R&S® NRP2
Power Meter
Getting Started
This document describes the R&S®NRP2, stock no. 1144.1374.02 and its options.

- R&S®NRP-B1/-B7, Sensor Check Source
- R&S®NRP-B2, Second Sensor Input B
- R&S®NRP-B5, 3rd and 4th Sensor Input C and D
- R&S®NRP-B6, Rear Panel Sensor Input A and B

The firmware of the instrument makes use of several valuable open source software packages. For information, see the "Open Source Acknowledgement" on the user documentation CD-ROM (included in delivery).

Rohde & Schwarz would like to thank the open source community for their valuable contribution to embedded computing.
Basic Safety Instructions

Always read through and comply with the following safety instructions!

All plants and locations of the Rohde & Schwarz group of companies make every effort to keep the safety standards of our products up to date and to offer our customers the highest possible degree of safety. Our products and the auxiliary equipment they require are designed, built and tested in accordance with the safety standards that apply in each case. Compliance with these standards is continuously monitored by our quality assurance system. The product described here has been designed, built and tested in accordance with the EC Certificate of Conformity and has left the manufacturer’s plant in a condition fully complying with safety standards. To maintain this condition and to ensure safe operation, you must observe all instructions and warnings provided in this manual. If you have any questions regarding these safety instructions, the Rohde & Schwarz group of companies will be happy to answer them.

Furthermore, it is your responsibility to use the product in an appropriate manner. This product is designed for use solely in industrial and laboratory environments or, if expressly permitted, also in the field and must not be used in any way that may cause personal injury or property damage. You are responsible if the product is used for any purpose other than its designated purpose or in disregard of the manufacturer’s instructions. The manufacturer shall assume no responsibility for such use of the product.

The product is used for its designated purpose if it is used in accordance with its product documentation and within its performance limits (see data sheet, documentation, the following safety instructions). Using the product requires technical skills and, in some cases, a basic knowledge of English. It is therefore essential that only skilled and specialized staff or thoroughly trained personnel with the required skills be allowed to use the product. If personal safety gear is required for using Rohde & Schwarz products, this will be indicated at the appropriate place in the product documentation. Keep the basic safety instructions and the product documentation in a safe place and pass them on to the subsequent users.

Observing the safety instructions will help prevent personal injury or damage of any kind caused by dangerous situations. Therefore, carefully read through and adhere to the following safety instructions before and when using the product. It is also absolutely essential to observe the additional safety instructions on personal safety, for example, that appear in relevant parts of the product documentation. In these safety instructions, the word “product” refers to all merchandise sold and distributed by the Rohde & Schwarz group of companies, including instruments, systems and all accessories. For product-specific information, see the data sheet and the product documentation.

Safety labels on products

The following safety labels are used on products to warn against risks and dangers.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Notice, general danger location</td>
<td>⋄</td>
<td>ON/OFF Power</td>
</tr>
<tr>
<td></td>
<td>Observe product documentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>⚠️</td>
<td>Caution when handling heavy equipment</td>
<td>⌀</td>
<td>Standby indication</td>
</tr>
<tr>
<td>⚠️</td>
<td>Danger of electric shock</td>
<td>⋯</td>
<td>Direct current (DC)</td>
</tr>
</tbody>
</table>
Symbol | Meaning | Symbol | Meaning
--- | --- | --- | ---
⚠️ | Caution! Hot surface | ⚡ | Direct/alternating current (DC/AC)
️ | Protective conductor terminal To identify any terminal which is intended for connection to an external conductor for protection against electric shock in case of a fault, or the terminal of a protective earth | ⚡ | Alternating current (AC)
⼟ | Earth (Ground) | ☠️ | Class II Equipment to identify equipment meeting the safety requirements specified for Class II equipment (device protected by double or reinforced insulation)
☐ | Frame or chassis Ground terminal | 🔐 | EU labeling for batteries and accumulators For additional information, see section "Waste disposal/Environmental protection", item 1.
⚠️ | Be careful when handling electrostatic sensitive devices | 🔐 | EU labeling for separate collection of electrical and electronic devices For additional information, see section "Waste disposal/Environmental protection", item 2.
⚠️ | Warning! Laser radiation | For additional information, see section "Operation", item 7.

Signal words and their meaning

The following signal words are used in the product documentation in order to warn the reader about risks and dangers.

- **⚠️ DANGER**: Indicates a hazardous situation which, if not avoided, will result in death or serious injury.
- **⚠️ WARNING**: Indicates a hazardous situation which, if not avoided, could result in death or serious injury.
- **⚠️ CAUTION**: Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.
- **NOTICE**: Indicates information considered important, but not hazard-related, e.g. messages relating to property damage.

In the product documentation, the word ATTENTION is used synonymously.

These signal words are in accordance with the standard definition for civil applications in the European Economic Area. Definitions that deviate from the standard definition may also exist in other economic areas or military applications. It is therefore essential to make sure that the signal words described here are always used only in connection with the related product documentation and the related product. The use of signal words in connection with unrelated products or documentation can result in misinterpretation and in personal injury or material damage.
Basic Safety Instructions

Operating states and operating positions

The product may be operated only under the operating conditions and in the positions specified by the manufacturer, without the product's ventilation being obstructed. If the manufacturer's specifications are not observed, this can result in electric shock, fire and/or serious personal injury or death. Applicable local or national safety regulations and rules for the prevention of accidents must be observed in all work performed.

1. Unless otherwise specified, the following requirements apply to Rohde & Schwarz products: predefined operating position is always with the housing floor facing down, IP protection 2X, use only indoors, max. operating altitude 2000 m above sea level, max. transport altitude 4500 m above sea level. A tolerance of \(\pm 10\% \) shall apply to the nominal voltage and \(\pm 5\% \) to the nominal frequency, overvoltage category 2, pollution degree 2.

2. Do not place the product on surfaces, vehicles, cabinets or tables that for reasons of weight or stability are unsuitable for this purpose. Always follow the manufacturer's installation instructions when installing the product and fastening it to objects or structures (e.g. walls and shelves). An installation that is not carried out as described in the product documentation could result in personal injury or even death.

3. Do not place the product on heat-generating devices such as radiators or fan heaters. The ambient temperature must not exceed the maximum temperature specified in the product documentation or in the data sheet. Product overheating can cause electric shock, fire and/or serious personal injury or even death.

Electrical safety

If the information on electrical safety is not observed either at all or to the extent necessary, electric shock, fire and/or serious personal injury or death may occur.

1. Prior to switching on the product, always ensure that the nominal voltage setting on the product matches the nominal voltage of the mains-supply network. If a different voltage is to be set, the power fuse of the product may have to be changed accordingly.

2. In the case of products of safety class I with movable power cord and connector, operation is permitted only on sockets with a protective conductor contact and protective conductor.

3. Intentionally breaking the protective conductor either in the feed line or in the product itself is not permitted. Doing so can result in the danger of an electric shock from the product. If extension cords or connector strips are implemented, they must be checked on a regular basis to ensure that they are safe to use.

4. If there is no power switch for disconnecting the product from the mains, or if the power switch is not suitable for this purpose, use the plug of the connecting cable to disconnect the product from the mains. In such cases, always ensure that the power plug is easily reachable and accessible at all times. For example, if the power plug is the disconnecting device, the length of the connecting cable must not exceed 3 m. Functional or electronic switches are not suitable for providing disconnection from the AC supply network. If products without power switches are integrated into racks or systems, the disconnecting device must be provided at the system level.

5. Never use the product if the power cable is damaged. Check the power cables on a regular basis to ensure that they are in proper operating condition. By taking appropriate safety measures and carefully laying the power cable, ensure that the cable cannot be damaged and that no one can be hurt by, for example, tripping over the cable or suffering an electric shock.
Basic Safety Instructions

6. The product may be operated only from TN/TT supply networks fuse-protected with max. 16 A (higher fuse only after consulting with the Rohde & Schwarz group of companies).

7. Do not insert the plug into sockets that are dusty or dirty. Insert the plug firmly and all the way into the socket provided for this purpose. Otherwise, sparks that result in fire and/or injuries may occur.

8. Do not overload any sockets, extension cords or connector strips; doing so can cause fire or electric shocks.

9. For measurements in circuits with voltages $V_{\text{rms}} > 30$ V, suitable measures (e.g. appropriate measuring equipment, fuse protection, current limiting, electrical separation, insulation) should be taken to avoid any hazards.

10. Ensure that the connections with information technology equipment, e.g. PCs or other industrial computers, comply with the IEC 60950-1 / EN 60950-1 or IEC 61010-1 / EN 61010-1 standards that apply in each case.

11. Unless expressly permitted, never remove the cover or any part of the housing while the product is in operation. Doing so will expose circuits and components and can lead to injuries, fire or damage to the product.

12. If a product is to be permanently installed, the connection between the protective conductor terminal on site and the product's protective conductor must be made first before any other connection is made. The product may be installed and connected only by a licensed electrician.

13. For permanently installed equipment without built-in fuses, circuit breakers or similar protective devices, the supply circuit must be fuse-protected in such a way that anyone who has access to the product, as well as the product itself, is adequately protected from injury or damage.

14. Use suitable overvoltage protection to ensure that no overvoltage (such as that caused by a bolt of lightning) can reach the product. Otherwise, the person operating the product will be exposed to the danger of an electric shock.

15. Any object that is not designed to be placed in the openings of the housing must not be used for this purpose. Doing so can cause short circuits inside the product and/or electric shocks, fire or injuries.

16. Unless specified otherwise, products are not liquid-proof (see also section "Operating states and operating positions", item 1). Therefore, the equipment must be protected against penetration by liquids. If the necessary precautions are not taken, the user may suffer electric shock or the product itself may be damaged, which can also lead to personal injury.

17. Never use the product under conditions in which condensation has formed or can form in or on the product, e.g. if the product has been moved from a cold to a warm environment. Penetration by water increases the risk of electric shock.

18. Prior to cleaning the product, disconnect it completely from the power supply (e.g. AC supply network or battery). Use a soft, non-linting cloth to clean the product. Never use chemical cleaning agents such as alcohol, acetone or diluents for cellulose lacquers.

Operation

1. Operating the products requires special training and intense concentration. Make sure that persons who use the products are physically, mentally and emotionally fit enough to do so; otherwise, injuries or material damage may occur. It is the responsibility of the employer/operator to select suitable personnel for operating the products.
Basic Safety Instructions

2. Before you move or transport the product, read and observe the section titled "Transport".

3. As with all industrially manufactured goods, the use of substances that induce an allergic reaction (allergens) such as nickel cannot be generally excluded. If you develop an allergic reaction (such as a skin rash, frequent sneezing, red eyes or respiratory difficulties) when using a Rohde & Schwarz product, consult a physician immediately to determine the cause and to prevent health problems or stress.

4. Before you start processing the product mechanically and/or thermally, or before you take it apart, be sure to read and pay special attention to the section titled "Waste disposal/Environmental protection", item 1.

5. Depending on the function, certain products such as RF radio equipment can produce an elevated level of electromagnetic radiation. Considering that unborn babies require increased protection, pregnant women must be protected by appropriate measures. Persons with pacemakers may also be exposed to risks from electromagnetic radiation. The employer/operator must evaluate workplaces where there is a special risk of exposure to radiation and, if necessary, take measures to avert the potential danger.

6. Should a fire occur, the product may release hazardous substances (gases, fluids, etc.) that can cause health problems. Therefore, suitable measures must be taken, e.g. protective masks and protective clothing must be worn.

7. Laser products are given warning labels that are standardized according to their laser class. Lasers can cause biological harm due to the properties of their radiation and due to their extremely concentrated electromagnetic power. If a laser product (e.g. a CD/DVD drive) is integrated into a Rohde & Schwarz product, absolutely no other settings or functions may be used as described in the product documentation. The objective is to prevent personal injury (e.g. due to laser beams).

