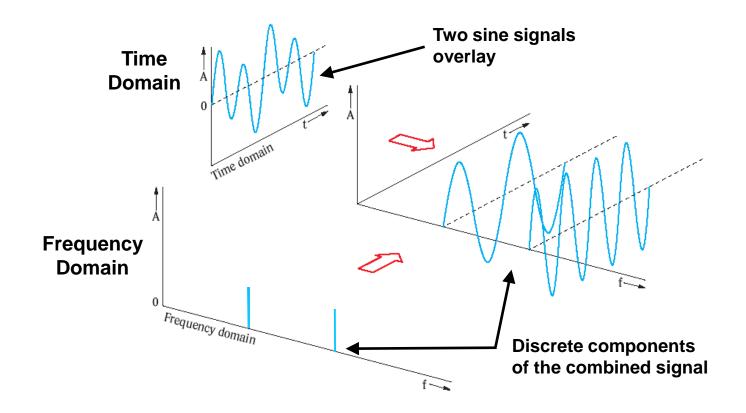
SPECTRUM ANALYSIS USING OSCILLOSCOPES

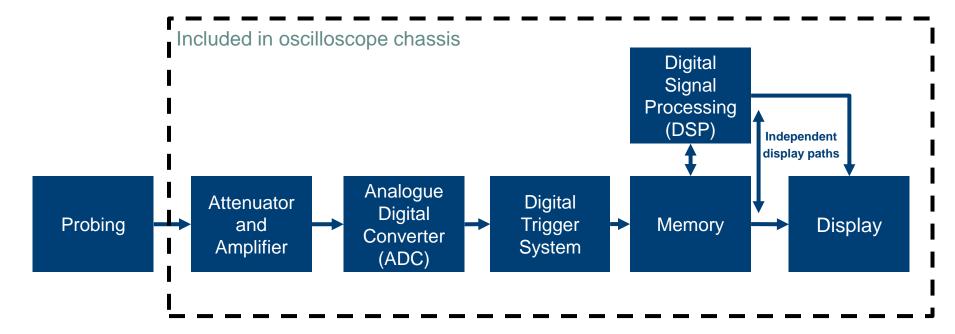

Sofia Perez-Simbor Application Engineer

ROHDE&SCHWARZ

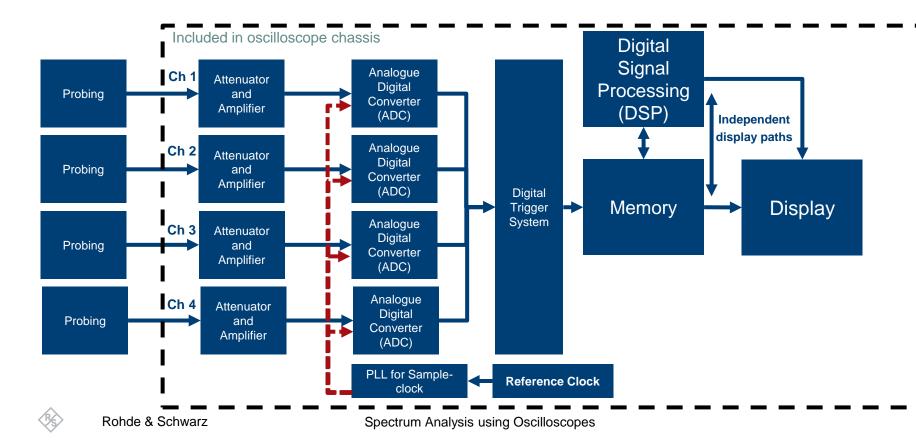
Make ideas real

OSCILLOSCOPE RF BASICS

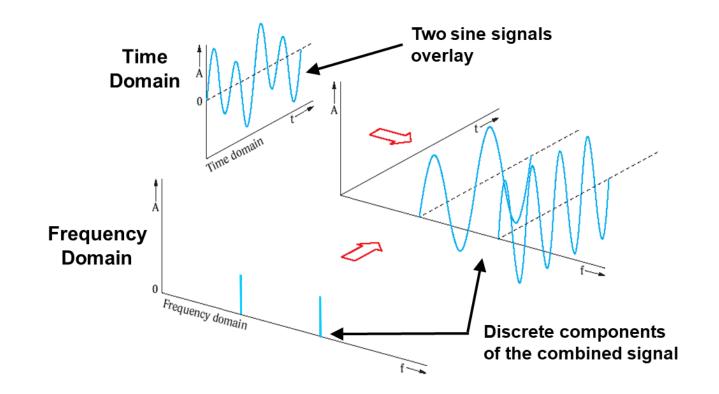
HOW TO ESTIMATE THE NEEDED BANDWIDTH?


- ► Required scope bandwidth depends on test signals frequency components
- Bandwidth relates to rise time t_r
- ► If only a max. slew rate is given the rise time is calculated accordingly: $t_r = \frac{\Delta Voltage}{Slew Rate}$
- Estimating the Bandwidth needed Investigating the units:

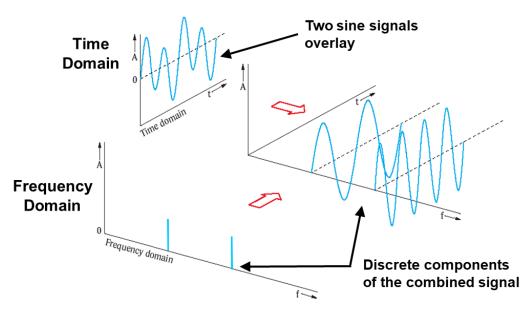
Rise time t_r is expressed in [s] Frequency is expressed in [Hz]


$$f_{max} = 1/t_r$$

• As a rule of thumb f_{max} can be estimated by using the equation $f_{max} = 0.5/t_r$


DIGITAL OSCILLOSCOPE DIGITAL TRIGGER UNIT

WHY IS AN OSCILLOSCOPE A COHERENT RECEIVER?

