

 .NET programming interface for
R&S®GTSL and R&S®EGTSL

Application Note

Products:

ı R&S
®
CompactTSVP

ı R&S
®
GTSL

ı R&S
®
PowerTSVP

ı R&S
®
EGTSL

This application note describes the use of R&S
®
GTSL

and R&S
®
EGTSL in a .NET programming environment.

It shows the user how libraries and drivers generated using

the C programming language can be used in applications

based on .NET technology.

Note:

Please find the most up-to-date document on our homepage

http://www.rohde-schwarz.com/appnote/1SE001

This document is complemented by software. The software may be updated even if the version of the

document remains unchanged

A
pp

lic
at

io
n

N
ot

e

2.

20
16

 –
 S

E
00

1_
0e

http://www.rohdeschwarz.com/appnote/1SE001

 Table of Contents

 SE001_0e Rohde & Schwarz .NET programming interface for R&S®GTSL and R&S®EGTSL

2

Table of Contents

 1 Introductory Note .. 3

 2 Introduction ... 4

 3 The GTSL-.Net Wrapper Classes ... 5

 3.1 Technology ... 5

 3.1.1 Adding .NET Wrapper Classes .. 5

 3.1.2 Tips for Creating GTSL-.NET Wrapper Classes .. 7

 3.2 GTSL Device Driver Example: The Pfg Class ...10

 3.3 GTSL Library Example: The ResMgr Class ...14

 4 GTSL Programming Examples .. 17

 4.1 Direct Driver Calls ..17

 4.2 Combi Test ...20

 5 Installation Procedure .. 22

 6 Development Tools ... 23

 6.1 Compiler csc.exe from the .NET Framework SDK ..23

 6.2 Visual Studio Community ...23

 7 Resources ... 24

 Introductory Note

 SE001_0e Rohde & Schwarz .NET programming interface for R&S®GTSL and R&S®EGTSL

3

1 Introductory Note

This application note uses the following abbreviations for Rohde & Schwarz

instruments and software products:

Unless a distinction must be made between the two, both the R&S
®
CompactTSVP TS-

PCA3 production test platform and the R&S
®
PowerTSVP TS-PWA3 production test

platform are referred to as the TSVP (test system versatile platform).

Unless a distinction must be made between the two, both R&S
®
GTSL (generic test

software library) and R&S
®
EGTSL (enhanced generic test software library) are referred

to as GTSL.

 Introduction

 SE001_0e Rohde & Schwarz .NET programming interface for R&S®GTSL and R&S®EGTSL

4

2 Introduction

The TSVP production test platform is a standardized, modular platform for program-

controlled testing of modules and instruments during production or in the lab.

GTSL is a collection of software libraries and the supporting software device drivers.

These libraries control the TSVP hardware modules for performing test tasks such as

measurements, wiring configurations or signal generation.

GTSL was generated using the C/C++ programming language. To permit GTSL to be

used from programming languages such as C#, Visual Basic .NET and other

languages based on the .NET framework, Rohde & Schwarz provides a software layer

to link the two programming worlds.

This software layer is presented in this application note. It is referred to here as the

GTSL-.NET wrapper classes. This application note explains how the existing GTSL

software libraries and software instrument drivers are encapsulated so that they can be

accessed from the .NET world. Finally, it explains how programming examples that are

part of the GTSL installation can be used in a slightly modified form in the .NET world

under C#.

 The GTSL-.Net Wrapper Classes

 SE001_0e Rohde & Schwarz .NET programming interface for R&S®GTSL and R&S®EGTSL

5

3 The GTSL-.Net Wrapper Classes

3.1 Technology

In order to create a link layer between code written in C and code run in a .NET

environment, the 'unmanaged C code' must be embedded in the 'managed code' of a

.NET-based programming language such as C#. Running 'managed code' requires the

use of a runtime library such as that made available by the .NET framework, whereas

the compiled 'unmanaged C code' is built into the machine language. Special care

must be taken to replace the parameter interface for the embedded C functions with

equivalent, i.e. compatible data types in the .NET world.

