POWER INTEGRITY AND HOW IT AFFECTS SIGNAL INTEGRITY

Pasi Suhonen Application Engineer Oscilloscopes

ROHDE&SCHWARZ

Make ideas real

AGENDA

- Introduction to typical analysis and hurdles in Signal and Power Integrity
- How are Signal and Power Integrity linked together?
- How to hunt down Power Integrity issues in Jitter separation.

WHAT IS POWER INTEGRITY?

IC suppliers specify # of power rails, voltage for each, and tolerance for each.
 – FPGAs, ASICs, CPUs, DDR memory...

I Measurements: sequencing, noise / ripple, drift, load/step response, EMI

POWER DISTRIBUTION NETWORK (PDN) EXAMPLE

OSCILLOSCOPE PRIMARY TOOL FOR POWER RAIL ANALYSIS

COMMON POWER RAIL MEASUREMENTS

6 Rohde & Schwarz

Load response

COMMON POWER RAIL MEASUREMENTS

7 Rohde & Schwarz

Scope measurement noise can approach or exceed needed signal measurement values

Differentiation in time domain become a tough task for signals that are smaller than the intrinsic noise of the scope.

Intrinsic measurement noise with all input signals disconnected.

More measurement bandwidth = more measurement noise

11 Rohde & Schwarz

MXO4 Oscilloscope

18-bit resolutions and fast acquisitions makes result correlation faster and precise

PROBING METHODS 10:1 PASSIVE PROBE

Advantages

- Comes standard with most scopes
 - no extra expense
- 10 MΩ loading at DC
 - Preserves expected DC value
- Easy to connect using browser tip
 - Multiple ground alternatives

Disadvantages

- Significant noise
 - 10:1 attenuation
 - Minimum vertical setting of 10 mV/div
- Long grounds
- ▶ BW limited (500 MHz for ZP-10)
- ► No solder-in alternative

PROBING METHODS 1:1 PASSIVE PROBE

Advantages

- Low cost
- Excellent 1 MΩ loading at DC
 - preserves expected DC value
- Ability to scale to 1 mV/div
- Easy to connect using browser tip
 - Ground spring ground alternative

Disadvantages

- ► Limited BW
 - 38 MHz for ZP-1X
 - under reports V_{pp} measurements
 - masks high freq signal coupling
- Limited offset may require AC coupling
- No solder-in alternative

PROBING METHODS 50Ω PATH

Advantages

- 50 Ω scope path typically has less noise than
 1M Ω scope path
- SMA connector or solder-in pigtail allows for measurement consistency and ease of access

Disadvantages

- 50 Ω loading at DC reduces power rail voltage
- Insufficient offset (requires blocking cap or AC coupling)
 - Masks DC drift
 - Eliminates ability to see true DC voltage

PROBING METHODS AC COUPLING

- Set to 50Ω path (channels setup)
- Attenuation to 1:1 (probe setup)
- 50Ω path (limited offset may require AC coupling)

PROBING METHODS RT-ZPR POWER RAIL PROBE

- Designed uniquely for measuring small perturbations on power rails
- Active, single-ended probe
- Low noise with 1:1 attenuation
- Offset compensation capability
- Built-in DC meter

Attenuation	1:1
BW	2 GHz or 4 GHz
Browser BW	350 MHz
Dynamic Range	±850 mV
Offset Range	> ±60 V
Probe Noise Scope standalone Scope + Probe (at 1 GHz, 1mV/div)	107 μV AC _{rms} 120 μV AC_{rms}
Input Resistance	50 kΩ @ DC
R&S ProbeMeter	Integrated
Coupling	DC or AC

INTEGRATED VOLT METER

20 Rohde & Schwarz

HOW MUCH BANDWIDTH DO YOU NEED?

How much is needed here?

How much is needed here?

HOW MUCH BANDWIDTH DO YOU NEED?

20MHz

1GHz

SIGNAL AND POWER INTEGRITY ISSUES CAN CAUSE JITTER

- ▶ Jitter is the short-term time-domain variations in clock or data signal timing
- ► Jitter includes instability in signal period, frequency, phase, duty cycle or some other timing characteristic
- ▶ Jitter is of interest from cycle to cycle, over many consecutive cycle, or as a longer term variation
- ► Jitter is equivalent to Phase Noise in the frequency domain

JITTER COMPONENTS

Total Jitter is composed out of several jitter contributions:

- Random Jitter: "unbounded"
- Deterministic Jitter: usually "bounded"

VARIOUS JITTER MEASUREMENTS AND JITTER COMPONENT SPECIFIC RESULTS

NEW INSIGHTS

SUMMARY

How important is measurement accuracy?

- 1. Learn & use scope settings that impact accuracy
- 2. Investment in low-noise scope with needed BW for your power rail needs
- 3. Investment in specialized power rail probes

