This user manual describes the R&S®ELEKTRA EMI Test Software, order no. 5601.0030.02, for electromagnetic interference (EMI) tests.
Software version V3.00 and later

The software contained in this product uses several valuable open source software packages. For information, see the "Open Source Acknowledgment" document, which is available for download from the R&S ELEKTRA product page at "www.rohde-schwarz.com/product/elektra" > "Software".
Rohde & Schwarz would like to thank the open source community for their valuable contribution to embedded computing.
Contents

1 Preface .. 7
 1.1 Key Features .. 7
 1.2 EMI Standards ... 7
 1.3 Documentation Overview .. 10

2 Software Installation ... 12
 2.1 System Requirements .. 12
 2.2 Software Installation Procedure ... 13
 2.3 License Dongle .. 16
 2.3.1 Using the Smart Card Reader ... 17
 2.4 Configuration Wizard for Creating Basic Data ... 20
 2.4.1 Recovering Data ... 23
 2.5 Language Selection ... 23
 2.6 Migration Tool - XML Data Converter ... 24
 2.7 Network Firewall Settings ... 26
 2.8 Modify, Repair or Remove Installation .. 27

3 Getting Started .. 31
 3.1 Graphical User Interface ... 33
 3.2 Common Action Buttons ... 35
 3.3 Touch Operation ... 40
 3.4 Performing a Test .. 41
 3.5 Test Results .. 42
 3.6 Verdict .. 43
 3.6.1 Editing the Verdict .. 44
 3.6.2 Unexpected Verdict ... 45
 3.7 Reporting .. 45

4 Configuration .. 47
 4.1 Home Menu .. 47
 4.2 Dashboard .. 48
 4.3 Tests ... 49
 4.3.1 Configuring Tests .. 50
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.2 Configuring Test Charts</td>
<td>52</td>
</tr>
<tr>
<td>4.3.2.1 Chart</td>
<td>53</td>
</tr>
<tr>
<td>4.3.2.2 Trace</td>
<td>57</td>
</tr>
<tr>
<td>4.3.2.3 Marker</td>
<td>58</td>
</tr>
<tr>
<td>4.3.3 Configuring Test Tables</td>
<td>62</td>
</tr>
<tr>
<td>4.4 Test Templates</td>
<td>66</td>
</tr>
<tr>
<td>4.4.1 General Settings</td>
<td>71</td>
</tr>
<tr>
<td>4.4.2 Measurement Flow</td>
<td>75</td>
</tr>
<tr>
<td>4.4.3 Flow Details</td>
<td>85</td>
</tr>
<tr>
<td>4.4.4 Test Information</td>
<td>98</td>
</tr>
<tr>
<td>4.4.5 Actions</td>
<td>99</td>
</tr>
<tr>
<td>4.5 Report Templates</td>
<td>103</td>
</tr>
<tr>
<td>4.5.1 Configuring Report Templates</td>
<td>103</td>
</tr>
<tr>
<td>4.6 Device List</td>
<td>105</td>
</tr>
<tr>
<td>4.6.1 Action Buttons in the Device List</td>
<td>107</td>
</tr>
<tr>
<td>4.6.2 Device Properties</td>
<td>117</td>
</tr>
<tr>
<td>4.6.3 General Properties</td>
<td>118</td>
</tr>
<tr>
<td>4.6.4 LISN</td>
<td>119</td>
</tr>
<tr>
<td>4.6.4.1 Details</td>
<td>122</td>
</tr>
<tr>
<td>4.6.4.2 Measurement Correction</td>
<td>123</td>
</tr>
<tr>
<td>4.6.4.3 Functional Check</td>
<td>124</td>
</tr>
<tr>
<td>4.6.5 Receiver</td>
<td>124</td>
</tr>
<tr>
<td>4.6.5.1 Connection Properties</td>
<td>125</td>
</tr>
<tr>
<td>4.6.6 Signal Path</td>
<td>127</td>
</tr>
<tr>
<td>4.6.6.1 Measurement Correction</td>
<td>127</td>
</tr>
<tr>
<td>4.6.7 TEM Waveguide</td>
<td>127</td>
</tr>
<tr>
<td>4.6.7.1 Measurement Correction</td>
<td>128</td>
</tr>
<tr>
<td>4.6.8 Transducer</td>
<td>130</td>
</tr>
<tr>
<td>4.6.8.1 Transducer Type</td>
<td>130</td>
</tr>
<tr>
<td>4.6.8.2 Measurement Correction</td>
<td>131</td>
</tr>
<tr>
<td>4.7 Tables</td>
<td>132</td>
</tr>
<tr>
<td>4.7.1 Limit Lines</td>
<td>135</td>
</tr>
<tr>
<td>4.7.2 Attenuation Tables</td>
<td>136</td>
</tr>
</tbody>
</table>
4.7.3 Frequency List...137
4.7.4 Transducer Correction...137
4.8 Tools...138
4.8.1 Export..139
4.8.2 Import..140
4.8.3 Configuration Wizard...141
4.8.4 Unit Converter...141
4.9 Administration...142
4.9.1 Backup..142
4.9.2 Graphics Settings..145
4.9.3 Report Settings...147
4.9.4 License Management..149
4.9.5 Log Settings..150
4.9.6 General Settings...152

5 Measurement Basics..154
5.1 Fundamental Principles..154
5.2 Test Matrix..154
5.3 Detectors..156
5.4 Attenuation in Signal-Paths...157
5.4.1 EMI Measurement Correction...157

6 Special Software Features..159
6.1 Handling Changed Items..159
6.2 Dashboard Search..159
6.3 Searches..160
6.4 Arranging Elements in Tests..162
6.4.1 Charts and Tables...162
6.4.2 Dialogs..163
6.4.3 Cross Icons...164

7 Running Tests..166
7.1 EMI Tests..167
7.1.1 Automated Measurement ...168
7.1.2 Interactive Measurement ..169
7.2 Using the Test Control Elements
7.2.1 Test Control Top Menu
7.2.2 Test Control Toolbar
7.2.3 Test Components
7.2.4 Measurement Flow Control
7.2.5 Accessories
7.2.5.1 LISN
7.2.5.2 TEM Waveguide
7.2.5.3 Triple Loop
7.2.6 Frequency Control
7.2.7 Parameter
7.2.8 Measurements
7.2.9 Test Validation

7.3 Test Result Tables
7.3.1 Merged Overview Results
7.3.2 Editing Critical Points
7.3.3 Margin

7.4 Test Result Graphics

8 Measurement Examples

9 Getting Help
9.1 Embedded Help
9.2 Log Information
9.3 Product Information
9.4 R&S ELEKTRA on the Internet
9.5 Support
9.6 Training

Glossary: Frequently Used Terms and Abbreviations
Index
1 Preface

R&S ELEKTRA is the Rohde & Schwarz system software for electromagnetic interference measurements (EMI or "emission" tests).

This chapter introduces key features of the EMI Test Software, refers to the applicable test standards and provides an overview of the available documentation.

- Key Features ... 7
- EMI Standards .. 7
- Documentation Overview ... 10

1.1 Key Features

R&S ELEKTRA is optimized for 64-bit Microsoft Windows operating systems, especially Windows 10 or later versions, but also works with Windows 7 or Windows 8.

It is designed to act as a virtual instrument.

The software combines the convenience of an intuitive graphical user interface with maximum flexibility. It includes touchscreen and remote operation, both for controlling test instrumentation and for running EMI tests.

R&S ELEKTRA provides high measurement speeds by using multi-threading technology. Enhanced data transfer with next generation EMI receivers enables handling the extended data volume of those receivers.

Among others, R&S ELEKTRA provides the following key features:

- Graphical user interface (GUI) with optional Touch Operation
- Template-based test preparation, measurement and report generation
- Storage of test results
- Simple selection of test templates, tables and devices, supported by an advanced search functionality
- Remote access to devices via VISA interface using LAN or GPIB
- Dynamic application extensions and device drivers
- Automated device search dialog
- Compatible with international harmonized EMI standards, guidelines & directives
- Enhanced usability for beginners and customer-specific solutions

1.2 EMI Standards

R&S ELEKTRA enables measuring electromagnetic interference in compliance with all relevant EMI standards worldwide. For the currently supported standards, refer to the data sheet.
It is not within the scope of this manual to reproduce those standards. Instead, obtain original information on the various standards, directives, rules, regulations, proceedings and associated publications, for example at the following websites:

- **CISPR / IEC / ISO** (international)
- **EN / CENELEC / ETSI** (Europe), **FCC / CFR** (USA), **CCC** (China), ...
- **MIL-STD / EDSTAR / VG / DEF STAN / GAM** (military)
- **RTCA** (aviation / airborne), **BSI** (wind turbines), **DIN** (special interest), ...

Among the standards listed above, CISPR (or the equivalent EN standards in Europe, see Table 1-1) are especially relevant for commercial applications. The US standard MIL-STD-461 is pivotal for military and aerospace applications (see Table 1-2).

Table 1-1: Overview of CISPR / EN standards

<table>
<thead>
<tr>
<th>Publication</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISPR 10</td>
<td>CISPR organization, rules and procedures</td>
</tr>
<tr>
<td>CISPR 11, EN 55011</td>
<td>Industrial, scientific and medical (ISM) equipment containing a radio-frequency generator: Emission</td>
</tr>
<tr>
<td>CISPR 12, EN 55012</td>
<td>Vehicles, motor boats and internal combustion engines: Emission - protection of off-board receivers</td>
</tr>
<tr>
<td>CISPR 13, EN 55013</td>
<td>Sound / television broadcast receivers and associated equipment: Emission (see CISPR 32)</td>
</tr>
<tr>
<td>CISPR 14-1, EN 55014-1</td>
<td>Household appliances, portable electrical tools and similar apparatus, part 1: Emission</td>
</tr>
<tr>
<td>CISPR 14-2, EN 55014-2</td>
<td>Household appliances, portable electrical tools and similar apparatus, part 2: Immunity</td>
</tr>
<tr>
<td>CISPR 15, EN 55015</td>
<td>Electrical lighting and similar equipment, for example fluorescent lamps: Emission</td>
</tr>
<tr>
<td>CISPR 16-1, EN 55016-1</td>
<td>Specification for EMI/EMS measurement apparatus and methods, part 1: Apparatus</td>
</tr>
<tr>
<td>CISPR 16-2, EN 55016-2</td>
<td>Specification for EMI/EMS measurement apparatus and methods, part 2: Methods</td>
</tr>
<tr>
<td>CISPR 16-3, EN 55016-3</td>
<td>Specification for EMI/EMS measurement apparatus and methods, part 3: Reports</td>
</tr>
<tr>
<td>CISPR 16-4, EN 55016-4</td>
<td>Specification for EMI/EMS measurement apparatus and methods, part 4: Uncertainties</td>
</tr>
<tr>
<td>CISPR 17, EN 55017</td>
<td>Measurement methods for the characteristics of suppression components, for example passive radio interference filters</td>
</tr>
<tr>
<td>CISPR 18, EN 55018</td>
<td>Overhead power lines and high-voltage equipment: Emission</td>
</tr>
<tr>
<td>CISPR 20, EN 55020</td>
<td>Sound / television broadcast receivers and associated equipment: Immunity</td>
</tr>
<tr>
<td>CISPR 22, EN 55022</td>
<td>Information technology equipment (ITE): Emission (see CISPR 32)</td>
</tr>
<tr>
<td>CISPR 24, EN 55024</td>
<td>Information technology equipment (ITE): Immunity</td>
</tr>
</tbody>
</table>
Detailed guidance for users of the CISPR standards can be found on the Internet.

In contrast with civilian applications, testing to MIL-STD-461 is more expensive due to wider frequency ranges, higher EMS power levels, lower limits and the required higher sensitivity. It is typically also used for aerospace applications.

The following table shows an excerpt of MIL-STD-461 regarding EMI (emission) tests.

<table>
<thead>
<tr>
<th>Test type</th>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducted emission</td>
<td>CE101</td>
<td>Power leads, 30 Hz to 10 kHz</td>
</tr>
<tr>
<td></td>
<td>CE102</td>
<td>Power leads, 10 kHz to 10 MHz</td>
</tr>
<tr>
<td></td>
<td>CE106</td>
<td>Antenna terminal, 10 kHz to 40 GHz</td>
</tr>
<tr>
<td>Radiated emission</td>
<td>RE101</td>
<td>Magnetic field, 30 Hz to 100 kHz</td>
</tr>
<tr>
<td></td>
<td>RE102</td>
<td>Electric field, 10 kHz to 18 GHz</td>
</tr>
<tr>
<td></td>
<td>RE103</td>
<td>Antenna spurious and harmonic outputs, 10 kHz to 40 GHz</td>
</tr>
</tbody>
</table>

The requirements (CE101 through RE103) specified in Table 1-2 are assigned to the various areas of application as shown in Table 1-3.
Table 1-4: History of MIL-STD-461 revisions

<table>
<thead>
<tr>
<th>Publication</th>
<th>Year issued</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIL-STD-461C</td>
<td>1986</td>
<td>Specific description of measurements and limits, as well as measurement equipment and methods. Note that using the most recent revision of MIL-STD-461 is not necessarily mandatory. The applicable revision is typically agreed upon in a commercial contract between producer and procuring authority.</td>
</tr>
<tr>
<td>MIL-STD-461D</td>
<td>1993</td>
<td></td>
</tr>
<tr>
<td>MIL-STD-461E</td>
<td>1999</td>
<td></td>
</tr>
<tr>
<td>MIL-STD-461F</td>
<td>2007</td>
<td></td>
</tr>
<tr>
<td>MIL-STD-461G</td>
<td>2015</td>
<td></td>
</tr>
</tbody>
</table>

The former MIL-STD-462D (measurement equipment and methods, issued 1993) was canceled in 1999. From then on, MIL-STD-461 is referenced, as specified above.

1.3 Documentation Overview

The documentation of R&S ELEKTRA comprises of:

- This user manual, which is available both in PDF format and in the context-sensitive help system embedded in the software. It provides explanations, step-by-step procedures, figures and examples to support users during their first experience with the software, from installation and configuration to the various EMI measurements.

- The website www.rohde-schwarz.com/product/elektra that provides
 - Key facts, features and options of R&S ELEKTRA
 - Rohde & Schwarz contacts for information, quotes and demos
 - Brochures and data sheets
 - Technical documentation (manuals and embedded help)
 - Application sheets, tips and tricks for R&S ELEKTRA
 - The current software version and release notes
 - News and information on software updates
 - Answers for frequently asked questions (FAQ)
 - Related products
Screenshots
Sample screenshots in this documentation are used to illustrate as much as possible of the functions provided by R&S ELEKTRA and of potential interdependencies between parameters. Note that:

- The values in these screenshots do not necessarily represent realistic test situations.
- The values must not at all be considered as recommended by Rohde & Schwarz.
- The screenshots shown can differ, depending on your particular equipment and configuration.
2 Software Installation

This chapter contains information on how to install R&S ELEKTRA, downloaded from www.rohde-schwarz.com/software/elektra. The installation of several different versions of R&S ELEKTRA on one local computer is possible.

Existing data sets of other software packages are not affected by R&S ELEKTRA. If any version of R&S ES-SCAN has previously been installed, it is not required to uninstall it before installing R&S ELEKTRA.

When the System Requirements are provided, R&S ELEKTRA can be installed: Follow the procedure described in Chapter 2.2, "Software Installation Procedure", on page 13. A wizard in the setup file ELEKTRASetup_Vx.xx.exe guides the installation.

- System Requirements ... 12
- Software Installation Procedure .. 13
- License Dongle ... 16
- Configuration Wizard for Creating Basic Data 20
- Language Selection .. 23
- Migration Tool - XML Data Converter 24
- Network Firewall Settings ... 26
- Modify, Repair or Remove Installation .. 27

2.1 System Requirements

Before installing R&S ELEKTRA, make sure that the computer meets the following minimum system requirements:

- Microsoft-Windows-based PC with Intel Core i5 processor
 or
 Laptop / tablet PC with Intel Core i7 processor
- Clock rate: at least 2 GHz (recommended)
- Memory: >8 GByte RAM recommended
- Storage: 250 GByte hard drive, solid-state disk (SSD) recommended
 Free storage: >50 GByte free drive space recommended
- One of the following 64-bit operating systems:
 - Windows 7
 - Windows 10 (recommended)
- Administrator access rights (only for software installation)
- Super VGA monitor, display resolution of at least 1280 x 720 pixels, 65536 colors
- USB 2.0 interface
- 100 Mbit LAN interface

If your computer does not meet these requirements, the performance of the software can be impaired.
R&S VISA for control of local area networks (LAN) is included in the installation, but you can use any VISA version already available on your computer (optionally supporting GPIB, too).

If you install the software on a tablet computer and you need more USB ports than it provides, you can connect an external USB hub that offers more USB ports. For connecting your tablet computer to the Ethernet, consider using a wireless LAN connection (Wi-Fi).

2.2 Software Installation Procedure

To install the software on a local computer or within a computer network:

1. Terminate other active programs (recommended). If any other instances of R&S ELEKTRA are active, be sure to terminate them.

4. Navigate to your download directory.

5. Double-click `ELEKTRASetup_Vx.xx.exe`.

6. Wait for the R&S ELEKTRA installation wizard to launch.

7. The wizard automatically checks the installation prerequisites:
 - Microsoft .NET Framework 4.6.2
 - Visual C++ 2010 SP1 Redistributable x64
 - Visual C++ 2012 Redistributable x64
 - Firebird Server 3.0 (64-bit)
 - R&S License Key Manager
 - R&S License Server
 - R&S Smart Card Minidriver
 - R&S VISA
 - VISA Shared Components

 If any of these programs in the required versions are missing on the computer, the wizard installs them in a background process. Depending on the installation environment, the wizard can bring up additional messages. In this case, proceed as indicated.

8. The installation wizard brings up the following dialog:
To continue the installation, the software expects you to agree to the license terms and conditions.
If you know the content and agree with it, activate the checkbox, click "INSTALL" and proceed with step 11.

9. Otherwise click the link for "Licenses terms and conditions" to read them.

The following "End User License Agreement" (EULA) comes up:

If you wish to print the license text, click the printer icon on top of the text.

10. To continue the installation, select "Accept and Install".

11. Wait while the wizard executes the installation of R&S ELEKTRA:
12. If the wizard finds one or more previous installations of R&S ELEKTRA, it prompts you with the following dialog:

![Figure 2-1: Dialog for installing a clean database (left) or copying data from an existing database]

Select your preference as in the figure above.

The wizard either installs a clean new database or copies existing data into the database of your new installation.

13. Click "Next" to proceed without or with copying data from a previous database, according to your selection.

14. In the final setup dialog, select how to complete the installation:
Select one of the following actions:

- Open the "Release Notes" document.
- "Run" the software.
- "Finish" the installation.

Once the Software Installation is completed, double-click the new desktop icon to start R&S ELEKTRA:

2.3 License Dongle

R&S ELEKTRA is protected by encryption. The software can only be started with licenses installed, if the [R&S EMCPC] license dongle is connected to the computer. This dongle is a mini smart card reader within a USB flash drive that contains a license smart card. It unlocks the license that has been activated for your R&S ELEKTRA serial number.
If your computer has a smart card reader slot, you can directly insert the license smart card into this slot, without using the dongle, as described in Chapter 2.3.1, “Using the Smart Card Reader”, on page 17.

To start R&S ELEKTRA with your set of licenses, connect the license dongle to a USB port of your computer.

If you start R&S ELEKTRA without the license dongle connected, the software can only run in demo mode. The following dialog comes up:

![Demo mode message, if there is a missing license dongle](image)

In this dialog, you can select how to proceed:

- **"OK"**: Run R&S ELEKTRA without licenses, hence, in demo mode. No physical measurements can be made, but you can execute tests with simulated data.
- **"Close"**: Shut down the software.
- **"Restart"**: Using this button is the easiest procedure, if you have not yet connected the license dongle, but the dialog just reminded you of doing it now. Insert the license dongle to a USB port of your computer, then click "Restart". The software shuts down and automatically restarts.

With the license dongle connected, the "Demo Mode" dialog does not come up. Instead, the software starts with the licenses available on the dongle, see License Management.

2.3.1 Using the Smart Card Reader

The R&S ELEKTRA software requires a smart card containing the software license to be connected to the PC when you are using the software. The R&S EMCPC license dongle that contains the software license consists of a smart card and a USB dongle. The smart card can be used in the supplied USB dongle or in a smart card reader. The R&S EMCPC license dongle is available as a separate product and must be ordered in addition to the software.

You can connect the smart card in two ways.

- **Connect the smart card in SIM format.**
 To connect the smart card in SIM format, use the USB smart card reader (dongle) provided with the smart card.
- **Connect the smart card in its full format.**
 To connect the smart card in full format, an interface compatible to the card format is required.
The following devices are able to read the smart card in full format.

- Smart card reader integrated in a keyboard, notebook, or in a desktop PC (e.g. OMNIKEY)
- Smart card reader connected to the computer via serial bus or USB (e.g. OMNIKEY)
- USB reader connected to a LAN-to-USB converter to distribute the license via the network (e.g. DIGI AnywhereUSB/2)

Licensing support

If you have any difficulties with the licensing system, support is only assured when you are using the R&S EMPCPC license dongle.

Using the R&S EMPCPC USB smart card reader (dongle)

1. The R&S EMPCPC license dongle consists of a smart card in full format and a USB smart card reader (dongle).

2. Break out the smart card in SIM format.
3. Twist out the upper part of the smart card reader.

4. Insert the smart card with the chip facing upwards and the angled corner facing the USB dongle, whose "Rohde & Schwarz" label is also facing upwards.

Insert the smart card as far as possible.

5. Twist the smart card reader back into its original state.

The smart card reader is ready for use on any USB interface.

Drivers

When you connect the reader to the computer, MS Windows automatically installs the necessary drivers. If not, you can install the drivers manually from the Internet site of the manufacturer at http://support.identiv.com/utrust-token-standard/.
Problems during login due to smart card reader

When the smart card reader is connected, the operating system may falsely identify the smart card as a medium to perform a login procedure on the PC. In this case, the windows lock screen is displayed instead of a login window.

You can solve this issue by editing the "DisableCAD" ("Disable Ctrl-Alt-Del") registry key in the system registry. This key is located at HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\policies\system.

Administration rights

Security policies of your network environment might prevent you from editing the system registry or installing drivers. Contact your IT administration in that case.

To change the registry key

1. From the Windows "Start Menu", select the "Run" item.
 (Windows 10: "Start > All applications > Windows System > Run")
2. Enter regedit in the dialog box to open the system registry.
3. Look for HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\policies\system.
4. Set the value of DisableCad to 0.

2.4 Configuration Wizard for Creating Basic Data

In the original delivery state of R&S ELEKTRA, the newly installed database is empty. To prepare some basic data for tests, you can run a special wizard tool at any time: The "Configuration Wizard" is designed to generate only dedicated content for your use cases, to avoid overstuffing the database with unnecessary data. Such a customer-specific software setup facilitates the process of getting started with the required EMI tests.

Avoid overstuffing the database

We recommend not to create more data than necessary. Here is one reason for limiting the number of entries that you let the wizard create: With more data subsets, deleting device entries from the Device List becomes very complex due to interdependencies between related entries. For example, test templates that have references to specific devices prevent deleting these device entries.

Instead, you can always come back to the wizard and let it create additional entries that you may require later.
Depending on your test scenarios, instruct the wizard to load sets of suitable data into the database. This data includes the appropriate limit lines, device drivers, specific test templates for the applicable standards, and the like.

The "Configuration Wizard" is available as follows:

- From any dialog, by going to "Home" > "Tools" > "Configuration Wizard".

- In the Welcome screen with configuration wizard for creating sample test data, which is optionally shown on startup of the software:

![Welcome screen with configuration wizard for creating sample test data](image)

Figure 2-3: Welcome screen with configuration wizard for creating sample test data

From the welcome screen, you can skip the wizard and run R&S ELEKTRA without creating basic data, by selecting "Start using ELEKTRA". Otherwise, select "Create sample test data".

To execute the "Configuration Wizard", proceed as follows:

1. Start with the following dialog:
2. Select all data that you want the wizard to create:

Please select the data to be created

- [] Conducted Emissions Testing
 - [] Voltage Emissions on mains
 - [] Current Emissions
- [] Power Emissions
 - [] Link Lines for Conducted Emissions (commercial)
 - [] Link Lines for Conducted Emissions (automotive)
- [] Radiated Emissions Testing
 - [] Electric Field Strength
- [] Magnetic Field Strength
 - [] Link Lines for Radiated Emissions (commercial)
 - [] Link Lines for Radiated Emissions (automotive)
- [] Link Lines for Conducted Emissions (military/avionic)

- [] Common Items
 - [] Devices
 - [] Transducer Correction Tables
 - [] Attenuation Tables
 - [] Report Templates

Description

Example Test Templates for "Power Emissions"

3. Click "Finish & Execute" to complete the procedure.

The wizard creates sample data:
4. Wait for the wizard to complete the sample data creation. When this process is completed, R&S ELEKTRA shows the following dialog:

5. Optionally click "Log" to see information about the creation procedure.

6. Click "Go to ..." or "Done" or "Close" to leave this dialog.

2.4.1 Recovering Data

If R&S ELEKTRA crashes or is shut down unexpectedly during a running test, the software automatically tries to recover data that was not saved. The restarted R&S ELEKTRA brings up a dialog that asks you how to proceed with recovered items:

- "Keep" = recover the data (hence, save it to the database)
- "View" = open a dialog to view, edit and save the data
- "Discard" = delete the data (hence, the data is not recovered)

The recovery feature's auto save function is executed approximately every 5 minutes. Even if data recovery is possible, any data that was created within the last few minutes (up to 5 minutes) before the shut-down can still be lost.

2.5 Language Selection

To adjust the language setting, especially when running R&S ELEKTRA for the first time, click the globe symbol and select your language:
Figure 2-4: Language options are German / English / Chinese

Upon selecting a language that is different from the current setting, a dialog opens to let you decide:

- "No": The dialog closes and the software remains active with the previous language setting.
- "Yes": R&S ELEKTRA immediately shuts down and restarts to activate the new language setting.

The help content (accessible via [F1] or 퀐) is only available in English, independent of the selected language.

2.6 Migration Tool - XML Data Converter

Access:
C:\Program Files\Rohde-Schwarz\ELEKTRA\x.xx.xx\ELEKTRAMigrationTool.exe

Or use the MS Windows "Start" button > All programs > R&S ELEKTRA > x.xx.xx > ELEKTRA x.xx.xx Migration Tool

The "ELEKTRA Migration Tool" converts data from R&S ES-SCAN to XML data for R&S ELEKTRA.

To convert data from a previous version of R&S ELEKTRA to a current version, use the "Export" and "Import" functions in R&S ELEKTRA.

Previous EMI Test Software products like R&S ES-SCAN are based on a file system that allows editing data manually. In contrast, R&S ELEKTRA is based on a database that does not permit direct user access to any data or file content. To view or modify data, always use the functions provided by the user interface of R&S ELEKTRA. For more information, see Test container.

To convert data from R&S ES-SCAN to an XML format that can be interpreted by R&S ELEKTRA, run the program ELEKTRAMigrationTool.exe. A two-step dialog comes up: first select the source application, which is R&S ES-SCAN, then select the data folder:
In Figure 2-5, in the dialog on the left-hand side, click "Next". In the dialog on the right-hand side, select a "Data Folder" that contains files generated by R&S ES-SCAN, then click "Next".

Make sure that the C:\ProgramData folder, which contains the data files, is not hidden. To do so, verify the folder properties in Windows Explorer: If the folder has the attribute "hidden", uncheck this attribute.

With your source data selection, R&S ELEKTRA prepares the appropriate settings in the following dialog window:

You can select the "Source Data File Path" (1) in detail. For example, let the tool only migrate files from specific subdirectories. Also, in the "Data Type" drop-down list, you can select to migrate "All" or specific data types, such as "Limit Lines" or "Test Templates", only.

The selections described above determine the list of "Source Data" files that are available for migration:
In the list of "Source Data" files (1), you can select the available files individually. In this dialog section, if you check the checkbox on top of the list, the tool selects all files that have passed validation (see sections (3) and (4) in Figure 2-7).

In section (2), specify a destination path for saving the result of the data migration. Also specify in this dialog, if you want the migration tool to create one combined XML file containing all the converted data or separate XML files.

Section (3) provides a summary of the folder's content. R&S ELEKTRA validates the available files and lists their "Logging Information" (4). It shows either "Validation Pass" or briefly describes any issues.

When the data selection, validation and destination are completed, click "Convert > > >".

The migration tool executes the XML data conversion and shows a "Conversion Report".

As a result, XML files that contain the converted data are now available for import, as described in Chapter 4.8.2, "Import", on page 140.

2.7 Network Firewall Settings

At some point in time, typically while configuring devices or during a first measurement, the Windows firewall system brings up the following security alert:
Tick all checkboxes to make sure that R&S ELEKTRA can communicate with devices in any kind of network. Then click "Allow access".

2.8 Modify, Repair or Remove Installation

If R&S ELEKTRA is already installed, rerunning ElektraSetup_Vx.xx.exe for the same software version does not overwrite the installation, but calls up a wizard to modify, repair or remove it:

- "Modify" brings up a dialog for custom selection of desired components to be installed:
To execute the installation of custom selected components, click "Modify". In the next step, if the wizard finds one or more previous installations of R&S ELEKTRA, it prompts you with a dialog for handling the database of this installation:

- "Install clean database" resets your database to the clean state of the first installation of this version. If you have generated data in the meanwhile, the wizard creates a Backup and then overwrites the existing database with its default ("clean") state.
- "Use existing database" leaves your current database unchanged.
- "Copy data from another installed version" lets you select the database of an older installation for overwriting your current database. If you have generated data in the meanwhile, the wizard creates a Backup and then overwrites the existing database with the selected older database.
Loss of settings and measurements

If you have already generated any data in the current database (settings and measurements), you lose this data when you select "Install clean database" or "Copy data from another installed version". If you do not wish that R&S ELEKTRA overwrites any data, select "Use existing database".

- "Repair" brings up a dialog for running an installation repair routine:

To execute the repair procedure, click "Repair". This selection leaves your current database unchanged.

- "Remove" brings up a dialog for removing R&S ELEKTRA from the computer:

To execute the removal procedure, click "Remove".
Removing / uninstalling the software does not delete the database. However, migrating to a different (higher) version of R&S ELEKTRA can require to copy the database of the previous (lower) version of R&S ELEKTRA, as described in step 12 of the installation procedure.

Alternatively, you can Export old data and Import it into the new version of R&S ELEKTRA.
3 Getting Started

This chapter guides through the basic steps of operating the software. Starting with an overview of the software structure and the user interface, it describes the test preparation, test execution, results evaluation and reporting.

Software structure overview

To understand the interaction of the main components for EMI tests in R&S ELEKTRA and their Configuration, it is important to know the specific hierarchy that they follow:

![Diagram of software structure]

Figure 3-1: Hierarchy of main components within R&S ELEKTRA

What does this figure tell about components in the various hierarchical levels?

For example, the test is on the highest level of hierarchy. It can contain every other component (tags, reports, test templates, devices, etc.), but it cannot be contained in any of those components. The following list gives a complete overview.

A test is generated and stored in the database as a unique set of data, which is also called the Test container. It contains:

- Exactly one copy of a test template, which has:
 - General Settings
 - A Measurement Flow with Flow Details
 - Frequency Ranges
 - Test Information
 - Actions
The test template can be made up of several frequency ranges, each containing a limit line and a hardware setup with references to the following components in the Device List:

- The Test Receiver
- A Signal Path
- A LISN, Transducer or TEM Waveguide

- Optionally one or several report templates for generating an arbitrary number of reports, which are exclusively contained in a test.
- Optionally one or several user tags

Where do the components integrated in a Test container come from?

Integrated components are either newly created, or copies, or references.

In detail:

- Those components, which are newly created for a test, or which are copies of original components in a list of items, include:
 - The test template
 - Report templates
 - Reports (which are, however, never copied, but always newly created out of report templates)

- Those components, which are references, include:
 - Limit lines within the test template
 - ...and references that link to items in the Device List:
 - The receiver
 - The signal path
 - The LISN, transducer or TEM waveguide

From Figure 3-1, you can see how these components are integrated into each other on different hierarchical levels. From the note above, you can see where the components come from. To summarize this structure:

- References for the receiver, the signal path, the transducing device and the limit line are part of the test template and its integrated hardware setups.
- The copy of a test template is integrated into a test, which is stored as a Test container.
- Reports are created from report templates to compile test results. Reports are exclusively stored in the test container.

For an illustrative example, see Chapter 8, “Measurement Examples”, on page 185.

The configuration of all components is described in detail in Chapter 4, “Configuration”, on page 47.

The following sections explain how to get started with:
3.1 Graphical User Interface

R&S ELEKTRA features a graphical user interface (GUI) in a versatile design. The main dialog is the "Dashboard", which is always available via "Home" > "Dashboard" from any other dialog. The "Dashboard" dialog provides direct access to all software components.

Figure 3-2: The Dashboard dialog

1 = Tab bar area with the "Home" button, which brings up the home menu (2) with the most recently selected dialog (here: the "Dashboard"). Next to the home button, two more tabs are available in the tab bar area in this example: a test template and a test
2 = Home Menu with the "Dashboard" dialog currently selected (highlighted in blue). Buttons for other dialogs are below: "Tests", "Test Templates" etc.
3 = Title bar
4 = Global function buttons in the title bar, see Home Menu
5 = Dashboard search field, here with default filter for searching everywhere
6 = Filter buttons for the Dashboard search
7 = Create button (here for a new test template). To the right: equivalent buttons for creating other items
8 = Search button (here for "Test Templates"). To the right: equivalent buttons for searching other items
The "Dashboard" dialog shown in the figure above summarizes your pinned (favorite) items in the following categories:

- "Test Templates"
- "Tests"
- "Report Templates"

Instead of executing an action in the individual dialog of any of these items, most actions can also be executed in the "Home" > "Dashboard" dialog: Check an item's checkbox and click the required action button. As a prerequisite, the item must be pinned to the "Dashboard".

A pinned item can have one of the following functions:

- It can act as a link for opening this item.
- It can act as a link for creating a test from a test template.
- It can act as a link for opening a pinned search.

In the home menu (labeled (2) in Figure 3-2), below the "Dashboard" button, you have access to the following software components:

- Tests
- Test Templates
- Report Templates
- Device List
- Tables
3.2 Common Action Buttons

This chapter describes the usage of several common action buttons that are available in many dialog windows of R&S ELEKTRA. The buttons are located in the actions bar of the Graphical User Interface. Some action buttons are also located directly in each row of the list of items.

For details on how to handle the other, dialog-specific action buttons, see Chapter 4, "Configuration", on page 47 and its subchapters:

- Chapter 4.3, "Tests", on page 49
- Chapter 4.4, "Test Templates ", on page 66, especially section Handling test template items
- Chapter 4.5, "Report Templates", on page 103
- Chapter 4.6.1, "Action Buttons in the Device List", on page 107 (different from the action buttons described below)

Refer also to the following Special Software Features:

- Handling Changed Items
- Searches
- Arranging Elements in Tests

Save (in component configuration dialogs, tables and tests)

Saves the configuration you defined, for example in a new test template, or saves a completed test. If you have changed any settings, you can leave but not close the dialog. To close a changed configuration dialog or an executed test, you must decide if you want to save or discard the changes or measurement results.

R&S ELEKTRA supports the shortcut key "[Ctrl + s]" for the "Save" command.
Save (in Administration settings dialogs)
Saves the changes you made, for example at Administration > "Graphic Settings". If you leave this dialog without saving, the changes in your settings have no effect and are lost upon shutting down R&S ELEKTRA.

The shortcut key "[Ctrl + s]" is not supported.

Save As
Saves a configured component with a name you can specify. Only available, if the component has been saved before.
R&S ELEKTRA supports the shortcut key "[F12]" for the "Save As" command in component configuration dialogs, tables and tests.

Discard all Changes
Resets your changes in a settings dialog to the previously saved values.

Reset to Default
Overwrites any changes you made in a settings dialog with preset default values.

