queries the average data rate on the transport layer (Nominal Average Information Bitrate).
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Return values:
<NaiBitrate> float
 Range: 1 to 5000
 Increment: 0.1
 *RST: 0

Example:
Response: "455"

Usage: Query only
Manual operation: See "Nominal Average Information Bit Rate" on page 102

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:PREDefined <Predefined>
The command selects the H-Set and the modulation according to TS 25.101 Annex A. 7.

Parameters:
<Predefined> P1QPSK | P1QAM16 | P2QPSK | P2QAM16 | P3QPSK |
P3QAM16 | P4QPSK | P5QPSK | P6QPSK | P6QAM16 |
P7QPSK | P8QAM64 | P9QAM16QPSK | P10QPSK |
P10QAM16 | P11QAM64QAM16 | P12QPSK | USER
 *RST: P1QPSK

Example:

Manual operation: See "Predefined H-Set" on page 100

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:PWPATTERN <PwPattern>
Sets the precoding weight parameter w2 for MIMO precoding.

The values of the weight parameters w1, w3 and w4 are calculated based on the value for w2 (see Chapter 3.3.14, "MIMO in HSPA+", on page 33).

Parameters:
<PwPattern> string
 *RST: 0

Example:
BB:W3GP:BST1:CHAN12:HSDP:HSET:PWP "0,1,3" selects the pattern.

Manual operation: See "Precoding Weight Pattern (w2)" on page 103
The parameter is enabled for "HARQ Simulation Mode" set to Constant ACK.

The command sets the Redundancy Version Parameter. This value determines the processing of the Forward Error Correction and Constellation Arrangement (QAM16 and 64QAM modulation), see TS 25.212 4.6.2.

For HS-SCCH Type 2 (less operation), the Redundancy Version Parameter is always 0.

Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Range</th>
<th>Reset</th>
</tr>
</thead>
<tbody>
<tr>
<td><RvParameter></td>
<td>integer</td>
<td>0 to 7</td>
<td>0</td>
</tr>
</tbody>
</table>

Example:

```
BB:W3GP:BST1:TDIV ANT1 enables transmit diversity
```

Manual operation: See "Redundancy Version Stream1/2" on page 110

The parameter is enabled for "HARQ Simulation Mode" set to Constant NACK.

Enters a sequence of Redundancy Version Parameters per stream. The value of the RV parameter determines the processing of the Forward Error Correction and Constellation Arrangement (16/64QAM modulation), see TS 25.212 4.6.2.

The sequence has a length of maximum 30 values. The sequence length determines the maximum number of retransmissions. New data is used after reaching the end of the sequence.

For HS-SCCH Type 2 (less operation), the Redundancy Version Parameter Sequence is a read-only parameter.

Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td><RvpSequence></td>
<td>string</td>
</tr>
</tbody>
</table>

Example:

```
BB:W3GP:BST1:TDIV ANT1 enables transmit diversity
```
Example:
BB:W3GP:BST1:CHAN12:HSDP:MODE HSET
selects H-Set mode.
BB:W3GP:BST1:CHAN12:HSDP:HET:AMOD ON
enables advanced mode.
sets Constant NACK HARQ Mode.
BB:W3GP:BST1:TDIV ANT1
enables transmit diversity
selects HS-SCCH Type 3 (MIMO).
BB:W3GP:BST1:CHAN12:HSDP:HVPS2
'0,1,3,2,0,1,2,3'
sets the Redundancy Version Parameter sequence of stream 2.

Example:
selects HS-SCCH Type 2 (less operation).
BB:W3GP:BST1:CHAN12:HSDP:HVPS?
queries the Redundancy Version Parameter sequence.
Response: 0,3,4

Manual operation:
See "Redundancy Version Sequence Stream 1/2" on page 110

::SOURce<hw>[:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:RVSTate <RvState>

Enables/disables the random variation of the modulation and number of codes (see Chapter 4.13.9, "Randomly Varying Modulation and Number of Codes (Type 3i) Settings", on page 112).

Parameters:
<RvState>
0 | 1 | OFF | ON
*RST: OFF

Example:
SOURce:BB:W3GPp:BST1:CHAN12:HSDPa:HSET:RVSTate ON

Options:
R&S SMx/AMU-K59

Manual operation:
See "Randomly Varying Modulation And Number Of Codes" on page 113

::SOURce<hw>[:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:SEED <Seed>

Sets the seed for the random process deciding between the four options (see Chapter 4.13.9, "Randomly Varying Modulation and Number of Codes (Type 3i) Settings", on page 112).

Parameters:
<Seed>
integer
Range: 0 to 65535
*RST: 0 for path A, 1 for path B

Options: R&S SMx/AMU-K59

Manual operation: See "Random Seed" on page 113

[:SOURce<hw>]:BB:W3GpPp:BSTation<st>:CHANnel<ch0>:HSdPa:HSET:S64Qam
<S64qam>

Enables/disables UE support of 64QAM.

This command is enabled only for HS-SCCH Type 1 (normal operation) and 16QAM modulation.

In case this parameter is disabled, i.e. the UE does not support 64QAM, the xccs,7 bit is used for channelization information.

Parameters: <S64qam> ON | OFF
*RST: OFF

BB:W3GP:BST1:CHAN12:HSDF:HSET:S64Q ON enables UE to support 64QAM

Manual operation: See "UE Supports 64QAM" on page 107

<SCode>

Sets the channelization code of the first HS-PDSCH channel in the H-Set. The channelization codes of the rest of the HS-PDSCHs in this H-Set are set automatically.

Note: To let the instrument generate a signal equal to the one generated by an instrument equipped with older firmware, set the same Channelization Codes as the codes used for your physical channels.

Parameters: <SCode> integer
Range: 1 to 15
*RST: 8

Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Setting Base Stations

[:SOURce<hw>:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:SLENth?]

Queries the suggested ARB sequence length.

Return values:

- `<SLength>`: integer
 - Range: 1 to max

Example: see [:SOURce<hw>:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:SLENth:ADJJust on page 300

Usage: Query only

Manual operation: See "Advanced Mode (requires ARB)" on page 101

Sets the ARB sequence length to the suggested value.

queries the suggested ABR sequence length.
Response: 21
BB:W3GP:SLEN?
queries the current ABR sequence length.
Response: 12
sets the ARB sequence length to the suggested value.
BB:W3GP:SLEN?
queries the current ABR sequence length.
Response: 21

Usage: Event

Manual operation: See "Adjust" on page 102

[:SOURce<hw>:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:SPATtern<di>?

Queries the distribution of packets over time. A "-" indicates no packet

Return values:

- `<SPattern>`: string
Example:
BB:W3GP:BST1:CHAN15:HSDP:TTID 3
sets the TTI
sets the number of HARQ processes
BB:W3GP:BST1:CHAN12:HSDP:HSET:SPAT1?
queries the signaling pattern for stream 1
Response: 0,-,-1,-,-

Usage:
Query only

Manual operation:
See "Signaling Pattern Stream1/2" on page 109

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:STAPattern<StaPattern>
Enables/disables a temporal deactivation of Stream 2 per TTI in form of sending pattern.
The stream 2 sending pattern is a sequence of max 16 values of "1" (enables Stream 2
for that TTI) and "-" (disabled Stream 2 for that TTI).

Parameters:
<StaPattern> string
"RST: 1

Example:
selects the pattern.

Manual operation:
See "Stream 2 Active Pattern" on page 104

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:TPOWer<Tpower>
Sets the total power of the HS-PDSCH channels in the H-Set.
The individual power levels of the HS-PDSCHs are calculated automatically and can
be queried with the command [:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:POWer.

Parameters:
<Tpower> float
The min/max values depend on the number of HS-PDSCH
channelization codes ([:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:CLENght)
and are calculated as follow:
min = -80 dB + 10*log_{10}(NumberOfHS-PDSCHChannelizationCodes)
max = 0 dB + 10*log_{10}(NumberOfHS-PDSCHChannelizationCodes)
Range: dynamic to dynamic
Increment: 0.01
"RST: -13.01
Example:
Response: 5
Response: -3.0102995663981 dB
Response: -11.9897000433602 dB

Manual operation: See "Total HS-PDSCH Power" on page 106

[:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANel<ch0>:HSDPa:HSET:TBS:INDex<di> <Index>

Selects the Index ki for the corresponding table and stream, as described in 3GPP TS 25.321.

Parameters:
<Index> integer
Range: 0 to 62

Selects H-Set mode.
Selects Table 0 for stream 2.
Sets the Index ki

Manual operation: See "Transport Block Size Index Stream1/2" on page 107

[:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANel<ch0>:HSDPa:HSET:TBS:REFERENCE <Reference>

While working in less operation mode, this command is signaled instead of the command BB:W3Gp:BST:CHAN:HSDP:HSET:TBS:IND.

Parameters:
<Reference> integer
Range: 0 to 3
*RST: 0

Setting Base Stations
Example:

BB:W3GP:BST1:CHAN12:HSDP:MODE HSET
selects H-Set mode.
selects less operation mode.
selects Table 0 for stream 2.
sets the reference.

Manual operation: See "Transport Block Size Reference Stream1/2" on page 107

[:SOURce<hw>]:BB:W3GPP:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:TBS:
TABLe<di> <Table>

Selects Table 0 or Table 1 as described in 3GPP TS 25.321.
For HS-PDSCH Modulation set to 64QAM, only Table 1 is available.

Parameters:

<Table>
TAB0 | TAB1
*RST: TAB0

Example:

BB:W3GP:BST1:CHAN12:HSDP:MODE HSET
Selects H-Set mode.
Selects Table 0 for stream 2.

Manual operation: See "Transport Block Size Table Stream1/2" on page 107

[:SOURce<hw>]:BB:W3GPP:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:TYPE
<Type>

Sets the HS-SCCH type.

Parameters:

<Type>
NORMal | LOPeration | MIMO
NORMal
Normal operation mode.
LOPeration
HS-SCCH less operation mode.
MIMO

*RST: NORMal

Example:

BB:W3GP:BST1:TDIV ANT1 enables transmit diversity and antenna 1.

Manual operation: See "HS-SCCH Type" on page 102

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:UECategory?

Queries the UE category number.

Return values:

<UeCategory> integer

Range: 0 to 5000

Example:

queries the UE Category.
Response: 5

Usage: Query only

Manual operation: See "UE Category" on page 102

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:UEID <Ueid>

The command sets the UE identity which is the HS-DSCH Radio Network Identifier (HRNTI) defined in 3GPP TS 25.331: "Radio Resource Control (RRC); Protocol Specification".

Example:

queries the UE Category.
Response: 5

Usage: Query only

Manual operation: See "UE Category" on page 102
Parameters:
<Uid>
integer
Range: 0 to 65535
*RST: 0

Example:
BB:W3GP:BST1:CHAN12:HSDP:MODE HSET
selects H-Set mode.
sets the UE identity.

Manual operation: See " UEID (H-RNTI) " on page 105

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:
VIBSize<di> <VibSize>
Sets the size of the Virtual IR Buffer (Number of SMLs per HARQ-Process) per stream.

Parameters:
<VibSize>
integer
Range: 800 to 304000
Increment: 800
*RST: 9600

Example:
SOURce1:BB:W3GPp:BSTation1:TDIV ANT1
SOURce1:BB:W3GPp:BSTation1:CHANnel12:HSDPa:
HSET:TYPE MIMO
SOURce1:BB:W3GPp:BSTation1:CHANnel12:HSDPa:
HSET:VIBSize1?
Response: 9600
SOURce1:BB:W3GPp:BSTation1:CHANnel12:HSDPa:
HSET:VIBSize1 300000
SOURce1:BB:W3GPp:BSTation1:CHANnel12:HSDPa:
HSET:VIBSize2 300000

Manual operation: See " Virtual IR Buffer Size (per HARQ Process) Stream1/2 " on page 108

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:MIMO:
CVPB<di> <Cvpb>
The command switches the order of the constellation points of the 16QAM and 64QAM mapping.
The re-arrangement is done according to 3GPP TS25.212.

Parameters:
<Cvpb>
0 | 1 | 2 | 3
Range: 0 to 3
*RST: 0

Example:
BB:W3GP:BST1:CHAN12:HSDP:MIMO:CVPB2 1
selects interchange of MSBs with LSBs for stream 2.
Manual operation: See " Constellation Version Parameter b Stream 1/2 - BS " on page 97

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:MIMO: MODulation<di> <Modulation>

Sets the modulation for stream 1 and stream 2 to QPSK, 16QAM or 64QAM.

The modulation 64QAM is available for instruments equipped with option R&S SMBV-K59 only.

Parameters:
<Modulation> QPSK | QAM16 | QAM64
*RST: HSQP

Example:
BB:W3GP:BST1:CHAN12:HSDP:MIMO.MOD1 HS64Q

Manual operation: See " Modulation Stream 1/2 (HS-PDSCH MIMO) " on page 97

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:MIMO: PWPattern <PwPattern>

Sets the precoding weight parameter w2 for MIMO precoding.

The values of the weight parameters w1, w3 and w4 are calculated based on the value for w2 (see Chapter 3.3.14, "MIMO in HSPA+", on page 33).

Parameters:
<PwPattern> string
*RST: 0

Example:
BB:W3GP:BST1:CHAN12:HSDP:MIMO:PWP "0,1,3
selects the pattern.

Manual operation: See " Precoding Weight Pattern (w2) " on page 97

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:MIMO: STAPattern <StaPattern>

Enables/disables a temporal deactivation of Stream 2 per TTI in form of sending pattern.

The stream 2 sending pattern is a sequence of max 16 values of "1" (enables Stream 2 for that TTI) and ":-" (disabled Stream 2 for that TTI).

Parameters:
<StaPattern> string
*RST: 1

Example:
selects the pattern.

Manual operation: See " Stream 2 Active Pattern " on page 97
[:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>:HSDP:a:MODE <Mode>

The command selects the HSDPA mode.

Parameters:

- `<Mode>`
 - CONTinuous | PSF0 | PSF1 | PSF2 | PSF3 | PSF4 | HSET
 - **CONTinuous**
 - The high speed channel is generated continuously. This mode is defined in test model 5.
 - **PSFx**
 - The high speed channel is generated in packet mode. The start of the channel is set by selecting the subframe in which the first packet is sent.
 - **HSET**
 - The high speed channels are preset according to TS 25.1401 Annex A.7, H-Set.
 - *RST: CONTinuous

Example:

```
BB:W3GP:BST1:CHAN12:HSDP:MODE PSF1
```

selects packet mode for channel 12. The first packet is sent in packet subframe 1 (PSF1).

Manual operation: See "HSDPA Mode" on page 95

[:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>:HSDP:a:TTIDistance <TtiDistance>

The command selects the distance between two packets in HSDPA packet mode. The distance is set in number of sub-frames (3 slots = 2 ms). An "Inter TTI Distance" of 1 means continuous generation.

Parameters:

- `<TtiDistance>`
 - integer
 - Range: 1 to 16
 - *RST: 5

Example:

```
BB:W3GP:BST1:CHAN12:HSDP:TTID 2
```

selects an Inter TTI Distance of 2 subframes.

Manual operation: See "Inter TTI Distance (H-Set)" on page 96

[:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>:POWe r <Power>

Sets the channel power relative to the powers of the other channels. This setting also determines the starting power of the channel for Misuse TPC, Dynamic Power Control and the power control sequence simulation of OCNS mode 3i channels.

With the command SOURce:BB:W3Gp:POWe r:ADJust, the power of all the activated channels is adapted so that the total power corresponds to 0 dB. This does not change the power ratio among the individual channels.
Parameters:

`<Power>`
- Type: float
- Range: -80 to 0
- Increment: 0.01
- *RST: depends on channel

Example:

```
BB:W3GP:BST2:CHAN12:POW -10dB
```

Sets the channel power of channel 12 of base station 2 dB to -10 dB relative to the power of the other channels.

Manual operation: See "Power" on page 83

`[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:SFORmat <SFormat>`

The command sets the slot format of the selected channel. The value range depends on the selected channel.

The slot format determines the symbol rate (and thus the range of values for the channelization code), the TFCI state and the pilot length. If the value of any one of the four parameters is changed, all the other parameters are adapted as necessary.

In the case of enhanced channels with active channel coding, the selected channel coding also affects the slot format and thus the remaining parameters. If these parameters are changed, the channel coding type is set to user.

Parameters:

`<SFormat>`
- Type: integer
- Range: 0 to dynamic
- *RST: 0

Example:

```
BB:W3GP:BST2:CHAN12:SFOR 8
```

Selects slot format 8 for channel 12 of base station 2.

Manual operation: See "Slot Format" on page 82

`[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:SRATe <SRate>`

The command sets the symbol rate of the selected channel. The value range depends on the selected channel and the selected slot format.

The slot format determines the symbol rate (and thus the range of values for the channelization code), the TFCI state and the pilot length. If the value of any one of the four parameters is changed, all the other parameters are adapted as necessary.

In the case of enhanced channels with active channel coding, the selected channel coding also affects the slot format and thus the remaining parameters. If these parameters are changed, the channel coding type is set to user.

Parameters:

`<SRate>`
- Values: D7K5 | D15K | D30K | D60K | D120K | D240K | D480k | D960k
- *RST: DPCHs D30K; CHAN1..10 D15K; DL-DPCCH (CHAN11) D7K5;

Example:

```
BB:W3GP:BST2:CHAN12:SRAT 8
```

Sets the symbol rate of channel 12 of base station 2 to 8.

Manual operation: See "Symbol Rate" on page 81
Remote-Control Commands

Example:
```
BB:W3GP:BST2:CHAN12:SRAT D120K
```
Sets the symbol rate for channel 12 of base station 2 to 120 ksps.

Manual operation: See "Symbol Rate" on page 82

```
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:STAte <State>
```
The command activates the selected channel.

Parameters:
```
<State>
ON | OFF
```
*RST: 0

Example:
```
BB:W3GP:BST2:CHAN12:STAT OFF
```
deactivates channel 12 of base station 2.

Manual operation: See "Channel State" on page 85

```
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:TOFFset <TOffset>
```
Sets the timing offset.

Parameters:
```
<TOffset>
integer
```
For F-DPCH channels, the value range is 0 to 9.
*RST: 0

Example:
```
BB:W3GP:BST2:CHAN12:TOFF 20
```
defines a frame shift relative to the scrambling code sequence of 20*256 chips.

Manual operation: See "Timing Offset" on page 84

```
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:TYPE <Type>
```
Sets the channel type.

Parameters:
```
<Type>
PCPich | SCPich | PSCH | SSCH | PCCPch | SCCPch | PICH | APAich | AICH | PDSCh | DPCCh | DPCH | HSSCh | HSQPsK | HSMimo | EAGCh | ERGCh | EHICh | FDPCh | HS16Qam
```
The channels types of \texttt{CHANnel0} to \texttt{CHANnel18} are predefined. For the remaining channels, you can select a channel type from the relevant standard channels and the high-speed channels.

Example:
```
SOURce1:BB:W3GPp:BSTation1:CHANnel12:TYPE HSQPsK
```
selects channel type HS-PDS, QPSK for channel 12

Manual operation: See "Channel Type" on page 81
Enables/disables the information coding.

Parameters:

<IfCoding> 0 | 1 | OFF | ON

0 | OFF corresponds to a standard operation; no coding is performed and the data is sent uncoded.

1 | ON you can configure the way the data is coded

RST: 0

Example:

```plaintext
SOURce1:BB:W3GPP:BSTation1:CHANnel9:HSUPa: EAGCh:IFCoding 1
SOURce1:BB:W3GPP:BSTation1:CHANnel9:HSUPa: EAGCh:TTICount 2
SOURce1:BB:W3GPP:BSTation1:CHANnel9:HSUPa: EAGCh:TTI0:UEID 100
SOURce1:BB:W3GPP:BSTation1:CHANnel9:HSUPa: EAGCh:TTI0:AGVIndex 20
SOURce1:BB:W3GPP:BSTation1:CHANnel9:HSUPa: EAGCh:TTI0:AGSCope PER
SOURce1:BB:W3GPP:BSTation1:CHANnel9:HSUPa: EAGCh:TTI1:AGVIndex 1
```

Manual operation: See "E-AGCH Information Field Coding" on page 138

Sets the scope of the selected grant. According to the TS 25.321, the impact of each grant on the UE depends on this parameter.

For E-DCH TTI = 10ms, the absolute grant scope is always ALL (All HARQ Processes).

Parameters:

<AGScope> ALL | PER

Example: see [:SOURce<hw>]:BB:W3GPP:BSTation<st>:CHANnel<ch0>:[:HSUPa]:EAGCh:IFCoding on page 310

Manual operation: See "Absolute Grant Scope" on page 138
[:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EAGCh:TTI<di0>:AGVIndex <AgvIndex>

Sets the Index for the selected TTI. According to the TS 25.212 (4.10.1A.1), there is a cross-reference between the grant's index and the grant value.

Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td><AgvIndex></td>
<td>integer</td>
<td>0 to 31</td>
</tr>
</tbody>
</table>

Example:
see [:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EAGCh:IFCoding on page 310

Manual operation: See "Absolute Grant Value Index" on page 138

[:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EAGCh:TTI<di0>:UEID <Ueid>

Sets the UE Id for the selected TTI.

Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td><Ueid></td>
<td>integer</td>
<td>0 to 65535</td>
</tr>
</tbody>
</table>

Example:
see [:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EAGCh:IFCoding on page 310

Manual operation: See "UEID (A-GCH)" on page 138

[:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EAGCh:TTICount <TtiCount>

Sets the number of configurable TTIs.

Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td><TtiCount></td>
<td>integer</td>
<td>1 to 10</td>
</tr>
</tbody>
</table>

Example:
SOURce1:BB:W3Gp:BSTation1:CHANnel19:TYPE EAGCh
SOURce1:BB:W3Gp:BSTation1:CHANnel19:HSUPa:
EAGCh:TTICount 5

Manual operation: See "Number of Configurable TTIs" on page 138

[:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EAGCh:TTIEdch <Ttiedch>

Sets the processing duration.

Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td><Ttiedch></td>
<td>2ms</td>
</tr>
</tbody>
</table>

*RST: 2ms
Example: see [:SOURce<hw>]:BB:W3GpP:BSTation<st>:CHANnel<ch0>[:HSUPa]:EAGCh:IFCoding on page 310

Manual operation: See " E-DCH TTI " on page 138

[:SOURce<hw>]:BB:W3GpP:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHiCh:CTYPe <CType>

Sets the cell type.

Parameters:

<table>
<thead>
<tr>
<th><CType></th>
<th>SERVing</th>
<th>NOSERVing</th>
</tr>
</thead>
<tbody>
<tr>
<td>*RST:</td>
<td>SERVing</td>
<td></td>
</tr>
</tbody>
</table>

Example:

SOURcel:BB:W3GpP:BSTation1:CHANnel19:TYPE EHiCh
SOURcel:BB:W3GpP:BSTation1:CHANnel19:HSUPa:
EHiCh:CTYPe SERVing
SOURcel:BB:W3GpP:BSTation1:CHANnel19:HSUPa:
EHiCh:TTIEdch 2ms
SOURcel:BB:W3GpP:BSTation1:CHANnel19:HSUPa:
EHiCh:SSINdex 2
SOURcel:BB:W3GpP:BSTation1:CHANnel19:HSUPa:
EHiCh:DTAU 2
SOURcel:BB:W3GpP:BSTation1:CHANnel19:HSUPa:
EHiCh:ETAU?
Response: 5
SOURcel:BB:W3GpP:BSTation1:CHANnel19:HSUPa:
EHiCh:RGPAttern "+-+-"
SOURcel:BB:W3GpP:BSTation1:CHANnel19:HSUPa:
EHiCh:CTYPe NOSERVing
SOURcel:BB:W3GpP:BSTation1:CHANnel19:HSUPa:
EHiCh:RGPAttern "+0+0"

Manual operation: See " Type of Cell " on page 139

[:SOURce<hw>]:BB:W3GpP:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHiCh:DTAU <Dtau>

Sets the offset of the downlink dedicated offset channels.

Suffix:

| <ch0> | 9..138 |

Parameters:

<table>
<thead>
<tr>
<th><Dtau></th>
<th>integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range:</td>
<td>0 to 149</td>
</tr>
<tr>
<td>*RST:</td>
<td>0</td>
</tr>
</tbody>
</table>

Example: see [:SOURce<hw>]:BB:W3GpP:BSTation<st>:
CHANnel<ch0>[:HSUPa]:EHiCh:CTYPe on page 312

Manual operation: See " Tau DPCH " on page 140
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Setting Base Stations

[:SOURce<hw>]:BB:W3GPP:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICH: ETAU?

Queries the offset of the P-CCPCH frame boundary.

Return values:

- `<Etau>`: integer
 - Range: 0 to 149

Example: see [:SOURce<hw>]:BB:W3GPP:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICH:CTYPe on page 312

Usage: Query only

[:SOURce<hw>]:BB:W3GPP:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICH: RGPAttern <RgPattern>

Sets the bit pattern for the ACK/NACK field.

Parameters:

- `<RgPattern>`: <32-bit long pattern>
 - "+" (ACK) and "0" (no signal)
 - For the non serving cell
 - "+" (ACK) and "-" (NACK)
 - For the serving cell
 - *RST: +

Example: see [:SOURce<hw>]:BB:W3GPP:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICH:CTYPe on page 312

Manual operation: See "ACK/NACK Pattern" on page 140

[:SOURce<hw>]:BB:W3GPP:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICH: SSINdex <SsIndex>

Sets the value that identifies the user equipment. The values are defined in TS 25.211.

Suffix: <ch0>

- 9..138

Parameters:

- `<SsIndex>`: integer
 - Range: 0 to 39
 - *RST: 0

Example: see [:SOURce<hw>]:BB:W3GPP:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICH:CTYPe on page 312

Manual operation: See "Signature Hopping Pattern Index – HSUPA BS" on page 139
[:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICh:TTIEdh <Ttiedch>

Sets the processing duration.

Parameters:
- `<Ttiedch>`: 2ms | 10ms
- *RST:* 2ms

Example:
- See [:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICh:CTYPe on page 312

Manual operation:
- See "E-DCH TTI" on page 139

[:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>[:HSUPa]:ERGCh:CTYPe <CType>

Selects the cell type.

Parameters:
- `<CType>`: SERVing | NOSERVing
- *RST:* SERVing

Example:

Manual operation:
- See "Type of Cell" on page 139

[:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>[:HSUPa]:ERGCh:DTAU <Dtau>

Sets the offset of the downlink dedicated offset channels.

Parameters:
- `<Dtau>`: integer
 - Range: 0 to 149
 - *RST:* 0

Example:

Manual operation:
- See "Tau DPCH" on page 140

[:SOURce<hw>]:BB:W3Gp:BSTation<st>:CHANnel<ch0>[:HSUPa]:ERGCh:ETAU?

Queries the offset of the P-CCPCH frame boundary.

Return values:
- `<Etau>`: integer
 - Range: 0 to 149

Example:

Usage:
- Query only
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Setting Base Stations

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:ERGCh:RGPAtt<e<rPattern>

Sets the bit pattern for the relative grant pattern field.

Parameters:
<RgPattern> string

Example:
Sets the bit pattern to "-" (down).

Manual operation: See "Relative Grant Pattern" on page 140

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:ERGCh:SSINdex<SsIndex>

Sets the value that identifies the user equipment. The values are defined in TS 25.211.

Parameters:
<SsIndex> integer
Range: 0 to 39
*RST: 0

Example:
Sets the value to identify the user equipment.

Manual operation: See "Signature Hopping Pattern Index – HSUPA BS" on page 139

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:ERGCh:TTIEdch<Ttiedch>

Sets processing duration.

Parameters:
<Ttiedch> 2ms | 10ms
*RST: 2ms

Example:

Manual operation: See "E-DCH TTI" on page 139

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CMODE:DLFStructure<DlfStructure>

The command selects the frame structure. The frame structure determines the transmission of TPC and pilot field in the transmission gaps.

Parameters:
<DlfStructure> A | B

Operating Manual 1178.9761.02 — 25
315
A
Type A, the pilot field is sent in the last slot of each transmission gap.

B
Type B, the pilot field is sent in the last slot of each transmission gap. The first TPC field of the transmission gap is sent in addition.

*RST: A

Example: BB:W3GP:BST2:CMOD:DLFS A
selects frame structure of type A.

Manual operation: See "DL Frame Structure - BS" on page 88

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CMODE:METHod <Method>
The command selects compressed mode method.

Parameters:

<Method> PUNCTuring | HLSCheduling | SF2

PUNCTuring The data is compressed by reducing error protection.

HLSCheduling The data is compressed by stopping the transmission of the data stream during the transmission gap.

SF2 The data is compressed by halving the spreading factor.

*RST: SF2

Example: BB:W3GP:BST2:CMOD:METH HLSC
selects compressed mode method High Layer Scheduling.

Manual operation: See "Compressed Mode Method - BS" on page 87

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CMODE:PATTern<ch>:TGD <Tgd>
Sets the transmission gap distances.

Parameters:

<Tgd> integer

Range: 3 to 100

*RST: 15

sets transmission gap distance of pattern 2 to 7 slots.

Manual operation: See "Distance" on page 89

Sets the transmission gap lengths.
Parameters:
<Tgl>
integer
Range: 3 to 14
*RST: 3

Example: BB:W3GP:BST2:CMOD:PATT2:TGL1 4
sets transmission gap length of gap 1 of pattern 2 to 4 slots.

Manual operation: See "Gap Len:" on page 89

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CMODe:PATTern<ch>:TGPL <Tgpl>
The command sets the transmission gap pattern lengths. Setting 0 is available only for pattern 2.
The transmission gap pattern length of the user equipment with the same suffix as the selected base station is set to the same value.

Parameters:
<Tgpl>
integer
Range: 0 to 100
*RST: 2

sets transmission gap pattern length of pattern 2 to 7 frames.

Manual operation: See "Pattern Len:" on page 90

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CMODe:PATTern<ch>:TGSN <Tgsn>
Sets the transmission gap slot number of pattern 1.

Parameters:
<Tgsn>
integer
Range: 0 to 14
*RST: 7

sets slot number of pattern 1 to slot 4.

Manual operation: See "At Slot:" on page 89

[:SOURce<hw>]:BB:W3GPp:BSTation<st>\|MSTation<st>:CMODe:POFFset <POffset>
The command sets the power offset for mode USER.

Parameters:
<POffset>
float
Range: 0 dB to 10 dB
Increment: 0.01 dB
*RST: 0 dB
Example:

```
BB:W3GP:BST2|UE2:CMOD:POFF 4
```
sets the power offset value to 4 dB.
```
BB:W3GP:BST2|UE2:CMOD:POM USER
```
selects power offset mode USER.

Manual operation: See "Power Offset" on page 88

```
[:SOURce<hw>]:BB:W3GPp:BSTation<st>|MSTation<st>:CMODE:POMode <PoMode>
```

The command selects the power offset mode.