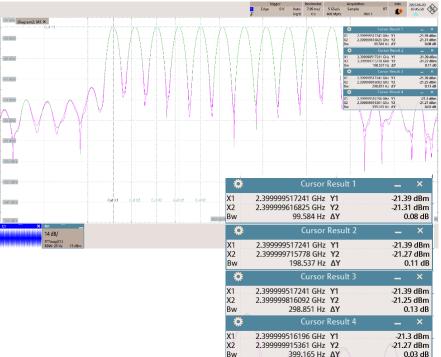

PROPERTIES OF SPECTRUM ANALYSIS IN OSCILLOSCOPES

- Typical objections using an oscilloscope for spectrum analysis:
- 1) Sensitivity and Selectivity of an oscilloscope are insufficient.

2)

3)

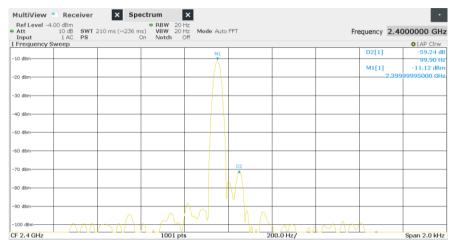
MULTITONE SIGNAL @ 2.4 GHZ 11 CARRIERS WITH 100 HZ SPACING


MultiView Rec	eiver X Spe	ctrum ×					
Ref Level -15.00 dBm Att 10 dE Input 1 AC	SWT 1.4 s (~1.5 s)	RBW 3 Hz VBW 3 Hz Mode Notch Off	Auto FFT			Frequency	2.4000000 GHz
1 Frequency Sweep							O1AP Clrw
-20 dBm-	D7 D	9 D3 D11	D5			04M1[1]	-21.44 dBm.
-30 dBm						D2[1]	-82.69 dB 283.70 Hz
-40 dBm-							283.70 Hz
-50 dBm							
-60 dBm							
-70 dBm							
-80 dBm							
-90 dBm				,			
-100 dBm	A WM MAN AND	AM ANY MI	A WAY YAY	Water Vielan	h h lwhi	Ment 18th Martinet.	
CF 2.4 GHz	RINGER NUMBER (C. 1997)	1001 pts	* · (100) 0.4	200.0 H	z/		Span 2.0 kHz

