Welcome to our 6G Tech Talk "Is 6G getting an additional sense?"

JOINT COMMUNICATION AND SENSING

Leander Humbert, Meik Kottkamp Technology Manager

THE FUTURE

JOINT COMMUNICATION AND SENSING POSSIBLE VERTICAL APPLICATIONS – OUTDOOR/INDOOR

- In terms of vertical applications there are several fields, like:
 - Sensing as a Service
 - Remote Sensing and Geoscience
 - Vehicle-to-Everything (V2X)

JOINT COMMUNICATION AND SENSING POSSIBLE VERTICAL APPLICATIONS – OUTDOOR/INDOOR

- In terms of vertical applications there are several fields, like:
 - Sensing as a Service
 - Remote Sensing and Geoscience
 - Vehicle-to-Everything (V2X)
 - Smart Home and building automation

JOINT COMMUNICATION AND SENSING POSSIBLE VERTICAL APPLICATIONS – OUTDOOR/INDOOR

- In terms of vertical applications there are several fields, like:
 - Sensing as a Service
 - Remote Sensing and Geoscience
 - Vehicle-to-Everything (V2X)
 - Smart Home and building automation
 - Smart Manufacturing and IIoT

JOINT COMMUNICATION AND SENSING POSSIBLE VERTICAL APPLICATIONS - INDOOR

- eHealth
- Touch-free monitoring
 - Through blankets and cloths
 - Comfortable continuous long term real time monitoring
- Diagnostics
 - Respiration
 - Heart activity
 - Pulse wave velocity

THE EVOLUTION OF THE HUMAN MACHINE INTERFACE FOR CELLULAR DEVICES

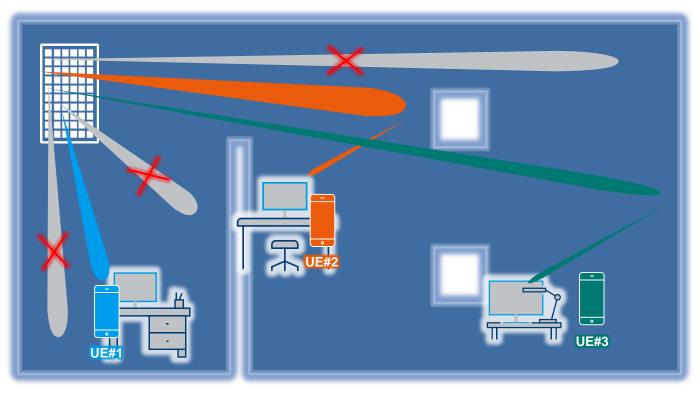
Voice

Gesture

Touch

Face

WIDER BANDWIDTHS ENABLE HIGHER RESOLUTION


- Use of phased arrays antennas (e.g. linear arrays) to "monitor" the space in front of the person, that is using the AR/VR headset, for motion of one or both arms, hands & fingers
- ▶ Required range ≤ 1.5 m, but what about resolution?
- ► Higher resolution required to detect particular movements → wider bandwidths required → move to higher frequency, i.e. sub-THz (e.g. 140 GHz or 300 GHz)

Reflecting 6G research from a T&M perspective

JOINT COMMUNICATION AND SENSING ONE MORE IMPORTANT MOTIVATION

► Sensingassisted communication by utilizing sensed information to aid beam management / alignment, CSI acquisition, medium-aware links, interference mitigation etc.