Parameters:

<table>
<thead>
<tr>
<th><PoMode></th>
<th>AUTO</th>
<th>USER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>The power offset is obtained by pilot bit ratio as follows: Number of pilots bits of non-compressed slots / Number of pilot bits by compressed slots.</td>
<td></td>
</tr>
<tr>
<td>USER</td>
<td>The power offset is defined by command [:SOURce<hw>]:BB:W3GPp:BSTation<st></td>
<td>MSTation<st>:CMODE:POFFset.</td>
</tr>
</tbody>
</table>

RST: AUTO

Example:
```
BB:W3GP:BST2|UE2:CMOD:POFF 4
```
sets the power offset value to 4 dB.
```
BB:W3GP:BST2|UE2:CMOD:POM USER
```
selects power offset mode USER.

Manual operation: See "Power Offset Mode" on page 88

```
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CMODE:STATe <State>
```

The command activates/deactivates the compressed mode.

Parameters:

<table>
<thead>
<tr>
<th><State></th>
<th>ON</th>
<th>OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>activates compressed mode for base station 2.</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>RST: 0</td>
<td></td>
</tr>
</tbody>
</table>

Example:
```
BB:W3GP:BST2:CMOD:STAT ON
```
activates compressed mode for base station 2.

Manual operation: See "Compressed Mode State" on page 79

```
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:DCONflict:RESolve
```

The command resolves existing domain conflicts by modifying the Channelization Codes of the affected channels.
Example:
BB:W3GP:BST2:DCON:STAT?
queries whether a code domain conflict exists for base station 2.
Response: 1
there is a conflict.
BB:W3GP:BST2:DCON:RES
resolves the code domain error by modifying the Channelization
codes of the affected channels.

Usage:
Event

Manual operation: See “Domain Conflict, Resolving Domain Conflicts” on page 85

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:DCONflict[:STATe]?

The command queries whether there is (response 1) or is not (response 0) a conflict
(overlap) in the hierarchically-structured channelization codes. The cause of a possible
domain conflict can be ascertained by manual operation in the "BS > Code Domain"
dialog.

Return values:
<State>
0 | 1 | OFF | ON
*RST: 0

Example:
BB:W3GP:BST2:DCON:STAT?
queries whether a code domain conflict exists for base station 2.
Response: 0
there is no conflict.

Usage:
Query only

Manual operation: See “Domain Conflict, Resolving Domain Conflicts” on page 85

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:OLTDiversity <OltDiversity>

Activates/deactivates open loop transmit diversity.

The antenna whose signal is to be simulated is selected with the command [:SOURce<hw>]:BB:W3GPp:BSTation<st>:TDIVERSity.

Parameters:
<OltDiversity>
ON | OFF
*RST: OFF

Example:
BB:W3GP:BST2:TDIV ANT2
calculates and applies the output signal for antenna 2 of one
two-antenna system.
BB:W3GP:BST2:OLTD ON
enables open loop transmit diversity.

Manual operation: See "Open Loop Transmit Diversity" on page 78
[:SOURce<hw>]:BB:W3GPPp:BSTation<st>:PINdication:COUNt <Count>

The command sets the number of page indicators (PI) per frame in the page indicator channel (PICH).

Parameters:
 <Count> D18 | D36 | D72 | D144
 *RST: D18

 sets the number of page indicators (PI) per frame in the page indicator channel (PICH) to 36.

Manual operation: See "Page Indicators/Frame" on page 77

[:SOURce<hw>]:BB:W3GPPp:BSTation<st>:SCODE <SCode>

Sets the identification for the base station. This value is simultaneously the initial value of the scrambling code generator.

Parameters:
 <SCode> integer
 Range: #H0 to #H5FFF
 *RST: #H0

Example: BB:W3GP:BST2:SCOD #H1FFF
 sets the scrambling code

Manual operation: See "Scrambling Code (hex)" on page 77

[:SOURce<hw>]:BB:W3GPPp:BSTation<st>:SCODE:STATe <State>

The command makes it possible to deactivate base station scrambling for test purposes.

Parameters:
 <State> ON | OFF
 *RST: ON

Example: BB:W3GP:BST2:SCOD:STAT OFF
 deactivates scrambling for base station 2.

Manual operation: See "Scrambling Code On" on page 77

The command activates or deactivates the use of S-CPICH as reference phase.

Parameters:
 <State> ON | OFF
 *RST: 0
Example:
BB:W3GP:BST2:SCP:PREF ON
activates the use of S-CPICH as reference phase for base station 2.

Manual operation: See "S-CPICH As Phase Reference" on page 78

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:SSCG?
The command queries the secondary synchronization code group. This parameter is specified in the table defined by the 3GPP standard "Allocation of SSCs for secondary SCH". This table assigns a specific spreading code to the synchronization code symbol for every slot in the frame. The value is calculated from the scrambling code.

Return values:
<Sscg> integer
Range: 0 to 63

Example:
BB:W3GP:BST2:SSCG?
queries the 2nd search code group for base station 2.
Response: 24
the base station is part of second search group 24.

Usage: Query only
Manual operation: See "2nd Search Code Group" on page 77

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:STATe <State>
Activates and deactivates the specified base station.

Parameters:
<State> 0 | 1 | OFF | ON
*RST: 1 (BSTation1), 0 (all other)

Example:
BB:W3GP:BST2:STAT OFF
deactivates base station 2.

Manual operation: See " Select Basestation/User Equipment " on page 55

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:TDELay <Tdelay>
Adds a time shift for the selected base station compared to base station 1.

Parameters:
<Tdelay> integer
Range: 0 to 38400
*RST: 0
Default unit: chip

Example:
BB:W3GP:BST2:TDEL 256
shifts base station 2 by 256 chips compared to base station 1.

Manual operation: See "Time Delay" on page 77
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Enhanced Channels of Base Station 1

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:TDIversity <TDiversity>

Selects the antenna and the antenna configuration to be simulated.

To simulate transmit diversity, a two-antenna system has to be selected and Open Loop Transmit Diversity has to be activated (command BB:W3GP:BST:OLTD ON).

Parameters:

<TDiversity> SANT | ANT1 | ANT2 | OFF
SANT = single-antenna system
*RST: SANT

Example: BB:W3GP:BST2:TDIV ANT2
the signal of antenna 2 of one two-antenna system is simulated.

Manual operation: See "Diversity / MIMO" on page 77

7.8 Enhanced Channels of Base Station 1

The SOURce:BB:W3GPp:BSTation:ENHanced subsystem contains the commands for setting the enhanced channels of base station 1. The commands of this system only take effect when the 3GPP FDD standard is activated, the downlink transmission direction is selected, base station 1 is enabled and enhanced channels are activated:

SOURce:BB:W3GPp:STATe ON
SOURce:BB:W3GPp:LINK DOWN
SOURce:BB:W3GPp:BST1:STATe ON
SOURce:BB:W3GPp:BST:ENHanced:CHANnel<11...13>:DPCH:STATe ON
Or
SOURce:BB:W3GPp:BST:ENHanced:PCCPch:STATe ON

BSTation<st>

The numeric suffix to BStation determines the base station. Enhanced channels are enabled for base station 1 only.

CHANnel<ch0>

The value range is CHANnel<11|12|13> for enhanced DPCHs and CHANnel<4> for P-CCPCH.

TCHannel<di>

The transport channel designations for remote control are TCHannel0 for DCCH, TCHannel1 to TCHannel6 for DTCH1 to DTCH6.
7.8.1 General Settings

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:STATe <State>

The command switches the selected channel to the enhanced state.

Parameters:
- **<State>**
 - ON | OFF
 - *RST:* 0

Example:
```
```
switches DPCH 13 to Enhanced State.

Manual operation: See "Enhanced State " on page 117

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:PCCPch:STATe <State>

The command activates or deactivates the enhanced state of the P-CCPCH (BCH).

Parameters:
- **<State>**
 - ON | OFF
 - *RST:* OFF

Example:
```
BB:W3GP:BST:ENH:PCCP:STAT ON
```
switches the P-CCPCH to Enhanced State.

Manual operation: See "State (Enhanced P-CCPCH) " on page 114

Sets the P-CPICH pattern (channel 0).

Parameters:
- **<Pattern>**
 - ANT1 | ANT2
 - *RST:* ANT1

Example:
```
```
sets the P-CPICH Pattern to Antenna 2.

Manual operation: See "P-CPICH Pattern " on page 113
7.8.2 Channel Coding

Remote-Control Commands

Enhanced Channels of Base Station 1
Deletes the specified files with stored user channel codings.

The files are stored with the fixed file extensions *.3g_ccod_dl in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Setting parameters:

- `<Filename>`: string

Example:

```
MMEM:CDIR '/var/user/temp/CcodDpchUser'
```

selects the directory for the user channel coding files.

```
```

deletes the specified file with user coding.

Usage: Setting only

Queries the number of data bits in the DPDCH component of the frame at the physical layer.

Return values:

- `<BpFrame>`: integer

 Range: 30 to 20000

 *RST: 510

Example:

```
```

queries the number of data bits.

Response: 1

the number of data bits is 1.

Usage: Query only

Manual operation: See "Bits per Frame (DPDCH)" on page 121

The command sets the slot format for the selected enhanced DPCH of base station 1. The slot format is fixed for channel-coded measurement channels conforming to the standard "Reference Measurement Channel". Changing the slot format automatically activates User coding (`W3GP:BST:ENH:CHAN<11...13>:DPCH:CCOD:TYPE USER`). The slot format also fixes the symbol rate, bits per frame, pilot length and TFCI state parameters.
When a channel coding type conforming to the standard is selected ([:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:TYPE) and channel coding is activated, the slot format is ([:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:STATe) automatically set to the associated value.

The command sets the symbol rate (W3GP:BST:ENH:CHAN:DPCH:CCOD:SRAT), the bits per frame (W3GP:BST:ENH:CHAN:DPCH:CCOD:BPFR), the pilot length (W3GP:BST1:CHAN:DPCC:PLEN), and the TFCI state (W3GP:BST1:CHAN:DPCC:TFCI STAT) to the associated values.

Parameters:

- `<SFormat>`
 - integer
 - Range: 0 to dynamic
 - *RST: 0

 - sets slot format 4 for Enhanced DPCH13.

Manual operation: See "Slot Format (DPDCH) " on page 121

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:SRAT?

The command queries the symbol rate.

The symbol rate depends on the selected slot format ([:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:SFORmat), and if the slot format changes, this changes automatically as well.

Return values:

- `<SRate>`
 - D7K5 | D15K | D30K | D60K | D120K | D240K | D480K | D960K | D1920K | D2880K | D3840K | D4800K | D5760K | D2X1920K | D2X960K | D2X1920K
 - *RST: D30K

 - queries the symbol rate.
 - Response: 'D30K'
 - the symbol rate of Enhanced DPCH 13 is 30 kmps.

Usage: Query only

Manual operation: See "Symbol Rate (DPDCH) " on page 121

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:STATe <State>

The command activates or deactivates channel coding for the selected enhanced DPCH.

Parameters:

- **<State>**
 - **ON** | **OFF**
 - *RST:* **OFF**

Example:

Manual operation: See "Channel Coding State" on page 119

\([:\text{SOURce<hw>}:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:TYPE <Type>]:\)

The command selects the channel coding scheme in accordance with the 3GPP specification.

The 3GPP specification defines 4 reference measurement channel coding types, which differ in the input data bit rate to be processed (12.2, 64, 144 and 384 ksps). The additional AMR CODER coding scheme generates the coding of a voice channel. The BTFD coding types with different data rates are also defined in the 3GPP specification (TS 34.121). They are used for the receiver quality test Blind Transport Format Detection.

Parameters:

- **<Type>**
 - **M12K2** | **M64K** | **M144k** | **M384k** | **AMR** | **BTFD1** | **BTFD2** | **BTFD3**
 - **M12K2**
 - Measurement channel with an input data bit rate of 12.2 ksps.
 - **M64K**
 - Measurement channel with an input data bit rate of 64 ksps.
 - **M144k**
 - Measurement channel with an input data bit rate of 144 ksps.
M384k
Measurement channel with an input data bit rate of 384 kbps.

AMR
Channel coding for the AMR Coder (coding a voice channel).

USER
This parameter cannot be set. USER is returned whenever a user-defined channel coding is active, that is to say, after a channel coding parameter has been changed or a user coding file has been loaded. The file is loaded by the command [:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:USER:LOAD.

BTFD1
Blind Transport Format Detection Rate 1 (12.2 kbps).

BTFD2
Blind Transport Format Detection Rate 2 (7.95 kbps).

BTFD3
Blind Transport Format Detection Rate 3 (1.95 kbps).

Example:
selects channel coding scheme RMC 144 kbps.

Manual operation: See "Channel Coding Type" on page 119

Queries existing files with stored user channel codings.
The files are stored with the fixed file extensions *3g_ccod_dl in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR.

Return values:
<string>
Example:
MMEM:CDIR '/var/user/temp/CcodDpchUser'
selects the directory for the user channel coding files.
queries the existing files with user coding.
Response: user_cc1
there is one file with user coding.

Usage: Query only
Manual operation: See "User Coding" on page 121

The command loads the specified files with stored user channel codings.
The files are stored with the fixed file extensions *.3g_ccod_dl in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Setting parameters:
- `<Filename>`
- `<user_coding>`

Example:
```
MMEM:CDIR '/var/user/temp/CcodDpchUser'
```
selects the directory for the user channel coding files.
```
'user_cc1'
```
loads the specified file with user coding.

Usage: Setting only

Manual operation: See "User Coding" on page 121

```
```

The command saves the current settings for channel coding as user channel coding in the specified file.

The files are stored with the fixed file extensions *.3g_ccod_dl in a directory of the user's choice. The directory in which the file is stored is defined with the command MMEMory:CDIR. To store the files in this directory, you only have to give the file name, without the path and the file extension.

Setting parameters:
- `<Filename>`
- `string`

Example:
```
MMEM:CDIR '/var/user/temp/CcodDpchUser'
```
selects the directory for the user channel coding files.
```
'user_cc1'
```
saves the current channel coding setting in file user_cc1 in directory /var/user/temp/CcodDpchUser.

Usage: Setting only

Manual operation: See "User Coding" on page 121

```
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:INTerleaver2 <Interleaver2>
```

The command activates or deactivates channel coding interleaver state 2 for the selected channel.

Interleaver state 2 is activated or deactivated for all the transport channels together. Interleaver state 1 can be activated and deactivated for each transport channel individually (command `[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TChannel<di0>:INTerleaver`).
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Enhanced Channels of Base Station 1

Note: The interleaver states do not cause the symbol rate to change.

Parameters:

- `<Interleaver2>`
 - ON | OFF
 - *RST:* ON

Example:

```
```
deactivates channel coding interleaver state 2 for all the TCHs of DPCH13.

Manual operation: See "Interleaver 2 State" on page 124

```
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TChannel<di0>:CRCSize <CrcSize>
```

The command defines the CRC length for the selected transport channel. It is also possible to deactivate checksum determination.

Parameters:

- `<CrcSize>`
 - NONE | 8 | 12 | 16 | 24
 - *RST:* 16

Example:

```
```
deactivates checksum determination for the DCCH of DPCH13.

Manual operation: See "Size of CRC" on page 123

```
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TChannel<di0>:DATA <Data>
```

The command determines the data source for the data fields of enhanced channels with channel coding. If channel coding is not active, the DPCH data source is used (`[:SOURce:BB:W3GPp:BST:CHANnel:DATA]`).

Parameters:

- `<Data>`
 - PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 | DLISt | ZERO | ONE | PATTern | PNx
 - The pseudo-random sequence generator is used as the data source. Different random sequence lengths can be selected.
 - DLIst
 - A data list is used. The data list is selected with the command `[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TChannel<di0>:DATA:DSELect`.
 - ZERO | ONE
 - Internal 0 and 1 data is used.
 - PATTern
 - Internal data is used. The bit pattern for the data is defined with the command `[:SOURce<hw>]:BB:W3GPp:BSTation: ENHanced:CHANnel<ch0>:DPCH:TChannel<di0>:DATA: PATTern`.

Module 199: Remote-Control Commands (Continued)

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Note: The interleaver states do not cause the symbol rate to change.

Parameters:

- `<Interleaver2>`
 - ON | OFF
 - *RST:* ON

Example:

```
```
deactivates channel coding interleaver state 2 for all the TCHs of DPCH13.

Manual operation: See "Interleaver 2 State" on page 124

```
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TChannel<di0>:CRCSize <CrcSize>
```

The command defines the CRC length for the selected transport channel. It is also possible to deactivate checksum determination.

Parameters:

- `<CrcSize>`
 - NONE | 8 | 12 | 16 | 24
 - *RST:* 16

Example:

```
```
deactivates checksum determination for the DCCH of DPCH13.

Manual operation: See "Size of CRC" on page 123

```
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TChannel<di0>:DATA <Data>
```

The command determines the data source for the data fields of enhanced channels with channel coding. If channel coding is not active, the DPCH data source is used (`[:SOURce:BB:W3GPp:BST:CHANnel:DATA]`).

Parameters:

- `<Data>`
 - PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 | DLISt | ZERO | ONE | PATTern | PNx
 - The pseudo-random sequence generator is used as the data source. Different random sequence lengths can be selected.
 - DLIst
 - A data list is used. The data list is selected with the command `[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TChannel<di0>:DATA:DSELect`.
 - ZERO | ONE
 - Internal 0 and 1 data is used.
 - PATTern
 - Internal data is used. The bit pattern for the data is defined with the command `[:SOURce<hw>]:BB:W3GPp:BSTation: ENHanced:CHANnel<ch0>:DPCH:TChannel<di0>:DATA: PATTern`.
Enhanced Channels of Base Station 1

*RST: PN9

Example:

Selects the Pattern data source for the data fields of DTCH1 of DPCH13. The bit pattern is defined with the following command.

#H3F,8

Defines the bit pattern.

Manual operation: See "Data List Management" on page 49

\[:SOURce<hw>:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TChannel<di0>:DATA:DSELect <DSelect>\]

The command selects the data list for enhanced channels for the DLIS list selection. The files are stored with the fixed file extensions ".dm_iqd" in a directory of the user's choice. The directory applicable to the commands is defined with the command MME-Mory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Parameters:

<\`DSelect>\> string

Example:

selects the Data Lists data source for DTCH1 of DPCH13.

MMEM:CDIR '/var/user/temp/IQData'
selects the directory for the data lists.

'bts_tch'
selects the file bts_tch as the data source.

Manual operation: See "Data List Management" on page 49

\[:SOURce<hw>:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TChannel<di0>:DATA:PA\`TTern <Pattern>, <BitCount>\]

The command determines the bit pattern for the PATTern selection. The maximum length is 64 bits.

Parameters:

<\`Pattern>\> numeric

*RST: #H0

<\`BitCount>\> integer

Range: 1 to 64

*RST: 1

Example:

#H3F,8

defines the bit pattern.

Manual operation: See "Data Source" on page 122
The command sets the number of DTX (Discontinuous Transmission) bits. These bits are entered in the data stream between rate matching and interleaver 1 and used for the BTFD reference measurement channels rate 2 and rate 3.

Parameters:
- `<Dtx>`: integer
 - Range: 0 to 1024
 - *RST:* 0

Example:
```
```
257 bits are entered in the data stream between rate matching and interleaver 1.

Manual operation: See "DTX Indication Bits" on page 124

Sets the error protection.

Parameters:
- `<EProtection>`: NONE | TURbo3 | CON2 | CON3
 - NONE: No error protection
 - TURbo3: Turbo Coder of rate 1/3 in accordance with the 3GPP specifications.
 - CON2 | CON3: Convolution Coder of rate 1/2 or 1/3 with generator polynomials defined by 3GPP.
 - *RST:* CON3

Example:
```
```
Error protection for transport channel DTCH1 of DPCH13 is deactivated.

Manual operation: See "Error Protection" on page 124

The command activates or deactivates channel coding interleaver state 1 for the selected channel.

Interleaver state 1 can be activated and deactivated for each transport channel individually. The channel is selected via the suffix at TChannel.
Interleaver state 2 can only be activated or deactivated for all the transport channels together ([:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:INTerleaver2).

Note: The interleaver states do not cause the symbol rate to change.

Parameters:
- **<Interleaver>**
 - ON | OFF
 - *RST:* ON

Manual operation:
See "Interleaver 1 State" on page 124

The transport channel designations for remote control are TChannel0 for DCCH, TChannel1 to TChannel6 for DTCH1 to DTCH6.

```
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:
  TChannel<di0>:RMATtribute <RmAttribute>
```

Sets data rate matching.

Parameters:
- **<RmAttribute>**
 - integer
 - Range: 1 to 1024
 - *RST:* 256

Example:
sets the rate matching attribute for DTCH1 of DPCH13 to 1024.

Manual operation:
See "Rate Matching Attribute" on page 123

```
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:
  TChannel<di0>:STATe <State>
```

The command activates/deactivates the selected transport channel.

Parameters:
- **<State>**
 - ON | OFF
 - *RST:* OFF

Example:
activates DTCH1 of DPCH13.

Manual operation:
See "Transport Channel State" on page 122

```
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:
  TChannel<di0>:TBCount <TbCount>
```

Defines the number of blocks used for the selected transport channel.

Parameters:
- **<TbCount>**
 - integer
 - Range: 1 to 24
 - *RST:* 1
Example: \[:SOURce<hw>:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TChannel<di0>:TBSize \<TbSize> \]
Sets the size of the data blocks.

Parameters:
\<TbSize> integer
Range: 0 to 4096

sets the length of the transport blocks for DTCH1 of DPCH13 to 1024.

Manual operation: See "Transport Block Size" on page 123

Example: \[:SOURce<hw>:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TChannel<di0>:TTINterval \<TtInterval> \]
Sets the number of frames into which a TCH is divided. This setting also defines the interleaver depth.

Parameters:
\<TtInterval> 10MS | 20MS | 40MS

sets that DTCH1 of DPCH13 is divided into 2 frames.

Manual operation: See "Transport Time Interval" on page 123

The command activates or deactivates channel coding interleaver state 1 or 2 for the P-CCPCH.

Note: The interleaver states do not cause the symbol rate to change.

Parameters:
\<Interleaver> ON | OFF
*RST: ON

Example: \[BB:W3GP:BST:ENH:PCCP:CCOD:INT1 OFF \]
deactivates channel coding interleaver state 1 for the P-CCPCH.

Manual operation: See "Interleaver" on page 116
Remote-Control Commands

[:SOURce<hw>:]:BB:W3GPp:BSTation:ENHanced:PCCPch:CCODing:STATe <State>

The command activates or deactivates channel coding for the enhanced P-CCPCH. The coding scheme of the P-CCPCH (BCH) is defined in the standard.

Parameters:
- <State>
 - ON | OFF
 - *RST: OFF

activates channel coding for the enhanced P-CCPCH.

Manual operation: See "Channel Coding State" on page 116

[:SOURce<hw>:]:BB:W3GPp:BSTation:ENHanced:PCCPch:CCODing:TYPE?

The command queries the channel coding scheme in accordance with the 3GPP specification. The coding scheme of the P-CCPCH (BCH) is defined in the standard. The channel is generated automatically with the counting system frame number (SFN). The system information after the SFN field is completed from the selected data source.

Return values:
- <Type>
 - BCHSfn
 - *RST: BCHSfn

queries the channel coding scheme of the P-CCPCH.
Response: 'BCHS'
the channel coding scheme with SFN is used.

Usage: Query only

Manual operation: See "Channel Coding Type" on page 116

7.8.3 Dynamic Power Control Settings

Example: Configuring the Dynamic Power Control Settings
The following is a simple programming example with the purpose to show all commands for this task. In real application, some of the commands can be omitted.

// selects direction up, a high level of the control signals
// leads to an increase of the channel power
// selects a step width of 1 dB.
// A high level of the control signal leads to
// an increase of 1 dB of the channel power,
// a low level to a decrease of 1 dB.
// selects a dynamic range of 10 dB for ranging up the channel power
// selects a dynamic range of 50 dB for ranging up the channel power
// The overall increase and decrease of channel power,
// i.e. the dynamic range is limited to 60 dB
// selects the source of the power control signal
SOURCE:BB:W3Gp:BSstation:ENHanced:CHANnel<ch0>:DPCH:DPControl:STATe ON
// activates Dynamic Power Control for DPCH 11
SOURCE:BB:W3Gp:BSstation:ENHanced:CHANnel<ch0>:DPCH:DPControl:POWer?
// queries the deviation of the channel power of DPCH 11

[:SOURce<hw>]:BB:W3Gp:BSstation:ENHanced:CHANnel<ch0>:DPCH:DPControl:DIRection
..336
[:SOURce<hw>]:BB:W3Gp:BSstation:ENHanced:CHANnel<ch0>:DPCH:DPControl:MODE. 336
..337
[:SOURce<hw>]:BB:W3Gp:BSstation:ENHanced:CHANnel<ch0>:DPCH:DPControl:RANGe:DOWN
..337
[:SOURce<hw>]:BB:W3Gp:BSstation:ENHanced:CHANnel<ch0>:DPCH:DPControl:STATe. 337
[:SOURce<hw>]:BB:W3Gp:BSstation:ENHanced:CHANnel<ch0>:DPCH:DPControl:STEP:MANual
... 337
[:SOURce<hw>]:BB:W3Gp:BSstation:ENHanced:CHANnel<ch0>:DPCH:DPControl:STEP[EXternal]
..338
[:SOURce<hw>]:BB:W3Gp:BSstation:ENHanced:CHANnel<ch0>:DPCH:DPControl[POWer]
...338

[:SOURce<hw>]:BB:W3Gp:BSstation:ENHanced:CHANnel<ch0>:DPCH:DPControl:DIRection <Direction>

The command selects the Dynamic Power Control direction. The selected mode determines if the channel power is increased (UP) or decreased (DOWN) by a control signal with high level.

Parameters:
<Direction> UP | DOWN
*RST: UP

Example: see Example "Configuring the Dynamic Power Control Settings" on page 335

Manual operation: See " Direction " on page 128

[:SOURce<hw>]:BB:W3Gp:BSstation:ENHanced:CHANnel<ch0>:DPCH:DPControl:MODE <Mode>

Selects the control signal source for Dynamic Power Control.

Parameters:
<Mode> TPC | MANual
Example: See Example "Configuring the Dynamic Power Control Settings" on page 335.

Manual operation: See " Mode " on page 128

The command selects the dynamic range for ranging down the channel power.

Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td><Down></td>
<td>float</td>
<td>see Example "Configuring the Dynamic Power Control Settings" on page 335</td>
</tr>
</tbody>
</table>

Manual operation: See " Up Range / Down Range " on page 129

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:ENHanced:CHANnel<ch0>:DPCH:DPControl:STATe <State>

The command activates/deactivates Dynamic Power Control.

Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td><State></td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Manual operation: See " Dynamic Power Control State " on page 128

Sets the control signal for manual mode of Dynamic Power Control.

Setting parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td><Manual></td>
<td>MAN0</td>
<td>MAN1</td>
</tr>
</tbody>
</table>

BB:W3GP:BST:ENH:CHAN11:DPCH:DPC:STEP 0.5 dB

Usage: Setting only
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Enhanced Channels of Base Station 1

Manual operation: See "Mode" on page 128

```plaintext
```

This command sets step width by which – with Dynamic Power Control being switched on - the channel power of the selected enhanced channel is increased or decreased.

Parameters:

<External>

- **float**
- **Range:** 0.5 to 6
- **Increment:** 0.01
- **RST:** 1
- **Default unit:** dB

Example: see Example "Configuring the Dynamic Power Control Settings" on page 335

Manual operation: See "Power Step" on page 129

```plaintext
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DPControl[:POWer]?
```

The command queries the deviation of the channel power (delta POW) from the set power start value of the corresponding enhanced channels.

Return values:

<Power>

- **float**
- **Range:** -60 to 60
- **Increment:** 0.01
- **RST:** 0

Example: see Example "Configuring the Dynamic Power Control Settings" on page 335

Usage: Query only

Manual operation: See "Power Control Graph" on page 129

7.8.4 Error Insertion

```plaintext
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor:BIT:LAYer
```

```plaintext
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor:BIT:RATE
```

```plaintext
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor:BIT:STATE
```

```plaintext
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor:BLOCk:RATE
```

```plaintext
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor:BLOCk:STATE
```

Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Enhanced Channels of Base Station 1

The command selects the layer in the coding process in which bit errors are inserted.

Parameters:

- **<Layer>**
 - **TRANsport**
 - Transport Layer (Layer 2). This layer is only available when channel coding is active.
 - **PHYSical**
 - Physical layer (Layer 1).

RST: PHYSical

Example:

```
```

selects layer 1 for entering bit errors.

Manual operation: See "Insert Errors On" on page 125

The command sets the bit error rate.

Parameters:

- **<Rate>**
 - *float*
 - *Range:* 1E-7 to 0.5
 - *Increment:* 1E-7
 - *RST:* 0.001

Example:

```
```

sets a bit error rate of 0.0001.

Manual operation: See "Bit Error Rate" on page 125

The command activates bit error generation or deactivates it.
Bit errors are inserted into the data fields of the enhanced channels. When channel coding is active, it is possible to select the layer in which to insert the errors (the physical or the transport layer, \[\text{[:SOURce<hw>:]:BB:W3Gp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor:BIT:LAYer}\]). When the data source is read out, individual bits are deliberately inverted at random points in the data bit stream at the specified error rate in order to simulate an invalid signal.

Parameters:

<State>
ON | OFF
*RST: 0

Example:

Manual operation:
See "Bit Error State (Enhanced DPCHs)" on page 124

\[\text{[:SOURce<hw>:]:BB:W3Gp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor:BLOCK:RATE <Rate}\]

Sets the block error rate.

Parameters:

<Rate>
float
Range: 1E-4 to 0.5
Increment: 1E-4
*RST: 0.1

Example:

Manual operation:
See "Block Error Rate" on page 125

\[\text{[:SOURce<hw>:]:BB:W3Gp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor:BLOCK:STATe <State}\]

The command activates or deactivates block error generation. Block error generation is only possible when channel coding is activated.

During block error generation, the CRC checksum is determined and then the last bit is inverted at the specified error probability in order to simulate a defective signal.

Parameters:

<State>
ON | OFF
*RST: 0

Example:

Manual operation:
See "Block Error State" on page 125
The command selects the layer in the coding process in which bit errors are inserted.

Parameters:

- `Layer`:
 - TRANsport (Transport Layer (Layer 2))
 - PHYSical (Physical layer (Layer 1))

 Example:

Manual operation: See "Insert Errors On (HSDPA H-Set)" on page 111

Sets the bit error rate.

Parameters:

- `Rate`:
 - float
 - *RST: 1E-3

 Example:

Manual operation: See "Bit Error Rate (HSDPA H-Set)" on page 111

The command activates bit error generation or deactivates it.

