Compact User Antennas for UAV-NTN in Space-Air-Ground (3D) Integrated Networks

<u>Aparna P. T. Adithyababu</u>, Federico Boulos, Korbinian Zangl, and Stefano Caizzone German Aerospace Center (DLR), Oberpfaffenhofen, Germany. 01.02.2024

Outline

- NTN Overview.
- User Platforms: Stationary and Mobile.
- Antenna: Small footprint.
- Antenna: SWaP-C reduction.
- Current developments at DLR.
- Conclusion

NTN Overview

TN-NTN Integration:

- Unavailability of TN in remote areas.
- Destruction of TN networks by natural/manmade disasters.
- Sharing user traffic between TN and NTN.

* 3GPP, Solutions for NR to support non-terrestrial networks (NTN), document TR 38.821 V16.2.0, Mar 2023.

User Platforms - Mobile

Large user platforms

DLR

- More flexibility in user terminal design.
- More freedom in SWaP-C (Size, Power, Weight, Cost).
- Vast variety of technology and commercial terminals available.

Small user platforms

- Small user terminal antennas are essential.
- Low SWaP-C expected.

~6 cm

- Antenna: 134g, 3.8cm height, 8 cm diameter.
- Iridium Certus[™] 100 satellite service.
- L band.
- 88 Kbps DL.

*<u>PLANET_9770_UAV-L_Terminal_V1-0.pdf (atmosphere.aero)</u>

6

~6 cm

Small arrays are capable for NTN applications (acceptable gain in analyzed steering cases till 55°).

Antenna → SWaP-C reduction

Clustering

→ Antenna elements have a common excitation (amplitude/phase) control point resulting in less price and power consumption.

Array1: No clustering

Array2: 2-element cluster

Array3: 4-element cluster

If one beamformer IC supports 4 dual-polarized elements:

ICs required: 16

9

ICs required: 8

ICs required: 4

*A.P.T. Adithyababu, F. Boulos, and S. Caizzone, "Analysis of performance and radiation regulation compliance on a miniature Ka band antenna", in IEEE International Symposium on Antennas and Propagation and ITNC-USNC-URSI Radio Science Meeting, Florence, Italy, 2024 (submitted).

Analysis*

- Small footprint and clustering: Degradation of performance (and occurence of grating lobes) as expected.
- Analysis → Find the trade-off between the performance degradation and SWaP-C reduction.

Performance exhibited by 3 analyzed arrays*

(θ°,Φ°)		Dmax	_
	A1	A2	A3
0,0	23.2	22.8	23.2
30,0	22.3	22.1	19.6
60,0	18.7	18.8	8.1
30,45	22.4	20.8	20.1
60,45	19.4	15.1	11.0

SWaP-C reduction:

10

- 4 element clustering shows major reduction in gain which makes it impossible to close the link.
- 2-element clustering found to be a good trade-off (acceptable and comparable performance to A1 in most cases).

*A.P.T. Adithyababu, F. Boulos, and S. Caizzone, "Analysis of performance and radiation regulation compliance on a miniature Ka band antenna", in IEEE International Symposium on Antennas and Propagation and ITNC-USNC-URSI Radio Science Meeting, Florence, Italy, 2024 (submitted).

Antenna element developed at DLR

Antenna (domino)*:

• 2-element cluster

11

- Ka-band RX (19.7-20.2 GHz)
- Simultaneous Dual CP (LHCP, RHCP)

*F. Boulos, U. Johannsen, and S. Caizzone, "Customizable phased array antenna based on domino tiles for satcom applications," in IEEE International Symposium on Phased Array Systems and Technology, Waltham, Massachusetts, USA, 11-14 Oct. 2022.

Beam-former Board Developed at DLR

Beam-former board*:

- Using Anokiwave AWMF 0197 IC
- Board dimension ~6 cm
- Support different orientations of dominos.

*F. Boulos, E.O. Addo, S. Caizzone, and U. Johannsen, "A Modular, Low-cost Ka band Antenna Subarray as Building Block for Phased Arrays of Arbitrary Size and Shape," in 18th European Conference on Antennas and Propagation (EuCAP), 2024 (submitted).

12

Conclusion

- 64 element antenna array being developed \rightarrow for small platforms.
- We can make it fly!©

- aparna.parakkalthachappillyadithyababu@dlr.de
- stefano.caizzone@dlr.de