8. EMC classes (in line with EN 55011/CISPR 11, and analogously with EN 55022/CISPR 22, EN 55032/CISPR 32)
 - Class A equipment:
 Equipment suitable for use in all environments except residential environments and environments that are directly connected to a low-voltage supply network that supplies residential buildings
 Note: Class A equipment is intended for use in an industrial environment. This equipment may cause radio disturbances in residential environments, due to possible conducted as well as radiated disturbances. In this case, the operator may be required to take appropriate measures to eliminate these disturbances.
 - Class B equipment:
 Equipment suitable for use in residential environments and environments that are directly connected to a low-voltage supply network that supplies residential buildings

Repair and service

1. The product may be opened only by authorized, specially trained personnel. Before any work is performed on the product or before the product is opened, it must be disconnected from the AC supply network. Otherwise, personnel will be exposed to the risk of an electric shock.
Basic Safety Instructions

2. Adjustments, replacement of parts, maintenance and repair may be performed only by electrical experts authorized by Rohde & Schwarz. Only original parts may be used for replacing parts relevant to safety (e.g. power switches, power transformers, fuses). A safety test must always be performed after parts relevant to safety have been replaced (visual inspection, protective conductor test, insulation resistance measurement, leakage current measurement, functional test). This helps ensure the continued safety of the product.

Batteries and rechargeable batteries/cells

If the information regarding batteries and rechargeable batteries/cells is not observed either at all or to the extent necessary, product users may be exposed to the risk of explosions, fire and/or serious personal injury, and, in some cases, death. Batteries and rechargeable batteries with alkaline electrolytes (e.g. lithium cells) must be handled in accordance with the EN 62133 standard.

1. Cells must not be taken apart or crushed.
2. Cells or batteries must not be exposed to heat or fire. Storage in direct sunlight must be avoided. Keep cells and batteries clean and dry. Clean soiled connectors using a dry, clean cloth.
3. Cells or batteries must not be short-circuited. Cells or batteries must not be stored in a box or in a drawer where they can short-circuit each other, or where they can be short-circuited by other conductive materials. Cells and batteries must not be removed from their original packaging until they are ready to be used.
4. Cells and batteries must not be exposed to any mechanical shocks that are stronger than permitted.
5. If a cell develops a leak, the fluid must not be allowed to come into contact with the skin or eyes. If contact occurs, wash the affected area with plenty of water and seek medical aid.
6. Improperly replacing or charging cells or batteries that contain alkaline electrolytes (e.g. lithium cells) can cause explosions. Replace cells or batteries only with the matching Rohde & Schwarz type (see parts list) in order to ensure the safety of the product.
7. Cells and batteries must be recycled and kept separate from residual waste. Rechargeable batteries and normal batteries that contain lead, mercury or cadmium are hazardous waste. Observe the national regulations regarding waste disposal and recycling.

Transport

1. The product may be very heavy. Therefore, the product must be handled with care. In some cases, the user may require a suitable means of lifting or moving the product (e.g. with a lift-truck) to avoid back or other physical injuries.
2. Handles on the products are designed exclusively to enable personnel to transport the product. It is therefore not permissible to use handles to fasten the product to or on transport equipment such as cranes, fork lifts, wagons, etc. The user is responsible for securely fastening the products to or on the means of transport or lifting. Observe the safety regulations of the manufacturer of the means of transport or lifting. Noncompliance can result in personal injury or material damage.
3. If you use the product in a vehicle, it is the sole responsibility of the driver to drive the vehicle safely and properly. The manufacturer assumes no responsibility for accidents or collisions. Never use the product in a moving vehicle if doing so could distract the driver of the vehicle. Adequately secure the product in the vehicle to prevent injuries or other damage in the event of an accident.
Waste disposal/Environmental protection

1. Specially marked equipment has a battery or accumulator that must not be disposed of with unsorted municipal waste, but must be collected separately. It may only be disposed of at a suitable collection point or via a Rohde & Schwarz customer service center.

2. Waste electrical and electronic equipment must not be disposed of with unsorted municipal waste, but must be collected separately. Rohde & Schwarz GmbH & Co. KG has developed a disposal concept and takes full responsibility for take-back obligations and disposal obligations for manufacturers within the EU. Contact your Rohde & Schwarz customer service center for environmentally responsible disposal of the product.

3. If products or their components are mechanically and/or thermally processed in a manner that goes beyond their intended use, hazardous substances (heavy-metal dust such as lead, beryllium, nickel) may be released. For this reason, the product may only be disassembled by specially trained personnel. Improper disassembly may be hazardous to your health. National waste disposal regulations must be observed.

4. If handling the product releases hazardous substances or fuels that must be disposed of in a special way, e.g. coolants or engine oils that must be replenished regularly, the safety instructions of the manufacturer of the hazardous substances or fuels and the applicable regional waste disposal regulations must be observed. Also observe the relevant safety instructions in the product documentation. The improper disposal of hazardous substances or fuels can cause health problems and lead to environmental damage.

For additional information about environmental protection, visit the Rohde & Schwarz website.

Instrucciones de seguridad elementales

¡Es imprescindible leer y cumplir las siguientes instrucciones e informaciones de seguridad!

El principio del grupo de empresas Rohde & Schwarz consiste en tener nuestros productos siempre al día con los estándares de seguridad y de ofrecer a nuestros clientes el máximo grado de seguridad. Nuestros productos y todos los equipos adicionales son siempre fabricados y examinados según las normas de seguridad vigentes. Nuestro sistema de garantía de calidad controla constantemente que sean cumplidas estas normas. El presente producto ha sido fabricado y examinado según el certificado de conformidad de la UE y ha salido de nuestra planta en estado impecable según los estándares técnicos de seguridad. Para poder preservar este estado y garantizar un funcionamiento libre de peligros, el usuario deberá atenerse a todas las indicaciones, informaciones de seguridad y notas de alerta. El grupo de empresas Rohde & Schwarz está siempre a su disposición en caso de que tengan preguntas referentes a estas informaciones de seguridad.

Además queda en la responsabilidad del usuario utilizar el producto en la forma debida. Este producto está destinado exclusivamente al uso en la industria y el laboratorio o, si ha sido expresamente autorizado, para aplicaciones de campo y de ninguna manera deberá ser utilizado de modo que alguna persona/cosa pueda sufrir daño. El uso del producto fuera de sus fines definidos o sin tener en cuenta las instrucciones del fabricante queda en la responsabilidad del usuario. El fabricante no se hace en ninguna forma responsable de consecuencias a causa del mal uso del producto.
Instrucciones de seguridad elementales

Se parte del uso correcto del producto para los fines definidos si el producto es utilizado conforme a las indicaciones de la correspondiente documentación del producto y dentro del margen de rendimiento definido (ver hoja de datos, documentación, informaciones de seguridad que siguen). El uso del producto hace necesarios conocimientos técnicos y ciertos conocimientos del idioma inglés. Por eso se debe tener en cuenta que el producto solo pueda ser operado por personal especializado o personas instruidas en profundidad con las capacidades correspondientes. Si fuera necesaria indumentaria de seguridad para el uso de productos de Rohde & Schwarz, encontraría la información debida en la documentación del producto en el capítulo correspondiente. Guarde bien las informaciones de seguridad elementales, así como la documentación del producto, y entréguelas a usuarios posteriores.

Tener en cuenta las informaciones de seguridad sirve para evitar en lo posible lesiones o daños por peligros de toda clase. Por eso es imprescindible leer detalladamente y comprender por completo las siguientes informaciones de seguridad antes de usar el producto, y respetarlas durante el uso del producto. Deberán tenerse en cuenta todas las demás informaciones de seguridad, como p. ej. las referentes a la protección de personas, que encontrarán en el capítulo correspondiente de la documentación del producto y que también son de obligado cumplimiento. En las presentes informaciones de seguridad se recogen todos los objetos que distribuye el grupo de empresas Rohde & Schwarz bajo la denominación de "producto", entre ellos también aparatos, instalaciones así como toda clase de accesorios. Los datos específicos del producto figuran en la hoja de datos y en la documentación del producto.

Señalización de seguridad de los productos

Las siguientes señales de seguridad se utilizan en los productos para advertir sobre riesgos y peligros.

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Significado</th>
<th>Símbolo</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Aviso: punto de peligro general</td>
<td>!</td>
<td>Tensión de alimentación de PUESTA EN MARCHA / PARADA</td>
</tr>
<tr>
<td></td>
<td>Observar la documentación del producto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>! 18 kg</td>
<td>Atención en el manejo de dispositivos de peso elevado</td>
<td>!</td>
<td>Indicación de estado de espera (standby)</td>
</tr>
<tr>
<td></td>
<td>Peligro de choque eléctrico</td>
<td></td>
<td>Corriente continua (DC)</td>
</tr>
<tr>
<td>!</td>
<td>Advertencia: superficie caliente</td>
<td>!</td>
<td>Corriente alterna (AC)</td>
</tr>
<tr>
<td>!</td>
<td>Conexión a conductor de protección</td>
<td>!</td>
<td>Corriente continua / Corriente alterna (DC/AC)</td>
</tr>
<tr>
<td></td>
<td>Conexión a tierra</td>
<td>![]</td>
<td>El aparato está protegido en su totalidad por un aislamiento doble (reforzado)</td>
</tr>
<tr>
<td></td>
<td>Conexión a masa</td>
<td>![]</td>
<td>Distintivo de la UE para baterías y acumuladores</td>
</tr>
</tbody>
</table>
Instrucciones de seguridad elementales

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Significado</th>
<th>Símbolo</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aviso: Cuidado en el manejo de dispositivos sensibles a la electrostática (ESD)</td>
<td></td>
<td>Distintivo de la UE para la eliminación por separado de dispositivos eléctricos y electrónicos</td>
</tr>
<tr>
<td></td>
<td>Advertencia: rayo láser</td>
<td></td>
<td>Más información en la sección "Eliminación/protección del medio ambiente", punto 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Palabras de señal y su significado

En la documentación del producto se utilizan las siguientes palabras de señal con el fin de advertir contra riesgos y peligros.

- ![Peligro](image)
 - Indica una situación de peligro que, si no se evita, causa lesiones graves o incluso la muerte.

- ![Advertencia](image)
 - Indica una situación de peligro que, si no se evita, puede causar lesiones graves o incluso la muerte.

- ![Atención](image)
 - Indica una situación de peligro que, si no se evita, puede causar lesiones leves o moderadas.

- ![Aviso](image)
 - Indica información que se considera importante, pero no en relación con situaciones de peligro; p. ej., avisos sobre posibles daños materiales.

 En la documentación del producto se emplea de forma sinónima el término CUIDADO.

Las palabras de señal corresponden a la definición habitual para aplicaciones civiles en el área económica europea. Pueden existir definiciones diferentes a esta definición en otras áreas económicas o en aplicaciones militares. Por eso se deberá tener en cuenta que las palabras de señal aquí descritas sean utilizadas siempre solamente en combinación con la correspondiente documentación del producto y solamente en combinación con el producto correspondiente. La utilización de las palabras de señal en combinación con productos o documentaciones que no les correspondan puede llevar a interpretaciones equivocadas y tener por consecuencia daños en personas u objetos.

Estados operativos y posiciones de funcionamiento

El producto solamente debe ser utilizado según lo indicado por el fabricante respecto a los estados operativos y posiciones de funcionamiento sin que se obstruya la ventilación. Si no se siguen las indicaciones del fabricante, pueden producirse choques eléctricos, incendios y/o lesiones graves con posible consecuencia de muerte. En todos los trabajos deberán ser tenidas en cuenta las normas nacionales y locales de seguridad del trabajo y de prevención de accidentes.
Instrucciones de seguridad elementales

1. Si no se convino de otra manera, es para los productos Rohde & Schwarz válido lo que sigue: como posición de funcionamiento se define por principio la posición con el suelo de la caja para abajo, modo de protección IP 2X, uso solamente en estancias interiores, utilización hasta 2000 m sobre el nivel del mar, transporte hasta 4500 m sobre el nivel del mar. Se aplicará una tolerancia de ±10 % sobre el voltaje nominal y de ±5 % sobre la frecuencia nominal. Categoría de sobrecarga eléctrica 2, índice de suciedad 2.

2. No sitúe el producto encima de superficies, vehículos, estantes o mesas, que por sus características de peso o de estabilidad no sean aptos para él. Siga siempre las instrucciones de instalación del fabricante cuando instale y asegure el producto en objetos o estructuras (p. ej. paredes y estantes). Si se realiza la instalación de modo distinto al indicado en la documentación del producto, se pueden causar lesiones o, en determinadas circunstancias, incluso la muerte.