Bit errors are inserted into the data stream of the coupled HS-PDSCHs. It is possible to select the layer in which the errors are inserted (physical or transport layer). When the data source is read out, individual bits are deliberately inverted at random points in the data bit stream at the specified error rate in order to simulate an invalid signal.

Parameters:

- `State`:
 - ON | OFF
 - *RST: 0

 Example:

Manual operation: See "Bit Error State (HSDPA H-Set)" on page 111
[:SOURce<hw>]:BB:W3GPp:BSTation[ENHanced]:CHANnel<ch0>:HSDPa: DERRor:BLOCk:RATE <Rate>

The command sets the block error rate.

Parameters:

- `<Rate>`: float
 - Range: 1E-4 to 5E-1
 - *RST*: 5E-1

Example:

```
```

sets the block error rate to 0.01.

Manual operation: See "Block Error Rate (HSDPA H-Set)" on page 112

[:SOURce<hw>]:BB:W3GPp:BSTation[ENHanced]:CHANnel<ch0>:HSDPa: DERRor:BLOCk:STATe <State>

The command activates or deactivates block error generation. During block error generation, the CRC checksum is determined and then the last bit is inverted at the specified error probability in order to simulate a defective signal.

Parameters:

- `<State>`: ON | OFF
 - *RST*: 0

Example:

```
```

sets the block error rate to 0.1.

```
```

activates block error generation.

Manual operation: See "Block Error State (HSDPA H-Set)" on page 111

7.9 User Equipment Settings

The SOURce:BB:W3GPp:MSTation system contains commands for setting the user equipment. The commands of this system only take effect when the 3GPP FDD standard is activated, the UP transmission direction is selected and the particular user equipment is enabled:

```
SOURce:BB:W3GPp:STATe ON
SOURce:BB:W3GPp:LINK UP
SOURce:BB:W3GPp:MSTation2:STATe ON
```

The numeric suffix to MSTation determines the user equipment. The value range is 1 .. 4. If the suffix is omitted, MS1 is selected.
7.9.1 General Settings

[:SOURce<hw>]:BB:W3GPp:MSTation:ADDitional:COUNt

The command sets the amount of additional user equipment.

Up to 128 additional user equipment can be simulated - corresponding to a receive signal for a base station with high capacity utilization. The fourth user equipment (UE4) serves as a template for all other stations. The only parameters of the additional user equipment to be modified are the scrambling code and the power.

Parameters:

`<Count>`

integer

Range: 1 to 128

*RST: 4

Example:

BB:W3GP:MST:ADD:COUN 20
Sets 20 additional user equipment.

Sets the power offset to -3 dB.

BB:W3GP:MST:ADD:SCOD:STEP 1
Sets the step width for increasing the scrambling code to 1.

BB:W3GP:MST:ADD:STAT ON
Connects the 20 user equipment to the 3GPP FDD signal.

Manual operation: See "Number of Additional UE" on page 75
[:SOURce<hw>]:BB:W3GPp:MSTation:ADDitional:POWer:OFFSet <Offset>

Sets the power offset of the active channels of the additional user equipment relative to the power of the active channels of the reference station UE4.

The offset applies to all the additional user equipment. The resultant overall power must fall within the range 0 ... -80 dB. If the value is above or below this range, it is limited automatically.

Parameters:
<Offset> float
Range: -80 to 0
Increment: 0.01
*RST: 0

sets the offset to -3 dB.

Manual operation: See "Power Offset" on page 75

[:SOURce<hw>]:BB:W3GPp:MSTation:ADDitional:SCODe:STEP <Step>

Sets the step width for increasing the scrambling code of the additional user equipment. The start value is the scrambling code of UE4.

Parameters:
<Step> integer
Range: 0 to #HFFFFFF

sets the step width for increasing the scrambling code to #H55.

Manual operation: See "Scrambling Code Step" on page 75

[:SOURce<hw>]:BB:W3GPp:MSTation:ADDitional:STATe <State>

Activates additional user equipment.

Parameters:
<State> 0 | 1 | OFF | ON
*RST: 0

Example: SOURce1:BB:W3GPp:MSTation:ADDitional:STATe ON
connects the additional user equipment to the 3GPP FDD signal.

Manual operation: See "State" on page 75

[:SOURce<hw>]:BB:W3GPp:MSTation:ADDitional:TDELay:STEP <Step>

Sets the step width for the time delay of the additional user equipment to one another. The start value is the time delay of UE4.
Parameters:

<Step>
- **integer**
 - **Range:** 0 to 38400 (1 frame)
 - **RST:** 0
 - **Default unit:** chip

Example:

```
```
shifts each of the user equipment 256 chips apart, starting from the time delay of UE4.

Manual operation: See "Time Delay Step" on page 75

[
[SOURce<hw>]:BB:W3GPp:MSTation:PRESet

The command produces a standardized default for all the user equipment. The settings correspond to the **RST** values specified for the commands.

All user equipment settings are preset.

Example:

```
BB:W3GP:MST:FRES
```
resets all the user equipment settings to default values.

Usage: Event

Manual operation: See "Reset User Equipment" on page 54

[
[SOURce<hw>]:BB:W3GPp:MSTation<st>:MODE <Mode>

The command selects the operating mode for the user equipment.

Parameters:

<Mode>
- **PRACH**
 - The user equipment only generates a signal with a physical random access channel (PRACH). This channel is used to set up the user equipment connection with the base station. The channel-specific parameters of the PRACH can be set with the commands **:SOURce:BB:W3GPp:MSTation<n>:PRACH:**.

- **PPRACH**
 - The user equipment only generates a signal with the preamble component of a physical random access channel (PRACH). The parameters of the PRACH preamble can be set with the commands **:SOURce:BB:W3GPp:MSTation<n>:PRACH:**.

- **PCPCh**
 - The user equipment only generates a signal with a physical common packet channel (PCPCH). This channel is used to transmit packet-oriented services (e.g. SMS). The channel-specific parameters of the PCPCH can be set with the commands **:SOURce:BB:W3GPp:MSTation<n>:PCPCh:**.
PPCPch
The user equipment only generates a signal with the preamble component of a physical common packet channel (PCPCH). The parameters of the PCPCH preamble can be set with the commands `:SOURCE:BB:W3GPp:MSTation<n>:PCPCh:`.

DPCDch
The user equipment generates a signal with a dedicated physical control channel (DPCCH), up to 6 dedicated physical data channels (DPDCH), up to one HS-DPCCH channel, up to one E-DPCCH channel and up to four E-DPDCH channels. This signal is used for voice and data transmission.

*RST: DPCDch

Example: `BB:W3GP:MST1:MODE DPCD` switches the user equipment to standard mode - transmission of voice and data.

Manual operation: See "Mode" on page 149

`[:SOURCE<hw>]:BB:W3GPp:MSTation<st>:SCOD <SCode>`
The command sets the scrambling code. Long or short scrambling codes can be generated (command `[:SOURCE<hw>]:BB:W3GPp:MSTation<st>:SCODE:MODE`).

Parameters:
- `<SCode>`
 - integer
 - Range: #H0 to #HFFFFFF
 - *RST: #H0

Manual operation: See "Scrambling Code (hex)" on page 150

`[:SOURCE<hw>]:BB:W3GPp:MSTation<st>:SCODE:MODE <Mode>`
The command sets the type for the scrambling code. The scrambling code generator can also be deactivated for test purposes.

SHORT is only standardized for the selection `:BB:W3GP:MST:MODE DPCDh` and `:BB:W3GP:MST:MODE PCPCh`. But it can also be generated for the PCPCH for test purposes.

Parameters:
- `<Mode>`
 - LONG | SHORT | OFF
 - *RST: LONG

Manual operation: See "Scrambling Mode" on page 150
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Remote-Control Commands

User Equipment Settings

[:SOURce<hw>:BB:W3GPp:MSTation<st>:STATe <State>

The command activates and deactivates the specified user equipment.

Parameters:
 <State> 0 | 1 | OFF | ON
 *RST: ON

Example: BB:W3GP:MST2:STAT OFF
deactivates user equipment 2.

Manual operation: See "Select Basestation/User Equipment" on page 55

[:SOURce<hw>:BB:W3GPp:MSTation<st>:TDElay <TDelay>

Adds a time shift for the selected user equipment compared to user equipment 1.

Parameters:
 <TDelay> integer
 Range: 0 to 38400
 *RST: 0
 Default unit: chip

Example: BB:W3GP:MST2:TDEL 256
shifts user equipment 2 by 256 chips compared to user equipment 1.

Manual operation: See "Time Delay" on page 150

[:SOURce<hw>:BB:W3GPp:LREFerence <Reference>

Determines the power reference for the calculation of the output signal power in uplink direction.

Parameters:
 <Reference> RMS | DPCC | PMP | LPP | EDCH | HACK | PCQI
 RMS = RMS Power, DPCC = First DPCCH, PMP = PRACH Message Part, LPP = Last PRACH Preamble, EDCH = First E-DCH, HACK = First HARQ-ACK, PCQI = First PCI/CQI
 *RST: RMS

Example: SOURce1:BB:W3GPp:LREFerence RMS

Manual operation: See "Power Reference" on page 56

7.9.2 Compressed Mode Settings

[:SOURce<hw>:BB:W3GPp:MSTation<st>:CMODE:METHod

Remote-Control Commands

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CMODe:PATTern<ch>:TGPL 349
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CMODe:PATTern<ch>:TGSN 349
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CMODe:STATe 349

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CMODe:METHod <Method>

The command selects compressed mode method.

Parameters:

<Method>
HLSCheduling | SF2
SF2
The data is compressed by halving the spreading factor.

HLSCheduling
The data is compressed by stopping the transmission of the data stream during the transmission gap.

*RST: SF2

selects compressed mode method High Layer Scheduling.

Manual operation: See "Compressed Mode Method - UE" on page 87

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CMODe:PATTern<ch>:TGD <Tgd>

Sets the transmission gap distances.

Parameters:

<Tgd>
integer
Range: 3 to 100
*RST: 15

sets transmission gap distance of pattern 2 to 7 slots.

Manual operation: See "Distance" on page 89

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CMODe:PATTern<ch>:TGL<di> <Tgl>

Sets the transmission gap lengths.

Parameters:

<Tgl>
integer
Range: 3 to 14
*RST: 3

Example: BB:W3GP:MST2:CMOD:PATT2:TGL1 4
sets transmission gap length of gap 1 of pattern 2 to 4 slots.

Manual operation: See "Gap Len:" on page 89
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CMODE:PATT<ch>:TGPL <TGPL>
The command sets the transmission gap pattern lengths. Setting 0 is available only for pattern 2.
The transmission gap pattern lengths of the base station with the same suffix as the selected user equipment is set to the same value.

Parameters:
- `<TGPL>`: integer
- *Range:* 0 to 100
- *RST:* 2

Example:
sets transmission gap pattern length of pattern 2 to 7 frames.

Manual operation: See "Pattern Len:" on page 90

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CMODE:PATT<ch>:TGSN <TGSN>
Sets the transmission gap slot number of pattern 1.

Parameters:
- `<TGSN>`: integer
- *Range:* 0 to 14
- *RST:* 7

Example:
ssets slot number of pattern 1 to slot 4.

Manual operation: See "At Slot:" on page 89

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CMODE:STATe <State>
The command activates/deactivates the compressed mode.

Parameters:
- `<State>`: ON | OFF
- *RST:* 0

Example:
activates compressed mode for user equipment 2.

Manual operation: See "Compressed Mode State" on page 79

7.9.3 DPCCH Settings

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:CCODE?
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:FBI:MODE
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:FBI:PATTern
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:POWer
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:SFORmat
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TFCI?
Queries the channelization code and the modulation branch of the specified channel. The value is fixed.

Return values:

<integer>
Range: 0 to max

Example:
BB:W3GP:MST1:DPCC:CCOD?
queries the channelization code for DPCCH of user equipment 1.
Response: Q,64

Usage:
Query only

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:FBI:MODE <Mode>
The command sets the number of bits for the FBI field. With OFF, the FBI field is not used.

Note: The former 2-bits long FBI Mode "D2B" according to 3GPP Release 4 specification TS 25.211 is not supported any more.

Parameters:
<Mode> OFF | D1B

an FBI field is not used.

Manual operation: See "FBI Mode" on page 185
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

User Equipment Settings

[:SOURce<hw>]:BB:W3GPPp:MSTation<st>:DPCCh:FBI:PATTern <Pattern>, <BitCount>

The command determines the bit pattern when the PATTern data source is selected for the FBI field.

Parameters:

- **<Pattern>**
 - numeric
 - The first parameter determines the bit pattern (choice of hexadecimal, octal or binary notation), the second specifies the number of bits to use.
 - *RST: #H0

- **<BitCount>**
 - integer
 - Range: 1 to 32
 - *RST: 1

Manual operation: See “FBI Pattern (bin)” on page 185

[:SOURce<hw>]:BB:W3GPPp:MSTation<st>:DPCCh:POWer <Power>

The command defines the channel power for the DPCCH.

Parameters:

- **<Power>**
 - float
 - Range: -80 dB to 0 dB
 - Increment: 0.1 dB
 - *RST: 0 dB

Example: BB:W3GP:MST1:DPCC:POW -10 dB sets the channel power to -10 dB.

Manual operation: See “Power” on page 183

[:SOURce<hw>]:BB:W3GPPp:MSTation<st>:DPCCh:SFORmat <SFormat>

The command sets the slot format for the DPCCH. The slot format defines the structure of the DPCCH slots and the control fields.

Slot Format # 4 is available only for instruments equipped with R&S SMx/AMU-K59.

Slot formats 0 to 4 are available for the DPCCH channel as defined in the 3GPP Release 7 specification TS 25.211.

Note:

The former slot formats 4 and 5 according to 3GPP Release 4 specification TS 25.211 are not supported any more.

Parameters:
<SFormat> integer
Range: 0 to 4
*RST: 0

selects slot format 3 for the DPCCH of user equipment 2.

Manual operation: See "Slot Format #" on page 184

[:,SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TFCI <Tfci>

Sets the value of the TFCI (Transport Format Combination Indicator) field. This value selects a combination of 30 bits, which are divided into two groups of 15 successive slots.

Parameters:
<Tfci> integer
Range: 0 to 1023
*RST: 0

Example: BB:W3GP:MST1:DPCC:TFCI 21
sets the TFCI value to 21.

Manual operation: See "TFCI" on page 185

[:,SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TFCI:STATE <State>

The command activates the TFCI (Transport Format Combination Indicator) field for the DPCCH.

The command sets the slot format ([SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:SFORmat) in conjunction with the set FBI mode ([SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:FBI:MODE) and the TPC Mode ([SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:MODE) to the associated values.

Parameters:
<State> ON | OFF
*RST: 1

Example: BB:W3GP:MST1:DPCC:TFCI:STAT ON
activates the TFCI field.

Manual operation: See "Use TFCI" on page 185
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TOFFset <TOffset>

Sets the timing offset.

Parameters:

<TOffset> integer

Range: 0 to 1024
Increment: 1024

Example:

BB:W3GP:MST1:DPCC:TOFF?
queries the timing offset.

Manual operation: See “DL-UL Timing Offset” on page 183

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:DATA <Data>

The command determines the data source for the TPC field of the DPCCH.

Parameters:

<Data> DLISt | ZERO | ONE | PATTern |

DLISt
A data list is used. The data list is selected with the command [:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:DATA:DSELect.

ZERO | ONE
Internal 0 and 1 data is used.

PATTern
Internal data is used. The bit pattern for the data is defined by the command [:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:DATA:PATTern. The maximum length is 64 bits.

*RST: ZERO

Example:

selects as the data source for the TPC field of user equipment 2 the bit pattern defined with the following command.
BB:W3GP:MST2:DPCC:TPC:DATA:PATT #H48D0,16
defines the bit pattern.

Manual operation: See “Data List Management” on page 49

The command selects the data list when the DLISt data source is selected for the TPC field of the DPCCH.

The files are stored with the fixed file extensions *.dm_iq.d in a directory of the user’s choice. The directory applicable to the commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.
Remote-Control Commands

Parameters:

- <DSelect> string

Example:

- MMEM:CDIR '/var/user/temp/IQData' selects the directory for the data lists.

Manual operation: See "Data List Management" on page 49

[:SOURce<hw>]:BB:W3GPp:MStation<st>:DPCCh:TPC:DATA:PA TTern <Pattern>, <BitCount>

The command determines the bit pattern for the PATTern data source selection. The maximum length of the bit pattern is 64 bits.

Parameters:

- <Pattern> numeric
 - *RST: #H0
- <BitCount> integer
 - Range: 1 to 64
 - *RST: 1

Example:

Manual operation: See "TPC Data Source" on page 186

[:SOURce<hw>]:BB:W3GPp:MStation<st>:DPCCh:TPC:MIUse <MisUse>

The command activates "mis-" use of the TPC field (Transmit Power Control) for controlling the channel power of the user equipment.

The bit pattern (see commands [:SOURce<hw>]:BB:W3GPp:MStation:DPCCh:TPC:DATA...) of the TPC field of the DPCCH is used to control the channel power. A "1" leads to an increase of channel powers, a "0" to a reduction of channel powers. Channel power is limited to the range 0 dB to -60 dB. The step width for the change is defined by the command [:SOURce<hw>]:BB:W3GPp:MStation<st>:DPCCh:TPC:PSTe p.

Note: "Mis-" using the TPC field is available for UE2, UE3, UE4 only.

Parameters:

- <MisUse> ON | OFF
 - *RST: 0
Example:
```
```
activates regulation of the channel power via the bit pattern of the TPC field.
```
```
sets the step width for the change of channel power to 1 dB.

Manual operation:
See "Misuse TPC for Output Power Control" on page 187

```[:SOURce<hw>]:BB:W3GPPp:MSTation<st>:DPCCh:TPC:MODE <Mode>```

Selects the TPC (Transmit Power Control) mode.

The command sets the slot format (``[:SOURce<hw>]:BB:W3GPPp:MSTation<st>:DPCCh:SFORmat``) in conjunction with the set TFCI status (``[:SOURce<hw>]:BB:W3GPPp:MSTation<st>:DPCCh:TFCI:STATe``) and the FBI Mode (``[:SOURce<hw>]:BB:W3GPPp:MSTation<st>:DPCCh:FBI:MODE``) to the associated values.

Parameters: 

```
<Mode>
```

D2B | D4B

**D2B**
A TPC field with a length of 2 bits is used. 

**D4B**
(enabled only for instruments equipped with R&S SMx/AMU-K59) 
A TPC field with a length of 4 bits is used. 
A 4 bits long TPC field can be selected, only for Slot Format 4 and disabled FBI and TFCI fields.

*RST: D2B

Example:
```
```
an TPC field with a length of 2 bits is used.

Manual operation:  
See "TPC Mode" on page 186

```[:SOURce<hw>]:BB:W3GPPp:MSTation<st>:DPCCh:TPC:PSTep <PStep>```

The command sets the level of the power step in dB for controlling the transmit power via the data of the TPC field.

Parameters:

```
<PStep>
```

float

Range: -10 to 10
Increment: 0.01

*RST: 0

Example:
```
```
activates regulation of the channel power via the bit pattern of the TPC field.
```
```
sets the step width for the change of channel power to 1 dB.
Manual operation: See "TPC Power Step" on page 188

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:READ <Read>

The command sets the read out mode for the bit pattern of the TPC field of the DPCCH.

The bit pattern is selected with the command SOUR:BB:W3GPp:MST:DPC:C:TPC:DATA:PATT.

Parameters:

<Read>

CONTinuous | S0A | S1A | S01A | S10A

CONTinuous
The bit pattern is used cyclically.

S0A
The bit pattern is used once, then the TPC sequence continues with 0 bits.

S1A
The bit pattern is used once, then the TPC sequence continues with 1 bit.

S01A
The bit pattern is used once and then the TPC sequence is continued with 0 bits and 1 bit alternately (in multiples, depending on the symbol rate, for example, 0001111).

S10A
The bit pattern is used once and then the TPC sequence is continued with 1 bit and 0 bits alternately (in multiples, depending on the symbol rate, for example, 1110000).

*RST: CONTinuous

Example:

The selected bit pattern is repeated continuously for the TPC sequence.

Manual operation: See "TPC Read Out Mode" on page 186

7.9.4 HS-DPCCH Settings

7.9.4.1 Common Settings

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:STATE
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:POWer
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:COMPatibility
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:CCOdE?
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:SDELay
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:TTIDistance

Operating Manual 1178.9761.02 — 25
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:STATe <State>

This command activates or deactivates the HS-DPCCH.

Parameters:
- **<State>**
 - 0 | 1 | OFF | ON
 - *RST:* 0

Example: BB:W3GP:MST1:DPCC:HS:STAT ON
activates HS-DPCCH.

Manual operation: See "State (HS-DPCCH)" on page 192

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:POWer <Power>

Sets the channel power in dB.

The power is set relative to the powers of the other channels. If "Adjust Total Power to 0 dB" is executed ([:SOURce<hw>]:BB:W3GPp:POWer:ADJust), the power is normalized to total power for all channels of 0 dB. The power ratio of the individual channels remains unchanged.

Parameters:
- **<Power>**
 - float
 - Range: -80 to 0
 - Increment: 0.01
 - *RST:* 0

Sets the channel power to -30 dB.

Manual operation: See "Power (HS-DPCCH)" on page 193

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:COMPatibility <Compatibility>

The concept of the graphical user interface for the configuration of HS-DPCCH has been adapted to support simultaneous DC-HSDPA and MIMO operation, as required in 3GPP Release 9 onwards.

This command enables the configuration of the HS-DPCCH settings provided for backwards compatibility (REL7).

Parameters:
- **<Compatibility>**
 - REL7 | REL8 | REL8RT
 - *RST:* REL8

Example: BB:W3GP:MST1:DPCC:HS:COMP REL8
Sets the compatibility mode to Release 8 and Later.

Manual operation: See "Compatibility Mode (HS-DPCCH)" on page 193
[:SOURce<hw>]:BB:W3GPP:MSTation<st>:DPCCh:HS:CCODe?

Queries the channelization code and the modulation branch of the HS-DPCCH.

Return values:

<CCode>
 integer
 Range: 1 to 64
 *RST: 64

Example:

BB:W3GP:MST1:DPCC:HS:CCOD?
queries the channelization code.
Response: Q,32
the channelization code is 32 and the modulation branch is Q.

Usage:
Query only

Manual operation: See "Channelization Code" on page 182

[:SOURce<hw>]:BB:W3GPP:MSTation<st>:DPCCh:HS:SDELay <SDelay>

Sets the delay between the uplink HS-DPCCH and the frame of uplink DPCH.

Parameters:

<SDelay>
 integer
 a multiple m of 256 chips according to TS 25.211 7.7
 Range: 0 to 250
 *RST: 101
 Default unit: * 256 Chips

Example:

sets a start delay of 101 x 256 chips.

Manual operation: See "Start Delay" on page 193

[:SOURce<hw>]:BB:W3GPP:MSTation<st>:DPCCh:HS:TTIDistance <TtiDistance>

Selects the distance between two packets in HSDPA packet mode.

Parameters:

<TtiDistance>
 integer
 Range: 1 to 16
 *RST: 5

Example:

BB:W3GP:MST1:DPCC:HS:TTID 4
selects an Inter TTI Distance of 4 subframes.

Manual operation: See "Inter TTI Distance (Interval)" on page 194
7.9.4.2 Up to Release 7 Settings

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:POACk..359
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:POANack...359
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:CQI:PLENgth..360
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:CQI<ch>[:VALues]................................361
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO[:MODE]..361
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:POAACK...363
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:TTICount......................................364
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:TTI<ch0>:HACK.............................365
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:TTI<ch0>:PCI..............................365
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:TTI<ch0>:CQIType..........................365
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:POACk..366

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:POACk <Poack>

(Up to Release 7)
Sets the channel power part of the ACK in dB.

Parameters:

<Poack>
float
Range: -10 to 10
Increment: 0.1
*RST: 0

Example:
BB:W3GP:MST1:DPCC:HS:POAC -2.5dB
Sets the channel power part of the ACK to 2.5 dB.

Manual operation: See "Power Offset ACK" on page 204

(Up to Release 7)
Sets the channel power part of the NACK in dB.

Parameters:

<PoNack>
float
Range: -10 to 10
Increment: 0.1
*RST: 0

Example:
BB:W3GP:MST1:DPCC:HS:PONA -2.5dB
Sets the channel power part of the NACK to 2.5 dB.

Manual operation: See "Power Offset NACK" on page 205
Remote-Control Commands

[:SOURce<hw>]:BB:W3GPPp:MSTation<st>:DPCCh:HS:HA.Pattern <HaPattern>

(Up to Release 7)

The command enters the pattern for the HARQ-ACK field (Hybrid-ARQ Acknowledge-
ment). One bit is used per HS-DPCCH packet.

Parameters:

<HaPattern> string

The pattern is entered as string, the maximum number of entries is 32. Three different characters are permitted.

1 The HARQ ACK is sent (ACK). Transmission was successful and correct.

0 The NACK is sent (NACK). Transmission was not correct. With an NACK, the UE requests retransmission of the incorrect data.

- Nothing is sent. Transmission is interrupted (Discontinuous Transmission, DTX).

*RST: <empty>

Example:

Manual operation: See "ACK/NACK Pattern" on page 205

[:SOURce<hw>]:BB:W3GPPp:MSTation<st>:DPCCh:HS:CQI:PLE.Ngh <PLength>

Sets the length of the CQI sequence.

The values of the CQI sequence are defined with command [:SOURce<hw>]:BB: W3GPPp:MSTation<st>:DPCCh:HS:CQI<ch>[:VALues]. The pattern is generated cyclically.

Parameters:

<PLength> integer

Range: 1 to 10

*RST: 1

Example:

the CQI sequence length is 2 values.
BB:W3GP:MST1:DPCC:HS:CQI1 -1
the first CQI value is -1.
BB:W3GP:MST1:DPCC:HS:CQI2 2
the second CQI value is 2.

Manual operation: See "CQI Pattern Length" on page 205

Sets the values of the CQI sequence.

The length of the CQI sequence is defined with command [:SOURce<hw>]:BB:W3GPP:MSTation<st>:DPCCh:HS:CQI:PLEN<ch>. The pattern is generated cyclically.

Parameters:

<table>
<thead>
<tr>
<th><Values></th>
<th>integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value -1 means that no CQI is sent (DTX - Discontinuous Transmission).</td>
<td></td>
</tr>
<tr>
<td>Range: -1 to 30</td>
<td></td>
</tr>
<tr>
<td>"RST": 1</td>
<td></td>
</tr>
</tbody>
</table>

Example:

the CQI sequence length is 2 values.
BB:W3GP:MST1:DPCC:HS:CQI1 1
the first CQI value is -1.
BB:W3GP:MST1:DPCC:HS:CQI2 2
the second CQI value is 2.

Manual operation: See "CQI Values" on page 205

Enables/disables working in MIMO mode for the selected UE.

Parameters:

<table>
<thead>
<tr>
<th><Mode></th>
<th>0</th>
<th>1</th>
<th>OFF</th>
<th>ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>"RST": 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example:

Enables MIMO mode for UE 1.

Options: R&S SMBV-K59

Manual operation: See "MIMO Mode (Up to Release 7)" on page 206

[:SOURce<hw>]:BB:W3GPP:MSTation<st>:DPCCh:HS:MIMO:POAACK<PoaAck>
(up to Release 7)

Sets the power offset $P_{off,ACK/ACK}$ of an ACK/ACK response to two scheduled transport blocks relative to the CQI Power P_{CQI} (:SOURce<hw>]:BB:W3GPP:MSTation<st>:DPCCh:HS:POW<er>).

The power PACK/ACK used during the HARQ-ACK slots is calculated as:

$$P_{ACK/ACK} = P_{CQI} + P_{off,ACK/ACK}$$
Parameters:
<PoaAck>
float
Range: -10 to 10
Increment: 0.1
*RST: 0

Example:
Enables MIMO mode for UE 1.
Sets the HARQ-ACK to ACK/ACK.
Sets the power offset to -2.5 dB.

Options:
R&S SMBV-K59

Manual operation:
See "Power Offset ACK/ACK" on page 207

(up to Release 7)
Sets the power offset $P_{\text{off,ACK/NACK}}$ of an ACK/NACK response to two scheduled transport blocks relative to the CQI Power P_{CQI} ([:SOURce<hw>]:BB:W3GPPp:MSTation<st>:DPCCh:HS:POWER).
The power $P_{\text{ACK/NACK}}$ used during the HARQ-ACK slots is calculated as:

\[P_{\text{ACK/NACK}} = P_{\text{CQI}} + P_{\text{off,ACK/NACK}} \]

Parameters:
<PoaNack>
float
Range: -10 to 10
Increment: 0.1
*RST: 0

Example:
Enables MIMO mode for UE 1.
Sets the HARQ-ACK to ACK/NACK.
BB:W3GP:MST1:DPCC:HS:MIMO:POAN -1.5dB
Sets the power offset to -1.5 dB.

Options:
R&S SMBV-K59

Manual operation:
See "Power Offset ACK/NACK" on page 207

(up to Release 7)
Sets the power offset $P_{\text{off NACK/ACK}}$ of an NACK/ACK response to two scheduled transport blocks relative to the CQI Power P_{CQI} ([[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:POWer]).

The power $P_{\text{NACK/ACK}}$ used during the HARQ-ACK slots is calculated as:

$$P_{\text{NACK/ACK}} = P_{\text{CQI}} + P_{\text{off NACK/ACK}}$$

Parameters:

$<\text{PoNack}>$

float

Range: -10 to 10

Increment: 0.1

RST: 0

Example:

Enables MIMO mode for UE 1.

Sets the HARQ-ACK to NACK/ACK.

Sets the power offset to -1dB.

Options: R&S SMBV-K59

Manual operation: See "Power Offset NACK/ACK" on page 208
[:SOURce<hw>]:BB:W3GPP:MSTation<st>:DPCCh:HS:MIMO:POCA <Poca>

(up to Release 7)

Sets the power offset $P_{\text{off,CQI Type A}}$ of the PCI/CQI slots in case a CQI Type A report is sent relative to the CQI Power P_{CQI}.

The power $P_{\text{CQI Type A}}$ used during the PCI/CQI slots is calculated as:

$$P_{\text{CQI Type A}} = P_{\text{CQI}} + P_{\text{off,CQI Type A}}$$

Since the CQI Type B reports are used in a single stream transmission, the power $P_{\text{CQI Type B}} = P_{\text{CQI}}$.

Parameters:

- `<Poca>`
 - Type: float
 - Range: -10 to 10
 - Increment: 0.1
 - *RST:* 0

Example:

Enables MIMO mode for UE 1.
Selects CQI Type A Dual TB report for TTI2.
Sets the power offset to -4dB.

