De-embedding test fixtures for high speed digital applications

Joern Pfeifer Application Engineer Vector Network Analyzer

ROHDE&SCHWARZ

Make ideas real

Jörn Pfeifer

- Application Engineer
 Vector Network Analyzer
- ► With Rohde & Schwarz since 2016
- R&S High Speed Data Link Expert Core Team Member
- Open Alliance Automotive Ethernet TC9 Working group contributing member

Agenda

- Why use de-embedding in high speed digital scope measurements
- VNA and S-parameter measurement basics
- How to create fixture modelling files with a VNA
- Automotive Ethernet VNA De-embedding example

Agenda

- Why use de-embedding in high speed digital scope measurements
- VNA and S-parameter measurement basics
- How to create fixture modelling files with a VNA
- Automotive Ethernet VNA De-embedding example

Compensation of fixture influence for Oscilloscope transmitter test

- ► Task is to measure a transmitter signal without influence of your fixture
- ► For a differential signal analysis symmetry of the measurement setup is key
- De-skew of oscilloscope channels (not scope of this presentation)
- A Vector Network Analyzer (VNA) can create fixture de-embedding files for compensation
- Loading created file in the Oscilloscope for compensation

Agenda

- Why use de-embedding in high speed digital scope measurements
- VNA and S-parameter measurement basics
- How to create fixture modelling files with a VNA
- Automotive Ethernet VNA De-embedding example

VNA and S-parameter basics

- VNAs combine source and receiver in one device
- Typically continuous frequency sweep measurement
- Measure S-parameter, reflection and transmission behavior of components
- Each port needs to be the driving port once
- In total four sweeps needed to create a full S-parameter characterization of a 4-port DUT

Balanced/ Mixed Mode S-Parameters

Measure the balanced 2-port device as unbalanced 4-port device with unbalanced VNA. VNA Calculates mixed mode S-Parameters out of measured single ended S-Parameters.

a, b = power waves

 S_{mn} = Transmission from Port n to Port m

8 Rohde & Schwarz

What is a Touchstone File *.snp? (n is number of ports)

- Industry standard for S-parameter files
- ► Full description of frequency response of a component
- ► Complex values in *magnitude / angle (phase)* or *real / imag*
- One set of S-parameters per frequency point

Take care about consistent port assignments during creation and use in VNA and Scope

· HZ S DB R Rohde & Schwarz Vect	50.00 or Network Analyzer		
Rohde-Schwarz,ZNB8-4 Created: UTC 6/5/202	Port,1311601044103485,2.9 0. <u>8:58:28 AM</u>	94	
freq[Hz]	db:S11	ang:S11	db:S12
	db:521	ang:S21	db:522
	db:S31	ang:S31	db:532
+	db:S41	ang:S41	db:542
1.00000000000000E6	7.030191930505213E-3	2.602916756534536E-2	-1.147839
	-1.079817243963495E2	-1.486860327997170E2	-4.416523
	-1.129092361182286E2	6.909905623452955	-1.094483
	-1.067097263043102E2	-8.517666928925952	-1.067053
2.00000000000000E6	6.680282270222103E-3	-5.620099899660941E-3	-1.056192
	-1.053286425696122E2	-8.232411897211276E1	7.924377
	-1.071932533652798E2	-2.784612316253055E1	-1.035747
	-1.092420136717747E2	8.535329241291025E1	-1.231045
3.000000000000000E6	8.013858121994550E-3	9.440017586267023E-3	-1.108921
	-1.196678687080890E2	8.309343598600998E1	-1.828560
	_1 07206737508///36F2	1 6/193017/18588150F2	_1 130/0A

Scope import of S-parameter file for de-embedding

Take care about consistent port assignments during creation and use in VNA and Scope

10 Rohde & Schwarz

VNA system error correction (calibration): coaxial interface

- Correction of systematic errors of the instrument and cables (test set)
- Reference plane: the point where the known calibration standards are presented, typically coaxial connector
- Typically used calibration kits consists of Through, Open, Short and Match standards (TOSM)
- Also automatic calibration units available
- Deembedding can be used when reference plane of DUT is not a coaxial connector

What if DUT does not have coaxial connectors?

Agenda

- Why use de-embedding in high speed digital scope measurements
- VNA and S-parameter measurement basics
- How to create fixture modelling files with a VNA
- Automotive Ethernet VNA De-embedding example

Creation of de-embedding files for VNA measurements

Fixture + DUT

Test Coupon 2 x Thru

Lead-in traces

Lead-out traces

- Files can be created out of 2 x Thru itself
- Problem: Differences between coupon and test fixture would lead to errors (different connector and line impedances (e.g. fiber weave), different signal routing, etc.)
- ► Solution:
 - "Impedance Correction" feature creates fixture *.snp files out of Fixture + DUT measurement
 - Length of fixtures determined out of coupon measurement file
 - Two measurements needed: Coupon and Fixture + DUT measurement

Creation of de-embedding files for scope measurements

- To be de-embedded for ideal scope measurements
- Without coaxial interface fixture cannot be measured directly with VNA
- Use VNA De-embedding tools to create fixture S-parameter file
- ► Choose Coupon:
 - 2 x Thru (replica)
 - 1 x Open (open fixture)
 - 1 x Short (shorted fixture)
 - 1 x Open + 1 x Short

R&S VNA de-embedding file creation

- Choose de-embedding use case
- ► Balanced / Single Ended
- ► Symmetric fixtures left/ right
- one port setup (FIX DUT) for Oscilloscope test case
- Also possible to create file with 1x Balanced (e.g. 1 x Open) only

S-parameters of a transmission channel

- ► Sdd11 Reflection in dB
- ► Sdd21 Transmission in dB
- Sdc21 Mode Conversion
- Sdd21 Phase
- ► Sdd21 Delay
- ► Z←Sdd11 TDR Impedance

Agenda

- Why use de-embedding in high speed digital scope measurements
- VNA and S-parameter measurement basics
- How to create fixture modelling files with a VNA
- Automotive Ethernet VNA De-embedding example

Automotive ethernet mated cable connector Impedance-corrected de-embedding

Self de-embedding of 2x Thru

Standard 2x Thru de-embedding

 \rightarrow Bad result because TDR Impedance of 2x Thru is different than of FIX+DUT+FIX

22 Rohde & Schwarz

Automotive ethernet mated cable connector Impedance-corrected de-embedding result

Fixture_{Left} + DUT + Fixture_{Right} Fixture_{Left} Generated Model

→ Perfect result: no influence of fixture left

23 Rohde & Schwarz

- Compensation of fixture is needed
- ► S-parameter de-embedding is best way
- ► **Corrects** precisely the **frequency response** in reflection and transmission behaviour
- Creation of precise fixture S-parameter files with VNA
- ► A coupon reference structure is needed (1xOpen, 2xThru, ...)
- ► Use consistent **port assignments** of fixture file during creation and use

Upcoming Appnote: De-embedding test fixtures for high speed digital applications

- Used example is transmitter test USB 3.2 Type C
- Different methods for fixture creation
 - Coupon (reference):
 1x Open / 1x Short / 1x Open + 1x Short
 - Fix DUT Fix = modelling file created based on:
 Coupon only / mated pair / fixture + transmitter
- Oscilloscope result with and without de-embedding

Find out more

www.rohde-schwarz.com

Thank you!

ROHDE&SCHWARZ

Make ideas real