Туре	Ref	Trc	X-Value	Y-Value
M1		1	2.4000003 GHz	-21.44 dBm
D2	M1	1	283.7 Hz	-82.69 dB
D3	M1	1	- 599.4 Hz	-0.00 dB
D4	M1	1	199.8 Hz	-0.00 dB
D5	M1	1	- 399.6 Hz	-0.00 dB
D6	M1	1	99.9 Hz	-0.00 dB
D7	M1	1	- 799.2 Hz	-0.01 dB
D8	M1	1	-199.8 Hz	-0.00 dB
D9	M1	1	-699.3 Hz	-0.00 dB
D10	M1	1	-99.9 Hz	-0.01 dB
D11	M1	1	-499.5 Hz	-0.01 dB

MULTITONE SIGNAL @ 2.4 GHZ 11 CARRIERS WITH 100 HZ SPACING

Туре	Ref	Trc	X-Value	Y-Value
M1		1	2.4000003 GHz	-21.44 dBm
D2	M1	1	283.7 Hz	-82.69 dB
D3	M1	1	- 599.4 Hz	-0.00 dB
D4	M1	1	199.8 Hz	-0.00 dB
D5	M1	1	-399.6 Hz	-0.00 dB
D6	M1	1	99.9 Hz	-0.00 dB
D7	M1	1	-799.2 Hz	-0.01 dB
D8	M1	1	-199.8 Hz	-0.00 dB
D9	M1	1	-699.3 Hz	-0.00 dB
D10	M1	1	-99.9 Hz	-0.01 dB
D11	M1	1	-499.5 Hz	-0.01 dB



MULTITONE SIGNAL @ 2.4 GHZ 2 TONES WITH 50 DB ATTENUATION

Type R	Ref 🛛 T	rc	X-Value	Y-Value		Cursor Result 1	_ ×
M1		1	2.39999995 GHz	-11.12 dBm	X1	2.399999963427 GHz Y1	-11.02 dBm
D2 N	M1 :	1	99.9 Hz	-50.00 dB	m X2 Bw	2.400000063741 GHz Y2 100.314 Hz ΔY	-50.54 dBm -39.52 dB

MULTITONE SIGNAL @ 2.4 GHZ 2 TONES WITH 60 DB ATTENUATION

Туре	Ref	Trc	X-Value	Y-Value
M1		1	2.39999995 GHz	-11.12 dBm
D2	M1	1	99.9 Hz	-59.24 dB

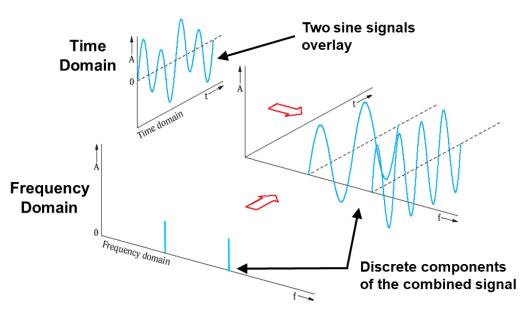
۵	Cursor Result 1	-	×
X1	2.399999963427 GHz Y1	-11.03	dBm
X2	2.40000063741 GHz Y2	-61.74	dBm
Bw	100.314 Hz ΔY	-50.	71 dB