Select ...
To select any existing item (typically a row in a table), either directly click this item, or click the item's checkbox.
- Clicking checkboxes allows both multiple selections and unselecting items.
- To Rename an item, click the item name.

Depending on the selection and type of items, additional action buttons are displayed.

Note: For a disambiguation of the term "select", see Select / Create New / Edit.

Pin to Dashboard (Edit)
Adds ("pins") the selected one or more items to the "Dashboard". Multiple selected items can be pinned simultaneously. Once pinned, the icon changes to 🍎.
For the special version of this button, called "Pin to Dashboard (Create Test)", as opposed to 🍎, see Handling test template items.

Note: Instead of pinning individual items to the "Dashboard" dialog, they can also be included there by a pinned Search.

Figure 3-4: A search labeled "EUT-55" is pinned to the Dashboard

Clicking such a pinned search brings up a list of search results, see Figure 6-2.
Unpin from Dashboard (Edit)
Removes ("unpins") the selected one or more items from the "Dashboard". Multiple selected items can be unpinned simultaneously. Once unpinned, the icon changes to 🧵.

For the special version of this button, called "Unpin from Dashboard (run test)", as opposed to 🧵, see Handling test template items.

Open
Click "Open" to view, configure, edit or evaluate the selected item or items. Multiple selected items can be opened simultaneously.

Delete
Click "Delete" to delete the selected item or items. Deletion is protected by the following alert: "Are you sure you want to delete the selected item(s)?"

Confirm with "OK" or "Cancel" the deletion process. Multiple selected items can be deleted simultaneously.

Create: ...
Generates a new item of a type that depends on the current dialog context. In some cases, the type of item must be selected from a list, before the dialog for specifying the new item opens. If any content in such a dialog is entered or changed, this state is marked in the dialog's tab by an asterisk (*), which disappears upon saving.

A new item must be saved to keep the entries, or it can be closed without saving to discard the entries. Closing an item without saving is protected by the following alert: "Would you like to save your changes?"

Options are "Save", "Don't Save" or "Cancel" to return to the dialog without saving.

Copy
Generates an identical copy of the selected item or items. The new copy of an item is listed with the addition "- Copy" in its name, or "- Copy (1)" etc., if previous copies exist. Multiple selected items can be copied simultaneously.

Rename
Edit the name of any single selected item. Alternatively, the name can be clicked directly to edit it:

Import ...
Only available for Tables. Imports a table from an external file into the R&S ELEKTRA database as described in "Importing tables" on page 133.

Select / Create New / Edit
In many cases, the button brings up a dialog for selecting an item. Depending on the context, you can create an item of the same type, add a device, edit or rename one of the listed items. To quit from this dialog, click "Cancel".
Note: The term "to select" has an ambiguous meaning, illustrated in Figure 3-5:
1.) The item highlighted in blue is "selected" (or marked) by clicking the checkbox or the row.

2.) To use this item in a given context, it can be "selected" (or adopted) by the "Select" button:

Most of the Common Action Buttons require to select an item in the first meaning of "marking" it, to decide what to do next with this item.

However, in the remainder of this manual, "selecting" an item typically has the second meaning of "adopting" it for further usage. For example, select a limit line to integrate it into a test template.

Details
To see information details of an item in any components dialog (for example "Home" > "Tests"), select the checkbox at the left end of the item's row. This selection brings up a "Details" list in the right part of the components dialog.

To see information details of a pinned item in the "Dashboard" dialog, select the checkbox in the top right corner of the component's icon. This selection brings up a "Details" list in the right part of the "Dashboard" dialog.

The information in the list depends on the type of the selected item and its content.
If you select more than one item, the software displays only information that is common to all selected items.
Tags ← Details
Displays user-defined "Tags" of the selected component or components. Tagging especially facilitates finding groups of components that you have labeled with the same specific tag or tags.

To add a tag to an item, select the item to display the "Details" dialog, enter the tag text and hit [Return] or click the "+" sign next to the input field.

A search cannot be tagged.

Tags are shown for selected items in the "Dashboard" and in the lists of items (for example "Tests"). Note that tags are not visible in opened items, except while using the "Save" dialog. This dialog shows tags and also allows defining new tags.

To delete a tag, click the "X" sign next to it.

Note: If R&S ELEKTRA recovers an item, for example a test or a test template, after an unexpected program shut-down, the tag "Recovered Data" is automatically added to this component.

Find References ← Details
"Find References" searches for references from the selected component to other components, which either use this component or are used by it. For example, a test can have references to a test template.

Once you have executed a search for references, the "Find References" button changes to "Refresh References", which allows repeating the search.

Pinned "Search" items do not have any references.

Note: A test is always based on a **copy** of the test template, that was used to create the test. Upon test creation, this copy is integrated into the Test container. Therefore, the original test template is not directly referenced in the test. This relationship becomes obvious, for example, if you modify the original test template: the copy of this test template inside the test container remains unmodified. Nevertheless, just for operator orientation, the displayed reference indicates that the test was created using this test template.

Refresh References ← Details
Repeats the search for references and displays the updated results. Refreshing can be useful, for example, after modifying a referenced item.

Collapse Content
The arrow pointing down indicates that some expanded content below the arrow can be collapsed.

Click to collapse (hence minimize) the content, for example a settings dialog or a list.

Expand Content
The arrow pointing to the right indicates that some collapsed content can be expanded.

Click to expand (hence unfold) the content, for example a settings dialog or a list.
3.3 Touch Operation

R&S ELEKTRA can be installed on a tablet computer (MS Windows) with a touch-sensitive display. In this case, finger-touch operation intuitively replaces conventional mouse operation of the software.

Example:
You can zoom a test chart in conventional mouse operation by drawing a rectangle around the area that you wish to see enlarged. On the contrary, in touch operation, you would enlarge this area by stretching the chart by a two-fingers gesture.

The following touch actions replace mouse actions:

<table>
<thead>
<tr>
<th>Mouse operation</th>
<th>Touch operation</th>
<th>Gesture icon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Click</td>
<td>Tap</td>
<td></td>
</tr>
<tr>
<td>Double-click</td>
<td>Double-tap</td>
<td></td>
</tr>
<tr>
<td>Click and hold</td>
<td>Touch and hold</td>
<td></td>
</tr>
<tr>
<td>Right-click</td>
<td>Touch, hold for 1 second and release</td>
<td></td>
</tr>
<tr>
<td>Drag-&-drop (= click and hold, then drag and release)</td>
<td>Touch and hold, then drag and release</td>
<td></td>
</tr>
<tr>
<td>Zoom by drawing a rectangle</td>
<td>Two-finger zoom ("pinch to zoom")</td>
<td></td>
</tr>
<tr>
<td>Mouse wheel to scroll up or down</td>
<td>Swiping a window area down or up</td>
<td></td>
</tr>
<tr>
<td>Dragging scrollbars to scroll up or down, left or right</td>
<td>Swiping a window area down or up, right or left</td>
<td></td>
</tr>
</tbody>
</table>

This manual describes all user operations as if executed with a mouse. If instead you use a tablet computer with touch operation, proceed according to the correlations given in Table 3-1. Exceptions apply in those cases that are considerably different from the general correlations. In these cases, both types of operation are described.

On the tablet computer, if you select a field for keyboard input, R&S ELEKTRA automatically brings up an on-screen keyboard. If it overlaps with an input field or covers a relevant display area, undock the on-screen keyboard. Once it floats, you can move it out of the way.
3.4 Performing a Test

Generally, performing EMI tests with R&S ELEKTRA involves the following steps:

1. Determining, which types of test to perform, as suggested in the EUT-related Test Matrix.
 This decision leads to the applicable EMI Standards (for example CISPR, IEC/EN, or MIL-STD-461).

2. Determining the test concept based on those standards.

3. Planning the hardware setups for the tests of EUTs.
 This planning leads to a list of required devices and signal paths. A wizard for pre-configuring entries in the software’s database support you in this task.

4. Establishing a useful data nomenclature with speaking names for saving, e.g., limit lines and other tables, various templates, devices and the like.

5. Physically setting up the hardware for the respective measurement, and connecting the devices to the PC. The software requires this setup to perform the following steps:

6. Entering the measurement devices in R&S ELEKTRA by creating or editing entries in the device list. A search function for network devices supports you in this task. If a firewall message comes up, see Network Firewall Settings.

7. Creating or editing limit lines in R&S ELEKTRA according to the relevant standards.

8. Configuring EMI test settings (together with configuring the hardware setups) in R&S ELEKTRA test templates.

9. Creating tests as described in Chapter 4.3.1, “Configuring Tests”, on page 50

10. Running tests as described in Chapter 7, “Running Tests”, on page 166.

Once a test is completed, save it and proceed with the following steps:

- Evaluating the results as described in Chapter 3.5, “Test Results”, on page 42.
- Generating test reports as described in Chapter 3.7, “Reporting”, on page 45.

These steps can become clearer in Chapter 8, “Measurement Examples”, on page 185.
For compliant EMI tests, all details of the measurement procedure must be taken from the applicable EMI Standards. R&S ELEKTRA supports you in this task. However, it is outside of the scope of this software to ensure that all regulations from the relevant standards are properly applied. Therefore, the compliance of testing remains in your responsibility.

3.5 Test Results

Once a test has been run and saved, the whole Test container with all measurement results is stored in the database. To see the test results, make sure to have the test opened.

Access: "Home" > "Tests" > "Open" > "... test"

![Example of a test window](image)

Figure 3-7: Example of a test window

1. Side panels on left-hand side (see list below and Using the Test Control Elements)
2. Test charts. For details on how to work with these graphics, see Configuring Test Charts and Test Result Graphics
3. Test result tables. For details on how to work with these tables, see Configuring Test Tables, and Test Result Tables
4. Side panels on right-hand side (see list below and Using the Test Control Elements). On the top right, find the Test Control Toolbar

You can use the following side panels on the left-hand and right-hand side:

- **Test Components**
- **Measurement Flow Control**
- **Accessories Control Summary and Accessories**
Overview of LISN results
If the transducer used in the measurement is a LISN, the "Overview Graphic" and the "Overview Table" show merged maximum levels measured on any of the selected lines.

For example, consider a test template that defines measurements on lines N and L1: The overview results can comprise levels measured on line N in some parts of the frequency range and measured on line L1 in other parts of the frequency range. The "Line" column in the test table indicates, from which line the level result in each row was taken.

To see the results of an individual line, open its "Result Table" from the Test Components dialog and click the Show Graphic Display button ().

The chart in the "Overview Graphic" and the values in the "Final Results" table represent a view of the test results. However, a complete EUT testing task typically also requires evaluating the measurement results. An example is finding broadband signals or specific frequencies, at which the minimum Margin between measured level and a limit line is violated. Evaluation is intended to provide crucial information (see Verdict) to decide whether an EUT conforms with a given EMI standard.

The software evaluates the Verdict based on the limits, only. Further evaluation of the test results is a user task.

After having performed the required evaluation tasks, proceed with Reporting.

3.6 Verdict

The "Verdict" is a label for EMI test results, which is either assigned automatically or edited manually. It can state that a test is "Failed", "Inconclusive" or "Passed":

![Verdict Icons](image)

Figure 3-8: Test verdict: Failed, Inconclusive or Passed

The following rules apply for automatic verdict assignment:

- **Start condition**: A newly created or cleared test (but not a refreshed test) is set to the verdict "Inconclusive".
- **Evaluation**: R&S ELEKTRA calculates the verdict for a test, when the automatic measurement sequence is successfully completed, including the "Final Measurement".
- **Algorithm**: The verdict depends on all margin values in the "Final Result" table.
At each frequency point, the Margin is defined as the limit line's value minus the measured level value. Hence, if the level remains below the limit, the margin is positive.

The three verdict states are derived as follows:
- Initially, or if there is a test interruption, the verdict is set to or stays "Inconclusive"
- If no limit line is set, the verdict stays "Inconclusive"
- If at least one frequency has a margin value < 0, the verdict is "Failed"
- Else (hence, no margin value < 0), if at least one frequency has a margin value ≥ 0, the verdict is "Passed"
- Else, if no margin values exist (for example, if the measured values are not covered by a limit line), the verdict is "Passed"

- **Reevaluation**: If a verdict was calculated for a completed test and you manually change one or several limit lines or measurement values in the "Final Results" table, R&S ELEKTRA immediately recalculates the verdict.
- ** Interruption**: If you or R&S ELEKTRA pause or suspend a test or you resume or continue it, after it was stopped by an exception, the verdict is set to "Inconclusive". Note that in this situation, the software does not recalculate the verdict after operator intervention, such as changing limit lines or measurement values.
- **Limitation**: Interactive measurements have no influence on the verdict.
- If the test is stopped, before it stops automatically after measuring at the last frequency of the last loop, R&S ELEKTRA performs no evaluation and the EMS test verdict is "Inconclusive"
- Else, if the software does not detect any entry in the "Critical Frequencies" table after completion of the test, the EMS test verdict is "Passed"
- Else, if the "Critical Frequencies" table has one or more entries after completion of the test, the EMS test verdict is "Failed"

3.6.1 Editing the Verdict

Independent of the automatic verdict assignment, R&S ELEKTRA allows you to select the verdict manually. This feature is in accordance with your option to edit measured values, see Chapter 7.3, "Test Result Tables", on page 182. As an operator, you are responsible for the test results.

To select the verdict manually, click the "Edit" button (️) next to the verdict in an opened test. The following dialog comes up:
3.6.2 Unexpected Verdict

If the verdict of an EMI test differs from what you expected from the displayed test results, the reason can be a mismatching detector setting in the limit line table.

If the test template skips the final measurement, use the correct detectors in the Overview Measurement. R&S ELEKTRA supports you in using the correct detector: When you disable the final measurement in the test template, the software automatically sets the final measurement detector in the overview measurement and alerts you of this setting.

3.7 Reporting

To generate a report for a completed test or to open an existing test report, first open the test.

Access: "Home" > "Tests" > "Open" "... test"

Click "Add Report" to create a report using a default report template.

For more report configuration options, proceed as follows:

1. In the "Test Components" dialog, select an existing report template.
 Alternatively, create one by right-clicking on "Report Templates": either select to create a "New Report Template", or select "Add global Report Template" to choose from a list of existing report templates.
If the "Report Templates" folder in the "Test Components" menu is not yet open, click its icon to see the newly created or selected report template. Note that via the "Test Components" dialog, you must first select or create a report template before you can generate a report.

2. Double-click the selected report template to create a report.

R&S ELEKTRA now generates a report as specified in the report template. The result is displayed in a new tab.

To modify a report, proceed as described in Chapter 4.5, "Report Templates", on page 103.

To update the report contents, for example, if report template components or test contents have changed since creating the report, click "Refresh" (castHit) in the top menu of the report. Do not confuse this button with the taller "Refresh" button (sad face) in the top menu of the test.

To save a report in the R&S ELEKTRA database together with the test, select "Attach" (the paper-clip icon 🗂️). This action opens the "Reports" folder in the "Test Components" menu, where the attached report can now be seen. If the "Reports" folder is not open, click its icon to see attached reports.

Optionally, click the "Export" button 📋 or 📘 to save a report as a PDF or DOCX file in a selectable folder outside of the R&S ELEKTRA database.

To open a report in a separate window of a PDF file viewer program, or in Microsoft Word for DOCX, if installed, double-click the attached report in the "Test Components" menu.
4 Configuration

R&S ELEKTRA supports the creation of user-specific test cases for custom application scenarios.

This chapter describes the configuration of the following software components:

- The Home Menu - see page 47
- The Dashboard dialog - see page 48
- Tests - see page 49
- Test Templates - see page 66
 (with included hardware setup and Limit Lines)
- Report Templates - see page 103
- The Device List - see page 105
 (with the receiver, signal paths and various transducing devices)
- Various Tables - see page 132

This chapter also describes the use and configuration of the following:

- Tools - see page 138
- Administrative settings - see page 142

Related subjects:

- The configuration wizard is a tool for the application-specific generation of sample data and templates for tests.
- Measurement devices connected to the computer that runs R&S ELEKTRA can be automatically searched, checked and integrated into the Device List.
- For an overview of the "Dashboard" dialog, see Chapter 3.1, "Graphical User Interface", on page 33.
- For the most basic action buttons, see Chapter 3.2, "Common Action Buttons", on page 35.

4.1 Home Menu

This chapter describes the configurable items in the "Home" view of the Graphical User Interface. You can configure settings in the dialogs of the home menu (or navigation menu, left) and in the title bar (top right).
Figure 4-1: Configurable items in the home menu and in the title bar

Red frame at left hand = Configurable items in the home menu
Red frame on top right = Configurable settings in the title bar

For a description of the configurable settings in the title bar (top), see below. For the button see Embedded Help, for the button see Product Information.

For a description of the configurable items in the home menu (left), refer to the appropriate chapter, which you can select from the overview in Chapter 4, "Configuration", on page 47.

Dashboard search

For a description of the dashboard search, see Chapter 6.2, "Dashboard Search", on page 159.

Language Selection

The language selection button in the title bar selects one of the available language options. For description of the language settings, see Chapter 2.5, "Language Selection", on page 23.

4.2 Dashboard

Access: "Home" > "Dashboard"

The user-configurable "Dashboard" dialog (see Graphical User Interface) selects the types of pinned items to be displayed by icons. Use these icons for one-click access to...
your favorite components. The configuration of this dialog is described in the section "Handling pinned items" on page 49.

To pin a component, select "Pin to Dashboard"
. The pin icon changes to
.

Access, for example: "Home" > "Tests", or "Home" > "Test Templates"

This function is available in many dialogs (such as "Tests" or "Test Templates"), but not in the "Home" > "Dashboard" dialog. For an example, see Figure 4-2.

Figure 4-2: Pinning a component (here: a report template) to the "Dashboard" dialog

Once a component is pinned, it can be opened directly from the "Dashboard" dialog by clicking the item there.

Handling pinned items

To see Details of a pinned item and get access to the Common Action Buttons available for this item, check the checkbox in its top right corner.

Checking more than one item reduces the displayed details and action buttons to those details and buttons, which are commonly valid for the checked items.

You can limit the categories of pinned items to be displayed in the "Dashboard" dialog, see "Dashboard: Show ..." on page 153.

4.3 Tests

Tests are used to measure the electromagnetic interference of EUTs. Each test is based on a single Test Template, which must be configured before running the test.

The software structure shows that a test contains one test template.

By creating a test and selecting a test template for it, all settings of this test template are copied into a newly generated Test container. If the original test template is modified later on, its changes do not influence any previously created tests.

See Chapter 7, "Running Tests", on page 166 for information on how to run tests and how to work with the test control elements in an opened test.

Handling test items

Access: "Home" > "Tests"
Depending on the selection of one or several tests, different action buttons are available in the actions bar. Most of them are common action buttons, described in Chapter 3.2 on page 35. The dialog-specific action buttons for tests are:

"Delete" removes the selected one or more tests from the database. But if a test is associated with an EUT, deleting the test also removes it from the test plan of this EUT. Deletion is protected with a confirmation warning.

For information on how to proceed from "Create: Test", see Chapter 4.3.1, "Configuring Tests", on page 50

Use the "Open" button to view or configure selected tests (see Configuring Test Charts and Configuring Test Tables) or to evaluate the Test Results.

The following chapters describe how to configure tests, test charts and test tables.

- Configuring Tests.. 50
- Configuring Test Charts... 52
- Configuring Test Tables... 62

4.3.1 Configuring Tests

Access: "Home" > "Tests"

Click "Create: Test" to generate a new test as described below.

![Figure 4-3: New Test configuration dialog for EMI tests](image)

Test Name

Specifies a test name. R&S ELEKTRA suggests a default name. Specifying a test name is a prerequisite for creating a test.

Test Template

Selects a test template from a list of preconfigured items.
The configuration of test templates for EMI tests is described in Chapter 4.4, "Test Templates", on page 66.

Selecting a test template is a prerequisite for creating a test.

Limit Line

The limit line is automatically entered in this field by R&S ELEKTRA, when the test template is selected (which is obligatory), but only, if the test template contains exactly one limit line. Afterwards, you can optionally select a different limit line from the list of preconfigured items. But if you do so and then select a test template after that, your limit line selection is overwritten by the setting in the test template.

If no limit line is suggested by the software upon selecting a test template, this lack of a suggestion can have two different reasons:

- The test template contains no limit line, which is indicated by a placeholder "<none>" in the empty "Limit Line" field
- The test template contains more than one limit line (for various frequency ranges), which is indicated by a placeholder "<Multiple Selection>" in the empty "Limit Line" field

In either case, you can decide:

- Leave this field blank. In this case, R&S ELEKTRA does not overwrite anything.
- Select any limit line. In this case, if different limit lines have been specified in the test template, R&S ELEKTRA overwrites them all with the limit line that you have selected.

Therefore, unless you are sure, we recommend leaving a blank limit line field blank in this instance, to avoid overwriting different limit lines in the test template’s frequency ranges.

Instead of selecting a limit line in this field, we recommend to first create the test and then open the test template inside the test. This way, you can better decide, if a limit line (or different ones) needs to be selected.

The configuration of limit lines is described in Chapter 4.7.1, "Limit Lines", on page 135.

Selecting a limit line is optional for creating a test.

Report Template

Selects a report template from a list of preconfigured items.

The configuration of report templates is described in Chapter 4.5, "Report Templates", on page 103.

Selecting a report template is optional for creating a test.

Test Information

Allows specifying test information, especially such information that is valid for every test based on this template.
Click "Add Information" to create more lines of information. Edit the "Title" and "Content" of each line as required.

To move a line up or down, first double-click it to highlight the whole line. You can also click once inside the line, but this click must be anywhere outside of the editable fields, hence the dark blue area in the following figure:

Once the line is highlighted, click the enabled up or down arrows to move the line.

To remove a line that you do not need, click the "Delete Information" button.

You can add individual, test-specific information per measurement in the Test Components dialog.

Specifying test information is optional for creating a test.

New Test

Click "New Test" to run an EMI test or "Cancel" to quit the test configuration immediately.

4.3.2 Configuring Test Charts

Access: "Home" > "Tests" > "Open" "... test"

![Figure 4-4: Example of an EMI test chart](image)

- **PK+ Level** = Trace of "Max Peak" detector measurements
- **QPK Level** = Trace of "Quasi Peak" detector measurements (here: two frequency ranges, overlapping at 8 MHz to 10 MHz)
- **M1** = Marker 1 (in color of its own trace), see Marker
- **D2[M1]** = Delta marker 2 (referenced to M1, in color of reference trace), see Set Reference
- **M3** = Unreferenced marker 3 (light blue = selected)
- **D4S[M3]** = Synchronized delta marker 4 (referenced to M3, in color of reference trace)
In an existing EMI test (which has previously been executed and saved, as described in EMI Tests), you can configure the test results presentation as described in the following chapters.

- Chart .. 53
- Trace .. 57
- Marker .. 58

4.3.2.1 Chart

Access: "Home" > "Tests" > "Open" "... test" > "Chart Menu" button

In the charts configuration, you can determine how one or more charts are displayed and how the axes are scaled. You can determine the graphic properties and make the content of charts available outside of R&S ELEKTRA.

Hide / show charts .. 53
Close / Close all .. 53
Arrange charts ... 54
Chart .. 54
 L Connect Charts ... 54
 L Set Logarithmic x-Axis in all Graphics .. 54
 L Set Linear x-Axis in all Graphics .. 54
 L Axis X ... 54
 L X Axis Logarithmic .. 54
 L Change scale .. 54
 L Manual frequency scaling .. 55
 L Do Autoscale .. 55
 L Autoscale to measurement result .. 55
 L Axis Y ... 55
 L Y Axis Logarithmic .. 55
 L Change scale .. 55
 L Manual level scaling .. 55
 L Do Autoscale .. 56
Copy To Clipboard ... 56
Save to Image File ... 56
Graphic Properties .. 56
Print ... 57
Zoom ... 57

Hide / show charts

The top "Graphics" bar toggles between hiding and showing all charts. If both graphics and tables are visible (half screen, each), hiding the graphics shows the tables in full size. Hiding the tables, too, leaves the two top bars visible, only. Opening the graphics while the tables are hidden shows the charts in full size.

Close / Close all

Closes the selected chart or all charts that are shown. To reopen closed charts, double-click their names in the Test Components side panel.
Arrange charts

To arrange charts horizontally, vertically or cascade them behind each other, use the buttons

Only available, if more than one chart is open.

Chart

Right-clicking the chart and selecting "Chart" (or clicking the "Chart Menu" button

provides access to the chart configuration functions described below. If more than one chart is open, clicking the "Chart Menu" button also requires selecting the chart for which you want to access the chart configuration functions.

**Connect Charts **

Right-clicking a chart and selecting "Chart" > "Connect Charts" allows moving markers jointly in different charts. The connect function is only available, if at least two charts are present and at least one marker is set in one of the charts. Setting or moving a marker in another chart moves the "active" marker (the one that was selected last) in each of the connected charts to the same frequency.

Synchronized markers within the same chart remain synchronized, even when connected to a marker in a different chart. A marker in a connected chart is no longer displayed, if it moves out of the frequency range of "its" trace, while following a marker in a different chart. When it is moved back into that frequency range, it is displayed again.

Note that markers cannot be referenced to markers in other charts. Instead, display the trace in question within the same chart by "Add Trace" on page 58.

The joint movement of connected markers can best be seen in charts that are displayed next to each other by "Arrange charts" on page 54.

To terminate the connect function, click "Chart" > "Connect Charts" again. Deleting all markers in one chart also terminates the connect function.

Set Logarithmic x-Axis in all Graphics

Right-clicking the chart and selecting "Chart" allows enabling "Set Logarithmic x-Axis in all Graphics".

Set Linear x-Axis in all Graphics

Right-clicking the chart and selecting "Chart" allows enabling "Set Linear x-Axis in all Graphics".

Axis X

Right-clicking the chart and selecting "Chart" > "Axis X" provides access to the X-axis configuration functions described below.

X Axis Logarithmic

Toggles between logarithmic and linear X-axis. Alternatively, right-clicking the X-axis allows enabling or disabling the logarithmic scale.

Note: Logarithmic scale is not available, if zero or negative values are shown on the axis.

Change scale

Opens a dialog to set the frequency range limits for the X-axis. Alternatively, right-clicking the X-axis and selecting "Change scale" opens the same dialog.
Manual frequency scaling ← Change scale ← Axis X ← Chart
Clicking, holding and horizontally drawing the mouse pointer in the left, center or right third of the X-axis allows a manual frequency scale adjustment:

- In the left third, the lower (left) end of the frequency scale is manipulated.
- In the center third, the whole frequency scale is shifted up or down.
- In the right third, the upper (right) end of the frequency scale is manipulated.

![Diagram of frequency scaling]

Green circles = Direction indicators for manual scale adjustment of the frequency axis (only one indicator visible at a time)
Red arrows in red ovals = Left 1/3, center 1/3 and right 1/3 of the frequency axis
Blue circles = Mouse pointer positions in the left, center and right third of the axis

Do Autoscale ← Axis X ← Chart
Automatically adjusts the scale of the X-axis to the frequency range used for measurements. Alternatively, right-click the X-axis and select "Do Autoscale" or hit the [Shift] + [x] keys to do the same.

Autoscale to measurement result ← Axis X ← Chart
Truncates frequencies outside the measured range: R&S ELEKTRA adjusts the boundaries on the X-axis to the values displayed in the chart. Alternatively, right-clicking the X-axis and selecting "Autoscale to measurement result" allows doing the same.

Axis Y ← Chart
Right-clicking the chart and selecting "Chart" > "Axis Y" provides access to the Y-axis configuration functions described below.

Y Axis Logarithmic ← Axis Y ← Chart
Toggles between logarithmic and linear Y-axis. Alternatively, right-clicking the Y-axis allows enabling or disabling the logarithmic scale.

Note: Logarithmic scale is not available, if zero or negative values are shown on the axis. Logarithmic Y-axis is not available for dB levels, because dB levels are logarithmic already.

Change scale ← Axis Y ← Chart
Opens a dialog to set the level range limits for the Y-axis. Alternatively, right-clicking the Y-axis and selecting "Change scale" opens the same dialog.

Manual level scaling ← Change scale ← Axis Y ← Chart
Clicking, holding and vertically drawing the mouse pointer in the upper, middle or lower third of the Y-axis allows a manual level scale adjustment:

- In the upper third, the upper end of the level scale is manipulated.
- In the middle third, the whole level scale is shifted up or down.
- In the lower third, the lower end of the level scale is manipulated.
Green circles = Direction indicators for manual scale adjustment of the level axis (only one indicator visible at a time)
Red arrows in red ovals = Upper 1/3, middle 1/3 and lower 1/3 of the level axis
Blue circles = Mouse pointer positions in the upper, middle and lower third of the axis

Do Autoscale ← Axis Y ← Chart
Automatically adjusts the scale of the Y-axis to a range that is a bit wider than the measured levels. Alternatively, right-click the Y-axis and select “Do Autoscale” or hit the [Shift] + [y] keys to do the same.

Copy To Clipboard
Right-clicking the chart and selecting "Copy To Clipboard" captures a screenshot bitmap of the active chart and copy it to the clipboard. Outside of R&S ELEKTRA, this bitmap chart can then be entered into any application that allows pasting graphics.

Save to Image File
Right-clicking the chart and selecting "Save to Image File" saves a screenshot bitmap of the active chart outside of R&S ELEKTRA in portable network graphics (PNG) format.

Graphic Properties
Right-clicking the chart and selecting "Graphic Properties" opens the "Chart Options" dialog to define the settings for Graphics, Marker, Grid and Traces.

While these settings are local for the currently opened graphic chart, the same settings can also be defined globally as a default for all new graphics, as described in Chapter 4.9.2, "Graphics Settings", on page 145. However, the global settings do not influence tests that have already been created.

Note:
- The parameter "Show Pixel Mode" in the tab "Marker" > "Pixel Mode" specifies how markers are moved along traces (especially noticeable, if only a few frequency points are visible). If "Show Pixel Mode" is enabled, markers move from pixel to pixel between frequency (measurement) points. If disabled, markers can only jump from one frequency point to the next (see Graphics Settings > Marker > "Pixel Mode").
The parameter "Peak Excursion" in the tab "Marker" > "Search" specifies the relative level difference between peak and non-peak measurement results. The size of this difference determines whether a marker detects a peak or not (see Graphics Settings > Marker > "Search"). The default "Peak Excursion" is 6 dB.

Print
Opens a dialog for printing the chart.

Zoom
Right-clicking the chart and selecting "Zoom" allows viewing enlarged sections of a chart ("zoom into a chart"). Zooming is done by drawing a rectangle with the left mouse button, to specify the area to be zoomed. In this way, multiple zooming into the same chart is possible. The first zoom can also be done by just drawing a rectangle, as long as the mouse pointer's origin does not collide with any object in the chart. A small copy of the whole chart, superimposed in the upper right corner, provides an overview of the zoomed area (dark rectangle) in relation to the whole chart area.

Using a tablet computer with touch-sensitive display, test charts can be zoomed by stretching or shrinking them with two fingers ("pinch to zoom"): Zooming is done by touching and holding two opposite corners of the rectangular area that you want to zoom, then drawing your fingers apart or bringing them closer together.

Once zoomed, clicking and holding the chart's visible fraction allows dragging it to a different area of the full chart at the same zoom factor. Alternatively, the dark rectangle mentioned above can be dragged by clicking and holding it. However, avoid clicking the chart in a place that is occupied by a trace, line or marker, as this click would call up other functions.

The zoomed view is disabled by double-clicking the chart or by right-clicking the chart and selecting "Undo Zoom".

4.3.2.2 Trace

In the trace configuration, you can add or delete traces, move a trace to the front and set its properties.

Right-clicking the chart and selecting "Trace" provides access to the trace functions described below.

Add Trace..58
 L Constant Trace... 58
 L Result Trace from another Test...58
 L Global Limit Line... 58
 L Global Attenuation / Transducer Corr... 58
Delete Trace..58
Move Trace To Front... 58
Trace Properties..58
 L Traces... 58
 L Line... 58
 L Symbol... 58
 L Line To Bottom.. 58
Add Trace
Right-clicking the chart and selecting "Trace" > "Add Trace" allows selecting the kind of trace to be added as described below.

Constant Trace ← Add Trace
Adds a horizontal line in the chart with a user-defined trace name and a constant level (Y) value.

Result Trace from another Test ← Add Trace
Adds a trace from a column selected in a result table of another test.

Global Limit Line ← Add Trace
Adds a trace from a column in "Tables" > "Limit Lines".

Global Attenuation / Transducer Corr. ← Add Trace
Adds a trace from "Tables" > "Attenuation" or from "Tables" > "Transducer Correction".

Delete Trace
Right-clicking the chart and selecting "Trace" > "Delete Trace" allows selecting a trace and deleting it.

Move Trace To Front
Right-clicking the chart and selecting "Trace" > "Move Trace To Front" allows selecting a trace and moving it to the front.

Trace Properties
Right-clicking the chart and selecting "Trace" > "Trace Properties" opens a dialog that defines the following trace settings. Alternatively, this dialog can be accessed by right-clicking a trace and selecting "Trace Properties".

Traces ← Trace Properties
Selects the trace, limit line or symbol trace to be configured.

Line ← Trace Properties
Specifies "Color", "Thickness" and "Style" of the selected trace.

Symbol ← Trace Properties
Specifies "Color", "Size" and "Shape" of symbols on the selected trace.

Line To Bottom ← Trace Properties
Specifies "Color", "Thickness" and "Style" of lines that connect symbols on the selected trace to the lower edge of the chart.

4.3.2.3 Marker

Access: "Home" > "Tests" > "Open" "... test" > "Marker Menu" button

In the marker configuration, you can add or delete markers, reference markers to each other or move them to specific positions. The Pixel Mode determines the step size for
moving markers. To specify default marker properties such as flag colors and Peak Excursion, use the "Home" > Administration > Graphic Properties > Marker dialog.

All markers have a name label and, by default, a flag with the same color as "their" trace or as the trace of the referenced Delta marker.

To select a marker, click it directly or click its legend entry. The selected marker (or selected last, if multiple markers are present) is identified by a light blue flag, if color is enabled in the Graphic Properties. This blue "highlighting" color temporarily overrides the original flag color.

Moving markers manually

Click and hold a marker to drag it to any position on the same trace. Alternatively, you can use the left and right arrows on the keyboard or the mouse wheel to move the selected marker. (In Pixel Mode, these steps can be too small to see them without zooming.)

Moving markers automatically

Right-click a marker to select one of the following marker positioning functions:

- "Marker" > To Peak
- "Marker" > To Next Peak
- "Marker" > To Min
- "Marker" > To Next Min
- "Marker" > To Position
- "Marker" > To Trace

Alternatively, right-click the chart to select one of these functions for positioning the selected (highlighted) marker.

Be aware of the following:

- Synchronized markers always move jointly.
- Selected markers in other charts also move, if Connect Charts is activated.
- The moving behavior of markers is influenced by the Pixel Mode setting.

Right-clicking the chart and selecting "Marker" (or clicking the "Marker Menu" button) provides access to the marker functions described below. If more than one chart is open, clicking the "Marker Menu" button also requires selecting the chart for which you want to access the marker configuration functions.

- Add To Trace...60
- Set Reference... 60
- Pixel Mode.. 60
- To Peak... 61
 - L To Next Peak...61
- To Min..61
 - L To Next Min...61
Add To Trace
Allows selecting the trace, to which a new marker is to be set, and adds the marker to this trace.

- If the marker that you set is the first one in this chart, it is immediately set to the peak of the selected trace.
- If one or more other markers are already present in the chart, R&S ELEKTRA opens a context dialog that offers three selections:
 - "Trace" - allows changing the trace that you have selected for the marker
 - "Reference Mode" - specifies if and how the marker is referenced to another marker, see Set Reference
 - "Reference Marker" - specifies to which other marker the new marker is referenced (not available for "Reference Mode" = "None")

If the Reference Mode is set to "None", R&S ELEKTRA places the new marker at the trace's peak.
Alternatively, directly double-clicking a trace and confirming the defaults in the "Add New Marker" dialog allows placing a new marker on the trace. Unless you have selected to synchronize the marker, it is placed at or near the mouse click position.

