MEASUREMENT OF CURRENTS AND HIGH VOLTAGES

Nick Le Bas

RSUK Oscilloscope Product Manager / Application Engineer

ROHDE&SCHWARZ

Make ideas real

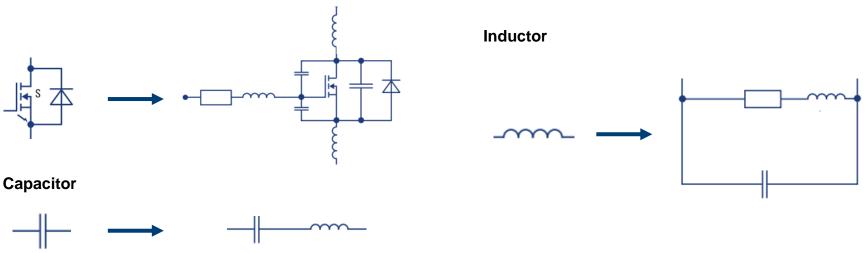
MAIN CHALLENGES

- ► High frequencies: Wide bandgap materials
- ► Dynamic range: Operation in wide ranges of current and voltages
- Alignment of current and voltage signals
- ► Noise: DC-DC converters can produce noise that can interfere with measurements
- Dynamic performance: Rapid changes in output voltage and current
- Accessibility to the DUT

HOW TO ESTIMATE THE NEEDED BANDWIDTH?

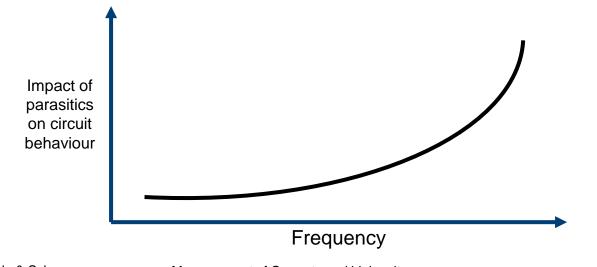
- Required scope bandwidth depends on test signals frequency components
- Bandwidth relates to rise time t.
- ► If only a max. slew rate is given the rise time is calculated accordingly: $t_r = \frac{\Delta Voltage}{Slew Rate}$
- Estimating the Bandwidth needed Investigating the units:

Rise time t_r is expressed in [s] Frequency is expressed in [Hz] $f_{max} = 1/t_r$


▶ As a rule of thumb f_{max} can be estimated by using the equation $f_{max} = 0.5/t_r$

PARASITICS – WHY CONSIDER THEM?

WHAT IS MEANT BY PARASITICS?


This term refers to undesirable components or effects that accompany the intended electrical behavior of a circuit.

IS IT ALWAYS AT HIGH FREQUENCIES?

- ► Parasitic elements can exist at low frequencies.
- However, their impact may be less noticeable at lower frequencies compared to higher frequencies, as the parasitic elements may not have a significant effect on the behavior of the circuit.

WHERE DO PARASITICS OCCUR?

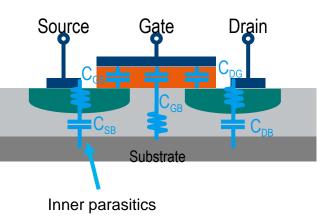
 \mathcal{M}

Cables

- Parasitics dominated by
 - Length
 - Geometry
 - Overall Quality
 - Frequency range

Connectors

- The model is similar to the one used for cables.
 - Resistance and inductance are mainly dominated by the length and chosen material.
 - Capacitance: depends on the geometry of the pin

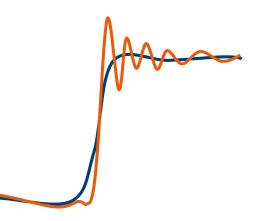


- Same like for Cable and Connector:
 - Length and geometry dominate the effective R, L and C of the clip.
 - So each clip will cause different variations to the measurement.

WHERE DO PARASITICS OCCUR?

Packaging

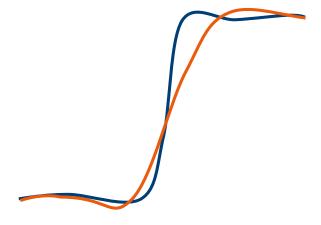
PCB / Testpoint

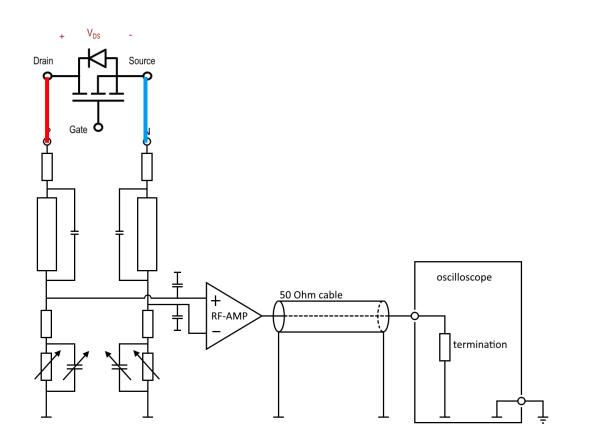

- With new package technologies test points in the PCB have to be utilized.
- Depending on frequency these could be pinheaders or have to be coaxial style.
- But in dependency of the frequency range investigated they will influence the resonant behavior of the system.