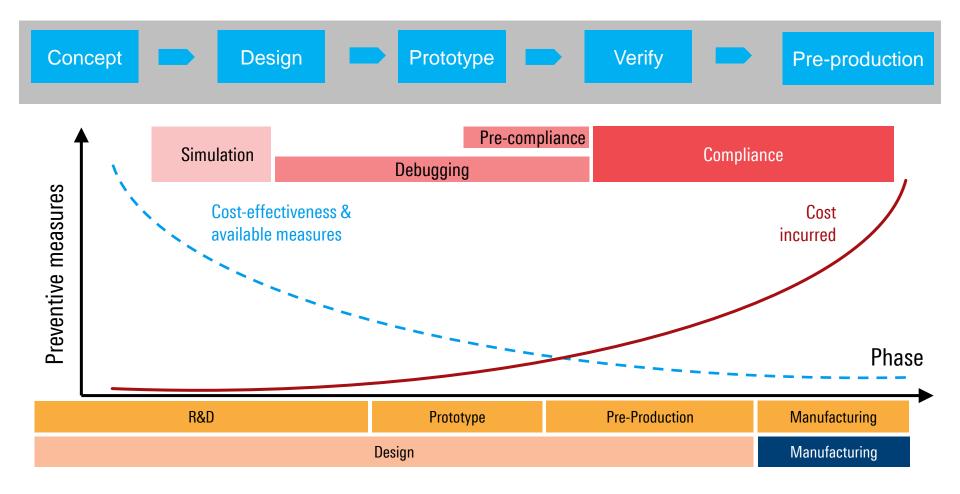
MULTITONE SIGNAL @ 2.4 GHZ 2 TONES WITH 70 DB ATTENUATION

	1 AC PS	ns) VBW 20 On Notch	Off				equency 2.4	
Frequency Sv	veep			M1			D2[1]	•1AP Clrw -71.32 d
0 dBm		 		X		 		99.901
							M1[1]	-11.12 dB
0 dBm				++			2.399	99995000 GI
0 dBm				+				
0 dBm								
0 dBm				_				
0 dBm								
0 dBm		 				 		
0 dBm					D2	 		
0 dBm		 	INA		Wh	 		
			$\Pi \sim \Lambda \Gamma$		V V			

2 Marker	Table			
Туре	Ref	Trc	X-Value	Y-Value
M1		1	2.39999995 GHz	-11.12 dBm
D2	M1	1	99.9 Hz	-71.32 dB

۵	Cursor	Result 1	-	×
X 1	2.399999963427 GHz	Y1	-11.03	dBm
T X2	2.40000063741 GHz	Y2	-66.88	dBm
Bw	100.314 Hz	ΔΥ	-55.	85 dB


MULTITONE SIGNAL @ 2.4 GHZ 2 TONES, 70 DB ATTENUATION, COMPARISON NOISE FLOOR


MultiView	Receiver	× Spe						•	MultiView	Receiver	× Spe	ctrum	×					•
Ref Level -4.0 Att Input	10 dB SWT 2 1 AC PS	210 ms (~236 m	 RBW 20 vBW 20 On Notch 	Hz Hz Mode / Off	SGL uto FFT	F	requency 2.4	000000 GHz	 Ref Level -4 Att Input 	10 dB SWT 1 AC PS	210 ms (~236 m	 RBW 20 s) VBW 20 On Notch (Hz Hz Mode Aut	SGL o FFT		Fr	requency 2.4	000000 GHz
1 Frequency Sy	weep							O1AP Clrw	1 Frequency S	weep								O1AP Clrw
-10 dBm				n	1		D2[1]	-71.32 dB	-10 dBm-				M1				D2[1]	-68.61 dB
-10 dbm					\		M1[1]	99.90 Hz -11.12 dBm	-10 dBm-				Á				M1[1]	99.90 Hz -11.12 dBm
-20 dBm								999995000 GHz	-20 dBm				(\					99995000 GHz.
-30 dBm									-30 dBm									
-40 dBm																		
-40 dBm									-40 dBm-									
-50 dBm					_				-50 dBm-									
-60 dBm									-60 dBm									
-70 dBm									-70 dBm-									
-80 dBm									-80 dBm-					D2				
					Λ									NΛ				
-90 dBm				M	- V \\				-90 dBm									
				1 4									n nl	III IA AA	$\wedge \wedge$			
-100 dBm		$\sim 1^{\vee}$	10/07						-100 dBm		$\Lambda \Lambda = 1$	WW.	V II			hAA	A	
CF 2.4 GHz			1001 pt	8	2	:00.0 Hz/		Span 2.0 kHz	CF 2.4 GHz			1001 pt	s	2	00.0 Hz/			Span 2.0 kHz