3. No ponga el producto sobre aparatos que generen calor (p. ej. radiadores o calefactores). La temperatura ambiente no debe superar la temperatura máxima especificada en la documentación del producto o en la hoja de datos. En caso de sobrecalentamiento del producto, pueden producirse choques eléctricos, incendios y/o lesiones graves con posible consecuencia de muerte.

Seguridad eléctrica

Si no se siguen (o se siguen de modo insuficiente) las indicaciones del fabricante en cuanto a seguridad eléctrica, pueden producirse choques eléctricos, incendios y/o lesiones graves con posible consecuencia de muerte.

1. Antes de la puesta en marcha del producto se deberá comprobar siempre que la tensión preseleccionada en el producto coincida con la de la red de alimentación eléctrica. Si es necesario modificar el ajuste de tensión, también se deberán cambiar en caso dado los fusibles correspondientes del producto.

2. Los productos de la clase de protección I con alimentación móvil y enchufe individual solamente podrán enchufarse a tomas de corriente con contacto de seguridad y con conductor de protección conectado.

3. Queda prohibida la interrupción intencionada del conductor de protección, tanto en la toma de corriente como en el mismo producto. La interrupción puede tener como consecuencia el riesgo de que el producto sea fuente de choques eléctricos. Si se utilizan cables alargadores o regletas de enchufe, deberá garantizarse la realización de un examen regular de los mismos en cuanto a su estado técnico de seguridad.

4. Si el producto no está equipado con un interruptor para desconectarlo de la red, o bien si el interruptor existente no resulta apropiado para la desconexión de la red, el enchufe del cable de conexión se deberá considerar como un dispositivo de desconexión. El dispositivo de desconexión se debe poder alcanzar fácilmente y debe estar siempre bien accesible. Sí, p. ej., el enchufe de conexión a la red es el dispositivo de desconexión, la longitud del cable de conexión no debe superar 3 m). Los interruptores selectores o electrónicos no son aptos para el corte de la red eléctrica. Si se integran productos sin interruptor en bastidores o instalaciones, se deberá colocar el interruptor en el nivel de la instalación.

5. No utilice nunca el producto si está dañado el cable de conexión a red. Compruebe regularmente el correcto estado de los cables de conexión a red. Asegúrese, mediante las medidas de protección y de instalación adecuadas, de que el cable de conexión a red no pueda ser dañado o de que nadie pueda ser dañado por él, p. ej. al tropezar o por un choque eléctrico.
Instrucciones de seguridad elementales

6. Solamente está permitido el funcionamiento en redes de alimentación TN/TT aseguradas con fusibles de 16 A como máximo (utilización de fusibles de mayor amperaje solo previa consulta con el grupo de empresas Rohde & Schwarz).

7. Nunca conecte el enchufe en tomas de corriente sucias o llenas de polvo. Introduzca el enchufe por completo y fuertemente en la toma de corriente. La no observación de estas medidas puede provocar chispas, fuego y/o lesiones.

8. No sobrecargue las tomas de corriente, los cables alargadores o las regletas de enchufe ya que esto podría causar fuego o choques eléctricos.

9. En las mediciones en circuitos de corriente con una tensión $U_{\text{eff}} > 30 \text{ V}$ se deberán tomar las medidas apropiadas para impedir cualquier peligro (p. ej. medios de medición adecuados, seguros, limitación de tensión, corte protector, aislamiento etc.).

10. Para la conexión con dispositivos informáticos como un PC o un ordenador industrial, debe comprobarse que éstos cumplan los estándares IEC60950-1/EN60950-1 o IEC61010-1/EN 61010-1 válidos en cada caso.

11. A menos que esté permitido expresamente, no retire nunca la tapa ni componentes de la carcasa mientras el producto esté en servicio. Esto pone a descubierto los cables y componentes eléctricos y puede causar lesiones, fuego o daños en el producto.

12. Si un producto se instala en un lugar fijo, se deberá primero conectar el conductor de protección fijo con el conductor de protección del producto antes de hacer cualquier otra conexión. La instalación y la conexión deberán ser efectuadas por un electricista especializado.

13. En el caso de dispositivos fijos que no estén provistos de fusibles, interruptor automático ni otros mecanismos de seguridad similares, el circuito de alimentación debe estar protegido de modo que todas las personas que puedan acceder al producto, así como el producto mismo, estén a salvo de posibles daños.

14. Todo producto debe estar protegido contra sobretensión (debida p. ej. a una caída del rayo) mediante los correspondientes sistemas de protección. Si no, el personal que lo utilice quedará expuesto al peligro de choque eléctrico.

15. No debe introducirse en los orificios de la caja del aparato ningún objeto que no esté destinado a ello. Esto puede producir cortocircuitos en el producto y/o puede causar choques eléctricos, fuego o lesiones.

16. Salvo indicación contraria, los productos no están impermeabilizados (ver también el capítulo "Estados operativos y posiciones de funcionamiento", punto 1). Por eso es necesario tomar las medidas necesarias para evitar la entrada de líquidos. En caso contrario, existe peligro de choque eléctrico para el usuario o de daños en el producto, que también pueden redundar en peligro para las personas.

17. No utilice el producto en condiciones en las que pueda producirse o ya se hayan producido condensaciones sobre el producto o en el interior de éste, como p. ej. al desplazarlo de un lugar frío a otro caliente. La entrada de agua aumenta el riesgo de choque eléctrico.

18. Antes de la limpieza, desconecte por completo el producto de la alimentación de tensión (p. ej. red de alimentación o batería). Realice la limpieza de los aparatos con un paño suave, que no se deshilache. No utilice bajo ningún concepto productos de limpieza químicos como alcohol, acetona o diluyentes para lacas nitrocelulósicas.
Instrucciones de seguridad elementales

Funcionamiento

1. El uso del producto requiere instrucciones especiales y una alta concentración durante el manejo. Debe asegurarse que las personas que manejen el producto estén a la altura de los requerimientos necesarios en cuanto a aptitudes físicas, psíquicas y emocionales, ya que de otra manera no se pueden excluir lesiones o daños de objetos. El empresario u operador es responsable de seleccionar el personal usuario apto para el manejo del producto.

2. Antes de desplazar o transportar el producto, lea y tenga en cuenta el capítulo “Transporte”.

3. Como con todo producto de fabricación industrial no puede quedar excluida en general la posibilidad de que se produzcan alergias provocadas por algunos materiales empleados —los llamados alérgenos (p. ej. el níquel)—. Si durante el manejo de productos Rohde & Schwarz se producen reacciones alérgicas, como p. ej. irritaciones cutáneas, estornudos continuos, enrojecimiento de la conjuntiva o dificultades respiratorias, debe avisarse inmediatamente a un médico para investigar las causas y evitar cualquier molestia o daño a la salud.

4. Antes de la manipulación mecánica y/o térmica o el desmontaje del producto, debe tenerse en cuenta imprescindiblemente el capítulo "Eliminación/protección del medio ambiente", punto 1.

5. Ciertos productos, como p. ej. las instalaciones de radiocomunicación RF, pueden a causa de su función natural, emitir una radiación electromagnética aumentada. Deben tomarse todas las medidas necesarias para la protección de las mujeres embarazadas. También las personas con marcapasos pueden correr peligro a causa de la radiación electromagnética. El empresario/operador tiene la obligación de evaluar y señalar las áreas de trabajo en las que exista un riesgo elevado de exposición a radiaciones.

6. Tenga en cuenta que en caso de incendio pueden desprenderse del producto sustancias tóxicas (gases, líquidos etc.) que pueden generar daños a la salud. Por eso, en caso de incendio deben usarse medidas adecuadas, como p. ej. máscaras antigás e indumentaria de protección.

7. Los productos con láser están provistos de indicaciones de advertencia normalizadas en función de la clase de láser del que se trate. Los rayos láser pueden provocar daños de tipo biológico a causa de las propiedades de su radiación y debido a su concentración extrema de potencia electromagnética. En caso de que un producto Rohde & Schwarz contenga un producto láser (p. ej. un lector de CD/DVD), no debe usarse ninguna otra configuración o función aparte de las descritas en la documentación del producto, a fin de evitar lesiones (p. ej. debidas a irradiación láser).

8. Clases de compatibilidad electromagnética (conforme a EN 55011 / CISPR 11; y en analogía con EN 55022 / CISPR 22, EN 55032 / CISPR 32)
 - Aparato de clase A:
 Aparato adecuado para su uso en todos los entornos excepto en los residenciales y en aquellos conectados directamente a una red de distribución de baja tensión que suministra corriente a edificios residenciales.
 Nota: Los aparatos de clase A están destinados al uso en entornos industriales. Estos aparatos pueden causar perturbaciones radioeléctricas en entornos residenciales debido a posibles perturbaciones guiadas o radiadas. En este caso, se le podrá solicitar al operador que tome las medidas adecuadas para eliminar estas perturbaciones.
 - Aparato de clase B:
 Aparato adecuado para su uso en entornos residenciales, así como en aquellos conectados directamente a una red de distribución de baja tensión que suministra corriente a edificios residenciales.
Instrucciones de seguridad elementales

Reparación y mantenimiento

1. El producto solamente debe ser abierto por personal especializado con autorización para ello. Antes de manipular el producto o abrirlo, es obligatorio desconectarlo de la tensión de alimentación, para evitar toda posibilidad de choque eléctrico.

2. El ajuste, el cambio de partes, el mantenimiento y la reparación deberán ser efectuadas solamente por electricistas autorizados por Rohde & Schwarz. Si se reponen partes con importancia para los aspectos de seguridad (p. ej. el enchufe, los transformadores o los fusibles), solamente podrán ser sustituidos por partes originales. Después de cada cambio de partes relevantes para la seguridad deberá realizarse un control de seguridad (control a primera vista, control del conductor de protección, medición de resistencia de aislamiento, medición de la corriente de fuga, control de funcionamiento). Con esto queda garantizada la seguridad del producto.

Baterías y acumuladores o celdas

Si no se siguen (o se siguen de modo insuficiente) las indicaciones en cuanto a las baterías y acumuladores o celdas, pueden producirse explosiones, incendios y/o lesiones graves con posible consecuencia de muerte. El manejo de baterías y acumuladores con electrolitos alcalinos (p. ej. celdas de litio) debe seguir el estándar EN 62133.

1. No deben desmontarse, abrirse ni triturarse las celdas.

2. Las celdas o baterías no deben someterse a calor ni fuego. Debe evitarse el almacenamiento a la luz directa del sol. Las celdas y baterías deben mantenerse limpias y secas. Limpiar las conexiones sucias con un paño seco y limpio.

3. Las celdas o baterías no deben cortocircuitarse. Es peligroso almacenar las celdas o baterías en estuches o cajones en cuyo interior puedan cortocircuitarse por contacto recíproco o por contacto con otros materiales conductores. No deben extraerse las celdas o baterías de sus embalajes originales hasta el momento en que vayan a utilizarse.

4. Las celdas o baterías no deben someterse a impactos mecánicos fuertes indebidos.

5. En caso de falta de estanqueidad de una celda, el líquido vertido no debe entrar en contacto con la piel ni los ojos. Si se produce contacto, lavar con agua abundante la zona afectada y avisar a un médico.

6. En caso de cambio o recarga inadecuados, las celdas o baterías que contienen electrolitos alcalinos (p. ej. las celdas de litio) pueden explotar. Para garantizar la seguridad del producto, las celdas o baterías solo deben ser sustituidas por el tipo Rohde & Schwarz correspondiente (ver lista de recambios).

7. Las baterías y celdas deben reciclarse y no deben tirarse a la basura doméstica. Las baterías o acumuladores que contienen plomo, mercurio o cadmio deben tratarse como residuos especiales. Respete en esta relación las normas nacionales de eliminación y reciclaje.

