HOW TO DEBUG SIGNAL INTEGRITY WITH POWER INTEGRITY?

Pasi Suhonen Application Engineer

ROHDE&SCHWARZ

Make ideas real

DEFINITIONS

Signal Integrity

 Signal Integrity describes the ability of a system, to transmit and receive (data-) signals properly.

Power Integrity

Power Integrity groups several measurements to qualify the quality of a power supply and distribution network.

Electromagnetic Compatibility (short: EMC)

EMC describes the ability of a system to operate in its electromagnetic environment without causing interference in its environment.

Rohde & Schwarz

COMMON SIGNAL AND POWER INTEGRITY PROBLEMS

Signal Integrity

- Signal Integrity describes the ability of a system, to transmit and receive (data-) signals properly.
- ► Common measurements:
 - Eye diagram
 - Jitter/Phase Noise
 - Crosstalk
 - Noise
 - Timing e.g. Skew, TIE, ...

₿\$

Rohde & Schwarz

Power Integrity

- Power Integrity groups several measurements to qualify the quality of a power supply and distribution network.
- ► Common measurements:
 - Voltage level and offset,
 - AC ripple / harmonics
 - Droops / distortions
 - Long term stability

Electromagnetic Compatibility (short: EMC)

EMC describes the ability of a system to operate in its electromagnetic environment without causing interference in its environment.

WHAT DOES POWER INTEGRITY MEAN?

POWER RAIL MEASUREMENT CHALLENGES LOWER RAIL VOLTAGES AND SMALLER TOLERANCES

SEVERAL FACTORS MAKE IT DIFFICULT TO MEASURE SMALL SIGNALS

Rohde & Schwarz

CHOOSE THE RIGHT PROBE

- Advantages
 - 500MHz Bandwidth with 10:1 attenuation
 - Good dynamic range
 - Readily available and low cost
- ► Disadvantages

10:1 ZP10 passive 500 MHz BW

Can bring to center screen and zoom in / User can't tell absolute vertical value / User can't see DC offset issues

Rohde & Schwarz

CHOOSE THE RIGHT PROBE

- Advantages
 - 1:1 attenuation
 - Good dynamic range with low noise
 - Very low cost

1:1 ZP1X passive 38 MHz BW

Disadvantages	Using max built-in scope offset	
Constrained and the second and	Image: A set of the	Image: Comparison of the second of the se

Can bring to center screen and zoom in / User can't tell absolute vertical value / User can't see DC offset issues

Rohde & Schwarz

CHOOSE THE RIGHT PROBE

- Advantages
 - 1:1 attenuation with 2 / 4 GHz bandwidth
 - Very low noise
 - Built in offset compensation of $\pm 60V$
 - AC or DC coupling, $50k\Omega$ resistance

How to debug Signal Integrity with Power Integrity?

1:1 ZPR active 2 / 4 GHz BW

Rohde & Schwarz

O

RT-ZPR20/40 – 2GHZ AND 4 GHZ POWER RAIL PROBES

- Designed uniquely for measuring small perturbations on power rails
- Active, single-ended probe
- Low noise with 1:1 attenuation
- Best in class offset compensation capability

Key Specifications		
Attenuation	1:1	
Probe BW	2 GHz / 4 GHz	
Browser BW	350 MHz	
Dynamic Range	±850 mV	
Offset Range	> ±60 V	
Noise Scope (RTO) standalone Scope + Probe Noise (at 1 GHz, 1mV/div)	107 μV AC _{rms} 120 μV AC _{rms}	
Input Resistance	50 kΩ @ DC	
R&S ProbeMeter	Integrated	
Coupling	DC or AC	

WHAT COULD POSSIBLY GO WRONG?

Rohde & Schwarz How to debug Signal Integrity with Power Integrity?

11

COMMON SIGNAL INTEGRITY PROBLEMS

- Ringing (overshoot/undershoot)
- ► Signal loss/attenuation
- Crosstalk
- ► Reflections due to impedance mismatches
- ► EMI within or from outside the components in the system
- Noise from power and distribution networks

Rohde & Schwarz

HOW ARE SIGNAL AND POWER INTEGRITY LINKED TOGETHER?