Options: R&S SMBV-K59

Manual operation: See "Power Offset CQI Type A" on page 208

[:SOURce<hw>]:BB:W3GPP:MSTation<st>:DPCCh:HS:MIMO:TTICount <TtiCount>

Selects the number of configurable TTI's.

Parameters:

- `<TtiCount>`
 - Type: integer
 - Range: 1 to 32
 - *RST:* 1

Example:

Enables MIMO mode for UE 1.
Sets the number of configurable TTI's to 4.

Options: R&S SMBV-K59

Manual operation: See "Number of TTIs (Up to Release 7)" on page 208
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:TTI<ch0>:HACK
<Hack>

Selects the information transmitted during the HARQ-ACK slot of the corresponding TTI.

Suffix:
<ch0> 0..Number of TTI -1

Parameters:
<Hack> DTX | SACK | SNACK | AACK | ANACK | NACK | NNACK
*RST: AACK (for TTI 1)

Enables MIMO mode for UE 1.
Sets the HARQ-ACK to single ACK.

Options: R&S SMBV-K59

Manual operation: See "HARQ-ACK (Up to Release 7)" on page 209

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:TTI<ch0>:PCI <Pci>

Selects the PCI value transmitted during the PCI/CQI slots of the corresponding TTI.

Suffix:
<ch0> 0 to Number of TTI -1

Parameters:
<Pci> integer
Range: 0 to 3
*RST: 0

Enables MIMO mode for UE 1.
Sets the HARQ-ACK to single ACK.
Sets the PCI.

Options: R&S SMBV-K59

Manual operation: See "PCI (Up to Release 7)" on page 209

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:TTI<ch0>:CQIType
<CqiType>

Selects the type of the CQI report.

Suffix:
<ch0> 0..Number of TTI -1
Parameters:

<CqiType> TAST | TADT | TB
*RST: TADT

Example:

Enables MIMO mode for UE 1.
Sets the HARQ-ACK to single ACK.
Selects CQI Type A dual TB report for TTI2.

Options: R&S SMBV-K59
Manual operation: See "CQI Type (Up to Release 7)" on page 209

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCC:HS:MIMO:TTI<ch0>:CQI<di>

Selects the CQI report transmitted during the PCI/CQI slots of the corresponding TTI.

For single stream transmission (BB:W3GP:MST:DPCC:HS:MIMO:TTI:CQI1), this command sets the CQI values of the following cases:

- The CQI (the value for CQI Type B report)
- The CQI₅ (the CQI value in case a CQI Type A report when one transport block is preferred)

For dual stream transmission (BB:W3GP:MST:DPCC:HS:MIMO:TTI:CQI2), this command sets:

- The CQI₁, the first of the two CQI values of CQI Type A report when two transport blocks are preferred
- The CQI₂, the second of the two CQI values of CQI Type A report when two transport blocks are preferred. The CQI then is calculated as follows: CQI = 15*CQI₁+CQI₂+31

Suffix:

<ch0> 0..Number of TTI -1
TTI
<di> 1|2
The suffix CQI<1|2> distinguishes between CQI/CQI₅/CQI₁ and CQI₂.

Parameters:

<Cqi> integer
Range: 0 to 30
*RST: 0
Remote-Control Commands

Example:
Enables MIMO mode for UE 1.
Sets the HARQ-ACK to single ACK.
Selects CQI Type A dual TB report for TTI2.
Sets CQI1
Sets CQI2

Example:
Selects CQI Type A single TB report for TTI2.
Sets CQI3

Example:
Selects CQI Type B
Sets CQI

Options:
R&S SMBV-K59

Manual operation:
See "CQI/CQI/CQI (Up to Release 7)" on page 209

7.9.4.3
Release 8 and Later (RT) Settings

Example:
HS-DPCCH Scheduling
The following is a simple example intended to explain the principle. Configured is an
HS-DPCCH scheduling in MIMO Mode and with "Secondary Cell Enabled = 1".

BB:W3GP:MST1:DPCC:HS:COMP REL8
BB:W3GP:MST1:DPCC:HS:MMOD ON
BB:W3GP:MST1:DPCC:HS:HACK REPeat 4
BB:W3GP:MST1:DPCC:HS:ROW0:HACK FROM 0
BB:W3GP:MST1:DPCC:HS:ROW0:HACK TO 1
BB:W3GP:MST1:DPCC:HS:ROW0:HACK1 MS_AA_D
BB:W3GP:MST1:DPCC:HS:ROW1:HACK TO 3
BB:W3GP:MST1:DPCC:HS:ROW1:HACK1 MS NN NN
BB:W3GP:MST1:DPCC:HS:ROW0:PCQI FROM 0
BB:W3GP:MST1:DPCC:HS:ROW0:PCQI TO 0
BB:W3GP:MST1:DPCC:HS:ROW1:PCQI TO 0
BB:W3GP:MST1:DPCC:HS:ROW1:PCQI FROM 1
Remote-Control Commands

BB:W3GP:MST1:DPCC:HS:ROW1:PCQI:TO 1
BB:W3GP:MST1:DPCC:HS:STAT ON

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:SFORmat?.................................368
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MMODe..368
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:HACK:FROM......................370
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:HACK:TO............................370
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:POHACK..............................371
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI:TO............................372
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI<di>:CQI<us>..................373
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI<di>:PCI..........................373
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:SLENght?...374

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:SFORmat?

Queries the used slot format.

Return values:
<SlotFormat> integer
Range: 0 to 1
*RST: 0

Usage: Query only
Options: R&S SMBV-K59
Manual operation: See "Slot Format" on page 195

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MMODe <MMode>

(Release 8 and Later, Release 8 and Later (RT))
Enables/disables working in MIMO mode for the selected UE.

Parameters:
<MMode> 0 | 1 | OFF | ON
*RST: 0

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

User Equipment Settings

Operating Manual 1178.9761.02 — 25
Example:
see Example "HS-DPCCH Scheduling" on page 367

Options:
R&S SMBV-K59

Manual operation:
See "MIMO Mode" on page 197

<SecCellEnabled>

Enables the selected number of secondary cells for the selected UE.

Parameters:

integer

Range: 0 to 7
*RST: 0

Example:
see Example "HS-DPCCH Scheduling" on page 367

Options:
R&S SMBV-K59

Manual operation:
See "Secondary Cell Enabled" on page 197

<SecCellActive>

(Release 8 and Later)
Sets the number of active secondary cells for the selected UE.

Parameters:

integer

Range: 0 to 7
*RST: 0

Example:
see Example "HS-DPCCH Scheduling" on page 367

Options:
R&S SMBV-K59

Manual operation:
See "Secondary Cell Active" on page 197

Determines the number of the rows in the HARQ-ACK respectively in the PCI/CQI scheduling table.

Parameters:

integer

Range: 1 to 32
*RST: 1

Example:
see Example "HS-DPCCH Scheduling" on page 367

Options:
R&S SMBV-K59
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

User Equipment Settings

Manual operation: See "Number of Rows" on page 200

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:HACK:FROM
<HackFrom>

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:HACK:TO
<HackTo>

(Release 8 and later)

Defines the beginning / end of the HARQ-ACK transmissions inside the HARQ-ACK cycle. R&S SMBV

The range is specified in multiples of intervals (Inter-TTI distance).

Suffix:
<ch0> 0 to <RowCount>

Parameters:
<HackTo> integer

Range: 0 to dynamic

*RST: row index

Example: See Example "HS-DPCCH Scheduling" on page 367

Options: R&S SMBV-K59

Manual operation: See "HARQ-ACK From Interval/ HARQ-ACK To Interval" on page 198

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:HACK<di>
<HarqAck>

(Release 8 and Later)

Sets the information transmitted during the HARQ-ACK slots of the TTIs during the corresponding specified HARQ-ACK From/To range.

For detailed description, see "HS-DPCCH 1/2, HARQ-ACK 1/2/3/4" on page 198. The Table 7-1 provides the necessary cross-reference information.

Table 7-1: Cross-reference between the used GUI terms and abbreviations in the SCPI command

<table>
<thead>
<tr>
<th>Value name</th>
<th>Parameter value</th>
</tr>
</thead>
<tbody>
<tr>
<td>"DTX"</td>
<td>DTX</td>
</tr>
<tr>
<td>"PRE, POST"</td>
<td>PRE</td>
</tr>
<tr>
<td>"A, N"</td>
<td>A</td>
</tr>
<tr>
<td>"AA, AN, NA, NN"</td>
<td>M_A</td>
</tr>
<tr>
<td>"A/D, N/A, ...)"</td>
<td>S_A_D</td>
</tr>
</tbody>
</table>

(different combinations possible)
3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Remote-Control Commands
User Equipment Settings

Value name

Parameter value

"A/D/D, N/D/D, … "

S2_N_N_N | S2_N_N_A | ...

(different combinations possible)

(different combinations possible)

"AN/NN, D/AA, … "

MS_AA_AA | MS_D_AA ...

(different combinations possible)

(different combinations possible)

Suffix:
<ch0>
Parameters:
<HarqAck>

.
0..<RowCount>
DTX | PRE | POST | A | N | M_A | M_N | M_AA | M_AN | M_NA |
M_NN | S_A_D | S_N_D | S_D_A | S_D_N | S_A_A | S_A_N |
S_N_A | S_N_N | MS_A_D | MS_N_D | MS_AA_D | MS_AN_D |
MS_NA_D | MS_NN_D | MS_D_A | MS_D_N | MS_D_AA |
MS_D_AN | MS_D_NA | MS_D_NN | MS_A_A | MS_A_N |
MS_N_A | MS_N_N | MS_A_AA | MS_A_AN | MS_A_NA |
MS_A_NN | MS_N_AA | MS_N_AN | MS_N_NA | MS_N_NN |
MS_AA_A | MS_AA_N | MS_AN_A | MS_AN_N | MS_NA_A |
MS_NA_N | MS_NN_A | MS_NN_N | MS_AA_AA |
MS_AA_AN | MS_AA_NA | MS_AA_NN | MS_AN_AA |
MS_AN_AN | MS_AN_NA | MS_AN_NN | MS_NA_AA |
MS_NA_AN | MS_NA_NA | MS_NA_NN | MS_NN_AA |
MS_NN_AN | MS_NN_NA | MS_NN_NN | S2_A_D_D |
S2_N_D_D | S2_D_A_D | S2_D_N_D | S2_D_D_A |
S2_D_D_N | S2_A_A_D | S2_A_N_D | S2_N_A_D |
S2_N_N_D | S2_A_D_A | S2_A_D_N | S2_N_D_A |
S2_N_D_N | S2_D_A_A | S2_D_A_N | S2_D_N_A |
S2_D_N_N | S2_A_A_A | S2_A_A_N | S2_A_N_A |
S2_A_N_N | S2_N_A_A | S2_N_A_N | S2_N_N_A |
S2_N_N_N | D_DTX

Example:

See Example "HS-DPCCH Scheduling" on page 367

Options:

R&S SMBV-K59

Manual operation:

See "HS-DPCCH 1/2, HARQ-ACK 1/2/3/4" on page 198

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:POHAck
<PoHack>
(Release 8 and Later)
Sets the power offset of a HARQ-ACK response relative to the [:SOURce<hw>]:BB:
Suffix:
<ch0>

Operating Manual 1178.9761.02 ─ 25

.
0..<RowCount>

371


Remote-Control Commands

Parameters:

<PoHack>
float
Range: -10 to 10
Increment: 0.1
*RST: 0

Options: R&S SMBV-K59

Manual operation: See "Power Offset HARQ-ACK" on page 200

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI:FROM
<PcqiFrom>
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI:TO
<PcqiTo>

(Release 8 and later)
Defines the beginning / end of the PCI/CQI transmissions inside the PCI/CQI cycle.
The range is specified in multiples of intervals (Inter-TTI distance).

Suffix: <ch0> 0 to <RowCount>

Parameters:

<PcqiTo>
integer
Range: 0 to dynamic
*RST: row index

Example: See Example "HS-DPCCH Scheduling" on page 367

Options: R&S SMBV-K59

Manual operation: See "PCI-CQI From Interval/ PCI-CQI To Interval" on page 200

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI<di>:TYPE
<CqiType>

Selects the type of the PCI/CQI report.

Suffix: <ch0> 0..<RowCount>

Parameters:

<CqiType>
DTX | CQI | TAST | TADT | TB | CCQI
TAST|TADT
Type A Single TB, Type A Double TB
TB
Type B
CCQI
Composite CQI

Example: see Example "HS-DPCCH Scheduling" on page 367

Options: R&S SMBV-K59
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

User Equipment Settings

Manual operation: See "HS-DPCCH 1/2, PCI/CQI 1/2/3/4 Type" on page 201

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI<di>:PCI<Cqi>

Parameters:

<Cqi> integer
 Range: 0 to 30
 *RST: 0

Example: see Example "HS-DPCCH Scheduling" on page 367

Options: R&S SMBV-K59

Manual operation: See "CQI/CQI /CQI /CQI " on page 202

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI<di>:PCI<PCI>

Suffix: 0..<RowCount>

Parameters:

<PCI> integer
 Range: 0 to 3
 *RST: 0

Example: see Example "HS-DPCCH Scheduling" on page 367

Manual operation: See "PCI" on page 202

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:POPCqi<PoPcqi>

(Release 8 and Later)

Sets the power offset $P_{off,PCI/CQI}^{PCI/CQI}$ of all PCI/CQI slots during the corresponding specified PCI/CQI From/To range relative to the [:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:POWer.

Suffix: 0..<RowCount>

Parameters:

<PoPcqi> float
 Range: -10 to 10
 Increment: 0.1
 *RST: 0

Options: R&S SMBV-K59

Manual operation: See "Power Offset PCI/CQI" on page 201
Remote-Control Commands

Defines the cycle length after that the information in the HS-DPCCH scheduling table is read out again from the beginning.

Parameters:
- <HackRep>:
 - integer
 - Range: 1 to dynamic

Example: see Example "HS-DPCCH Scheduling" on page 367

Manual operation: See "HARQ-ACK Repeat After" on page 197

(Release 8 and Later)

Defines the cycle length after that the information in the HS-DPCCH scheduling table is read out again from the beginning.

Parameters:
- <PcqiRep>:
 - integer
 - Range: 1 to dynamic
 - *RST: 1

Example: see Example "HS-DPCCH Scheduling" on page 367

Manual operation: See "PCI/CQI Repeat After" on page 200

[:SOURce<hw>]:BB:W3GPPp:MSTation<st>:DPCCh:HS:SLENgh?

(Release 8 and Later)

Queries the suggested and current ARB sequence length.

The current ARB sequence length is adjusted with the command [:SOURce<hw>]:BB:W3GPPp:MSTation<st>:DPCCh:HS:SLENgh:ADJust on page 374.

Return values:
- <SLength>:
 - float

Queries the ARB sequence length

Usage: Query only

Options: R&S SMBV-K59

Manual operation: See "Suggested / Current ARB Seq. Length (HS-DPCCH)" on page 202

[:SOURce<hw>]:BB:W3GPPp:MSTation<st>:DPCCh:HS:SLENgh:ADJust

(Release 8 and Later)
Sets the current ARB sequence length to the suggested value.

Example:

```
```

Adjusts the ARB sequence length

Usage:

Event

Options:

R&S SMBV-K59

Manual operation:

See "Adjust ARB Sequence Length (HS-DPCCH)" on page 204

7.9.5 DPDCH Settings

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CHANnel<ch>:DPDCh:CCODe?

The command queries the channelization code of the specified channel. The value is fixed and depends on the overall symbol rate of the user equipment.

Return values:

- `<CCode>`: float

Example:

```
BB:W3GP:MST1:CHAN:DPDC:CCOD?
```

queries the channelization code for DPDCH 1 of user equipment 1.

Usage:

Query only

Manual operation:

See "Channelization Code" on page 213

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CHANnel<ch>:DPDCh:DATA <Data>

The command determines the data source for the selected DPDCH.

For the enhanced channels of user equipment 1 (UE1), this entry is valid when channel coding is deactivated. When channel coding is active, data sources are selected for the transport channels with the commands:

Parameters:

- `<Data>`: PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 | DLISI | ZERO | ONE | PATTERN

User Equipment Settings

PNxx
The pseudo-random sequence generator is used as the data source. Different random sequence lengths can be selected.

DLIST
A data list is used. The data list is selected with the command [:SOURce<hw>]:BB:W3GPp:MSTation<st>:CHANnel<ch>:DPDCh:DATA:DSElect.

ZERO | ONE
Internal 0 and 1 data is used.

PATTern
Internal data is used. The bit pattern for the data is defined by the command [:SOURce<hw>]:BB:W3GPp:MSTation<st>:CHANnel<ch>:DPDCh:DATA:PATTern.

Example:
BB:W3GP:MST1:CHAN1:DPDC:DATA PN11
Selects internal PRBS data with period length $2^{11}-1$ as the data source.

Manual operation: See "Data List Management" on page 49

[[SOURce<hw>]:BB:W3GPp:MSTation<st>:CHANnel<ch>:DPDCh:DATA:DSElect <DSelect>

The command selects the data list for the DLIS data source selection.

The files are stored with the fixed file extensions *.dm_iqd in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Parameters:
<DSelect> <data list name>

Example:
BB:W3GP:MST1:CHAN1:DPDC:DATA DLIS
selects the Data Lists data source.
MMEM:CDIR '/var/user/temp/IQData'
selects the directory for the data lists.
selects the file dpdch_13 as the data source.

Manual operation: See "Data List Management" on page 49

[[SOURce<hw>]:BB:W3GPp:MSTation<st>:CHANnel<ch>:DPDCh:DATA:PATTern <Pattern>, <BitCount>

The command enters the bit pattern for the PATTern data source selection. The first parameter determines the bit pattern (choice of hexadecimal, octal or binary notation), the second specifies the number of bits to use.
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Parameters:

- **<Pattern>**
 - numeric
 - *RST: #H0

- **<BitCount>**
 - integer
 - Range: 1 to 64
 - *RST: 1

Example:

```
BB:W3GP:MST1:CHAN1:DPDC:DATA PATT
selects the Pattern data source.
BB:W3GP:MST1:CHAN1:DPDC:DATA:PATT #H3F, 8
defines the bit pattern.
```

Manual operation: See "DPDCH Data Source" on page 213

```
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CHANnel<ch>:DPDCh:SRATe?
```

The command queries the symbol rate of the DPDCH. The symbol rate depends on the overall symbol rate set and cannot be modified.

Return values:

- **<SRate>**
 - D15K | D30K | D60K | D120k | D240k | D480k | D960k

Example:

```
queries the symbol rate of DPDCH 2 of user equipment 4.
Response: 960
the symbol rate is 960 kbps.
```

Note:

DPDCH 2 is only active once the overall symbol rate is 2 x 960 kbps or more. When overall symbol rates are less, the error message "???" is returned.

Usage: Query only

Manual operation: See "Symbol Rate / State" on page 213

```
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPDCh:FCIO <Fcio>
```

The command sets the channelization code to I/0. This mode can only be activated if the overall symbol rate is < 2 x 960 kbps.

Parameters:

- **<Fcio>**
 - ON | OFF
 - *RST: OFF

Example:

```
BB:W3GP:MST1:DPDC:FCIO ON
sets the channelization code to I/O.
```

Manual operation: See "Force Channelization Code To I/0" on page 212
The command sets the overall symbol rate. The overall symbol rate determines the number of DPDCHs as well as their symbol rate and channelization codes.

Parameters:

- **<ORate>**
 - D15K | D30K | D60K | D120K | D240K | D480K | D960K | D1920K | D2880K | D3840K | D4800K | D5760K
 - D15K ... D5760K
 - 15 ksps ... 6 x 960 ksps
 - *RST:* D60K

Example:

```
BB:W3GP:MST1:DPDCh:ORAT D15K
```

sets the overall symbol rate to 15 ksps. Only DPDCH1 is active, the symbol rate is 15 ksps and the channelization code is 64.

Manual operation:

See "Overall Symbol Rate" on page 212

Sets the channel power of the DPDCHs. The power entered is relative to the powers of the other channels. If "Adjust Total Power to 0 dB" is executed (`[:SOURce<hw>]:BB:W3GPp:POWer:ADJust`), the power is normalized to a total power for all channels of 0 dB. The power ratios of the individual channels remains unchanged.

Note: The uplink channels are not blanked in this mode (duty cycle 100%).

Parameters:

- **<Power>**
 - float
 - Range: -80 to 0
 - Increment: 0.01
 - *RST:* 0

Example:

```
BB:W3GP:MST4:DPDCh:POW -60dB
```

Sets the channel power for DPDCH 2 of user equipment 4 to -60 dB. The channel power relates to the power of the other channels.

```
BB:W3GP:POW:ADJ
```

The channel power relates to 0 dB.

Manual operation:

See "Channel Power" on page 211

The command activates or deactivates DPDCHs. This always activates or deactivates all the channels. The number of channels (1...6) is determined by the overall symbol rate.

Parameters:

- **<State>**
 - ON | OFF
 - *RST:* OFF
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Example:
```
BB:W3GP:MST1:DPDC:STAT ON
```  
activates all the DPDCHs.

Manual operation: See "State (DPDCH)" on page 211

7.9.6 PCPCH Settings

```
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:PCPCh:CPOWer............................................. 379
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:PCPCh:CPSFormat........................................... 380
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:PCPCh:DATA.................................................. 380
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:PCPCh:DATA:DSELect........................................ 381
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:PCPCh:DATA:PATTern........................................ 381
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:PCPCh:DPower.................................................. 381
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:PCPCh:FBI:MODE............................................... 382
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:PCPCh:FBI:PATTern........................................... 382
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:PCPCh:MLENGTH................................................. 382
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:PCPCh:PLENGTH.................................................. 383
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:PCPCh:PPower................................................... 383
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:PCPCh:PREPetition........................................... 384
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:PCPCh:RAFTer.................................................. 384
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:PCPCh:RARB..................................................... 384
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:PCPCh:SIGNature............................................. 385
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:PCPCh:SRATe.................................................... 385
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:PCPCh:TFCI...................................................... 386
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:PCPCh:TIMing:DPower:PREAMble?........................... 386
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:PCPCh:TIMing:SOFSet........................................ 387
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:PCPCh:TIMing:SPeriod?....................................... 387
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:PCPCh:TIMing:TIME:PREEm.................................. 387
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:PCPCh:TIMing:TIME:PREPre................................. 388
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:PCPCh:TPC:DATA............................................. 388
```

```
[:SOURce<hw>]:BB:W3Gpp:MSTation<st>:PCPCh:CPOWer <CPower>
```

Sets the power of the control component of the PCPCH.

Parameters:

```
<CPower>  
  float
  Range:  -80  to  0
  Increment:  0.01
  *RST:  0
```

Example:
```
BB:W3GP:MST1:PCPC:CPOW -10 dB
```
Sets the power to -10 dB.

Manual operation: See "Control Power" on page 177
[:SOURce<hw>]:BB:W3GPPp:MSTation<st>:PCPCh:CPSFormat <CpSFormat>

The command defines the slot format of the control component of the PCPCH.

The slot format sets the associated FBI mode automatically:
- Slot format 0 = FBI OFF
- Slot format 1 = FBI 1 bit
- Slot format 2 = FBI 2 bits

Parameters:

- **<CpSFormat>**
 - integer
 - Range: 0 to 2
 - *RST: 0

Example:

```
BB:W3GP:MST1:PCPCh:CPSF 2
```

sets slot format 2.

Manual operation: See "Slot Format" on page 177

[:SOURce<hw>]:BB:W3GPPp:MSTation<st>:PCPCh:DATA <Data>

The command determines the data source for the PCPCH.

Parameters:

- **<Data>**
 - ZERO | ONE | PATtern | PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 | DLISl
 - PNxx
 - The pseudo-random sequence generator is used as the data source. Different random sequence lengths can be selected.
 - DLISl
 - A data list is used. The data list is selected with the command SOURce:BB:W3GPPp:MST:PCPCh:DATA:SELect[:SOURce<hw>]:BB:W3GPPp:MSTation<st>:PCPCh:DATA:SELect.
 - ZERO | ONE
 - Internal 0 and 1 data is used.
 - PATtern
 - Internal data is used. The bit pattern for the data is defined by the command [:SOURce<hw>]:BB:W3GPPp:MSTation<st>:PCPCh:DATA:PATtern.
 - *RST: PN9

Example:

```
BB:W3GP:MST1:PCPC:DATA PN11
```

selects internal PRBS data with period length $2^{11}-1$ as the data source.

Manual operation: See "Data List Management" on page 49
[:SOURce<hw>]:BB:W3GPPp:MSTation<st>:PCPCh:DATA:DSELect <DSelect>

The command selects the data list for the DLIS data source.

The files are stored with the fixed file extensions *.dm_iqd in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Parameters:
<DSelect> string

Example:
BB:W3GP:MST1:PCPC:DATA DLIS selects data lists as the data source.
MMEM:CDIR '/var/user/temp/IQData' selects the directory for the data lists.
BB:W3GP:MST1:PCPC:DATA:DSEL 'pcpch_data' selects the data list pcpch_data.

Manual operation: See "Data List Management" on page 49

[:SOURce<hw>]:BB:W3GPPp:MSTation<st>:PCPCh:DATA:PATTern <Pattern>, <BitCount>

The command determines the bit pattern for the data component when the PATTern data source is selected. The first parameter determines the bit pattern (choice of hexadecimal, octal or binary notation), the second specifies the number of bits to use.

Parameters:
<PATTERN> numeric
*RST: #H0
<BITCOUNT> integer
Range: 1 to 64
*RST: 1

Example:
BB:W3GP:MST:PCPC:DATA:PATT #H3F,8 defines the bit pattern of the data for the DATA component.

Manual operation: See "Data Source" on page 178

[:SOURce<hw>]:BB:W3GPPp:MSTation<st>:PCPCh:DPOWer <DPower>

Sets the power of the data component of the PCPCH.

Parameters:
<DPower> float
Range: -80 to 0
Increment: 0.01
*RST: 0

Example:
BB:W3GP:MST1:PCPC:DPOW -10 dB
Sets the power to -10 dB.
Manual operation: See "Data Power" on page 177

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:FBI:MODE <Mode>

The command sets the number of bits (1 or 2) for the FBI field. With OFF, the field is not used.

The FBI pattern automatically sets the associated slot format:
- FBI OFF = Slot format 0
- FBI 1 bit = Slot format 1
- FBI 2 bits = Slot format 2

Parameters:
- <Mode>
 - OFF | D1B | D2B
 - *RST: OFF

the FBI field is not used.

Manual operation: See "FBI Mode" on page 178

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:FBI:PATTern <Pattern>, <BitCount>

The command determines the bit pattern for the FBI field when the PATTern data source is selected. The maximum length of the pattern is 32 bits. The first parameter determines the bit pattern (choice of hexadecimal, octal or binary notation), the second specifies the number of bits to use.

Parameters:
- <Pattern> numeric
 - *RST: #H0
- <BitCount> integer
 - Range: 1 to 32
 - *RST: 1

Example: BB:W3GP:MST1:PCPC:FBI:PATT #H3F,8
defines the bit pattern of the data for the FBI field.

Manual operation: See "FBI Pattern" on page 178

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:MLENgth <MLength>

The command sets the length of the message component as a number of frames.

Parameters:
- <MLength> 1 | 2 Frames
 - Range: 1 to 2
 - *RST: 1 Frame
Remote-Control Commands

Example: \(\text{BB:W3GP:MST4:PCPC:MLEN } 2 \)
the length of the message component is 2 frames.

Manual operation: See "Message Length" on page 177

\[:\text{SOURce<hw>}:\text{BB:W3GPp:MSTation<st>:PCPCh:PLENght} \ <\text{PLength}>\]

The command defines the length of the power control preamble of the PCPCH as a number of slots.

Parameters:
- \(\text{<PLength>} \)
 - \(S0 \mid S8 \)
 - *RST:* \(S8 \)

Example: \(\text{BB:W3GP:MST1:PCPC:PLEN S8} \)
sets a length of 8 slots for the power control preamble.

Manual operation: See "Power Control Preamble Length" on page 176

\[:\text{SOURce<hw>}:\text{BB:W3GPp:MSTation<st>:PCPCh:PPower} \ <\text{PPower}>\]

Sets the power of the preamble component of the PCPCH. If the preamble is repeated and the power increased with each repetition, this setting specifies the power achieved during the last repetition.

Parameters:
- \(\text{<PPower>} \)
 - float
 - Range: \(-80 \text{ to } 0\)
 - Increment: 0.01
 - *RST:* 0

Example: \(\text{BB:W3GP:MST1:PCPC:PPOW } -10 \text{ dB} \)
Sets the power to -10 dB.
\(\text{BB:W3GP:MST1:PCPC:PPower:STEP } 1 \text{ dB} \)
Sets an increase in power of 1 dB per preamble repetition.
\(\text{BB:W3GP:MST1:PCPC:PREP } 2 \)
Sets a sequence of 2 preambles. The power of the first preamble is -9 dB, the power of the second, -1 dB.

Manual operation: See "Preamble Power" on page 176

\[:\text{SOURce<hw>}:\text{BB:W3GPp:MSTation<st>:PCPCh:PPower:STEP} \ <\text{Step}>\]

The command defines the step width of the power increase, by which the preamble component of the PCPCH is increased from repetition to repetition. The power during the last repetition corresponds to the power defined by the command \([:\text{SOURce<hw>}:\text{BB:W3GPp:MSTation<st>:PCPCh:PPower}.\)
Parameters:
 <Step>
 float
 Range: 0 dB to 10 dB
 Increment: 0.1 dB
 *RST: 0 dB

Example:
 the power of the PCPCH preamble is increased by 2 dB with
 every repetition.

Manual operation:
 See "Preamble Power Step" on page 176

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:PREPetition <PRepetition>

The command defines the number of PCPCH preamble components.

Parameters:
 <PRepetition>
 integer
 Range: 1 to 10
 *RST: 1

Example:
 BB:W3GP:MST1:PCPC:PREP 3
 sets three preamble components.

Manual operation:
 See "Preamble Repetition" on page 176

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:RAFTer <Repeatafter>

Sets the number of access slots after that the PCPCH structure is repeated.

Parameters:
 <Repeatafter>
 integer
 Range: 1 to 1000
 *RST: 18

Example:
 See [:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:RARB on page 384

Manual operation:
 See "Repeat Structure After (x Acc. Slots)" on page 175

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:RARB <State>

Enables/disables repeating the selected PCPCH structure during one ARB sequence.

Parameters:
 <State>
 0 | 1 | OFF | ON
 ON
 Within one ARB sequence, the selected PCPCH structure is
 repeated once.
OFF
The selected PCPCH structure can be repeated several time, depending on the structure length ([:SOURce<hw>]:BB:W3Gp:MSTation<st>:PRACCh:TIMing:SPERiod?) and the [:SOURce<hw>]:BB:W3Gp:MSTation<st>:PCPCh:RAFTer.