Transporte

1. El producto puede tener un peso elevado. Por eso es necesario desplazarlo o transportarlo con precaución y, si es necesario, usando un sistema de elevación adecuado (p. ej. una carretilla elevadora), a fin de evitar lesiones en la espalda u otros daños personales.
2. Las asas instaladas en los productos sirven solamente de ayuda para el transporte del producto por personas. Por eso no está permitido utilizar las asas para la sujeción en o sobre medios de transporte como p. ej. grúas, carretillas elevadoras de horquilla, carros etc. Es responsabilidad suya fijar los productos de manera segura a los medios de transporte o elevación. Para evitar daños personales o daños en el producto, siga las instrucciones de seguridad del fabricante del medio de transporte o elevación utilizado.

3. Si se utiliza el producto dentro de un vehículo, recae de manera exclusiva en el conductor la responsabilidad de conducir el vehículo de manera segura y adecuada. El fabricante no asumirá ninguna responsabilidad por accidentes o colisiones. No utilice nunca el producto dentro de un vehículo en movimiento si esto pudiera distraer al conductor. Asegure el producto dentro del vehículo debidamente para evitar, en caso de un accidente, lesiones u otra clase de daños.

Eliminación/protección del medio ambiente

1. Los dispositivos marcados contienen una batería o un acumulador que no se debe desechar con los residuos domésticos sin clasificar, sino que debe ser recogido por separado. La eliminación se debe efectuar exclusivamente a través de un punto de recogida apropiado o del servicio de atención al cliente de Rohde & Schwarz.

2. Los dispositivos eléctricos usados no se deben desechar con los residuos domésticos sin clasificar, sino que deben ser recogidos por separado. Rohde & Schwarz GmbH & Co.KG ha elaborado un concepto de eliminación de residuos y asume plenamente los deberes de recogida y eliminación para los fabricantes dentro de la UE. Para desechar el producto de manera respetuosa con el medio ambiente, dirijase a su servicio de atención al cliente de Rohde & Schwarz.

3. Si se trabaja de manera mecánica y/o térmica cualquier producto o componente más allá del funcionamiento previsto, pueden liberarse sustancias peligrosas (polvos con contenido de metales pesados como p. ej. plomo, berilio o níquel). Por eso el producto solo debe ser desmontado por personal especializado con formación adecuada. Un desmontaje inadecuado puede ocasionar daños para la salud. Se deben tener en cuenta las directivas nacionales referentes a la eliminación de residuos.

4. En caso de que durante el trato del producto se formen sustancias peligrosas o combustibles que deban tratarse como residuos especiales (p. ej. refrigerantes o aceites de motor con intervalos de cambio definidos), deben tenerse en cuenta las indicaciones de seguridad del fabricante de dichas sustancias y las normas regionales de eliminación de residuos. Tenga en cuenta también en caso necesario las indicaciones de seguridad especiales contenidas en la documentación del producto. La eliminación incorrecta de sustancias peligrosas o combustibles puede causar daños a la salud o daños al medio ambiente.

Se puede encontrar más información sobre la protección del medio ambiente en la página web de Rohde & Schwarz.
Customer Support

Technical support – where and when you need it
For quick, expert help with any Rohde & Schwarz equipment, contact one of our Customer Support Centers. A team of highly qualified engineers provides telephone support and will work with you to find a solution to your query on any aspect of the operation, programming or applications of Rohde & Schwarz equipment.

Up-to-date information and upgrades
To keep your instrument up-to-date and to be informed about new application notes related to your instrument, please send an e-mail to the Customer Support Center stating your instrument and your wish. We will take care that you will get the right information.

Europe, Africa, Middle East
Phone +49 89 4129 12345
customersupport@rohde-schwarz.com

North America
Phone 1-888-TEST-RSA (1-888-837-8772)
customer.support@rsa.rohde-schwarz.com

Latin America
Phone +1-410-910-7988
customersupport.la@rohde-schwarz.com

Asia/Pacific
Phone +65 65 13 04 88
customersupport.asia@rohde-schwarz.com

China
Phone +86-800-810-8228 /
+86-400-650-5896
customersupport.china@rohde-schwarz.com
Index ... 67
1 Putting into Operation

This section describes the basic steps to be taken when setting up the R&S NRP2 for the first time.

It contains the following topics:

- unpacking
- AC supply connection
- switching the meter on and off
- function testing and installing the meter
- preset or default settings
- front and rear views

1.1 Notes on putting into operation

NOTICE

Risk of instrument damage

Note that the general safety instructions also contain information on operating conditions that will prevent damage to the instrument. The instrument's data sheet may contain additional operating conditions.

NOTICE

Risk of instrument damage

Before putting the R&S NRP2 into operation, make sure that:

- the sensor inputs are not overloaded
- the meter’s outputs are not overloaded or wrongly connected
- the ventilation holes are not obstructed

The meter may be damaged if these precautions are not observed.
1.2 EMC

EMI impact on measurement results

To prevent EMI, the meter must always be installed to meet the relevant EMC standards. Never operate the instrument with its enclosure removed. Only use shielded signal and control cables that meet the relevant EMC standards.

1.3 Unpacking the meter

When you have removed the meter from its packing, check that nothing is missing using the delivery note and the accessory lists.

If there is any damage, contact the carrier. Keep all the packing to support any claims for compensation.

Retain the original packing material. If the instrument needs to be transported or shipped at a later date, you can use the material to prevent control elements and connectors from being damaged.

1.4 Setting up the meter

The R&S NRP2 is designed for use under laboratory conditions, either on a bench top or in a rack.

1.4.1 Carrying handle

If the R&S NRP2 is not installed in a rack, it should be set up so that the viewing angle for the display is optimal. The carrying handle can be locked in a variety of positions to act as a stand.
To adjust the handle, pull the two side-pieces of the handle outwards so that the handle can be rotated.

The handle locks at angles which are multiples of 60°.

1.4.2 Bench top operation

If the R&S NRP2 is operated on a bench top, the surface should be flat. The instrument can be used in horizontal position, standing on its feet, or with the support feet on the bottom extended.

1.4.3 Mounting the instrument in a rack

The R&S NRP2 can be installed in a rack using a variety of rack adapters (order numbers see data sheet). The installation instructions are part of an adapter kit.

NOTICE

Risk of instrument damage

For rack installation, make sure that the airflow perforations are unimpeded. This helps to prevent the instruments from being overheated.
1.5 Front panel tour

The front panel of the R&S NRP2 consists of the VGA display with the softkey area, the connectors on the left side and the hardkeys and utility keys on the right side. The subsequent sections provide brief explanations on the controls and connectors, the hardkey area and the front panel.

Fig. 1-1: Front panel view
1 = POWER REF connector
2 = Display
3 = Softkeys
4 = Hardkeys
5 = Cursor keys
6 = On/Standby key and standby LEDs
7 = Sensor connectors

1.5.1 Display

The R&S NRP2 displays results in windows. Depending on the measurement mode, values are displayed digitally, in a combined digital and analog mode, or graphically.
The display mode can be selected individually for each measurement, i.e. you can perform both graphical and numerical representations simultaneously.

Graphical display

![Graphical display](image)

Fig. 1-2: Trace in Pulse display in 'Trace&Statistic' mode

The meter shows the results in a measurement curve, i.e. as a function of time. This presentation is obtained in "Trace & Statistics" mode, see "Instrument functions" > "Displaying Traces" in the operating manual.

The window is tiled in several sections:

- **the status bar** on top of the screen indicates information concerning the measurement and instrument state.
- **the display area** shows the measurement curve, including markers, result and time axes information and further auxiliary values.
- **the control panel** on the right offers functions for direct setting of the screen, or the access of further subdialogs. Pressing the associated key (right next to the display) executes the function or opens the dialog box.
- **the info panel** underneath the graph shows auxiliary information.
Numerical display

Fig. 1-3: Digital and analog display

Numerical measuring windows indicate the readings digitally, or provide the values in form of an analog meter. A maximum of four windows can be displayed on the screen, while their size is determined by the number of windows. The R&S NRP2 indicates either all windows simultaneously, or individually expanded.

For detailed information concerning the screen layout see chapter 3.2, "Screen layout", on page 51.

1.5.2 Keys

The keys on the front panel of the meter are used to manually operate the instrument. Grouped by soft- and hardkeys, each group represents specific functions.
1.5.2.1 Softkeys

The six softkeys are rocker switches - in other words, they can be “rocked” backwards and forwards by pressing on the right or left side of the key. The softkey function is context-sensitive and is indicated by screen labeling.

For more information on the softkeys see also chapter 2.2, "Brief introduction to the operation", on page 24, chapter 3.5, "Dialog boxes and their controls", on page 57 and chapter 3.4, "Menu handling", on page 56.

1.5.2.2 Hardkeys

Hardkeys cause the R&S NRP2 to return to a definite instrument state, provide access to the main settings and activate functions. Hardkeys are always available for use.

For further information on using the hardkeys see also chapter 2.2, "Brief introduction to the operation", on page 24, and especially on the setup keys (PRE)SET, FREQ and ZERO, see chapter "Instrument Functions" > "Main Settings" in the operating manual.

MENU

- as the "©" key (i.e. Enter key), it is used to confirm entries in text fields and dialog boxes and to confirm selections in the drop-down lists.
- as the MENU key, it is used to fold out and fold back the menus next to the softkeys.

The function of the key is determined according to context – in other words, the ENTER or MENU function is always selected automatically for the operator by the instrument.

DEL / 1 TRIG

- the DEL key is used to delete numbers or text in a field so that a completely new entry can be made.
● as the 1 TRIG key, it enables and triggers single-shot measurements in the trace mode.

The function of the key is selected automatically according to context.

ESC / LOCAL

- this key is used as an ESC key to escape from the entry mode in text boxes and drop-down lists. It is also used to close dialog boxes and menus without losing any entries that have been made, see chapter 3.2, "Screen layout", on page 51.
- as the LOCAL key, it is used to switch the R&S NRP2 from remote control mode (all controls disabled) to manual mode.

The key is automatically assigned its function according to context - in other words, there is no manual assignment by the operator.

MODE

MODE opens the "Mode" dialog box to select and configure the measurement mode.

See also chapter "Instrument Functions" > "Data acquisition and parameters" > "Setting the measurement mode" in the operating manual.

(PRE)SET

The (PRE)SET hardkey sets the R&S NRP2 to its default setting. Default settings are sensor specific.

The function can also be started with the "Preset" softkey in the file menu, described in the operating manual chapter "Instrument functions" > "Management of settings" > "Default setting".

FREQ

FREQ sets the carrier frequency of the applied signal to obtain the specific measurement uncertainty.
Find more information on the frequency dialog box in the operating manual, chapter "Instrument Functions" > "Main Settings" > "Frequency setting".

ZERO

This function starts the autozero function, see also "Instrument Functions" > "Main Settings" > "Zeroing" in the operating manual.

1.5.2.3 Cursor keys

The cursor-key functions are context-sensitive. They are used to:
- select a menu
- select the active window
- move the cursor in text boxes
- change the value of an entry in a text box
- select an element from a drop-down list

Except of moving the cursor, the above mentioned functions can also be activated using softkeys.

1.5.3 On/Standby key and standby LEDs

The standby LEDs and the ON/STANDBY key are located in the bottom right corner of the front panel. The ON/STANDBY key toggles the R&S NRP2 between standby and ready state, indicated by the standby LEDs.

The standby LEDs indicate the current instrument state:
- **Yellow LED (AC supply)**

 The yellow LED indicates that the R&S NRP2 is power supplied and in standby mode.
● Green LED (ON)
 The green LED indicates when the meter is on, i.e. ready for operation.

The possible operating states are:

- The meter is off and disconnected from the AC supply.
- The meter is on standby. The AC supply is connected and the power supply is operating correctly.
- The meter is on and is being powered from the AC supply.

1.5.4 Connectors

To the left of the display, the R&S NRP2 provides a power reference signal connector and two sensor connectors.

If option R&S NRP-B5 is installed, the R&S NRP2 offers two sensor ports at the rear. Thus, you can perform measurements with a maximum of 4 connected sensors simultaneously.

POWER REF

The POWER REF connector (option R&S NRP-B1/-B7, sensor check source) provides a high-precision sine signal with a power of 1 mW and a frequency of 50 MHz for checking the sensors. Option R&S NRP-B7 additionally comes with a pulse mode of the test signal with a modulation frequency of 10 kHz.

The generator is turned on and off in the System Settings dialog box, described in the operating manual, chapter "Instrument functions" > "System Settings" > "Sensor check source".