The GTSL-.NET wrapper classes for GTSL libraries and GTSL device drivers are

provided to the user as the GTSL.dll class library in .NET format, compatible with .NET

framework 3.5. The .dll extension is the only reminder of the old Win32 DLLs in GTSL,

although the class library is not compatible with these in any way. The source code for

all wrapper classes and the corresponding Microsoft Visual Studio solution are

included.

For each of a large number of GTSL libraries and GTSL device drivers, the class

library for the GTSL-.NET wrapper layer includes a class with public methods

representing the functions provided by that library or device driver.

3.1.1 Adding .NET Wrapper Classes

In some situations, the user will have test libraries created in C or GTSL libraries for

which no GTSL-.NET wrapper classes exist. This section describes how to create a

.NET wrapper class to allow the user to make these libraries available in a .NET

environment. This newly created wrapper class can be included in the published

source code in the GTSL.dll.

Wrapper classes insert functions from an existing DLL created in the C programming

language by means of DllImport:

GTSL.dll - source code module: Pfg.cs

 The GTSL-.Net Wrapper Classes

 SE001_0e Rohde & Schwarz .NET programming interface for R&S®GTSL and R&S®EGTSL

6

The PInvoke class lists all functions of a C GTSL device driver (in this example the

device driver for the R&S TS-PFG signal generator), which are then published to the

.NET world using DllImport. The function rspfg_ConfigureOperationMode was

used here as being representative for all functions of the driver. Its parameter list

includes the three parameter types HandleRef, string and int.

The header file of the C device driver contains the

rspfg_ConfigureOperationMode function with the following parameter list:

rspfg.dll - source code module: rspfg.h

The type definitions for the parameter list is taken from the National Instruments VISA

software layer (VISA: Virtual Instrument Software Architecture). The VISA type

definitions correspond to the ANSI-C data types as well as to the C# data types used in

the .NET wrapper classes as listed in the following table. Instead of the C# data types,

the wrapper classes could just as easily use the equivalent .NET data types.

NI VISA ANSI-C C# .NET

ViSession* unsigned long* out IntPtr (1) out IntPtr (1)

ViSession unsigned long HandleRef (2) HandleRef (2)

ViConstString const char* string String

ViRsrc char* string String

ViStatus signed long int Int32

ViStatus* signed long * out int out Int32

ViAttr unsigned long uint UInt32

ViString char* string String

ViChar[] char[] StringBuilder StringBuilder

ViBoolean unsigned short ushort UInt16

ViBoolean* unsigned short out ushort out UInt16

ViInt16 signed short short Int16

ViInt16* signed short* out short out Int16

ViUInt32 unsigned long uint UInt32

ViUInt32* unsigned long* out uint out UInt32

ViInt32 signed long int Int32

ViInt32* signed long * out int out Int32

ViReal64 double double Double

ViReal64* double* out double out Double

ViReal64[] double[] double[] Double[]

(1)

IntPtr is a handle to a resource such as is returned by a GTSL device driver

when the C function <driver_name>_InitWithOptions(…) is called.

(2)

HandleRef is an object that contains a handle to a resource (IntPtr). The

Invoke mechanism passes it to the unmanaged code, i.e. to the C functions of

the GTSL device driver when they are called.

 The GTSL-.Net Wrapper Classes

 SE001_0e Rohde & Schwarz .NET programming interface for R&S®GTSL and R&S®EGTSL

7

All C functions of a GTSL device driver added to the private class PInvoke by means

of DllImport are again encapsulated in public methods in order to provide error

handling and also to simplify the parameter signature somewhat. These methods can

then be called by users in their own applications.

All GTSL-.NET wrapper classes that control the TSVP hardware modules are derived

from the TsvpInstrument base class. This base class defines abstract methods that

must be included in all wrapper classes. The wrapper class uses methods of the same

name to overwrite these with the override modifier.

The TsvpInstrument base class additionally defines data types in the form of enums

that are used by all derived wrapper classes.

