WORKING WITH ACQUIRED
WAVEFORM DATA IN PYTHON

Rohde & Schwarz oscilloscopes utilize leading-edge technologies to achieve reliable

and reproducible results.

Your task

As a development or test engineer, you use an R&S®RTP,
R&S®RTO or R&S®RTE oscilloscope in your daily work. You
store recorded waveforms for archiving and documenta-
tion or for further processing that is beyond the oscillo-
scope’s functional or performance limits. Using the ASCII
format (csv file suffix) to store waveforms can potentially
exceed the storage capacity. This format also requires

a significant amount of time to transfer and process.
Moreover, some information is unavailable when using the
ASCII format instead of the binary format.

Rohde & Schwarz solution

The Rohde & Schwarz lab and performance oscilloscopes
(R&S®RTP, R&S®RTO, R&S®RTE) all share the same format
for binary waveform storage. The high-performance aux-
iliary Python RTxReadBin package allows you to handle
binary files and obtain all of the necessary details for your
documentation.

Application Card | Version 01.00

ROHDE&SCHWARZ
Make ideas real

Application

In order to transfer the waveform from your instrument to

your Python environment, you must prepare the Python

IDE:

1. Download the RTxReadBin package from the
Rohde & Schwarz website

2. Install the package on your system

3. Acquire a waveform on your scope and store it as a
binary file

Two files will be created: a waveform description file (*.bin)
and a waveform data file (*.wfm.bin). The waveform data
(loaded via the RTxReadBin function) may consist of the
following:

» Analog channels

Digital channels (MSO)

Parallel buses (acquired via MSO)

Analog channels (via ZVC)

Math waveforms including spectra

Tracks (automated measurement based waveforms)

vVvyyvyyvyy

For all of these signal sources, multiple acquisitions and
multiple channels are supported if applicable.

After acquiring data with the Rohde &Schwarz oscillo-
scope, you can load it into your Python environment for
further processing. For greater convenience, however, you
can also leave the waveform where it is and enable net-
work access to the data by mounting a CIFS share on your
computer. Perform the following preparatory steps on the
oscilloscope:
1. Go to advanced sharing
2. Select public profile and change the following

parameters:

— Turn on network discovery

— Turn on file and printer sharing

— Turn on write access to public folders

Once you have completed these steps, you can connect
to the scope using the following file path in your Python
script:

r’\\<name of scope or IP address>\Users\
Public\Documents\Rohde-Schwarz\RTx\
RefWaveforms\<filename>.bin’

Be aware that because Python interprets the string, the \U
character sequence will be interpreted and lead to an error.
To avoid this, just add an “r” (for raw) in front of the string.
You may be asked for credentials. Make sure you do not
use authentication against the local Windows domain
server. To do this, precede the local account instrument
with a backslash:

\instrument
<your oscilloscope pw>

account:
password:

Alternatively, you can also download (drag and drop) the
waveform from the scope using Windows Explorer.

Once these prerequisites are in place, you can load the
module via the Python import and invoke RTxReadBin. The
simplest way to do this is by providing the filename. The
function returns three parameters: the vertical waveform
data (y), the horizontal axis data (x) and the acquisition
parameter (S).

> from RTxReadBin import RTxReadBin

> import numpy

> vy, X, S = RTxReadBin ('<wfm filename>.bin’)
> y.shape

The vertical data (y) is a NumPy array with a shape of
[<record Length>, <# of acquisitions>,

<# of active channels>]. Foran MSO waveform, the
data type is just Boolean and for the parallel bus, it is an
unsigned integer (uint16), bit-packed with the highest
MSO index (MSB). For example, assume MSO lines D,
D,, D, and D, are connected and configured as a paral-

lel bus. Then, the recorded data word will be stored as

D, 23+D,-22+D, 2"+ D, 2° For all other waveform data
types, float32 is used. It is important to mention that the
oscilloscope uses a different way of counting the history of
acquisitions compared to Python. The oscilloscope starts
with (1 -<# of acquisitions>)and counts up to 0 as
the last acquisition. In Python, the counting is shifted and
starts with 0 and ends with (<# of acquisitions>-1)
as the last acquisition.

The horizontal data (x) is a 64-bit float NumPy array with a

shape of [<record length>]. If the data is stored in x/y

interleaved format, the array is extended to cover all acqui-
sitions [<record length>, <# of acquisitions>].|f
a spectrum is stored, the x axis will contain the frequency

axis of the spectrum.

The record length, number of acquisitions and channels
can be easily retrieved by accessing the shape property of
the return value .

If not all of the parameters are required, they can be
ignored using the standard Python techniques, e.g. by
adding a list specifier (see example below) or using an
underscore as a positional return parameter.

> vy, X =
RTxReadBin ('<wfm filename>.bin’) [0, 2]

There are two further (optional) parameters that can be
specified in order to reduce the amount of allocated mem-
ory. The first parameter specifies the acquisitions of inter-
est. The second parameter specifies the interval, time or
frequency of interest. Both require a list with a length of
two items. Be aware that the acquisition parameter follows
the Python notation of a list. In the given example, two
acquisitions (2,3) are returned.