Sensor connectors

The front panel accommodates a maximum of two sensor connectors (for sensors A and B). Sensor connector B requires option R&S NRP-B2, second sensor input (B).
The power sensors are connected by inserting the male connector.

Note: You can not disconnect the sensor simply by pulling at the cable or the rear part of the connector. To disconnect pull the connector at its sleeve, which is marked with a red dot.

1.6 Rear Panel Tour

This section gives an overview of the control elements and the connectors on the rear panel of the R&S NRP2. Each element and connector is briefly described and a reference is given to the chapters containing detailed information.

![Rear panel view](image)

Fig. 1-4: Rear panel view

1 = TRIG IN / OUT2 and OUT1 / TRIG OUT connectors
2 = ETHERNET interface
3 = USB interface
4 = IEC 625/IEEE 488 interface
5 = AC supply and power switch
6 = Sensor connectors (option R&S NRP-B5 or R&S NRP-B6)
TRIG IN / OUT2 and OUT1 / TRIG OUT

The BNC connector OUT1 / TRIG OUT outputs an analog signal with a voltage between 0 V and 3.3 V. It can be used to output a voltage that is proportional to the measured value (e.g. for level regulation) or a digital signal for threshold monitoring.

If configured as trigger output, the trigger signal of a power sensor can be supplied. In this case, the power sensor must be set as trigger master.

The BNC connector TRIG IN / OUT2 can be used either as an external trigger input or as a second analog output.

The inputs/outputs are configured in the "System" menu, see the operating manual chapter "Instrument Functions" > "System Settings" > "Setting analog outputs".

ETHERNET

The Ethernet connector is an RJ45 socket for remote controlling the R&S NRP2 via a network.

USB

USB (Universal Serial Bus) interface of type B. This connector is used for remote control of the instrument (see chapter 'Connecting a controller to the base unit') and to update the firmware of the instrument by means of PC downloads (for more information, see the service manual, chapter 4).
IEC 625/IEEE 488

The IEC/IEEE bus connector to IEEE488 is used to remote control the R&S NRP2.

AC supply and power switch

For detailed information on the AC supply, see chapter 1.7, "Connecting the instrument to the AC supply", on page 17.

Sensor connectors

Optional sensor connectors C and D (option R&S NRP-B5) can be installed at the rear panel. Alternatively, sensor connectors A and B can be retrofitted from front to rear panel (option R&S NRP-B6).

1.7 Connecting the instrument to the AC supply

The AC supply and power switch are at the rear of the unit.

When the R&S NRP2 is connected to the AC supply, it automatically sets itself to the correct range for the applied voltage (range: see type label). There is no need to set the voltage manually.

The power switch can be set to two positions:

- 0:
 - The instrument is disconnected from the mains.

- I
The instrument is power-supplied. It is either ready for operation (STANDBY) or in operating mode, which is indicated by the color of the Status LED on the front panel.

Fig. 1-5: AC supply connector at the rear of the meter

► Connect the instrument to the AC power source using the AC power cable delivered with the instrument.

Note: The instrument is in compliance with safety class EN61010-1. Connect the instrument only to a socket with earthing contact.

AC supply voltage
The R&S NRP2 can be operated from AC lines with a voltage range of 100 V to 240 V and a frequency range of 50 Hz to 60 Hz. Note that a restricted voltage range (100 V to 120 V) applies to 400 Hz networks.

1.8 Starting the R&S NRP2

1.8.1 Switching on

1. To turn the power on, press the main power switch at the rear to position I (On).

Fig. 1-6: Power switch

After power-up, the instrument is in standby or ready state, depending on the state of the ON/STANDBY key at the front panel of the instrument when the instrument was switched off for the last time.
2. Press the ON/STANDBY key to switch the instrument from the standby to ready state.

![ON / Standby key](image)

Fig. 1-7: ON / Standby key

green and yellow = ready for operation
yellow = standby, AC supply is connected and power supply is operating correctly
off = off and disconnected from the AC supply

1.8.2 Startup

Press the ON/STANDBY key to switch to ready state.

The R&S NRP2 initiates its startup procedure, i.e. it boots the operating system, automatically performs a selftest and starts the instrument firmware. If the previous session was terminated regularly, the instrument uses the last setup with the relevant instrument settings.

Use the (PRE)SET key to return the instrument to its definite reset/preset state, if the current setup is no longer relevant.

To customize the start settings use the "File" dialog box, see "Instrument Functions" > "Management of Settings" in the operating manual.

1.8.2.1 Start screen

Immediately after turning on the start screen appears, and the R&S NRP2 provides short-term access to the boot menu and the firmware update menu.

The bootmenu provides service and system functions, e.g. resetting the internal memory, see chapter 'Error Messages'.

For further information on the firmware update see firmware release notes on the R&S website available for download: http://www.rohde-schwarz.com/product/NRP2.html.
1.8.2.2 Function check

After switch-on, the R&S NRP2 performs a function test. The contents of all non-volatile memories, the RAM and the addressability of the interfaces are checked. Messages indicate the options the instrument is equipped with.

The R&S NRP2 checks the following functions:

- Function test on the RAM
- Function test on the keyboard controller
- Addressability check on the keypad
- Addressability check on the test generator. This test is performed if the instrument is equipped with option R&S NRP-B1/B7, sensor check source.
- Addressability check of the sensor channels

Depending on the number of installed sensors, the displayed icon varies:

![Connected sensors (symbols)](image)

- One of the sensor boxes shown on the left bottom of the icon represents a sensor connected at channel A, i.e. the instrument is single channel.
- Two sensor boxes indicate that channels A and B are connected, fitted at the front panel (requires option NRP-B2, the second measurement input).
Putting into Operation

Starting the R&S NRP2

- Accordingly, one or two sensor boxes shown on top indicate that channels A and B are fitted at the rear panel with option NRP-B6, sensor connectors A (B).
- Four sensor boxes indicate that the meter supports channels A to D, option NRP-B5, 3rd and 4th measurement input.

- Addressability check on the USB interface
- Addressability check of the Ethernet interface

The instrument performs a test on the Ethernet interface, and displays the transmission rate, e.g. 100. When finished, the instrument displays the result under the network icon, i.e. "OK" indicates that the interface can be addressed.

If the R&S NRP2 is not connected to a network hub or if a connection cannot be established during booting, the message (Not Connected) is displayed instead of "Ok". It is however possible to establish a network connection later on at any time.

Results display of the function test

The R&S NRP2 shows the progress of the tests in a colored (orange) progress bar. The tests are completed when the bar has reached the end of the screen and all symbols are shown. The instrument indicates the result of each test underneath the respective symbol.

![R&S NRP2 Power Meter](image)

Fig. 1-10: R&S NRP2 welcome screen with function test results and progress bar

<table>
<thead>
<tr>
<th>Mem</th>
<th>PCI</th>
<th>Keys</th>
<th>∿ ⊙</th>
<th>Mem</th>
<th>PCI</th>
<th>Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ok</td>
<td>Ok</td>
<td>Ok</td>
<td>Ok</td>
<td>Ok</td>
<td>Ok</td>
<td>Ok</td>
</tr>
</tbody>
</table>

Mem = function test on the RAM
PCI = function test on the keyboard controller
Keys = addressability check on the keypad
∿ ⊙ = addressability check on the test generator
Putting into Operation R&S® NRP2

Getting Started 1144.1351.02 ─ 03

(instrument icon) = addressability check on the interfaces for the sensor channels
USB = addressability check on the USB interface
Net = addressability check of the ethernet interface

Successful tests are confirmed with "OK", orange colored), and recognized malfunctions with "Failed", red colored).

Some tests respond with further information, messages or actions:

- If any interface error occurred, the boot process stops after completion of all tests. It may be continued by pressing the ESC hardkey.

- During the test of the network connection, additional information is provided, as described above.

- If an error is detected when the non-volatile memory containing instrument settings is checked, an error message is displayed when booting is completed.

The non-volatile memory is then re-initialized completely and the R&S NRP2 goes into the preset state. All instrument settings that have been saved are lost as a result of this procedure.

1.8.3 Shutting down the meter

Whenever the meter is switched off, its settings are saved. The next time it is switched on, these settings are automatically restored.

- Press the ON/STANDBY key to save the current setup, shut down the operating system and set the instrument to standby state.

Switching off the AC power

You can leave the AC power on permanently to preserve your last instrument settings. Switching off is required only if the instrument must be completely disconnected from all power supplies.
2 Getting Started

This chapter introduces the main functions and settings of the R&S NRP2, by means of some basic power measurement examples.

Included topics:

- **Brief introduction to the operation, on page 24** provides a quick introduction on how to operate the instrument.
- **Preset and zeroing, on page 27** explains how to set the R&S NRP2 and the R&S Power Sensors to defined initial states.
- **Measuring average power (Cont Av mode), on page 29** introduces standard power measurement with the R&S NRP2.
- **Window handling, on page 37** and **Setting measurement functions, on page 42** explains the basic techniques for configuring result windows.
- **Graphically representing power versus time, on page 44** represents graphically the time characteristics in "Trace & Statistics" mode.
- **Measuring average burst power (Burst Av mode), on page 48** enables you to perform a measurement of burst power without external triggering.

Some of the sections later on in this chapter assume familiarity with the basic operating techniques which are introduced in the first sections. It is, therefore, advisable to go through these sections first before considering other topics.

An in-depth description of the operation of the instrument is described in chapter 3, "Manual Operation", on page 51.

2.1 Requirements

- Read the notes on putting the meter into operation in chapter 1.1, "Notes on putting into operation", on page 5.
- A single-channel R&S NRP2 is sufficient for most of the examples used in the sequel. However, if you want to work through all the steps in chapter 2.6, "Setting measurement functions", on page 42 you will need a dual-channel instrument.
Any sensor of the R&S NRP-Zx series is suitable.

A signal source is required for the following measurements. It is best to use a signal generator whose level can be adjusted. If a generator of this type is not available, the R&S NRP2’s integral power reference (option R&S NRP-B1/-B7) can be used instead.

Recommended first steps

Before you set up a new measurement, we recommend that you preset the R&S NRP2. Thus, the instrument is in a defined initial state. This prevents any previous settings from causing incorrect results. In addition, a zero calibration of the sensors is required. Follow the steps in chapter 2.3, "Preset and zeroing", on page 27.

2.2 Brief introduction to the operation

The R&S NRP2 can be operated intuitively via the hardkeys and the interactive display with the associated softkeys. All menus and dialog boxes are in the form of windows that can be operated in the same way. The hardkeys and softkeys allow direct and therefore convenient access to entries and settings.

The clear-cut display shows the power measurement results of up to 4 power measurements simultaneously. Results can be displayed digitally or graphically, either by an analog meter or, depending on the measurement mode, in a trace diagram.

This section briefly describes the concept of manual operation of the power meter in order to perform the test examples with the instrument, described later on in this chapter.

For a detailed description on the controls, the screen layout and how to operate the R&S NRP2, refer to chapter 3, "Manual Operation", on page 51.

Using the hardkeys
hardkeys are always available for use.

- according to its label, a hardkey directly activates a function.
- if two functions are provided in one hardkey, e.g. "Menu", the context determines the currently active function. The respective function is selected automatically by the instrument.

See chapter 1.5.2.2, "Hardkeys", on page 11 for information concerning assignment and the respective functional description of the hardkeys.

A highlighted menu item corresponding to one of the hardkeys, indicates that the function can be started either by the softkey or the associated hardkey, as shown in the example with "Preset".

Using the softkeys

To quickly allocate the softkey to a menu item, all the menus open directly next to the softkey bar, i.e. on the right side of the display.

The six softkeys perform the functions that are indicated in the active menu or dialog box. Located at the right edge of the display, the functions in a line are assigned to the corresponding softkey.

As a special feature, sometimes two or more functions are assigned to one softkey. In this case the softkey operated as a rocker switch, see the following examples:

Two functions are associated with one softkey. In the example, the two functions are position ("Pos.") and scale ("Scale"). "Scale" is selected

To select function "Pos." press the left-hand side of the rocker switch.
Now setting the position with the cursor keys is possible.