5G NR TECHNOLOGY EVOLUTION – THE NEXT PHASE

2026

TIMELINE OF RECENT AND ACTUAL 3GPP RELEASES

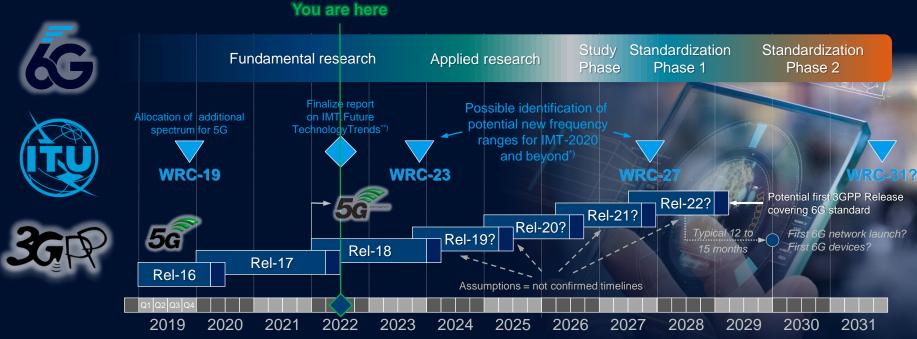
Rel-17

06/2020

Rel-16


06/2019

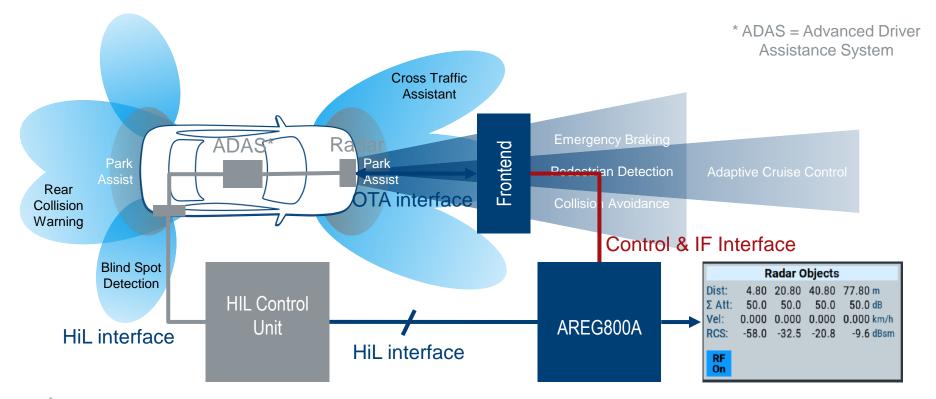
Rel-15


Rel-14

- 3GPP targets 15 months for the completion of the core specification (RAN1/2/3/4) of a release; not the reality
 - Syntax (ASN.1) freeze three months after
 - Test specifications for base station and user equipment (RAN4/5) follow after ASN.1 freeze

FUTURE STANDARDIZATION AND REGULATORY ROADMAP

*) IMT-2020 systems are called 5G


") The ITU has already started a new technology trend report to prepare the work on "IMT-2020 and beyond" that is likely to become 6G

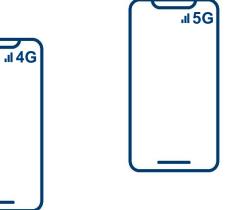
12 Rohde & Schwarz

VEHICLE-IN-THE-LOOP TESTING OF AUTOMOTIVE SENSORS

WHERE ARE WE COMING FROM? ADAS / AD RADAR TESTING

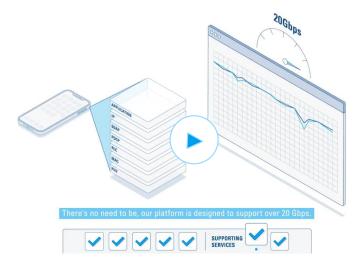
WHERE ARE WE COMING FROM? RADAR TARGET SIMULATION

AREG100A

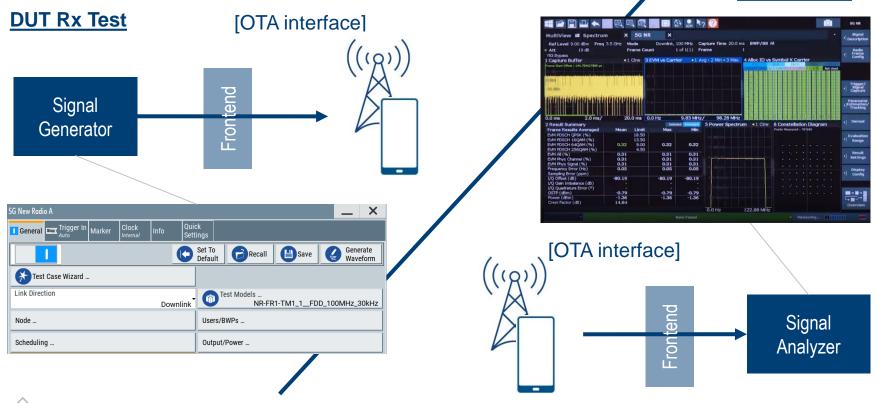

- Analog Design
- Focus on Production Testing in Anechoic Chambers
- Limited Bandwidth and fixed Object Parameter Sets

AREG800A

Is this Instrument suitable for Testing the sensing part of JCAS?