Туре	Ref	Trc	X-Value	Y-Value
M1		1	2.39999995 GHz	-11.12 dBm
D2	M1	1	99.9 Hz	-71.32 dB

Туре	Ref	Trc	X-Value	Y-Value
M1		1	2.39999995 GHz	-11.12 dBm
D2	M1	1	99.9 Hz	-68.61 dB

- Typical objections using an oscilloscope for spectrum analysis:
- 1) Sensitivity and the sense of the sense of
- 2) No gapless recording possible.

BS)

WHEN TO USE WHICH INSTRUMENT? FROM COMPLIANCE TO EMI DEBUGGING

EMI Receiver

- ▶ 6 dB Filters
- Preselector available
- Highest selectivity
- ► CISPR compliant detectors
- Demodulation of signals possible
- Time domain scan reduces sweep time to a minimum

Spectrum-/ Signal analyzer

- ► 3 dB (6 dB) Filters
- High selectivity
- ► High sensitivity
- Analysis on wide frequency range possible (today up to 8 GHz internal analysis BW available)
- Demodulation of signals possible

Oscilloscope

- ► 3 dB Filter
- One shot analysis of whole frequency range
- Measures down to DC
- Trigger capabilities for signal separation
- Mask testing in frequency and time domain
- ► Gated FFT possible
- Multichannel coherent receiver

WHEN TO USE WHICH INSTRUMENT? FROM COMPLIANCE TO EMI DEBUGGING

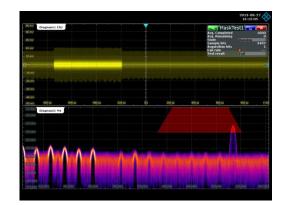
EMI Receiver

- ► 6 dB Filters
- Preselector avia^{1/2}
- ► Highest seler
- ► CISPR cr Jetectors
- Demr of signals
- Jonain scan reduces Jep time to a minimum

Spectrum-/ Signal analyzer

- ► 3 dB (6 dB) Filters
- High selectivity
- High sensitivity

av

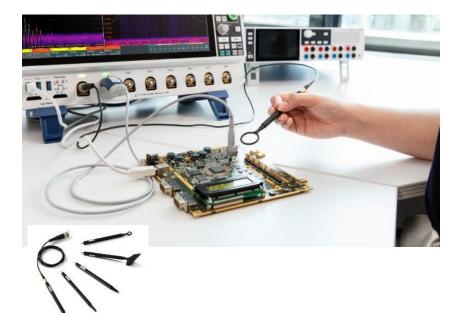

- Analysis on Juency range pr
 GHz [;]
 Analysis BW
 - Julation of signals

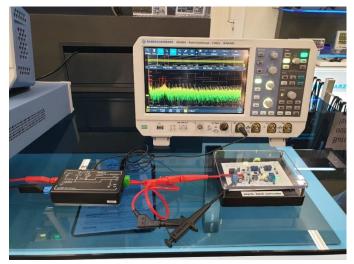
Oscilloscope

- ► 3 dB Filter
- One shot analysis
 frequency rance
- Measures ^r
 - Triggeres for signal
- Ang in frequency ine domain
- ated FFT possible
- Multichannel coherent receiver