*RST: 1

Example:
SOURcel:BB:W3Gp:SLENght 4
Response: 14
SOURcel:BB:W3Gp:MSTation1:PCPCh:RARB OFF
SOURcel:BB:W3Gp:MSTation1:PCPCh:RAFTer 20

Manual operation: See "Repeat Structure After ARB Sequence Length" on page 175

[:SOURce<hw>]:BB:W3Gp:MSTation<st>:PCPCh:SIGNature <Signature>
The command selects the signature of the PCPCH (see Table 3 in 3GPP TS 25.213 Version 3.4.0 Release 1999).

Parameters:
<Signature> integer
Range: 0 to 15
*RST: 0

Example:
BB:W3GP:MST1:PCPC:SIGN 5
selects signature 5.

Manual operation: See "Signature" on page 176

[:SOURce<hw>]:BB:W3Gp:MSTation<st>:PCPCh:SRATe <SRate>
The command sets the symbol rate of the PCPCH.

User Equipment 1: When channel coding is active, the symbol rate is limited to the range between 15 and 120 kbps. Values above this limit are automatically set to 120 kbps.

Parameters:
<SRate> D15K | D30K | D60K | D120k | D240k | D480k | D960k
*RST: D30K

Example:
sets the symbol rate of the PCPCH of user equipment 1 to 15 kbps.

Manual operation: See "Symbol Rate" on page 178
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TFCI <Tfci>

Sets the value of the TFCI (Transport Format Combination Indicator) field. This value selects a combination of 30 bits, which are divided into two groups of 15 successive slots.

Parameters:

<Tfci> integer
Range: 0 to 1023
*RST: 0

Manual operation: See "TFCI" on page 179

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TIMing:DPOWer:MPARt?

Queries the level correction value for the message part. In case of one UE active, the power of the message part can be calculated by adding the set RF level.

Return values:

<MPart> float
Range: -80 to 0
Increment: 0.01
*RST: 0

Response: 1.2
the correction value is 1.2 dB.

POW?
queries the RF level.
Response: 2
the RF output level is 2 dBm. The message part power is 3.2 dBm

Usage: Query only

Manual operation: See "Delta Power (Message Part)" on page 173

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TIMing:DPOWer:PREamble?

Queries level correction value for the last AICH preamble before the message part. This value is identical to the correction value for the CD preamble. The level of the other preambles can be calculated by subtracting the set Preamble Power Step.

Return values:

<PReamble> float
Range: -80 to 0
Increment: 0.01
*RST: 0

User Equipment Settings
Example:
\[BB:\text{W3GP}:\text{MST3}:\text{PCPC}:\text{TIM}:\text{DPOW}:\text{PRE}? \]
queries the level correction value for the last AICH preamble before the message part.

Usage:
Query only

Manual operation:
See "Delta Power (Preamble)" on page 173

\[[:\text{SOURce<hw>}:\text{BB}:\text{W3GPp}:\text{MSTation<st>}:\text{PCPCh}:\text{TIMing}:\text{SOFFset}<\text{SOffset}> \]
This command defines the start offset of the PCPCH in access slots. The starting time delay in timeslots is calculated according to: 2 x Start Offset.

Parameters:
\(<\text{SOffset}>\)
integer
Range: 1 to 14
*RST: 0

Example:
\[BB:\text{W3GP}:\text{MST3}:\text{PCPC}:\text{TIM}:\text{SOFF} 1 \]
the start offset of the PCPCH of UE 3 is 2 access slots.

Manual operation:
See "Start Offset #" on page 173

\[[:\text{SOURce<hw>}:\text{BB}:\text{W3GPp}:\text{MSTation<st>}:\text{PCPCh}:\text{TIMing}:\text{SPERiod}? \]
Queries the structure length.

Return values:
\(<\text{SPeriod}>\)
float

Example:
See \[[:\text{SOURce<hw>}:\text{BB}:\text{W3GPp}:\text{MSTation<st>}:\text{PCPCh}:\text{RARB}\] on page 384

Usage:
Query only

Manual operation:
See "Structure Length" on page 174

\[[:\text{SOURce<hw>}:\text{BB}:\text{W3GPp}:\text{MSTation<st>}:\text{PCPCh}:\text{TIMing}:\text{TIME}:\text{PREM}<\text{Premp}> \]
This command defines the AICH Transmission Timing. This parameter defines the time difference between the preamble and the message part. Two modes are defined in the standard. In mode 0, the preamble to message part difference is 3 access slots, in mode 1 it is 4 access slots.

Parameters:
\(<\text{Premp}>\)
integer
Range: 1 to 14
*RST: 3

Example:
\[BB:\text{W3GP}:\text{MST3}:\text{PCPC}:\text{TIM}:\text{TIME}:\text{PREM} 3 \]
the difference between the preamble and the message part is 3 access slots.

Manual operation:
See "Transmission Timing (Message Part)" on page 174
[:SOURce<hw>]:BB:W3GPP:MSTation<st>:PCPCh:TIMing:TIME:PREPre <Prepre>

This command defines the time difference between two successive preambles in access slots.

Parameters:

<Prepre>
integer

Range: 1 to 14

RST: 3

Example:
the time difference between two successive preambles is 3 access slots.

Manual operation: See "Transmission Timing (Preamble)" on page 174

[:SOURce<hw>]:BB:W3GPP:MSTation<st>:PCPCh:TPC:DATA <Data>

The command determines the data source for the TPC field of the PCPCH.

Parameters:

<Data>
ZERO | ONE | PATTern | DLISt

DLISt
A data list is used. The data list is selected with the command [:SOURce<hw>]:BB:W3GPP:MSTation<st>:PCPCh:TPC:DATA:DSELect.

ZERO | ONE
Internal 0 and 1 data is used.

PATTern
Internal data is used. The bit pattern for the data is defined by the command [:SOURce<hw>]:BB:W3GPP:MSTation<st>:PCPCh:TPC:DATA:PATTern. The maximum length is 64 bits.

RST: PATTern

Example:
selects as the data source for the TPC field of user equipment 2 the bit pattern defined with the following command.
BB:W3GP:MST2:PCPC:TPC:DATA:PATT #H48D0,16
defines the bit pattern.

Manual operation: See "Data List Management" on page 49

[:SOURce<hw>]:BB:W3GPP:MSTation<st>:PCPCh:TPC:DATA:DSELect <DSelect>

The command selects the data list when the DLISt data source is selected for the TPC field of the PCPCH.

The files are stored with the fixed file extensions *.dm_iqd in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.
Parameters:

<DSelect>
string

Example:

selects data lists as the data source.
MMEM:CDIR '/var/user/temp/IQData'
selects the directory for the data lists.
selects the data list dpcch_tpc1.

Manual operation: See "Data List Management" on page 49

[::SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TPC:DATA:PATTer <Pattern>,<BitCount>

The command determines the bit pattern for the **PATTer** data source selection. The maximum length of the bit pattern is 64 bits.

Parameters:

<Pattern>
numeric

RST: #H0

<BitCount>
inger

Range: 1 to 64

RST: 1

Example:

BB:W3GP:MST1:PCPC:DATA:PAT #H3F,8
defines the bit pattern of the data for the FBI field.

Manual operation: See "TPC Data Source" on page 179

[::SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TPC:READ <Read>

The command sets the read out mode for the bit pattern of the TPC field of the PCPCH.

The bit pattern is selected with the command [::SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TPC:DATA.

Parameters:

<Read>
CONTinuous | S0A | S1A | S01A | S10A

CONTinuous
The bit pattern is used cyclically.

S0A
The bit pattern is used once, then the TPC sequence continues with 0 bits.

S1A
The bit pattern is used once, then the TPC sequence continues with 1 bits.
S01A
The bit pattern is used once and then the TPC sequence is continued with 0 and 1 bits alternately (in multiples, depending on by the symbol rate, for example, 00001111).

S10A
The bit pattern is used once and then the TPC sequence is continued with 1 and 0 bits alternately (in multiples, depending on by the symbol rate, for example, 11100000).

*RST: CONTinuous

the selected bit pattern is repeated continuously for the TPC sequence.

Manual operation: See "Read Out Mode" on page 179

7.9.7 PRACH Settings

This command defines which AICH Transmission Timing, time difference between the preamble and the message part or the time difference between two successive preambles in access slots, is defined.

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACH:ATTiming

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACH:CPOWER

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACH:DATA

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACH:DATA:DSElect

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACH:DATA:PATTERN

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACH:DPOWER

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACH:MLENGTH

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACH:POWER

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACH:PPower:STEP

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACH:PREPetition

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACH:RAFTER

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACH:RARB

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACH:SFORMAT

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACH:SIGNATURE

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACH:SRATE

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACH:TFCII

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACH:TIMING:OFFSET

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACH:TIMING:SPERIOD?

Parameters:
<AtTiming> ATT0 | ATT1
*RST: ATT0

Example: BB:W3GP:MST3:PRAC:ATT ATT1
Selects the AICH Transmission Timing as the difference between the preamble and the message part.

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRAC:CPOWer <CPower>
The command defines the power of the control component of the PRACH.

Parameters:
<CPower> float
 Range: -80 dB to 0 dB
 Increment: 0.1 dB
*RST: 0 dB

Example: BB:W3GP:MST1:PRAC:CPOW -10 dB
sets the power to -10 dB.

Manual operation: See "Control Power" on page 167

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRAC:DATA <Data>
The command determines the data source for the PRACH.

Parameters:
<Data> ZERO | ONE | PATTern | PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 | DLISt
 PNxx
The pseudo-random sequence generator is used as the data source. Different random sequence lengths can be selected.

 DLISt
A data list is used. The data list is selected with the command [:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRAC:DATA: DSElect.

 ZERO | ONE
Internal 0 and 1 data is used.

 PATTern
Internal data is used. The bit pattern for the data is defined by the command [:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRAC:DATA: PATTern.

 *RST: PN9

Example: BB:W3GP:MST1:PRAC:DATA PN11
selects internal PRBS data with period length $2^{11}-1$ as the data source.

Manual operation: See "Data List Management" on page 49
The command selects the data list for the DLISt data source.

The files are stored with the fixed file extensions *.dm_iqd in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Parameters:
- <DSelect> string

Example:
```
BB:W3GP:MST1:PRAC:DATA DLIS
selects data lists as the data source.

MMEM:CDIR '/var/user/temp/IQData'
selects the directory for the data lists.

BB:W3GP:MST1:PRAC:DATA:DSEL 'pcpch_data'
selects the data list pcpch_data.
```

Manual operation: See "Data List Management" on page 49

The command determines the bit pattern for the data component when the PATTern data source is selected. The first parameter determines the bit pattern (choice of hexadecimal, octal or binary notation), the second specifies the number of bits to use.

Parameters:
- <Pattern> numeric
 - *RST: #H0
- <BitCount> integer
 - Range: 1 to 64
 - *RST: 1

Example:
```
BB:W3GP:MST1:PRAC:DATA:ΡΑΤΤ #H3F,8
defines the bit pattern of the data for the DATA component.
```

Manual operation: See "Data Source" on page 168

The command defines the power of the data component of the PRACH.

Parameters:
- <DPower> float
 - Range: -80 dB to 0 dB
 - Increment: 0.1 dB
 - *RST: 0 dB

Example:
```
BB:W3GP:MST1:PRAC:DPOW -10 dB
sets the power to -10 dB.
```
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

User Equipment Settings

Manual operation: See "Data Power" on page 167

The command sets the length of the message component as a number of frames.

Parameters:
<MLength> 1 | 2 Frames
*RST: 1

Example: BB:W3GP:MST4:PRAC:MLEN 2
the length of the message component is 2 frames.

Manual operation: See "Message Length" on page 167

[:SOURce<hw>:BB:W3GPp:MSTation<st>:PRAC:PPow<er> <PPower>

The command defines the power of the preamble component of the PRACH. If the preamble is repeated and the power increased with each repetition, this setting specifies the power achieved during the last repetition.

Parameters:
<PPower> float
 Range: -80 dB to 0 dB
 Increment: 0.1 dB
*RST: 0 dB

Example: BB:W3GP:MST1:PRAC:PPOW -10 dB
sets the power to -10 dB.
BB:W3GP:MST1:PRAC:PPOW:STEP 1 dB
sets an increase in power of 1 dB per preamble repetition.
BB:W3GP:MST1:PRAC:PREP 2
sets a sequence of 2 preambles. The power of the first preamble is -9 dB, the power of the second, -1 dB.

Manual operation: See "Preamble Power" on page 166

The command defines the step width of the power increase, by which the preamble component of the PRACH is increased from repetition to repetition. The power defined during the last repetition corresponds to the power defined by the command [:SOURce<hw>:BB:W3GPp:MSTation<st>:PRAC:PPow<er>.

Parameters:
<Step> float
 Range: 0 dB to 10 dB
 Increment: 0.1 dB
*RST: 0 dB
Example:
```
```
the power of the PRACH preamble is increased by 2 dB with every repetition.

Manual operation: See "Preamble Power Step" on page 166

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACH:PREPetition <PRepetition>

The command defines the number of PRACH preamble components.

Parameters:
- **<PRepetition>**
 - integer
 - Range: 1 to 10
 - *RST:* 1

Example:
```
BB:W3GP:MST1:PRAC:PREP 3
```
sets three preamble components.

Manual operation: See "Preamble Repetition" on page 166

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACH:RAFTer <Repeatafter>

Sets the number of access slots after that the PRACH structure is repeated.

Parameters:
- **<Repeatafter>**
 - integer
 - Range: 1 to 1000
 - *RST:* 11

Example:
```
See [:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACH:RARB on page 394
```

Manual operation: See "Repeat Structure After (x Acc. Slots)" on page 166

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACH:RARB <State>

Enables/disables repeating the selected PRACH structure during one ARB sequence.

Parameters:
- **<State>**
 - 0 | 1 | OFF | ON
 - **ON**
 - Within one ARB sequence, the selected PRACH structure is repeated once.
 - **OFF**
 - The selected PRACH structure can be repeated several times, depending on the structure length ([:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACH:TIMing:SPERiod?) and the [:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACH:RAFTer.
 - *RST:* 1
Example:
SOURce1:BB:W3GPp:SLENgth 4
SOURce1:BB:W3GPp:MSTation3:PRACh:TIMing:
SPERiod?
Response: 14
SOURce1:BB:W3GPp:MSTation1:PRACh:RARB OFF
SOURce1:BB:W3GPp:MSTation1:PRACh:RAFTer 20

Manual operation: See "Repeat Structure After ARB Sequence Length" on page 165

[:SOURce<hw>:]:BB:W3GPp:MSTation<st>:PRACh:SFORmat <SFormat>
Defines the slot format of the PRACH.
A change of slot format leads to an automatic change of symbol rate [:SOURce<hw>:]:BB:W3GPp:MSTation<st>:PRACh:SRATe
When channel coding is active, the slot format is predetermined. So in this case, the command has no effect.

Parameters:
<SFormat> 0 | 1 | 2 | 3
*RST: 1
Example: BB:W3GP:MST1:PRAC:SFOR 2
sets slot format 2.

Manual operation: See "Slot Format" on page 167

[:SOURce<hw>:]:BB:W3GPp:MSTation<st>:PRACh:SIGNature <Signature>
The command selects the signature of the PRACH (see Table 3 in 3GPP TS 25.213 Version 3.4.0 Release 1999).

Parameters:
<Signature> integer
Range: 0 to 15
*RST: 0
selects signature 5.

Manual operation: See "Signature" on page 167

[:SOURce<hw>:]:BB:W3GPp:MSTation<st>:PRACh:SRATe <SRate>
The command sets the symbol rate of the PRACH.
A change of symbol rate leads to an automatic change of slot format [:SOURce<hw>:]:BB:W3GPp:MSTation<st>:PRACh:SFORmat.
Parameters:
<SRate> D15K | D30K | D60K | D120K
*RST: D30K

sets the symbol rate of the PRACH of user equipment 1 to 15 ksp.

Manual operation: See "Symbol Rate" on page 167

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:TFCI <Tfci>
Sets the value of the TFCI (Transport Format Combination Indicator) field. This value selects a combination of 30 bits, which are divided into two groups of 15 successive slots.

Parameters:
<Tfci> integer
Range: 0 to 1023
*RST: 0

Example: BB:W3GP:MST1:PRAC:TFCI 21
sets the TFCI value to 21.

Manual operation: See "TFCI" on page 168

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:DPOWer:MPARt?
Queries the level correction value for the message part. In case of one UE active and "Level Reference" set to "RMS Power", the power of the message part can be calculated by adding the set RF level.

Return values:
<MPart> float
Range: -80 to 0
Increment: 0.01
*RST: 0

queries the level correction value for the message part.
Response: 1.2
the correction value is 1.2 dB.
PPOW?
queries the RF level.
Response: 2
the RF output level is 2 dBm. The message part power is 3.2 dBm.

Usage: Query only

Manual operation: See "Delta Power (Message Part)" on page 163

Queries the level correction value for the message control part.

Return values:
- **<Control>** float
 - Range: -80 to 0
 - Increment: 0.01
 - *RST:* 0

Example:
```
```
queries the level correction value for the message control part.
Response: -3.24
the correction value is -3.24 dB.

Usage: Query only

Manual operation: See "Delta Power (Message Part)" on page 163

Queries the level correction value for the message data part.

Return values:
- **<Data>** float
 - Range: -80 to 0
 - Increment: 0.01
 - *RST:* 0

Example:
```
```
queries the level correction value for the message data part.
Response: -3.24
the correction value is -3.24 dB.

Usage: Query only

Manual operation: See "Delta Power (Message Part)" on page 163

Queries level correction value for the preamble before the message part.

Return values:
- **<Preamble>** float
 - Range: -80 to 0
 - Increment: 0.01
 - *RST:* 0

Example:
```
```
queries the level correction value for the last preamble before the message part.
Usage: Query only

Manual operation: See "Delta Power (Preamble)" on page 163

```plaintext
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACH:TIMing:SOFFset <SOffset>
```
This command defines the start offset of the PRACH in access slots. The starting time delay in timeslots is calculated according to: 2 x Start Offset.

Parameters:
- `<SOffset>`: integer
 - Range: 1 to 50
 - *RST:* 0

Example:
```
BB:W3GP:MST3:PRAC:TIM:SOFF 1
```
the start offset of the PRACH of UE 3 is 2 access slots.

Manual operation: See "Start Offset #" on page 164

```plaintext
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACH:TIMing:SPEriod?
```
Queries the structure length.

Return values:
- `<SPeriod>`: float

Example:
```
see [:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACH:RARB on page 394
```

Usage: Query only

Manual operation: See "Structure Length" on page 164

```plaintext
```
This command defines the AICH Transmission Timing. This parameter defines the time difference between the preamble and the message part. Two modes are defined in the standard. In mode 0, the preamble to message part difference is 3 access slots, in mode 1 it is 4 access slots.

Parameters:
- `<Premp>`: integer
 - Range: 1 to 14
 - *RST:* 3

Example:
```
```
the difference between the preamble and the message part is 3 access slots.

Manual operation: See "Time Pre->MP" on page 164
[:SOURce<hw>:]:BB:W3GPp:MSTation<st>:PRAC:TIM:TIME:PREPre <Prepre>

This command defines the time difference between two successive preambles in access slots.

Parameters:
- `<Prepre>`
 - Type: integer
 - Range: 1 to 14
 - *RST:* 3

Example:
```
```
the time difference between two successive preambles is 3 access slots.

Manual operation: See "Time Pre->Pre" on page 164

7.9.8 HSUPA Settings

[:SOURce<hw>:]:BB:W3GPp:MSTation<st>:HSUPa:CHANnel<ch>:DPDCh:E:CODE?........400
[:SOURce<hw>:]:BB:W3GPp:MSTation<st>:HSUPa:CHANnel<ch>:DPDCh:E:DATA?...........401
[:SOURce<hw>:]:BB:W3GPp:MSTation<st>:HSUPa:CHANnel<ch>:DPDCh:E:POWer...............402
[:SOURce<hw>:]:BB:W3GPp:MSTation<st>:HSUPa:CHANnel<ch>:DPDCh:E:SRAte?...............402
[:SOURce<hw>:]:BB:W3GPp:MSTation<st>:HSUPa:CHANnel<ch>:DPDCh:E:FRC:CHANnel.........403
[:SOURce<hw>:]:BB:W3GPp:MSTation<st>:HSUPa:CHANnel<ch>:DPDCh:E:FRC:CRAte?...........403
[:SOURce<hw>:]:BB:W3GPp:MSTation<st>:HSUPa:CHANnel<ch>:DPDCh:E:FRC:FACtory........403
[:SOURce<hw>:]:BB:W3GPp:MSTation<st>:HSUPa:CHANnel<ch>:DPDCh:E:FRC:FACtory:DSelect..404
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

User Equipment Settings

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:ORATe 409
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:STATe 410
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:TBS:INDex 410
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:TBS:TABLE 410
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:TTIBits? 411
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:TTIEdch 411
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:UECategory? 412
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:CCODe? 412
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:HBIT 412
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:POWER 412
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:RNumber 413
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:STATe 413
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:TFCI 413
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPDCh:E:FCIO 414
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPDCh:E:MODulation 414
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPDCh:E:ORATe 414
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPDCh:E:STATe 415
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPDCh:E:TTIEdch 415
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPDCh:E:TTIEdch 415
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:REPeat 416
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:ROW<ch>:FROM 416
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:ROW<ch>:TO 416
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:ROWCount 416

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E:CCODe?

Queries the channelization code and the modulation branch (I or Q) of the E-DPDCH channel.

The channelization code is dependent on the overall symbol rate set and cannot be modified.

Return values:
<ChannelCode> integer

Example:
queries the channelization code and the modulation branch (I or Q) of E-DPDCH 1 of user equipment 4.
Response: Q,32

Usage: Query only

Manual operation: See "Channelization Code" on page 217
The command selects the data source for the E-DPDCH channel.

Parameters:

- **<Data>**
 - **ZERO | ONE | PATTern | PN9 | PN11 | PN16 | PN20 | PN21 | PN23 | DLIS**
 - **PNxx**
 The pseudo-random sequence generator is used as the data source. Different random sequence lengths can be selected.
 - **DLIS**
 A data list is used. The data list is selected with the command `[:SOURce<hw>]:BB:W3GPP:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E:DATA:DSELect`.
 - **ZERO | ONE**
 Internal 0 and 1 data is used.
 - **PATTern**
 Internal data is used. The bit pattern for the data is defined by the command `[:SOURce<hw>]:BB:W3GPP:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E:DATA:PATTern`.
 - **RST:**
 - **PN9**

Example:
```
```
selects internal PRBS data with period length $2^{11} - 1$ as the data source.

Manual operation: See "E-DPDCH Data Source" on page 217

The command selects the data list for the DLIS data source.

The files are stored with the fixed file extensions `*.dm_iqd` in a directory of the user's choice. The directory applicable to the commands is defined with the command `MMEMory:CDIR`. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Parameters:

- **<DSelect>**
 - **string**

Example:
```
```
selects data lists as the data source.
```
MMEM:CDIR '/var/user/temp/IQData'
```
selects the directory for the data lists.
```
```
selects the data list `dp1`.

Manual operation: See "DPDCH Data Source" on page 213
[:]SOURce<hw>:BB:W3GPp:MSTation<st>::HSUPa::CHANnel<ch>:DPDCh:E:DATA:PATTern <Pattern>, <BitCount>

The command determines the bit pattern for the data component when the PATTern data source is selected. The first parameter determines the bit pattern (choice of hexadecimal, octal or binary notation), the second specifies the number of bits to use.

Parameters:
<Pattern> numeric
 *RST: #H0

(BitCount) integer
 Range: 1 to 64
 *RST: 1

Manual operation: See "E-DPDCH Data Source" on page 217

[:]SOURce<hw>:BB:W3GPp:MSTation<st>::HSUPa::CHANnel<ch>:DPDCh:E:POWer <Power>

The command sets the power of the selected E-DPDCH channel.

Parameters:
<Power> float
 Range: -80 dB to 0 dB
 Increment: 0.01
 *RST: 0 dB

Example: BB:W3GP:MST1:HSUP:CHAN1:DPDC:E:POW -2.5dB sets the power of E-DPDCH channel 1 to 2.5 dB.

Manual operation: See "Channel Power / dB" on page 217

[:]SOURce<hw>:BB:W3GPp:MSTation<st>::HSUPa::CHANnel<ch>:DPDCh:E:SRATe?

The command queries the symbol rate and the state of the E-DPDCH channel.

The symbol rate and the state of the channels are dependent on the overall symbol rate set and cannot be modified.

Return values:
<SRate> D15K | D30K | D60K | D120k | D240k | D480k | D960k | D1920k | D2X1920K | D2X960K2X1920K

Response: 960 the symbol rate is 960 kps.

Usage: Query only
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Manual operation: See "Symbol Rate / State" on page 217

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:CHANnel <Channel>

The command sets the FRC according to TS 25.141 Annex A.10.
Selection of FRC#8 is enabled only for instruments equipped with option SMx/AMU-K59.

Parameters:
<Channel> USER | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8
*RST: 4

sets the FRC to channel 4.

Manual operation: See "Fixed Reference Channel (FRC)" on page 224

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:CRAte?

The command queries the relation between the information bits to binary channel bits.

Return values:
<CRate> float

queries the coding rate.
Response: 0.705
the coding rate is 0.705.

Usage: Query only

Manual operation: See "Coding Rate (Ninf/Nbin)" on page 227

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DATA <Data>

Selects the data source for the E-DCH channels, i.e. this parameter affects the corresponding parameter of the E-DPDCH.

Parameters:
<Data> PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 | DLIS | ZERo | ONe | PATTern

PNxx
The pseudo-random sequence generator is used as the data source. Different random sequence lengths can be selected.

DLIS
A data list is used. The data list is selected with the command [:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DATA:DSELect.

ZERo | ONe
Internal 0 and 1 data is used.
PATTern
Internal data is used. The bit pattern for the data is defined by the command [:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DATA:PATTern. The maximum length is 64 bits.

*RST: PN9

Example:
Selects as the data source
Defines the bit pattern.

Manual operation: See "Data Source (E-DCH)" on page 225

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DATA: DSELect <DSelect>

The command selects the data list when the DLIS data source is selected for E-DCH channels.

The files are stored with the fixed file extensions *.dm_iqd in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Parameters:
<DSelect> string

Example:
selects the Data Lists data source.
MMEM:CDIR '/var/user/temp/IQData'
selects the directory for the data lists.
selects the data list frc_1.

Manual operation: See "Data Source (E-DCH)" on page 225

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DATA: PATTern <Pattern>, <BitCount>

The command determines the bit pattern for the PATTern data source selection. The maximum length of the bit pattern is 64 bits.

Parameters:
<Pattern> numeric
*RST: #H0

<BitCount> integer
Range: 1 to 64
*RST: 1

Manual operation: See "Data Source (E-DCH)" on page 225

\[:\text{SOURce<hw>:BB:W3GPp:MSTation<st>:}:\text{HSUPa:}:\text{DPCCCh:E:FRC:DERRor:BIT:LAYER <Layer}>\]

The command sets the layer in the coding process at which bit errors are inserted.

Parameters:

- `<Layer>`
 - TRANsport | PHYSical
 - *RST: PHYSical

Example:

sets the bit error insertion to the transport layer.

Manual operation: See "Insert Errors On" on page 230

\[:\text{SOURce<hw>:BB:W3GPp:MSTation<st>:}:\text{HSUPa:}:\text{DPCCCh:E:FRC:DERRor:BIT:RATE <Rate}>\]

Sets the bit error rate.

Parameters:

- `<Rate>`
 - float
 - Range: 1E-7 to 0.5
 - Increment: 1E-7
 - *RST: 0.001

Example:

sets the bit error rate to 1E-3.

Manual operation: See "Bit Error Rate" on page 230

\[:\text{SOURce<hw>:BB:W3GPp:MSTation<st>:}:\text{HSUPa:}:\text{DPCCCh:E:FRC:DERRor:BIT:STATe <State}>\]

The command activates or deactivates bit error generation.

Parameters:

- `<State>`
 - ON | OFF
 - *RST: 0

Example:

activates the bit error state.

Manual operation: See "Bit Error State" on page 230
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DERRor:BLOCK:RATE <Rate>

Sets the block error rate.

Parameters:

<Rate> float
- Range: 1E-4 to 0.5
- Increment: 1E-4
- *RST: 0.1

Example:

sets the block error rate.

Manual operation: See "Block Error Rate" on page 231

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DERRor:BLOCK:STATE <State>

The command activates or deactivates block error generation.

Parameters:

<State> ON | OFF
- *RST: 0

Example:

activates the block error generation.

Manual operation: See "Block Error State" on page 231

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DTX:PATTern <Pattern>

The command sets the user-definable bit pattern for the DTX.

Parameters:

<Pattern> string
- *RST: "1"

Example:

sets the bit pattern for the DTX.

Manual operation: See "User Data (DTX Pattern)" on page 228

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DTX:STATe <State>

The command activates or deactivates the DTX (Discontinuous Transmission) mode.
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Parameters:
- **<State>**
 - Options: ON | OFF
 - RST: 0

Example:
```
```
activates the DTX.

Manual operation:
See "State (DTX)" on page 228

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ:SIMulation:MODE <Mode>

Selects the HARQ simulation mode.

Parameters:
- **<Mode>**
 - Options: VHARq

VHARq
Simulates basestation feedback.

- RST: HFE

Example:
```
```
Sets simulation mode virtual HARQ.

Manual operation:
See "Mode (HARQ)" on page 229

If activated, the same redundancy version is sent, that is, the redundancy version is not adjusted for the next retransmission in case of a received NACK.

Parameters:
- **<RvZero>**
 - Options: ON | OFF
 - RST: 1

Example:
```
```
the same redundancy version is sent for the next retransmission.

Manual operation:
See "Always Use Redundancy Version 0 (HARQ)" on page 229

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ:SIMulation[:STATE] <State>

Activates or deactivates the HARQ simulation mode.

Parameters:
- **<State>**
 - Options: ON | OFF
 - RST: 0
activates the HARQ simulation mode.

Manual operation: See "State (HARQ)" on page 229

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:Harq:[Simulation]:Pattern<ch> <Pattern>
Sets the HARQ Pattern. The maximum length of the pattern is 32 bits.

Parameters:
<PATTERN> string

sets the HARQ simulation pattern.

Manual operation: See "HARQ1..8: ACK/NACK" on page 229

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HPROcesseS?
The command queries the number of HARQ (Hybrid-ARQ Acknowledgement) processes.