Several functions are associated with one softkey. In the example, the different sensor modes are offered, "T'slot Av" is selected.

1. To select another function to the left, e.g. "Trace & Statistics", press the left side of the softkey.

2. or to select another function to the right, e.g. "Burst Av", press the right side of the softkey (in this case twice).

Check boxes

► To toggle between the two states of "Global" press the right side of the softkey.

Note: The left side of the softkey activates the entry of the "Global" value, see below 'Entry fields'.

Entry fields

1. Activate the entry field using the associated softkey.
The activated entry field is marked by a yellow frame. The position in the value to be changed is inverted.

A digit (or a letter) panel appears on the right side of the display.

2. Select the position to be changed using the cursor keys ⇐ ⇨.

3. To change the entry at the marked position, either
 a) select the digit in the panel using the associated softkey.
 or
 b) increase / decrease the value using the cursor keys ⇧ ⇩

4. Confirm the selection with the ↵MENU hardkey or reject with ESC hardkey.

Lists

1. Select the function by selecting an item in a list using the associated softkey.
 The list folds out.

2. Select the item using the softkey associated with list or the ⇧ ⇩ cursor keys.

3. Confirm the selection with the ↵MENU hardkey or reject with ESC hardkey.

2.3 Preset and zeroing

Preset

If the instrument is switched on, it is not the preset state that is active, but rather the instrument state that was set when the instrument was switched off. To prevent any previous settings from causing incorrect results, it is recommended that you set the R&S NRP2 and the R&S Power Sensors to defined initial states.
To preset the R&S NRP2

1. Press the (PRE)SET hardkey.

The "File" menu appears.

![Fig. 2-1: File menu](image)

2. Press the (PRE)SET hardkey again or press the "Preset" softkey.

All parameters and switching states are preset, also those of inactive operating modes. When the preset is completed, the "File" menu disappears and the meter is in the preset state. The preset settings provide a reproducible initial basis for all other settings.

For a detailed description of the R&S NRP2's initial state including a list of default parameters, see chapter "Instrument Functions" > "Main Settings" > "Preset hardkey" in the operating manual.

Zeroing

Zeroing should be performed whenever necessary. As a rule of thumb, this is the case for measurements of power values less than a 1000 fold of the zero offset and after the sensor has reached its operating temperature.

Turn off all test signals before zeroing. An active test signal during zeroing causes an error.

To zero the meter

1. Connect the sensor to a signal source
2. Switch off the power
3. Press the ZERO hardkey.

![ZERO hardkey]

The "Zero" dialog box is displayed.

![Zeroing dialog box](image)

Fig. 2-2: Zeroing dialog box

4. Press the ZERO hardkey again to perform zeroing of all connected sensor channels ("Zero (All)") or press the appropriate softkey to select a specific sensor for zeroing.

Zeroing of all connected sensors is performed.

The correction measurement takes several seconds. When completed, the R&S NRP2 displays a message indicating success or failure of zeroing.

![Zeroing D successful](image)

![Zeroing A failed](image)

If zeroing fails, the most frequent cause for this error is a signal that is applied to the sensor and prevents zeroing.

2.4 Measuring average power (Cont Av mode)

In the following example for measuring the average power the following steps are performed:

- Setting up the measurement
- Setting the frequency
Setting the unit for the measurement result
Setting a fixed offset correction
Performing a relative power measurement
Checking the settings with full height window
Selecting the display mode
Selecting the indication of auxiliary values

Setting up the measurement

To set up the measurement

1. Put the R&S NRP2 into operation as described in chapter 1, "Putting into Operation", on page 5 and connect a sensor to connector A.

2. Preset the R&S NRP2 and execute Zero A.
 After preset, one result window indicates the result (in dBm) obtained with sensor A.

![Fig. 2-3: Result window (dBm)](image)

Setting the frequency

The R&S NRP2 must be set to the carrier frequency of the applied signal if the specified measurement accuracy is to be reached.

To set the frequency

1. Connect an unmodulated signal with a level between −10 dBm and +10 dBm to the sensor.
2. Press the FREQ hardkey.
The dialog box for entering the frequency appears.

![Frequency dialog box](image)

Fig. 2-4: Frequency dialog box

3. Press the associated softkey to activate the entry of the frequency value. A digit panel is displayed to insert the frequency. The panel also includes unit letters.

![Digit panel](image)

4. Clear the field with the DEL/1TRIG hardkey.
5. Enter the signal frequency by pressing the associated softkeys.
6. Select the unit by using the "UNIT" softkey.

![Unit selection](image)

Tip: Alternatively you can use the cursor keys to set a value. To get familiar with the editor, try the following steps. In this example the overwrite mode (default mode) is active:

- Use the LEFT/RIGHT ⇦ ⇨ cursor keys to move the block cursor and overwrite the digits with new values.
- Use the UP/DOWN ⇧ ⇩ cursor keys to increase/decrease the digit value at the cursor position.
- Move the insertion mark to the right onto the units. Use the UP/DOWN cursor keys to change the unit.

7. Press the ↵MENU hardkey twice to confirm your entry and exit the "Frequency" dialog box.

Setting the unit for the measurement result

The measurement result is indicated in the result window. The unit of the measurement result can be changed.
To set the unit of the measurement result

1. Use the topmost softkey to select the "Measurement" menu.

 The menu opens. Post-processing of the measurement can be set in the "Measurement" menu.

2. Select the unit "W" using the associated softkey.

 The result is displayed in W.

Setting a fixed offset correction

The R&S NRP2 provides an offset correction to the displayed measurement result.

To set a fixed offset correction

1. Select the "Sensor" menu.
Fig. 2-7: Sensor menu

All sensor-related settings are made in the "Sensor" menu. It determines type and details of data acquisition.

2. Press the left side of the "Offset..." softkey.

The "Offset" dialog box opens. Offsets in dB for compensating external signal losses or gains, for example by attenuator or amplifiers, can be set in this dialog box.

Fig. 2-8: Offset dialog box

3. Activate the entry for the global offset.
 Positive values are for correcting losses and negative values for gains.

4. If you have an attenuator at hand, enter its value and connect the attenuator between the sensor and the signal source, otherwise just enter 10 dB.

5. Confirm the entry with ↵MENU.

6. Activate the global offset correction by pressing the right side of the associated softkey.
Tip: Factors which are not, or only minimally, depending on frequency can be corrected in this way.

7. Press the ▼MENU hardkey twice to exit the dialog box and the menu.

If you have connected an attenuator and entered its attenuation, the R&S NRP2 will display about the same value as before.

Performing relative power measurements

The R&S NRP2 calculates and displays also the relative difference between a measured value and a reference value. The reference value can be a measured value that has been saved or an arbitrary value that is entered.

1. Select the "Measurement" menu.

2. Open the "Measurement" menu with ▼MENU.
3. To activate the relative mode, press the right side of the softkey next to "Relative".

As the default setup was loaded in step 1, the value relative to 0 dBm is displayed.

4. Press the right side of the softkey next to "Relative" again.

"Reset" will set the current power result as new reference value. After the reset, relative measurement is automatically active again.

If the power has not changed in the meantime, the indicated value is close to 0 dB.

5. If an attenuator is still connected, remove it now and connect the sensor directly to the signal source.
The displayed value should now equal the offset that has been entered.

Checking the settings with full height window

1. Select and open the "Windows" menu.

The "Windows" menu contains all the functions required for opening, closing and configuring windows.

2. Check if window 1 has been selected.

3. Press the "Expand" softkey.

Window 1 now expands to full size below the menu bar and displays all relevant settings:
- measurement modes of contributing channels (A (ContAV))
- Trigger mode (auto)
- averaging number and mode (32 Auto)
- Offset (10 dB)
- S parameter device (none)
- duty cycle correction (none)

Fig. 2-15: Result window / key measurement parameters
4. To return the window to its normal size, open the "Windows" menu with the MENU hardkey and press the "Arrange" softkey.

2.5 Window handling

Up to four windows can be indicated simultaneously on the R&S NRP2’s display. Each window can be configured for a separate measurement. The following examples show how to handle windows.

Opening, expanding and closing windows.

1. Press the (PRE)SET hardkey twice.

![Fig. 2-16: Result window](image)

A display window indicating the result (in dBm) from sensor A appears.

2. Select the "Windows" menu with the topmost softkey or the cursor keys.

![Fig. 2-17: Windows menu](image)

The "Window" softkey selects the window. The settings in the "Windows" menu and in the "Measurement" menu are valid for the selected window.
The cursor keys can, in most cases, be used to select windows instead of the softkeys. This also applies to opened dialog boxes.

 The third softkey is now labeled "Close | Expand".

4. Press the right side of the softkey to expand the window.
 The window expands to occupy the full display height and indicates all parameters relevant to the measurement.

5. Open the menu again.
 "Arrange" now replaces "Expand". This function arranges all opened windows.

6. Press the "Arrange" softkey.
 Window 1 returns to its previous size.

The following steps show the difference between the "Open" and "Init" functions. You first have to change two settings of window 1.

Opening, creating and closing windows.

1. Activate the analog display of results "D&A".

2. Switch to the "Measurement" menu and select "Relative On".
3. Return to the "Windows" menu.

Window 1 now displays the "A Rel" function on an analog scale.

![Image](image_url)

Fig. 2-19: Result window / D&A / full height

4. Now, close window 1 with the "Close" softkey.

![Image](image_url)

The "Window" menu shows that window "1" is still selected. The labeling next to the third softkey is now "Open | Init".

5. Press the "Open" softkey.

The appearance of the window has not changed, and all window-specific settings have been maintained.

6. Close window "1" again with "Close".

7. Open it this time with "Init"

The window again displays the measurement function A in digital format. In contrast to "Open", where the settings remain unchanged, "Init" sets all the parameters to their default values. "Init" only resets the window settings made in the "Windows" and "Measurement" menus, but it does not affect the sensor settings!
Display options

1. The "Dig" and "D&A" softkeys are used to select the display mode. The standard display mode is "Dig"ital measurement result.

2. Select the "D&A" display mode.
 Window "1" now shows an analog scale and a digital reading.

The menu now includes the new item "Analog Meter..." for setting the scale limits.
3. Switch back to "Dig" display mode.

Auxiliary values (Maximum, Minimum, Max, Min, ...).

1. Select the "Measurement" menu.

 ![Measurement menu](image)

2. Select "Function..." in this menu.

 ![Function & Unit dialog box](image)

 The measurement function, unit of the measurement result, sensors used and the auxiliary values can be selected in the "Function & Unit" dialog box.

3. Open the "Auxiliaries" drop-down list.
Fig. 2-25: Function Unit dialog box / auxiliaries

4. Select "Extremes".
5. Close the dialog box.
6. Select the "Measurement" menu and restart the search for the extreme values with "Aux Val Reset".
 The updated maximum, minimum and max-min are now displayed to the right of the measured value.

Fig. 2-26: Result window / auxiliaries / half height

Maximum and minimum should be close to the measurement result, the max-min value therefore slightly more than 0 dB.
If you reduce the signal power, the maximum should remain the same, whereas the minimum value tracks the measurement result. The max-min values rise correspondingly. However, if the signal power is increased, the maximum value tracks the measurement result as soon as the stored maximum is exceeded.

2.6 Setting measurement functions

An R&S NRP2 with two sensors connected is required for this section. If only one sensor is available, you can only select the measurement function "Single".
Performing ratio measurements

1. Connect the two sensors to connectors A and B on the R&S NRP2 and apply an unmodulated signal with a level between \(-10\) dBm and \(+10\) dBm to each of the sensors.

2. Press the (PRE)SET key twice.

 A window for each sensor is opened with (PRE)SET. The windows indicate the results (in dBm) from sensors A and B.

 ![Result windows / sensor A and B](image)

 Fig. 2-27: Result windows / sensor A and B

3. Select the "Measurement" menu and then select "Function..." for window 1 of this menu.

4. Open the "Function & Unit" dialog box.

 ![Function & Unit dialog box / ratio](image)

 Fig. 2-28: Function & Unit dialog box / ratio
In this dialog box, you can select the function used to calculate the result in the selected window. For example, "Ratio (A/B)" yields the quotient from the measured power values in channels A and B.