EMI DEBUGGING WITH OSCILLOSCOPES? YES, WE CAN! (AND IT'S VERY HELPFUL)

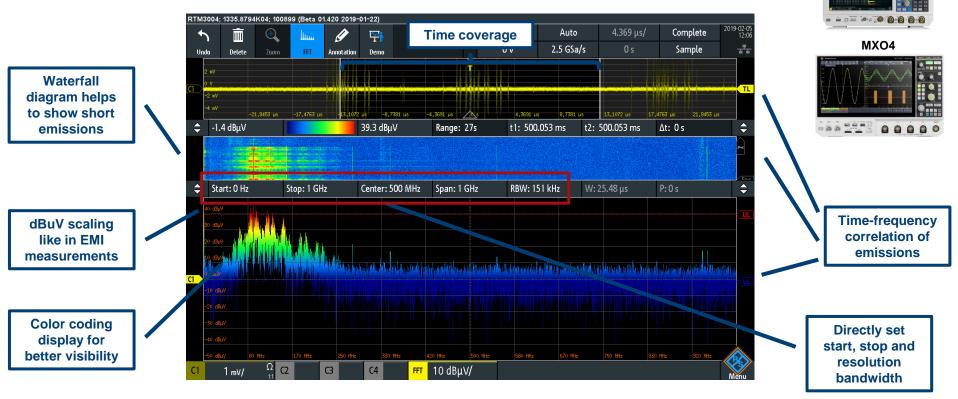
- Available on every R&D engineer desk
 - Easy debugging of EMI problems in R&D
 - Improvements can easily be tested
- Oscilloscopes show both time and frequency domain
 - Correlation between unwanted spectral emission and time-domain signal parameters easily possible
 - Time-domain trigger has advantages for capturing intermittent signals
- Today's oscilloscopes provide excellent sensitivity and usability
 - 1 mV/Div corresponds to DANL ~0dBuV (R&S®RTO at 500 MHz, 120 kHz RBW, 50 Ω)
 - Direct input of frequencies and resolution bandwidth



