

Universität Stuttgart

Institut für Robuste Leistungshalbleitersysteme

Ingmar Kallfass, University of Stuttgart Rohde & Schwarz Oscilloscope Days 2024

Overview

- Motivation
- Principles of Dynamic Active Power Cycling
- Acquisition of Temperature-Sensitive Electrical Parameters (TSEP)
 - µC on Device Potential / Power Ground
 - µC on Isolated Potential / Signal Ground
- TSEP Measurements
- Multiple TSEP Sensor Fusion
- Outlook

2

Motivation

Temperature as a Key Factor in Reliability of Power Electronics Extended LESIT study – bond wire and solder fatigure

4

Wide Bandgap Semiconductor Power Devices SiC MOSFET and GaN HEMT

Power

Johnson FOM: FOM_{Johnson} = $\frac{v_{sat}E_{c}}{2\pi}$ Baliga FOM: FOM_{Baliga} = $\epsilon \mu_{e}E_{g}^{3}$ Hard switching loss FOM: $R_{on}Q = \frac{2}{\mu \cdot E_{c}^{2}}V_{bd}^{2}$

Power Density

High Temperature Operation

Reliability

Condition Monitoring of Power Semiconductor Devices and Modules

6

PRINCIPLES OF DYNAMIC ACTIVE POWER CYCLING

Active Power Cycling Tests Static Active Power Cycling (sAPC)

Conventional method ("DC power cycling")

- Energization of the device under test (DUT) via a current source
- Cyclic heating and cooling phases induce temperature swing
- DUT does not actively switch, resulting in different power losses compared to normal operation

TSEP Acquisition

 "V_{SD}-method" → voltage drop over body diode under application of a small (mA) measurement current

Choi, Ui-Min & Blaabjerg, F & Jorgensen, Soren. (2017). Power Cycling Test Methods for Reliability Assessment of Power Device Modules in Respect to Temperature Stress. IEEE Transactions on Power Electronics. PP. 1-1. 10.1109/TPEL.2017.2690500.

Active Power Cycling Tests Dynamic Active Power Cycling Tests (dAPC)

- Device heating through pulsed active power cycle
- Operation under realistic operating conditions incl. switching loss
- Voltage range adjustable up to the maximum blocking voltage of the modules
- Parameter acquisition more challenging due to realistic operating conditions

Choi, Ui-Min & Blaabjerg, F & Jorgensen, Soren. (2017). Power Cycling Test Methods for Reliability Assessment of Power Device Modules in Respect to Temperature Stress. IEEE Transactions on Power Electronics. PP. 1-1. 10.1109/TPEL.2017.2690500.

9

Dynamic Active Power Cycling

Methodology for dynamic power cycling pursued at the University of Stuttgart:

Approach

 Operation of the inverter in three-phase converter mode

Characteristics

- Load similar to the application
- Aging of the entire module
- Real-time online multi-TSEP acquisition in every switching period

Dynamic Active Power Cycling System Overview

Rapid Control Prototyping System (dSPACE Microlabbox)

max. 1.2 kV / 132 A (SiC) power modules

Temperature Control Unit 20°C – 150 °C

400 V / 800 V DC-link

Back-To-Back Converter

R_{on} / V_{sd} V_{th, on/off} t_{on/off} I_{g,peak}

Dynamic Active Power Cycling Three Phase inverters

 Control of two input- and output-side coupled inverters

- Versatility of load current profiles
 - Trapezoidal
 - Sinusoidal
 - Drive profile

۰

TSEP ACQUISTION

Challenge: AD-Conversion

STATIC POWER CYCLING

DYNAMIC POWER CYCLING

 AD-conversion dependent on switching state

Acquisition Concepts – System Overview Processing Unit On...

MCU ON POWER GROUND / ON DEVICE POTENTIAL

- 1 MCU per DUT + 1 main MCU
- Free choice of communication protocol
- Slow (half-duplex) but robust

MCU ON ISOLATED POTENTIAL / ON SIGNAL GROUND

- 1 MCU for multiple DUTs
- Communication protocol dictated by ADC
- Challenge: synchronisation of isolated SPI bus

Acquisition Concepts – System Overview Processing Unit On...

MCU ON POWER GROUND / ON DEVICE POTENTIAL

MCU ON ISOLATED POTENTIAL / ON SIGNAL GROUND

MCU on Power Ground / on Device Potential Parameter Acquisition

- Connection of TSEP circuits to readout system with isolated supply and communication •
- Acquisition of $V_{\text{th},q}$, $I_{\text{G,Peak}}$ and $R_{\text{DS,on}}$ through multiplexed ADC

MCU on Power Ground / on Device Potential Multiple DUTs

MCU on Power Ground / on Device Potential TSEP Acquisition PCBs

- 6x complete set
- modularity: 3x acquisition boards per transistor

Total

- 18 acquisition boards:
 - 6x *V*_{th,q}
 - 6x I_{G,Peak}
 - 6x *R*_{DS,on}
- 6x main board (with μC)

MCU on Power Ground / on Device Potential Dynamic Active Power Cycler

MCU on Signal Ground / on Isolated Potential

- Enables miniaturisation
- Enables stacking of power module driver board – TSEP board
- 1 MCU per half-bridge
 - "control center" with condition monitoring of a power module

control signals

status signals

Institute of Robust Power Semiconductor Systems

interface

MCU on Signal Ground / on Isolated Potential PCB Stacking

- Plugin-board for parameter acquistion
- Connection to...
 - Device side Signal side
- Control board
 - Sensor data readout
 - If desired, can be replaced by FPGA/MLBX