Note: If you double-click a trace to add a new marker, but the chart is zoomed, your double-click first disables the zoom. To add the new marker, double-click the trace again.

Set Reference
Opens a dialog for specifying a "Reference Mode" for any two markers.
Alternatively, directly right-clicking a marker and selecting "Set Reference" opens the same dialog, with this marker preselected.

To set a reference, first select a "Marker" (or keep the preselected marker), then select one of the following options for the "Reference Mode":
- "Delta" shows the level difference value of the two referenced markers in the legend
- "Synchronized" locks the two markers to the same frequency (only available for markers on different traces)
- "SynchronizedDelta" locks two markers on different traces to the same frequency and calculates their delta
- "None" leaves the selected marker unreferenced with any other marker
Finally, select the "Reference Marker" from a list of markers that are available for referencing (not available for "Reference Mode" = "None").

Pixel Mode
Opens a dialog for activating or deactivating the "Pixel Mode" function.
- If enabled, a marker can move from pixel to pixel on the display between the frequency (measurement) points.
- If disabled, the marker can only jump from one frequency point to the next.
The effect of this setting becomes especially noticeable, if only a few frequency points are visible, for example when zooming deeply into a trace. Alternatively, the setting can be accessed by right-clicking a marker and selecting "Pixel Mode", or by right-clicking the chart and selecting Graphic Properties > "Marker" > "Pixel Mode" > "Show Pixel Mode".

The global setting for "Show Pixel Mode" can be altered at "Home" > "Administration" > "Graphic Settings" > Marker > "Pixel Mode". However, this setting does not influence any test that has already been created.

To Peak
Automatically moves a marker to the peak value of a trace.

To Next Peak ← To Peak
Automatically moves a marker to the next peak value of a trace, if it has previously been set to the overall peak ("To Peak"). Moving a marker to the next peak can be repeated until the limit is reached that is specified by the parameter "Peak Excursion". This parameter is defined by clicking the chart and selecting "Graphic Properties" > "Marker". Defaults are defined at "Home" > Administration > Graphic Properties > Marker.

Note: Specifying the "Peak Excursion" in the Graphic Properties menu does not influence a test that has already been created.

To Min
Automatically moves a marker to the minimum value of a trace.

To Next Min ← To Min
Automatically moves a marker to the next minimum value of a trace, if it has previously been set to the overall minimum ("To Min"). Moving a marker to the next minimum can be repeated until the limit is reached that is specified by the parameter "Peak Excursion". This parameter is defined by clicking the chart and selecting "Graphic Properties" > "Marker". Defaults are defined at "Home" > Administration > Graphic Properties > Marker.

Note: Specifying the "Peak Excursion" in the Graphic Properties menu does not influence a test that has already been created.

To Position
Automatically moves a marker to a user-defined frequency. If this marker is synchronized with another marker, both are moved jointly to the new frequency position.

To Trace
Automatically transfers a marker to another trace or limit line. Note that a marker cannot be transferred to a trace or limit line where the same frequency position is already occupied by a synchronized marker. R&S ELEKTRA only offers the appropriate choice of targets.

Delete Marker
Allows selecting one specific marker or "All Markers" to be deleted.
Alternatively, right-clicking a marker and selecting "Delete Marker" offers the same choice.

4.3.3 Configuring Test Tables

Access: "Home" > "Tests" > "Open" "... test"

Figure 4-5: Example of a final results table in an EMI test

EMI test tables contain the following columns:

- "Rg" - the frequency range number
- "Frequency" - the frequency points
- The "Level", "Limit" and "Margin" values for each detector selected in the test template (with Margin = "Limit" minus "Level")
- "Correction" - the accumulated amount of "Attenuation" and "Measurement Correction" specified for the signal path and LISN or transducer used in this measurement
- "Line" - only available in tests that use a LISN: label of the LISN line, for example "N" or "L1". See also Chapter 7.4, "Test Result Graphics", on page 184.
- Meas BW - only available in "Final Results" tables
- Time Per Point - only available in "Final Results" tables
- "Meas. Date/Time" - only available in "Final Results" tables: R&S ELEKTRA automatically enters the date and time of the measurement. To toggle between a display of time only, or date and time, use the Show / Hide Column Headers button to activate the "Accuracy" header. This header lets you select either "Date/Time" or just "Time".
- "Source" - only available in "Final Results" and "Critical Points" tables: Provides information on the origin of the frequency points for the critical points table or for the final measurement, for example Critical Points from data reduction or Interactive measurements. You can edit this information.
- "Comment" - content (which you can edit) depends on the kind of table:
 - In the "Overview" table: You can enter arbitrary comments in any cell of the "Comment" column.
 - In the "Critical Points" table: R&S ELEKTRA automatically enters the names of detectors, with which a critical level value was detected in the overview measurement at this frequency point.
 - In the "Final Results" table: During an Interactive Measurement, your comments from the Measurements dialog are automatically entered in the new rows that are generated in this table.
To sort the table rows by any of the columns, click the column's name header. Click the name header again for reverse order.

For the default and optional headers of test tables, see Table Headers.

For information on how to work with tables, see Test Result Tables.

You can configure tables by the following functions:

- Hide / show tables
- Close / Close all
- Arrange tables
- Select cells
- Cut
- Copy
- Paste
- Add new row
- Show / hide columns
- Show / Hide Column Headers
- Select Table
- Show Graphic Display
- Export to CSV file format
- Set default sorting
- Auto Scroll
- Sort table

Table Headers

- Name
- Unit
- Accuracy
- Detector
- Base Unit

Hide / show tables

The top "Graphics" bar toggles between hide and show all tables. If both graphics and tables are visible (half screen, each), hiding the tables shows the graphics in full size. Hiding the graphics, too, leaves the two top bars visible, only. Opening the tables while the graphics are hidden shows the tables in full size.

Close / Close all

Closes the selected table or all tables that are shown. To reopen closed tables, double-click their names in the Test Components side panel.

Arrange tables

To arrange multiple tables horizontally, vertically or cascade them behind each other, use the buttons.

Select cells

A single cell is selected by clicking it directly. Selected cells are marked by bold content.
Multiple individual cells (not necessarily adjacent) are selected by pressing [Ctrl] while clicking the cells to be selected. You can also unselect previously selected cells by this combination of pressing [Ctrl] and clicking the cells. In tablet operation, selecting multiple cells requires to bring up the on-screen keyboard, tap [Ctrl] and then tap the cells to be selected.

A single row of cells is selected by clicking the row header. Selecting all cells in a row is equivalent with selecting the whole row. Selected rows are highlighted by a blue background color together with bold cell content.

Multiple adjacent rows of cells are selected by clicking the first row header, then pressing [Shift] and clicking the last row header. In tablet operation, bring up the on-screen keyboard, tap the first row header, then tap [Shift] and tap the last row header.

A rectangular range of cells is selected by clicking a cell in one corner of the rectangle, then pressing [Shift] and clicking the cell in the opposite corner of the rectangle. This procedure is also used to select one single or multiple columns. Note that the scrollbars can be used between clicking the two corner cells. In tablet operation, selecting multiple rows requires the following steps: Bring up the on-screen keyboard, tap a cell in one corner of the rectangle, tap [Shift] and tap the cell in the opposite corner of the rectangle. If you want to use the scrollbars between tapping the two corner cells, proceed as follows: First tap one corner cell, then scroll to the opposite corner cell, tap [Shift] and tap the opposite corner cell. If a relevant part of the table is hidden by the on-screen keyboard, undock it. Once the on-screen keyboard floats, it can be moved out of the way.

An alternative for selecting a rectangular range of cells is clicking a cell and using the [Shift] + [Arrow] keys to define the selection. The [Ctrl] key can be used in combination with the [Arrow] keys to jump to the first or last row or column.

You can select also the whole table.

Cut

Cutting is only available in tables that are not controlled by a test template, for example the "Critical Points" table. Thus, it is not permitted in the "Overview" and "Final Result" table.

To cut values of selected cells from a table and copy them into the clipboard, right-click any selected cells and select "Cut", or click the "Cut" button \(\text{Cut}\), or press [Ctrl] + [X]. When the cut cells are inserted in a new position by Paste, they disappear from their original position.

Copy

To copy values from selected cells into the clipboard, right-click the cells and select "Copy", or click the "Copy" button \(\text{Copy}\), or press [Ctrl] + [C]. The copied values can be inserted in a new position by Paste.

Paste

To paste cut or copied values from the clipboard into a table, right-click the new (first) cell position and select "Paste", or click the "Paste" button \(\text{Paste}\), or press [Ctrl] + [V].
Add new row
Adding rows is only available in tables that are not controlled by a test template, for example the "Critical Points" table. It is not permitted in the "Overview" and "Final Result" table.
To insert a new row, right-click a row header or a cell and select "Insert new row before". The new row is then inserted above the row that has been clicked.
To add a new row at the end of the table, click the button and select "Add new row".
To delete selected rows, click the button while the rows are highlighted and select "Delete rows".

Show / hide columns
To show or hide columns selectively, right-click any column header and select "Show / hide columns". In the list of available columns, tick the columns to be shown and untick the columns to be hidden. Alternatively, click the "Show / hide columns" button and activate or deactivate the individual columns in the list accordingly. You cannot hide the columns "Rg" (frequency range number) and "Frequency" (frequency points).

Show / Hide Column Headers
To show or hide individual column headers described below, right-click any column header and activate or deactivate either of them. Alternatively, click the "Show / Hide Column Headers" button.

- Detector shows the selected Detector types in level, limit and margin columns, but does not allow modifying the selection.
- Accuracy adjusts the decimal fraction of the values in the selected column.
- Base Unit shows the selected base units, but does not allow modifying them.

Select Table
Selects all cells of a table. Alternatively, click any header of the first column or press [Ctrl] + [A] or right-click any cell in the table and select "Select Table".

Show Graphic Display
Generates a graphic representation of selected table contents. Alternatively, right-click any cell and select "Graphic Display". A dialog opens up to select the columns to be displayed. The dialog allows also selecting either the generation of a new chart or the integration of the selected column's data into an existing chart.

Export to CSV file format
Exports a table's contents to a file in .csv format. A dialog opens up to specify the target folder and filename.
For importing such files, see "Importing tables" on page 133. For exporting table contents to an Excel file, use copy and paste.

Set default sorting
Re-establishes a table's original order. Typically, a table is sorted per default by increasing frequency values.

Auto Scroll
Facilitates reading the "Final Results" or "Critical Points" table during a measurement:
Enabling the checkbox keeps the row that shows the currently measured frequency point within the display area.

Sort table
To sort the table’s rows by the values in the "Rg" (frequency range number) or "Frequency" column, click this "Name" header. Click this header again for reverse order.

Table Headers
The **Name** and **Unit** headers are always visible, the optional **Detector** header is enabled per default. You can also enable **Accuracy** and **Base Unit**.

Name → Table Headers
Shows the name of the column, as in Figure 4-5. You can change the order of rows by clicking the "Rg" or "Frequency" header. In detector columns, the name consists of an abbreviation for the **Detector** name and the type of trace, which can be "Level", "Limit" or **Margin**.

Unit → Table Headers
To select one of the optional units for an individual column, click its "Unit" header. The software automatically converts the displayed values.

Example:
If the unit is "kHz" and the displayed value is "2,000", changing the unit to "MHz" changes the displayed value to "2".
If the unit is "dBV" and the displayed value is ",-137", changing the unit to "dBμV" changes the displayed value to ",-17".

Accuracy → Table Headers
Specifies the number of decimal places of the values displayed in the selected column. You can set this parameter from 0 to 8 decimal places.
"Accuracy" is only available, if it is enabled at **Show / Hide Column Headers**.

Detector → Table Headers
Displays the full name of the measurement detector, which is abbreviated in the "Name" header. The detector cannot be changed in this column, which is only available, if it is enabled at **Show / Hide Column Headers**.

Base Unit → Table Headers
Displays the base unit of the column. The base unit cannot be edited in this column, which is only available, if it is enabled at **Show / Hide Column Headers**.

4.4 Test Templates

Test templates are used to **configure EMI Tests**. The **software structure** shows that a test contains one test template, which contains hardware setups along with **Limit Lines** and user-definable configuration settings.
Types of test templates

1) A test template that you create and save with your settings can be considered as a "global" test template.

2) When you create a test based on a test template, a copy of this test template is integrated into the Test container.

The differences between these two types of test templates are:

- **Global** test template
 - Is available at "Home" > "Test Templates"
 - Allows creating tests
 - Allows modifying device properties from within the test template dialog
 - Changing settings in a global test template has no influence on existing tests

- **Copy** of a test template in a test container
 - Is only available within the test, into which it is integrated
 - Exclusively controls the test, into which it is integrated and cannot be used for creating other tests
 - Does not allow modifying device properties from within the test template dialog
 - Changing settings in this copy (while the test is stopped) makes R&S ELEKTRA clear (discard) all existing results of the test, into which the copy is integrated.
 (Discarding is required to keep settings and results always consistent with each other. A saved test reflects the entirety of settings and measurement results at the time of testing.)

Handling test template items

Access: "Home" > "Test Templates"

Depending on the selection of one or several test templates, different action buttons are available in the actions bar. Most of them are common action buttons, described in Chapter 3.2, "Common Action Buttons", on page 35. (For information on how to proceed with "Create: Template", see "Configuring test templates" on page 68.) The dialog-specific action buttons for test templates are:

- "Pin to Dashboard (Create Test)" adds the selected test templates to the "Dashboard" with the function of directly creating a test (see "Create test from template")
- "Unpin from Dashboard (Create Test)" removes the selected test templates from the "Dashboard" with the function of directly creating a test (described above).
- "Create test from template" applies the selected test template for directly creating a test. From here, you can continue with step 2 of the procedure Creating and running tests. Note that this action button is only available, if one single test template is selected in the "Test Templates" dialog.
- "New Test" creates a test based on the selected test template. Hence, using "New Test" in the "Test Templates" dialog is an abbreviation of the procedure described in Chapter 4.3.1, "Configuring Tests", on page 50: Now, you do not have to first select a test type. Instead, the test type of the selected test template is used. Therefore, the
new test configuration dialog (for example Figure 4-3) is preconfigured. Note that the "New Test" action button is only available in the "Test Templates" dialog, if one single test template is selected.

Configuring test templates

Access: "Home" > "Test Templates"

Click "Create: Template" to generate a new EMI test template. The following chapter explains how to configure a test template.

A default EMI test template is partly preconfigured by R&S ELEKTRA as in Figure 4-6.

![Figure 4-6: Default test template for EMI tests](image)

1 = General Settings - globally relevant for the test execution
2 = Measurement Flow - settings for overview measurement, data reduction and final measurement
3 = Flow Details (here: one frequency range, only)
4 = Test Information - (can be edited also in a test components dialog)
5 = Actions - with settings relevant for user interaction during tests

For a configuration example, see Figure 4-7.
Figure 4-7: Example of a fully configured EMI test template with radiative transducer

In Figure 4-7, the EMI test template example is configured with the following settings:

- **General Settings**
 - "Operating Mode" on page 72 = "Test Receiver"
 - Scan Mode = "Stepped Scan"
 - Audio Demodulation Type = "OFF" (which leaves the Volume setting idle)
 - Level Range (Graphics) from 0 dBµA/m to 80 dBµA/m
 - An existing Default Report Template is selected
● **Measurement Flow** allows selecting the test phase to be configured:
 - The **Overview** test phase is highlighted, therefore its settings are available in the **Flow Details** section
 - The **Data Reduction** test phase is not highlighted, its settings are summarized in brief below the icon
 - The **Final** test phase is enabled but not highlighted, its settings are summarized in brief below the icon, for example the detectors "Quasi Peak", "Minimum Peak", "CISPR Average" and "RMS Average"
 - **Flow Details**, here for the "Overview" test phase highlighted above
 - Four **Detectors** for the overview measurement, here "Maximum Peak", "Minimum Peak", "Average" and "RMS"
 - The checkbox for **Repeat Measurement** is activated
 - A first **Frequency Range**, here 9 kHz to 150 kHz. See section Various frequency range statements in the dialog for more details.
 - The "Meas. BW (Overview)", here 200 Hz, is displayed next to the frequency boundaries. You can specify it in the settings for the overview measurement.
 - A **Limit Line** with the name "EN 55011 M Field 3m QP Group 2 Class B" is selected from the list of limit lines
 - The checkbox for **individual limit lines** is activated, enabling different limit lines for different frequency ranges
 - Some arbitrary **Comment** text is entered, here "Customer xyz"
 - For the highlighted receiver device icon, the **settings for the overview measurement** are configured, including, for example, the **Meas. BW = 200 Hz**, the **Step Size = 50 Hz**, "Auto" ranging for the **RF Attenuation** and the **Preamplifier = 0 dB**.
 For the same selected (highlighted) receiver icon, the dialog also provides access to the **Settings (Final)**.
 - The **Signal Path** Receiver-LoopAntenna and the **Transducing Device** Magnetic Loop Antenna are selected.
 Note that there is a "Select Device" field and a **button available below each device icon for selecting this device. Instead of an antenna, you can select other types of transducers, including LISNs and TEM waveguides.
 - The receiver's, signal path's or transducer's **Properties** as specified in the **Device List** are not shown in this figure
 - An additional second frequency range, here 150 kHz to 30 MHz (not expanded in this figure), with the same limit line
 - The **Test Information** dialog is not shown in this figure
 - The **Actions** settings dialog is not shown in this figure (see **Figure 4-25**)
Minimize frequency ranges

For best access to all frequency ranges within a limited display area, each of the frequency ranges can be minimized like the first frequency range in this example:

Or use the scrollbar, to shift the frequency range that you want to edit into the display area.

The following chapters explain how to configure an EMI test template.

For information on how to execute a test, see Chapter 7, "Running Tests", on page 166.

- General Settings... 71
- Measurement Flow..75
- Flow Details...85
- Test Information...98
- Actions.. 99

4.4.1 General Settings

This dialog provides access to several settings that are relevant independent of the type of measurement.

The software automatically configures several settings in the background, for example the "Filter Type":

User Manual 1178.3963.02 — 06
"Filter Type"

The "Filter Type" defines the bandwidth of the measuring filter (IF filter). R&S ELEKTRA automatically sets the IF filter bandwidth to 6 dB, if the Receiver supports this filter type. If it does not support 6 dB filters, R&S ELEKTRA automatically sets the IF filter bandwidth to 3 dB.

- A normal Gaussian filter with a 3 dB filter bandwidth approximately matches the noise bandwidth.
- EMI filters with a 6 dB filter bandwidth comply with CISPR and MIL standards. In the context of EMI tests, the 6 dB definition is more common, since it approximately matches the equivalent pulse bandwidth of broadband signals.

![Filter Bandwidth Diagram]

Figure 4-8: Definition of filter bandwidths

- dB = Level in decibels
- f = Frequency
- 3 dB = Signal level 3 dB down from peak
- 6 dB = Signal level 6 dB down from peak
- 1 = Bandwidth at a level 3 dB down from peak
- 2 = Bandwidth at a level 6 dB down from peak

The selected filter type is shown in the test report, if you configure the Report Template to include the "EMI Test Template" and to "Show Details" of this template.
"Test Receiver" Operate your measuring device in test receiver mode to perform scan measurements. This mode also enables selecting a Scan Mode, if the receiver offers both "Stepped Scan" and "Time Domain Scan".

"Spectrum Analyzer" Operate your measuring device in spectrum analyzer mode to perform sweep measurements. During final measurements, the device performs sweeps in zero span mode.

Scan Mode ← Setup
Only available, if the Operating Mode is "Test Receiver" (not "Spectrum Analyzer"), and if the test receiver is capable of both "Stepped Scan" and "Time Domain Scan". For a Rohde & Schwarz test receiver, make sure that software option "Time Domain Scan" is available, for example R&S ESR-K53, and that "K53" is enabled in the Receiver properties. See "Options" in Chapter 4.6.3, "General Properties", on page 118.

"Stepped Scan" With this selection, R&S ELEKTRA performs conventional scans.

"Time Domain Scan" With this selection, R&S ELEKTRA enables fast scans with support of fast Fourier transform (FFT) algorithms. As this scanning mode is much faster than stepped scans, "Time Domain Scan" is typically the preferred selection, if available.

Audio Demodulation Type ← Setup
Only available, if the receiver supports audio demodulation (option R&S FSV-B3) and if "FSV-B3" is enabled at "Home" > "Device List" > "Receiver" > General > "Options". Audio demodulation can improve the identification of signals in the Interactive Measurement mode. For example, if an FM broadcasting radio signal acts as interferer, FM demodulation can make the original audio signal audible.

Available audio demodulation types are:

"OFF" Disables audio signal demodulation.

"AM" Enables audio demodulation of amplitude modulated RF signals.

"FM" Enables audio demodulation of frequency modulated RF signals.

Volume ← Audio Demodulation Type ← Setup
Sets the audio volume level, if Audio Demodulation Type is available. Use this feature for a receiver that is suited for controlling the audio demodulation volume (option "B3").

Level Range (Graphics) ← Setup
Specifies the lower and upper level range limits to be displayed on the Y-axis of the test chart.

The software automatically assigns the unit of the level values depending on the Transducing Device.

You can edit the unit by entering it together with the level value, for example:

- "mA" for mA
- "W" for W
- "dBm" for dBm
- "mV" for mV
- "dBµV" for dBµV

User Manual 1178.3963.02 — 06 73
Default Report Template ← Setup
If you wish to specify that an existing (pre-defined) report template is used as a default for each test based on this test template, select this report template here.

Site Correction Factors (C2) for the GTEM Correlation ← Setup
Only available, if you have selected a TEM Waveguide as the Transducing Device.
Specifies two Attenuation Tables with dB values for the correlation between measurements in an open area test site (OATS) and in the GTEM waveguide.
R&S ELEKTRA uses these tables for a correlation algorithm. It converts the results of a measurement in a GTEM cell into equivalent results that would be measured in a true OATS with an antenna in horizontal or vertical polarization.
You can either select existing attenuation tables or let the software compute correction factors to create tables automatically.

"Horizontal" Name of the attenuation table that represents horizontal antenna polarization in the OATS. Use the button to select a table.

"Vertical" Name of the attenuation table that represents vertical antenna polarization in the OATS. Use the button to select a table.

Create new factors ← Site Correction Factors (C2) for the GTEM Correlation ← Setup
Uses a set of input parameters to let R&S ELEKTRA calculate attenuation tables for GTEM correlation. The software automatically creates these tables for the frequency range 10 MHz to 30 GHz.

![OATS Factor Calculation](image)

Figure 4-9: OATS (open area test site) factor calculation
Use the following "Input" parameters:

- "d" = horizontal distance between EUT and antenna
- "e" = vertical height of the EUT above the ground
- "hmin" = minimum vertical height of the antenna above the ground
- "hmax" = maximum vertical height of the antenna above the ground
- "step" = step size of the vertical height variation of the antenna
- "Anechoic Mode" = either "Semi" anechoic or "Fully" anechoic

Note: Do not consider the default values suggested in the dialog as recommended by Rohde & Schwarz.

For the "Output", specify names for the attenuation tables for horizontal and vertical polarization, respectively.

Click "Calculate" to let R&S ELEKTRA automatically create and save these tables.

If you try to save a GTEM test template, which requires defining the C2 factors, but you have not yet done so, the following message comes up: "Select Horizontal and Vertical Correction Factors (C2)". In this case, open the General Settings > Setup dialog to select or create the "Site Correction Factors (C2) for the GTEM Correlation".

Note: For the GTEM conversion factor C1, see "GTEM Correction" on page 128.

Optional Settings

Selects an arbitrary number of Limit Lines to be shown additionally in the test charts that are based on this test template. The limit lines in this table are not used for any test evaluation, but for display only.

The "Add a limit line table" button allows selecting limit line tables to be added to the list of limit lines.

4.4.2 Measurement Flow

This dialog provides access to various settings for the overview measurement, for the data reduction and for the final measurement. These settings are valid across all frequency ranges specified in the test template.

![Figure 4-10: Phases in the measurement flow](insert_image)

To access the Flow Details settings of any individual phase in the measurement flow, click the icon of this phase. If the icon has a checkbox, it must be enabled before you can select the icon.

- **Overview**
- **Data Reduction**
- **Final**
Overview Measurement

The intention of the overview measurement is finding signals and frequencies that deserve being examined in more detail. This measurement is a scan or sweep, according to the Operating Mode, the Scan Mode and the Settings (Overview). The overview measurement is executed across the full spectral range defined in the test template.

The overview measurement can be more coarse than the Final Measurement, and if there is a LISN, it typically ignores some of the LISN lines. However, it must be fine enough to find all interference signals. Therefore, in the Settings (Overview), select a good balance of Meas. BW and Step Size.

Click the "Overview Measurement" icon to access the "Flow Details - Overview Measurement" settings:

![Figure 4-11: The Overview icon opens Flow Details - Overview Measurement](image)

The "Flow Details - Overview" section offers a comprehensive "Measurement Settings" dialog and a brief "Accessory Settings" dialog, as shown in Figure 4-11.

- The "Measurement Settings" dialog comprises the following:
 - Detectors
 - Repeat Measurement
 - Below these options, find the frequency range list with the comprehensive Settings (Overview), which are described in Chapter 4.4.3, "Flow Details", on page 85.
- The "Accessory Settings" dialog can comprise various "Loop Parameters".

EMI tests always run through all frequencies defined in the frequency range list. But depending on the accessories in the test setup, some tests must repeat this run with varying accessory settings.
For example, in a conducted EMI test setup with a LISN, you typically repeat the frequency run for each selected LISN line. Such a repetition is called a **loop**.

The availability of "Loop Parameter" types depends on the **Transducing Device**:

- **Absent**

 If the transducing device is a simple transducer or probe, for example a current clamp, a coupling network, a single-line LISN or a near-field probe, the "Accessory Settings" dialog and any loop parameters are absent.

- **"Line"**

 If the transducing device is a **LISN** (but not a "Single Line LISN"), the "Accessory Settings" offers a line selection. Select the LISN lines that you want to include into the measurement. The following settings apply:

 - In a hardware setup with a 2-line LISN, you can select or deselect "N" and "L1".
 - In a hardware setup with a 4-line LISN, you can select or deselect "N", "L1", "L2" and "L3".

 Select at least one line for the overview measurement. During the test, the software automatically measures the selected lines one by one and stores the results both in combined and in separate result tables.

- **"Polarization"**

 If the transducing device is a **TEM Waveguide**, hence, a GTEM cell, R&S ELEKTRA enables measuring on all 3 orthogonal EUT axes (X, Y, Z), as shown at the lower edge of Figure 4-11.

 You can activate or deactivate this polarization loop, but you cannot change the preselected setting for the X axis, Y axis and Z axis. Thus, if activated, you must run three overview measurements with the EUT in three different orthogonal orientations. During the test, the software prompts you to switch (hence, rotate) the EUT axis to the three orthogonal orientations X, Y or Z, respectively. The three measurements are stored in separate result tables.

 Note that TEM waveguides such as GTEM cells are not suited for interactive measurements.

Detectors ← Overview Measurement

Selects the detector types for up to four detectors used in the overview measurement of a test.

Select at least the 1st detector. For the optional 2nd, 3rd and 4th detector, you cannot select a detector type that is already selected otherwise (mutual exclusiveness).

Your selection of detectors for the overview measurement also determines the automatic preselection of corresponding default detectors in the final measurement settings, according to Table 4-1.

Note: Typically, we recommend using a single fast detector in the 1st detector position, for example "MaxPeak". More and other detectors are permitted and can be a good choice, too, depending on the test situation. For a list of all available detector types, see Chapter 5.3, "Detectors", on page 156.

Repeat Measurement ← Overview Measurement

Specifies that the overview measurement is cyclically repeated in a test, until you manually terminate the repetition. This mode is useful for observing changes in the measurement results, if you modify any test conditions during test execution.
Note: During repeated measurements, R&S ELEKTRA compares the currently measured level values with the previously measured level values and keeps the maximum. Lower values in the still varying level measurements are thus ignored. Over time, this algorithm leads to a trace that approaches the maximum of the measured level values at each frequency point, with a continuously reduced variation along the trace.

To terminate the continuously repeating overview measurement while the test is running, click “End Repetition” in the test’s Measurement Flow Control side panel.

If you disable "Repeat Measurement", the overview measurement is executed in a single scan or sweep, only.

See also the "Repeat Measurement" setting in the Final Measurement.

Data Reduction

Specifies various parameters for algorithms that reduce the number of measurement results from the overview measurement.

To identify the most critical results, you can decide whether the software performs either a "Peak Search" or a "Subrange Maxima" evaluation. Then R&S ELEKTRA subjects the outcome to an "Acceptance Analysis". To select an option, activate the checkbox next to it.

The following diagram shows the interrelation of the data reduction options:

![Figure 4-12: Options in the data reduction procedure](image)

As a result of the data reduction procedure, R&S ELEKTRA stores the reduced number of critical data points (frequencies and measured levels) in the "Critical Points" table.
The data reduction algorithm is based on the "Overview" results table, which contains all maximized results of the partial measurement, for example, "Overview L1" (if there is a LISN with corresponding settings). If the test template uses a LISN, the software stores the results together with the information, which individual LISN line delivered which individual critical result.

"Peak Search" Activates a peak search evaluation. This data reduction mode finds the highest narrowband signals in the measured frequency range. The setting specifies the "Peak Excursion" (as explained in the section Marker > "Search"), which defines the relative level difference between peak and non-peak measurement results. The size of this difference determines whether a peak is detected or not. The default Peak Excursion is 6 dB.

"Subrange Maxima" Activates a subrange maxima evaluation. This data reduction mode finds critical broadband signals in the measured frequency range. You can specify the "Number of Subranges" and the "Maxima per Subrange". If you change the default "Equidistant" setting of subranges to "Individual", you can select your own Frequency List instead of entering several equidistant subranges.

"Acceptance Analysis" The number of frequency points for each detector, obtained from the previous data reduction steps, can often be further reduced by specifying an "Acceptance Offset" (default = -6 dB). The limit lines of each frequency range are shifted by the specified offset (lowered by adding a negative dB value). Frequency points with level values that fall below the shifted limit line are then discarded.

Final Measurement
Specifies the settings for the final measurements, which are performed as single measurements and must comply with EMI standard requirements regarding detectors, measurement bandwidth, accessory settings and measurement time.

Note: Skip "Final Measurement"?.
Under certain conditions, you can use the results of the "Overview Measurement" as final results, instead of actually running the "Final Measurement". The conditions include making sure, that the "Overview Measurement" was performed at the correct critical frequencies and with the correct accessory settings. In this case, R&S ELEKTRA can copy the frequencies from the critical points table and the corresponding overview measurement results to the final results table.

To let the software do so, disable the "Final Measurements" checkbox as in Figure 4-14.

Click the previously enabled "Final Measurement" icon (or enable the checkbox next to it) to access the "Flow Details - Final Measurement" settings:
Figure 4-13: The Final Measurement icon opens Flow Details - Final Measurement

Here is an overview of all options for the "Final Measurement":

- **Detectors**: Maximum Peak, None, None, None
- **Repeat Measurement**: 10 s
- **Pause before Final Measurement for Interactive Data Reduction**
"Detectors" Selects the detector types for up to four detectors used in the final measurement of a test.

The following rules apply for the selection of final measurement detectors:

- Select at least the 1st detector.
- For the optional 2nd, 3rd and 4th detector, you can select any detector type, even if it is already selected for other detector positions. Hence, there is no mutual exclusiveness, in contrast with the Detectors for the overview measurement.
- You can select only as many detectors as for the overview measurement.
- R&S ELEKTRA observes a one-to-one relation of detector positions. Hence, the overview measurement made with the overview detector set in the 1st position is finalized with the final detector that is also set in the 1st position. If any position is set to "None" in the overview measurement settings, it remains deactivated in the final measurement.
- The automatic preselection of the default final measurement detectors depends on your selection of the overview measurement detectors and on the mapping in Table 4-1.
- The default preselection is not binding, you can select an arbitrary detector on any position that is specified for an overview detector.
- Changing final detectors does not change (overwrite) any detector selection in the overview measurement settings.
- The selection of the final measurement detectors is independent of the Transducing Device.

Table 4-1: Mapping of overview and final detectors

<table>
<thead>
<tr>
<th>Selected detector in overview measurement</th>
<th>Suggested default detector in final measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average (AVG)</td>
<td>CISPR Average (CAV)</td>
</tr>
<tr>
<td>CISPR Average (CAV)</td>
<td>CISPR Average (CAV)</td>
</tr>
<tr>
<td>Maximum Peak (PK+)</td>
<td>Quasi Peak (QPK)</td>
</tr>
<tr>
<td>Minimum Peak (PK-)</td>
<td>Minimum Peak (PK-)</td>
</tr>
<tr>
<td>Quasi Peak (QPK)</td>
<td>Quasi Peak (QPK)</td>
</tr>
<tr>
<td>RMS</td>
<td>RMS Average (RMSAV)</td>
</tr>
<tr>
<td>RMS Average (RMSAV)</td>
<td>RMS Average (RMSAV)</td>
</tr>
</tbody>
</table>

For a list of all available detector types, see Chapter 5.3, "Detectors", on page 156.
"Repeat Measurement" specifies that the final measurement is cyclically repeated in a test, until you manually terminate the repetition. This mode is useful for observing changes in the measurement results, if you modify any test conditions during test execution.

Note: During repeated measurements, R&S ELEKTRA compares the currently measured level values with the previously measured level values and keeps the maximum. Lower values in the still varying level measurements are thus ignored. Over time, this algorithm leads to a trace that approaches the maximum of the measured level values at each frequency point, with a continuously reduced variation along the trace.

To terminate the continuously repeating zoom measurement while the test is running, click "End Repetition" in the test's Measurement Flow Control side panel.

If you disable "Repeat Measurement", the zoom measurement is executed in a single scan or sweep, only.

See also the Repeat Measurement setting in the Overview Measurement.

"Pause before Final Measurement for Interactive Data Reduction" interrupts the test before the final measurement for an interactive data reduction. You can use this pause during a test to manipulate the measured levels. This manipulation influences the critical results considered for further evaluation. Note that you are allowed to manipulate the measured results, but you are responsible for this manipulation.
"Use Critical Points as Final Results" Per default, the checkbox next to the "Final Measurement" icon is enabled, as in Figure 4-13, and R&S ELEKTRA performs final mea-
measurements at the frequencies of the previously identified critical points. However, you can apply a "skip" mode and use the critical points results as final results. To apply this mode, disable the checkbox as in Figure 4-14.

![Figure 4-14: Skipping the final measurements uses the critical points as final result](image)

This deselection lets R&S ELEKTRA skip the final measurements. Instead, the software copies the previously identified critical frequencies and their levels from the overview measurement into the final results table.

- If you use a TEM waveguide, the software copies the overview levels from the same EUT orientations that were found to have critical points.
- If you use a LISN, the software copies the overview levels from the same LISN lines that were found to have critical points.

Note: Double-check final detectors. When you disable the "Final Measurement", the software also overwrites the final measurement "Detectors" with the detectors selected for the overview measurement. For example, it replaces the "Quasi Peak" detector by the "Maximum Peak" detector. The updated final detectors still remain selected when you enable the "Final Measurement" again. You can edit the overwritten selection. However, if you miss this potential change of detectors for the "Final Measurement", disabling and enabling the "Final Measurement" can cause an **unintended misconfiguration** of your test template.

Disabling the "Final Measurement" also disables additional measurement settings (repeat / pause measurement), if available.

Note: Consider TD scan. We recommend using the time domain (TD) option for the final measurement, if the overview measurement data is sufficient for a standard-compliant characterization of the RF emission. This option is typically reasonable, if you operate the receiver in Scan Mode "Time Domain Scan" with a compliant detector, for example QuasiPeak. Even with this slow detector, a "Time Domain Scan" is often faster than a "Stepped Scan" with a fast non-compliant detector, for example "MaxPeak". This speed effect is especially relevant within the relatively small frequency ranges of conducted measurements. As the detector is standard-compliant, you can skip the final measurement and use the levels at the critical points of the overview measurement as the final results. However, in some special cases of a "Time Domain Scan", it can be an advantage to run the overview measurement with a fast non-com-
pliant detector, for example "MaxPeak". An example is a broad frequency range that requires measurements in many frequency segments. In this case, using the "MaxPeak" detector for the overview measurement and the compliant "QuasiPeak" detector for the final measurement on critical points, only, can be faster. For this mode, enable the checkbox for the final measurements.