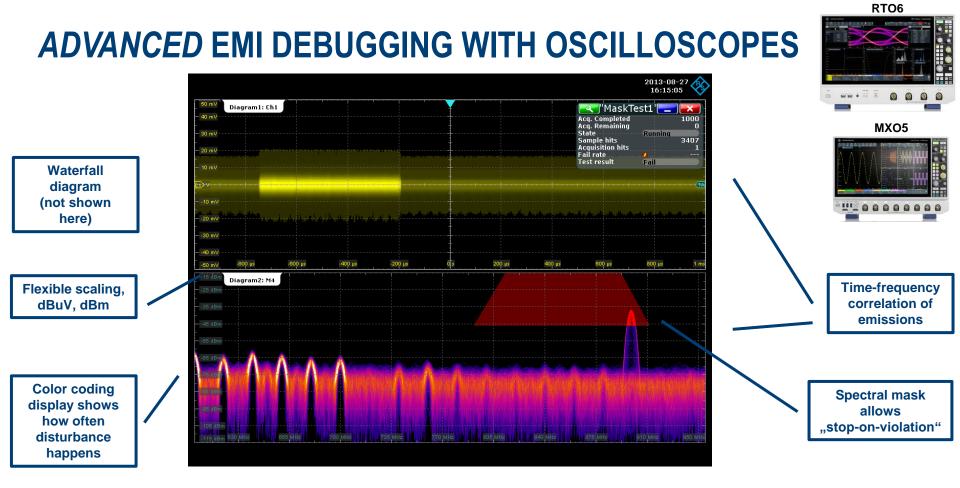

EMI DEBUGGING WITH OSCILLOSCOPES

Radiated Emission

Debugging after failed Pre-Compliance or Compliance

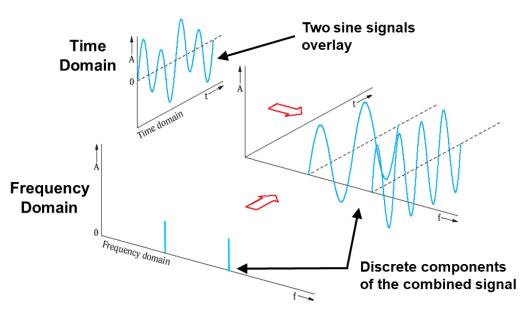


Conducted Emission Pre-test and debugging in the R&D lab

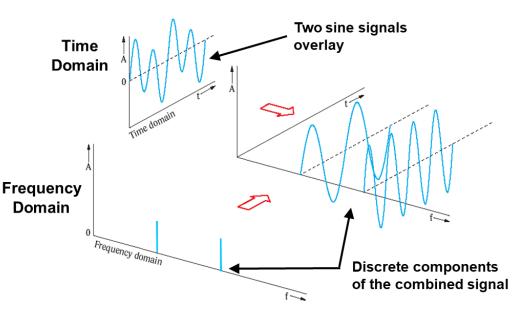


Spectrum Analysis using Oscilloscopes

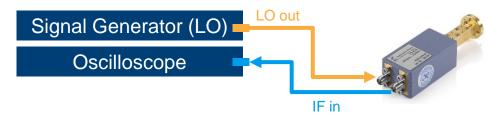
BASIC EMI DEBUGGING WITH OSCILLOSCOPES



RTM3000 / RTA4000

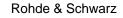

EMC DEMO

- Typical objections using an oscilloscope for spectrum analysis:
- 1) Sensitivity and the sense of the sense of
- 2) No gapless recording possible.


Typical objections using an Two sine signals overlay Time oscilloscope for spectrum analysis: Domain Sensitivity 25 ty of an 1) rime domain Dism oscille insufficient. 2) True, but isolation of events possible using Frequency Trigger and Mask Test! Domain 0 Frequency domain **Discrete components** of the combined signal

- Typical objections using an oscilloscope for spectrum analysis:
- 1) Sensitivity and send by of an oscille **Dismissed** by of an oscille **Dismission** oscille **Dismission** of the sender of the sen
- 2) True, but isolation of events possible using Trigger and Mask Test!
- 3) Frequency range is limited to analogue bandwidth

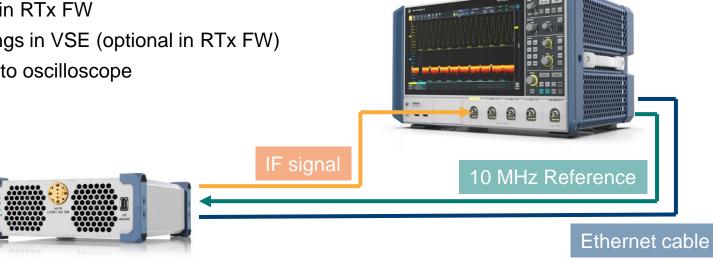
HARMONIC MIXERS


- ► FS-Zxxx Harmonic mixers
- Extend frequency range of R&S instruments up to 325 GHz
- ▶ Up to 4.4 GHz analysis BW
- Conversion loss characterized <u>for each and</u> <u>every mixer</u> in production line
- Calibration files included
 - *.acl files for spectrum analysis and narrowband IQ signal analysis
 - *.b2g and *.b5g files for wideband IQ signal analysis

Туре	Frequency Range [GHz]		
FS-Z60	40-60		
FS-Z75	50-75		
FS-Z90	60-90		
FS-Z110	75-110		
FS-Z140	90-140		
FS-Z170	110-170		
FS-Z220	140-220		
FS-Z325	220-325		