TSEP Measurements

Munoz-Baron et.al. APEC2021

Measurement of TSEP On-State Resistance

- On-state resistance as an indicator of device aging
- Direct measurement difficult due to high $V_{\rm DC}$

$$\begin{split} I_{\text{clipper}} &\approx \frac{V_{\text{th},\text{Q2}}}{R_{\text{aux},2}} \quad \text{for } V_{\text{IN}} < V_{\text{CC}} - V_{\text{Zener},2} \\ I_{\text{clipper}} &\approx \frac{V_{\text{th},\text{Q1}}}{R_{\text{aux},1}} \quad \text{for } V_{\text{IN}} > V_{\text{Zener},1} + V_{\text{EE}} \\ \varphi_{\text{D}'} &\approx \varphi_{\text{D}} \qquad \text{otherwise} \end{split}$$

Approach

 Depletion-mode MOSFET based clipper circuit

Munoz-Baron et.al. APEC2021

Measurement of TSEP Peak Gate Current

 Indicator of deterioration in the gate path, typically on chip-level

Approach

• Measurement of $V_{RG,Peak}$

Measurement of TSEP Quasi-Threshold Voltage

- Indicator of chip-level deterioration
- measurement with conventional methods impractical during operation

 acquisition of "quasi-threshold" voltage V_{th,q}

 Voltage drop over parasitic inductance as trigger

Munoz-Baron et.al, APEC2021

quasi-threshold voltage

Measurement Results in Inverter Operation

 $V_{\rm GS,on} = 18 \text{ V}, V_{\rm GS,off} = -3 \text{ V}, R_{\rm G,ext} = 4.7 \Omega$ $V_{\rm DC} = 800 \text{ V}, I_{\rm D} = 50 \text{ A}$

Threshold Voltage

acquisition during turn-on

• $V_{\rm th,q} = 5.8 \, {\rm V}$

Gate Current Peak

- acquisition during on-state
- limited bandwidth due to low offset output amplifier
- $I_{G,Peak} = 3 \text{ A}$

Sweep range 0 - 600 V 10 - 100 A

On-State Resistance

- acquisition during on-state
- < 1 μ s after turn-on

•
$$V_{\rm DS,on} = 1.3 \, {\rm V}$$

MULTIPLE TSEP SENSOR FUSION

nstitute of Robust Power Semiconductor Systems

Multiple TSEP Measurements 50000 data points within approx. 1h

Institute of Robust Power Semiconductor Systems

Condition Monitoring of Power Semiconductor Devices and Modules Motivation for Machine Learning

Munoz-Baron et.al. IPEMC2024

Machine Learning Based Sensor Fusion for Junction Temperature Estimation

Correlation of TSEPs

ML-based temperature estimation

Afanasenko et.al. IPEMC2024

Online Degradation Detection and Estimation of SiC Power MOSFET based on TSEP

Combination of two TSEPs (V_{th} , $I_{g,peak}$) acquired under different temperature and operational conditions throughout the aging process to estimate degradation status via ANN

Outlook / Quo vadis?

- Parallelisation of muliple dAPCs
- dAPC tests of novel SiC power MOSFETs
- Extension of dAPC to GaN power transistors
- Increased degree of automisation
- Cloud access
- Online state-of-health monitoring during real drive profiles
- Parameterised drivers
- More extensive use of ML/AI

University of Stuttgart Institute of Robust Power Semiconductor Systems

Thank you!

Prof. Dr.-Ing. Ingmar Kallfass

e-mail ingmar.kallfass@ilh.uni-stuttgart.de phone +49 (0) 711 685-68747 Valentyna Afanasenko Dr. Oleksandr Solomakha ..and the entire team of the power electronics group at ILH

Kevin Muñoz Barón

e-mail kevin.munoz-baron@ilh.uni-stuttgart.de phone +49 (0) 711 685-69570 University of Stuttgart Institute of Robust Power Semiconductor Systems Pfaffenwaldring 47 70569 Stuttgart

Code Overview - Device Potential

Goal

- · Provide accurate data for health monitoring
- Lay the ground-work for further analysis by providing increased amount of data

Approach

- Isolated acquisition
- · Measurement in operation & in real time
- Simultaneous implementation on multiple transistors

Dynamic Active Power Cycling System Overview

Dynamic Active Power Cycling Tests (dAPC) Single-phase Prototype Inverter using two SiC Modules

- 1.2 kV 120 A SiC half-bridge module as DUT
- acquisition board connected directly to power module

•
$$V_{\rm GS,on} = 18 \text{ V}, V_{\rm GS,off} = -3 \text{ V}, R_{\rm G,ext} = 4.7 \Omega$$

Calibration of the TSEP Sensor Board

setup of TSEP board connected directly to the gate driver of a **1.2 kV / 120 A** SiC half bridge module. Turn ON & OFF waveform at 400 V / 100 A, 25 °C.

Parameter sweep $(0 - 600 \vee \& 10 - 100 \text{ A})$

Calibration

Temperature Dependency $V_{th,q}$ and $R_{DS,on}$ in Operation

• Buck converter mode at $V_{\rm ZK} = 400$ V, $I_{\rm D} = 100$ A

TSEP Measurements – Data Filtering – Example Rds,on

Institute of Robust Power Semiconductor Systems