The base class also includes classes for error handling and administration of the

attributes for the individual GTSL device drivers and their wrappers. Attributes that are

found in all wrappers are included here in the attribute dictionary, which lists the

attributes such as name, data type, reuse in various channels, read/write access and a

brief description. The attribute dictionary can additionally include special attributes for a

specific GTSL-.NET wrapper class.

3.1.2 Tips for Creating GTSL-.NET Wrapper Classes

The .NET programming environment handles several items more elegantly than was

the case in the C world. Some brief examples are provided here.

3.1.2.1 Length of array parameters

The C language GTSL device drivers and libraries contain functions that receive an

array of elements in the parameter list. If the length of the array is variable instead of

fixed, an additional parameter must be specified here with the length of the array.

For example, the rspfg_CreateArbWaveform function in the C device driver for the

R&S TS-PFG signal generator:

rspfg.dll - source code module: rspfg.h

The wfmSize parameter defines the number of elements in the array wfmData[].

The length parameter is no longer required in the corresponding method in the GTSL-

.NET wrapper. The length of the array is determined via the Length method in the

array object and thus transferred in the call of the corresponding PInvoke method:

 The GTSL-.Net Wrapper Classes

 SE001_0e Rohde & Schwarz .NET programming interface for R&S®GTSL and R&S®EGTSL

8

GTSL.dll - source code module: Pfg.cs

3.1.2.2 Using the StringBuilder class: size adjustments

Several GTSL device driver functions return information to the user in the form of one

or more strings. One example is the C function named

<driver_name>_revision_query, which returns version information about the

software device driver and about the firmware for the addressed hardware. The call to

this function must include two strings with a minimum length of 256 characters. If the

strings transferred to this function in a C application are too short, it can result in

difficult-to-find errors or system crashes.

C# provides a convenient security mechanism for preventing this problem. It ensures

that in all GTSL-.NET wrapper classes, objects of the StringBuilder class that the

user transfers to the corresponding methods either provide sufficient memory or are

increased in size as needed.

The base class TsvpInstrument provides the EnsureStringBuilderCapacity

method for this purpose. It checks the size of the transferred StringBuilder object.

If not sufficient, the capacity of the object is increased:

GTSL.dll - source code module: TsvpInstrument.cs

The wrapper class derived from the base class uses this method to check the

StringBuilder objects that the user transfers to a given method. The example

below uses the RevisionQuery method:

GTSL.dll - source code module: Pfg.cs

 The GTSL-.Net Wrapper Classes

 SE001_0e Rohde & Schwarz .NET programming interface for R&S®GTSL and R&S®EGTSL

9

3.1.2.3 Enum and classes of parameter values

In the C language GTSL device drivers and libraries, the parameter values that can be

transferred to functions are usually defined in the associated header file using the

compiler statement #define.

In a .NET programming environment, groups of parameter values are typically

combined either in an enum (in the case of integers) or in a class. During the method

definition, the name of the enum or the class of parameter values is defined as the

parameter type. This is a benefit to the user when using the method in an application

because the code editor in Microsoft Visual Studio uses the IntelliSense function to

display a list of all possible parameter values for the current position. The user selects

the desired value from the list using the arrow keys and then presses the Enter key to

accept. This reduces the likelihood of invalid parameter values or mistyped parameter

names. The IntelliSense function offered by the Microsoft Visual Studio code editor is

described in more detail in the following chapter.

3.1.2.4 Converting parameter types: string and integer <> enum

The previous section explained why enum parameters are preferred in the GTSL-.NET

wrappers, while the C programming world often uses predefined integer parameter

values or strings (character arrays) as the input and output parameters.

This means that in the wrapper classes, input parameters of the enum type must be

converted into strings or integer values, which are then transferred to the C device

drivers. This process is performed in reverse for output parameters.

For string input parameters, the conversion can be performed easily using the

GetName() method of the enum class. The only consideration is to ensure that the

names of the enum elements match the required strings.