"Perform Final Measurement on Critical Points"

Only available in EMI test templates that use a LISN (not a different transducer) as the Transducing Device.
The software runs the final measurement on the critical points. And at each critical point, it measures at the same LISN line that was found to have critical level at this frequency in the overview measurement.

"Measure Critical Points on these LISN Lines"

Only available in EMI test templates that use a LISN (not a different transducer) as the Transducing Device.
Specifies the LISN lines, across which the measurements are to be repeated at the previously identified critical frequencies: "N" and "L1" for a 2-line LISN, or "N", "L1", "L2" or "L3" for a 4-line LISN.
Select at least one LISN line for the final measurement. The default is all available LISN lines. The selection is independent from the selection in the Overview Measurement.

4.4.3 Flow Details

This dialog provides settings for the different phases of the measurement flow and for all frequency ranges.

All settings that are located above the list of frequency ranges are described in Chapter 4.4.2, "Measurement Flow", on page 75, because the availability of these settings greatly changes with the selected (highlighted) measurement phase.

- For "Measurement Settings" and "Accessory Settings", see Figure 4-11

The following sections describe these functions:

- **Add Frequency Range**
- **Shift Frequency Range Up / Down**
- **Active**
- **Frequency Range**
- **Meas. BW (Overview)**
- **Limit Line**
 - Use individual Limit Lines
- **Comment**
- **Delete Frequency Range**
- **Hardware Setup**
 - Receiver
 - Signal Path
 - Transducing Device
- **Settings (Overview)**
 - Detectors
Add Frequency Range
Creates an additional frequency range in the same test template and with the following default settings:

- The lower limit of the new frequency range is automatically set equal to the upper limit of the highest existing frequency range in this test template.
- The upper limit of the new frequency range is automatically set 10 MHz above its lower limit, if permitted by the selected devices.
- The following settings and selections are copied, if available, from the frequency range that was previously selected (highlighted in blue).
 - All selected devices in the hardware setup
 - The limit line
 - All measurement settings in the dialogs Settings (Overview) and Settings (Final)

Shift Frequency Range Up / Down
Only available, if at least one other frequency range is displayed above / below the selected frequency range. The buttons swap the position of the selected frequency range with the one above / below it.

Frequency ranges are typically arranged in an order of increasing frequency, but different arrangements are permitted, too.

Active
Activates or deactivates measurements in a defined frequency range.

Frequency Range
Specifies the lower and upper limits of the frequency range. To edit the frequency values, click them.

You can also edit the units. Permissible units are Hz, kHz, MHz and GHz. For kHz, MHz and GHz, it is sufficient to enter k, M and G. For example, enter 10M for 10 MHz.
If you exchange any Transducing Device in the test template's hardware setup, the frequency values of new frequency ranges can change according to the device properties. If the device is incompatible with the existing frequency ranges, you must change them, too, before you can save the test template.

Note: Various frequency range statements in the dialog.

Figure 4-15: Example of frequency ranges shown in the settings dialog

- **1** = Specified lower and upper limit of the frequency range (here: 300 kHz to 10 MHz).

 Mouse-over text: "Set Start and Stop Frequency"

- **2** = Frequency range, in which the combined receiver, signal path and transducer (here: an artificial mains network) can be used. This frequency range can be limited, for example, by the transducing device's correction table. Note that (2) is the least common range of (3) and (4), where (2) can be reduced also by invisible setting details.

 Mouse-over text: "The Frequency Range of the Hardware Setup"

- **3** = Usable frequency range of the receiver with the current overview measurement settings. This frequency range can be reduced by various properties and settings of your receiver, for example, the selected input. R&S ELEKTRA computes this reduction in a complex algorithm.

- **4** = Usable frequency range of the receiver with the current final measurement settings.

The frequency range (1) is an interactive setting, while the other frequency range statements are for your information, only.

The measurement settings and their frequency range statements are only shown, if the receiver icon is selected (highlighted).

Meas. BW (Overview)

Displays the measurement bandwidth as specified in the Settings (Overview).

... Limit Line

Selects a limit line table.

Note: In each frequency range, you can select one limit line table, only. However, each limit line table can be defined with up to four limit line columns, each for an individual detector.
If no limit line is defined for the current detector, but there is a limit line for an alternative detector according to Table 4-2, R&S ELEKTRA automatically replaces the missing limit line. R&S ELEKTRA uses the alternative limit line for calculating the Margin values in the result table and the Verdict.

Table 4-2: Alternative limit line detectors

<table>
<thead>
<tr>
<th>Test template detector</th>
<th>Limit line detector alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average (AVG)</td>
<td>CISPR Average (CAV)</td>
</tr>
<tr>
<td>Maximum Peak (PK+)</td>
<td>Quasi Peak (QPK)</td>
</tr>
<tr>
<td>Minimum Peak (PK-)</td>
<td>none (no detector alternative)</td>
</tr>
<tr>
<td>Quasi Peak (QPK)</td>
<td>none (no detector alternative)</td>
</tr>
<tr>
<td>CISPR Average (CAV)</td>
<td>none (no detector alternative)</td>
</tr>
<tr>
<td>RMS</td>
<td>RMS Average (RMSAV)</td>
</tr>
<tr>
<td>RMS Average (RMSAV)</td>
<td>none (no detector alternative)</td>
</tr>
</tbody>
</table>

If the selected limit line table does not contain a limit line specification for the alternative detector, either, a "Validation Warning" comes up when you save the test template: "Selected limit line does not match the configured detector in this frequency range" (or several warnings, one for each frequency range). Saving is still possible, but as the test misses a required limit line, R&S ELEKTRA cannot calculate the margin values and the verdict. To solve this issue, we recommend using the detectors as specified in a limit line table that conforms with the applicable standard.

Use individual Limit Lines ← Limit Line
To allow different limit lines for different frequency ranges, activate the checkbox. Otherwise, if this checkbox is not activated, the same (global) limit line is used for all frequency ranges.

If different limit lines are specified for different frequency ranges, deactivating this checkbox copies the limit line selection of the currently highlighted frequency range (blue) to all other frequency ranges. This copying of settings is protected by a warning: "The individual Limit Line settings of the frequency range(s) will be lost when disabling "Use individual Limit Lines" ". The "OK" button confirms the disabling, "Cancel" returns to the dialog without deactivating the checkbox.

Comment
Per frequency range, you can enter arbitrary text below the headline "Comment", as shown in Figure 4-7.

Delete Frequency Range
Only available, if at least two frequency ranges are present. Deletes the selected frequency range without additional warning and without the possibility to restore a deleted frequency range with its settings.

Hardware Setup
A hardware setup, represented by a diagram as in Figure 4-16, is part of each frequency range in a test template and defines the physical measurement.
The transducing device can be a "Transducer", "LISN" or "TEM Waveguide". Note that the EUT is not a device in R&S ELEKTRA.

The hardware setup diagram is displayed along with the receiver's overview measurement settings, its final measurement settings (if available) and the properties of all devices.

To select a device or change the selection in the hardware setup diagram, proceed as follows:

- If the device has not been selected before, click its icon to open the selection dialog.
- If the device has already been selected, click the button to open the selection dialog and optionally change the device.

Except for the receiver, which is fixed, you can specify different signal paths and transducers for hardware setups in different frequency ranges, if the devices are compatible with each other. To be compatible, the devices must have the same device type, such as "Transducer" > "Probe".

Note: To access the device properties of the receiver, signal path or transducing device, select (highlight) its icon. However, be careful with changing these properties, as any change affects all test templates that use this device.

For example, using a current clamp in one frequency range is compatible with using a voltage probe or a power absorbing clamp in another frequency range. All these transducers are probes. On the contrary, multi-line LISNs and GTEM cells are not compatible with any other devices. If you select a LISN or TEM waveguide for the first frequency range, you cannot select any other, incompatible type of device in additional frequency ranges.

According to the LISN or GTEM (selected for all frequency ranges) or the transducer (selected for the first frequency range), R&S ELEKTRA defines the unit for the level range. The definition is valid and binding for all frequency ranges to be created later. Therefore, in additional frequency ranges, R&S ELEKTRA only permits the selection of transducers with the same result unit. The software compares the level unit of your selected Limit Line with the level unit of the transducing devices. If the units do not match, you cannot save the test template.

To edit the measurement settings, select (highlight) the receiver icon as in Figure 4-16.

Select (highlight) the icon of any device or signal path to edit their Properties as defined in the Device List.

Note: Modifications in a hardware setup. You can modify and save any device used even for a test template that is open. When you return to the dialog of such an affected...
test template after a device modification, R&S ELEKTRA validates it, adjusts the settings and notifies you of this adjustment.

![Image of notification message]

Figure 4-17: Notification of adjusted measurement settings due to a replaced receiver

For example, consider replacing a receiver that can perform time domain scans (option "K53") by a different receiver that does not feature this Scan Mode, but only stepped scans. In this case, the scan mode in a test template that uses this receiver for "Time Domain Scan" is changed to "Stepped Scan".

This change requires that in a test, which is based on this template, R&S ELEKTRA automatically deletes all existing test results from the Test container, when you save or rerun the test. The reason is the requirement to preserve consistency between measurement settings and measurement results.

To keep results that you have saved earlier, close the test without saving it and create a new test based on the test template. Alternatively, you can make a copy of your test and rerun this copy.

Receiver ← Hardware Setup

The measurement instrument is the Receiver (test receiver or spectrum analyzer), which is automatically entered by R&S ELEKTRA as a reference from the Device List. In the device list, you can specify to use a different receiver. However, consider that this change affects all test templates, as the same receiver is referenced in each test template. Just as well, be careful with changing the Device Properties of the receiver, as these properties settings also affect all test templates.

If the measurement instrument is a test receiver (not a spectrum analyzer), you can select the Operating Mode "Test Receiver" for scan measurements or "Spectrum Analyzer" for sweep measurements. This setting only affects the test template in which you specify it.

Select (highlight) the receiver icon to access the Settings (Overview), the Settings (Final) (if available) and the receiver properties.

Signal Path ← Hardware Setup

Selects the Signal Path for this frequency range as a reference from the Device List.

Transducing Device ← Hardware Setup

Selects the Transducer (current clamp, antenna, etc.), LISN or TEM Waveguide for this frequency range as a reference from the Device List. The type of selected transducing device determines the icon that is displayed in the hardware setup diagram.

For different frequency ranges, you can specify different transducers of the same Type ("Probe"), but R&S ELEKTRA allows only one LISN or one TEM waveguide for all frequency ranges.
In the first frequency range, you can change the transducing device to any type. If the newly selected device is not compatible with devices in already existing subsequent frequency ranges, R&S ELEKTRA deletes these other frequency ranges. This feature is a specialty of the first frequency range. In all other frequency ranges, you can select only devices that are compatible with the transducing device in the first frequency range.

Note: If the test template is new, your selection of the transducing device can interactively change the frequency range values of the first frequency range.

Settings (Overview)

Specifies the receiver settings for the **Overview Measurement**.

Note: If the hardware setup uses the LISN "ENV 216", this specific LISN is the only one that also has a **Settings** dialog for its "High Pass" filter.

The receiver settings are only available, if you have selected (highlighted) the **Receiver** icon in the hardware setup diagram.

Figure 4-18: Prerequisite: select (highlight) the receiver icon

Note: Be aware of the difference: **Settings** define the individual behavior of a device during a test that is controlled by this test template. On the contrary, **Properties** define the global characteristics of a device as specified in the **Device List**.

Figure 4-19: Settings dialog for the overview measurement

Note: After an EMI measurement with a test receiver, R&S ELEKTRA can transfer the scan settings (as specified here in the test template) into the test receiver's internal scan table. You can instantly use these settings at the test receiver. To let R&S ELEKTRA use this transfer feature, enable it in the **General Settings**.

Note that the availability of some elements in the "Settings (Overview)" dialog varies with several settings in other dialogs. The details are described in the following sections.

Detectors ← Settings (Overview)

Selects (activates or deactivates) the **Detectors** that you have specified in the **Measurement Flow**.

One or more detector checkboxes can be disabled (gray), if these detector types are not available for the measurement, for example due to properties of the receiver that you use.
Meas. BW ← Settings (Overview)
Selects from a list of suggested bandwidths for the measuring filter. As this filter is also called the intermediate frequency filter, the "Meas. BW" is also referred to as intermediate frequency filter bandwidth, IF filter BW or IF bandwidth.

The range and content of this list of bandwidths, for example 10 Hz to 1 MHz, depends on your receiver.

If you select a "Meas. BW" value that does not comply with CISPR standard specifications, R&S ELEKTRA brings up a warning message, and you cannot save the test template.

The measurement bandwidth that you set here is also displayed in the headline of the Frequency Range.

CISPR BW ← Meas. BW ← Settings (Overview)
Automatically sets the measuring filter bandwidth according to CISPR specifications, depending on the width of the selected frequency range.

The button "CISPR BW" is only available, if the following conditions are all met:
- The required CISPR bandwidth of the measuring filter is available in the receiver.
- R&S ELEKTRA can select the "Filter Type" "6 dB" in the receiver.
- The frequency limits of the user-defined frequency range are within the boundaries of a CISPR band as defined in the standard, see Table 4-3.

Table 4-3: CISPR frequency bands

<table>
<thead>
<tr>
<th>CISPR band</th>
<th>Frequency range</th>
<th>CISPR bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9 kHz to 150 kHz</td>
<td>200 Hz</td>
</tr>
<tr>
<td>B</td>
<td>150 kHz to 30 MHz</td>
<td>9 kHz</td>
</tr>
<tr>
<td>C/D</td>
<td>30 MHz to 1 GHz</td>
<td>120 kHz</td>
</tr>
<tr>
<td>E and above</td>
<td>1 GHz and higher</td>
<td>1 MHz</td>
</tr>
</tbody>
</table>

Step Size ← Settings (Overview)
The input field for entering a measurement frequency step size is only available, if the following conditions are all met:
- The Operating Mode is "Test Receiver"
- The Scan Mode is "Stepped Scan"
- The "Auto" button next to the "Step Size" input field is not enabled

In this constellation, R&S ELEKTRA automatically suggests the half Meas. BW (BW/2) as a default value for the frequency step size.

<table>
<thead>
<tr>
<th>Mmax BW</th>
<th>200 Hz</th>
<th>Auto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step Size</td>
<td>100 Hz</td>
<td>Auto</td>
</tr>
<tr>
<td>Points</td>
<td>1411</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4-20: Step size in operating mode "Test Receiver"

You can edit this value and specify an arbitrary step size for the test. We recommend using at most the half "Meas. BW" value, to avoid erroneous measurements.
If you specify a step size value that is greater than BW/2, a warning comes up next to the "Step Size" input field. You can still save and use the test template, but R&S ELEKTRA shows the same warning next to the Verdict in the test:

The "Auto" button next to the "Step Size" input field resets the step size to half the "Meas. BW" and disables editing this field.

The resulting number of Points, which is the frequency range divided by the step size, is automatically calculated and displayed for your information.

Note: A typical setting for an overview measurement is a step size of half the Meas. BW ("Auto" button) with a 6 dB "Filter Type". However, as the measurement filter is not flat, the accuracy is limited. Narrow bandwidth (CW) signals could be measured up to 1.5 dB lower than their actual level. Manually setting the step size to a third or fourth of the measurement bandwidth (BW/3 or BW/4) improves the accuracy, but at the cost of a longer measurement time.

In the Scan Mode "Time Domain Scan", R&S ELEKTRA automatically fixes the "Step Size" at a quarter of the Meas. BW (BW/4). You cannot change this setting, and the "Auto" button is disabled.

As opposed to "Test Receiver" mode, in operating mode "Spectrum Analyzer" the step size is automatically calculated from the frequency range divided by the number of Points. In this case, the step size just serves for your information.

Points — Settings (Overview)

Only available, if the Operating Mode is "Spectrum Analyzer" and the "Auto" button next to the Step Size input field is disabled.

R&S ELEKTRA automatically suggests a default number of measurement points in such a way that the automatically calculated "Step Size" is equal to or close below the half Meas. BW.

![Figure 4-21: Measurement points in operating mode "Spectrum Analyzer"](image)

You can change this value and select from a list of suggested numbers of measurement points for the test. We recommend selecting the number of points in such a way that the resulting "Step Size" is not more than the half "Meas. BW" value, to avoid erroneous measurements. Use the "Auto" button to reset the number of points to meet the recommended "Step Size".

The step size is displayed, too, for your information.

Note: For selecting a suitable number of measurement points, see the recommendations at Step Size.

As opposed to "Spectrum Analyzer" mode, in operating mode "Test Receiver" the number of points is automatically calculated from the frequency range divided by the Step Size. In this case, the number of points just serves for your information.
Measurement Time ← Settings (Overview)
Specifies the measurement time (total or per point) in the overview measurement, depending on the Operating Mode:

- In operating mode "Test Receiver", you can specify the measurement time **Time Per Point**. The total measurement time results from this setting.
- In operating mode "Spectrum Analyzer", you can specify the **Total Time** measurement time. The measurement time per frequency point results from this setting.

The shortest required measurement time depends on the type of EUT and on various conditions, including the **Scan Mode** setting.

To determine the shortest required measurement time, run a continuous measurement directly on the test receiver (or a sweep in **spectrum analyzer mode**). We recommend observing the measurement results directly on the receiver’s display, as this procedure allows the best judgment of short-term instabilities. When you observe the measurement results in R&S ELEKTRA, the delay of data transfer to your computer and of graphics generation can impede the correct estimation of total measurement times. To compensate for this effect, consider estimating longer total measurement times.

If you use a test receiver that supports **Time Domain Scan**, this fast scan mode is helpful, as you can better observe a wide frequency range. Generally, in each **Scan Mode**, if you set your measurement time too short, you risk missing sporadic disturbances.

However, you can more easily afford a longer measurement time per frequency point in "Time Domain Scan" mode, because it is faster than the "Stepped Scan". At similar total measurement times, a longer time per point permits observing the EUT more intensively. If the EUT does not require enhanced observation, the total measurement time in "Time Domain Scan" mode can be much shorter than in "Stepped Scan" mode.

Use the "Maximum Peak" detector across the whole frequency range of the limit line. Observe the displayed "Clear Write" and "Max Hold" levels. We recommend considering the time that it takes, until the "Max Hold" spectrum looks "stable", as the minimum measurement time for final measurements at critical frequencies. The measurement time determined by this approach is also recommended for the overview measurement, but the best selection also depends on the type of the disturbance.

Note: If the disturbances generated by the EUT are occasional short pulses ("clicks"), evaluate the characteristics of such a device and the required measurement time by a click rate analysis. For a description of this procedure, refer to the user documentation of your test receiver.

Time Per Point ← Measurement Time ← Settings (Overview)
Only available, if the Operating Mode is "Test Receiver": Selects the measurement time per point from a list of predefined values.

Depending on this setting, the total measurement time is displayed, too, if the **Scan Mode** is "Stepped Scan". The "Total" is automatically calculated from the measurement time per point multiplied by the number of Points.

If the "Scan Mode" is "Time Domain Scan", the total measurement time (which is typically much shorter than in "Stepped Scan" mode) is not displayed. This time cannot be computed, because it depends on internal parameters and hardware capabilities of your receiver model.
Total Time ← Measurement Time ← Settings (Overview)
Only available, if the Operating Mode is "Spectrum Analyzer": Selects the total measurement time from a list of predefined values.

<table>
<thead>
<tr>
<th>Time Per Point</th>
<th>500/50/44 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Time</td>
<td>1.500 s</td>
</tr>
<tr>
<td>Video BW</td>
<td>10 MHz</td>
</tr>
</tbody>
</table>

Depending on this setting, the measurement time per point is displayed, too. It is automatically calculated from the total time divided by the number of Points.

Video BW ← Measurement Time ← Settings (Overview)
Only available, if the Operating Mode is "Spectrum Analyzer": Selects from a list of suggested video bandwidths (1 kHz to 10 MHz).

The "Video BW" is the bandwidth of the lowpass filter directly after the envelope detector. This downstream filter is used to remove noise from the signal envelope.

Typically, the "Video BW" must be wider than the Meas. BW. Exceptions apply, if standards require that the video bandwidth filter cuts away part of the signal that has passed the measuring filter (IF selection filter). If you select a "Video BW" that is smaller than the "Meas. BW", R&S ELEKTRA shows a warning.

Auto ← Video BW ← Measurement Time ← Settings (Overview)
Enables an algorithm that automatically selects the widest possible video bandwidth, in any case wider than the Meas. BW.

Input Selection ← Settings (Overview)
Selects the test receiver's or spectrum analyzer's port number, hence the physical RF input connector. If more than one port is available, the selected port is used for the measurement.

If you use a two-port test receiver that offers the coupling modes "AC" or "DC", you can select as follows:

"1AC" or "2AC" Port 1 or 2 with alternating current coupling mode. AC coupling is typically limited to signals that alternate with a few kHz, at least. Therefore, you cannot use this mode for lower frequency ranges, but the receiver is better protected against signal overload than in DC coupling mode.

"1DC" or "2DC" Port 1 or 2 with direct current coupling mode. You can use this mode to measure signals down to 0 Hz, but it leaves the receiver sensitive to overlaid DC voltage, which can damage the receiver input.

RF Attenuation ← Settings (Overview)
Only available, if Auto is disabled.

Selects a fixed input attenuation (in dB) from a list of predefined attenuation values.

<table>
<thead>
<tr>
<th>DC Attenuation</th>
<th>7 dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min Attenuation</td>
<td>10 dB</td>
</tr>
</tbody>
</table>

If you use a test receiver in measurements with potentially strong signal pulses, you must protect the receiver input by selecting a sufficiently high "RF Attenuation" value.
Note: Setting the attenuation too high reduces the sensitivity of the measurement. We recommend protecting the receiver input by using Auto ranging.

- If the Operating Mode is "Test Receiver", we recommend combining "Auto" with a Min Attenuation of 10 dB.
- If the Operating Mode is "Spectrum Analyzer" and after completing the sweep across the current subrange R&S ELEKTRA detects an overload condition, it proceeds as follows, trying to solve the overload condition automatically:
 - a) The software increases both the RF attenuation and the reference level by 10 dB.
 - b) The driver triggers another sweep and waits for completion.
 - c) R&S ELEKTRA checks the measurement results for an overload condition again.
 - d) If it still detects an overload condition and the current RF attenuation is below 40 dB (R&S FSL or R&S ESL: below 30 dB), it repeats the procedure.

Auto ← RF Attenuation ← Settings (Overview)
This "Auto" ranging button has three effects:

- It disables the manual "RF Attenuation" selection.
- It enables an algorithm that automatically selects the appropriate input RF attenuation (higher than the manual selection, if necessary). The algorithm depends on various settings and on the test situation.
- If the Operating Mode is "Test Receiver", it enables the Min Attenuation selection.

Min Attenuation ← RF Attenuation ← Settings (Overview)
Only available in Operating Mode "Test Receiver", if Auto is enabled.

Specifies either no minimum attenuation (0 dB = default) or a minimum attenuation of 10 dB, as described in RF Attenuation.

Preamplifier ← Settings (Overview)
Specifies the receiver's preamplification (in dB) for each frequency range.

We recommend disabling the preamplifier (= 0 dB) and using an RF Attenuation of at least 10 dB, to protect the receiver from damage due to input overload. This protection is especially important, if high disturbance pulses could occur, for example in conducted measurements. Another scenario that imposes an overload risk is the generation of electrostatic discharge pulses, caused by touching the antenna during manual antenna changes.

The following settings are available:

"0 dB" Selects 0 dB preamplification (= default)
"20 dB" Selects 20 dB preamplification
"30 dB" Selects 30 dB preamplification (only available with some receiver types)

Reference Level ← Settings (Overview)
This parameter is only available, if the Operating Mode is "Spectrum Analyzer".

It specifies the value of the upmost line on the analyzer's display, to avoid an input overload.
The unit of the reference level is automatically adjusted to the measurement unit of the transducing device, hence typically dBµV. The default value is 80 dBµV.

Settings (Final)

Specifies the settings for the Final Measurement.

This dialog is only available, if you have both selected (chosen) a Hardware Setup and selected (highlighted) the Receiver icon in the hardware setup diagram:

![Figure 4-22: Select (highlight) the receiver icon](image)

Note: Be aware of the difference: Settings define the individual behavior of a device during a test that is controlled by this test template. On the contrary, Properties define the global characteristics of a device as specified in the Device List.

The rules for the settings in this dialog are all described in Settings (Overview).

Most of the settings are copied from the overview measurement dialog. Some settings are calculated from copied overview settings. For example, the Step Size is automatically fixed at the half "Meas. BW" (BW/2), with one exception: In the scan mode "Time Domain Scan", the step size is a quarter of the "Meas. BW" (BW/4).

You can only edit the following final measurement settings:

- **"Operating Mode"**
 Selects "Test Receiver" or "Spectrum Analyzer", same as Operating Mode in "Settings (Overview)".

- **"Scan Mode"**
 Selects "Time Domain Scan" or "Stepped Scan", same as Scan Mode in "Settings (Overview)".

- **"Detectors"**
 Selects the detectors for the final measurement, same as Detectors in "Settings (Overview)".

- **"Time Per Point"**
 Selects from a list of predefined values for the final measurement time per point. The selection is independent of the Measurement Time in the Settings (Overview) and independent of the "Operating Mode".

- **"Video BW"**
 Only available, if the Operating Mode is "Spectrum Analyzer": Selects from a list of suggested video bandwidths. The selection is independent of the Video BW in the Settings (Overview).

Settings

This "Settings" dialog is only available, if the hardware setup uses the LISN "ENV 216" or "ENV 432", and if you have selected (highlighted) the icon of this LISN.

![Figure 4-23: Prerequisite: select (highlight) the icon of the ENV 216 or ENV 432 LISN](image)

The "High Pass" checkbox enables or disables remote switching of this LISN's internal 150 kHz highpass filter.
Note: For a description of the receiver settings, refer to Settings (Overview).

Properties

Shows the properties of the device that you select (highlight) in the hardware setup diagram.

Note the difference: Properties define the global characteristics of a device as specified in the Device List (see Device Properties). On the contrary, the Settings define the individual behavior of a device (the receiver) during a test that is controlled by this test template.

The "Properties" are shown as specified in the Device List.

Note: Access to device properties depends on type of test template.

- You can open a test template that is integrated into a test (as a "copy" of a "global" test template). However, you can only read but not modify any device properties from within this test template dialog.
- If you open a "global" test template outside of a test, you can modify the device properties from within the test template dialog.

However, be careful with modifying any device properties from within the test template dialog. These properties are also changed in the device list and in each other "global" test template that uses the device. (Existing tests are influenced by modified device properties, too, when you rerun these tests.)

4.4.4 Test Information

This dialog allows editing test information that is relevant for all (or most) of the tests that you run from this test template. By entering this information in the test template instead of in the test, you avoid having to enter the same information repeatedly for the same type of tests.

To edit your predefined titles and contents for an individual test, open the test information dialog within this test.

<table>
<thead>
<tr>
<th>Title</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>Test Standard</td>
<td></td>
</tr>
<tr>
<td>Test Site</td>
<td></td>
</tr>
<tr>
<td>Operator Name</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4-24: Test information dialog

- "Add Information"
 Adds a new row in the test information table, below the default lines "Description", "Test Standard", "Test Site" and "Operator Name".

- "Shift Row Up / Down"
 The buttons swap the position of the selected row with the one above or below it.

- "Title"
Enter a title for each row of test information. Click the titles headline to sort the rows alphabetically by their titles.

- "Content"
 Enter arbitrary content in each row of test information. You can also leave the content of a row blank and enter only the title, for entering the content later (within the tests). Click the contents headline to sort the rows alphabetically by their contents.

- "Delete Row"
 Deletes the selected row without additional warning and without the possibility to restore the deleted title and content.

4.4.5 Actions

This dialog defines actions that are executed when a particular event occurs during a measurement.

![Figure 4-25: Actions dialog](image-url)

The available actions are:
- **Email** - sending an email message to alert the user
- **Notify** - sending a notification to alert the user
- **Wait** - waiting for a defined time before R&S ELEKTRA continues with the next step of a test. During this time, you can stop the test.

Typical events, for which actions can be assigned, are:
- "Test Start/Resume"
- "Test Pause"
- "Frequency range" according to the **Flow Details**, where the event can be:
 - "Enter" the frequency range
 - "Leave" the frequency range
- "Test Stop" (scan end or user interruption)
- "Test Error"

Assigning an action

To assign an action to an event, drag-&-drop the action icon from "Available Actions" (left tab) to the name of that specific event in "Actions of the Test" (center).

For example, click-and-hold "Notify", drag it to "Test Stop" and drop it there.
Click any assigned action to edit it in the "Properties" tab.

To remove an action from an event, select the icon of that specific action and click [Delete] on the keyboard. Alternatively, right-click an action icon to select [Delete] from the context menu. In touch operation on a tablet computer, tap and hold the icon of an action and select [Delete] in the context menu.

The available actions are:

- **Email**
- **Notify**
- **Wait**

Email

Sends an email message when the event has occurred, for example, a test is started or stopped.

Figure 4-26: Action "Email" assigned to event "Test Stop"

<table>
<thead>
<tr>
<th>Actions</th>
<th>Actions of the Test</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Test Start/Resume</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test Pause</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency range (30 MHz to 1 GHz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leave</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test Stop</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Send an e-mail (EM Test finished)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test Error</td>
<td></td>
</tr>
</tbody>
</table>

To

Enter one or more recipient addresses.

Cc

Enter one or more copy addresses.

From

Enter the address of an email account that you have access to.

Subject

Enter a subject heading. R&S ELEKTRA suggests a default heading. For the hash characters, see the description at "Message".
"Message"

Enter any arbitrary message text. R&S ELEKTRA suggests some default entries. The functional text items (tags between two hash characters, for example "#TestName#") are automatically replaced by the content that they represent. This replacement is executed only, if the message is issued out of a real test. The replacement cannot take effect when you use the button "Send Test Email" out of the test template. If no content is available for a tag, R&S ELEKTRA returns the tag itself.

The functional text items (tags) that the software can replace automatically are:

- **#TestName#**
 Returns the name that you used to save the test. If the test is not yet saved, R&S ELEKTRA uses the default name of the test based on the name of the test template.

- **#TestVerdict#**
 After the test is finished, output values are "Inconclusive", "Failed" or "Passed", otherwise it is "Unknown".

- **#MeasurementMode#**
 Output values are "Overview" or "Final" measurement. Only available, if the measurement in the first frequency range has started.

- **#CurrentFrequency#**
 Returns the current frequency that the measurement uses at this moment.

- **#CurrentFrequencyRange#**
 Returns the start and stop frequencies of the frequency range that the measurement uses at this moment.

- **#CurrentMonitoringChannel#**
 Returns the name and number of the "Monitoring Channel" that is currently active, together with its minimum and maximum values.

- **#TestStartTime#**
 Returns both date and time in the format "yy-MMM-dd ddd HH:mm:ss".

- **#TestEndTime#**
 Returns both date and time in the format "yy-MMM-dd ddd HH:mm:ss". Before the test is completed, the output value is "<Test not yet finished>".

- **#TestDuration#**
 Returns the hours, minutes and seconds from the test start to the moment that the notification is generated.

- **#TestStatus#**
 Can be started, stopped, completed, failed or unknown.

"Send Test Email"

Sends an email to the specified "To" and "Cc" addresses.

Note that in a test message, the text items between hash characters are not replaced by the content that they represent.

Notify

Brings up a user-defined text and audio message on the computer, on which R&S ELEKTRA is running, when the event has occurred.
The audio feature requires that the computer has a sound card and that the computer's loudspeaker is not muted (volume > 0%).

Table 4-27: Action "Notify" assigned to event "Test Stop"

While the dialog box shows the text message, you can optionally stop the test or select "Continue" to proceed with the test execution.

"Message" Enter any arbitrary notification text. R&S ELEKTRA suggests a default entry. The functional text items between two hash characters (for example "#TestName#") are automatically replaced by the content that they represent. This replacement is executed, if the notification is generated out of a real test, rather than out of the test template by using the button "Test". For a list of functional text items that can be used between two hash characters, see Email > "Message".

"Play a sound" Replays a Windows system sound according to your selection in the field "Select a sound". The available Windows system sounds are called:
- "Beep"
- "Exclamation"
- "Asterisk"
- "Hand"

"Read out the message" This function displays the text from the "Message" field in a dialog box and also reads it out loud, when the event has occurred. Note that acronyms such as "EMI" are better pronounced if written as "E.M.I.". The audio replay of the message is not stopped even if you continue or stop the test.

"Test" Serves for testing the message output of the "Notify" feature. Note that in this "Test" notification, the text items between hash characters are not replaced by the content that they represent.

Wait Makes R&S ELEKTRA pause the test for a user-defined time (number of seconds) before the next step of the test is executed.
Figure 4-28: Action "Wait" assigned to event "Test Pause"

While the test is paused, a dialog box shows a countdown of the remaining seconds to wait. During this time, you can optionally stop the test or select "Resume now" to skip the remaining waiting time.

4.5 Report Templates

Report templates are used for the configuration of test reports. Report templates contain user-definable settings and are contained in Tests, as shown in the software structure.

Handling report template items

Access: "Home" > "Report Templates"

Depending on the selection of one or several report templates, different action buttons are available in the actions bar. All these buttons are common action buttons, described in Chapter 3.2, "Common Action Buttons", on page 35.

Specify general settings for report templates at "Home" > "Administration" > Report Settings.

With "Open" or "Create Report Template", proceed as described in Chapter 4.5.1, "Configuring Report Templates", on page 103.

4.5.1 Configuring Report Templates

Either start with an existing report template, or create a new one.

- To open an existing report template, use one of the following options:
– Select it at "Home" > "Report Templates" and click "Open". Opening a report template from this menu allows saving it as a global report template, available for other tests, but you cannot configure all details.

– Open it from within a test as described in Chapter 3.7, "Reporting", on page 45. Opening a report template inside a test allows configuring all details, but you cannot save it as a global report template, available for other tests.

• To create a report template, use one of the following approaches:
 – Select "Home" > "Report Templates" > "Create Report Template". Creating a report template from this menu allows saving it as a global report template, available for any test, but you cannot configure all details.
 – Create a report template from within a test as described in Chapter 3.7, "Reporting", on page 45. Creating a report template inside a test allows configuring all details, but you cannot save it as a global report template, available for other tests.

Hence, create your report templates from the report templates menu and configure them with all contents that are not test-specific. Then save these report templates as global report templates. Inside a test, select one of your global report templates and refine it by configuring specific details. The detailed report template is saved in the test container as a copy of the original report template. This copy is not globally available.

In the "General" section of the report template, specify the report title as well as the left-hand, center and right-hand content of both the report header and footer.

All items that can be included into the report header or footer are self-explanatory, except for the Verdict.

Below the "General" section, select from a list of "Available Components" in an arbitrary order. Double-click an item, or click the "Selected Component" button next to it, to add the item to the list of "Selected Components" (dialog next to the "Available Components").

Within this list, you can rearrange the "Selected Component": drag and drop them to the desired position. (If you use a tablet computer, touch and immediately drag the object you want to move, without holding it for long.)

Most of the "Selected Component" offer individual "Component Options", for which you can specify settings when you have highlighted that "Selected Component". In part, you can only specify options once the report template is opened (embedded) inside a real test. Outside of a test, hence in a non-embedded report template, placeholders for all selected components are inserted into the report preview.

The following options are only available for embedded report templates, opened inside a test:

• For the component "EMI Tables", select at least one of the "Available Tables" by clicking the "+" sign to add it to the list of "Selected Tables". In the selected table, optionally select a subset of rows and optionally disable individual columns.
• For the component "Generic Graphics", select at least one of the "Available Graphics" by clicking the "+" sign to add it to the list of "Selected Graphics". For each selected generic graphic, you can enable "Show Zoom Area" and configure this area via the "Configure Zoom Area" dialog. This dialog works similar to Configuring Test Charts.
• For the component "Generic Table", select at least one of the "Available Tables" by clicking the "+" sign (●) to add it to the list of "Selected Tables".