EYE DIAGRAM INTRODUCTION

- Intuitive graphical tool for the evaluation of the quality and integrity of data signals
- Generated by superposition of multiple signal waveform segments aligned to well-defined reference time instants
 - Waveform segments commonly correspond to a data symbol
 - Reference clock provides timing information for alignment (e.g. symbol start instant)

Superposition of bit sequences form the eye diagram

Eye diagram with color-coded frequency

1 Rohde & Schwarz

GENERATING EYE DIAGRAMS

Reference clock Triggers oscilloscope

> Waveform is sampled synchronous with the bit rate of the signal and randomly over time

15 Rohde & Schwarz

INFORMATION CONTAINED IN AN EYE DIAGRAM

- Timing jitter: peak to peak, standard deviation
- ► Noise: peak to peak, standard deviation
- Eye width: the minimum time interval over which no signal transition will occur
- Eye height: the minimum amplitude over which the signal level occur
- Eye parameters are based on statistics and require large sample size for repeatable measurements

How to debug Signal Integrity with Power Integrity?

Rohde & Schwarz

REFERENCE CLOCK GENERATION FOR EYE DIAGRAMS CLOCK-DATA-RECOVERY

- Timing Reference can be from a reference clock (parallel clock signal) or from the data signal itself (embedded clock signal)
- Clock data recovery is typically uses a Phase Locked Loop (PLL) or Delay Looked Loop (DLL)

Eye Diagram in Post-Processing

- ► Analysis based on a single acquisition with long Record length and SW-CDR in post processing
 - Acquired waveform is "folded" over into an eye based on software recovered clock
 - CDR settling time (typ. >10us) and new synchronization for every new acquisition

Realtime Eye Diagram

- ► Analysis based on a multiple acquisition, short Record Length and CDR in Hardware
 - Acquired bits are overlaid to an eye based on HW-CDR timing
- Scope input Post processing: Memory DUT Amp A/D Eye display Trigger: HW-CDR e.g. 250 ps acquisition 350,000 aquisition/s Long-term monitoring, distributed sampling over time 1 s 0 s Rohde & Schwarz How to debug Signal Integrity with Power Integrity? 19
- CDR looked once and runs continuously

JITTER CAUSES

Data Dependent Jitter

- Transmission Losses
- Circuit Bandwidth
- Frequency dependent Losses
- Dielectric Absorption
- Dispersion esp. Optical Fiber
- Reflections, Impedance mismatch

Duty Cycle Distortion

- Offset error in receiver or transmitter
- Rise/fall times
 mismatch

Random Jitter

Data Depe Jitter (DDJ 1

- Thermal noise
- Shot noise (semiconductor dev)
- External radiation sources
- Oscillator instabilities

Periodic Jitter

- Injected noise & Circuit instabilities
- SMPS and oscillators plus harmonic content
- PLL's stability problems
- Loop bandwidth (tracking & overshoot)

Rohde & Schwarz

How to debug Signal Integrity with Power Integrity?

Bounded Uncorrelated Jitter (BUJ)

- X-talk from adjacent lanes (example PCIe*x)
- Appears typically as RJ without spec analysis

R&S ADVANCED JITTER DECOMPOSITION ALGORITHM DETERMINISTIC COMPONENT

Noise Decomposition

Advanced Jitter Analysis

23 Rohde & Schwarz

REALTIME SIGNAL INTEGRITY UP TO 16 GHZ

HOW TO CHECK FOR SI ISSUES?

1) Eye Diagram with high update rate

- Utilizes HW-CDR as Trigger Source and captures up to 400.000 UI/s
- Search for short term events that might corrupt the eye.
- Using Histogramms first analysis on shape and width possible

2) Eye Diagram on long acquistion

- Uses longer acquisition thus longterm stability is investigated.
- SW-CDR is used to slice the acquired data and display the Eye-Diagram
- Comparison of Histograms to step 1) possible.

3) Jitter separation

- If the eye diagram does not give sufficient details Jitter separation can be activated on the same acquired signal.
- Jitter separation unreviels the sources of signal distortions by displaying:
 - Selected Jitter Terms.
 - all major PJ contributors.
 - An calculated step response which represents a channel estimation.

LIVE DEMO

ROHDE&SCHWARZ

Make ideas real

THANK YOU QUESTIONS!

ROHDE&SCHWARZ

Make ideas real