In the case of integer input parameters, the enum element must be forced into an

integer data type by prefixing the (int) type conversion operator to perform an

explicit type conversion.

An additional consideration for output parameters is that parameter values returned by

a C function might not have a matching value in the enum. In this case, integer

parameters are checked using the enum method IsDefined() to determine whether

the returned value is defined in the enum. If so, the parameter value can be converted

into the enum type by means of the type conversion.

In the case of string parameters returned by a C function, the enum method

TryParse() can check whether the string matches an element name for the enum. If

so, the method returns the identified enum value.

 The GTSL-.Net Wrapper Classes

 SE001_0e Rohde & Schwarz .NET programming interface for R&S®GTSL and R&S®EGTSL

10

3.2 GTSL Device Driver Example: The Pfg Class

In this example, a C application calls the R&S TS-PFG signal generator function

rspfg_ConfigureStandardWaveform for the GTSL device driver DLL rspfg.dll as

follows:

PfgCExample.exe - source code module: PfgCExample.c

The same functionality in a C# application is shown on the next page:

 The GTSL-.Net Wrapper Classes

 SE001_0e Rohde & Schwarz .NET programming interface for R&S®GTSL and R&S®EGTSL

11

PfgCSharpExample.exe - source code module: PfgCSharpExample.cs

First, the new operator generates an instance of the Pfg class. In this example,

signalGenerator was used as the name of the instance. All public methods of that

class can then be called, e.g.

signalGenerator.ConfigureStandardWaveform(…).

The namespace of the GTSL.dll being used, which includes the Pfg class, is named

RohdeSchwarz.Gtsl. In the above example, this is included in the using list at the

start of the code. To permit the GTSL.dll to be used in the user's application, it must be

inserted into the project, for example by using the "Add reference..." command in

Microsoft Visual Studio.

The parameters are transferred to the methods more conveniently than with the C

functions. The signal generator channel being configured is easily selected using the

IntelliSense function in the Visual Studio development environment, for example. In the

corresponding C function, a string containing the channel name would have to be

transferred at this point.

 The GTSL-.Net Wrapper Classes

 SE001_0e Rohde & Schwarz .NET programming interface for R&S®GTSL and R&S®EGTSL

12

The class diagram created by Visual Studio for the Pfg class displays all methods,

enum types (e.g. the two signal generator channels) and additional subclasses

representing parameter constants.

All methods of the Pfg class:

 The GTSL-.Net Wrapper Classes

 SE001_0e Rohde & Schwarz .NET programming interface for R&S®GTSL and R&S®EGTSL

13

Examples of enum types defined in the Pfg class:

Selects one of the two channels of

the PFG signal generator.

Possible default waveforms.

Signal generator trigger inputs for

starting a waveform output.

Three output modes for the

generator:

Default waveforms

Arbitrary waveforms

Arbitrary waveform sequences

 The GTSL-.Net Wrapper Classes

 SE001_0e Rohde & Schwarz .NET programming interface for R&S®GTSL and R&S®EGTSL

14

3.3 GTSL Library Example: The ResMgr Class

The resource manager is a central component for GTSL libraries. It includes functions

for administering the instrument setup in a test system. Like all other GTSL software

libraries, the resource manager is written using the C programming language.

In a C application, the RESMGR_Setup function is called as follows:

GtslLibraryExampleC.exe - source code module: GtslLibraryExampleC.c

 The GTSL-.Net Wrapper Classes

 SE001_0e Rohde & Schwarz .NET programming interface for R&S®GTSL and R&S®EGTSL

15

In a C# application, the same function is called as follows:

GtslLibraryExampleCSharp.exe - source code module: GtslLibraryExampleCSharp.cs

In this example, it can be seen that the parameter list of the setup method is

significantly shorter than the equivalent setup function in C. This is because the return

parameters for assessing any errors could be eliminated. The Exception mechanism

from C# is used for error handling.

Like all other wrapper classes for GTSL libraries, the ResMgr class is derived from the

base class GtslCommon. This includes classes for error handling and methods used

by all library wrapper classes.