To put any change into effect, click the "Refresh" button (●) in the top menu of the report (but not the taller "Refresh" button ● in the top menu of the test).

The placeholders shown for selected components in non-embedded report templates provide no details. Therefore, we recommend creating basic report templates from the report templates menu and refining them within your tests, as described above.

Next to the "Refresh" button in the top menu of the report, more report functions are available for displaying, printing, searching, zooming, navigating, exporting (PDF ● or DOCX ●) and attaching.

The "Attach" button ●, which is only available for embedded report templates, saves a report in the R&S ELEKTRA database together with the test, see Chapter 3.7, "Reporting", on page 45.

Note that tables that do not fit on the length of one page are continued on the next page (or pages). Tables that do not fit on the width of one page are split to fit on the width of n pages. They are labeled "(1/n)" on the first page and continued with labels "(2/n)", "(3/n)", ... until "(n/n)". To reduce the width of a table, deselect columns that are dispensable. This deselection can only be done in a report template that is embedded within a test.

Once the configuration of the report template is completed, make sure to save the result by clicking ● or ●.

4.6 Device List

The "Device List" comprises all measuring equipment in the test site. Devices from this list are part of Test Templates, as shown in the software structure.

R&S ELEKTRA is compatible with a comprehensive choice of Rohde & Schwarz devices. When you add a device to the "Device List", a device driver is implemented in the background. The software does not provide user access to these drivers, which cover all communication tasks between R&S ELEKTRA and the devices.

Each device entry contains General Properties. You can edit these properties. For the receiver, you can let R&S ELEKTRA automatically retrieve the properties by using the functions Search Device and Recheck Devices. This feature requires that the receiver is connected to your computer, either directly via GPIB or remotely via LAN. Note that many LISNs can be remotely controlled by R&S ELEKTRA via an interface in the receiver.

Handling device list items

Access: "Home" > "Device List"
The "Device List" dialog is largely different from the other "Home" dialogs ("Tests", "Report Templates", etc.). Differences are:

- All items in the "Device List" are grouped in **Device classes**, for example "Receiver" or "Transducer". (To sort the entries within each device class, click the column header. Click the header again for reverse order.)

- No item in the "Device List" can be selected for an action to be executed with it. Instead, you can set one device per device class to be the **Favorite Device** in this device class.

- No item in the "Device List" can be pinned to the "Dashboard".

- No search can be saved, but the "Device List" can be filtered (Show Devices) for referenced, unreferenced or modified devices.

- None of the familiar **Common Action Buttons** is available. Instead, there is a special set of **Action Buttons in the Device List**.

- The device properties are not edited by opening them in a separate dialog tab. Instead, the device properties unfold in several tabs within the "Device List".

- Besides editing the device properties manually, they can also be automatically retrieved from existing physical equipment. This retrieval is implemented by the functions **Search Device** and **Recheck Devices**. To use these functions, the equipment must be connected to the computer, which runs R&S ELEKTRA.

- Changes in the settings or properties of several devices can jointly be saved or discarded.

Device classes

The "Device List" includes the following classes of devices, which are described in Chapter 4.6.2, "Device Properties", on page 117:

- **Receiver**
- **Signal Path**
- Various transducing devices are combined in the group "Transducer / LISN / TEM Waveguide":
 - LISN
 - TEM Waveguide
 - Transducer

Devices are always integrated into test templates as references that link to the original data sets in the "Device List". They are not integrated as copies of those data sets. Therefore, if device properties are modified in the "Device List", these properties are changed in all instances, too: in each test template that uses this device, in each test that uses this test template, etc.

Signal paths are included in the "Device List". A signal path is not necessarily only a piece of cable but can include multiple cables, connectors, attenuators, etc.

- Action Buttons in the Device List...107
- Device Properties..117
- General Properties..118
- LISN..119
- Receiver..124
- Signal Path...127
- TEM Waveguide..127
- Transducer..130

4.6.1 Action Buttons in the Device List

Access: "Home" > "Device List"

In the "Device List", the familiar Common Action Buttons are not available. Instead, the dialog-specific action buttons for the "Device List" are:

Search...108
Show Devices...108
Save All Changes..108
Discard All Changes..109
Add a new Device...109
Collapse All...109
Expand All...109
Name...109
Type...110
Interface...110
Address...110
Connection..110
Permanent...111
Functions...111
 L Set as Favorite Device..111
 L Save..111
Search
Searching for devices in the "Device List" works as described in Chapter 6, "Special Software Features", on page 159: Enter an arbitrary text string into the search field to filter the "Device List" for entries that contain this text.

Note:
- Other than conventional Searches, a search in the "Device List" cannot be saved and pinned to the "Dashboard".
- Do not confuse this function for searching (filtering) the "Device List" with the function Search Device, which allows finding devices in the network environment (LAN or GPIB).
- If there are unsaved device changes in the device list, the search results are not complete. To get complete search results, save the changed devices before doing a search.
 If you wish to see exclusively the devices with unsaved changes, select Show Devices > "Modified".

Show Devices
Filters the devices that are displayed in the "Device List" by the following criteria:

- "All" All devices are displayed without being filtered.
- "Referenced" Only those devices are displayed, which are used ("referenced") elsewhere, for example in test templates or tests.
- "Unreferenced" Only those devices are displayed, which are not referenced.
- "Modified" Only those devices are displayed, which have been modified, with the changes still being unsaved.

Save All Changes
Saves all changes in all devices that have not yet been saved after modifying them.
Saving the changes is not protected by any alert, all changes are immediately saved.
R&S ELEKTRA supports the shortcut key "[Ctrl + Shift + s]" for the "Save All Changes" command.

Note: Instead of "Save All Changes", you can save the changes in each individual device: Click **Save** in the row of the device for which you want to save the changes. Alternatively, use the shortcut key "[Ctrl + s]" to save the selected (highlighted) device entry.

Note: If you change settings in the Receiver that is selected as the Control of a LISN, R&S ELEKTRA considers this LISN as changed, too.

Discard All Changes
Discards all changes in all modified devices that have not yet been saved. This loss of settings is protected by the following alert: "Do you really want to discard all changes? Total number of <n> device(s) changed: ", followed by a list of the "n" modified devices. To discard the changes, confirm with "Yes", or select "No" to return to the device list without discarding the changes.

Note: To discard the changes in one or several devices, but not all that you have modified, proceed in two steps: First click the "Save" button in the row of each device for which you want to keep the changes. Then click "Discard All Changes" to discard the changes for the remaining modified devices.

Add a new Device
Opens a dropdown menu for selecting a device that you want to add to the "Device List".

The dropdown menu consists of a tree of folders and sub-sub folders that branch out from "Device Class" to the individual "Device Type".

Note: You cannot add a receiver but only exchange the receiver specified in the "Device List" for a different one. To do so, connect the new receiver to your computer or network and select the correct receiver Type for it. Then use the Search Device dialog to assign the new receiver to the "EMI Test Receiver" entry in the "Device List".

For the properties of the various types of devices, see Chapter 4.6.2, "Device Properties", on page 117.

Collapse All
Minimizes the details of all devices:
- The first click collapses any expanded sections of device properties, if available, and shows a minimized list of device names.
- A second click collapses the list of device names, too, and shows a minimized list of device class headlines, only.

Expand All
Fully unfolds all collapsed device classes, device entries and device properties.

Name
Lists the device names, grouped within Device classes.

To sort the device classes and the entries within each device class by the device names, click the "Name" column header. Click the header again for reverse order.
Type
Selects the device type for the receiver and for one or more LISN entries in the device list.

To sort the device classes and the entries within each device class by the device type, click the "Type" column header. Click the header again for reverse order.

To select the type, highlight an entry and click the "Type" field to show the selection switch. In the pull-down list that opens, select any of the available device types, as in Figure 4-30.

![Figure 4-30: The Type selection in the Device List dialog](image)

You can use the "Type" selection to exchange a device. If the device, which is replaced by this exchange (for example an ESR7 by an ESR26 Receiver), was referenced in a test, any existing test results data remain unchanged. However, when you rerun the test, the original test result data are discarded. The new device is then used for measurements in the rerun test.

Interface
Shows the Interface Type of the Receiver (the only device that can be connected). All other devices are labeled as "None" in the "Interface" column.

Address
Shows the VISA resource string of the Receiver (the only device that can be connected).

Connection
Toggles the connection state of the receiver and of LISNs.
- 🔄 - device not connected
- 🔴 - device connected

To be able to connect the receiver, first make sure to select your correct Type of receiver, for example the "ESR7 Receiver".
Note: Toggling the connection state is no criterion for R&S ELEKTRA to consider the receiver as "changed". Instead, the software checks, if the state of the Permanent switch has changed. Connecting or disconnecting the receiver does not alter the state of the "Permanent" switch.

You cannot edit the device properties of a connected receiver. Instead, the properties are automatically read from the receiver. The various properties tabs of a connected receiver show these properties in deactivated dialogs (grayed out).

Permanent
Activating this switch defines a permanent Connection to the receiver. After shutting down R&S ELEKTRA and starting it again, the receiver is automatically reconnected, if the network connection is available. If no connection is available, the receiver status is "red", see Recheck Devices.

Functions
Comprises the following functions described below:

- Set as Favorite Device
- Save
- Delete
- Show Reference

Set as Favorite Device ← Functions
The set-as-favorite button is available in each individual device's row.
Per device class, you can select exactly one item to be "Set as Favorite Device" °. This device is automatically used as the default, when R&S ELEKTRA requires a device of a specific device class for a test setup. All other devices in the same class are automatically assigned as non-favorite and hence non-default devices ().

Note: Clicking the "Set as Favorite Device" button of a newly created device also saves this device entry.

You can also remove the selection of one device as the favorite without assigning the favorite role to another device in the same class. To do so, temporarily add a new device to the same device class, set it as the favorite device and delete it from the "Device List".

Save ← Functions
The save button is available in each individual device's row.
Saves the changes in the selected device. Saving the changes is not protected by any alert, all changes are immediately saved.

Note: Instead of saving the changes in one individual device, you can use the Save All Changes button to save all changes in all devices that have not yet been saved after modifying them.

Delete ← Functions
The delete button is available in each individual device's row.
You can only delete a device that is not used (hence, not "referenced") in test templates . If a device has references, you must first remove these references as described below, to be allowed to delete the device entry.
Note:

Before you plan to delete a device entry, first consider the following use cases:

- If you wish to use a different receiver model, while only one receiver device entry is allowed in the device list, we recommend not to delete the receiver device entry. Instead, exchange the device type by a different receiver model, using the Type selection. This exchange preserves existing references, for example from test templates to the receiver device entry.

- If you wish to replace an old device by a new one, and you are sure about using the old device never again, we recommend renaming the old device’s existing entry. Overwrite the device’s properties with the new information, which includes, for example, selecting new correction tables.

- If you stop using a certain device without replacing it, we recommend not to delete the existing entry, for example to maintain existing references to this device from test templates.

When you click the "Delete" button, R&S ELEKTRA first checks, if the item that you wish to delete is referenced.

- If the device is not referenced, the deletion process is merely protected by the following alert: "Are you sure you want to delete the selected item(s)?" Confirm with "OK" or "Cancel" the deletion process. This function is similar to the common action button Delete, except that no multiple selections of items can be deleted simultaneously.

- If the device is referenced, R&S ELEKTRA warns you that deletion is not possible, since the software expects that you clear the references first:

If you wish to delete the receiver or a referenced LISN, first consider to use the Type selection, instead.

For all other devices, or if type selection is no option for your device, and if you still wish to delete the device despite the recommendations above, proceed as follows:

- To unfold a tree of all references, in which the device is used, click the triangles in front of all items that have subitems.

- Select the checkboxes of all items in the reference tree.
You can select all referenced items by selecting only the checkbox in front of the device icon itself.

- Click "Open Selected" to open a dialog tab for each selected item. This action closes the reference tree dialog and opens all selected subitems, but not the device itself.

- In each dialog tab of a test template, replace the referenced device by a different device. Then save this change and close the tab. Proceed in the same way with all opened dialog tabs that contain a reference for the device you wish to delete.

Note that replacing a device can be difficult, since the new device must comply with several property requirements. For example, it must cover the frequency ranges required by the test templates.

Replacing devices in a test is especially difficult, as you must modify the test template on which the test is based. Any modification of a test template embedded in a test container leads to a deletion of the test results.

- In the "Device List" dialog, you can delete the now unreferenced device (which is still highlighted).

Show Reference ← Functions

This button brings up the same reference tree of a device as the Delete button, but it does not have the delete function. It is also available in each individual device's row.

The reference tree shows, in which test template and test a device is used ("referenced").

Search Device

The button "Search Device" in the lower right corner of the "Device List" window calls up a dialog for searching devices in the network environment, to which the computer is connected. Once the search is executed, the dialog looks as in Figure 4-33:
Figure 4-33: Device search dialog with an exemplary list of devices

To sort the search result list alphanumerically by the entries in one of the columns, click the column header. For reverse order, click the header again. Sorting works for all columns except for "Status" and "Action".

Note:
- Do not confuse this function, which searches devices in the network environment (LAN or GPIB), with the function Search, which allows for filtering the "Device List".

Search ← Search Device
Starts a search for devices by a broadcast command within the network, to which the computer is connected via the selected Interface Type. The search stops automatically after a time that depends on the size of the connected network. (If it takes too long, you can Stop it.)

The dialog then presents a list of available devices, as shown in Device search dialog with an exemplary list of devices. Use this list to select Add to Device List or Assign to Device.

Stop ← Search Device
Stops the Search. Use this function if you wish to terminate the search at some point, or if it does not stop automatically within a reasonable timeframe.

Interface Type ← Search Device
Selects the interface type for searching devices within the network, to which the computer is connected.

Changing the selected interface type immediately starts a search.

"VXI11" VXI-11 is a protocol, specified by the VXIbus Consortium, for remote control of LAN-based test and measurement instruments. Use this "Interface Type" to search for devices connected via Ethernet (LAN).
"GPIB" GPIB (General Purpose Interface Bus) is the common name for the 8-bit parallel communications interface specification IEEE-488. Use this "Interface Type" to search for devices connected over a short range via GPIB bus.

Model — Search Device
States the model name, if it is contained in the network device's reply to the device search. You cannot edit this field, which remains empty, if the search algorithm cannot read the model name from the device.

VISA Resource String — Search Device
Displays the VISA Device Identifier as originally found by the automatic device search. You cannot edit this string.

Host Name — Search Device
Displays the host name of the device within the network. You cannot edit this string.

Status — Search Device
Only available for the network device that is assigned to your receiver entry in the "Device List".
Shows and sets the connection state of this device, which you can toggle between connected and disconnected.

ELEKTRA Name — Search Device
Only available for the network device that is assigned to your receiver entry in the "Device List".
Displays the receiver's Name in the "Device List".
You cannot edit the name in this column, but only in the Name field of the "Device List".

ELEKTRA Type — Search Device
Displays the device class of the network devices. For all network devices that do not match with the "Device List", R&S ELEKTRA displays "unknown device category". You cannot edit this field.

Action — Search Device
Allows using results of the network device search for entries in the "Device List". Only available, if the search algorithm finds connectable devices in the network environment.

Add to Device List — Action — Search Device
"Add to Device List" is available for each network device that the Search Device function finds in the network environment.
When you click this button for an individual network device, R&S ELEKTRA offers the device types for which you can add the selected network device. If no device type is offered, you cannot add this entry to the "Device List".
Assign to Device ← Action ← Search Device
Assigns the connectivity parameters of an individual network device to the receiver device entry in the "Device List". "Assign to Device" is available for each device found by Search Device in your network environment.

To assign a specific network device from the "Search Device" dialog, first execute the Search. If the search delivers results, browse the list of search results to find the network device that you wish to couple with your receiver entry in the "Device List". In this row of the search results list, click the "Assign to Device" button. The dialog opens a dropdown list for selecting the receiver.

When you select it, R&S ELEKTRA assigns the VISA Resource String of the selected network device to your receiver entry in the "Device List" (hence, without adding a new entry).

Close the device search dialog either by "Save" or "Cancel". If you select "Cancel", you can decide later (in the "Device List" dialog) to either save or discard the modification of the receiver entry. Make sure to select the correct receiver type.

Note: Avoid interfering with other people's devices. We recommend that you use "Assign to Device" only for devices, for which a control via R&S ELEKTRA is reasonable and desired. Be aware that this function allows connecting remotely to any available network resource. This connection can interfere with the work of other people, who may use the same network device.

Discard ← Action ← Search Device
Only available for the network device that is assigned to your receiver entry in the "Device List".

Clicking "Discard" brings up a second button to confirm "Remove Device":

- If the device is not referenced, clicking "Remove Device" brings up the following warning: "Are you sure you want to delete the selected item(s)?"
 If you confirm your intention by clicking "OK", the "Device List" entry is deleted immediately.
- If the device is referenced, clicking "Remove Device" opens a dialog to inform you that deletion is not possible. As described in the section on the Delete function, you must first clear the references to other devices. However, this deletion is often not reasonable. Instead, if you only wish to break the relation between the receiver entry and a network device while keeping the entry in the "Device List", we recommend using the Connection Properties dialog. After disconnecting the receiver, erase only the receiver's address or host name.

Save (Ctrl+S) ← Search Device
Saves the settings of the Search Device dialog in the Device List. Saving the settings within the Search Device dialog has the same effect as first canceling from this dialog and then selecting Save All Changes.

Cancel ← Search Device
Cancels the Search Device dialog without saving the device settings and returns to the Device List. In this dialog, the changed settings are still available. They can be individually or globally saved or globally discarded.
Recheck Devices

Only available, if at least one permanent connection was previously established. The button "Recheck Devices" in the lower right corner of the "Device List" window launches a special checking algorithm for the permanent receiver connection. The algorithm checks this connection in the network environment, to which the computer has access via the specified Interface Type.

Note: If the receiver's ID response differs from the selected receiver type setting, the checking algorithm is not executed.

The result of rechecking the receiver connection is shown in the device status bar at the lower edge of the "Dashboard" dialog (see Graphical User Interface):

- A **green** box represents a permanently connected receiver that is available. If an available receiver - with a setting for permanent connection - is found to be currently disconnected, the algorithm reconnects it.
- A **red** box represents a permanently connected receiver that is not available.
- An **orange** box represents a connected receiver, which is found to be in a physical state that does not correspond with the defined settings. Examples of receiver states represented by an orange box:
 - A hardware or software option, which is enabled at "General" > "Option", is not available in the connected receiver.
 - A hardware or software option, which is available in the connected receiver, is not enabled in the "General" > "Option" settings.

In either of these cases, clicking "Recheck Devices" adjusts the "Option" settings in the "General" tab and brings up a notification regarding this adjustment. Clicking "Recheck Devices" again finds the settings in agreement with the physical state and hence leads to a **green** box.

4.6.2 Device Properties

The "Device List" specifies all device properties that are relevant for your EMI measurements. Per device class, these properties are organized in sets of tabs, for example:

![Figure 4-34: The device class "LISN" has the properties tabs General, Details, Measurement Correction and Functional Check](image)

Other device classes have different sets of properties tabs. **Table 4-4** provides an overview of all tabs of all device classes.

- The "General" tab is **common** to all devices. It is described in Chapter 4.6.3, "General Properties", on page 118.
- All other tabs are individually **different** for the various device classes. These tabs are described in the chapters that are directly linked from the X characters in **Table 4-4**. The table headline entries are linked to the individual device chapters.
4.6.3 General Properties

This tab contains general properties of the devices. It includes the following parameters:

Description
Arbitrary text to describe the device.

Manufacturer
For LISNs and the receiver, this field displays the Rohde & Schwarz company logo.
For GTEM cells, transducers and signal paths, you can enter arbitrary text to describe the device manufacturer.

Serial Number
For the receiver, this field displays the serial number as read from the device, if the receiver is connected.
For GTEM cells, transducers and signal paths, you can enter arbitrary text to describe the device’s serial number.

Valid until
In this field, you can note the expiry date of the device’s calibration validity. This note is intended to remind you when the next calibration is due. However, the software does not act or alert you, if the expiry date is reached or exceeded.
Either directly edit the date field or click the calendar icon for date selection. To select a different month, click the calendar headline. To select a different year, click the calendar headline again.

Table 4-4: Properties tabs in the various device classes

<table>
<thead>
<tr>
<th>Class → Tab ↓</th>
<th>Receiver</th>
<th>Signal Path</th>
<th>GTEM</th>
<th>LISN</th>
<th>Transducer</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>"Connection"</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Details"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Transducer Type"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>"Measurement Correction"</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>"Functional Check"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Options
For the receiver, this field shows a predefined checkbox list of the receiver's hardware and software options. For a non-connected receiver, you can enable or disable individual options. This choice is useful, for example, for measurements with device simulation.

If a remote connection to the receiver is established, R&S ELEKTRA automatically adjusts the options list to the actual configuration of the receiver. This adjustment is carried out when you execute one of the following actions:

- Connect the receiver
- Select Recheck Devices.

While connected, the checkboxes are then no longer available for user interaction. Instead, the options list represents the physical receiver configuration.

For LISNs and GTEM cells, this field is blank. You can edit it, but it has no effect on any test execution.

For all other devices (signal paths included), this field is blank and cannot be edited.

Model
For the receiver, this field displays the model as read from the device, if the receiver is connected. For a non-connected receiver, this field is blank and cannot be edited.

For LISNs, GTEM cells, transducers and signal paths, you can enter arbitrary text to describe the device model.

Firmware Version
Displays the firmware version as read from the receiver, if it is connected. For a non-connected receiver, this field is blank and cannot be edited.

For devices that have no firmware, this field is not available.

Frequency Range
For the receiver, this field shows the start and stop frequencies according to the specifications of the selected receiver type.

For LISNs, GTEM cells, transducers and signal paths, this field shows the start and stop frequencies as read from attenuation or correction tables, selected in the "Measurement Correction" tab. If you use fixed values instead of tables, the frequency range is from 0 Hz to infinite.

4.6.4 LISN

For a description of the configuration of a "TEM Waveguide", see Chapter 4.6.7, "TEM Waveguide", on page 127.

For a description of the configuration of other "Transducers" (no LISNs), see Chapter 4.6.8, "Transducer", on page 130.
Line impedance stabilization networks (LISNs, also called artificial networks or V-networks) are used for two purposes in conducted EMI measurements:

- These auxiliary networks extract the conducted RF interference that an EUT injects into the lines of its power supply.
- LISNs suppress any RF interference coming from the power supply, allowing to evaluate exclusively the EUT's interference emissions into the power line.

Protect the receiver against voltage spikes
If you use a LISN without a built-in pulse limiter, consider inserting a separate pulse limiter in front of the receiver's input port.

In this case, enter the pulse limiter's attenuation in the Measurement Correction of the Signal Path.

R&S ELEKTRA distinguishes between 2-line LISNs for single-phase AC mains systems and 4-line LISNs for three-phase rotary current mains systems.

The software supports the following Rohde & Schwarz LISN types:

- "ENV 216" (2-line LISN, max. 50 V DC, 16 A, with TTL remote control, switchable 140 dBμV pulse limiter and switchable 150 kHz highpass filter)
- "ENV 432" (4-line LISN, max. 350 V DC, 32 A, with TTL remote control and switchable 140 dBμV pulse limiter)
- "ENV 4200" (4-line LISN, high-current design for max. 4 x 200 A, with TTL remote control)
- "ESH2-Z5" (4-line LISN, max. 400 V, 25 A, with TTL remote control)
- "ESH3-Z5" (2-line LISN, max. 250 V, with TTL remote control)
- "HM6050-2" (2-line LISN, max. 250 V, 16 A, with serial remote control)

A single-line LISN must be defined as a Transducer device (Type = "Probe").
Common mode or differential mode

Conducted EMI tests with a LISN are performed either in common mode (unsymmetric test setup) or in differential mode (symmetric test setup):

![Diagram of 2-line LISN in differential mode (1) and in common mode (2)]

1 = Schematic of the differential mode setup
2 = Schematic of the common mode setup
L = Live line
N = Neutral line
PE = Protective earth (ground)
Z_L = Impedance of the L line
Z_N = Impedance of the N line
Z_PE = Impedance of the PE line
V_{EMI} = Voltage of the disturbing signal
I_{EMI} = Current of the disturbing signal

The **common mode** setup in Figure 4-35 is also called **unsymmetric** test setup. The 2-line LISN configuration used here is also called a V-type artificial network. It does not distinguish between common mode and differential mode signals and is therefore typically used for power lines.

The **differential mode** setup in Figure 4-35 is also called **symmetric** test setup. The 2-line LISN configuration used here is also called a T-type or Y-type artificial network. It extracts the common mode signals and is therefore typically used for signal lines (with wanted signals in differential mode).
LISN type "HM6050-2"

The LISN type "HM6050-2" has a serial interface for remote control. This LISN is the only one with a "Connection" dialog:

![Connection dialog for the LISN HM6050-2](image)

In this dialog, all parameters are preselected and fixed at the appropriate settings, except for the "Port No.". Set this parameter to the port number of your computer's serial port, to which the LISN is connected by a serial cable.

This chapter describes all individual device properties, but not the "General" properties, which are common to all devices and described [here](#).

Besides the properties mentioned above, this device has the following properties:

- Details ... 122
- Measurement Correction .. 123
- Functional Check ... 124

4.6.4.1 Details

Specifies the LISN control details.

Note that the LISN "HM6050-2" uses the following serial control commands instead of a bit pattern: "O" for manual control, "N" for line N and "n" for line L1.

Control

Specifies manual or remote control operation of the LISN:

- If you use "Manual" LISN control, R&S ELEKTRA generates messages during the test with instructions for manual LISN switching.
- "Remote-controlled" selects the Receiver as the control device. Rohde & Schwarz receivers feature TTL remote control for automatic switching of the LISN line to be evaluated during a test.

To use this feature, make sure that the LISN is connected to the receiver's user port via the appropriate cable.

If you change settings of the receiver that is selected as the Control of a LISN, R&S ELEKTRA considers this LISN as changed, too.
4.6.4.2 Measurement Correction

To evaluate the real signal level generated by the EUT, transduced by a LISN and measured by the receiver, correct the receiver's readout by suitable correction values or tables. This dialog specifies how to correct the measurements by selecting the appropriate cable attenuation and transducer correction data.

For the measurement correction of **TEM waveguides**, see Chapter 4.6.7.1, "Measurement Correction", on page 128.

For the measurement correction of other **transducers** (no LISNs), see Chapter 4.6.8.2, "Measurement Correction", on page 131.

LISNs are often used in a firm connection with a LISN cable. However, the LISN's data sheet typically only provides correction data for LISN itself, not for the cable. To handle this situation flexibly, the dialog offers separate parts for specifying values for the LISN cable and for the LISN lines.

See also Chapter 5.4, "Attenuation in Signal-Paths", on page 157.

You can select a pre-defined table for each LISN line. Hence, the values in the "Correction Level" column of the selected table are valid for the N and L1 line of a two-line LISN and for the N, L1, L2 and L3 lines of a four-line LISN.

Cable Correction

The RF cable, which connects the LISN's RF output with the test receiver, can be described by a simple attenuation in units of dB.

- "Fixed Value"
 - Specifies a constant attenuation value in dB for the LISN cable.
- "According to Attenuation Correction Table"
 - Selects an attenuation table with one column of frequency-dependent attenuation values in dB for the LISN cable.

LISN Correction

The network part of the LISN converts physical units. Its influence on the RF signal is therefore described by a transducer correction with potentially different units on the input side (measurement) and output side (result). Typically, the correction level values are in dBµV.

- "Fixed Correction"
 - Specifies a constant correction value for all N and L lines. You can set the unit for the correction value (typically dBµV).
- "According to Transducer Correction Table"
 - Select a Transducer Correction Table that contains one column of frequency-dependent "Correction Level" values for all N and L lines in a result unit (typically dBµV) that is defined in this table. The result unit is read from the transducer correction table and serves for converting the measured values from the receivers measurement unit, which is in general dBµV, to the final result unit of the converted values.
 - The table allows common correction values for all N and L lines.
4.6.4.3 Functional Check

Tests the remote control switching of LISN lines. The following prerequisites apply:

- The LISN Control in the Details tab must be set to "Remote" control via the EMI test receiver
- The Receiver must be in connected state.
- On hardware side, the LISN must be connected to the receiver's user port via an appropriate cable.

To test any one of the available LISN lines, click the button of this LISN line, for example "L1". If the test is successful, the software displays the LISN driver's control bit pattern for this LISN line, for example "L1: #B00001101"

The "Manual" button switches the LISN to local manual control at its front panel, which otherwise displays the state that is set via remote control.

4.6.5 Receiver

Receivers are key instruments for measuring electromagnetic emissions. Without a test receiver or spectrum analyzer, EMI measurements are impossible.

R&S ELEKTRA supports the following Rohde & Schwarz receiver types:

- "ESCI3" / "ESCI7" receiver
- "ESL3" / "ESL6" receiver
- "ESPI3" / "ESPI7" receiver
- "ESR3" / "ESR7" / "ESR26" receiver
- "ESRP3" / "ESRP7" receiver
- "ESU8" / "ESU26" / "ESU40" receiver
- "ESW8" / "ESW26" / "ESW44" receiver
- "FPC1000" / "FPC1500" analyzer
- "FPH" analyzer
- "FPL1003" analyzer
- "FSL3" / "FSL6" / "FSL18" analyzer
- "FSV3" / "FSV4" / "FSV7" / "FSV13" / "FSV30" / "FSV40" analyzer
- "FSW8" / "FSW13" / "FSW26" / "FSW43"/"FSW50" / "FSW67" / "FSW85" analyzer

In contrast to other device classes, for which you can specify multiple devices, the device class "Receiver" is limited to one receiver, only. Rather than adding different receivers, you can exchange the receiver by selecting the type.

To verify the selection, enter the new receiver's "IP Address" in the Connection tab, select the correct receiver type and connect the receiver.

For a receiver exchange, the following rules apply:

- If the replaced receiver is referenced in an existing test, the results data of this test remains unchanged. If you rerun the test, the software discards the original test results and uses the new receiver for the measurement.
If the replaced receiver is referenced in a test template, this test template is synchronized to the new receiver when you open it or use it to create a test. The properties of the new receiver can cause the validation to fail. In this case, either use a receiver that is compatible with the settings in the test template or adjust these settings.

You can only connect the receiver, if you have selected the correct Type of receiver.

In addition to the receiving function in EMI measurements, R&S ELEKTRA supports the use of Rohde & Schwarz receivers for remote control of a LISN via the receiver’s user port.

If you change settings of the receiver that is selected as the Control of a LISN, R&S ELEKTRA considers this LISN as changed, too.

In the General tab, the "Option" field shows a list of options that are available for the receiver, for example "FSV-B29".

You can select a "Receiver" (= test receiver) or an "Analyzer" (= spectrum analyzer) with their specific features. If your test receiver can measure in spectrum analyzer mode, you can choose between the Operating Mode "Test Receiver" or "Spectrum Analyzer" in a test template.

If a spectrum analyzer is used as the receiver, some constraints apply. For example, spectrum analyzers are not suited for compliant measurements (precompliance, only).

For the selection of the receiver’s RF input connector in a test template, see "Input Selection" on page 95.

The availability of "Time Domain Scan" measurements requires a receiver that can operate in this Scan Mode, for example with option "ESR-K53".

This chapter describes all individual device properties, but not the "General" properties, which are common to all devices and described here.

Besides the properties mentioned above, this device has the following properties:

4.6.5.1 Connection Properties

This tab contains connection settings for the remote control of your receiver. If the receiver is connected, its connection settings are only displayed but cannot be edited.

The tab includes the following parameters:

- **VISA Device Identifier**:
- **Interface Type**:
- **Time Out**: 126
VISA Device Identifier
Displays the VISA resource string for the selected interface type.
R&S ELEKTRA generates the "VISA Device Identifier" from the device parameters as specified and uses it for connecting to the devices. You cannot edit it, but it is displayed for your information.

The following list and table describe this string in more detail.

Examples of the VISA resource string are:
- TCPIP0::10.113.0.75::inst0::INSTR
- GPIB::3::INSTR

Besides the separator "::", the VISA resource strings consists of the following elements:

<table>
<thead>
<tr>
<th>Interface Type</th>
<th>TCP/IP internet protocol</th>
<th>GPIB 8-bit parallel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
<td>TCPIPx, with "x" = Board No.</td>
<td>GPIBx, with "x" = Board No.</td>
</tr>
<tr>
<td>Address</td>
<td>IP Address in one of two VXI11 modes:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hostname: V4 format:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>arbitrary alphanumeric string four blocks, each with one to three numbers, separated by dots: xxx.xxx.xxx</td>
<td></td>
</tr>
<tr>
<td>Delimiter</td>
<td>inst0::INSTR</td>
<td>inst0::INSTR</td>
</tr>
</tbody>
</table>

Interface Type
The following interface types are available:
- "TCP/IP" Transmission Control Protocol / Internet Protocol (TCP/IP)
- "GPIB" General Purpose Interface Bus for 8-bit parallel communication according to IEEE-488

Time Out
Defines the time period in seconds applied to detect a timeout in the communication of a single command.

Address
The address field depends on the Interface Type:
- For TCP/IP: "IP Address" or "Host Name" (depending on the address Mode)
- For GPIB: "Primary Address": numeric value from 1 to 31

Mode
Address mode, depending on the "Interface Type" on page 126"Interface Type":
For TCP/IP:
- "VXI11 Hostname" - LAN instrument protocol using a hostname as address
• "VXI11 V4" - LAN instrument protocol using an IP address with up to 4x3 digits (xxx.xxx.xxx.xxx)
 For GPIB:
• "Normal" - default GPIB address setting, for example GPIB::1::INSTR

Board No.
TCP/IP board number (values from 0 to 9) or GPIB board number (values from 0 to 31).

4.6.6 Signal Path

A signal path describes the physical RF signal connection between two devices in an EMI or EMS setup. In a conducted setup, it typically contains information on the cable loss (attenuation) and insertion loss of connectors or switches between these devices. Hence, it also includes the switch paths of a referenced switch unit.

You can create and edit signal paths in the device list or in a test template.

This chapter describes all individual device properties, but not the "General" properties, which are common to all devices and described here.

Besides the properties mentioned above, this device has the following properties:

4.6.6.1 Measurement Correction

Specifies how to correct the measurement values by setting the appropriate cable attenuation value or table for the signal path.

See also Chapter 5.4, "Attenuation in Signal-Paths", on page 157.

Constant

Specifies a fixed attenuation value in dB for the signal path.

Table

Selects an attenuation table with one column of frequency-dependent attenuation values in dB for the signal path.

4.6.7 TEM Waveguide

A typical TEM waveguide is the Gigahertz Transverse Electromagnetic (or GTEM) cell in the shape of an extended rectangular hollow pyramid, which acts as an EMI test chamber. Inside, the bare metal side walls reflect and guide RF radiation, while the base of the pyramid is lined with RF absorber material. With this design, the cell forms an enclosed TEM stripline that can be used as a receiving or transmitting RF antenna. The EUT is placed in the GTEM cell's test volume.
For a description of the configuration of a "LISN", see Chapter 4.6.4, "LISN", on page 119.

For a description of the configuration of other "Transducers", see Chapter 4.6.8, "Transducer", on page 130.

This chapter describes all individual device properties, but not the "General" properties, which are common to all devices and described here.

Besides the properties mentioned above, this device has the following properties:

- Measurement Correction

4.6.7.1 Measurement Correction

Specifies how to correct the TEM waveguide's measurement values by setting the appropriate cable correction value or table and GTEM correction factor C1.

For the measurement correction of LISNs, see Chapter 4.6.4.2, "Measurement Correction", on page 123.

For the measurement correction of other transducers (no LISNs), see Chapter 4.6.8.2, "Measurement Correction", on page 131.

TEM waveguides are typically used in a firm connection with "their own" cable. However, the device's data sheet often only provides correction data for the waveguide itself, not for the cable. To handle this situation flexibly, the dialog allows specifying an individual attenuation value for the cable. In addition, measurements with a GTEM cell require a GTEM correction factor. The dialogs for specifying these values are described below.

