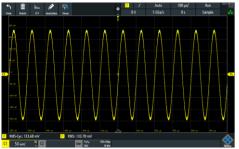
ROHDE&SCHWARZ

Make ideas real

resolution


R&S®RTM3000

versus Keysight InfiniiVision 3000T X-Series

The R&S*RTM3000 outperforms the Keysight InfiniiVision 3000T X-Series in key parameters with the power of ten

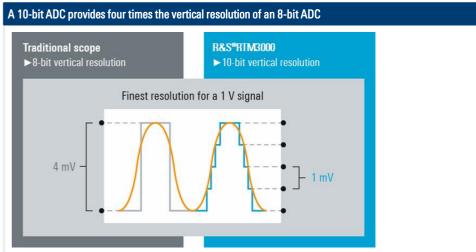
R&S®RTM3000: 10.1" display, 1280 × 800 pixel

	Α.	$-\Lambda$	$-\Lambda$	$-\Lambda$	$-\Lambda$	$-\Lambda$	$-\Lambda$										
			\ \ \		$\bigvee_{i} \bigvee_{j} \bigvee_{i} \bigvee_{j} \bigvee_{j} \bigvee_{i} \bigvee_{j} \bigvee_{j} \bigvee_{i} \bigvee_{j} \bigvee_{j$		\bigvee	t de management		\bigvee							\setminus
nV	250 milys 10 kill						Ś	DC	+1.2	1.00 1.00	H 00	+0.0V	1.00.1	+	0.0V 1.0	0:1 DC	+0.0V

Your benefit	Features					
Sharp waveforms, more accurate measurements	10-bit ADC with the R&S®RTM3000 oscilloscope's low-noise frontend gives you more accurate measurements and sharper waveforms					
Capture long periods at high sample rate	The R&S®RTM3000 oscilloscope's standard deep memory gives you extra insurance for those difficult measurements where other scopes run out of capacity					
Debug in the domain you're most comfortable with	Not only does the R&S®RTM3000 provide excellent time domain capabilities, it also offers advanced frequency domain analysis with simple RF setup, spectrogram and time-gated RF views					

Parameter	R&S®RTM3000	Keysight InfiniiVision 3000T X-Series				
Acquisition system						
Bandwidth	100/200/350/500/1000 MHz (1 GHz) (upgradeable)	100/200/350/500/1000 MHz (1 GHz) (upgradeable)				
ADC resolution	10-bit	8-bit				
Max. resolution	16-bit with high resolution or averaging	12-bit with averaging				
Max. sampling rate	5 Gsample/s	5 Gsample/s				
Memory depth	40 Msample per channel (all channels) 80 Msample (interleaved)	2 Msample per channel (all channels) 4 Msample (interleaved)				
Segmented memory/ history mode	optional – 400 Msample	standard – 4 Msample				
Waveform update rate	64 000 waveforms/s standard 2 000 000 waveforms/s in fast segmented memory mode	1 000 000 waveforms/s standard				
MSO sampling rate / memory	5 Gsample/s / 80 Msample	1.25 Gsample/s / 2 Msample				
Hardware input sensitivity	500 µV/div to 10 V/div	4 mV/div to 10 V/div				
Frequency domain analysis	yes, 4 inputs up to bandwidth of base unit with spectrogram	yes, 4 inputs up to bandwidth of base unit				
Accuracy						
DC gain accuracy	1.5 % to 3 %	2 % to 8 %				
Channel-to-channel isolation	> 50 dB up to bandwidth of scope	> 40 dB up to bandwidth of scope				
Form factor						
Display	10.1" (1280 × 800) pixel resolution	8.5" (800 $ imes$ 480) pixel resolution				
Touchscreen	yes — capacitive	yes - capacitive				
Boot time	~ 10 s	~ 30 s				

Innovative user interface, quick and easy to use



The R&S®RTM3000 user interface offers features not available on the Keysight 3000T X-Series.

- ► Touchscreen with gesture support and on-screen annotation
- Mouse support
- ► Grid annotations for easy determination of vertical and horizontal values
- ► Pull up/down menu for optimized waveform viewing
- ▶ Quick measure button to immediately display nine automated measurements on the signal

Configurable toolbar (including undo and redo) for fast access to functions and quick finger annotation, allowing fast operation and documentation

Advantage factors of R&S®RTM3000 versus Keysight InfiniiVision X3000T

4 X More ADC resolution

20 x More memory

45 % More display area

3 X
Faster boot time

100 X
More segmented memory

2.7 X
More pixels

Rohde & Schwarz GmbH & Co. KG | Europe, Africa, Middle East +49 89 4129 12345 | North America 1 888 TEST RSA (1 888 837 87 72)

Latin America +1 410 910 79 88 | Asia Pacific +65 65 13 04 88 | China +86 800 810 82 28 / +86 400 650 58 96

www.rohde-schwarz.com | customersupport@rohde-schwarz.com