 The GTSL-.Net Wrapper Classes

 SE001_0e Rohde & Schwarz .NET programming interface for R&S®GTSL and R&S®EGTSL

16

The class diagram generated by Visual Studio for the ResMgr class shows all

methods, defined constants and error codes in the class:

 GTSL Programming Examples

 SE001_0e Rohde & Schwarz .NET programming interface for R&S®GTSL and R&S®EGTSL

17

4 GTSL Programming Examples

4.1 Direct Driver Calls

This example shows how to combine GTSL library calls and GTSL device driver calls

within an application.

The setup method of the GTSL-.NET wrapper class for a GTSL library opens all of the

device drivers required by the library. If a device driver is used by more than one GTSL

library, the session handle for the driver is automatically shared by all participating

libraries. The GTSL resource manager manages the exchange of the session handle

for device drivers. It administers the session handle for each instrument contained in

the physical.ini configuration file for the test system.

If a device driver must be called directly from the application, for example because the

GTSL library does not support a specific method call, the corresponding session

handle must be requested of the resource manager.

In a mixed application of GTSL libraries and GTSL device drivers, a device driver must

not be opened twice, i.e. via the library and in parallel directly via the device driver.

Although it is theoretically possible, it conflicts with the 'state caching' mechanism of

the internal device state used by the IVI drivers. This data is no longer valid if the

device is accessed via two different driver instances.

Note that in the following C# source code, the session handle for the PFG signal

generator requested of the resource manager is transferred to the overloaded

constructor of the Pfg class when the class is instantiated. This serves to inform the

instance that it need not (and in fact must not) open the device driver itself. A

subsequent call of Pfg.Init(…) would generate an exception with the following error

text:

"This instance, created by using a resource manager handle, does not allow calling this

method!" : "The device is already initialized!".

This same applies to the Pfg.Close(…) method, which also must not be called in this

situation. The Cleanup method of the GTSL-.NET wrapper class of the last GTSL

library which uses the PFG signal generator is responsible for closing the device driver.

The session handle becomes invalid after the Cleanup method of the library ends. No

more method calls of the instance of class Pfg are possible then.

 GTSL Programming Examples

 SE001_0e Rohde & Schwarz .NET programming interface for R&S®GTSL and R&S®EGTSL

18

 - continued on next page -

 GTSL Programming Examples

 SE001_0e Rohde & Schwarz .NET programming interface for R&S®GTSL and R&S®EGTSL

19

Source: ProgramDirectDriverCall.cs

 GTSL Programming Examples

 SE001_0e Rohde & Schwarz .NET programming interface for R&S®GTSL and R&S®EGTSL

20

4.2 Combi Test

The Combi Test program shows how to create a combined in-circuit test and functional

test application in C# using the following GTSL libraries:

- Resource Manager

- Signal Routing Library

- In-Circuit Test Library

 - continued on next page -

 GTSL Programming Examples

 SE001_0e Rohde & Schwarz .NET programming interface for R&S®GTSL and R&S®EGTSL

21

Source: ProgramCombiTest.cs

 Installation Procedure

 SE001_0e Rohde & Schwarz .NET programming interface for R&S®GTSL and R&S®EGTSL

22

5 Installation Procedure

The installation program for the source code of the GTSL-.NET wrapper classes can

be downloaded from the Rohde & Schwarz homepage:

http://www.rohde-schwarz.com/appnote/1SE001

The name of the installation file is InstallerGtslWrapper.msi. Installation is started by

right-clicking the file and selecting 'Install' from the context menu.

If GTSL is already installed on the target machine the GTSL-.NET wrapper classes will

be installed to directory <GTSL directory>\Develop\.net wrapper.

If GTSL is not installed yet, the installation directory is C:\Program Files

(x86)\Rohde-Schwarz\GTSL\Develop\.net wrapper.