Cable Correction

The cable part of the TEM waveguide assembly can be described by a simple attenuation in units of dB.

See also Chapter 5.4, "Attenuation in Signal-Paths", on page 157.

- "Fixed Value"
 Specifies a constant attenuation value in dB for the TEM cable.

- "According to Attenuation Correction Table"
 Selects an attenuation table with one column of frequency-dependent attenuation values in dB for the TEM cable.

GTEM Correction

A GTEM cell is a receiving structure for electromagnetic fields. Its structure can be compared to a coaxial cable that is geometrically expanded extremely wide, making room to place an EUT between the inner and outer conductor. This outer conductor is represented by the outer shell of the GTEM cell, while the inner conductor is represented by the cell's septum.
As the oscillating field directly induces an alternating voltage between septum and outer shell, the GTEM cell does not convert physical units. Therefore, the conversion factors (C1 values), that depend on the cell's characteristics, are described by a simple attenuation table. Such a table contains one column of frequency-dependent "Attenuation Level" values in dB.

You can either select an existing attenuation table or let the software compute correction factors to create a table automatically.

Use the button to select an existing table.

Alternatively, click "Create new factor" to let R&S ELEKTRA calculate a GTEM correction table based on a set of input parameters. The software automatically creates this table for the frequency range 1 Hz to 30 GHz.

Figure 4-37: C1 factor calculation

Use the following "Input" parameters:

- "b" = vertical position of the septum in relation to the ground plate of the GTEM cell
- "a" = horizontal half width of the GTEM cell
- "g" = vertical width of the gap between septum and side wall
- "x" = horizontal position of the EUT in relation to the center of the GTEM cell
- "y" = vertical position of the EUT in relation to the ground plate of the GTEM cell
- "Z" = impedance of the GTEM cell

Do not consider the default values suggested in the dialog as recommended by Rohde & Schwarz.
For the "Output", specify a name for the attenuation table.
Click "Calculate" to let R&S ELEKTRA automatically create and save this table.

For the site correction factors C2 (GTEM correlation for an open area test site / OATS), see Chapter .

4.6.8 Transducer

The device type "Probe" is a general type of transmitting or receiving transducer, such as a current clamp, a current probe, a near field probe, an antenna or a calibration adapter. A "Probe" is characterized by converting one physical unit into another. For example, an antenna converts an electric field (V/m) into a voltage (V), while a current clamp converts electric current (A) into a voltage (V).

Some other special transducing devices, such LISNs or TEM waveguides, are handled separately:

For a description of the configuration of a "LISN", see Chapter 4.6.4, "LISN", on page 119.
For a description of the configuration of a "TEM Waveguide", see Chapter 4.6.7, "TEM Waveguide", on page 127.

This chapter describes all individual device properties, but not the "General" properties, which are common to all devices and described here.

Besides the properties mentioned above, this device has the following properties:

- Transducer Type... 130
- Measurement Correction..131

4.6.8.1 Transducer Type

Defines the type of transducer, either conducted or radiated. Do not confuse this property with the device type, which is "Probe" for all transducers.

If you change the type of transducer from conducted to radiated, or vice versa, you must also change the "Transducer Correction Table" (see Measurement Correction) to ensure compatibility of units. The measurement unit of a conducted transducer is typically dBµV, dBµA or dBm, while the measurement unit of a radiated transducer is typically dBµV/m or dBµA/m. Select a "Transducer Correction Table" with a measurement unit that matches the "Transducer Type".

Conducted

Select this transducer type, if the transducer is characterized by emitting or receiving RF signals via a cable. Common basic measurement units of conducted transducers are V, A or W (typically dBµV, dBµA or dBm).
Examples of conducted probes are:
- Current probe
- Coupling/Decoupling network (CDN)
- Single-line LISN
- Absorbing clamp
- Calibration adapter for a CDN

Radiated

Select this transducer type, if the transducer is characterized by emitting or receiving RF signals via free space. Common basic measurement units of radiated transducers are V/m or A/m (typically dBµV/m or dBµA/m).

Examples of radiated probes are:
- Near-field probe
- Antenna

4.6.8.2 Measurement Correction

Specifies how to correct the transducer’s measurement values by setting the appropriate cable attenuation and transducer correction data.

For the measurement correction of LISNs, see Chapter 4.6.2, "Measurement Correction", on page 123.

For the measurement correction of TEM waveguides, see Chapter 4.6.7.1, "Measurement Correction", on page 128.

Transducers such as antennas or current clamps are often used in a firm connection with a cable. However, the transducer’s data sheet only provides correction data for the transducer itself, not for the cable. To handle this situation flexibly, the dialog offers separate parts for specifying values for the cable and for the signal-converting part of the transducer.

Cable Correction

The cable part of the transducer can be described by a simple attenuation in units of dB.

See also Chapter 5.4, "Attenuation in Signal-Paths", on page 157.

- "Fixed Value"
 Specifies a constant attenuation value in dB for the transducer cable.

- "According to Attenuation Correction Table"
 Selects an attenuation table with one column of frequency-dependent attenuation values in dB for the transducer cable.
Transducer Factor (Measurement Unit → Result Unit)

The signal-converting part of the transducer converts physical units. Its influence on the RF signal is therefore described by a transducer correction with potentially different units on the input side (measurement) and output side (result). Typically, the correction level values are in dBµV/m, dBµA/m or dBpW.

Select a Transducer Correction Table that contains one column of frequency-dependent "Correction Level" values in a result unit that is also defined in this table. The result unit can be, for example, "dBµV/m" for a dipole antenna, "dBµA/m" for a loop antenna or "dBµA" for a current clamp. The result unit is read from the transducer correction table and serves for converting the measured values from the measurement unit, which is typically "dBµV", to the result unit as defined in the table.

4.7 Tables

Access: "Home" > "Tables"

Tables can be created by measurement or calibration, they can be edited (from scratch, if necessary) or they can be imported. Tables can contain, for example:

- Frequency values
- Power or voltage levels
- Attenuation or gain data
- Correction factors

This chapter does not refer to Test Result Tables, which are implemented only within the Test container. Chapter 4.3.3, "Configuring Test Tables", on page 62 describes how to handle test result tables. Instead, this chapter refers to the so-called "global" tables that are available at "Home" > "Tables".

For all these global tables (other than test result tables), the buttons for common actions such as create, delete, open, copy or rename are described in Chapter 3.2, "Common Action Buttons", on page 35.

When you open a table, the dialog provides the following set of action buttons:

![Figure 4-38: Example of a table dialog header, here in a limit line table]

The "Rename" button expands a text line for entering a new table name. Click ✓ to save the name and collaps the text line.
The "Save" button (Ctrl+S) and the "Save As..." button (F12) save the table to the R&S ELEKTRA database.

The "Delete rows" button removes one or more selected (highlighted) rows from the table. To delete a row, it must be selected as a whole, not only a cell in the row. To select a whole row, click its far left row-header field. Hold [Shift] or [Ctrl] to select multiple rows.

The "Copy" button copies the selected (highlighted) rows.

The "Paste" button pastes the previously copied rows into the table and sorts the rows by frequency.

The "Add new row" button inserts a new row above the currently selected position.

The "Show / Hide Columns" button enables or disables individual columns. You cannot disable the "Frequency" column.

The "Show / Hide Column Headers" button enables or disables individual column headers. You cannot disable the "Name" and "Unit" headers.

The "Select table" button selects all cells in the table, for example for copying.

The "Show Graphics Display" button opens a dialog for selecting the columns to be displayed in a chart. Select the columns and click "OK" to let R&S ELEKTRA generate a graphical representation of the table.

Table nomenclature
Whenever you create a table, we recommend establishing a comprehensible nomenclature for saving tables with speaking names.

For example, "BB-antenna1_ESR7" is a speaking name for an attenuation table that describes the frequency-dependent attenuation of the Signal Path from the broadband antenna 1 to the receiver R&S ESR7.

Importing tables
To import tables from files in .xlsx or .csv standard file format, do not use the Import tool. Instead, go to "Home" > "Tables" and proceed to the type of table you want to import (for example Limit Lines). Here, you have two options:
● Click to create a table and paste some copied table content from your external .xlsx or .csv file into this table. Use [Ctrl+c] to copy the external content and [Ctrl+v] to paste it.

● Click to import a table directly from an external .csv file. This option is not available for .xlsx files.

If you use the import option, a "Table Import" wizard supports you in transferring your table content. This wizard works case-sensitive for each specific table type. The following example is for importing external .csv content into a limit line table:

Verify or edit the pre-settings in the "Table Import" wizard:

- Select the first line for starting the import of table values
- Specify the correct table cell separator or a combination of separators
- Set the units for the frequency (Hz, kHz, MHz, GHz) and for the data values, for example:
 - Limit in dBUV/m
 - Attenuation in dB
 - Correction level in dBpT

"Apply" converts the data with your settings into a table in R&S ELEKTRA format. "Import" terminates the wizard and opens the imported table in a new tab, where you can still edit it. If you wish to keep the table, make sure to save it.

Exporting tables

To export tables from R&S ELEKTRA to files in .xlsx or .csv format, do not use the Export tool. Instead, go to "Home" > "Tables" and proceed to the type of table you want
to export (for example Limit Lines). Open the table you want to export. Here, you have two options:

- Select and copy the table content that you want to export and paste it into an external .xlsx or .csv table file. Use [Ctrl+c] to copy the content and [Ctrl+v] to paste it.
- Click to export a table directly into an external .csv file. This option is not available for .xlsx files.

R&S ELEKTRA distinguishes the following global tables according to their use:

- Limit Lines
- Attenuation Tables
- Frequency List
- Transducer Correction

4.7.1 Limit Lines

A limit line is typically defined by a standard. Create or import your limit line tables accordingly. By using the Configuration Wizard, you can let R&S ELEKTRA create a basic set of limit lines.

In R&S ELEKTRA, a limit line table consists of a frequency list in the first column and up to four limit line columns with limit levels for up to four individual detectors. Specify the detector types in the table header.

Example:

For the magnetic flux density, the standard MIL-STD-461G specifies the following RS101 limit for all navy applications:

<table>
<thead>
<tr>
<th>Frequency [Hz]</th>
<th>Limit Level [dBpT]</th>
</tr>
</thead>
<tbody>
<tr>
<td>below 30 Hz</td>
<td>not defined</td>
</tr>
<tr>
<td>30</td>
<td>170</td>
</tr>
<tr>
<td>60</td>
<td>170</td>
</tr>
<tr>
<td>400</td>
<td>160</td>
</tr>
<tr>
<td>2000</td>
<td>117</td>
</tr>
<tr>
<td>100,000</td>
<td>110</td>
</tr>
<tr>
<td>beyond 100 kHz</td>
<td>not defined</td>
</tr>
</tbody>
</table>

The limit levels between the frequency points specified in this table are linearly interpolated in a semi-logarithmic chart (linear levels over logarithmic frequencies).

Unit

Define physical units in the limit line headers. For example, consider a limit line for tests that use an antenna: The true physical unit of the RF levels is a field strength (dBµV/m), even though the receiver measures a voltage (dBµV). Therefore, enter the result unit as described in Chapter 4.6.8.2, "Measurement Correction", on page 131.
Detector
For each limit line, select from the drop-down list the detector, for which this limit line is defined.

Interpolation
Defines whether to interpolate between the table rows in linear or logarithmic mode. To select "Linear" or "Logarithmic" interpolation for an individual column, click its "Interpolation" header.

To achieve the following, you must set the "Interpolation" correctly in the table definition:

- Setting "Interpolation" to "Linear", if the axis is scaled linear, too, results in a straight line between the defined points in a chart.
- Setting "Interpolation" to "Logarithmic", if the axis is scaled logarithmic, too, results in a straight line between the defined points in a chart.
- Otherwise, the line between points in the chart is curved.

4.7.2 Attenuation Tables

In the propagation of RF radiation across real media, there is always some loss of power due to attenuation. A technically especially relevant example is the propagation through an RF cable.

With the simplified assumption of the same amount of attenuation across all frequency bands, no attenuation tables would be required. Instead, a single attenuation value would be sufficient, for example for cable loss.

Attenuation tables serve to represent the frequency dependency of RF radiation across true propagation media. This frequency dependency describes the attenuation characteristics, for example of a piece of cable. A typical application of an attenuation table in R&S ELEKTRA is its use in the definition of a Signal Path.

By using the Configuration Wizard, you can let R&S ELEKTRA create a basic set of attenuation tables.

We recommend that you save your tables according to the suggested nomenclature.

Gain vs. attenuation
Within R&S ELEKTRA, attenuation has a positive sign, gain has a negative sign. Hence, to specify a gain table (for example for a preamplifier), enter negative attenuation levels.

Unit
This table header defines the frequency unit in Hz, kHz, MHz or GHz, and the attenuation level typically in dB.
Interpolation

Defines whether to interpolate between the table rows in linear or logarithmic mode. To select "Linear" or "Logarithmic" interpolation for an individual column, click its "Interpolation" header.

To achieve the following, you must set the "Interpolation" correctly in the table definition:

- Setting "Interpolation" to "Linear", if the axis is scaled linear, too, results in a straight line between the defined points in a chart.
- Setting "Interpolation" to "Logarithmic", if the axis is scaled logarithmic, too, results in a straight line between the defined points in a chart.
- Otherwise, the line between points in the chart is curved.

4.7.3 Frequency List

A frequency list contains a single column with frequencies. It defines discrete frequencies, for example in a test template, to let R&S ELEKTRA measure at these frequencies in addition to - or instead of - the frequencies defined by a given frequency setting.

Frequency lists are typically created by hand. Write the frequencies into the table or paste them there from a different source, for example from a spreadsheet.

For emission measurements, frequency lists can also be created by data reduction. The resulting list can be used in the final measurement.

Unit

Available frequency units are Hz, kHz, MHz and GHz. To select the unit, click the column header.

Comment

You can optionally enter arbitrary comments in each frequency row, for example the name of a frequency band.

4.7.4 Transducer Correction

Transducer correction tables contain a column for frequencies and a column for the "Correction Level".

The tables are used to consider for the transfer function of a LISN or transducer (antenna, current clamp, etc.), as described in LISN Measurement Correction and Transducer Measurement Correction.

Transducer correction tables are typically generated by hand, by copy-paste from the transducer manufacturer's data sheet or through a calibration process. By using the Configuration Wizard, you can let R&S ELEKTRA create a basic set of transducer correction tables.
Unit
Define a physical unit in the "Correction Level" header. This unit is the result unit as described in Chapter 4.6.8.2, "Measurement Correction", on page 131. For example, if there is a transducer correction table for an antenna: The RF levels are measured as some voltage (dBµV) at the receiver's antenna connector. This voltage is converted by the transducer correction table into the field strength (dBµV/m) that the antenna actually received. In this way, result tables and charts can display signal levels with their true physical units, rather than measured voltage levels.

Interpolation
Defines whether to interpolate between the table rows in linear or logarithmic mode. To select "Linear" or "Logarithmic" interpolation for an individual column, click its "Interpolation" header.

To achieve the following, you must set the "Interpolation" correctly in the table definition:
- Setting "Interpolation" to "Linear", if the axis is scaled linear, too, results in a straight line between the defined points in a chart.
- Setting "Interpolation" to "Logarithmic", if the axis is scaled logarithmic, too, results in a straight line between the defined points in a chart.
- Otherwise, the line between points in the chart is curved.

4.8 Tools
Access: "Home" > "Tools"
Opens the tools described below.

- Export .. 139
- Import .. 140
- Configuration Wizard ... 141
- Unit Converter ... 141
- Table Merge
4.8.1 Export

Access: "Home" > "Tools" > "Export"

All data in R&S ELEKTRA is saved in a single database file that can only be interpreted by this software. To make individual sets of data available outside of R&S ELEKTRA, you can export selected items.

"Export" is also an option for exchanging data between different instances of this software. However, if you wish to migrate to a new (higher) version of R&S ELEKTRA, we recommend using the installation wizard and copying an existing database into the new installation. Do so, before you start working and creating data with your new version of R&S ELEKTRA.

Export procedure

To export data, proceed as follows:

1. Click the button to specify a target folder and filename. The export file has the format of a ZIP archive.

 Note: If you have previously exported data, the filename of that export is set as the default. To avoid overwriting your previous export, make sure to specify a different filename (or folder).

2. Deselect the types of items that you do not wish to export. For example, deselect "Device(s)" and "Report Template(s)", leaving the other types selected.

3. Click "Next" to confirm your selection of item types.

4. For each selected type of items, select the individual items you wish to export. You can sort the lists of items by clicking their headers, for example, the "Name" header or the "Change Date" header.

5. If you have previously pinned any searches to the dashboard, you can include these searches into the export file by selecting "Include saved search". This feature permits transferring your configured search parameters to a different installation.

6. Click "Next" to confirm your selection of items.

7. Repeat "Export procedure" on page 139 for all selected types of items.

8. When you have defined your selection for all types of items, complete the export process by clicking "Finish & Execute".

 Note: The button "Finish & Execute" is available from the beginning of this procedure, if at least one type of items is selected. You can use "Finish & Execute" as a shortcut, without using the "Next" button for selecting individual items. However, if you do so, be aware that the wizard exports all items of all selected types.

 The wizard generates the export file by writing the data sets into individual XML files (extensible markup language). Then it automatically archives all XML files into a single ZIP file and saves it into your selected target folder.
At the same time, the dialog shows "Logging Information". To see this information, click "Open Log".

Exporting tables

To export tables into .xlsx or .csv files, do not use the export tool described above. Instead, proceed as described in Chapter 4.7, "Tables", on page 132.

4.8.2 Import

Access: "Home" > "Tools" > "Import"

The import feature allows importing data from external ZIP or XML files into the R&S ELEKTRA database. Use this feature especially for importing data that has previously been exported.

"Import" is also an option for exchanging data between different instances of this software. However, if you wish to migrate to a new (higher) version of R&S ELEKTRA, we recommend using the installation wizard and copying an existing database into the new installation. Do so, before you start working and creating data with your new version of R&S ELEKTRA.

Import procedure

To import data, proceed as follows:

1. Click the button to select the ZIP or XML file you wish to import.
 - **Tip:** If the selection field shows a path and filename from a previous import, you can open this file by placing the cursor in the selection field and pressing [Enter]. Alternatively, remove the filename entry and start with a new file selection.

2. Click "Open".
 - If the selected file is suited for import, the dialog lists all types of items that are contained in the file.

3. Deselect all types of items that you do not wish to import.

4. Click "Next".
 - The import wizard now checks, if any items among the selected types of items are already available in the database.
 - R&S ELEKTRA handles items that already exist in the database in the following way:
 - If an "Already Existing" item is listed, it has a deactivated checkbox and you cannot import this item.
 - If an existing item is not referenced, the wizard lets you select one of the following options:
 - "Create New" creates an additional item with a modified name
 - "Use Existing" skips importing this item
 - "Overwrite" imports this item, which overwrites the existing item
5. Out of those items with activated checkboxes, select those items that you wish to import.
 If options are available as described above, also select one of the options.
6. Proceed in the same way with every selected type of items.
7. Click "Finish & Execute".
 The items are now imported and saved into their lists. For example, an imported test template is now available in the list of test templates.

Importing is only possible for ZIP and XML files that are validated by R&S ELEKTRA as having compatible content. If you try to import an incompatible file, an error message comes up and warns you that the import of this file is not allowed.

If you import tests, you cannot run or rerun them. Upon opening an imported test, it is labeled as "Imported Test (Read Only)".

Importing tables
To import tables from .xlsx or .csv files, do not use the import tool described above.
Instead, proceed as described in Chapter 4.7, "Tables", on page 132.

4.8.3 Configuration Wizard

Access: "Home" > "Tools" > "Configuration Wizard"
Run the wizard as described in Chapter 2.4, "Configuration Wizard for Creating Basic Data", on page 20.

This tool creates application-specific sample data for tests.
It can generate some of the following content:
- Test Templates
- Report Templates
- The Devices required for the generated test templates
- The Limit Lines required for the generated test templates
- Attenuation Tables
- Frequency Lists
- Transducer Correction Tables
The "Description" line at the lower edge of the dialog shows details of an item that you select (highlight).

4.8.4 Unit Converter

Access: "Home" > "Tools" > "Unit Converter"
Use this tool to convert a broad range of input values and units into output values and units.
Since many unit conversions depend on the system's "Impedance", you can specify this parameter. The default is "50 Ohms".

4.9 Administration

Access: "Home" > "Administration"

Opens the administration functions for the settings described below.

- **Backup**.. 142
- **Graphics Settings**.. 145
- **Report Settings**.. 147
- **License Management**.. 149
- **Log Settings**.. 150
- **General Settings**... 152

4.9.1 Backup

Use backups to save copies of your R&S ELEKTRA database in this folder:

C:\ProgramData\Rohde-Schwarz\ELEKTRA\x.xx.xx\Backup

The "Backup" dialog defines all backup settings.

The dialog headline has these functions:

- ![Save icon] "Save" stores the Configuration settings. Without saving, your changed settings have no effect and are lost upon shutting down R&S ELEKTRA.

- ![Discard icon] "Discard all changes" resets the configuration to the state before you changed these settings.
"Reset to Default" resets the configuration settings to their default state and saves it.

"Create a backup" immediately creates a backup of the R&S ELEKTRA database. If the number of created backups has reached the number specified in the field "Keep the last <n> backups", the creation of a new backup immediately deletes the oldest backup file. This deletion is not protected by a warning.

"Refresh" immediately resets the backup dialog to the state as most recently saved. Also, it consolidates the state of the backup dialog with the current settings and with the available data. For example, if you have copied one or more backup files from a different directory into the backup folder of your current version of R&S ELEKTRA, the "Refresh" button makes these files visible in the list of backups.

Below the dialog headline, the software displays the date of the most recent backup.

Configuration

Defines the following backup timing settings:

- **"Keep the last <n> backups"**
 The setting of <n> defines the number of backups to keep. Minimum is one backup, maximum is 50. If you reduce this number below the number of existing backups, saving this setting deletes the oldest backups that exceed the number of backups to be kept. For example, if you have stored 5 backups and then reduce the number of backups to be kept to 3, saving this setting deletes the 2 oldest backup files. This deletion is not protected by a warning.

- **"Make a backup"**
 Upon shutting down R&S ELEKTRA, the software saves a backup, if the latest backup is older than the specified timeframe:
 - "Daily"
 - "Every 2 days"
 - "Every week"
 - "Every month"

Below the "Configuration" settings, the dialog lists all available backup files in a table:

Backup Files

Lists the names of the created backup files with the following parameters:

- "Backup Files" shows the filenames in the format

 ELEKTRA_<date>_<time>.zip
You can edit the filenames in the dialog. The backups are saved in .zip files (archives). In addition, with each .zip file, R&S ELEKTRA saves an .xml file with the same filename. This file is not shown in the list, but available in the backup folder.

- "Description" can contain arbitrary content, which you can edit with your own comments.
 Per default, this field shows the following content:
 - If you have created the backup file by the "Create a backup" button, this field is empty.
 - If the backup file was created according to the timing settings described above, the field shows "scheduled automatic backup".
 - If the backup file was created automatically by the R&S ELEKTRA installer, for example, if you select to install a clean or old database during the Modify installation procedure, the field shows "backup (installer)".

- "Keep Backup?" enables or disables keeping the selected backup file in addition to the selection of "Keep the last <n> backups" described above. If enabled, a lock icon is shown in the "Backup Files" field and the "Delete" button is disabled.

- "File Size" of the backup files
- "Date of Creation" and time of creation of the backup files
- "Version" shows the R&S ELEKTRA version number, under which each of the backup files was created

To sort the list by file size or by date, click the column header. For reverse order, click the header again.

Restore
Overwrites the currently used database with the selected backup file. Restoring a backup is protected with a confirmation dialog:

"Are you sure you want to restore to this backup file?"

Clicking "Yes" restores and restarts R&S ELEKTRA with the selected backup data.

NOTICE

Risk of losing data
If you restore an older database without saving the current data before this action, your current data is irrevocably lost. Especially the data of previously executed tests can be a serious loss.

Therefore, always create a backup of the current data before you restore an older one.

If you copy a backup file of a newer version of R&S ELEKTRA into the backup folder of an older version, the "Restore" button is disabled in the backup administration dialog of that older version. Instead, the following mouse-over text is displayed: "Unable to restore a backup from a newer version".
Delete
Deletes the selected backup file.

The deletion of a file is protected with a confirmation dialog:

"Are you sure you want to delete this backup file?"

Click "Yes" to confirm or "No" to quit deleting the file.

Upgrading This Backup to the Current Version

Only available, if you have copied one or more backup files from the backup folder of a previous version of R&S ELEKTRA into the backup folder of the current version.

Clicking this button starts a procedure to upgrade the older backup file to be compatible with the database structure of the current version.

- If the upgrade succeeds, the following blue dialog comes up:
 "Database upgrade completed"
 "Backup file ELEKTRA_<date>_<time>.zip successfully upgraded."

- If the upgrade does not succeed, a red dialog like the following comes up:
 "Database upgrade failed"
 "Failed to upgrade the backup file. Error is I/O error during "ReadFile" operation for file "C:\PROGRAMDATA\ROHDE-SCHWARZ\ELEKTRA\x.xx.xx\BACKUP\TEMP \ELEKTRA_<date>_<time>\ELEKTRA.FDB". Error while trying to read from file.

If the upgrade succeeds, the entry in the "Version" field changes from the old to the current R&S ELEKTRA version number.

When you terminate R&S ELEKTRA, the software first checks, if a backup is due according to your settings. If a backup is due, instead of terminating, the software saves a backup while showing a backup notification message.

To shut down R&S ELEKTRA, click the terminate (or "Close") button again.

4.9.2 Graphics Settings

Defines global settings for color, font size, style, etc. of the background of graphic charts, of their labels, legends, markers, grid lines, axes and traces.

While these settings are globally valid for all new graphics, you can also define the same settings differently for individual graphic charts. To do so while working with a graphic chart, right-click the chart and select Graphic Properties.

The dialog headline has these functions:

- "Save" stores the settings. Without saving, your changed settings have no effect and are lost upon shutting down R&S ELEKTRA.

-
"Discard all Changes" resets the settings to the state before your changes.

- "Reset to Default" resets the settings to their default state and saves it. Note that this button does not only reset the settings to their default that are currently visible in the dialog. Instead, all the following settings are reset to their default.

Graphics

This dialog defines the following graphics settings:

- "General" selects the "Background Color" of the chart.
- "LEGEND"
 - "Legend On for Grid Chart" enables showing a legend below each chart.
 - "Show Beside" enables showing the legend beside the chart instead of below it.
- "Font Family" selects the "Font", "Typeface" and "Size" of text in the title, axis labels and legend of graphics
- "Accessory Settings" allows enabling or disabling "Show Accessory Settings in the Graphic Traces and Markers". If you enable this option, you can click on a trace or on a marker in a test chart of a stopped test to let R&S ELEKTRA display accessory settings. For example, it can display the antenna polarization, the EUT's azimuth angle or the position of an accessory.

Marker

This dialog defines the following marker settings:

- "General"
 - If the checkbox "Use the color of the referenced trace" is enabled (= default), the color of each un-referenced marker is set to the color of its own trace.
 - To select a global "Marker Color" for unreferenced markers, disable the checkbox. As an exception, the currently selected marker is always highlighted in a light blue color.
 - Optionally select the "Marker Size" to be "Small", "Medium" (= default) or "Large". This setting is valid for all kinds of markers.
- "Delta Marker"
 - If the checkbox "Use the color of the referenced marker" is enabled (= default), the color of delta markers (synchronized or not) is set to the trace color of the referenced markers.
 - To select a global "Marker Color" for delta markers, disable the checkbox. As an exception, the currently selected marker is always highlighted in a light blue color.
- "Pixel Mode"
 The default "Show Pixel Mode" enables markers to be moved from pixel to pixel between the frequency (measurement) points. If disabled, markers can only jump...
from one frequency point to the next. The effect of this setting becomes especially noticeable, if only a few frequency points are visible, for example when zooming deeply into a trace.

To access this setting in a graphic chart, right-click the chart and select "Graphic Properties" > "Marker" > "Pixel Mode". Alternatively, right-click the chart and select "Marker" > "Pixel Mode", or right-click a marker and select "Pixel Mode".

- "Search"
 Specifies the "Peak Excursion" value (in dB). This parameter determines the relative level offset to differentiate between peak and non-peak measurement results. Hence, the size of this difference determines whether a marker detects separate peaks or classifies them as a single peak.
 For example, consider a level dip between two local maxima being 2 dB down, and the level values left and right of them being 5 dB down. In this case, with a "Peak Excursion" of 3 dB, the two local maxima are regarded as one peak. But with a "Peak Excursion" of 1 dB, the two maxima would be seen as two separate peaks.

Grid
This dialog defines the following grid settings:
- "Horizontal Grid" selects "Color" and "Style" of horizontal grid lines. The "Color" setting requires "Style" to be set different from "None".
- "Vertical Grid" selects "Color" and "Style" of vertical grid lines. The "Color" setting requires "Style" to be set different from "None".
- "Axis" enables or disables "Logarithmic X-Axis" and "Title of Y-Axis rotated by 90 deg", selects "Label Color" and "Font Size".

Traces
This dialog defines the following marker settings:
- "Trace" selects the "Trace", "Limit Line" or "Symbol Trace" to be configured.
- "Line" specifies "Style", "Color" and "Thickness" of the selected trace or line. The settings "Color" and "Thickness" require "Style" to be set different from "None".
- "Symbol" specifies "Shape", "Color" and "Size" of symbols on the selected trace or line. The settings "Color" and "Size" require "Shape" to be set different from "None".
- "Vertical Line To the Bottom" specifies "Style", "Color" and "Thickness" of lines that connect symbols (or points) on the selected trace to the lower edge of the chart. The settings "Color" and "Thickness" require "Style" to be set different from "None".
- "Use for EMI Detector" selects a detector type, and assigns it the properties of a selected trace. Hence, you can use this function to define individual trace layouts for up to 4 specific detectors. The selection "Use for EMI Detector" is only available for traces 1 to 4, not for "All other Traces". Automatically, the detector that you select for one "Trace" is assigned also to the "Limit Line" and "Symbol Trace" with the same index number.

4.9.3 Report Settings
Defines global settings for reports, report graphics and report templates used per default.
The dialog headline has these functions:

- "Save" stores the settings. Without saving, your changed settings have no effect and are lost upon shutting down R&S ELEKTRA.

- "Discard all Changes" resets the settings to the state before your changes.

- "Reset to Default" resets the settings to their default state and saves it.

General

Specifies the "Report Title", "Header", "Footer", "Logo", "Font" and "Export Format", which are then available in the "General" section of Report Templates.

Before you leave this dialog, save your changes to activate them. To reset the report configuration to the default settings, click the "Reset to Default" button.

For the "Header" and "Footer" of reports, the following selections are available for the left, center and right sections, respectively:

- "None" leaves this section blank
- "Date" in the format "dd.mm.yyyy"
- "Time" in 24-hour clock format "hh:mm"
- "Date / Time"
- "Page Number" = the current page number in a report
- "Page Number / Count" = "Page Number" and the total number of pages, separated by "/
- "Test Name" = the name of the test that is described by the report
- "Verdict" = a "Passed", "Failed" or "Inconclusive" statement resulting from a test
- "Version" = the name "ELEKTRA" together with this software's version number
- "Title" = the "Report Title" specified above
- "Logo" = the logo image file selected below

The "Logo" image file is stored within the R&S ELEKTRA database. To select a new logo, click the button. The existing logo is replaced by the new logo. To view the currently selected logo, click the button. To restore the original logo, click the "Reset to Default" button. Note that this action resets all other report settings, too.

The font of reports can be specified individually for the following "Font Items":

- "Title"
- "Component Title"
The "Export Format" of reports can either be "PDF" (Adobe Acrobat portable document format = default) or "DOCX" (MS Word for Windows). The option that you select determines the export format offered in a report (PDF or DOCX). However, with one file format preselected, the other file format is still available in the "Save As" dialog.

Graphics

"Add Graphics Title" globally activates or deactivates the graphics title as a default for reports.

"Graphics Arrangement" specifies either one chart over the full page width or up to four charts next to each other, at a reduced width.

Tables

"Max. Printable Rows" specifies the number of lines of a table to be printed in a report.

4.9.4 License Management

Manages the licenses for R&S ELEKTRA.

![Manage Licenses](image)

Figure 4-40: License management dialog

To see your license expiration dates, click "Manage Licenses" to open the "R&S License Server Manager" dialog and refer to the "Validity" column.

Without licenses: "demo mode"

The R&S ELEKTRA EMC Test Software runs in "ELEMI-E" demo mode, if any of the following conditions applies:

- You do not own a license
- Your License Dongle is not connected
- No license checkbox shown in Figure 4-40 is enabled

In this EMI demo mode, no physical measurements can be made. If you have selected to Allow Device Simulation, all test data comes from simulation and tests are labeled as simulated.

Manage Licenses

Brings up the following dialog:
Use this dialog to view the licenses that are contained in your License Dongle.

Apply and Restart

Restarts the software to apply your selection of enabling or disabling the checkbox for "EMI Test Software - ELEMI-E".

"Enabled" You can use the restarted R&S ELEKTRA with the licenses available on your License Dongle, as shown in the "License Management" dialog, see Figure 4-41.

"Disabled" You can use the restarted R&S ELEKTRA in demo mode, only. Disabling all licenses is equivalent with not inserting your license dongle.

During restart, the following dialog comes up:

Select OK to proceed with starting in demo mode. R&S ELEKTRA displays the words "Demo Mode" on the right-hand side of the title bar (see Graphical User Interface).

Note: If, while starting R&S ELEKTRA, this dialog comes up because you have not yet inserted your license dongle, insert the dongle and click "Restart".

To leave the demo mode and use the software with your licenses enabled, go to "Home " > "Administration" > "License Management". Enable the checkboxes for your licenses and click "Apply and Restart".

4.9.5 Log Settings

The logging function of R&S ELEKTRA tracks software events by a specific protocol transcript and saves the log information in several files to the folder C:\ProgramData\Rohde-Schwarz\ELEKTRA\x.xx.x\Logs.
Use the "Log Settings" dialog to configure the Log Information. The dialog headline provides the following functions:

- "Save" stores the log settings. Without saving, your changed settings have no effect and are lost upon shutting down R&S ELEKTRA.

- "Discard all Changes" resets the log settings to the state before you changed these settings.

- "Reset to Default" resets the log settings to their default state.

- "View Logs" opens a dialog for viewing the log entries, as described in Chapter 9.2, "Log Information", on page 189.

You can also open the "View Logs" dialog by the keyboard shortcut [Alt]+[L].

- "SCPI"

Opens the "ELEKTRA Spy" tool in a separate window.

Configure Log Targets

Use the configuration table in this section to specify, which type of event is stored in which log file.

<table>
<thead>
<tr>
<th>Configure Log Targets</th>
<th>Auto-Flush</th>
<th>Level</th>
<th>General Log</th>
<th>Application Log</th>
<th>Communication Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>✔</td>
<td>Warning</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application</td>
<td>✔</td>
<td>Warning</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Driver</td>
<td>✔</td>
<td>Warning</td>
<td>✔</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Interface Communication</td>
<td>✔</td>
<td>Warning</td>
<td>✔</td>
<td></td>
<td>✔</td>
</tr>
</tbody>
</table>

The type of event depends on the source of log information. For example, if R&S ELEKTRA observes an event in a device driver and wants to log this event, the "source of log information" determines the event type "Driver".

- Source of log information:
● "Auto-Flush" enables or disables R&S ELEKTRA to open the appropriate log file automatically, enter new data and save the file for external access to log data.

● "Level" assigns one of the following log information levels to each source of log information:
 – "Info"
 – "Warning"
 – "Error"

● Events of various types can be logged in the following log classes:
 – "General Log"
 – "Application Log"
 – "Communication Log"

Events of the same log class are saved to the same log file at C:\ProgramData\Rohde-Schwarz\ELEKTRA\x.xx.x\Logs. Individual log classes also facilitate finding events in the Log Information dialog.

Log File Settings
Defines the maximum log data volume (in megabytes) and the maximum log file count.