5. Select "Ratio (A/B)" from the drop-down list for the measurement function and close the drop-down list with \(\text{MENU} \).

6. Now, press the "Unit" softkey.

![Function & Unit dialog box / unit](image)

Fig. 2-29: Function & Unit dialog box / unit

The ratio of two powers is dimensionless – this is why only "dB", "Δ%" and "1" are available in the unit list. The symbol "Δ%" represents the difference between the power values in W, given in % (0 % means the powers in both channels are equal). The symbol "1" represents the quotient of the power values in W, i.e. not the log of a ratio.

![Result windows / sensor A and B](image)

Fig. 2-30: Result windows / sensor A and B

2.7 Graphically representing power versus time

In the "Trace & Statistics" mode, power versus time can be represented graphically as with an oscilloscope. If you wish to carry out measurements on signals with modulated power envelope (in the Burst or Timeslot mode), initially display-
Graphically representing power versus time

Getting Started 1144.1351.02 — 03

ing the signal in the Trace mode is always recommended. Stable triggering by the R&S NRP2 can more easily be accomplished in this mode.

Setting the "Trace & Statistics" mode.

1. Connect a power sensor of the R&S NRP-Z1x, R&S NRP-Z2x or R&S NRP-Z8x family to connector A of the R&S NRP2.

2. Apply an amplitude-modulated or pulsed signal having a modulation frequency or pulse frequency of approx. 1 kHz. The maximum level should be between −10 dBm and +10 dBm. A pulse with 250μs width, a period of 1ms, and 4dBm is used in the following example.

3. Press the (PRE)SET hardkey twice. A measurement window appears.

4. Change to the "Sensor" menu and select "Mode".

![Fig. 2-31: Sensor menu](image)

5. Switch to the "Trace & Statistics" mode.

![Fig. 2-32: Trace & Statistics measurement mode](image)

6. Close the "Mode" dialog box.

7. Close the "Sensor" menu.
The window is now in the "Trace & Statistics" display mode and shows the "Trace" page.

Fig. 2-33: Trace representation of a pulsed signal

The info panel at the bottom of the window shows all parameters relevant for the display.

Note: If you do not see a trace, the trigger threshold probably does not match the signal. In this case, a highlighted \square appears in the info panel of the trace window. Continue with the next step to set the trigger threshold.

Further measurement modes can be selected via the "Display" softkey. Based upon the trace display, gates, timeslots, and markers can be added for further analysis. Automatic pulse measurements can be carried out and a statistic analysis of the power envelope can be performed.

Settings for reliable triggering

1. Press the "Trigger" softkey in the trace display.
 The "Trigger" dialog box opens.

Fig. 2-34: Trigger dialog box, page 1

A dotted line indicates the trigger threshold in the diagram.
2. Select the "Normal" trigger mode.

3. Select internal triggering ("Source" = "Internal")

4. Set the positive trigger slope.

5. Set the trigger threshold in the "Level" entry field.

 Tip: A question mark in the info panel shows that the sensor doesn't trigger. In this case use the DEL/1TRIG hardkey in order to manually trigger the sensor once, and set the trigger settings accordingly.

6. Open the second page of the "Trigger" dialog box.

 Fig. 2-36: Trigger dialog box / page 2

7. Set the trigger delay time. If you set a positive value, the trigger event will become effective only after the selected period of time. The displayed trace will be shifted to the left.

 In the "Trace & Statistics" display, the physical and the delayed trigger time has been made visible in the form of small triangles, thus allowing an interactive adaptation of the "Delay" parameter to the signal, see chapter 3.6.2, "Special symbols", on page 62.

8. Enter a "Dropout" value.
The dropout time prevents the trigger system from being activated by signal excursions prior to the trigger event targeted.

9. Scroll to the third page of the "Trigger" dialog box.

![Trigger dialog box](image)

Fig. 2-37: Trigger dialog box / page 3

10. Set a "Hysteresis" value.
 Setting the trigger hysteresis to a value other than 0 dB will prevent triggering from occurring again until the measurement level has fallen below the trigger threshold by at least this value.

11. Define a "Holdoff" time.
 This parameter allows you to set the period of time during which further trigger events (measured from the last successful triggering) should be ignored.

For a detailed description of these parameters, refer to chapter "Instrument Functions" > "Data acquisition and parameters" > "Trigger Settings" of the operating manual.

2.8 Measuring average burst power (Burst Av mode)

An R&S NRP-Z1x, R&S NRP-Z2x(x), or R&S NRP-Z8x sensor is required for this measurement.

To perform a burst-average power-measurement, you need a pulsed RF signal. If you use an R&S NRP-Z1x or R&S NRP-Z2x(x) sensor, the pulse repetition frequency of the signal should not exceed 10 kHz.
Setting the burst mode.

1. Connect the power sensor to connector A on the R&S NRP2 and apply a pulsed signal with a level between –10 dBm and +10 dBm.

2. Press the (PRE)SET hardkey twice.
 A measurement window is now available.

3. Change to the "Sensor" menu and select "Mode".
 The "Mode" dialog box opens.

4. Select "Trace & Statistics".

5. In the trace mode check that the sensor detects a signal and reliably triggers. For information concerning reliable triggering see chapter 2.7, "Graphically representing power versus time", on page 44.

6. Change back to the "Sensor" menu and select "Burst Av" in the "Mode" dialog box.

![Fig. 2-38: Mode dialog box / Burst Av](image)

The burst mode parameters are displayed at the bottom of the dialog box. To exclude the pulse build-up and decay phases from the measurement, you can set the "Excluded from Start" and "...from End" parameters accordingly.
The parameter "Dropout" helps to reliably detect the end of modulated-signal bursts (e.g. NADC). With unmodulated pulses as in this case, it should be set to 0.

![Image of Burst Av result window]

Fig. 2-39: Burst av result window

For a detailed description of burst av power measurement, see the operating manual, chapter "Instrument Functions" > "Data acquisition and parameters" > "Setting the measurement mode" > "Measuring the average power of burst signals".

The power of burst can be measured also by means of timegates. In contrast to the burst mode which automatically detects the burst end, the length and position of the gate over time must be exactly defined.
3 Manual Operation

This chapter describes the controls, displays, etc, the screen layout and how to operate the R&S NRP2.

3.1 Keys

Keys on the front panel of the meter are used to manually operate the instrument. There are several groups of keys, each group having a different function.

For more information on keys...

According to their functionality, keys are described in several sections of the R&S NRP2 documentation. See:

- Front panel - keys (hard-, soft- and cursor), page 10 for information on the keys located at the front panel.
- Brief introduction to the operation - key handling, page 24, providing a brief introduction on how to operate.
- chapter "Instrument Functions" > "Main Settings" in the operating manual for information on the setup keys FREQ, (PRE)SET and ZERO.
- Softkey - manual operation > Menu handling, page 56
- Dialog boxes and their control elements, page 57

3.2 Screen layout

The R&S NRP2 screen displays the menu bar with the menu names and at least one or more measurement result window. The folded-out menu and the setting dialog boxes may overlay the result windows.
Result window

![Result window example](image)

Fig. 3-1: Screen layout / result window

The R&S NRP2 displays results in windows. A maximum of four windows can be displayed simultaneously on the screen. They are numbered 1 to 4. Windows have a title bar which contains the number (fixed) and, optionally, the window name (user-definable).

Windows do not have any control elements.

Menu bar

![Menu bar example](image)

Fig. 3-2: Screen layout / menu bar

A menu bar is always displayed at the top of the screen. It contains the menu names. The active menu is highlighted.

Selecting the active menu

![Active menu selection](image)

Fig. 3-3: Screen layout / selecting the active menu

Select the active menu:

- Press the right or left side of the topmost softkey one or more times. Alternatively you can also use the cursor keys ⇐ ⇒.
Folding menus out or in

Fig. 3-4: Screen layout / measurement menu folded out

Fold out/in the active menu:

1. Press the ↵ MENU hardkey to fold the menu out.
2. Press the ↵ MENU hardkey again to fold the menu in.

The menu also folds out automatically if another menu is selected.

To quickly allocate the associated softkey to a menu item, all the menus open directly next to the softkey bar, i.e. on the right side of the display; this is against usual PC convention with menus drop-down directly below the menu name.

Fig. 3-5: Screen layout / menus next to the rocker switches

See chapter 3.4, "Menu handling", on page 56 for more information on operating the menu functions.
Dialog boxes

Dialog boxes can be opened from the menus. The dialog boxes display a group of related parameters that can be set.

See chapter 3.5, "Dialog boxes and their controls", on page 57 for more information on operating the dialog box functions.

3.3 Menu layout

This section describes the menu provided by the R&S NRP2. The meter displays the menu names in the menu bar at the top of the screen. The menus are selected by the top-most rocker switch. The following figure shows the main menus of the R&S NRP2, which are then briefly summarized.

The menu functions are described in the operating manual, chapter "Instrument functions".
Sensor menu

All sensor settings can be made using the "Sensor" menu. The type and details of data acquisition can be specified with this menu.

Refer also to "Instrument Functions" > "Data acquisition and parameters" in the operating manual for a detailed description of the "Sensor" menu.

Windows menu

The "Windows" menu is used to configure windows and the result display in the windows.

Refer also to "Instrument Functions" > "Displaying measurement results" in the operating manual for a detailed description of the "Windows" menu.

Measurement menu

The details of postprocessing are summarized in the "Measurement" menu.

Refer also to "Instrument Functions" > "Configuring measurements" in the operating manual for a detailed description of the "Measurement" menu.

File menu

The "File" menu is used to handle the setup memories, window names and display information about errors.

Refer also to "Instrument Functions" > "Management of settings" in the operating manual for a detailed description of the "File" menu.

System menu

The "System" menu is used to handle general functions that are not specifically used to perform measurements, i.e. to configure the remote interfaces and I/O sockets, to provide information about the meter and the connected sensors, and to trigger test measurements.

Refer also to "Instrument Functions" > "System settings" in the operating manual for a detailed description.
3.4 Menu handling

The menus can contain up to eight menu items which are used to perform an action, open a dialog box or set a parameter.

Perform an action

Close

If the menu contains only one or two descriptive terms, an action is performed directly.

Use a hardkey to perform an action

(PRESET)

If the name of the action to be performed is shown in a wide orange field, you can start the action by pressing the hardkey of the same name, e.g. (PRE)SET in this case.

Open a dialog box

Mode...

If a menu item is followed by three dots “…”, it can be used to open a dialog box to set a variety of parameters.

Set parameters

Relative
Off On Reset

Parameter setting options are provided in the menu. The currently selected option is highlighted in orange. Select the option by pressing the left or right side of the associated rocker switch.

Use of softkeys with dual assignments

Close Expand

Some softkeys are assigned two menu items. One is selected by pressing the left-hand side of the rocker switch, the other, the right-hand side.

The two menu items are separated by a vertical line.
3.5 Dialog boxes and their controls

Dialog boxes contain check boxes, option fields, editing fields and drop-down lists as control elements. They are activated using the appropriate rocker switch to their right. If two control elements are positioned side by side, the element on the left is operated with the left-hand side of the rocker switch and the element on the right with the right-hand side of the rocker switch.

3.5.1 Title bar

Dialog boxes have a title bar which displays the name of the dialog box and the symbol which is a reminder that the dialog box can be closed with the MENU hardkey.

Settings made in dialog boxes are immediately set on the R&S NRP2 - in other words you do not need to close the dialog box to activate the settings in the box.

3.5.2 Dialog boxes with tabs

Channel-specific settings are made in a special page in a super-ordinate dialog box. In the top row of the dialog box, there are tabs which you can use to switch between pages.

Channels which do not have a sensor connected and channels that have not been installed are shown in gray and cannot be selected.

3.5.3 Check boxes

Check boxes are used to activate and deactivate functions. You can toggle between the two states by pressing the appropriate softkey.
3.5.4 Option fields

Option fields contain groups of mutually exclusive operating modes.

When you press the left-hand side of the rocker switch, the next option on the left is selected. When you press the right-hand side of the rocker switch, the next option on the right is selected.

In the "System I/O" dialog box, option fields are assigned to only one side of a rocker switch. It is therefore only possible to scroll through in one direction.