Return values:
<HPROCESSES> integer
Range: 1 to 8

queries the number of HARQ processes.
Response: 5

Usage: Query only

Manual operation: See "Number Of HARQ Processes" on page 226

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:MiBRate?
Queries the maximum information bit rate.

Return values:
<MIBRATE> float
Increment: 0.1

Queries the maximum information bit rate.
Response: 1353.0

Usage: Query only

Manual operation: See "Maximum Information Bitrate/kbps" on page 224
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:MODulation
<Modulation>

Sets the modulation used for the selected FRC.

Two modulation schemes are defined: BPSK for FRC 1 - 7 and 4PAM (4 Pulse-Amplitude Modulation) for FRC 8.

Parameters:
<Modulation> BPSK | PAM4
*RST: BPSK

Example:
sets the FRC to channel 8.
sets the modulation.

Manual operation: See "Modulation" on page 226

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:ORATe
<ORate>

Sets the overall symbol rate for the E-DCH channels, i.e. this parameter affects the corresponding parameter of the E-DPDCH.

Parameters:
<ORate> D15K | D30K | D60K | D120k | D240k | D480k | D960k | D1920k | D2X1920K | D2X960K2X1920K
*RST: D960k

Example:

Manual operation: See "Overall Symbol Rate" on page 226

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:PAYBits?

The command queries the payload of the information bit. This value determines the number of transport layer bits sent in each HARQ process.

Return values:
<PayBits> integer

Example:
Queries the payload of the information bit.
Response: 2706

Usage: Query only

Manual operation: See "Information Bit Payload (Ninf)" on page 227
Remote-Control Commands

[:SOURce<hw>:BB:W3GPPp:MSStation<st>:][:HSUPa]:DPCCh:E:FRC:STATe
<State>

The command activates or deactivates the FRC state for the E-DPCCH channels.

Parameters:

<State> ON | OFF
*RST: 0

Manual operation: See "State (HSUPA FRC)" on page 223

<Index>

Selects the Transport Block Size Index (E-TFCI) for the corresponding table, as described in 3GPP TS 25.321, Annex B.

The value range of this parameter depends on the selected Transport Block Size Table ([:SOURce<hw>:BB:W3GPPp:MSStation<st>:][:HSUPa]:DPCCh:E:FRC:TBS:TABLe).

Parameters:

<Index> integer
Range: 0 to max
*RST: 41

Manual operation: See "Transport Block Size Index (E-TFCI)" on page 227

<Table>

Selects the Transport Block Size Table from 3GPP TS 25.321, Annex B according to that the transport block size is configured.

The transport block size is determined also by the Transport Block Size Index ([:SOURce<hw>:BB:W3GPPp:MSStation<st>:][:HSUPa]:DPCCh:E:FRC:TBS:INDex).

E-DCH TTI

<table>
<thead>
<tr>
<th>E-DCH TTI</th>
<th>Modulation</th>
<th>Transport Block Size Table</th>
<th>SCPI Parameter</th>
<th>Transport Block Size Index (E-TFCI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2ms</td>
<td>BPSK</td>
<td>Table 0</td>
<td>TAB0TTI2</td>
<td>0 .. 127</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Table 1</td>
<td>TAB1TTI2</td>
<td>0 .. 125</td>
</tr>
<tr>
<td></td>
<td>4PAM</td>
<td>Table 2</td>
<td>TAB2TTI2</td>
<td>0 .. 127</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Table 3</td>
<td>TAB3TTI2</td>
<td>0 .. 124</td>
</tr>
<tr>
<td>10ms</td>
<td>-</td>
<td>Table 0</td>
<td>TAB0TTI10</td>
<td>0 .. 127</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Table 1</td>
<td>TAB1TTI10</td>
<td>0 .. 120</td>
</tr>
</tbody>
</table>

Parameters:

- **<Table>**
 - TAB0TTI2 | TAB1TTI2 | TAB2TTI2 | TAB3TTI2 | TAB0TTI10 | TAB1TTI10

 *RST: TAB0TTI10

Example:

 sets the overall symbol rate
 sets the modulation
 sets the E-DCH TTI
 sets the transport block size table
 sets the transport block size index

Manual operation:

See "Transport Block Size Table" on page 226

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCCh:E:FRC:TTIBits?

The command queries the number of physical bits sent in each HARQ process.

Return values:

- **<TtIBits>** float

Example:

 queries the number of physical bits sent in each HARQ process.

Usage:

- Query only

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCCh:E:FRC:TTIEch

Sets the TTI size (Transmission Time Interval).

Parameters:

- **<TTIEch>** 2ms | 10ms

 *RST: 2ms
Example:
```
```
sets the TTI.

Manual operation:
See "E-DCH TTI" on page 226

```
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCCh:E:FRC:UECategory?
```
Queries the UE category that is minimum required for the selected FRC.

Return values:
- `<UeCategory>`: integer

Example:
```
```
queries the UE category.

Usage:
Query only

Manual operation:
See "UE Category" on page 224

```
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCCh:E:CCODe?
```
Queries the channelization code.

Return values:
- `<CCode>`: integer
 - Range: 1 to max
 - *RST: 1

Usage:
Query only

Manual operation:
See "Channelization Code" on page 189

```
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCCh:E:HBIT <Hbit>
```
The command activates the happy bit.

Parameters:
- `<Hbit>`: ON | OFF
 - *RST: ON

Example:
```
BB:W3GP:MST1:HSUP:DPCC:E:HBIT ON
```
sets the happy bit.

Manual operation:
See "Happy Bit" on page 189

```
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCCh:E:POWER <Power>
```
The command sets the power of the E-DPCCH channel.
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

User Equipment Settings

Parameters:

<Power> float

- **Range:** -80 dB to 0 dB
- **Increment:** 0.01
- **RST:** 0 dB

Example:

```
```

sets the power of the E-DPCCH channel.

Manual operation: See "Power" on page 188

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[::HSUPa]:DPCCh:E:RSNumber <RsNumber>

The command sets the retransmission sequence number.

Parameters:

<RsNumber> integer

- **Range:** 0 to 3
- **RST:** 0

Example:

```
BB:W3GP:MST1:HSUP:DPCC:E:RSN 0
```

sets the retransmission sequence number.

Manual operation: See "Retransmission Sequence Number" on page 188

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[::HSUPa]:DPCCh:E:STATe <State>

The command activates or deactivates the E-DPCCH.

Parameters:

<State> ON | OFF

- **RST:** OFF

Example:

```
```

activates the E-DPCCH.

Manual operation: See "State (E-DPCCH)" on page 188

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[::HSUPa]:DPCCh:E:TFCI <Tfci>

The command sets the value for the TFCI (Transport Format Combination Indicator) field.

Parameters:

<Tfci> integer

- **Range:** 0 to 127
- **RST:** 0

Example:

```
BB:W3GP:MST1:HSUP:DPCC:E:TFCI 0
```

sets the value for the TFCI.

Manual operation: See "E-TFCI Information" on page 189
[:SOURce<hw>]:BB:W3Gp:MSTation<st>[:HSUPa]:DPDCh:E:FCIO <Fcio>

The command sets the channelization code to I/0.

Parameters:

Fcio | ON | OFF

RST: OFF

Example:

BB:W3GP:MST1:HSUP:DPDC:E:FCIO ON

sets the channelization code to I/0.

Manual operation: See "Force Channelization Code To I/0" on page 215

[:SOURce<hw>]:BB:W3Gp:MSTation<st>[:HSUPa]:DPDCh:E:MODulation <Modulation>

Sets the modulation of the E-DPDCH.

There are two possible modulation schemes specified for this channel, BPSK and 4PAM (4 Pulse-Amplitude Modulation). The latter one is available only for the following Overall Symbol Rates:

- 2x960 ksps
- 2x1920 ksps
- 2x960 + 2x1920 ksps
- 2x960 kps, I or Q only
- 2x1920 kps, I or Q only
- 2x960 + 2x1920 kps, I or Q only

Parameters:

Modulation | BPSK | PAM4

RST: BPSK

Example:

sets the overall symbol rate

sets the modulation to 4PAM

Options: Modulation scheme 4PAM requires the HSPA+ option R&S SMx/AMU-K59.

Manual operation: See "Modulation" on page 216

[:SOURce<hw>]:BB:W3Gp:MSTation<st>[:HSUPa]:DPDCh:E:ORATe <ORate>

Sets the overall symbol rate of all the E-DPDCH channels.
Parameters:
<ORate>
D15K | D30K | D60K | D120k | D240k | D480k | D960k | D1920k | D2X1920K | D2X960K2X1920K | D2880k | D3840k | D4800k | D5760k | D2x960K2 | D2x960KQ | D2X1920K | D2X960K2X1920K | D2X960K2X1920KQ
*RST: D60K

Example:

Manual operation:
See "Overall Symbol Rate" on page 215

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPDCh:E:STATe <State>

The command activates or deactivates the E-DPDCHs. This always activates or deactivates all the channels.

Parameters:
<State>
ON | OFF
*RST: 0

Example:
BB:W3GP:MST1:HSUP:DPDC:E:STAT ON
activates all the E-DPDCHs.

Manual operation:
See "State (E-DPDCH)" on page 215

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPDCh:E:TTIE<ch> <Ttiedch>

The command sets the value for the TTI (Transmission Time Interval).

Parameters:
<Ttiedch>
2ms | 10ms
*RST: 2ms

Example:
BB:W3GP:MST1:HSUP:DPDC:E:TTIE 2ms
sets the value for the TTI to 2 ms.

Manual operation:
See "E-DCH TTI" on page 220

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:TTIE<ch> <Ttiedch>

Sets the value for the TTI size (Transmission Time Interval).

This command is a query only, if an UL-DTX is enabled ([:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:STATe ON) or an FRC is activated ([:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPDC:E:FRC:STATe ON).

Parameters:
<Ttiedch>
2ms | 10ms
*RST: 2ms
Example:

BB:W3GP:MST[:HSUPa]:EDCH:TTIE 10ms
BB:W3GP:MST:UDTX:TTIE 2ms
BB:W3GP:MST:UDTX:STAT ON
BB:W3GP:MST[:HSUPa]:EDCH:TTIE?
Response: 2ms

Manual operation: See "E-DCH TTI" on page 220

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:REPeat <Repeat>

Determine the number of TTIs after that the E-DCH scheduling is repeated.

Parameters:

<Repeat> integer
Range: 1 to dynamic
*RST: 1

Example: [:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:ROWCount on page 416

Manual operation: See "E-DCH Schedule Repeats After" on page 221

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:ROW<ch0>:FROM <TtiFrom>

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:ROW<ch0>:TO <TtiTo>

Determines the start/end TTI of the corresponding E-DCH burst.

Parameters:

<TtiTo> integer
Range: 0 to dynamic
*RST: row index

Example: [:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:ROWCount on page 416

Manual operation: See "E-DCH TTI To" on page 221

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:ROWCount <RowCount>

Sets the number of the rows in the scheduling table.

Parameters:

<RowCount> integer
Range: 1 to 32
*RST: 1
Example: E-DCH scheduling example
BB:W3GP:MST[:HSUPa]:EDCH:TTIE 2ms
BB:W3GP:MST[:HSUPa]:EDCH:ROWC 2
BB:W3GP:MST[:HSUPa]:EDCH:REP 1000
BB:W3GP:MST[:HSUPa]:EDCH:ROW0:FROM 3
BB:W3GP:MST[:HSUPa]:EDCH:ROW0:TO 6
BB:W3GP:MST[:HSUPa]:EDCH:ROW1:FROM 128
BB:W3GP:MST[:HSUPa]:EDCH:ROW0:TO 156

Manual operation: See "Number of Table Rows" on page 220

7.9.9 UL-DTX and Uplink Scheduling Settings

The following are simple programming examples with the purpose to show all commands for this task. In real application, some of the commands can be omitted.

Example: Configuring the UL-RTX settings
**
SOURce:BB:W3GPp:LINK UP
SOURce:BB:W3GPp:MSTation:UDTX:CYCLe1 4
SOURce:BB:W3GPp:MSTation:UDTX:CYCLe2 8
SOURce:BB:W3GPp:MSTation:UDTX:BURSt1 1
SOURce:BB:W3GPp:MSTation:UDTX:BURSt2 1
SOURce:BB:W3GPp:MSTation:UDTX:STATe ON

[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:MODE... 417
[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:STATe... 418
[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:TTIEdch... 418
[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:OFFSet... 418
[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:ITHReshold...................................... 419
[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:LPLength.. 419
[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:CYCLe<ch>................................... 419
[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:BURSt<ch>.................................... 420
[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:PREAMble<ch>?............................. 420
[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:POSTamble<ch>?.......................... 420

[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:MODE <UldtxMode>

The mode is fixed to UL-RTX.

Parameters:
<UldtxMode> UDTX
*RST: UDTX
Example: See "Example: Configuring the UL-DTX settings" on page 417.
Options: R&S SMx/AMU-K45/K59
Manual operation: See "Mode" on page 158

[:SOURce<hw>:]:BB:W3GPp:MSTation:UDTX:STATe <State>

Enables/disables UL-DTX.

Enabling the UL-DTX deactivates the DPDCH and the HSUPA FRC.

Parameters:

<table>
<thead>
<tr>
<th><State></th>
<th>0</th>
<th>1</th>
<th>OFF</th>
<th>ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>*RST:</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example: See "Example: Configuring the UL-DTX settings" on page 417.
Options: R&S SMx/AMU-K45/K59
Manual operation: See "UL-DTX... / User Scheduling State" on page 158

[:SOURce<hw>:]:BB:W3GPp:MSTation:UDTX:TTIEdch <EdchTti>

Sets the duration of a E-DCH TTI.

Parameters:

<table>
<thead>
<tr>
<th><EdchTti></th>
<th>2ms</th>
<th>10ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range:</td>
<td>2ms to 10ms</td>
<td></td>
</tr>
<tr>
<td>*RST:</td>
<td>2ms</td>
<td></td>
</tr>
</tbody>
</table>

Example: see "Example: Configuring the UL-DTX settings" on page 417
Options: R&S SMx/AMU-K45/K59
Manual operation: See "E-DCH TTI" on page 158

[:SOURce<hw>:]:BB:W3GPp:MSTation:UDTX:OFFSet <Offset>

Sets the parameter UE_DTX_DRX_Offset and determines the start offset in subframes of the first uplink DPCCH burst (after the preamble). The offset is applied only for bursts belonging to the DPCCH burst pattern; HS-DPCCH or E-DCH transmissions are not affected.

Parameters:

<table>
<thead>
<tr>
<th><Offset></th>
<th>integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range:</td>
<td>0 to 159</td>
</tr>
<tr>
<td>Increment:</td>
<td>depends on E-DCH TTI parameter</td>
</tr>
<tr>
<td>*RST:</td>
<td>0</td>
</tr>
</tbody>
</table>

Example: See "Example: Configuring the UL-DTX settings" on page 417
Options: R&S SMx/AMU-K45/K59
Manual operation: See "Offset" on page 158
[:SOURce<hw>]:BB:W3GpP:MSTation:UDTX:I_THReshold <Threshold>
Defines the number of consecutive E-DCH TTIs without an E-DCH transmission, after which the UE shall immediately move from UE-DTX cycle 1 to using UE-DTX cycle 2.

Parameters:
<Threshold> 1 | 4 | 8 | 16 | 32 | 64 | 128 | 256
*RST: 16

Example: see "Example: Configuring the UL-DTX settings" on page 417

Options: R&S SMx/AMU-K45/K59

Manual operation: See "Inactivity Threshold for Cycle 2" on page 159

[:SOURce<hw>]:BB:W3GpP:MSTation:UDTX:L_PLength <LongPreamble>
Determines the length in slots of the preamble associated with the UE-DTX cycle 2.

Parameters:
<LongPreamble> 2 | 4 | 15
*RST: 2

Example: see "Example: Configuring the UL-DTX settings" on page 417

Options: R&S SMx/AMU-K45/K59

Manual operation: See "Long Preamble Length" on page 159

[:SOURce<hw>]:BB:W3GpP:MSTation:UDTX:CYCle<ch> <DtxCycle>
Sets the offset in subframe between two consecutive DPCCH bursts within the corresponding UE-DTX cycle, i.e. determines how often the DPCCH bursts are transmitted.

The UE-DTX cycle 2 is an integer multiple of the UE-DTX cycle 1, i.e. has less frequent DPCCH transmission instants.

Note: The allowed values depend on the selected E-DCH TTI.

Suffix: <ch> 1|2

Parameters:
<DtxCycle> 1 | 4 | 5 | 8 | 10 | 16 | 20 | 32 | 40 | 64 | 80 | 128 | 160
*RST: 5

Example: see "Example: Configuring the UL-DTX settings" on page 417

Options: R&S SMx/AMU-K45/K59

Manual operation: See "DTX Cycle 1 / DTX Cycle 2" on page 159
[:SOURce<hw>:BB:W3GPp:MSTation:UDTX:BURSt<ch> <BurstLength>

Determines the uplink DPCCH burst length in subframes without the preamble and postamble, when the corresponding UE-DTX cycle is applied.

Suffix:
<ch>
1|2
UL-DTX cycle 1 or 2

Parameters:
<BurstLength>
1 | 2 | 5
*RST: 1

Example:
See "Example: Configuring the UL-DTX settings" on page 417

Options:
R&S SMx/AMU-K45/K59

Manual operation:
See "DPCCH Burst Length 1 / DPCCH Burst Length 2" on page 159

Queries the preamble length in slots, when the corresponding UE-DTX cycle is applied.

The preamble length is fixed to 2 slots.

Suffix:
<ch>
1|2
UL-DTX cycle 1 or 2

Return values:
<Preamble>
integer
Range: 2 to 2
*RST: 2

Example:
see "Example: Configuring the UL-DTX settings" on page 417

Usage:
Query only

Options:
R&S SMx/AMU-K45/K59

Manual operation:
See "Preamble Length 1 / Preamble Length 2" on page 160

Queries the postamble length in slots, when the corresponding UE-DTX cycle is applied.

The postamble length is fixed to 1 slot.

Suffix:
<ch>
1|2
UL-DTX cycle 1 or 2
7.9.10 Dynamic Power Control Settings

Example: Configuring the Dynamic Power Control Settings

The following is a simple programming example with the purpose to show all commands for this task. In real application, some of the commands can be omitted.

 // selects direction up, a high level of the control signals
 // leads to an increase of the channel power
 // selects a step width of 1 dB.
 // A high level of the control signal leads to
 // an increase of 1 dB of the channel power,
 // a low level to a decrease of 1 dB.
 // selects a dynamic range of 10 dB for ranging up the channel power
 // selects a dynamic range of 50 dB for ranging up the channel power
 // The overall increase and decrease of channel power,
 // i.e. the dynamic range is limited to 60 dB
 // selects the source of the power control signal
 // activates Dynamic Power Control for the enhanced channels of UE1
 // queries the deviation of the channel power (delta POW)
 // from the set power start value of the DPDCH

[:SOURce<hw>]:BB:W3GPp:MSTation[ENHanced:DPDCh]:DPControl:ASSignment........422
[:SOURce<hw>]:BB:W3GPp:MSTation[ENHanced:DPDCh]:DPControl:DIRection........422
[:SOURce<hw>]:BB:W3GPp:MSTation[ENHanced:DPDCh]:DPControl:MODE.............422
[:SOURce<hw>]:BB:W3GPp:MSTation[ENHanced:DPDCh]:DPControl:POWER?..........423
[:SOURce<hw>]:BB:W3GPp:MSTation[ENHanced:DPDCh]:DPControl:RANGe:DOWN......423
[:SOURce<hw>]:BB:W3GPp:MSTation[ENHanced:DPDCh]:DPControl:RANGe:UP.......423
[:SOURce<hw>]:BB:W3GPp:MSTation[ENHanced:DPDCh]:DPControl:STATe..........423
Remote-Control Commands

Remote-Control Commands

[:SOURce<hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:
ASSignment <ASSignment>

Enabled for UL-DTX mode only ([:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:STATe ON).

The power control recognizes the UL-DPCCH gaps according to 3GPP TS 25.214. Some of the TPC commands sent to the instrument over the external line or by the TPC pattern are ignored, whereas others are summed up and applied later. The processing of the TPC commands depends only on whether the BS sends the TPC bits on the F-DPCH with slot format 0/ slot format 9 or not.

Parameters:
<ASSignment> NORMal | FDPCh
*RST: NORMal

Example:
BB:W3GP:MST1:UDTX:STAT ON
BB:W3GP:MST:DPC:ASS FDPC

Manual operation: See "Assignment Mode for UL-DTX" on page 155

[:SOURce<hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:DIRection <Direction>

The command selects the Dynamic Power Control direction. The selected direction determines if the channel power is increased (UP) or decreased (DOWN) by control signal with high level.

Parameters:
<Direction> UP | DOWN
*RST: UP

Example: see Example "Configuring the Dynamic Power Control Settings" on page 421

Manual operation: See "Direction" on page 153

[:SOURce<hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:MODE <Mode>

Determines the source of the control signal.

Parameters:
_Mode> TPC | MANual
*RST: EXTernal

Example: See Example "Configuring the Dynamic Power Control Settings" on page 421.

Manual operation: See "Mode" on page 153
[:SOURce<hw>]:BB:W3Gpp:MSTation[:ENHanced:DPDCh]:DPControl[:POWer]?

The command queries the deviation of the channel power (delta POW) from the set power start value of the DPDCH.

Return values:

- **<Power>**
 - Type: float
 - Range: -60 to 60
 - Increment: 0.01
 - *RST: 0

Example: see **Example "Configuring the Dynamic Power Control Settings" on page 421**

Usage: Query only

Manual operation: See **"Power Control Graph" on page 154**

[:SOURce<hw>]:BB:W3Gpp:MSTation[:ENHanced:DPDCh]:DPControl:RANGe:DOWN <Down>

The command selects the dynamic range for ranging up the channel power.

Parameters:

- **<Up>**
 - Type: float
 - Range: 0 to 60
 - Increment: 0.01
 - *RST: 10
 - Default unit: dB

Example:

selects a dynamic range of 20 dB for ranging up the channel power.

Manual operation: See **"Up Range / Down Range" on page 154**

[:SOURce<hw>]:BB:W3Gpp:MSTation[:ENHanced:DPDCh]:DPControl:STATe <State>

Activates/deactivates Dynamic Power Control.

Parameters:

- **<State>**
 - Values: 0 | 1 | OFF | ON
 - *RST: 0

Example: see **Example "Configuring the Dynamic Power Control Settings" on page 421.**

Manual operation: See **"Dynamic Power Control State" on page 153**
Remote-Control Commands

Sets the control signal for manual mode of Dynamic Power Control.

Parameters:
<Manual>

<table>
<thead>
<tr>
<th>MAN0</th>
<th>MAN1</th>
</tr>
</thead>
</table>

*RST: MAN0

Example:

Manual operation: See "Mode" on page 153

This command sets step width by which – with Dynamic Power Control being switched on - the channel power of the enhanced channels is increased or decreased.

Parameters:
<External>

<table>
<thead>
<tr>
<th>float</th>
</tr>
</thead>
</table>

Range: 0.5 to 6
Increment: 0.01
*RST: 1
Default unit: dB

Example: see Example "Configuring the Dynamic Power Control Settings" on page 421

Manual operation: See "Power Step" on page 154

7.10 Enhanced Channels of the User Equipment

The SOURce:BB:W3GPp:MSTation:ENHanced subsystem contains the commands for setting the enhanced channels of user equipment 1 (UE1).

The commands of this system only take effect when the 3GPP FDD standard is activated, the uplink transmission direction is selected and user equipment 1 is enabled:

- SOURce:BB:W3GPp:STATe ON
- SOURce:BB:W3GPp:LINK UP
- SOURce:BB:W3GPp:MSTation1:STATe ON

TCHannel<di>

The transport channel designations for remote control are TChannel0 for DCCH, TChannel1 to TChannel6 for DTCH1 to DTCH6.
3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Remote-Control Commands

Enhanced Channels of the User Equipment

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:BPFRame?

The command queries the number of data bits in the DPDCH component of the frame at the physical layer. The number of data bits depends on the overall symbol rate.

Return values:

<BpFrame> integer
Range: 150 to 9600

Example:

BB:W3GP:MST:ENH:DPDC:BPFR?
queries the number of data bits.
Response: 300
the number of data bits is 300.

Usage:

Query only

Manual operation:

See "Bits per Frame (DPDCH)" on page 235
The command activates or deactivates channel coding for the enhanced channels. When channel coding is activated, the overall symbol rate ([:SOURce<hw>]:BB:W3Gp:MSTation:ENHanced:DPDCh:ORATe) is set to the value predetermined by the selected channel coding type ([:SOURce<hw>]:BB:W3Gp:MSTation:ENHanced:DPDCh:CCODing:TYPE).

Parameters:
(State) 0 | 1 | OFF | ON
*RST: 0

Example:
selects channel coding type RMC 12.2 kbps.
activates channel coding.

Manual operation: See "Channel Coding State" on page 233

The command selects the channel coding scheme in accordance with the 3GPP specification. The channel coding scheme selected predetermines the overall symbol rate. When channel coding is activated ([:SOURce<hw>]:BB:W3Gp:MSTation:ENHanced:DPDCh:CCODing:STATE) the overall symbol rate ([:SOURce<hw>]:BB:W3Gp:MSTation:ENHanced:DPDCh:ORATe) is set to the value predetermined by the selected channel coding type.

Parameters:
(Type) M12K2 | M64K | M144k | M384k | AMR
M12K2 Measurement channel with an input data bit rate of 12.2 kbps.
M64K Measurement channel with an input data bit rate of 64 kbps.
M144K Measurement channel with an input data bit rate of 144 kbps.
M384K Measurement channel with an input data bit rate of 384 kbps.
AMR Channel coding for the AMR Coder (coding a voice channel).
USER This parameter cannot be set. USER is returned whenever a user-defined channel coding is active, that is to say, after a channel coding parameter has been changed or a user coding file has been loaded. The file is loaded by the command [:SOURce<hw>]:BB:W3Gp:MSTation:ENHanced:DPDCh:CCODing:USER:LOAD.
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Example:
\[\text{BB:W3GP:MST:ENH:DPDC:CCOD:TYPE M144K} \]
selects channel coding scheme RMC 144 kbps.

Manual operation: See "Coding Type" on page 233

RST: M12K2

The command queries existing files with stored user channel codings.

The files are stored with the fixed file extensions *3g_ccod_ul in a directory of the user's choice. The directory applicable to the commands is defined with the command \text{MMEMory:CDIR}.

Return values:
\(<\text{Catalog}> \text{ string} \)

Example:
\[\text{MMEM:CDIR '/var/user/temp/CcodDpchUser'} \]
selects the directory for the user channel coding files.
queries the existing files with user coding.
Response: 'user_cc1'
there is one file with user coding.

Usage: Query only

Manual operation: See "User Coding ..." on page 234

The command deletes the specified files with stored user channel codings.

The files are stored with the fixed file extensions *3g_ccod_ul in a directory of the user's choice. The directory applicable to the commands is defined with the command \text{MMEMory:CDIR}. To access the files in this directory, you only have to give the file name, without the path and the file extension.

The command triggers an event and therefore has no query form and no *RST value.

Setting parameters:
\(<\text{Filename}> \text{ string} \)

Example:
\[\text{MMEM:CDIR '/var/user/temp/CcodDpchUser'} \]
selects the directory for the user channel coding files.
\[\text{BB:W3GP:MST:ENH:DPDC:CCOD:USER:DEL 'user_cc1'} \]
deletes the specified file with user coding.

Usage: Setting only

Manual operation: See "User Coding ..." on page 234
Remote-Control Commands

The command loads the specified files with stored user channel codings.

The files are stored with the fixed file extensions *.3g_ccod_ul in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Setting parameters:

- `<Filename>`: string

Example:

```
MMEM:CDIR '/var/user/temp/CcodDpchUser'
```

selects the directory for the user channel coding files.

```
```

loads the specified file with user coding.

Usage:

Setting only

Manual operation:

See "User Coding ... " on page 234

The command saves the current settings for channel coding as user channel coding in the specified file.

The files are stored with the fixed file extensions *.3g_ccod_ul in a directory of the user's choice. The directory in which the file is stored is defined with the command MMEMory:CDIR. To store the files in this directory, you only have to give the file name, without the path and the file extension.

Setting parameters:

- `<Filename>`: string

Example:

```
MMEM:CDIR '/var/user/temp/CcodDpchUser'
```

selects the directory for the user channel coding files.

```
```

saves the current channel coding setting in file `user_cc1` in directory `/var/user/temp/CcodDpchUser`.

Usage:

Setting only

Manual operation:

See "User Coding ... " on page 234

[:SOURce<hw>:]BB:W3GPPp:MSTation:ENHanced:DPDCh:DERRor:BIT:LAYer <Layer>

The command selects the layer at which bit errors are inserted.

Parameters:

- `<Layer>`: TRANsport | PHYSical
TRANsport
Transport Layer (Layer 2). This layer is only available when channel coding is active.

PHYSical
Physical layer (Layer 1)

*RST: PHYSical

Manual operation: See "Insert Errors On" on page 239

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:DERRor:BIT:RATE <Rate>
Sets the bit error rate.

Parameters:
<Rate> float
Range: 1E-7 to 0.5
Increment: 1E-7
*RST: 0.001

sets a bit error rate of 0.01.

Manual operation: See "Bit Error Rate TCH1" on page 239

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:DERRor:BIT:STATe <State>
The command activates or deactivates bit error generation.

Bit errors are inserted into the data fields of the enhanced channels. When channel coding is active, it is possible to select the layer in which the errors are inserted (physical or transport layer). When the data source is read out, individual bits are deliberately inverted at random points in the data bit stream at the specified error rate in order to simulate an invalid signal.

Parameters:
<State> 0 | 1 | OFF | ON
*RST: 0

sets a bit error rate of 0.01.

Manual operation: See "Bit Error State" on page 238
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Enhanced Channels of the User Equipment

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:DERRor:BLOCk:RATE <Rate>

Sets the block error rate.

Parameters:
- **<Rate>**
 - Range: 1E-4 to 0.5
 - Increment: 1E-4
 - *RST: 0.1

Example:

```
```

sets the block error rate to 0.01.

Manual operation: See "Block Error Rate" on page 239

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:DERRor[:BLOCk]:STATe <State>

The command activates or deactivates block error generation. Block error generation is only possible when channel coding is activated.

During block error generation, the CRC checksum is determined and then the last bit is inverted at the specified error probability in order to simulate a defective signal.

Parameters:
- **<State>**
 - ON | OFF
 - *RST: OFF

Example:

```
activates channel coding.
sets the block error rate to 0.1.
activates block error generation.
```


The command activates or deactivates channel coding interleaver state 2 for all the transport channels.

Interleaver state 1 can be activated and deactivated for each channel individually ([:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:INTerleaver).