4.9.6 General Settings
Access: "Home" > "Administration" > "General Settings"
Selects the settings described below.
The dialog headline has these functions:

● "Save" stores the general settings. Without saving, your changed settings have no effect and are lost upon shutting down R&S ELEKTRA.

● "Discard all Changes" resets all general settings to the state before your changes.

● "Reset to Default" resets all general settings to their default state and saves it.
Allow Device Simulation

Enables or disables running tests with simulated data. The software distinguishes the following cases:

- If you use R&S ELEKTRA without licenses in demo mode, no physical measurements can be made. All test data comes from device simulation. The tests are labeled as simulated.
- If you use R&S ELEKTRA with a license, the measurement mode depends on the availability of the devices required for a test:
 - If all devices are available and the automatic test validation confirms the connection, the software uses the physical data, even if you have allowed simulation.
 - If one or more devices are not connected, and if you confirm that you wish to let R&S ELEKTRA simulate a measurement, all test data comes from this simulation. The tests are labeled as simulated.

Show Welcome Screen on start up

Enables or disables the "Welcome Screen" upon starting R&S ELEKTRA. This screen also allows creating sample test data, as described in Chapter 2.4, "Configuration Wizard for Creating Basic Data", on page 20.

Dashboard: Show ...

To enable or disable the displaying of individual categories of items in the Dashboard dialog, use the following checkboxes:

- "Dashboard: Show Tests"
- "Dashboard: Show Test Templates"
- "Dashboard: Show Report Templates"

The intention of limiting the categories of pinned items in the "Dashboard" dialog is to provide simple access to and a good overview of exactly the pinned items and searches that you require. In combination with user-defined Searches, this selection is especially helpful, if you have created many items or searches over time.

EMI: Download the ... into the receiver when the test ends

R&S ELEKTRA supports enhanced communication with your test receiver. To allow switching between using a receiver with and without control from R&S ELEKTRA, you can download selected data into the receiver at the end of a test execution under software control.

You can enable or disable the following features individually:

- "EMI: Download the transducer sum into the receiver when the test ends"
- "EMI: Download the limit lines into the receiver when the test ends"
- "EMI: Download the scan settings into the receiver when the test ends"

EMI: Run *.py scripts within ELEKTRA

Enables the execution of Python scripts.
5 Measurement Basics

This chapter introduces the users to the fundamental measurement principles for EMI tests and helps to structure tests in an application-related matrix.

- Fundamental Principles ...154
- Test Matrix ...154
- Detectors ...156
- Attenuation in Signal-Paths ...157

5.1 Fundamental Principles

Electrical appliances that emit electromagnetic waves (conducted or radiated) can interfere with other appliances that receive these waves. With a transmitter, this behavior can be intentional or unintentional.

To ensure reasonable operation of electrical appliances, international EMI Standards regulate the maximum level of emitted interfering power of an appliance.

EMI tests (electromagnetic interference, or emission) that simulate the actual interference situation serve to evaluate the compliance of equipment with these standards. The measurements and the applicable limit lines defined in the standards are frequency-dependent.

5.2 Test Matrix

The type of electrical appliance (EUT) and its field of application determine, which EMI tests must be performed according to which standard. The following table provides an overview:

Table 5-1: EUT-related test matrix

<table>
<thead>
<tr>
<th>EUT type</th>
<th>Interference type</th>
<th>Run EMI tests according to</th>
</tr>
</thead>
<tbody>
<tr>
<td>automotive / boats (with combustion engines)</td>
<td>conducted emission, radiated emission</td>
<td>CISPR 12 / 25</td>
</tr>
<tr>
<td>broadcast</td>
<td>conducted emission, radiated emission</td>
<td>CISPR 13 / 32</td>
</tr>
<tr>
<td>household</td>
<td>conducted emission, radiated emission</td>
<td>CISPR 14-1</td>
</tr>
<tr>
<td>industrial, scientific, medical (ISM)</td>
<td>conducted emission, radiated emission</td>
<td>CISPR 11 / 28</td>
</tr>
<tr>
<td>IT equipment</td>
<td>conducted emission, radiated emission</td>
<td>CISPR 22 / 32</td>
</tr>
</tbody>
</table>
EUT type | Interference type | Run EMI tests according to
---|---|---
lighting | conducted emission | CISPR 15
| radiated emission | |
military, aerospace | conducted emission | MIL-STD-461
| radiated emission | |
multimedia | conducted emission | CISPR 32
| radiated emission | |

The regulations in the applicable **EMI Standards** lead to the following action items:

- The **measurement devices** that you must use
- The **Test Templates** that you must configure
- The **Limit Lines** that you must apply
- In radiated tests, the measurement distances between emitter and receiver that you must observe
- The frequency ranges that you must cover by the various test methods.

An example for non-military EMI tests is shown in **Figure 5-1**:

![Figure 5-1: Signal propagation and appropriate EMI setups in different frequency ranges](image)

Regarding the near-field to far-field transition shown at a frequency $f = 30 \text{ MHz}$ in **Figure 5-1**, consider the following: At a given distance $r = 10 \text{ m}$ between the EUT and an antenna, the near-field condition $r < \lambda$ is fulfilled at frequencies f below 30 MHz. The reason is that the wavelength $\lambda = c/f$ is then $>10 \text{ m}$ (with signal propagation speed $c = 3 \cdot 10^8 \text{ m/s}$). This relation is valid for radiated measurements in EMI tests.
5.3 Detectors

In EMI measurements, detectors are algorithms that specify how to weight the envelope of the measured IF signal.

Table 5-2: Detector types

<table>
<thead>
<tr>
<th>Detector name</th>
<th>Detector description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average (AVG)</td>
<td>For average measurements, the linear time-averaged value of the rectified voltage at the output of the envelope demodulator is indicated. It is calibrated using the RMS value of an unmodulated sinusoidal signal. If an unmodulated sinusoidal signal is applied to the receiver input, its RMS value is thus indicated. If an AM signal is present, the RMS value of the carrier is indicated. With the ESCS, analog averaging is performed using lowpass filters, the time constants of which are switched depending on the measuring time.</td>
</tr>
<tr>
<td>Maximum Peak (MaxPeak, Peak, PK+)</td>
<td>Peak value measurements return the maximum value of the rectified voltage at the output of the envelope demodulator within the selected measuring time. The detector is calibrated using the RMS value of an unmodulated sinusoidal signal that supplies the same detection voltage. Average and peak value of an unmodulated sinusoidal signal basically return the same indication. However, with peak value weighting, the noise voltage indication is about 11 dB higher than with average weighting. Therefore, higher values are indicated when the signal-to-noise ratio is not sufficient. Peak value indication serves for determining the levels of keyed carriers, pulse signals or peak voltages of AM signals. As peak value measurements can be carried out considerably faster than quasi-peak measurements, we recommend for RFI measurements to begin with a general measurement in indicating peak mode. After that, run a quasi-peak measurement at the critical frequencies.</td>
</tr>
<tr>
<td>Minimum Peak (Min-Peak, PK-)</td>
<td>For negative peak-value measurements, the minimum value of the rectified voltage at the output of the envelope demodulator within the selected measuring time is indicated.</td>
</tr>
<tr>
<td>Quasi Peak (QPK)</td>
<td>Quasi-peak measurement weights pulse signals using a quasi-peak detector with defined charge and discharge time. IF bandwidth and mechanical time constant of the meter are also specified. The characteristics the receiver has in this indication mode are defined in CISPR 16 or in VDE 0876. Due to the long time constants of weighting, it takes relatively long until a valid measurement result is displayed after every change in frequency or attenuation at the receiver. It is therefore futile to use measuring times of less than 1 s, especially for automatic measurements. The maximum level value during the measuring time set is shown on the digital level display. The timing of the quasi-peak test voltage can be observed on the analog meter at the same time. In addition to monitoring of the interference source, this measurement often allows you to draw useful conclusions as to the character of the interference. Quasi-peak weighting places high demands on the dynamic characteristics of the receiver. With low pulse frequencies, however, the operating range cannot be fully utilized, as otherwise the RF input would be overloaded. When an overload occurs, the software informs you about it by way of the overload indication (Fig. 5-6) in the test window. In this case, increase the RF attenuation to such an extent that the overload message disappears. In automatic operation, the receiver itself correctly sets the attenuation.</td>
</tr>
<tr>
<td>RMS</td>
<td>For RMS value measurements, the RMS value of the rectified voltage at the envelope demodulator output is indicated. Irrespective of the signal shape, the envelope demodulator power is indicated. Analog RMS value generation is performed. The time constant for RMS value generation is set via the measuring time and is identical with the time constant of average value generation with the measuring time already specified.</td>
</tr>
<tr>
<td>CISPR Average (CISPR AV, CAV)</td>
<td>CISPR Average is the weighting average detector according to CISPR 16-1-1. The CISPR average detector supplies a weighted average. When measuring the average according to CISPR 16-1-1, the maximum value of the linear average during the measuring time is displayed. The detector is used, for example, to measure pulsed sinusoidal signals with a low pulse repetition frequency. It is calibrated with the RMS value of an unmodulated sinusoidal signal. Averaging is with lowpass filters of the second order (simulation of a mechanical instrument).</td>
</tr>
<tr>
<td>RMS Average (RMSAV)</td>
<td>RMS Average is the weighting detector according to an amendment of CISPR 16-1-1 (CISPR/A/628/CD). The RMS average detector supplies a weighted reading of the input signal. When measuring the RMS average according to the amendment, RMSAV returns the maximum value of the RMS average during the measuring time. This detector is used, for example, to measure pulsed sinusoidal signals with a low pulse repetition frequency. It is calibrated with the RMS value of an unmodulated sinusoidal signal. Averaging uses lowpass filters of the second order (simulation of a mechanical instrument).</td>
</tr>
</tbody>
</table>
5.4 Attenuation in Signal-Paths

Due to RF attenuation in signal paths, for example in cables, the RF power level at one end of the path can differ from the level at the other end. Depending on the precision requirements of your application, if the attenuation is low, you can neglect it. Neglecting is equivalent with specifying 0 dB attenuation in a given path.

Otherwise, if you do not want to neglect attenuation effects, specify the attenuation characteristics of your signal paths by constant values or by frequency-dependent attenuation tables. R&S ELEKTRA can use this information for power level compensation: It can calculate the power at one end of a signal path, if it knows the power at the other end and the level of attenuation in the path.

5.4.1 EMI Measurement Correction

Based on the receiver's raw measurement data, R&S ELEKTRA can calculate the emission level. This chapter describes, how the software uses attenuation tables referenced in a signal path and transducer correction tables for this calculation.

Figure 5-2: Paths in an EMI hardware setup that can contribute to signal attenuation

1 to 4 = Measurement points
Path [1-2] = Transducer input to output, see fixed correction value or transducer correction table specified in the Transducer Factor dialog
Path [2-3] = Transducer output to connection point, see fixed value or attenuation correction table specified in the transducer's Cable Correction dialog
Path [3-4] = Connection point to receiver input, see constant value or one or more attenuation tables specified in the Measurement Correction dialog of the signal path

- If the EMI hardware setup is radiated, hence if the transducer is an antenna, the setup typically uses the connection point of a shielded chamber and includes a pre-amplifier (optional).
 If there is a pre-amplifier, enter its gain as a negative attenuation in the Transducer Factor dialog.
- In conducted setups, the transducer’s cable is often connected directly to the receiver, and the signal path [3-4] in Figure 5-2 does not exist.
Calculating the emission level

The following equation shows how R&S ELEKTRA calculates the emission level at measurement point 1. The algorithm uses the raw level reading, measured by the RF receiver at its input (measurement point 4, typically in dBµV).

6 Special Software Features

This chapter provides helpful information for operating some specific features in the graphical user interface (GUI) of R&S ELEKTRA.

- Handling Changed Items
- Dashboard Search
- Searches
- Arranging Elements in Tests

6.1 Handling Changed Items

If you change any content in a dialog that supports saving, the "Save" button of the dialog is marked by an asterisk (*).

- To keep the changes (upon closing the dialog, at the latest), select "Save" or "Save As".
- To discard the changes upon closing the dialog, select "Don't Save". To avoid accidental loss of data, R&S ELEKTRA prompts you to confirm, if you would like to save your changes or not.
- To return to the dialog without saving and without closing it, select "Cancel".

6.2 Dashboard Search

When you enter a keyword in the search field (top right in the Dashboard dialog), the software immediately starts searching for items that meet the search criteria. The search results, which are displayed in a drop-down hit list, also depend on the activated filter button:

![Figure 6-1: The dashboard search and its filter buttons](image)
For example:

- When you select the left filter button ("Search All"), as shown on the left in Figure 6-1, the hit list comprises all categories of items.
- When you select the right filter button ("Search Tables"), as shown on the right in Figure 6-1, the hit list comprises only tables.

The dashboard search function includes search terms from the following features of items:

- Names, for example the names of test templates, tests or tables
- Application types, for example EMI, EMS, or CAL
- Tags

Devices are not searchable from the dashboard. To search for a device, go to the Device List.

To open a found item directly from the hit list, click the "Open" button next to it.

If a "Create Test from Template" button is shown next to a test template in the search results, you can create this test directly from the hit list.

If a "Pin to Dashboard" button or is shown next to a search result, you can pin it directly from the hit list to the dashboard.

If a search result is already pinned to the dashboard, an "Unpin from Dashboard" button or is shown next to it. You can unpin this item directly by clicking the button in the hit list.

6.3 Searches

R&S ELEKTRA offers a versatile search and filter functionality. Many dialogs provide a field for entering a search term and for setting filters:

![Search Field](image)

Figure 6-2: Example: Results of a search for the string "EMI" in the list of tests

- "100kHz" = Search string in the search field
- "100 kHz" = User-defined name to label and pin this search
- "Select Search" = Field for selecting pinned searches

To confine the currently displayed list of items to those items that contain a certain search criterion, enter it into the search field, as shown in Figure 6-2.
Permitted search criteria are:

- **Arbitrary text.** Any text string that could appear in the name of an item, in its description, in the "User Tags" or similar fields.

- **Physical data.** For example, searching the list of "Tests" for the frequency value 7 GHz finds items that are specified for the frequency range 1 to 8 GHz or for 3 to 24 GHz. However, this search does not find an item that is specified for 150 kHz to 30 MHz.

To confine the currently displayed list of items to those items that contain a certain *filter* criterion, click the filter button 📃. In the "Filters and Tags" subdialog that opens, select from the available filter criteria, see Figure 6-3. R&S ELEKTRA adds the selected filter criterion to the search field as a search string. If there is already some search string, before you add a new filter criterion, the software combines the strings in the search field by a Boolean "AND" operation.

![Figure 6-3: The filter button opens the list of available filter criteria](image)

To close the "Filters and Tags" subdialog, click the filter button 📃 again.

Pinning and selecting searches

To *pin* the current search to the "Dashboard" dialog, specify a user-defined name for your search and select "Add to Dashboard" 📊. The search is shown there as an item with magnifying lens icon among the appropriate category of items. For example, a pinned "Test" search (from the original dialog "Tests") is shown together with the other "Test" items that you have pinned to the "Dashboard" (see Figure 3-4).

Since you cannot pin *Tables* to the "Dashboard", the following exception applies: You can only access saved searches for tables in the "Select Search" field of the respective table's list dialog.

To reopen a search result list in the original dialog, click its search item in the "Dashboard" dialog. Alternatively, within the search's original list dialog (for example "Tests"), open the drop-down list in the field "Select Search" and click the name of the search. The reopened result list includes all items that meet the search criteria, also those items that have been created after defining the search.

To cancel the current search or filter in the original dialog, click the "x" button in the search field. Note that this action leaves pinned searches in the "Dashboard" dialog untouched.
There are two ways to remove a search from the list dialog's "Select Search" field:

- Open the drop-down list in the "Select Search" field and click the "x" button next to the search you want to remove. This action also unpins the corresponding search item from the "Dashboard" dialog.
- Go to the "Dashboard" dialog and unpin the corresponding search item there. To do so, check the checkbox in the top right corner of the search item and click the "Unpin from Dashboard" button in the actions bar. This action also removes the corresponding search item from the drop-down list in the "Select Search" field of the original dialog.

Each list of items (e.g. "Tests") remains reduced, as long as a search or filter criterion is entered in the search field. This reduction pertains even after leaving the dialog and returning to it, later on. To see all items in a list, make sure to clear the search field (which also removes any filters) by clicking the "x" button in the search field.

If at some point you return to a list and miss any items, we recommend checking the search field for any entries that you may have left there unintentionally.

Dashboard search

For a description of the dashboard search, see Chapter 6.2, "Dashboard Search", on page 159.

6.4 Arranging Elements in Tests

You can rearrange the following elements of a test window:

- Charts (top)
- Tables (bottom)
- Dialogs (or control elements) in the side panels

6.4.1 Charts and Tables

For arranging charts and tables, R&S ELEKTRA offers the following features:

- To minimize the charts or tables, click their top bar. The charts or tables become as slim as their top bar, placed at the top or bottom edge of the test window. Minimizing both charts and tables leaves their top bars visible, only.
- If originally both graphics and tables are visible (half screen, each), minimizing the graphics shows the tables in full size, and vice versa.
Special Software Features
R&S® ELEKTRA
User Manual 1178.3963.02 ─ 06

6.4.2 Dialogs

For arranging dialogs, R&S ELEKTRA offers the following features:

- To minimize a dialog, click the vertical "Auto Hide" button (}). The dialog becomes a slim tab marker at the left or right edge of the test window.
- To open a minimized dialog (instead of its slim tab marker), click the tab marker. A slim version of the dialog opens, in which you can click the horizontal "Auto Hide" button (). This action opens the dialog in its original position.
- To make a dialog float over the test window, click the "Window Position" button () again and select "Dock".
- You can dock a floating chart or table in the central region of the test window. To dock a floating chart or table, click and hold its top bar and drag it to a position where a cross icon appears:

Proceed as described in Chapter 6.4.3, "Cross Icons", on page 164.
Note: If you use more than one screen, the floating dialog can have jumped to a different screen than the original one.

- To resize a floating dialog, move the mouse pointer over any of the dialog's edges or corners, until the pointer becomes an arrows icon. Drag this arrows icon to resize the dialog.
- To move a floating dialog back to its original position, click the "Window Position" button again and select "Dock".
- To move a floating dialog to an arbitrary position, click and hold its top bar and drag it to the desired position.
- You can dock a floating dialog in the left or right region of the test window. To dock a floating dialog, click and hold its top bar and drag it to a position where a cross icon appears:

![Cross Icon Diagram]

Proceed as described in Chapter 6.4.3, "Cross Icons", on page 164.

6.4.3 Cross Icons

This chapter describes positioning a floating element, such as a chart, table or dialog in a test window, with the help of a cross icon.

The cross icon can appear in two versions:

- ![Cross Icon Diagram 1]
- ![Cross Icon Diagram 2]

It comes up in the following procedure:

1. Click and hold the top bar of a floating element (chart, table or dialog).
2. Drag it to any position where you can dock the element.
The cross icon appears.

3. Keep holding the element at its top bar.

4. Without letting the element go, drag the mouse pointer over any of the square sections of the cross icon.

An outline like in Figure 6-4 comes up that corresponds with your selection in the cross icon:

![Figure 6-4: When using the cross icon for positioning a table, an outline appears in light blue color](image)

In this example, the mouse pointer is positioned over the square section on the right-hand side of the cross icon. This mouse position creates an outline (shown in light blue color) in the place, where you can dock the element. In Figure 6-4, the outline indicates that the element can be docked at the right-hand side.

5. Release the mouse pointer.

The element is docked in the outlined position.

To move an element to a different position, use any of the features described in Chapter 6.4.1, "Charts and Tables", on page 162 and Chapter 6.4.2, "Dialogs", on page 163.
7 Running Tests

This chapter explains how to run tests, use the side panels (test control elements), handle the test container and work with test results (tables and graphics).

- For an overview of which EMI test has to be performed according to which standard, see Chapter 5.2, "Test Matrix", on page 154.
- For information on how to configure test templates for these tests, see Chapter 4.4, "Test Templates", on page 66.
- For getting started with testing, see Chapter 3.4, "Performing a Test", on page 41.

A completed EMI test in R&S ELEKTRA is not just a single result table, but a Test container. It typically contains:

- Test definition (Test Template with hardware setup, Measurement Settings and Device Properties
- References for used Tables, including Limit Lines
- Test Result Tables with configuration parameters
- Test Result Graphics with configuration parameters
- Test Reports with configuration parameters
- Also, during the test:
 - Measurement Flow Control dialogs provide information about the current position in a test sequence
 - Accessories control panels facilitate handling devices like LISNs or GTEM cells

7.1 EMI Tests

7.1.1 Automated Measurement

7.1.2 Interactive Measurement

7.2 Using the Test Control Elements

7.2.1 Test Control Top Menu

7.2.2 Test Control Toolbar

7.2.3 Test Components

7.2.4 Measurement Flow Control

7.2.5 Accessories

7.2.6 Frequency Control

7.2.7 Parameter

7.2.8 Measurements

7.2.9 Test Validation

7.3 Test Result Tables

7.3.1 Merged Overview Results
7.3.2 Editing Critical Points .. 183
7.3.3 Margin ... 184
7.4 Test Result Graphics .. 184

7.1 EMI Tests

For the general steps of preparing a test, see Chapter 3.4, "Performing a Test", on page 41. After test preparation, proceed as follows:

Creating and running tests

1. To create a test, alternatively execute one of the following options:
 - Select "Home" > "Dashboard" and click the "New Test" button ().
 To "Select a Test Type", click any of the available options.
 In the first dialog that opens ("New Test"), select at least the test template on which to base the new test.
 Then click "New Test".
 - Alternatively, select "Home" > "Tests" > "Create Test" (). Then proceed as above.
 - Alternatively, select a test template at "Home" > "Test Templates" and select "New Test" (). Then proceed with the "New Test" dialog as above.
 - Alternatively, open a test template at "Home" > "Test Templates" and select "Create test from template" ().
 - Alternatively, at "Home" > "Test Templates" click "Create test from template" () in the line of the test template you wish to select.
 - Or alternatively, open () an existing test by selecting it at "Home" > "Tests", for example to rerun it with updated device properties.
 Note that you cannot run or rerun an imported test. If you have opened an imported test, it is labeled as "Imported Test (Read Only)".
 Note: In an opened test template, the button "Create test from template" is only available, if the test template has been saved.

2. To run an automated measurement (), click the "Start" button () in the Test Control Toolbar.
 The software performs a Test Validation, then executes the test and automatically displays the results in both graphical and tabular format, labeled "Overview Graphic" and "Final Results Table" as in Figure 3-7.

3. Optionally run interactive measurements (), using the side panels.
 If you remeasure the level value at a "Critical Point", R&S ELEKTRA uses for this measurement the same detector that has originally measured this "Critical Point".

4. Click "Save" () or "Save As" () to save the test and to specify a name for it - ideally, use speaking names. Additional options in the "Save" dialog:
Optionally enable "Add to Dashboard" to pin the saved test to the "Dashboard" dialog, see Graphical User Interface.

Optionally add user-defined "Tags" to the test. Tagging allows searching for tagged tests. Hence, tagging facilitates finding (groups of) tests with specific tags.

Firewall
For information on what to do, if a firewall message comes up, see Chapter 2.7, "Network Firewall Settings", on page 26.

Overload
If a measured level overloads the receiver, a flashing "Overload" warning is displayed in the top of the test window:

In this case, the measurement is invalid.

Stop the measurement and eliminate the overload condition, for example by setting a higher RF Attenuation in the test template. Then run a new test based on the modified setting.

You can stop the "Overload" warning from flashing by clicking it.

The test result representation is based on the frequency range (X-axis) and level range (Y-axis) as defined in the test template. The number of traces in the overview graphic and columns in the overview table depend on the number of detectors and limit lines specified in the test template.

Scan settings download
After an EMI measurement with a test receiver, R&S ELEKTRA programs the scan settings (as specified in the test template) into the test receiver's internal scan table. You can instantly use these settings at the test receiver.

Optionally select "Refresh" (◻) to rerun a Test Validation. If you have changed any settings in the test template's copy that the test uses (see Test container), "Refresh" also activates these changes.

Optionally select "Clear Results" (❑) to delete all measured values. This action is protected by the following message: "Please confirm: Are you sure you want to refresh the test and thus delete the existing test results?"

After having executed and saved a test, proceed with Test Results and Reporting.

7.1.1 Automated Measurement
After creating a test based on a test template, you can let R&S ELEKTRA perform an automated measurement. To do so, select the automated measurement mode () and click the "Start" button () in the Test Control Toolbar.

The software runs a Test Validation and automatically performs the measurement according to the Measurement Flow specified in the test template. Typically, an automated measurement consists of an Overview Measurement (see Setting (Overview)), followed by Data Reduction and Final Measurement.

When the measurement is completed, the Test Results and the Verdict are displayed. You can configure the result graphics and tables according to your needs and generate a report.

These steps complete the automated measurement. To examine the EUT in more detail at selected frequencies, run an Interactive Measurement.

7.1.2 Interactive Measurement

Interactive measurements are typically performed after an automated measurement, which gives you an overview of the spectral emission situation and identifies critical points. We recommend to save () the test with this automated measurement before you proceed.

When you change to the interactive mode, the Final Measurement settings are loaded from the test template into the Measurements dialog.

You can run two kinds of interactive measurement ():

- For a manually controlled interactive measurement, click the "Start measurement" button () in the Test Control Toolbar. The software runs a Test Validation. Use the Measurements dialog and the Frequency Control dialog to control the measurement. To save individual measured level values at selected frequency points, click record (). These values are labeled "Interactive" in the "Source" column of the "Final Results" table.
- For a semi-automatic interactive measurement, which requires "Critical Points" identified in a previous automated measurement, click the "Start" button () or the "Start reverse" button () in the Test Control Toolbar. Note that you can edit the list of "Critical Points" manually, as described in Chapter 7.3, "Test Result Tables", on page 182. For example, you can add points from the "Overview" table to the "Critical Points" table or delete one or more critical points. The software runs a Test Validation and then measures each critical point. This measurement leads to additional level values that are labeled "Critical Points" in the "Source" column of the "Final Results" table.
7.2 Using the Test Control Elements

The buttons and dialogs in the top menu and in the left-hand and right-hand side panels of an opened test are described in the following chapters:

- Test Control Top Menu... 170
- Test Control Toolbar... 171
- Test Components.. 173
- Measurement Flow Control.. 175
- Accessories... 176
- Frequency Control... 177
- Parameter.. 179
- Measurements.. 179
- Test Validation... 181

7.2.1 Test Control Top Menu

The test control top menu in the top left part of a "Test" window has some buttons for basic functions in a test.

The buttons in test control top menu have the following functions:

- **Save**.. 170
 - Opens the "Save Test" dialog, if you save this test for the first time. Saving the same again later does not open the dialog, but overwrites the previously saved state of the test.

- **Save As**... 170
 - Only available, if the test has been saved before. "Save As" allows saving the test under a different name and with different user tags.

- **Refresh**.. 171
 - Reruns a test validation, but does not delete existing test results.
Clear Results
Refreshes the test and deletes existing test results.

Add Report
Creates a report in the same way as described in Chapter 3.7, "Reporting", on page 45.

Chart Menu
Opens the graphics context menu in the same way as right-clicking a chart.

Marker Menu
Opens the marker context menu in the same way as right-clicking a marker.

7.2.2 Test Control Toolbar

Most buttons of the test control toolbar in the top right part of the "Test" window are similar to a video recorder.

An exception is the twin button with the robot and hand icons at the left end of the toolbar: This button is a changeover switch that toggles between the automated and interactive measurement modes.

The test control toolbar is available in different versions that depend on the measurement type:

- Figure 7-1: For automated EMI measurements
- Figure 7-2: For interactive EMI measurements

You can only switch between automated and interactive measurement mode, while the test is paused or stopped.

For the buttons in the test control top menu (top left part of the "Test" window), see Chapter 7.2.1, "Test Control Top Menu", on page 170.

The buttons in the test control toolbar have the following functions:

- Automated Measurement... 172
- Interactive Measurement.. 172
- Start measurement... 172
- Record.. 172
- Start Reverse.. 172
- Start.. 172
- Pause.. 173
- Stop... 173
Automated Measurement
If the robot icon is highlighted, the test is in automated measurement mode. For changing to interactive measurement mode, click the toggle switch.

Interactive Measurement
If the hand icon is highlighted, the test is in interactive measurement mode. For changing to automated measurement mode, click the toggle switch.

Start measurement
Starts an interactive measurement (or "single measurement") at the frequency point that is selected in the Frequency Control dialog (see Figure 7-8). The measured value appears in bold font in the lowest row of the results table. As long as you do not select "Record", the measured value is continuously updated, depending on the settings in the Measurements dialog. As soon as you select "Record", R&S ELEKTRA keeps the measured value in the lowest row of the results table.

"Start measurement" is only available in interactive measurement mode.

Record
Performs the following actions:
- Records a measured value in the lowest row of the results table
- Labels this value as "Interactive" in the table's "Source" column
- Creates a new row for the next measurement value
- Starts measuring at the next frequency point

"Record" is only available in an interactive measurement that has been started.

Start Reverse
Starts a reverse measurement from the current frequency point to lower frequency points, if available.

"Start Reverse" is only available in interactive measurement mode, if "Source" > "Critical Points" is selected in the Frequency Control dialog (see Figure 7-8). "Start Reverse" is not available, if the test has already been started. If no critical points are available, the button has no effect.

Start
- In automated measurement mode, this button starts a measurement from the lowest to the highest frequency point, across all steps of the test template’s Measurement Flow, unless disabled in the Measurement Flow Control. In automated measurement mode, "Start" is always available unless the test has already been started.
- In interactive measurement mode, this button starts a measurement from the lowest to the highest critical frequency point. The measured values are labeled as "Critical Points" in the "Source" column of the results table. If no critical points are available, the button has no effect. In interactive measurement mode, "Start" is only available, if "Source" > "Critical Points" is selected in the Frequency Control dialog (see Figure 7-8).
Pause
Interrupts the active measurement of a test sequence, but does not change the frequency value (in contrast to Stop). After starting the sequence again, the measurement continues for the rest of the test sequence.

Stop
Stops the active measurement, disconnects the devices and terminates the test sequence. Stopping the measurement influences the "Verdict", as described in Chapter 3.6, "Verdict", on page 43. In contrast to "Pause", stopping the measurement resets the frequency to the start value of the current frequency range. After starting again, the test sequence is repeated from the beginning.

7.2.3 Test Components

The "Test Components" dialog in a "Test" window lists all content that is relevant for an individual EMI test. This content is stored in the R&S ELEKTRA database within a so-called Test container, with a hierarchy as illustrated in Figure 3-1.

The dialog allows opening each test component. Depending on the type of component, you can right-click to "Open", "Close", "Rename", "Remove" or "Copy" items in the list of components. Also, you can open most tables as a chart by selecting "Open Graphic".

"Test Information" shows a dialog with information for this test predefined in the test template and optionally edited for the individual test. The content of this dialog is not reset upon rerunning the test.
Test container

The test container comprises the following components:

- "Test Templates" shows the embedded copy of the **Test Template** that was used to generate this test, containing:
 - Hardware setups as integrated parts of this test template
 - All measurement settings
 - References for the devices, signal paths and limit lines that are used by this test template
 Note that you can open such a template copy within the test window.
- "Graphics" shows a list of the physically measured values of this test in the format of frequency-dependent **Charts**.
- "Result Tables" shows a list of the physically measured values of this test in the format of the following frequency-dependent **Test Tables**:
 - "Overview" measurement
 - "Critical Points"
 - "Final Results"
 Each test has at least one "Overview" graphic.
- "Report Templates" shows a list of copies of the **Report Templates** that are used in this test.
- "Reports" shows a list of all **Reports** that you have created for this test.
- "Limit Lines" shows a list of the **Limit Lines** selected for this test.
- "Environment" lists the copies of all **Attenuation Tables** and **Transducer Correction** tables used by the test.
- "Frequency Lists" shows any **Frequency List** that are used by this test.
- "Attachments" shows a list of user-selected files saved with this test, for example pictures of the test setup.
- **TestFlow.txt** shows a log file of the test execution with timestamps and test details.
Every user is responsible for thoughtfully handling the test containers' contents. The following examples are relevant for **modified test templates**:

- If settings in a test template are altered, these changes only become effective for tests created in the future.
- If settings in a test template's copy within a test container are altered, these changes only become effective for tests executed in the future. Existing test results are **cleared**. Hence, such changes make it difficult or impossible to reproduce previously executed tests. However, existing reports are not affected.
- In most scenarios, we recommend generating new test templates rather than modifying or overwriting existing ones. This procedure is easily implemented, for example:
 - Open an existing test template
 - Modify it as required
 - Save it under a different name

However, circumstances could require that you radically modify basic test templates. This modification could be appropriate, for example, if standards have evolved, requiring different settings, or if a measurement device has been exchanged, requiring a different correction table.

When **rerunning** a test, the software clears (deletes) all existing measurement values in this test container. Another **Test Validation** is performed, and the new measurement values are written into the overview table. Therefore, if you wish to keep existing results, make a copy of the overview table within the opened test before you rerun it. To generate such a table copy, go to the "Test Components" > "Test Content" > "Result Tables" and right-click "Overview" > "Copy". The copy is saved in the same test container folder "Result Tables", for example as "Overview - Copy".

7.2.4 Measurement Flow Control

![Measurement Flow Control](image)

Figure 7-4: Two examples of the Measurement Flow Control dialog

Left = Before a test with LISN, "Repeat Measurement" is activated
Right = During a test without LISN, "Repeat Measurement" is running

The "Measurement Flow Control" dialog in a "Test" window summarizes the test template's **Measurement Flow** settings:

- Overview measurement
- Data reduction
- Final measurement
- "Repeat Measurement" ON or OFF
• Selected LISN lines, if the test uses a LISN

Before running a test, you can individually enable or disable the overview, the data reduction and/or the final measurement in this dialog.

While a test is running, the active step is highlighted in blue.

If the overview measurement runs in Repeat Measurement mode, you can manually terminate the repetition by clicking "End Repetition".

7.2.5 Accessories

Accessories side panels are only available in a "Test" window, if the test template uses at least one of the devices described in the following chapters (listed below).

Accessories control summary

The "Accessories Control Summary" is a side panel that provides a condensed overview of the status of controllable devices used in a test. The content of the summary is only for your information. For more details and for user interaction, refer to the dialogs described in the following chapters:

- LISN.. 176
- TEM Waveguide..176
- Triple Loop.. 177

7.2.5.1 LISN

The "LISN" side panel is an accessories dialog that allows switching the LISN lines in an Interactive Measurement.

You can interact with the LISN via this dialog only, while the measurement is paused. While the test is running, the dialog highlights the active LISN line in blue.

Figure 7-5: Accessories dialog for LISN control, here for a 4-line LISN

7.2.5.2 TEM Waveguide

The "TEM Waveguide" side panel is an accessories dialog that tells you, for which EUT orientation inside a TEM Waveguide the current measurement values are stored.
While the test is running, R&S ELEKTRA prompts you to "Switch the EUT axis to X" (or Y or Z, respectively). When you confirm having switched the orientation, the dialog highlights the active EUT axis in blue.

![Figure 7-6: Accessories dialog for GTEM control](image)

7.2.5.3 Triple Loop

The "Triple Loop" antenna side panel is an accessories dialog for selecting, which loop orientation is currently activated.

While the test is running, R&S ELEKTRA prompts you to "Set Magnetic Loop Antenna to Loop X" (or Y or Z, respectively). When you confirm having switched the orientation, the dialog highlights the active loop axis in blue.

![Figure 7-7: Accessories dialog for Triple Loop antenna control](image)

7.2.6 Frequency Control

The "Frequency Control" dialog sets the receiver frequency for automated and interactive measurements.

- "Current Frequency"

 Shows the current frequency value. You can change both the value and the unit ("[Hz]", "[kHz]", "[MHz]" or "[GHz]") while the measurement is paused or stopped.

 For editing the frequency value, you have several alternatives:

 - **Type** a new frequency value into the field.
If the "Source" setting (see below) is "Critical Points", your entry is adjusted to the closest frequency value in the critical points table.