3.5.5 Editing fields

Editing fields are used to enter or modify numbers and text.

The editor is activated by pressing the appropriate rocker switch.

Editing can be performed in overwrite mode, indicated by the marked character being in inverse video. Modifications can be made either with the ↑ ↓ cursor keys or numeric/digit softkeys which are provided in a digit or letter panel when the editor is activated.

The ← → cursor keys are used to select the digit to be edited.

3.5.6 Editing fields (cont.)

In the editing fields for quantities with units, the ← → cursor keys can be used to select the unit too; the ↑ ↓ cursor keys are used to edit it. Usually, the digit panel also contains a unit softkey which you can use to change the unit whenever you want.
If you want to make a completely new entry, the whole field can be cleared with the DEL/1TRIG hardkey. In the insert mode, you can enter digits and/or letters.

Any changes you make to a field can be confirmed with the MENU hardkey. When this hardkey is pressed, the new value is subjected to a validity check. If the check discovers an error, a warning message is output.

You can quit the editor by pressing the ESC hardkey; this leaves the old values unchanged. Any warning messages are cleared.

To set the maximum or minimum value permitted for a parameter, first move the insertion mark to the left edge of the entry field by using the ⇨ key. Then press the ⇧ key to set the maximum permissible value or the ⇩ key to set the minimum permissible value.

3.5.7 Editing fields of the Filter, Range and Trigger dialog boxes

The Filter, Range and Trigger dialog boxes are designed such that the result windows are still visible.

If you edit a value in a Filter, Range and Trigger dialog box using the cursor keys ⇧, the new value is accepted immediately. This feature allows you to quickly assess the effect of value change and, thus, to perform interactive adjustment of settings.

If you enter a new value with the digit/letter panel (see below), the new value has to be confirmed before it is accepted. The symbol ↓ appears above the editing field to indicate that the new value is not accepted until you confirm it with the MENU hardkey.
3.5.8 Drop-down lists

Drop-down lists are used to select an item from a list of predetermined values. When the drop-down list is activated, the list “folds out” upwards or downwards.

The up/down cursor keys, or one of the rocker switches next to the list, are used to select items from folded out pop-up menus. Confirm the selection with the \texttt{MENU} hardkey or reject with the \texttt{ESC} hardkey.

3.5.9 Digit and letter panels

Panels which are displayed when an editing field is activated (see above) are used to enter digits, letters and units.

Entering letters with the letter panel is like entering letters on a phone keypad. "Caps" is used to select upper case for the next letter.

To edit the Trigger Delay, you must select the unit by means of the cursor keys (see above).
3.6 Display windows

3.6.1 Window sizes and types

Results are displayed in the main section of the screen in windows. Windows come in three sizes: half height, quarter height and full height. In windows, measurement results are displayed digitally, in a combined digital and analog mode, and graphically.

See "Instrument Functions" > "Displaying measurement results" for instructions on selecting these modes.

"Dig" window, full height

"Graph" trace window, full height

"Dig" window, half height

"Graph" trace window, half height
Display windows

"D&A" window, full height

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>System</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A (T’slot 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 Auto</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.000 dB</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-29.21 dBm</td>
<td></td>
</tr>
</tbody>
</table>
```

"D&A" window, half height

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>System</td>
</tr>
<tr>
<td></td>
<td>1.54 dBm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-90 dBm</td>
<td>30 dBm</td>
</tr>
</tbody>
</table>
```

"Dig" window, quarter height

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>41.14 dBm</td>
<td></td>
</tr>
</tbody>
</table>
```

"D&A" window, quarter height

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

You can expand all opened windows to full height by activating the "Expand" function from the "Windows" menu. In this state, the full-height windows can be displayed consecutively using the window "1 2 3 4" menu item. The opened windows can be reduced to their previous sizes with the "Arrange" menu item. Otherwise, it is not possible to change the size of the windows – the window size is determined by the number of windows.

3.6.2 Special symbols

Table 3-1: Special symbols

<table>
<thead>
<tr>
<th>Window</th>
<th>Auxiliary values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window number</td>
<td>20.872 dB</td>
</tr>
<tr>
<td>Window name</td>
<td>Max-Min</td>
</tr>
<tr>
<td>Confirm with the MEN key</td>
<td>Max</td>
</tr>
<tr>
<td>Min</td>
<td>No. of measurement values</td>
</tr>
</tbody>
</table>

Display values

<table>
<thead>
<tr>
<th>A</th>
<th>1.0000 GHz</th>
<th>Frequency in the primary and secondary channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>1.0000 GHz</td>
<td></td>
</tr>
</tbody>
</table>

Getting Started 1144.1351.02 — 03
<table>
<thead>
<tr>
<th>Measurement function</th>
<th>Auxiliary values</th>
<th>Trigger</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/B</td>
<td>Measurement function</td>
<td></td>
</tr>
<tr>
<td>A/B Rel</td>
<td>Relative measurement active</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>A</td>
<td>Timeslot or gate measurement</td>
<td>Mean value</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correction functions</td>
<td></td>
<td>Trigger</td>
</tr>
<tr>
<td>✰</td>
<td>Duty cycle correction ON</td>
<td></td>
</tr>
<tr>
<td>△</td>
<td>Offset correction ON</td>
<td></td>
</tr>
<tr>
<td>1□2</td>
<td>Twoport correction ON (S-parameter)</td>
<td>Trigger event missing</td>
</tr>
<tr>
<td>Filter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>Averaging filter</td>
<td></td>
</tr>
<tr>
<td>4 Auto</td>
<td>Filter size with auto-filter (normal mode) or for manual mode</td>
<td></td>
</tr>
<tr>
<td>4 Man</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9000 dB S/N</td>
<td>Noise component with auto-filter in "Fixed Noise" mode</td>
<td></td>
</tr>
<tr>
<td>S/N</td>
<td>Noise ratio exceeded</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limit Fail</td>
<td>Over limit</td>
<td></td>
</tr>
</tbody>
</table>

Display windows

Getting Started 1144.1351.02 — 03 63
Table 3-2: Symbols for pulse parameters

<table>
<thead>
<tr>
<th>Pulse Time Parameter</th>
<th>Pulse Power Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pulse Width</td>
</tr>
<tr>
<td></td>
<td>Duty Cycle</td>
</tr>
<tr>
<td></td>
<td>Rise Time</td>
</tr>
<tr>
<td></td>
<td>Start Time</td>
</tr>
<tr>
<td></td>
<td>Pulse Period</td>
</tr>
<tr>
<td></td>
<td>Pulse Off Time</td>
</tr>
<tr>
<td></td>
<td>Fall Time</td>
</tr>
<tr>
<td></td>
<td>Stop Time</td>
</tr>
<tr>
<td></td>
<td>Pulse Top</td>
</tr>
<tr>
<td></td>
<td>Trace Avg</td>
</tr>
<tr>
<td></td>
<td>Trace Min</td>
</tr>
<tr>
<td></td>
<td>Pulse Base</td>
</tr>
<tr>
<td></td>
<td>Trace Peak</td>
</tr>
<tr>
<td></td>
<td>Pos. Overshoot</td>
</tr>
<tr>
<td></td>
<td>Neg. Overshoot</td>
</tr>
</tbody>
</table>
Table 3-3: Symbols for time slot measurement

<table>
<thead>
<tr>
<th>Display windows</th>
<th>Time slot start of measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time slot length of measurement</td>
</tr>
<tr>
<td></td>
<td>Time slot end of measurement</td>
</tr>
</tbody>
</table>
Index

Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 TRIG</td>
<td>62</td>
</tr>
<tr>
<td>A</td>
<td>62</td>
</tr>
<tr>
<td>A/B</td>
<td>62</td>
</tr>
<tr>
<td>B</td>
<td>48</td>
</tr>
<tr>
<td>C</td>
<td>29</td>
</tr>
<tr>
<td>Cont Av mode</td>
<td>29</td>
</tr>
<tr>
<td>D</td>
<td>62</td>
</tr>
<tr>
<td>Display symbols</td>
<td>62</td>
</tr>
<tr>
<td>E</td>
<td>62</td>
</tr>
<tr>
<td>Ext</td>
<td>62</td>
</tr>
<tr>
<td>F</td>
<td>8</td>
</tr>
<tr>
<td>Front panel</td>
<td>8</td>
</tr>
<tr>
<td>Function test</td>
<td>19</td>
</tr>
<tr>
<td>G</td>
<td>23</td>
</tr>
<tr>
<td>Getting started</td>
<td>23</td>
</tr>
<tr>
<td>Graphically representing power versus time</td>
<td>44</td>
</tr>
<tr>
<td>L</td>
<td>62</td>
</tr>
<tr>
<td>LIMIT FAIL</td>
<td>62</td>
</tr>
<tr>
<td>M</td>
<td>51</td>
</tr>
<tr>
<td>Manual operation</td>
<td>51</td>
</tr>
<tr>
<td>Measuring av. burst power (Burst Av mode)</td>
<td>48</td>
</tr>
<tr>
<td>Measuring average power (Cont Av mode)</td>
<td>29</td>
</tr>
<tr>
<td>N</td>
<td>22</td>
</tr>
<tr>
<td>Nonvolatile RAM is empty or failure of EEPROM occurred</td>
<td>22</td>
</tr>
<tr>
<td>O</td>
<td>22</td>
</tr>
<tr>
<td>ON state</td>
<td>22</td>
</tr>
<tr>
<td>Symbols on display</td>
<td>62</td>
</tr>
<tr>
<td>Σ</td>
<td>62</td>
</tr>
<tr>
<td>Option</td>
<td>14</td>
</tr>
<tr>
<td>R&S NRP-B1/B7, sensor check source</td>
<td>14</td>
</tr>
<tr>
<td>R&S NRP-B2, second sensor input (B)</td>
<td>14</td>
</tr>
<tr>
<td>R&S NRP-B5, 3rd and 4th sensor inputs</td>
<td>17</td>
</tr>
<tr>
<td>R&S NRP-B6, rear panel sensor inputs A and B</td>
<td>17</td>
</tr>
<tr>
<td>P</td>
<td>27</td>
</tr>
<tr>
<td>Preset</td>
<td>27</td>
</tr>
<tr>
<td>P</td>
<td>5</td>
</tr>
<tr>
<td>Putting into operation</td>
<td>5</td>
</tr>
<tr>
<td>unpacking the meter</td>
<td>6</td>
</tr>
<tr>
<td>R</td>
<td>15</td>
</tr>
<tr>
<td>Rear panel</td>
<td>15</td>
</tr>
<tr>
<td>Requirements</td>
<td>23</td>
</tr>
<tr>
<td>RUN</td>
<td>62</td>
</tr>
<tr>
<td>S</td>
<td>62</td>
</tr>
<tr>
<td>S/N</td>
<td>62</td>
</tr>
<tr>
<td>S</td>
<td>42</td>
</tr>
<tr>
<td>Setting measurement functions</td>
<td>42</td>
</tr>
<tr>
<td>Special symbols</td>
<td>62</td>
</tr>
<tr>
<td>Start display</td>
<td>19</td>
</tr>
<tr>
<td>booting</td>
<td>19</td>
</tr>
<tr>
<td>function test</td>
<td>19</td>
</tr>
<tr>
<td>welcome screen</td>
<td>19</td>
</tr>
<tr>
<td>Starting the meter</td>
<td>18</td>
</tr>
<tr>
<td>STOP</td>
<td>62</td>
</tr>
<tr>
<td>Switching on/off</td>
<td>18</td>
</tr>
<tr>
<td>ON state</td>
<td>22</td>
</tr>
<tr>
<td>Symbols on display</td>
<td>62</td>
</tr>
<tr>
<td>Σ</td>
<td>62</td>
</tr>
<tr>
<td>U</td>
<td>6</td>
</tr>
<tr>
<td>Unpacking the meter</td>
<td>6</td>
</tr>
<tr>
<td>W</td>
<td>37</td>
</tr>
<tr>
<td>Window handling</td>
<td>37</td>
</tr>
<tr>
<td>Window size and type</td>
<td>61</td>
</tr>
<tr>
<td>Z</td>
<td>27</td>
</tr>
<tr>
<td>Zeroing</td>
<td>27</td>
</tr>
</tbody>
</table>