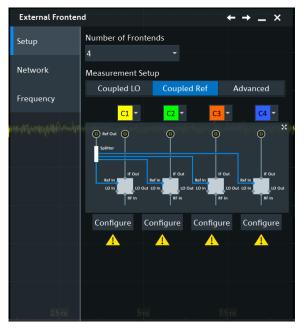
EXTERNAL FRONTENDS

- High-End external frontends for wideband IQ-signal analysis
 - Integrated high-end LO synthesizer with very low phase noise
 - Spectrum analyzer class dynamic range through power level control (RF and IF attenuators)
 - Large IF bandwidth
 - Integrated/optional band-pass filters for image rejection and spur suppression
 - Automated calibration
 - For frequency bands with high potential/interest
 - 5G FR2 → FE44S and FE50DTR
 - 6G → FE170ST/R

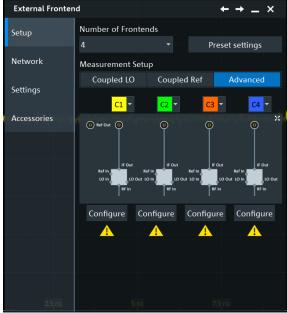


FRONTENDS AND OSCILLOSCOPE FW

- ► In general:
 - Detailed setup in RTx FW
 - Use-case settings in VSE (optional in RTx FW)
- First, connect FE to oscilloscope

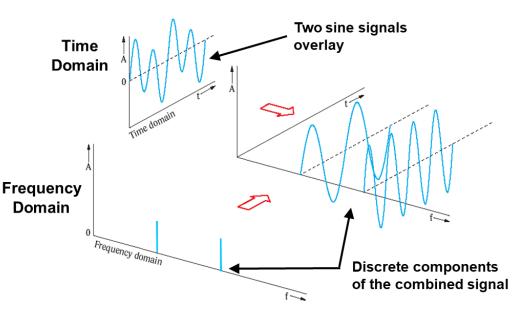


SETUP WITH GUI INSTRUCTIONS

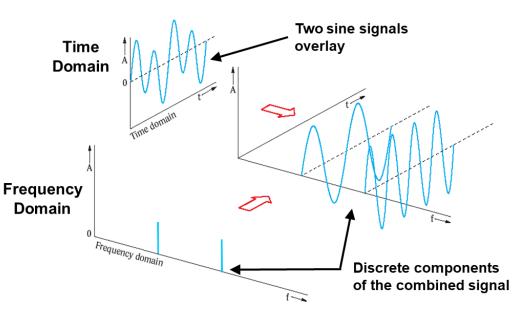

Coupled LO – minimum phase noise

External Fronten	d		÷	→ _ ×
Setup	Number of Fron	tends		
Network	4 Measurement Se	etup		
Frequency	Coupled LO	Couple	d Ref A	dvanced
t alintelisentradiopo	C1 ▼	<mark>C2</mark> ▼ (©	<mark>−3</mark> -	<mark>C4</mark> ▼ ⊛ ×
	Ref In TF Out	IF Out	Ref in FOut ut LO In RF In	IF Out
	Configure	Configure	Configure	Configure
	<u>^</u>	A	4	A
2.5 ns	, Sr	ns	7.5 ns	

Coupled Ref – Easy setup



Advanced - configure each FE to your liking



Spectrum Analysis using Oscilloscopes

- Typical objections using an oscilloscope for spectrum analysis:
- 1) Sensitivity and send by of an oscille **Dismissed** by of an oscille **Dismission** oscille **Dismission** of the sender of the sen
- 2) True, but isolation of events possible using Trigger and Mask Test!
- 3) Frequency range is limited to analogue bandwidth

- Typical objections using an oscilloscope for spectrum analysis:
- 1) Sensitivity and send by of an oscille **Dismissed** by of an oscille **Dismission** oscille **Dismission** of the sender of the sen
- 2) True, but isolation of events possible using Trigger and Mask Test!
- 3) Frequency range can be extended using external mixers or frontends.

Find out more www.rohde-schwarz.com/oscilloscopes

Questions?

ROHDE&SCHWARZ

Make ideas real