Note: The interleaver states do not cause the symbol rate to change

Parameters:
- **<Interleaver2>**
 - 0 | 1 | OFF | ON
 - *RST: 1
Example:
```
```
deactivates channel coding interleaver state 2 for all the transport channels.

Manual operation: See "Interleaver 2 State" on page 238

`[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:ORATe <ORate>`

The command queries the overall symbol rate (Overall Symbol Rate) of the enhanced channels. The value is set with the command `[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPDCh:ORATe`. This setting also defines the number of active channels, their symbol rates and channelization codes.

Parameters:
<ORate> D15K | D30K | D60K | D120k | D240k | D480k | D960k | D1920k | D2880k | D3840k | D4800k | D5760k
*RST: D60K

Example:
```
```
queries the overall symbol rate of the DPDCH of user equipment 1.

Manual operation: See "Overall Symbol Rate" on page 235

`[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:STATe <State>`

Queries the enhanced state of the station.

Parameters:
<State> 0 | 1 | OFF | ON
*RST: 1

Example:
```
BB:W3GP:MST1:ENH:DPDC:STAT?
```

Manual operation: See "Enhanced Channels State" on page 231

`[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TChannel<di0>: RMAtribute <RmAttribute>`

Sets data rate matching.

Parameters:
<RmAttribute> integer
Range: 1 to 1024
*RST: 1

Example:
```
```
sets rate matching to 1024 for DTCH1.

Manual operation: See "Rate Matching Attribute" on page 237
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Enhanced Channels of the User Equipment

[:SOURce<hw>]:BB:W3GPp:MSStation:ENHanced:DPDCh:TChannel<di0>:STATe <State>

The command activates/deactivates the selected transport channel.

Parameters:
<State> 0 | 1 | OFF | ON
*RST: 0

Manual operation: See "Transport Channel State" on page 236

[:SOURce<hw>]:BB:W3GPp:MSStation:ENHanced:DPDCh:TChannel<di0>:TBCount <TbCount>

The command sets the transport block count.

Parameters:
<TbCount> integer
Range: 1 to 16
*RST: 1

Manual operation: See "Number of Transport Blocks" on page 237

[:SOURce<hw>]:BB:W3GPp:MSStation:ENHanced:DPDCh:TChannel<di0>:TBSize <TbSize>

Sets the size of the data blocks.

Parameters:
<TbSize> integer

Manual operation: See "Transport Block Size" on page 237

[:SOURce<hw>]:BB:W3GPp:MSStation:ENHanced:DPDCh:TChannel<di0>:TTINterval <TtInterval>

Sets the number of frames into which a TCH is divided. This setting also defines the interleaver depth.

Parameters:
<TtInterval> 10MS | 20MS | 40MS

Example: BB:W3GP:MS:ENH:DPDC:TCH2:TTIN 20ms sets that the transport channel is divided into 2 frames.
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Enhanced Channels of the User Equipment

Manual operation: See "Transport Time Interval" on page 237

The command defines the CRC length for the selected transport channel. It is also possible to deactivate checksum determination.

Parameters:

| <CrcSize> | NONE | 8 | 12 | 16 | 24 |

*RST: 12

deactivates checksum determination for DTCH1.

Manual operation: See "Size of CRC" on page 237

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:DATA <Data>

Selects the data source for the transport channel.

Parameters:

| <Data> | ZERO | ONE | PATtern | PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 | DLISt |

PNxx
The pseudo-random sequence generator is used as the data source. Different random sequence lengths can be selected.

DLISt
A data list is used. The data list is selected with the command [:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TChannel<di0>:DATA:DSELect.

ZERO | ONE
Internal 0 and 1 data is used.

PATtern
Internal data is used. The bit pattern for the data is defined by the command [:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TChannel<di0>:DATA:PATtern.

*RST: PN9

selects as the data source for the data fields of DTCH2 of user equipment 1, the bit pattern defined with the following command. BB:W3GPp:MST:ENH:DPDC:TCH2:DATA:FATT #H3F, 0 defines the bit pattern.

Manual operation: See "Data List Management" on page 49

The command selects the data list for the enhanced channels for the DLIS selection. The files are stored with the fixed file extensions *.dm_iqd in a directory of the user’s choice. The directory applicable to the commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Parameters:

<DSelect> string

Example:

selects the Data Lists data source.
MMEM:CDIR '/var/user/temp/IQData'
selects the directory for the data lists.
selects the file tch1 as the data source.

Manual operation: See "Data List Management" on page 49

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TChannel<di0>:DATA: PATTern <Pattern>, <BitCount>

The command determines the bit pattern for the PATTern data source selection for transport channels.

Parameters:

<Pattern> numeric

*RST: #H0

(BitCount) integer

Range: 1 to 64

*RST: 1

Example:

defines the bit pattern for DCCH.

Manual operation: See "Data Source" on page 236

The command determines the error protection.

Parameters:

<EProtection> NONE | CON2 | CON3 | TURBo3

NONE
No error protection.
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Enhanced Channels of the User Equipment

TURBo3
Turbo Coder of rate 1/3 in accordance with the 3GPP specifications.

CON2 | CON3
Convolution Coder of rate ½ or 1/3 with generator polynomials defined by 3GPP.

*RST: CON1/3

Example:
error protection is deactivated.

Manual operation: See "Error Protection" on page 237

[:SOURce<hw>:]:BB:W3GPp:MSTation:ENHanced:DPDCh:TChannel<di0>:
INTerleaver <Interleaver>

The command activates or deactivates channel coding interleaver state 1 for the selected channel. Interleaver state 1 can be activated and deactivated for each channel individually. The channel is selected via the suffix at TChannel.

Interleaver state 2 can only be activated or deactivated for all the channels together ([:SOURce<hw>:]:BB:W3GPp:MSTation:ENHanced:DPDCh:INTerleaver2).

Parameters:
<Interleaver> 0 | 1 | OFF | ON
*RST: 1

Example:
deactivates channel coding interleaver state 1 for TCH 5.

Manual operation: See "Interleaver 1 State" on page 238

[:SOURce<hw>:]:BB:W3GPp:MSTation:ENHanced:PCPCh:CCODing:STATe <State>

The command activates or deactivates channel coding for the PCPCH.

When channel coding is active, the symbol rate is limited to the range between 15 and 120 kbps. Values above this limit are automatically set to 120 kbps.

Parameters:
<State> ON | OFF
*RST: 0

Example:
selects channel coding type CPCH RMC (TB size 168 bits).
activates channel coding.

Manual operation: See "Channel Coding State" on page 180
Remote-Control Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Enhanced Channels of the User Equipment

[:SOURce<hw>]:BB:W3Gp:MSTation:ENHanced:PCPC:h:CCODing:TYPE <Type>

The command selects the channel coding scheme in accordance with the 3GPP specification.

Parameters:
<Type>TB168 | TB360
 TB168 CPCH RMC (TB size 168 bits)
 TB360 CPCH RMC (TB size 360 bits)
*RST: TB168

Example:
selects channel coding scheme RMC 168 bits.

Manual operation: See "Channel Coding Type" on page 181

The command activates or deactivates channel coding for the PRACH.

Parameters:
<State>ON | OFF
 ON activated
 OFF deactivated
*RST: 0

Example:
activates channel coding.

Manual operation: See "Coding State" on page 169

[:SOURce<hw>]:BB:W3Gp:MSTation<st>:ENHanced:PRAC:h:CCODing:TYPE <Type>

The command selects the channel coding scheme in accordance with the 3GPP specification.

Parameters:
<Type>TB168 | TB360 | TU168 | TU360
 TB168 RACH RMC (TB size 168 bits)
 TB360 RACH RMC (TB size 360 bits)
 *RST: TB168

Example:
selects channel coding scheme RMC 168 bits.

Manual operation: See "Coding Type" on page 169
Annex

A Reference

Supported channel types

Table A-1: List of supported channel types and their sequence in the 3GPP FDD channel table

<table>
<thead>
<tr>
<th>Index</th>
<th>Short form</th>
<th>Name</th>
<th>Function</th>
<th>Optional enhanced in BS1</th>
</tr>
</thead>
</table>
| 0 | P-CPICH | Primary Common Pilot Channel | • Specifies the scrambling code in the scrambling code group (2nd stage of scrambling code detection)
• Phase reference for additional downlink channels
• Reference for the signal strength | no |
| 1 | S-CPICH | Secondary Common Pilot Channel | | no |
| 2 | P-SCH | Primary Sync Channel | Slot synchronization | no |
| 3 | S-SCH | Secondary Sync Channel | • Frame synchronization
• Specifies the scrambling code group | no |
| 4 | P-CCPCH | Primary Common Control Phys. Channel | • Transfers the system frame number (SFN)
• Timing reference for additional downlink channels
• Contains the BCH transport channel | yes |
<p>| 5 | S-CCPCH | Secondary Common Control Phys. Channel | | no |
| 6 | PICH | Page Indication Channel | Transfers the paging indicator | no |
| 7 | AICH | Acquisition Indication Channel | | no |
| 8 | AP-AICH | Access Preamble Acquisition Indication Channel | | no |
| 9 / 10| PDSCH | Phys. Downlink Shared Channel | | no |
| | DL-DPCCH | Dedicated Physical Control Channel | | |
| | HS-SCCH | High-Speed Shared Control Channel | | |
| | E-AGCH | E-DCH Absolute Grant Channel | | |
| | E-RGCH | E-DCH Relative Grant Channel | | |
| | E-HICH | E-DCH Hybrid ARQ Indicator Channel | | |
| 11 - 13| DPCH | Dedicated Phys. Channel | Transfers the user data and the control information | yes |</p>
<table>
<thead>
<tr>
<th>Index</th>
<th>Short form</th>
<th>Name</th>
<th>Function</th>
<th>Optional enhanced in BS1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HS-SCCH</td>
<td>High-Speed Shared Control Channel</td>
<td></td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>HS-PDSCH (QPSK)</td>
<td>High Speed Physical Downlink Shared Channel (QPSK)</td>
<td></td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>HS-PDSCH (16 QAM)</td>
<td>High-Speed Physical Downlink Shared Channel (16 QAM)</td>
<td></td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>HS-PDSCH (64 QAM)</td>
<td>High-Speed Physical Downlink Shared Channel (64 QAM)</td>
<td></td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>HS-PDSCH (MIMO)</td>
<td>High Speed Physical Downlink Shared Channel (MIMO)</td>
<td></td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>E-AGCH</td>
<td>E-DCH Absolute Grant Channel</td>
<td></td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>E-RGCH</td>
<td>E-DCH Relative Grant Channel</td>
<td></td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>E-HICH</td>
<td>E-DCH Hybrid ARQ Indicator Channel</td>
<td></td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>F-DPCH</td>
<td>Fractional Dedicated Phys. Channel</td>
<td></td>
<td>no</td>
</tr>
<tr>
<td>14 - 138</td>
<td>DPCH</td>
<td>Dedicated Phys. Channel</td>
<td>Transfers the user data and the control information</td>
<td>no</td>
</tr>
</tbody>
</table>
Channel tables of the DPDCH and E-DPDCH

Table A-2: Structure of the DPDCH channel table in conjunction with the overall symbol rate

<table>
<thead>
<tr>
<th>Overall Symbol Rate</th>
<th>DPDCH 1</th>
<th>DPDCH 2</th>
<th>DPDCH 3</th>
<th>DPDCH 4</th>
<th>DPDCH 5</th>
<th>DPDCH 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>I or Q branch</td>
<td>I</td>
<td>Q</td>
<td>I</td>
<td>Q</td>
<td>I</td>
<td>Q</td>
</tr>
<tr>
<td>15 ksps</td>
<td>State: ON</td>
<td>S-Rate: 15k</td>
<td>Ch. Code: 64</td>
<td>State: OFF</td>
<td>State: OFF</td>
<td>State: OFF</td>
</tr>
<tr>
<td>30 ksps</td>
<td>State: ON</td>
<td>S-Rate: 30k</td>
<td>Ch. Code: 32</td>
<td>State: OFF</td>
<td>State: OFF</td>
<td>State: OFF</td>
</tr>
<tr>
<td>60 ksps</td>
<td>State: ON</td>
<td>S-Rate: 60k</td>
<td>Ch. Code: 16</td>
<td>State: OFF</td>
<td>State: OFF</td>
<td>State: OFF</td>
</tr>
<tr>
<td>120 ksps</td>
<td>State: ON</td>
<td>S-Rate: 120k</td>
<td>Ch. Code: 8</td>
<td>State: OFF</td>
<td>State: OFF</td>
<td>State: OFF</td>
</tr>
<tr>
<td>480 ksps</td>
<td>State: ON</td>
<td>S-Rate: 480k</td>
<td>Ch. Code: 2</td>
<td>State: OFF</td>
<td>State: OFF</td>
<td>State: OFF</td>
</tr>
<tr>
<td>960 ksps</td>
<td>State: ON</td>
<td>S-Rate: 960k</td>
<td>Ch. Code: 1</td>
<td>State: OFF</td>
<td>State: OFF</td>
<td>State: OFF</td>
</tr>
<tr>
<td>2 x 960 ksps</td>
<td>State: ON</td>
<td>S-Rate: 960k</td>
<td>Ch. Code: 1</td>
<td>State: ON</td>
<td>S-Rate: 960k</td>
<td>Ch. Code: 1</td>
</tr>
<tr>
<td>3 x 960 ksps</td>
<td>State: ON</td>
<td>S-Rate: 960k</td>
<td>Ch. Code: 1</td>
<td>State: ON</td>
<td>S-Rate: 960k</td>
<td>Ch. Code: 3</td>
</tr>
</tbody>
</table>
Table A-3: Structure of the E-DPDCH channel table in conjunction with the overall symbol rate and no DPDCH active

<table>
<thead>
<tr>
<th>Overall Symbol Rate</th>
<th>E-DPDCH 1</th>
<th>E-DPDCH 2</th>
<th>E-DPDCH 3</th>
<th>E-DPDCH 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>I or Q branch</td>
<td>I</td>
<td>Q</td>
<td>I</td>
<td>Q</td>
</tr>
<tr>
<td>15 Ksps</td>
<td>State: ON</td>
<td>State: OFF</td>
<td>State: OFF</td>
<td>State: OFF</td>
</tr>
<tr>
<td></td>
<td>S-Rate: 15 k</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ch. Code: 64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 Ksps</td>
<td>State: ON</td>
<td>State: OFF</td>
<td>State: OFF</td>
<td>State: OFF</td>
</tr>
<tr>
<td></td>
<td>S-Rate: 30 k</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ch. Code: 32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 Ksps</td>
<td>State: ON</td>
<td>State: OFF</td>
<td>State: OFF</td>
<td>State: OFF</td>
</tr>
<tr>
<td></td>
<td>S-Rate: 60 k</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ch. Code: 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 Ksps</td>
<td>State: ON</td>
<td>State: OFF</td>
<td>State: OFF</td>
<td>State: OFF</td>
</tr>
<tr>
<td></td>
<td>S-Rate: 120 k</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ch. Code: 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240 Ksps</td>
<td>State: ON</td>
<td>State: OFF</td>
<td>State: OFF</td>
<td>State: OFF</td>
</tr>
<tr>
<td></td>
<td>S-Rate: 240 k</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ch. Code: 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>480 Ksps</td>
<td>State: ON</td>
<td>State: OFF</td>
<td>State: OFF</td>
<td>State: OFF</td>
</tr>
<tr>
<td></td>
<td>S-Rate: 480 k</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ch. Code: 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>960 Ksps</td>
<td>State: ON</td>
<td>State: OFF</td>
<td>State: OFF</td>
<td>State: OFF</td>
</tr>
<tr>
<td></td>
<td>S-Rate: 960 k</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ch. Code: 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Symbol Rate</td>
<td>E-DPDCH 1</td>
<td>E-DPDCH 2</td>
<td>E-DPDCH 3</td>
<td>E-DPDCH 4</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>I or Q branch</td>
<td>I</td>
<td>Q</td>
<td>I</td>
<td>Q</td>
</tr>
<tr>
<td>2 x 960 ksp s</td>
<td>State: ON</td>
<td>State: ON</td>
<td>State: OFF</td>
<td>State: OFF</td>
</tr>
<tr>
<td></td>
<td>S-Rate: 960 k</td>
<td>S-Rate: 960 k</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ch. Code: 1</td>
<td>Ch. Code: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 x 1920 ksp s</td>
<td>State: ON</td>
<td>State: ON</td>
<td>State: OFF</td>
<td>State: OFF</td>
</tr>
<tr>
<td></td>
<td>S-Rate: 1920 k</td>
<td>S-Rate: 1920 k</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ch. Code: 1</td>
<td>Ch. Code: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 x 960 ksp s + 2 x 1920 ksp s</td>
<td>State: ON</td>
<td>State: ON</td>
<td>State: ON</td>
<td>State: ON</td>
</tr>
<tr>
<td></td>
<td>S-Rate: 1920 k</td>
<td>S-Rate: 1920 k</td>
<td>S-Rate: 960 k</td>
<td>S-Rate: 960 k</td>
</tr>
<tr>
<td></td>
<td>Ch. Code: 1</td>
<td>Ch. Code: 1</td>
<td>Ch. Code: 1</td>
<td>Ch. Code: 1</td>
</tr>
<tr>
<td>2 x 960 ksp s, I only</td>
<td>State: ON</td>
<td>State: OFF</td>
<td>State: OFF</td>
<td>State: OFF</td>
</tr>
<tr>
<td></td>
<td>S-Rate: 960 k</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ch. Code: 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 x 960 ksp s, Q only</td>
<td>State: OFF</td>
<td>State: ON</td>
<td>State: OFF</td>
<td>State: OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S-Rate: 960 k</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ch. Code: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 x 1920 ksp s, I only</td>
<td>State: ON</td>
<td>State: OFF</td>
<td>State: OFF</td>
<td>State: OFF</td>
</tr>
<tr>
<td></td>
<td>S-Rate: 1920 k</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ch. Code: 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 x 1920 ksp s, Q only</td>
<td>State: OFF</td>
<td>State: ON</td>
<td>State: OFF</td>
<td>State: OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S-Rate: 1920 k</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ch. Code: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 x 960 ksp s + 2 x 1920 ksp s, I only</td>
<td>State: ON</td>
<td>State: OFF</td>
<td>State: ON</td>
<td>State: OFF</td>
</tr>
<tr>
<td></td>
<td>S-Rate: 1920 k</td>
<td></td>
<td>S-Rate: 960 k</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ch. Code: 1</td>
<td></td>
<td>Ch. Code: 1</td>
<td></td>
</tr>
<tr>
<td>2 x 960 ksp s + 2 x 1920 ksp s, Q only</td>
<td>State: OFF</td>
<td>State: ON</td>
<td>State: OFF</td>
<td>State: ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S-Rate: 1920 k</td>
<td></td>
<td>S-Rate: 960 k</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ch. Code: 1</td>
<td></td>
<td>Ch. Code: 1</td>
</tr>
</tbody>
</table>
Table A-4: Structure of the E-DPDCH channel table in conjunction with the overall symbol rate and one DPDCH active

<table>
<thead>
<tr>
<th>Overall Symbol Rate</th>
<th>E-DPDCH 1</th>
<th>E-DPDCH 2</th>
<th>E-DPDCH 3</th>
<th>E-DPDCH 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active HS-DPCCH? I or Q branch</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Q</td>
<td>I</td>
<td>I</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>15 ksps</td>
<td>State: ON</td>
<td>State: OFF</td>
<td>State: ON</td>
<td>State: OFF</td>
</tr>
<tr>
<td>S-Rate: 15 k</td>
<td>Ch. Code: 128</td>
<td></td>
<td>S-Rate: 15 k</td>
<td>Ch. Code: 128</td>
</tr>
<tr>
<td>30 ksps</td>
<td>State: ON</td>
<td>State: OFF</td>
<td>State: ON</td>
<td>State: OFF</td>
</tr>
<tr>
<td>S-Rate: 30 k</td>
<td>Ch. Code: 64</td>
<td></td>
<td>S-Rate: 30 k</td>
<td>Ch. Code: 64</td>
</tr>
<tr>
<td>60 ksps</td>
<td>State: ON</td>
<td>State: OFF</td>
<td>State: ON</td>
<td>State: OFF</td>
</tr>
<tr>
<td>S-Rate: 60 k</td>
<td>Ch. Code: 32</td>
<td></td>
<td>S-Rate: 60 k</td>
<td>Ch. Code: 32</td>
</tr>
<tr>
<td>120 ksps</td>
<td>State: ON</td>
<td>State: OFF</td>
<td>State: ON</td>
<td>State: OFF</td>
</tr>
<tr>
<td>S-Rate: 120 k</td>
<td>Ch. Code: 16</td>
<td></td>
<td>S-Rate: 120 k</td>
<td>Ch. Code: 16</td>
</tr>
<tr>
<td>240 ksps</td>
<td>State: ON</td>
<td>State: OFF</td>
<td>State: ON</td>
<td>State: OFF</td>
</tr>
<tr>
<td>S-Rate: 240 k</td>
<td>Ch. Code: 8</td>
<td></td>
<td>S-Rate: 240 k</td>
<td>Ch. Code: 8</td>
</tr>
<tr>
<td>480 ksps</td>
<td>State: ON</td>
<td>State: OFF</td>
<td>State: ON</td>
<td>State: OFF</td>
</tr>
<tr>
<td>S-Rate: 480 k</td>
<td>Ch. Code: 4</td>
<td></td>
<td>S-Rate: 480 k</td>
<td>Ch. Code: 4</td>
</tr>
<tr>
<td>960 ksps</td>
<td>State: ON</td>
<td>State: OFF</td>
<td>State: ON</td>
<td>State: OFF</td>
</tr>
<tr>
<td>S-Rate: 960 k</td>
<td>Ch. Code: 2</td>
<td></td>
<td>S-Rate: 960 k</td>
<td>Ch. Code: 2</td>
</tr>
<tr>
<td>2 x 960 ksps</td>
<td>State: ON</td>
<td>State: ON</td>
<td>State: ON</td>
<td>State: ON</td>
</tr>
<tr>
<td>S-Rate: 960 k</td>
<td>Ch. Code: 2</td>
<td>S-Rate: 960 k</td>
<td>Ch. Code: 2</td>
<td>S-Rate: 960 k</td>
</tr>
<tr>
<td>2 x 1920 ksps</td>
<td>State: ON</td>
<td>State: ON</td>
<td>State: ON</td>
<td>State: ON</td>
</tr>
<tr>
<td>S-Rate: 1920 k</td>
<td>Ch. Code: 1</td>
<td>S-Rate: 1920 k</td>
<td>Ch. Code: 1</td>
<td>S-Rate: 1920 k</td>
</tr>
<tr>
<td>2 x 960 ksps, I only</td>
<td>State: OFF</td>
<td>State: ON</td>
<td>State: OFF</td>
<td>State: OFF</td>
</tr>
<tr>
<td>S-Rate: 960 k</td>
<td>Ch. Code: 2</td>
<td>S-Rate: 960 k</td>
<td>Ch. Code: 2</td>
<td>S-Rate: 960 k</td>
</tr>
<tr>
<td>2 x 960 ksps, Q only</td>
<td>State: ON</td>
<td>State: OFF</td>
<td>State: OFF</td>
<td>State: OFF</td>
</tr>
<tr>
<td>S-Rate: 960 k</td>
<td>Ch. Code: 2</td>
<td></td>
<td>S-Rate: 960 k</td>
<td>Ch. Code: 2</td>
</tr>
<tr>
<td>Overall Symbol Rate</td>
<td>E-DPDCH 1</td>
<td>E-DPDCH 2</td>
<td>E-DPDCH 3</td>
<td>E-DPDCH 4</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Active HS-DPCCH? I or Q branch</td>
<td>No Q</td>
<td>No I</td>
<td>Yes I</td>
<td>Yes Q</td>
</tr>
<tr>
<td>2 x 1920 ksps, I only</td>
<td>State: OFF</td>
<td>State: ON S-Rate: 1920 k Ch. Code: 1</td>
<td>State: ON S-Rate: 1920 k Ch. Code: 1</td>
<td>State: OFF</td>
</tr>
<tr>
<td>2 x 1920 ksps, Q only</td>
<td>State: ON S-Rate: 1920 k Ch. Code: 1</td>
<td>State: OFF</td>
<td>State: OFF</td>
<td>State: ON S-Rate: 1920 k Ch. Code: 1</td>
</tr>
</tbody>
</table>
List of Commands

[:SOURce]:BB:W3GPp:GPP3:VERSion?..255
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:BPFRame?..................325
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:SFOReate..................325
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:SRATe?......................326
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:STATe........................326
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:TYPE........................327
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DPControl:STATe............................337
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DPControl:STEP[:EXternal]..............338
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:INTerleaver2...........................338
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TChannel<di0>:CRCSize................330
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TChannel<di0>:DATA........................330
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TChannel<di0>:DATA:DTX................331
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TChannel<di0>:DATA:DTX:DTX..........332
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TChannel<di0>:EPRotection................332
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TChannel<di0>:INTerleaver...............332
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TChannel<di0>:RMATtribute...............333
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TChannel<di0>:STATe......................333
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TChannel<di0>:TBCount..................333
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TChannel<di0>:TTINterval...............334
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TChannel<di0>:TTINterval:TTI:TTI:TMI....335
[:SOURce<hw>]:BB:W3GPp:BSTation:OCNS:MODE...275
[:SOURce<hw>]:BB:W3GPp:BSTation:OCNS:SEED...276
[:SOURce<hw>]:BB:W3GPp:BSTation:OCNS:STATe...275
[:SOURce<hw>]:BB:W3GPp:BSTation:PRESet...255
[:SOURce<hw>]:BB:W3GPp:BSTation[ENHanced]:CHANnel<ch0>:HSDPa:DERrror:BIT:LAYer..................341
[:SOURce<hw>]:BB:W3GPp:BSTation[ENHanced]:CHANnel<ch0>:HSDPa:DERrror:BIT:RATE....................341
[:SOURce<hw>]:BB:W3GPp:BSTation[ENHanced]:CHANnel<ch0>:HSDPa:DERRor:BIT:STATe
[:SOURce<hw>]:BB:W3GPp:BSTation[ENHanced]:CHANnel<ch0>:HSDPa:DERRor:BLOCk:RATE
[:SOURce<hw>]:BB:W3GPp:BSTation[ENHanced]:CHANnel<ch0>:HSDPa:DERRor:BLOCk:STATe
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel:HSUPa:HSET:PRESet
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel:HSET:PRESet
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:AICH:ASLOt
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:AICH:SAPattern
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:APAIch:ASLOt
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:APAIch:SAPattern
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:CCODe
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DATA
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DATA:DSELect
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DATA:PATTern
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:MCODe
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:PLENgt
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:POFFset:PIlot
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:POFFset:TFCi
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:POFFset:TPC
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TFCi
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TFCi:STATe
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:TData
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:DATA:DSELect
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:DATA:PATTern
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:PSTep
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:READ
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSUPa:BMODe[STATe]
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSUPa:CVPb
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSUPa:HSET:ACLength
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSUPa:HSET:ALTModulation
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSUPa:HSET:AMOdE
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSUPa:HSET:BCBTti<di>?
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSUPa:HSET:BPAYload<di>?
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSUPa:HSET:CLENght
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSUPa:HSET:CRATe<di>?
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSUPa:HSET:DATA
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSUPa:HSET:DATA:DSELect
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSUPa:HSET:DATA:PATTern
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSUPa:HSET:HARQ:LENGt
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSUPa:HSET:HARQ:MODE
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSUPa:HSET:HSCCode
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSUPa:HSET:MODe[STATe]
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSUPa:HSET:NAIBitrate?
List of Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:PWPattern..296
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:RVPParameter<di>.................................297
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:RVSPsequence<di>................................297
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:RVSTate...298
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:64Qam..299
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:SCCode...299
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:SEED..299
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:SLENgh:ADJUst...................................300
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:SLENgh...300
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:SPATtern<di>?
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:STAPattern...301
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:TBS:INDEX<di>..................................302
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:TBS:REFERENCE..................................302
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:TBS:TABLE<di>................................303
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:POWER...303
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:TYPE..303
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:UECategory..........................304
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:UEID..304
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:VIBSize<di>......................................305
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:MIMO:CVBP<di>..305
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:MIMO:MODulation<di>................................306
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:MIMO:PWPattern..306
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:MIMO:STAPattern........................306
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:MODE...307
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:TTIDistance...307
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:POWer...307
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:SFORmat..308
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:SRATe...308
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:STATE..309
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:TOFFset...309
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:TYPE...309
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:[HSDPa]:EAGCh:FCoding..310
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:[HSDPa]:EAGCh:TT<di0>:AGSCope.............................310
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:[HSDPa]:EAGCh:TT<di0>:AGVIndex..........................311
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:[HSDPa]:EAGCh:TT<di0>:UEID..................................311
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:[HSDPa]:EAGCh:TTICount.......................................311
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:[HSDPa]:EAGCh:TTIEdch..311
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:[HSDPa]:ERGCh:CTYPE...312
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:[HSDPa]:ERGCh:DTAU..312
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:[HSDPa]:ERGCh:ETAU...312
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:[HSDPa]:ERGCh:RGPAttern.....................................313
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:[HSDPa]:ERGCh:SSINdex..313
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:[HSDPa]:ERGCh:TTIEdch..313
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CMODe:DLFStructure...315

Operating Manual 1178.9761.02 — 25 446
List of Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:CCODing:STATE</td>
<td>426</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:CCODing:TYPE</td>
<td>426</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:DERRor:BIT:LAYer</td>
<td>428</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:DERRor:BIT:STATe</td>
<td>429</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:DERRor:BLOCk:RATE</td>
<td>430</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:DERRor:BLOCk:STATe</td>
<td>430</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:INTerleaver2</td>
<td>430</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:ORATe</td>
<td>431</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:STATe</td>
<td>431</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TChannel<d0>:CRCSize</td>
<td>432</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TChannel<d0>:DATA</td>
<td>433</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TChannel<d0>:DATA:PAtern</td>
<td>434</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TChannel<d0>:INTerleaver</td>
<td>435</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TChannel<d0>:RMATtribute</td>
<td>431</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TChannel<d0>:STATe</td>
<td>432</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TChannel<d0>:TTI:INTERval</td>
<td>432</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:MODE</td>
<td>435</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:STATe</td>
<td>436</td>
</tr>
</tbody>
</table>
List of Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