- **Step** the frequency value up or down by the \(\uparrow\) or \(\downarrow\) buttons. The step size depends on the "Source" setting (see below): If "Source" = "Test Template" or "Arbitrary", the step size is as specified in the test template. If "Source" = "Critical Points", the steps correspond with the frequency values in the critical points table.

- Click and hold a detail from a test chart or table and **drag-&-drop** it into the "Current Frequency" field. The detail (the origin of the drag-&-drop action) can be any spot in a graphic (trace node, limit line node or marker) or any field in a table. The action copies the corresponding frequency value into the "Current Frequency" field. To drag-&-drop a detail in touch operation, touch and hold the detail, then drag it to the destination and release it there.

- **"Frequency Range"**

 Selects one or all frequency ranges defined in the test template. You can change the selection while the measurement is paused or stopped. For example, if you set "Frequency Range" = "1", only frequencies from the first frequency range are available for the measurement and for the field "Current Frequency". If you set "Frequency Range" = "All", the software also displays the number of the currently active frequency range. If you select a frequency range that was previously not active, the "Current Frequency" value is automatically changed to the lowest frequency of the newly selected frequency range.

- **"Range"**

 Unless edited, these fields show the lower and upper end of the one or more frequency ranges selected above. To restrict this overall frequency range, for example, to analyze details in a second scan, you can change the "Range" values while the measurement is paused or stopped: Either type new frequency values into the fields or drag-&-drop details from a test chart or table, as described for "Current Frequency".

- **"Source"**

 Only available for interactive measurements. Defines the domain from which the frequency values are taken:

 - "Test Template" Permits using only frequency values that are defined by the steps in the test template.

 - "Arbitrary" Permits using any frequency value within the test template's frequency range.

 - "Critical Points" Permits using only frequency values from the critical points table.

- **"Step"**

 Only available for interactive measurements with "Source" = "Test Template" or "Arbitrary". If "Source" = "Test Template", this field displays the step size as defined in the test template.

 If "Source" = "Arbitrary", you can specify the step size and step mode, even during the measurement:
– "Lin": linear steps in frequency units ("Hz" or "kHz")
– "Log": logarithmic steps of a relative size ("%")

7.2.7 Parameter

Only available in EMI tests running in interactive measurement mode.

![Parameter dialog](image)

Figure 7-9: Receiver parameter dialog in an interactive EMI test

This dialog allows an individual configuration of the receiver parameters, overriding the settings specified in the test template. For a description of these settings, see "Settings (Overview)" on page 91, except for "Demodulation", which is described in "Audio Demodulation Type" on page 73.

The last parameter in this dialog, "Reference Level", is only available, if the Operating Mode is "Spectrum Analyzer".

7.2.8 Measurements

The "Measurements" dialog serves for controlling the detectors in an Interactive Measurement.
This dialog offers the following features:

Detectors
Selects up to four detectors and displays their measured "Clear Write" level values.

The values are shown in numerical form (top to bottom) and as bar graphs (left to right).

The bar graphs with one vertical bar per detector display the "Clear Write" level. On top of each bar is a colored rectangle as "Max Hold" indicator. The colors correspond with the trace colors in the chart.

You can only change the detector selection, if the measurement is paused or stopped.

Max Hold / Clear Write
Toggles between the "Max Hold" and "Clear Write" mode.

Max Hold ← Max Hold / Clear Write
Measures the level values of the selected detectors and keeps the maximum value during a measurement. In this mode, the "Max Hold" value appears in the active row of the results table, while the "Clear Write" values are shown in the "Detectors" selection fields.

Note: The "Max Hold" level value is only stored in the results table, if you click the Record button ().

The "Max Hold" value is either reset by changing the measurement frequency or by the clicking the "Reset Max Hold" button.

Reset Max Hold ← Max Hold ← Max Hold / Clear Write
Resets the max-hold value and the max-hold indicator back to the currently measured "Clear Write" value. Only available, if "Max Hold" is enabled.

Clear Write ← Max Hold / Clear Write
Continuously overwrites the level value of the previous measurement with the level value of the most recent measurement. In this mode, the "Clear Write" level value is entered and continuously overwritten both in the active row of the results table and in the "Detectors" selection fields.
Note: The “Clear Write” level value is only stored in the results table, if you click the Record button (•).

Comment
Enter arbitrary text to be saved with the measurement value in the "Comment" column of the result table.

Restore Test Template Settings
Sets all changed parameters back to the settings in the test template.

7.2.9 Test Validation

After starting (► / ◄) or refreshing (●) a test, R&S ELEKTRA first performs a "Test Validation":

This process is to verify that all conditions required in the test template are met.
If the conditions are not all met, R&S ELEKTRA prompts you with details of the problem. For example, the dialog could state that a limit line has the wrong unit for the measurement values of the selected transducer. In this case, select or define the correct limit line.

Two examples of test validations are shown below:

Figure 7-10: Test validation, left: successful, right: receiver connection check failed
In the right-hand example in Figure 7-10, the receiver’s connection cannot be confirmed.

To solve this issue, you can try the following:

- **Search** for the missing device in a network
- **Revise** your **Receiver** settings in the **Device List**
- **Recheck** the connection
- **Simulate** the device (which leads to simulated random test results)

If the "Test Template Validation" is successful, R&S ELEKTRA continues with the action that led to the validation process, for example running a test.

7.3 Test Result Tables

R&S ELEKTRA permits creating tables by either of the following actions:

- Measurements
- Manual editing (including copy/paste from external spreadsheets)
- Import of compatible data in XML format

Some basic features of the three types of test result tables:

- "Overview" tables are generated during an Automated Measurement. You can edit data in the "Level" and "Comment" columns. See also Chapter 7.4, "Test Result Graphics", on page 184.
- "Critical Points" tables are generated automatically during the data reduction to help selecting a limited number of frequencies for a closer examination of the EUT. The selected frequency points come from the "Overview" measurement, while the selection depends on the "Measurement Flow" settings. You can edit the "Critical Points" table.
- "Final Results" tables are either generated in the Automated Measurement mode by remeasuring at "Critical Points", or in the Interactive Measurement mode by manual frequency selection. A new row in a "Final Results" table is created when you click the "Record" button. An automatic scan in the interactive measurement mode is only possible, if you have selected "Source" = "Critical Points" (see Frequency Control). You can edit the final results.

Editing results

You are allowed to edit (hence, manipulate and change) measured values. Editing can be reasonable in various situations, for example if known signals from a nearby radio station must be eliminated from test results in an open area test site (OATS). As an operator, you are responsible for the test results.
The following limitations apply to editing values:

- You cannot edit values during an active test.
- You cannot edit values in columns that are controlled by given settings or by calculation. Examples are the "Limit", "Margin" and "Correction" columns. As an exception, you can edit "Limit" values in "Critical Points" tables.

Editing measured level values can influence the test's Verdict.

- Merged Overview Results...183
- Editing Critical Points.. 183
- Margin... 184

7.3.1 Merged Overview Results

If the transducer used in the measurement is a LISN, the "Overview Graphic" and the "Overview Table" show merged maximum levels measured on any of the selected lines (worst case).

For example, consider a test template that defines measurements on lines N and L1. Therefore, the overview results can comprise levels measured on line N in some parts of the frequency range and measured on line L1 in other parts of the frequency range. The "Line" column in the test table indicates, from which line the level result in each row was taken.

The overview results show merged maximum (worst-case) levels. On the contrary, the individual "Result Tables" from the "Loop Results" folder Test Components dialog show the results for each individual setting.

To see a graphical representation of a table, click the "Show Graphic Display" button (§).

7.3.2 Editing Critical Points

You can let R&S ELEKTRA measure at more or other frequencies than the automatically selected "Critical Points". To do so, add frequency points from the "Overview" table to the "Critical Points" table or enter your own arbitrary frequency points. Also, you can delete existing critical points from this table or edit existing "Range", "Frequency" and "Limit" values.

For example, if you have identified one or more additional frequency points in the "Overview Graphic" that you want to include into the final or interactive measurement, drag it from the graphic into the "Critical Points" table. This action copies not only the frequency value but also the level and margin values and other information to this table. R&S ELEKTRA automatically adds the row in the right order of frequency values.
7.3.3 Margin

At each frequency point, the margin is defined as the limit line’s value minus the measured level value.

Example:

<table>
<thead>
<tr>
<th>Level [dBμA/m]</th>
<th>Limit [dBμA/m]</th>
<th>Margin [dB]</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1</td>
<td>15</td>
<td>-5.1</td>
<td>If the level value is too high (above limit), the margin is negative.</td>
</tr>
<tr>
<td>23.2</td>
<td>25</td>
<td>1.8</td>
<td>If the level value is low enough (below limit), the margin is positive.</td>
</tr>
</tbody>
</table>

R&S ELEKTRA automatically calculates this difference. You cannot edit margin values.

7.4 Test Result Graphics

- For information on how to configure test result graphics, see Chapter 4.3.2, "Configuring Test Charts", on page 52.
- For information on how to preconfigure graphics, see Chapter 4.9.2, "Graphics Settings", on page 145.

Test result charts are a graphical representation of Test Result Tables. A table is either automatically shown as a chart, or you can bring up a chart by clicking the Show Graphic Display button (%).

In test charts, the results of an "Overview" measurement are represented by a continuous line. "Final Results" are shown as individual nodes, each with a symbol and a vertical line to the bottom. Additionally, "Limit Lines" are superimposed in test result charts as continuous lines.

Some basic features of charts:
- You can use markers to identify individual measured values and set them into relation with other values.
- You can use the Zoom function to view details in a chart.
- You can integrate charts into your reports and configure them there.

Overview of LISN results

If the transducer used in the measurement is a LISN, the "Overview Graphic" can show merged maximum levels, as described in Chapter 7.3.1, "Merged Overview Results", on page 183.
8 Measurement Examples

The procedure for preparing and executing tests is described in Chapter 3.4, "Performing a Test", on page 41 and Chapter 7.1, "EMI Tests", on page 167. The following example describes how these steps are typically executed in practice.

Note that the Configuration Wizard can support you by automatically creating various items required for tests.
Example:
For a radiated EMI test in the frequency range of 30 MHz to 1 GHz, prepare the following settings:

- Three tables:
 - A transducer correction table "corrAnt1" (30 MHz to 1 GHz) for your antenna "Ant1"
 - An attenuation table "attCable1" (30 MHz to 1 GHz) for "Cable1"
 - A limit line "EMI-rad-30M-1G"

- Three device list entries:
 - The radiated transducer "Ant1", containing a reference for "corrAnt1"
 - The signal path "Cable1", containing a reference for "attCable1"
 - The receiver "EMI Test Receiver" (entry created automatically by the Configuration Wizard, adjusted by you to your Type of receiver, and connected)

- One test template "EMI-rad1" with a single frequency range (30 MHz to 1 GHz), containing:
 - A reference for the limit line "EMI-rad-30M-1G"
 - The hardware setup diagram with:
 - A reference for receiver "EMI Test Receiver"
 - A reference for signal path "Cable1"
 - A reference for antenna "Ant1"
 - Your specific measurement settings as described in the test template configuration

Note that the entries for devices (here: receiver, signal path and antenna transducer) and for the limit line are integrated into the test template as references that establish "links" towards the original data sets. No copies of these data sets are ever integrated into a test template. Hence, changing the original data set of any such item modifies all test templates that use this item.

- One report template "EMI-rad-Report" (optional)

With these preparatory steps completed, create the test by selecting "Create test from template" in the test template "EMI-rad1". The test contains:

- A copy of the test template "EMI-rad1"
- A copy of the report template "EMI-rad-Report"
- And more components in the test container

To execute the test in Automated Measurement mode, click the "Start" button (▶). The software runs the test and displays the results in an Overview Graphic and in the Final Results Table. You can enhance your test with more results acquired in Interactive Measurement mode. Optionally, use Report Templates for Reporting your results. Save the test, for example as "EMI-rad_001".

To run the same test for another EUT, first select "Create test from template" in the same test template "EMI-rad1" with a different EUT physically in place. The software automatically copies the test template (and report template) into a new test container, together with references for the hardware setup, devices, signal paths and tables in it. Execute this new test and save it, for example as "EMI-rad_002".
9 Getting Help

Rohde & Schwarz would like to give you the best possible product experience. The following chapters are a guide to finding a solution, if help is required:

For context-sensitive help, press [F1] from any dialog in the software, as described in the chapter Embedded Help.

9.1 Embedded Help

The help system embedded in R&S ELEKTRA is available in Microsoft Windows HTML help format.

To display the help dialog and open it in the chapter “Getting Help”, click the help button ☰ in the program menu.

To display a context-sensitive help dialog, press the help key [F1] from any dialog in the software. This selection brings up a help topic with information about the current menu or the currently opened dialog and its functions.

For efficiently using the context sensitivity, set the focus to the relevant part of the user interface that interests you. For example, set the curser into an entry field or select a checkbox.

If you set the focus appropriately, you avoid opening the help content at a superordinate theme or chapter.

Contents of the help dialog

The help dialog is split into two main areas.

- In the left-hand part of the dialog, you can select one of the following functions:
 - "Contents" opens a navigation tree of help subjects
 - "Index" provides an index table of help contents
 - "Find" allows searching for arbitrary text and keywords
- The right-hand part of the dialog displays the contents of the selected help topic.
A navigation bar on top of the help dialog with "Back", "Previous" and "Next" buttons allows navigating between the help topics.

Navigating in the table of contents
1. To navigate within the table of contents, click entries or use the [Up/Down] keys.
2. Entries that contain subsections have a plus sign. To expand the navigation tree at this point, click the plus sign or press the [Right] arrow key.
3. To display a help topic, click it (in the "Index", double-click it) or press the [ENTER] key.
 The corresponding help topic is displayed.

Navigating in the help topics
1. To scroll through a page, use the mouse wheel, a scroll bar or the [Up/Down] arrow keys.
2. To follow a cross-reference, click the link.
3. To return to the previous page, select "Back".
 This function follows back all steps that you have gone before.
4. Use the horizontal scroll bar to shift the content of the navigation window to the left or right.
5. You can "Hide" the navigation window or minimize it by shifting the separation line with the "Topics" window.

Using the index
1. Select the "Index" tab.
2. Enter the first characters of the topic you are interested in. The index jumps to the first entry that starts with these characters.
3. Press the [ENTER] key to change the focus.
4. Use the [Up/Down] keys to navigate to the suitable keyword.
5. Press the [ENTER] key to display the help topic.
 The corresponding help topic is displayed.

Closing the help window
► Click the "X" button (top right) or press [Alt + F4] to close the help window.

The Documentation subfolder in the R&S ELEKTRA Program Files folder contains a pdf copy of the user manual.
The R&S License Key Manager in the navigation menu Administration has its own help system.

9.2 Log Information

Access: "Home" > "Administration" > Log Settings > "View Logs" button

The "View Logs" button brings up a separate dialog:

![Figure 9-1: Example of a log entries dialog](image)

You can also open this dialog for viewing the log entries by the keyboard shortcut [Alt]+[L].

The dialog shows the existing log entries and offers the following options:

- **"Search"**
 Searches for log information.

- **"Choose File"**
 Opens an Explorer window for selecting a log file (in TXT format) to be displayed in the log entries dialog. Per default, log files are saved at `C:\ProgramData\Rohde-Schwarz\ELEKTRA\x.xx.xx\Logs`

- **"Choose Source"**
 Selects the source of the displayed log entries. Available log sources are:
 - "General Log"
 - "Application Log"
 - "Communication Log"

- **"Show"**
 Selects the type of log information to be displayed, with significance increasing from "Info" to "Warning" to "Error". Available log information types are:
 - Show "Info" and above (includes "Warning" and "Error").
 - Show "Warning" and above (includes "Error").
– Show "Error".
• "Load last ... entries"
 Sets the maximum number of entries to be loaded.
• "Auto Refresh"

9.3 Product Information

To display product information about R&S ELEKTRA, click the info button in the program menu.

This selection brings up a dialog that provides the following information:

• Software version details
• Links for the following online targets:
 – The Rohde & Schwarz homepage
 – An email message to the Rohde & Schwarz customer Support center
 – The R&S ELEKTRA product start page
 – The open-source acknowledgment for open source software components used by R&S ELEKTRA
 – The open-source acknowledgment for open source software components used by the "Active Reports" application
• A list of the installed software components

The "Copy to Clipboard" button copies the full content of this dialog to the clipboard of your computer. Use the keyboard shortcut [CTRL+V] to paste the content into any editor.

The "Install personal license key" button opens a dialog for activating your license key: Enter the e-mail address of your license account and the 30-digit license key, then
click "OK". Alternatively, use the "Home" > Administration > License Management dialog.

Click "OK" to close the "About ELEKTRA" product information dialog.

9.4 R&S ELEKTRA on the Internet

The R&S ELEKTRA product start page www.rohde-schwarz.com/product/elektra provides the most recent information, as detailed in Chapter 1.3, "Documentation Overview", on page 10. The online content also includes updates for current software versions.

For easy access to the R&S ELEKTRA product start page, click the info button and select "Product info".

9.5 Support

For all service requests, or if you need immediate help, contact the Rohde & Schwarz support center. To send an email message, click the info button and select "Email support". Regional contact details are available at www.rohde-schwarz.com/en/service-support/customer_support_107711.html.

Before you contact the support team, we recommend reading the corresponding chapter in the user manual or in the context-sensitive Embedded Help. If you contact the support team, have the product license information available.

9.6 Training

The Rohde & Schwarz training services offer in-depth customer seminars and intensive training courses for the application of R&S ELEKTRA. Course schedules are available at www.training.rohde-schwarz.com. Some courses are made available on demand.
Glossary: Frequently Used Terms and Abbreviations

A

AC: Alternating current (or > Anechoic chamber)

ACA: Absorbing clamp assembly

AF: Antenna factor, the ratio of the electromagnetic field strength (E or H) to the voltage U induced across the terminals of an antenna. For an electric field antenna, field strength E is in units of V/m, and the resulting antenna factor E/U is in units of 1/m. For a magnetic field antenna, field strength H is in units of A/m, and the resulting antenna factor H/U is in units of A/(Vm).

AFC: Automatic frequency control, a tracking mechanism to keep a monitoring device tuned to a signal with a frequency that is drifting over time, typically due to thermal or mechanical effects.

AMN: Artificial mains network

Anechoic chamber: A room lined with absorbing material that does not reflect electromagnetic waves.

ANSI: American National Standards Institute

AVG: Average, a detector type

B

BCI: Bulk current injection / bulk cable injection, conducted susceptibility tests according to various standards as for example: ISO 11451-4 (EMI tests for continuous narrowband EM fields interfering with electronic components in vehicles), MIL-STD-461, CS114 (electrical disturbances from radiated EM energy at 10 kHz to 200 MHz)

BER: Bit error rate, the number of bit errors divided by the total number of transferred bits

BNC: Bayonet Neill-Concelman connector for coaxial cables that transmit RF signals, limited to frequencies <4 GHz and <500 V.

C

CC: Current clamp

CD-ROM: Compact disc read-only memory, an optical data storage medium
CDN: Coupling / decoupling network

CE: Conducted emission (cable-based EMI tests)

CEE: Commission for Electrical Equipment, former name of a standardization organization; since 1985 the IEC

CF: Clamp factor (current injecting or absorbing clamp)

CISPR: International special committee on radio interference (in French: Comité International Spécial des Perturbations Radioélectriques), a standardization organization (part of the IEC) for controlling electromagnetic interference in electrical and electronic devices

Corner frequency: The pulse repetition frequency above which the rms-average detector behaves like an rms detector and below which the rms-average detector has the slope of a linear average detector.

CS: Conducted susceptibility (cable-based EMS tests)

CW: Continuous wave, a narrow bandwidth signal of constant amplitude and frequency

D

D-Sub: Electrical D-subminiature connector, surrounded by a D-shaped metal support

dB: Decibel, 10 times the common (decadic) logarithm of the ratio of two power quantities, or of the ratio of the squares of two field amplitude quantities

dBm: Decibel milliwatt, the power level based on a power ratio in decibels (dB) of the measured power, referenced to 1 mW

DC: Direct current

Detector: An algorithm that specifies how to weight the envelope of the measured IF signal, see Table 5-2

DUT: Device under test

Dwell Time: An EMS test parameter that determines how long the EUT is at least exposed to the immunity signal. Hence, the dwell time is the delay between the end of the field leveling process and the start of the EUT monitoring cycle.

E

EIRP: Equivalent (or effective) isotropically radiated power

EMC: Electromagnetic compatibility (with both EMI and EMS requirements)
EMI: Electromagnetic interference: Ability of an electrical appliance to avoid disturbing its environment by emitting an interfering signal.

EMS: Electromagnetic susceptibility: Property of an electrical appliance to tolerate a disturbance of a particular level without showing any faults.

ERP: Equivalent (or effective) radiated power

ESD: Electrostatic discharge

EUT: Equipment under test

EUT monitoring: Monitoring of different EUT parameters during an EMS measurement by using several measurement instruments with the goal of detecting EUT failures

F

FAR: Fully anechoic room

FC: Ferrule connector for optical fibers

FFT: Fast Fourier transform, an algorithm for time-domain scans

FSMA: Fiber Sub-Miniature Assembly, a connector for optical fibers, developed based on the SMA connector.

G

Gain: The increase in power or amplitude of a signal, typically generated by an amplifier. In decibel (dB) calculus, power gain is $10 \log \left(\frac{P_{\text{out}}}{P_{\text{in}}} \right)$.

Gasket: A mechanical seal

GHz: Giga Hertz, a frequency of 10^9/s

GPI: Ground plane interference

GPIB: General-purpose interface bus according to standard IEEE-488

I

IEC: International Electrotechnical Commission, a standardization organization for electrical, electronic and related technologies. One of IEC’s groups is CISPR.

IEEE: Institute of Electrical and Electronics Engineers, among other activities an important publisher of standards that are produced by the IEEE’s standardization committees.
IF: Intermediate frequency, in heterodyne signal processing the resulting sum or differ-
ence frequency when a carrier signal is mixed with a local oscillator signal.

Impedance: Electrical impedance Z is the complex ratio of AC voltage over current,
representing a circuit's opposition towards a current under an applied voltage.

IP: Internet protocol, a network communication technology for routing data packets
from a source to a destination, based on IP addresses in the packet headers

ISO: International standardization organization, based in Geneva, Switzerland, and
composed of representatives from national standards authorities. ISO and IEC have
joint committees.

K

kHz: Kilo Hertz, a frequency of 10^3/s

L

LAN: Local area network within a limited space, such as an office building. LAN con-
nects computers or electronic equipment with processing capability. It uses network
media technologies such as Ethernet (over electric or fiber-optic cables, according to
the IEEE 802.3 standards) or wireless LAN (Wi-Fi, according to IEEE 802.11).

Laser: LASER is the acronym for Light Amplification by Stimulated Emission of Radia-
tion. Coherence, which allows monochromatic laser light to be focused and collimated,
is among a laser's most special qualities. Spatial coherence enables high power densi-
ties, especially when modulated to be emitted in short pulses.

Level: The power level of RF radiation, typically specified in dBm, or in watts.

Limit Line: In all EMI standards, maximum permissible levels for any interference sig-
nal generated by the EUT are defined, depending on the EUT class. A table containing
these limit values over frequencies for an EUT class is called a "Limit Line" in
R&S ELEKTRA.

LNA: Low Noise Amplifier, typically a solid-state preamplifier

LTE: Long Term Evolution, a mobile communication standard

M

M2M: Facilitates machine-to-machine ("M2M") communication of wireless or wire-
bound devices

MHz: Mega-Hertz, a frequency of 10^6/s

Modulation Depth: In amplitude modulation, the modulation depth is the ratio M/A (in%
) of the modulation amplitude M to the unmodulated carrier amplitude A. In this rela-
tion, \(M\) is the peak change (positive or negative) in the RF amplitude from its unmodulated value. For example, 80% modulation depth represents a signal with an envelope that oscillates between 100% and 20% of \(A\). (20% of \(A\) is an amplitude 80% down from the unmodulated signal level \(A\).)

MSC: Mode-Stirred Chamber, see RVC (reverberation chamber).

N

NIST: National Institute of Standards and Technology (USA)

Noise Factor: The noise factor (\(F\)) is a measure of the SNR degradation due to components in an RF signal chain. Lower \(F\) values indicate better system performance, with \(F\) being the ratio of input SNR to output SNR: \(F = \frac{\text{SNR}_{\text{input}}}{\text{SNR}_{\text{output}}}\).

Noise Figure: The noise figure (\(NF\)) is equivalent to the noise factor (\(F\)) given in dB: \(NF = 10 \log F\).

NSA: Normalized site attenuation, a measurement of test chamber characteristics (typically with a transmitting and a receiving antenna), in comparison with theoretical free-space attenuation at an OATS.

NTIA: National Telecommunications and Information Administration (USA)

O

OTA: Over-the-air (tests)

P

\(P_-\): Minimum peak, a detector type

\(P_+\): Maximum peak, a detector type

PC: Personal computer

Q

QPK: Quasi peak, a detector type

R

RC: Reference calibration (table)

RE: Radiated emission (antenna-based EMI tests)

RF: Radio frequency, electromagnetic oscillation in the frequency range of around 3 kHz to 300 GHz
RFID: Radio frequency identification, a (typically near-field) technology for automatic identification and tracking of objects.

RMS: Root mean square, a statistical measure defined as the square root of the arithmetic mean of the squares of the original values.

RS: Radiated susceptibility (antenna-based EMS tests)

RVC: Reverberation chamber, or electromagnetic mode-stirred chamber (MSC), a cavity resonator room used for testing EUTs under high field strength conditions. These conditions are generated using reflective walls and so-called stirrers (or tuners) that inhomogeneously reflect electromagnetic power to avoid the formation of standing RF waves.

SC: Standard connector for optical fibers

Scan: A scan is a measurement run, during which the receiver or the signal generator is tuned step by step over the whole frequency range (as opposed to a sweep). The definition parameters for a scan are the start and stop frequency, the step width (absolute, or in percent of the current frequency) and the dwell time at each frequency.

SMA connector: Sub-Miniature Assembly, a coaxial RF connector, version A (standard)

SMP connector: Sub-Miniature Precision assembly, a coaxial RF connector, version P (precision)

SNR: Signal-to-noise ratio is the ratio of the level of a desired signal to the level of background noise (measured in quantities of power). SNR > 1 (or SNR > 0 dB) indicates more signal than noise.

ST: Straight tip bayonet connector for optical fibers

Sweep: A sweep is an EMI measurement run, during which the frequency analyzer is tuned (quasi) continuously over the whole frequency range (as opposed to a scan). The definition parameters for a sweep are the start frequency, the stop frequency and the sweep time that it takes the analyzer to cover the whole frequency range.

TEM: Transverse electromagnetic (as in a TEM waveguide or GTEM cell, for example)

TG: Test generator, generates test signals for EMS tests.

TPL: Short for template, in R&S ELEKTRA distinguish between test templates and report templates
TRD: Also written as "Trd", short for transducer

TRP: Total radiated power, the sum of all RF power radiated by an antenna (source power included in the measurement).

TT: Test template

TTL: Transistor–transistor logic, a class of integrated circuits with transistors performing both logic and amplifying functions

UA: Uniform area

USB: Universal Serial Bus, industrial connector standard for a serial interface

VA: Volt-Ampere = voltage (RMS) * current (RMS), is the unit for apparent power in an electrical AC circuit with sinusoidal voltages and currents of the same frequency. In DC circuits, VA is the real power in watts.

Video bandwidth: The video signal or (DC) video voltage is the envelope of a modulated RF signal. A lowpass filter that removes the higher frequency components of the IF signal and outputs the envelope, only, is called the video filter. The video bandwidth is hence the bandwidth of the filtered signal envelope.

VISA: Virtual instrument software architecture, an application programming interface for communicating with instruments used in test and measurement tasks

VSWR: Voltage standing wave ratio, ratio of the maximum standing wave amplitude over the minimum standing wave amplitude

XML: Extensible markup language, a simple and generality usable text format code that can be easily read both by humans and machines.
Index

A
- Action buttons ... 35
- Add a new device .. 109
- Administration
 - Backup ... 142
 - General settings .. 152
 - Graphical representation .. 145
 - Log settings .. 150
 - Report ... 147
 - Settings ... 142
- Amplifier gain ... 136
- Attenuation ... 136
- Automated measurement ... 171

B
- Backup .. 142
- BSI .. 7

C
- CENELEC ... 7
- CFR .. 7
- Chart configuration .. 52
- Charts .. 184
- CISPR .. 7
- Collapse / expand .. 39
- Common action buttons .. 35
- Common mode (LISN) .. 121
- Concept for tests .. 41
- Configuration
 - Backup settings .. 142
 - Dashboard ... 48
 - Device list .. 105
 - EMI tests ... 66
 - Graphical representation .. 145
 - Home menu .. 47
 - Language selection .. 48
 - License management ... 149
 - Log information ... 189
 - Marker ... 58
 - Report settings .. 147
 - Report templates ... 103
 - Test charts .. 52
 - Test tables ... 62
 - Test templates ... 66
 - Tests .. 49, 50
- Traces ... 57
- Configuration wizard .. 20, 141
- Connection ... 110
- Context-sensitive help .. 187
- Copy .. 37
- Courses for training ... 191
- Create .. 37
- Critical data .. 20
- Critical points ... 183

D
- Dashboard ... 33
- Show selected items ... 153
- Data management
 - File system .. 24
- Database
 - Avoid overstuffing .. 20
- DEF STAN ... 7
- Delete ... 37
- Delete device ... 111
- Details .. 38
- Detectors .. 156
- Control during measurements 179
- For final measurement ... 79
- For overview measurement 75, 77
- Device list
 - Handling ... 105
- Device simulation .. 152
- Devices
 - Device list .. 105
 - Properties .. 117
 - Recheck devices .. 116
 - Search device .. 113
- Dialogs locked .. 39
- Differential mode (LISN) .. 121
- DIN .. 7
- Dongle ... 16

E
- Edit .. 37
- EDSTAR ... 7
- Embedded help ... 187
- EMI standards .. 7
- EMI tests .. 166, 167
- Automated measurement ... 168
- Conducted with LISN ... 121
- Configuration ... 66
- Interactive ... 169
- EN .. 7
- ES-SCAN data conversion ... 24
- ETSI .. 7
- Expand / collapse ... 39
- Export .. 139
- Export table ... 134

F
- FCC ... 7
- File system ... 24
- Filter ... 160
- Final measurement .. 79
- Find references .. 39
- Firewall .. 26
- Frequency control ... 177
- Frequency list .. 137

G
- Gain ... 136
- GAM ... 7
- Getting started .. 31
- Global tables .. 132
- Glossary ... 192
- Graphical settings .. 145
- Graphical user interface .. 33
Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal path</td>
<td>127</td>
</tr>
<tr>
<td>Simulation</td>
<td>152, 181</td>
</tr>
<tr>
<td>Single measurement</td>
<td>171</td>
</tr>
<tr>
<td>Skip final measurement</td>
<td>79</td>
</tr>
<tr>
<td>Smart card</td>
<td>17</td>
</tr>
<tr>
<td>Software</td>
<td>190</td>
</tr>
<tr>
<td>Installation</td>
<td>12</td>
</tr>
<tr>
<td>Operation</td>
<td>159</td>
</tr>
<tr>
<td>Protection</td>
<td>16</td>
</tr>
<tr>
<td>Structure</td>
<td>31</td>
</tr>
<tr>
<td>Software components</td>
<td>31</td>
</tr>
<tr>
<td>Standards</td>
<td>7</td>
</tr>
<tr>
<td>Structure of the software</td>
<td>31</td>
</tr>
<tr>
<td>Support</td>
<td>191</td>
</tr>
<tr>
<td>Symmetric test setup (LISN)</td>
<td>121</td>
</tr>
<tr>
<td>System requirements</td>
<td>12</td>
</tr>
</tbody>
</table>

T

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table</td>
<td>134</td>
</tr>
<tr>
<td>Export</td>
<td>37, 133</td>
</tr>
<tr>
<td>Import</td>
<td>37, 133</td>
</tr>
<tr>
<td>Table configuration</td>
<td>62</td>
</tr>
<tr>
<td>Tables</td>
<td>132</td>
</tr>
<tr>
<td>Attenuation</td>
<td>136</td>
</tr>
<tr>
<td>Frequency list</td>
<td>137</td>
</tr>
<tr>
<td>Limit lines</td>
<td>135</td>
</tr>
<tr>
<td>Test results</td>
<td>182</td>
</tr>
<tr>
<td>Transducer correction</td>
<td>137</td>
</tr>
<tr>
<td>Tablet</td>
<td>40</td>
</tr>
<tr>
<td>Tags</td>
<td>39</td>
</tr>
<tr>
<td>TEM waveguide</td>
<td>127</td>
</tr>
<tr>
<td>Templates</td>
<td>103</td>
</tr>
<tr>
<td>Reports</td>
<td>66</td>
</tr>
<tr>
<td>Tests</td>
<td>66</td>
</tr>
<tr>
<td>Test</td>
<td>41</td>
</tr>
<tr>
<td>Concept</td>
<td>49, 50</td>
</tr>
<tr>
<td>Configuration</td>
<td>171</td>
</tr>
<tr>
<td>Control toolbar</td>
<td>171</td>
</tr>
<tr>
<td>Control top menu</td>
<td>170</td>
</tr>
<tr>
<td>Creation</td>
<td>41</td>
</tr>
<tr>
<td>EMI</td>
<td>166</td>
</tr>
<tr>
<td>Execution</td>
<td>167</td>
</tr>
<tr>
<td>Preparation</td>
<td>41</td>
</tr>
<tr>
<td>Results</td>
<td>42</td>
</tr>
<tr>
<td>Templates</td>
<td>66</td>
</tr>
<tr>
<td>Test control toolbar</td>
<td>171</td>
</tr>
<tr>
<td>Test control top menu</td>
<td>170</td>
</tr>
<tr>
<td>Test receiver</td>
<td>153</td>
</tr>
<tr>
<td>Enhanced communication</td>
<td>153</td>
</tr>
<tr>
<td>Test results</td>
<td>184</td>
</tr>
<tr>
<td>Graphics</td>
<td>182</td>
</tr>
<tr>
<td>Tables</td>
<td>182</td>
</tr>
<tr>
<td>Test templates</td>
<td>67</td>
</tr>
<tr>
<td>Handling</td>
<td>49</td>
</tr>
<tr>
<td>Workflows and procedures</td>
<td>166</td>
</tr>
<tr>
<td>Test validation</td>
<td>181</td>
</tr>
<tr>
<td>Tests</td>
<td>171</td>
</tr>
<tr>
<td>Handling</td>
<td>171</td>
</tr>
<tr>
<td>Workflows and procedures</td>
<td>171</td>
</tr>
<tr>
<td>Tools</td>
<td>141</td>
</tr>
<tr>
<td>Configuration wizard</td>
<td>141</td>
</tr>
<tr>
<td>Export</td>
<td>139</td>
</tr>
<tr>
<td>Import</td>
<td>140</td>
</tr>
<tr>
<td>Unit converter</td>
<td>141</td>
</tr>
<tr>
<td>Top menu</td>
<td>170</td>
</tr>
<tr>
<td>Touch operation</td>
<td>40</td>
</tr>
</tbody>
</table>

U

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit converter</td>
<td>141</td>
</tr>
<tr>
<td>Unsymmetric test setup (LISN)</td>
<td>121</td>
</tr>
</tbody>
</table>

V

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verdict</td>
<td>43</td>
</tr>
<tr>
<td>Editing</td>
<td>44</td>
</tr>
<tr>
<td>Inconclusive</td>
<td>45</td>
</tr>
<tr>
<td>Version</td>
<td>190</td>
</tr>
<tr>
<td>VG</td>
<td>7</td>
</tr>
</tbody>
</table>

W

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcome screen</td>
<td>152</td>
</tr>
<tr>
<td>Wizard</td>
<td>20, 141</td>
</tr>
<tr>
<td>Configuration</td>
<td>24</td>
</tr>
<tr>
<td>XML data migration</td>
<td>24</td>
</tr>
</tbody>
</table>

X

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>XML data conversion</td>
<td>24</td>
</tr>
</tbody>
</table>