Current measurement

- All methods have one thing in common:
 - In dependency of the frequency they have significant influence on the displayed signal!

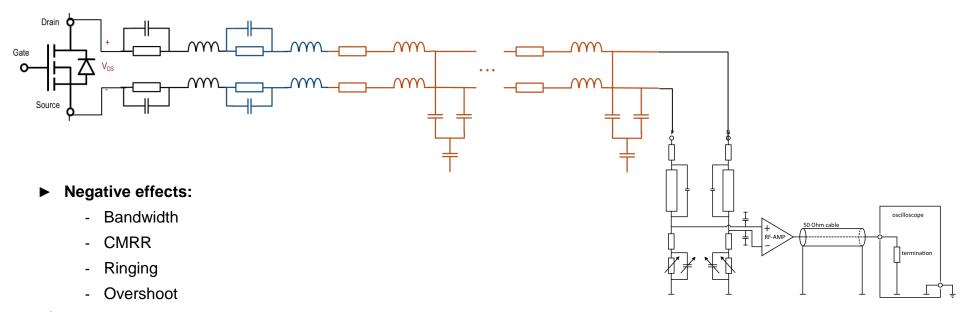
INFLUENCE IN MEASUREMENTS OVERSHOOT

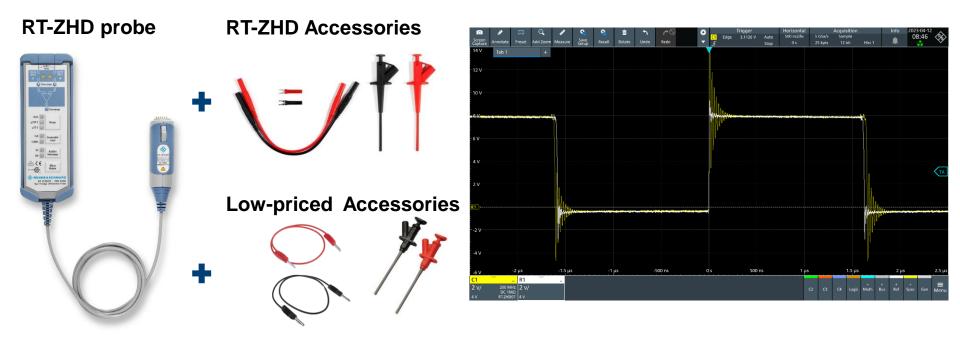

- It is important to differentiate the overshoot of the DUT and the one influenced by the probing.
- Parasitics of the interconnections create an impedance mismatch with the signal source.
- \blacktriangleright This leads to reflections and ringing \rightarrow Increase in overshoot

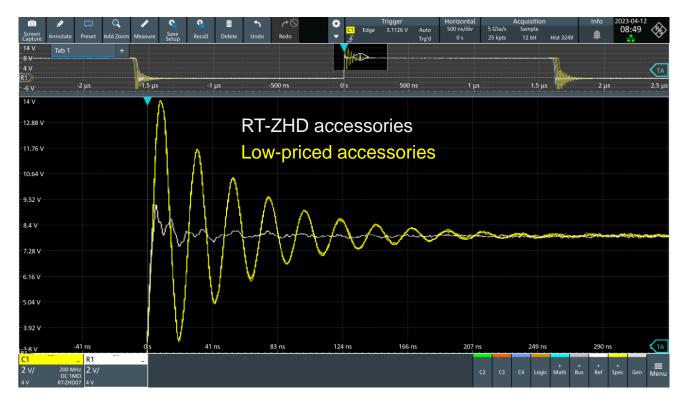

INFLUENCE IN MEASUREMENTS RISE TIME / SLEW RATE

- Parasitics of interconnections have a significant impact on the rise time of a high frequency signal.
- The sharp edges of GaN and SiC devices make them more sensitive to parasitic effects.
- In general, each parasitic element affects the slew rate that is measured:
 - Parasitic capacitance: Acts as a low-pass filter, leading to an underestimation of the rise time.
 - Parasitic inductance: Causes ringing and oscillations which affect the rise time / slew rate.
 - Parasitic resistance: Voltage drop, especially in highcurrent applications.