[:SOURce<hw>:BB:W3GPp:MSTation<st>:CHANnel<ch>:DPDCh:SRATe?].................................... 377
[:SOURce<hw>:BB:W3GPp:MSTation<st>:COMDe:METHod].. 348
[:SOURce<hw>:BB:W3GPp:MSTation<st>:COMDe:STAte].. 349
[:SOURce<hw>:BB:W3GPp:MSTation<st>:DPCCh:CCoDe?].. 350
[:SOURce<hw>:BB:W3GPp:MSTation<st>:DPCCh:HS:CCoDe?]... 358
[:SOURce<hw>:BB:W3GPp:MSTation<st>:DPCCh:HS:COMPaibility]...................................... 357
[:SOURce<hw>:BB:W3GPp:MSTation<st>:DPCCh:HS:CQI<ch>[VALues]]............................... 361
[:SOURce<hw>:BB:W3GPp:MSTation<st>:DPCCh:HS:HAPattern]... 360
[:SOURce<hw>:BB:W3GPp:MSTation<st>:DPCCh:HS:MMODe].. 368
[:SOURce<hw>:BB:W3GPp:MSTation<st>:DPCCh:HS:POVer]... 357
[:SOURce<hw>:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:HACK:TO].............................. 370
[:SOURce<hw>:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI:TO].............................. 372
[:SOURce<hw>:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:POHACK].............................. 371
[:SOURce<hw>:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:POPQCqi].............................. 373
[:SOURce<hw>:BB:W3GPp:MSTation<st>:DPCCh:HS:SFOrmat].. 368
List of Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:HS:STAte</td>
<td>357</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:HS:TTI:Distance</td>
<td>358</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:POWer</td>
<td>351</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:SFOrmat</td>
<td>351</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:TFCl</td>
<td>352</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:TFCl:STAte</td>
<td>352</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:TOFFset</td>
<td>353</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:FCIO</td>
<td>377</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:ORATe</td>
<td>378</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:STAte</td>
<td>378</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:STAg</td>
<td>436</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:CCODing:STAg</td>
<td>436</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:CCODing:TYPE</td>
<td>436</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:MODE</td>
<td>345</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:POWer</td>
<td>379</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:CSFormat</td>
<td>380</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:DATA</td>
<td>380</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:DSE lect</td>
<td>381</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:DATA:PTern</td>
<td>381</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:DPOWer</td>
<td>381</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:FAI:MODE</td>
<td>382</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:MLENgth</td>
<td>382</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:PLENgth</td>
<td>383</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:PPower</td>
<td>383</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:STEP</td>
<td>383</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:PREPetition</td>
<td>384</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:RAF:Ter</td>
<td>384</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:RAR:B</td>
<td>384</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:SIGNature</td>
<td>385</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:SRATe</td>
<td>385</td>
</tr>
<tr>
<td>[:SOURce<hw>]:BB:W3GPp:MS.Ta:PCPCh:TFCl</td>
<td>386</td>
</tr>
</tbody>
</table>
List of Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

- [:SOURce<hw>]:BB:W3GPp:MSStation<st>[:HSUPa]:DPCCh:E:FRC;HARQ:SIMulation[:STATE]...............407
- [:SOURce<hw>]:BB:W3GPp:MSStation<st>[:HSUPa]:DPCCh:E:FRC;HARQ[:SIMulation];PATTern<ch>........408
- [:SOURce<hw>]:BB:W3GPp:MSStation<st>[:HSUPa]:DPCCh:E:FRC;HRProcessses?..............................408
- [:SOURce<hw>]:BB:W3GPp:MSStation<st>[:HSUPa]:DPCCh:E:FRC;MIBRate?......................................408
- [:SOURce<hw>]:BB:W3GPp:MSStation<st>[:HSUPa]:DPCCh:E:FRC;MODulation.................................409
- [:SOURce<hw>]:BB:W3GPp:MSStation<st>[:HSUPa]:DPCCh:E:FOReATe..409
- [:SOURce<hw>]:BB:W3GPp:MSStation<st>[:HSUPa]:DPCCh:E:PAYBits?...409
- [:SOURce<hw>]:BB:W3GPp:MSStation<st>[:HSUPa]:DPCCh:E:STATe...410
- [:SOURce<hw>]:BB:W3GPp:MSStation<st>[:HSUPa]:DPCCh:E:TFCl..413
- [:SOURce<hw>]:BB:W3GPp:MSStation<st>[:HSUPa]:DPCCh:E:FCIO..414
- [:SOURce<hw>]:BB:W3GPp:MSStation<st>[:HSUPa]:DPCCh:E:MODulation......................................414
- [:SOURce<hw>]:BB:W3GPp:MSStation<st>[:HSUPa]:DPCCh:E:ORATe...414
- [:SOURce<hw>]:BB:W3GPp:MSStation<st>[:HSUPa]:DPCCh:E:STATe..415
- [:SOURce<hw>]:BB:W3GPp:MSStation<st>[:HSUPa]:DPCCh:E:TTIEdch..415
- [:SOURce<hw>]:BB:W3GPp:MSStation<st>[:HSUPa]:EDCH:REPeat..416
- [:SOURce<hw>]:BB:W3GPp:MSStation<st>[:HSUPa]:EDCH:ROW<ch0>:FROM..416
- [:SOURce<hw>]:BB:W3GPp:MSStation<st>[:HSUPa]:EDCH:ROW<ch0>:TO...416
- [:SOURce<hw>]:BB:W3GPp:MSStation<st>[:HSUPa]:EDCH:ROWCount..416
- [:SOURce<hw>]:BB:W3GPp:MSStation<st>[:HSUPa]:EDCH:TTIEdch..415
- [:SOURce<hw>]:BB:W3GPp:POWer[TOTal]?...257
- [:SOURce<hw>]:BB:W3GPp:POWer:ADJust...257
- [:SOURce<hw>]:BB:W3GPp:PPARameter:CRESt...271
- [:SOURce<hw>]:BB:W3GPp:PPARameter:DPCH:COUNt...271
- [:SOURce<hw>]:BB:W3GPp:PPARameter:DPCH:SRATe...272
- [:SOURce<hw>]:BB:W3GPp:PPARameter:EXECute...272
- [:SOURce<hw>]:BB:W3GPp:PPARameter:SCCPch:SRATe...272
- [:SOURce<hw>]:BB:W3GPp:PPARameter:SCCPch:STATe...273
- [:SOURce<hw>]:BB:W3GPp:PPARameter:SChannels...273
- [:SOURce<hw>]:BB:W3GPp:PRESet...252
- [:SOURce<hw>]:BB:W3GPp:SETTing:CATalog?...252
- [:SOURce<hw>]:BB:W3GPp:SETTing:DELete...252
- [:SOURce<hw>]:BB:W3GPp:SETTing:LOAD...253
- [:SOURce<hw>]:BB:W3GPp:SETTing:STOrE...253
- [:SOURce<hw>]:BB:W3GPp:SETTing:STOrE:FAST...253
- [:SOURce<hw>]:BB:W3GPp:SETTing:TMODEl:BSTation...273
- [:SOURce<hw>]:BB:W3GPp:SETTing:TMODEl:MSTation...274
- [:SOURce<hw>]:BB:W3GPp:SLENgth...254
- [:SOURce<hw>]:BB:W3GPp:STATe...254
- [:SOURce<hw>]:BB:W3GPp:TRIGger:ARM:EXECute...263
List of Commands

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

[:SOURce<hw>]:BB:W3GPp:TRIGger:EXECute..263
[:SOURce<hw>]:BB:W3GPp:TRIGger:EXternal:SYNChronize:OUTPut........................264
[:SOURce<hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:DELa>y...267
[:SOURce<hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:DELa>y:MAXimum?..............................268
[:SOURce<hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:DELa>y:MINimum?..............................268
[:SOURce<hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:MODE..266
[:SOURce<hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:OFFTime..267
[:SOURce<hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:ONTIme..267
[:SOURce<hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:PERiod..267
[:SOURce<hw>]:BB:W3GPp:TRIGger:RMODE?...264
[:SOURce<hw>]:BB:W3GPp:TRIGger:SLENght...264
[:SOURce<hw>]:BB:W3GPp:TRIGger:SLUNit...264
[:SOURce<hw>]:BB:W3GPp:TRIGger:SOURce...263
[:SOURce<hw>]:BB:W3GPp:TRIGger[EXternal<ch>]:DELa>y...265
[:SOURce<hw>]:BB:W3GPp:TRIGger[EXternal<ch>]:INHibit...265
[:SOURce<hw>]:BB:W3GPp:WAVeform:CREate..254
[:SOURce<hw>]:BB:W3GPp[TRIGger]:SEQuence..263
INDEX

Symbols

(Mis-) use TPC for output power control

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPCCH</td>
<td>135, 187, 204, 287</td>
</tr>
<tr>
<td>F-DPCH</td>
<td>202, 204</td>
</tr>
<tr>
<td>2nd search code group</td>
<td>77</td>
</tr>
<tr>
<td>2nd Search Code Group</td>
<td>321</td>
</tr>
<tr>
<td>3GPP Version</td>
<td>50, 255</td>
</tr>
<tr>
<td>3i OCNS mode</td>
<td>28</td>
</tr>
<tr>
<td>4C-HSDPA Mode</td>
<td>197</td>
</tr>
<tr>
<td>AICH Transmission Timing</td>
<td>238</td>
</tr>
<tr>
<td>Adjust Total Power to 0 dB</td>
<td>257</td>
</tr>
<tr>
<td>Adjust total power to 0 dB</td>
<td>56</td>
</tr>
<tr>
<td>Adjust Total Power to 0 dB</td>
<td>257</td>
</tr>
<tr>
<td>Advanced Mode</td>
<td>101, 289</td>
</tr>
<tr>
<td>AICH</td>
<td>131</td>
</tr>
<tr>
<td>AICH transmission timing</td>
<td>174</td>
</tr>
<tr>
<td>PCPCH</td>
<td>387</td>
</tr>
<tr>
<td>AICH Transmission Timing</td>
<td>390, 398</td>
</tr>
<tr>
<td>Alternate HS-PDSCH Modulation</td>
<td>113</td>
</tr>
<tr>
<td>Alternate number of HS-PDSCH channelization codes</td>
<td>113</td>
</tr>
<tr>
<td>Always Use Redundancy Version 0 (HARQ)</td>
<td>229, 407</td>
</tr>
<tr>
<td>AP-AICH Settings</td>
<td>131</td>
</tr>
<tr>
<td>Application cards</td>
<td>13</td>
</tr>
<tr>
<td>Application notes</td>
<td>13</td>
</tr>
<tr>
<td>ARB sequence length</td>
<td>175</td>
</tr>
<tr>
<td>ARB sequence length</td>
<td>165, 175</td>
</tr>
<tr>
<td>PCPCH</td>
<td>165</td>
</tr>
<tr>
<td>ARB Settings</td>
<td>51</td>
</tr>
<tr>
<td>Assignment Mode for UL-DTX</td>
<td>155</td>
</tr>
<tr>
<td>At Slot</td>
<td>89</td>
</tr>
<tr>
<td>B</td>
<td>53, 255</td>
</tr>
<tr>
<td>Base station identification</td>
<td>77</td>
</tr>
</tbody>
</table>

A

Absolute Grant Scope | 138 |
Absolute Grant Value Index	138
Accept Multi channel assistant	146
Accept copy	256
Access Slot	132
ACK Pattern	131
Adjust HSDPA	102
Adjust ARB sequence length	202, 204
Adjust total power to 0 dB	56
Advanced Mode	101, 289
AICH/AP-AICH Settings	131
AICH Transmission timing	174
PCPCH	387
MS-DSCH mode	390, 398
3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+	454

Binary channel bits per TTI | 107 |
Binary Channel Bits per TTI	291
Binary Channel Bits/TTI (Nbin)	411
Bit error rate	341
HSUPA FRC	405
Enhanced DPDCs	125
Enhanced DPDCs	339
Enhanced DPDCs	429
Block Error Rate	111
HSUPA H-Set	112, 342
HSUPA FRC	341
Enhanced DPDCs	125
Enhanced DPDCs	239
Enhanced DPDCs	111
HSUPA FRC	231
Block Error State	13
Burst Mode	96, 100
HSUPA	289
BxT	59, 289

C

Channel Coding

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>UE1</td>
<td>233</td>
</tr>
<tr>
<td>UE1</td>
<td>335</td>
</tr>
<tr>
<td>UE1</td>
<td>426</td>
</tr>
</tbody>
</table>

Channel Coding State

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhanced P-CCPCH</td>
<td>335</td>
</tr>
</tbody>
</table>

Channel Coding Type

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhanced P-CCPCH</td>
<td>116</td>
</tr>
<tr>
<td>P-CCPCH</td>
<td>335</td>
</tr>
</tbody>
</table>

Channel graph | 93 |

Channel number | 81 |

Channel Number

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPDCCH</td>
<td>212</td>
</tr>
<tr>
<td>E-DPDCCH</td>
<td>216</td>
</tr>
<tr>
<td>Channel P-CCPCH</td>
<td>114</td>
</tr>
</tbody>
</table>

Channel power

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi channel assistant</td>
<td>145</td>
</tr>
<tr>
<td>Channel Power</td>
<td>83</td>
</tr>
<tr>
<td>DPDCH</td>
<td>211</td>
</tr>
</tbody>
</table>
3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

<table>
<thead>
<tr>
<th>CQIs</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS</td>
<td>83, 279</td>
</tr>
<tr>
<td>UE</td>
<td>318, 150</td>
</tr>
<tr>
<td>UE1</td>
<td>123, 237</td>
</tr>
<tr>
<td>UE2</td>
<td>83, 177</td>
</tr>
</tbody>
</table>

Index

- Compressed Mode: 79
- Data: 83
- UE: 318
- Constellation version parameter b: 96, 97
- Constellation Version Parameter b: 305
- Control Power:
 - PCPCH: 177
 - PRACH: 167, 391
- Conventions:
 - SCPI commands: 250
- Convolution coder:
 - BS: 124
 - UE1: 237
- Convolution Coder:
 - UE1: 434
- Copy:
 - Base Station: 54, 256
 - from Source: 54
 - Copy from Source: 256
 - Copying the data of a base or user equipment: 256
- CQI:
 - HS-DPCCH: 202, 209
 - CQI Length: 205
 - CQI Type:
 - HS-DPCCH: 201, 209
 - HS-DPCCH: 205
 - CQI Values:
 - HS-DPCCH: 205
 - HS-DPCCH: 202, 209
 - CQIs:
 - HS-DPCCH: 202, 209
 - CQI1:
 - HS-DPCCH: 202, 209
 - HS-DPCCH: 202, 209
- Data rate matching:
 - BS: 123
 - UE1: 237
- Data sheets: 13
- Data source:
 - DPCCH: 143, 186
 - DPDCCH: 213, 214
 - E-DPCCH: 141
 - HSUPA FRC: 225
 - Multi channel assistant: 145
 - PCPCH: 178, 179
 - PRACH: 168
- Transport channel: 122, 236

| Channel state | 85
| Channel State |
| Multi channel assistant | 146
| Channel table |
| DPCCH | 81
| DPDCCH | 213
| E-DPCCH | 217
| Channelization code |
| DPCCH | 82
| HS-DPCCH | 194
| Multi channel assistant | 144
| Channelization Code |
| DPDCCH | 213, 375
| E-DPCCH | 189
| E-DPCCH | 217
| Channelization code HS-SCH (SF128) | 105
| Channelization Code Offset | 54
| Channelization code step |
| Multi channel assistant | 145
| Chip clock | 69
| Chip Clock Multiplier | 69
| Chip Rate | 51, 259
| Chip Rate Variation | 59
| Clipping Level | 61, 258
| Clipping Mode | 61, 258
| Clipping Settings | 51
| Clock Mode | 69
| Clock parameters | 51
| Clock Source | 68
| Code domain conflict | 85, 91, 151
| Code domain graph |
| UE | 151
| Code domain ideal display | 91, 151
| Code tree of channelization codes | 91
| Coding rate | 108
| Coding Rate | 292
| Coding Rate (Nint/Nbin) |
| HSUPA FRC | 227
| Coding State |
| PCPCH | 180
| PRACH | 169
| Coding State |
| PCPCH | 435
| PRACH | 436
| Coding Type |
| Enhanced DPDCCH UE1 | 233
| PCPCH | 181, 436
| PRACH | 169, 436
| Coding Type Enhanced |
| DPDCCH | 426
| Compatibility Mode |
| HS-DPCCH | 193
| Composite CQI |
| HS-DPCCH | 202

Operating Manual 1178.9761.02 — 25

455
Index

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Data Source
- DPDCCH: 403
- E-DPDCH: 401
- HS-PDSCH: 104
- PCCPCH: 380
- PRACH: 391
- Transport Channel: 330
- DC-HSDDPA Mode: 197
- DCCCH Dedicated Control Channel: 118

Default Values User Equipment
- Delay Marker: 67
- Delete 3GPP FDD settings: 48
- Direction: 336
- Dynamic Power Control: 128, 153
- Distance Diversity: 89
- BS: 322
- DL Frame Structure: 88, 315
- DL-UL timing offset: 183
- DPCCH: 183
- Documentation overview: 11
- Down range: 154
- Dynamic Power Control: 129
- Downlink: 51
- DPCCH + DPDCCH: 149, 345
- DPCCH Burst Length: 159
- DPCCH Settings: 132
- DTX Dedicated Traffic Channel: 118
- DTX On Enhanced DPCH: 333
- DTXCH on enhanced DPCH: 122
- DTX-Dedicated Traffic Channel: 232
- DTX cycle
 - UL-RTX: 159
 - DTX indication bits: 332
 - BS1: 124

Dynamic Power Control
- Direction: 128, 153
- DL: 128
- Down Range: 337, 423
- Power Step: 338
- Step: 424
- Up Range: 337, 423
- Dynamic Power Control Direction: 422
- BS1: 336
- Dynamic Power Control Mode: 128, 153

E
- AGCH Information Filed Coding: 138
- AGCH Settings: 137
- E-DCH TTI: 138, 139, 220
- HSUPA FRC: 226, 411

E-HICH Settings: 139
- E-RGCH Settings: 139
- Enhanced Channels Coding: 326
- Enhanced DPCHs: 323
- Enhanced P-CPICH Pattern: 113, 323
- Enhanced Settings
 - BS: 81
 - P-CCPCH: 114
 - P-CPICH: 113
- Error protection
 - UE1: 237
 - Error Protection
 - BS1: 124
 - UE1: 434
 - External Power Control
 - BS1: 128
 - External Trigger Inhibit: 265

F
- DPDCCH Settings: 140
- FBI Mode
 - DPCCH: 185, 350
 - PCCPCH: 178, 382
- FBI pattern
 - PCCPCH: 178
 - FBI Pattern
 - DPCCH: 185
- Filter
 - Type: 58
 - Filter Parameter: 59, 259
 - Filtering Settings: 51
 - Fix marker delay to current range: 67
 - Fixed reference Channel: 224
 - Fixed Reference Channel: 403
 - Fixed reference Channel (FRC): 224
 - HSUPA FRC: 403
- Force Channelization Code to I/Q
 - E-DPDCCH: 414
 - E-DPDCCH: 212
 - HSUPA: 224
- FRC: 224, 403

G
- Gap Distance
 - BS: 89
- Gap Length: 89
- Generate Waveform: 50
- Global trigger/clock settings: 69

H
- H-Set: 100
- Happy Bit
 - E-DPDCCH: 189, 412
- HARC-ACK
 - HS-DPDCCH: 198, 209
- HARC-ACK pattern
 - HS-DPDCCH: 205
 - HSUPA FRC: 229
- HARC-ACK Pattern
 - HS-DPDCCH: 360
- Help: 12
Higher layer scheduling ... 87, 316
UE ... 348
HS-DPCCH Power .. 191
HS-PDSCH Modulation .. 106
HS-SCCH Type ... 102, 303
HSDPA H-Set settings .. 97
HSDPA Mode .. 95, 99
BS ... 307
HSDPA Settings ..
BS ... 94
HSUPA FRC .. 189
HSUPA settings ... 137, 139

I
Inactivity threshold .. 159
Information bit payload .. 108
HSUPA FRC ... 227
Information Bit Payload ... 291
Information Bit Payload (Ninf) 409
Insert errors .. 111
HSUPA FRC ... 230
Insert Errors On
Enhanced DPCHs .. 125, 339
Enhanced DPDCCH .. 239
HSDPA H-Set .. 341
HSUPA FRC ... 405
Instrument help ... 12
Instrument security procedures 12
Inter TTI Distance ... 96, 108
HSDPA ... 307
Inter-TTI distance
HS-DPCCH .. 194
Interleaver
P-CCPCH .. 334
Interleaver P-CCPCH .. 116

L
Layer
Bit error insertion ... 125, 239
Level reference
see Power reference .. 56
Link Direction .. 51, 257
Long Preamble Length ... 159
Long scrambling code ... 150
Long Scrambling Code
UE ... 346

M
Marker ... 66
Marker Delay ... 67
Maximum information bitrate ... 67
HSUPA FRC .. 224
Measured external clock ... 69
Message Length
PCPCH ... 177, 382
PRACH ... 167, 393
Method for compressed mode .. 87
BS ... 87, 316
UE ... 348
MIMO ... 77
BS ... 322
MIMO Mode
HS-DPCCH ... 197, 206
Mode
Dynamic Power Control .. 128, 153
HARQ Simulation .. 294
UE ... 149, 345
Mode (HARQ simulation) ... 110
Mode (HARQ)
HSUPA FRC ... 229
Modulation
BS ... 97
E-DPDCH .. 216, 414
HSUPA FRC ... 226, 409
Modulation data
BS ... 83, 279
Multi Channel Assistant ... 144
Multicode state
DPDCCH .. 133
Multicode State
DPDCCH .. 280
Multiplier ... 69

N
Nominal average information bitrate 102
Number of additional UE .. 75, 343
Number of configurable TTI ... 158
Number of DPCH
Predefined Settings .. 73
Number of H-PDSCH channel codes 105
Number of H-PDSCH Channel Codes 292
Number of HARQ processes
HSUPA FRC ... 226
Number of HARQ Processes .. 109
Number Of HARQ Processes
HSUPA FRC ... 408
Number of intervals
HARQ-ACK ... 197
PCI / CQI .. 200
Number of PI per Frame ... 77, 320
Number of TTI
HS-DPCCH ... 208

O
OCNS Mode .. 52
OCNS Mode .. 52
Offset
UL-DTX ... 158
Open loop transmit diversity .. 78
Open Loop Transmit Diversity ... 319
Open source acknowledgment .. 13
OSA ... 13
Overall Symbol Rate
DPDCH ... 212, 378
E-DPDCH .. 215
UE1 ... 235, 431
Overall Symbol Rate RFC
HSUPA FRC ... 226

P
Pattern
BS ... 83, 279
Pattern Length
BS ... 90

Operating Manual 1178.9761.02 — 25
Index

3GPP FDD incl. enhanced MS/BS tests, HSDPA, HSUPA, HSPA+

Read out mode
 DPCCH .. 135, 186
 F-DPCCH ... 142
Read out Mode
 PCPCH .. 179
Read Out Mode
 DPCCH .. 285, 356
 F-DPCCH .. 288
Read Out Mode PCPCH
 PCPCH .. 389
Redundancy version parameter 110
Redundancy Version Parameter 297
Reference measurement channel coding types 119, 327
Relative Grant Pattern .. 140
Release notes ... 13
Repeat PCPCH structure .. 175
Repeat PRACH structure ... 166
Reset all base stations .. 53
Reset All Base Stations .. 255
Reset All User Equipment ... 54
Retransmission Sequence Number 255
E-DPCCH .. 188, 413
RMSPower .. 56
Roll Off ... 59, 259
RRC filter
 see Root Cosine .. 58
Running ... 64
S
S-CCPCH Settings .. 130
Safety instructions ... 12
Save 3GPP FDD settings ... 48
Save-Recall ... 48
Scrambling code
 BS ... 77
 UE ... 150
Scrambling Code
 UE ... 346
Scrambling Code Step .. 75
Scrambling mode
 UE ... 150
Scrambling Mode
 UE ... 346
Secondary cell
 Active ... 197
 Enabled ... 197
Select Base Station .. 55
Select User Equipment ... 55
Sequence Length
 ARB .. 61, 326
 PCPCH .. 174
Service manual .. 12
Set Synchronization Settings 269
Set synchronizations settings 68
Set to default ... 48
 BS ... 277
 Channel table ... 79
 HSUPA H-Set .. 79
SF2 ... 87, 316
SFN .. 115
SFN restart ... 115
Short scrambling code .. 150
Short Scrambling Code
 UE ... 346
Show coding
 PCPCH .. 181
 PRACH ... 169
Show details .. 120
Signal duration ... 124
Signal duration unit .. 63
Signaling pattern ... 109
Signalling Pattern
 BS ... 300
Signature
 PCPCH .. 176, 385
 PRACH ... 167, 395
Signature Hopping Pattern Index 139
Size of CRC ... 330
 BS1 ... 123
 UE1 .. 237, 433
Slot format ... 82
 4C-HSDPA ... 195
 DPCCH .. 184
 Enhanced DPCH .. 121
 F-DPCCH ... 141
 Multi channel assistant ... 146
 PCPCH .. 177
 PRACH ... 167
Slot Structure
 DPCCH .. 133
 F-DPCCH ... 141
 S-CCPCH ... 130
Spreading code generator (search code) 23
Spreading code number ... 82
Standard settings .. 48
 All channels ... 79
BS ... 277
HSDPA H-Set ... 79
Start channel No
 Multi channel assistant ... 144
Start channelization code HS-PDSCH (SF16) 105
Start Delay m
 HS-DPCCH .. 193
Start Offset
 PCPCH .. 387
 PRACH ... 164, 398
Start Offset PCPCH - UE .. 173
State ... 48, 323
 Bit Error .. 124
 Block Error .. 125
 BS ... 77
 Channel Coding .. 326
 Channel coding enhanced DPCHs 119
 Channel Coding Enhanced P-CCPCH 116
 Clipping ... 59
 Compressed Mode .. 211, 349
 DPDC .. 211, 378
 Dynamic Power Control .. 128, 337
 E-DPCCH ... 188, 413
 E-DPDCH ... 215, 415
 Enhanced DPCH Channels ... 117
 Enhanced P-CCPCH .. 114
 HARQ ... 407
 HS-DPCCH .. 192, 357
 HSUPA FRC .. 223, 410
 Interleaver 1 .. 124, 238, 332, 435
 Interleaver 2 .. 124, 238, 329, 430
 Multicode .. 133
 Transport Channel .. 333, 432

Operating Manual 1178.9761.02 ─ 25

459
Transport channel enhanced DPCH ... 122
UE .. 149, 347
State (HARQ) .. 229
HSUPA FRC ……………………………………………………………… 229
Step width power .. 145
Multi channel assistant .. 145
Stop channel No .. 144
Multi channel assistant .. 144
Stream 2 active pattern ………………………………………... 97, 104, 124, 133
Stream 2 Active Pattern ... 301, 306
Structure Length .. 78
PRACH ... 164
Suggested ARB sequence length 101
HS-DPCCH ... 202
Symbol rate .. 146
Multi channel assistant .. 146
Symbol Rate ... 82
BS .. 308
DPDCH .. 213, 377
E-DPDCH ... 217, 402
Enhanced DPCH ... 121, 326
PCPCH .. 178, 385
PRACH .. 167, 395
Symbol Rate DPCH ... 272
Predefined Settings ... 74
Sync. Output to External Trigger ... 64
Synchronization mode ... 68
Synchronization Mode ... 269
System frame number .. 115
System information BCH ... 115

T
Tau
DPCH .. 140
E-HICH .. 140
E-RGCH .. 140
Test Model .. 69, 273
Test Models (not standardized) ... 274
TFCI
DPCH .. 130, 133, 185
PCPCH .. 179
PRACH .. 168
S-CCPCH .. 130, 133
Time
Preamble - message part ... 164
Preamble - Preamble ... 164
Time Delay
BS .. 77
UE ... 150
Time Delay Step ... 75
Time Pre - MP ... 387, 389, 398
Time Pre - Pre ... 388, 399
Time Pre->MP ... 174
Time Pre->Pre ... 174
Timing offset
DL-UL DPCCH .. 183
Multi channel assistant .. 147
Timing Offset .. 84
To Destination .. 54, 255
Total HS-PDSCH Power ... 106
Total power ... 56
Total Power .. 257
TPC data source
DPCCH .. 134, 186
PCPCH .. 179

TPC Data Source
DPCCH .. 353
F-DPCH .. 286
PCPCH .. 388
TPC for output power control
F-DPCH .. 143
TPC Mode
DPCCH .. 186, 355
TPC read out mode ... 135
DPCCH .. 186
F-DPCH .. 142
TPC read out Mode
PCPCH .. 179
TPC Read Out Mode
DPCCH .. 285, 356
F-DPCH .. 288
PCPCH .. 389
Transmit direction ... 51, 257
Transmission Time Interval
E-DPCCH ... 220
E-DPDCH ... 220
Transmit Diversity ... 78, 319
Transport block size
BS1 ... 123
UE1 ... 237
Transport block size index .. 107
HSUPA FRC ... 227
Transport Block Size Index ... 302
HSUPA FRC ... 410
Transport block size reference .. 107
Transport Block Size Reference ... 302
Transport block size table ... 107
HSUPA FRC ... 226
Transport Block Size Table ... 303
HSUPA FRC ... 410
Transport blocks
BS1 ... 123
Transport Blocks
UE1 ... 432
Transport Channel
Enhanced DPCH .. 122
Transport time interval
BS1 ... 123
UE1 ... 237
Trigger Delay .. 66
Trigger inhibit .. 66
Trigger Inhibit External .. 265
Trigger Mode
Armed ... 63
Auto .. 63
Retrigger ... 63
Single ... 63
Trigger parameters ... 51
Trigger Source .. 64
Turbo coder
BS1 ... 124
UE1 ... 237
Turbo Coder
UE1 ... 434
Type of Cell
HSUPA ... 139
U

UE category
 BS ... 304
 HSDPA ... 102
 HSUPA FRC ... 224
UE supports 64QAM .. 107
UE Supports 64QAM 299
UE_DTX_DRX_Offset .. 158
UEID
 A-EGCH .. 138
 BS ... 105, 304
UL DTX ... 151, 158
Up range ... 154
Dynamic Power Control 129
Uplink ... 51
Use Channels needed for Sync of Mobile (UE) 73, 273
Use Compressed Mode
 BS ... 318
 UE .. 150, 349
Use E-TFCI
Use S-CPICH ... 19
Use S-CPICH as phase reference 78
Use S-CPICH as Phase Reference 320
Use scrambling code
 BS ... 77
Use Scrambling Code
 BS .. 320
Use TFCI
 DPCCH .. 130, 133, 185, 282, 352
 S-CCPCH ... 130, 133
Use UL-DTX .. 151, 158
User coding .. 121
 UE1 ... 234
User Coding .. 427
User Data (DTX pattern)
 HSUPA FRC .. 228
User Data (DTX Pattern)
 HSUPA FRC .. 406
User Equipment default values 54
User manual .. 12

V

Version ... 50, 255
Virtual IR buffer size (per HARQ process) 108
Visualizing data bits of DPDCH with an oscilloscope 212

W

White papers .. 13