CELLULAR COMMUNICATION FROM VOICE CENTRIC TO DATA CENTRIC

1G 2G 3G 4G 5G

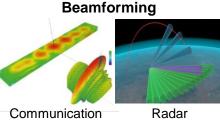

CELLULAR COMS TESTING: WHERE ARE WE COMING FROM? DEVICE TESTING – ALL LAYERS

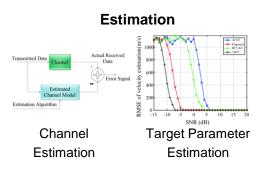

https://youtu.be/QY-ORKADXW4

CELLULAR COMS TESTING: WHERE ARE WE COMING FROM? COM TESTING WITH LAYER1/RF FOCUS

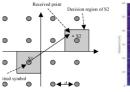
WHERE ARE WE COMING FROM? COM TESTING WITH LAYER1/RF FOCUS - ILLUSTRATION

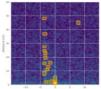
https://www.rohde-schwarz.com/knowledge-center/videos/5g-nr-testmodel-generation-and-analysis-video-detailpage_251220-669737.html


OVER THE AIR TESTING


https://www.rohde-schwarz.com/at/knowledge-center/videos/high-performance-one-box-test-solution-for-all-5g-nr-device-tests-video-detailseite_251220-1179520.html

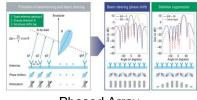
JOINT COMMUNICATION AND SENSING TRENDS RADAR AND COMMUNICATION COMMONALITIES


- Why merging Communication and Sensing capabilities?
- First of all, both technologies deal with quite common challenges and hardware architectures
- Both benefit from recent trends in processing, AI or use of higher frequencies
- High levels of JCAS integration therefore promise
 - Cost Efficiency (e.g. better PAE)
 - Spectral Efficiency
 - Mutual Functional Benefit