MODEL

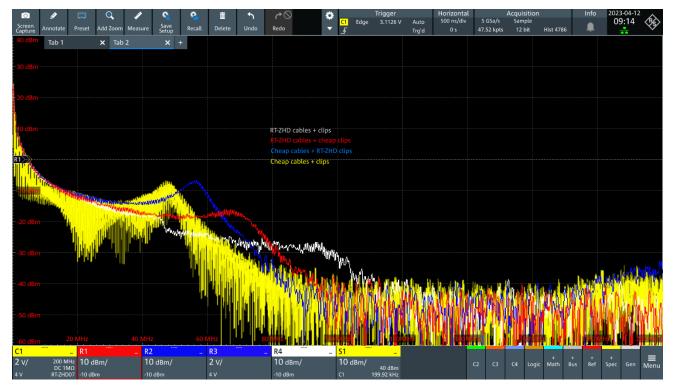

Ideal




MODEL

Real

ß

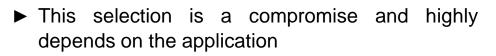


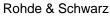
Best case

- 1 V overshoot
- 12,5 %

- Worst case
 - 5 V overshoot
 - 62,5 % !!

Best case RT-ZHD accessories


Worst case

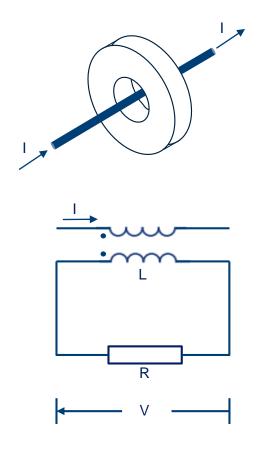

- Low-cost accessories

HOW TO MEASURE CURRENTS?

CURRENT MEASUREMENTS

- The selection of a current measurement technique is a challenging task and several aspects must be taken into account:
 - Bandwidth
 - Sensitivity
 - Maximum current
 - Accessibility to the test point
 - Saturation
 - Insertion impedance
 - Positioning

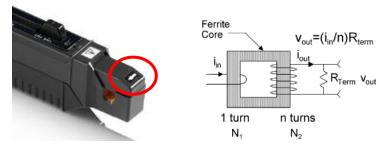
INSERTION IMPEDANCE


- It refers to the equivalent impedance that appears in series to the circuit (conductor under test) when it is being probed.
- ► The insertion impedance can be calculated as:

$$Z_{ins} = Z_{refl} + Z_{intr}$$

Where Z_{refl} is the secondary impedance reflected into the primary by transformer action and Z_{intr} is the intrusion impedance originated by the core material of the current probe.

$$Z_{refl} = \frac{(\omega M)^2}{R + j\omega L}, \ Z_{intr} = j\omega \frac{L}{N^2} - j\omega \frac{L_0}{N^2}$$

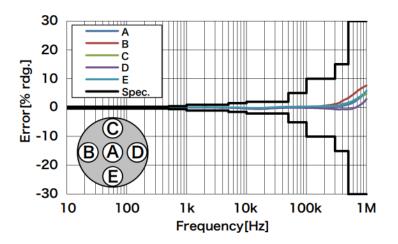

► At lower frequencies, the core losses are negligible.

POSITIONING

Orientation of current

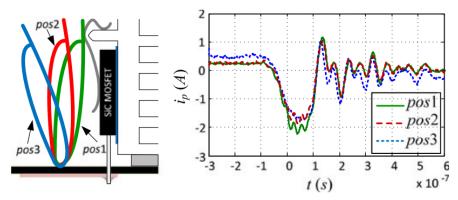
- ► The orientation of the probe matters.
- The current probe is designed to work as a coupled transformer where the primary is the wire and the secondary the probe. Thus, it expects the current to be flowing in a specific direction.

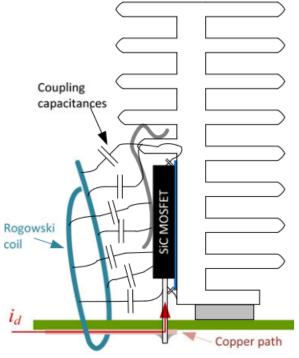
- An incorrect orientation translates into an inverse output voltage of the current probe.
- Probes are calibrated considering a single current direction.


Roh

Rohde & Schwarz

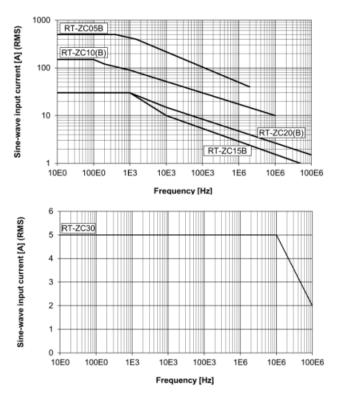
Measurement of Currents and high voltages


Cable position


- The clamp-type current probes exhibit dependency on the positioning of the conductor.
- It should be placed in the center of the aperture since the characterization of the probe is done in this position.
- ightarrow achieve best possible accuracy, and reproducibility.