> vy, x, S = RTxReadBin ('<wfm filename>.bin’,
acquisitions = [2,4],
xInterval = [-2e-7,3e-7])

The remaining parameter S gives all of the details that are
available in the header file. It is implemented as a Python
dictionary. Not all of these parameters are important for
the user. However, a few of them can be helpful for docu-
mentation and analysis. Since the waveform data in the y
vector is just a float, the user cannot determine the origi-
nal settings from this data. By examining the parameters
in the header, however, the user can obtain the necessary
information for documentation and postprocessing. For
example, in order to understand the noise constraints for
a measurement, it is important to have information about
the settings for the vertical scale, offset, position and
coupling.

Another example involves pulse repetition interval (PRI)
analysis in radar applications. When one radar pulse per
acquisition is captured using the segmented memory ",
the list of timestamps from a segmented capture gives the

' See "Demodulating radar RF pulses with an oscilloscope” on the
Rohde&Schwarz website: www.rohde-schwarz.com/applications/demodulat-
ing-radar-rf-pulses-with-an-oscilloscope-application-card_56279-618819.html

https://www.rohde-schwarz.com/applications/demodulating-radar-rf-pulses-with-an-oscilloscope-application-card_56279-618819.html
https://www.rohde-schwarz.com/applications/demodulating-radar-rf-pulses-with-an-oscilloscope-application-card_56279-618819.html

trigger events over time, which are not available otherwise
(s[’Timestamps’]). The time difference for consecutive
trigger events provides the PRI sequence.

The next two plots show waveform data loaded on the
scope and in a Python environment. Three signals are
displayed:

» 1 MHz sinusoidal signal with offset

Summary

The R&S®RTP, R&S®RTO and R&S®RTE are powerful oscil-
loscopes. The Python module (RTxReadBin) extends the
instruments’ functionality by allowing you to access stored
waveforms. For applications involving postprocessing,
documentation or subsequent analysis procedures such as
waveform comparisons, all of the waveform data is now
available within a powerful Python environment.

» Radar chirp alternating up/down
» Noise — no signal connected

The advantage of the RTxReadBin function is that it can
handle waveform files with multiple acquisitions (history).
When the same file is loaded, the oscilloscope only recog-
nizes the last acquisition and displays an empty history.

Three different waveforms without
history loaded as reference waveforms.

Horizontal

Diagram2: R1 &

Dllgraml R3 B

% R B R S L o T e B s s SR}

nlagrnms R4 &

=

E 'U'A =x)
} _VAvﬂllﬂhIea(ns EEE=———) .
i |Eom—
|

f

ts

Time 0s

Current acq

Three different waveforms with history.

03

02

-0.05

-0.10

-0.15 02

0000000 0000002 0.000004 0.000006 0.000008 0000000 0000002 0000004 0.000006 0.000008 0000000 0000002 0000004 0.000006 0.000008

03

02

01 0.00

-0.05

-0.10

-0.15

0000000 0000002 0.000004 0.000006 0.000008 0000000 0000002 0000004 0.000006 0.000008 0000000 0000002 0000004 0.000006 0.000008

Rohde & Schwarz \Working with acquired waveform data in Python 3

Service that adds value
» Worldwide

» Local and personalized

» Customized and flexible
» Uncompromising quality
» Long-term dependability

Rohde & Schwarz

The Rohde & Schwarz technology group is among the trail-
blazers when it comes to paving the way for a safer and
connected world with its leading solutions in test&measure-
ment, technology systems and networks &cybersecurity.
Founded more than 85 years ago, the group is a reliable
partner for industry and government customers around

the globe. The independent company is headquartered in
Munich, Germany and has an extensive sales and service
network with locations in more than 70 countries.

www.rohde-schwarz.com

Sustainable product design

» Environmental compatibility and eco-footprint

» Energy efficiency and low emissions

» Longevity and optimized total cost of ownership

Certified Quality Management Certified Environmental Management

1S0 9001 IS0 14001

Rohde & Schwarz training
www.training.rohde-schwarz.com

Rohde & Schwarz customer support
www.rohde-schwarz.com/support

[m]3ha:
1

LA

=]

R&S® is a registered trademark of Rohde & Schwarz GmbH &Co. KG
Trade names are trademarks of the owners

PD 3683.5700.92 | Version 01.00 | January 2022 (ch)

Working with acquired waveform data in Python

Data without tolerance limits is not binding | Subject to change

© 2022 Rohde &Schwarz GmbH&Co. KG | 81671 Munich, Germany

3683570092

c

S
a
<
&
a
[
)
3
=
o
&
S
3
IS
)
@
2
@
®

https://www.rohde-schwarz.com/support
https://www.rohde-schwarz.com/support
http://www.training.rohde-schwarz.com