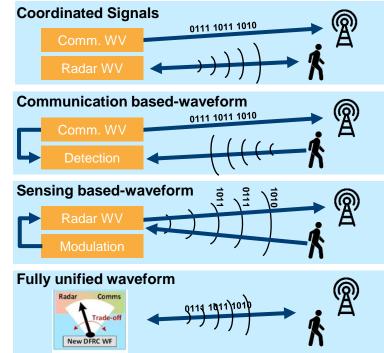
Beamforming Beamforming

Hypothesis Testing



Symbol Detection

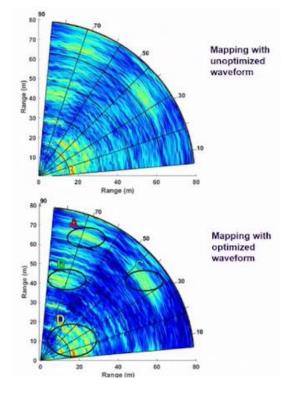
Target Detection


Hardware Design

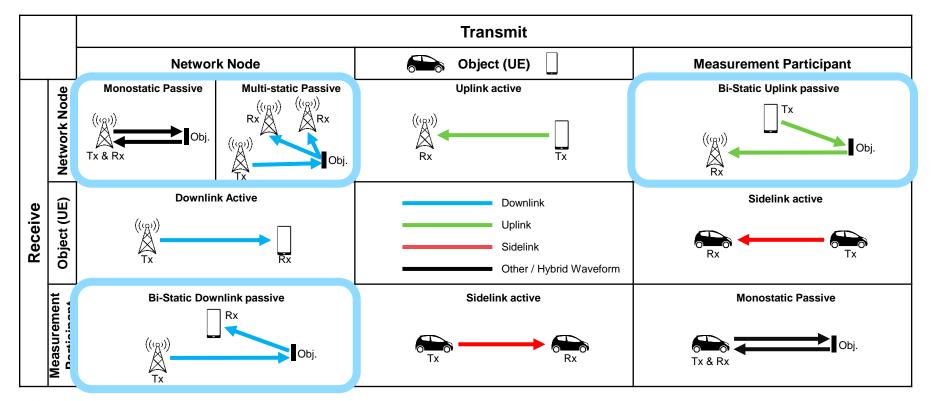
Phased Array Antennas

JOINT COMMUNICATION AND SENSING TRENDS APPROACHES FOR JCAS WAVEFORM DESIGN

- Coexisting systems sharing same resources
- Integrated systems, sharing HW but separately transmitting signals (e.g. spatial, TDM, CDM or FDM)
- Integrated JCAS System using single transmitted waveform and full-duplex operation
 - Communication-centric design, with guaranteed communication performance (e.g. OFDM-based)
 - Radar-centric design, optimized for sensing performance (e.g. using chirp signals as information carriers → PC-FMCW)
 - Jointly optimized design, with freely scalable S&C performance trade-off



JOINT COMMUNICATION AND SENSING TRENDS EXAMPLE OF WAVEFORM OPTIMIZATION



Source: "Experimenting Joint Vehicular Communications and Sensing with Optimized 5G NR Naveform", Tampere University

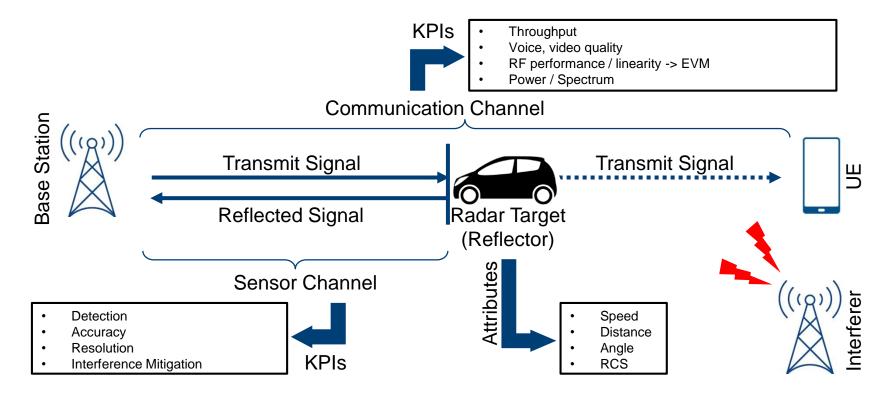
- 5G NR baseline waveform (20 OFDM symbols, 264 PRBs, 120 kHz subcarrier spacing, 400 MHz channel) at 28 GHz is used for outdoor mapping
- Range ambiguity of the radar profile is minimized, by optimizing amplitude and phase of the radar subcarriers of the waveform
- Optimized waveform allows for better side-lobe performance, while simultaneously minimizing the PAPR of the waveform.

JOINT COMMUNICATION AND SENSING TRENDS SENSING ARCHITECTURES

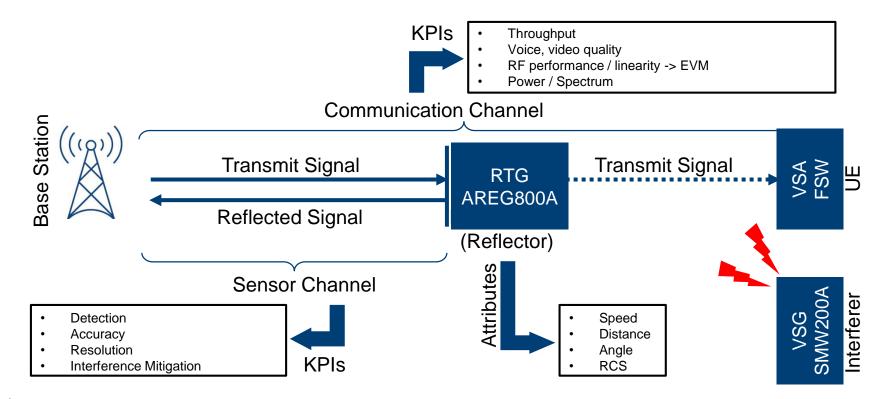
JOINT COMMUNICATION AND SENSING TRENDS COMMON HARDWARE CHALLENGES

Some key differences can be perceived between multi-static and monostatic approaches:

- Multi- and Bi-static sensing has the big advantage of re-using existing infrastructure
- ► This limits the sensing accuracy due to:
 - Generally using FR1 frequencies
 - Clock offset between BS's and/or UEs
- Monostatic operation using FR2 frequencies or mmWave in general allow for much more precise sensing, but:
 - Require adaption/replacement of network
 →more costs involved (incl. operation)


Multi-static Sensing

Source: Huawei


Monostatic Sensing

Types	Signals	Advantages	Disadvantages
Downlink (Active) Sensing - Monostatic	Reflects from a RRU/BS's own transmitted down- link comm signal	All data symbols can be used and are centrally known.	Generally require full du- plex operation and other network modifications.
Uplink Sens- ing -Bistatic	Uplink communica- tion signals from UE transmitters	 Do not require full- duplexing. Require almost no changes to communica- tion infrastructure. 	 Clock offset issue. Transmitted information signals are not directly known. Rapid channel variation when UEs are moving.

JOINT COMMUNICATION AND SENSING TRENDS DIFFERENCES IN PERFORMANCE INDICATION

JOINT COMMUNICATION AND SENSING TRENDS HOW TO TEST JCAS KPI

JOINT COMMUNICATION AND SENSING ADAPTING THE SETUP FOR FR2 FREQUENCIES

- Demonstrated at the <u>7th IEEE 5G+</u> <u>Summit Dresden in May 2022</u>
- Frontends support frequency bands from 24 GHz to 44 GHz

6G RESEARCH IN GERMANY SIGNIFICANT WORK ON THE WAY

13.09.2021 - 06.12.2021 Bekanntmachung

Richtlinie zur Förderung der "6G-Industrieprojekte zur Erforschung von ganzheitlichen Systemen und Teiltechnologien für den Mobilfunk der 6. Generation" im Forschungsprogramm für Kommunikationssysteme "Souverän. Digital. Vernetzt.", Bundesanzeiger vom 13.09.2021

6G-ANNA

Ganzheitliche Ansätze für Mobilfunknetze der 6. Generation

Bundesministerium für Bildung und Forschung

6G-Forschungs-Hubs; Plattform für zukünftige Kommunikationstechnologien und 6G

Gegenstand der Fördermaßnahme im Rahmen der 6G-Initiative des BMBF ist die Erforschung von zukünftigen Kommunikationstechnologien, um die Forschung und Entwicklung zu 6G in Deutschland gezielt zu unterstützen und auszubauen. Im Rahmen der Bekanntmachung sollen bis zu drei "6G-Forschungs-Hubs" und eine begleitende "Plattform für zukünftige Kommunikationstechnologien und 6G" gefördert werden.

 Additional projects are expected to be announced in near future

SUMMARY

- Deployment of 5G networks is in full swing! Clear evolution path provided by the industry's standardization organization
- Academia and key industry players are exploring the boundaries and started looking into next generation of wireless communication aka 6G
- New, challenging technology components may complement the existing concept of cellular networks or even provide revolutionary aspects
- Rohde & Schwarz is actively engaged in this phase of fundamental research, providing our expertise in test and measurement to make ideas real

ROHDE&SCHWARZ

Make ideas real

All truth is simple... is that not doubly a lie?

THANK YOU!

You'd like to be part of the Rohde & Schwarz family? TECH & CONNECT

Miriam Lang

Miriam.lang.ext@rohde-schwarz.com LinkedIn | Xing

Bettina Bauer

Bettina.bauer@rohde-schwarz.com LinkedIn | Xing

Sarah Sczypior

Sarah.sczypior@rohde-schwarz.com LinkedIn | Xing

have a look at our open positions

Thank you for joining! Enjoyed? Scan the QR Code to be informed about upcoming talks