How to measure currents? **POSITIONING COUPLING CAPACITANCES**

- Besides the conductor position, the relative position of the current probe is also important.
- When the probe is close to a component, it will suffer from electromagnetic interference due to capacitive coupling.
- The distance to nearby components should be kept to a minimum.

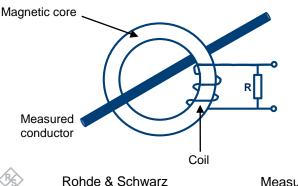


Oyarbide (2017). New Current Measurement Procedure Using a Conventional Rogowski Transducer for the Analysis of Switching Transients in Transistors.

NONLINEARITY OF CURRENT MEASUREMENTS HIGH CURRENTS AT HIGH FREQUENCIES

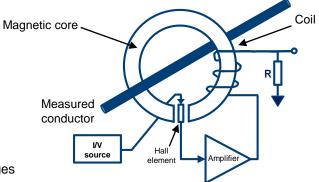
- The linear operation of a probe is given by the ampsecond product, which is defined as the average current multiplied by the pulse width.
- When the maximum value is reached, the probe goes into saturation and the core is unable to handle the induced flux B.
- The $Z_T I = U$ equation is no longer valid and the peaks of the waveform are not displayed in the oscilloscope.
- The amp-second product evidences the dependence of the core saturation on the frequency. Thus it is important to observe the derating curve in the manufacturers datasheet.

TEMPERATURE


- ► One of the potential problems when using the clamp-type probes is the damage from self-heating.
- ► The maximum rated current assumes sine-wave input under standard conditions.
- For frequencies higher than 1 kHz the temperature in the sensor head rises because of the excitation loss that cannot be prevented.
- The temperature also increases when the measured current waveform contains other frequency components

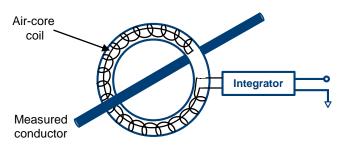
COMMONLY USED PROBES

Current transformer (CT)


- It produces AC current in the secondary, which is proportional to the current in the primary.
- The number of turns is designed based on the current levels expected to be measured.
- ► It can only measure AC current.
- CTs reduce currents in a high voltage environment in a way that is safe for measuring equipment.
- ► Saturation at low frequencies

Measurement of Currents and high voltages

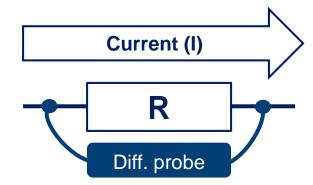
AC/DC zero flux + Hall element


- It combines the CT and hall effect sensors in order to measure AC and DC currents.
- It is characterized by the high sensitivity and low noise.
- Especially designed for oscilloscopes, where small current waveforms must be observed.
- There is an offset drift when the temperature changes.
- ► High bandwidth: can be greater than 100 MHz.

COMMONLY USED PROBES

Rogowski coil

- This type of sensors do not include a magnetic core, which allows:
 - Low insertion impedance
 - No saturation
 - Lack of heat generation
- ► Thus, it is suitable for high currents
- ► It can only measure AC currents
- Bandwidth limited to 50 MHz. The integrator and the length of the cable influence this limit.



Shunt resistor

► It applies Ohm's law to measure the current.

$$R = \frac{V}{I}$$

- ► The shunt is a (low-value) resistor that it is connected in series in order to carry the current of interest.
- ► It can measure AC and DC currents.
- Ideal for SUTs with no clamp accessibility. but it requires a differential probe

COMMONLY USED PROBES

Sensor	Туре	DC?	Bandwidth	Saturation	Position	Intrusive	Current level	Thermal drift?	Precision	Physical principle
Current transformer	Fixed / Clamp	No	< 100 kHz	Yes	Important	Yes	~ kAmps	No	Average	Faraday's law
Zero flux + Hall	Clamp	Yes	< 120 MHz	Yes	Very important	Yes	< 100 A	Yes	Good	Magnetic field
CT + Fluxgate	Clamp	Yes	< 3 MHz	Yes	Important	Yes	< 1 kA (@ 200 kHz)	No	Excellent	Magnetic field
Rogowski coil	Clamp	No	< 50 MHz	No	Very important	No	< 4 kA	No	Average	Faraday's law
Shunt resistor	Fixed	Yes	< 1 GHz	No	Does not matter	Yes	< 200 A	Yes	Good	Ohm's Iaw