To build the GTSL.dll simply open the Visual Studio solution GtslWrapper.sln which is

located in the installation directory and choose in the Configuration Manager whether

to build a debug or release version of the DLL. After the build process the GTSL.dll can

be found in the directory …\.net wrapper\GTSL\bin\Release (or Debug).

To use the GTSL-.NET wrapper classes in any project either the GTSL.dll can be

added to the project with the menu 'Add reference…' in Visual Studio or all relevant

source code files can be added to the project. The necessary source code files are

located in the subdirectories Common, Instruments and Libraries below directory

…\.net wrapper\GTSL\.

http://www.rohde-schwarz.com/appnote/1SE001

 Development Tools

 SE001_0e Rohde & Schwarz .NET programming interface for R&S®GTSL and R&S®EGTSL

23

6 Development Tools

Users who do not install paid copies of Microsoft Visual Studio Professional or

Enterprise Edition on their development PC still have options to create, quickly and at

no additional cost, their own C# test applications that include the GTSL-.NET wrapper

classes.

6.1 Compiler csc.exe from the .NET Framework SDK

The .NET framework SDK includes a C# compiler that can be launched from the

command line. It is called csc.exe and is located in the following path:

C:\Windows\Microsoft.NET\Framework\v3.5\csc.exe. The code to be compiled must be

created in a separate text editor.

This path should be added to the Windows system path variable Path so that the

compiler can be called from any directory on the PC.

The Combi Test programming example from section 4.2 is shown here as an example

of a call of the csc.exe compiler:

This call generates the console application ProgramCombiTest.exe. It is a 32-bit

application that references the GTSL.dll class library.

6.2 Visual Studio Community

Microsoft offers a free version of its Visual Studio development environment, called

Visual Studio Community. This version can be used under the conditions published by

Microsoft. The functionality corresponds to Visual Studio Professional Edition.

Visual Studio Community is intended to replace Visual Studio Express, which is also

free of charge. As of March 2016, the current version of Visual Studio Express 2015 is

available yet.

 Resources

 SE001_0e Rohde & Schwarz .NET programming interface for R&S®GTSL and R&S®EGTSL

24

7 Resources

The installation program for the source code of the GTSL-.NET wrapper classes can

be downloaded from the Rohde & Schwarz homepage:

http://www.rohde-schwarz.com/appnote/1SE001

A compressed file containing the GTSL installation DVD can be downloaded after

registering with Rohde & Schwarz GLORIS: See

https://gloris.rohde-schwarz.com/

For more information about the R&S
®
CompactTSVP and R&S

®
PowerTSVP production

test platforms and about the associated R&S
®
GTSL software package, go to:

www.tsvp.rohde-schwarz.com

http://www.rohde-schwarz.com/appnote/1SE001
https://gloris.rohde-schwarz.com/
http://www.tsvp.rohde-schwarz.com/

 Resources

 SE001_0e Rohde & Schwarz .NET programming interface for R&S®GTSL and R&S®EGTSL

25

 Rohde & Schwarz

The Rohde & Schwarz electronics group offers

innovative solutions in the following business fields:

test and measurement, broadcast and media, secure

communications, cybersecurity, radiomonitoring and

radiolocation. Founded more than 80 years ago, this

independent company has an extensive sales and

service network and is present in more than 70

countries.

The electronics group is among the world market

leaders in its established business fields. The

company is headquartered in Munich, Germany. It

also has regional headquarters in Singapore and

Columbia, Maryland, USA, to manage its operations

in these regions.

 Regional contact

Europe, Africa, Middle East
+49 89 4129 12345
customersupport@rohde-schwarz.com

North America
1 888 TEST RSA (1 888 837 87 72)
customer.support@rsa.rohde-schwarz.com

Latin America
+1 410 910 79 88
customersupport.la@rohde-schwarz.com

Asia Pacific
+65 65 13 04 88
customersupport.asia@rohde-schwarz.com

China
+86 800 810 82 28 |+86 400 650 58 96
customersupport.china@rohde-schwarz.com

Sustainable product design

ı Environmental compatibility and eco-footprint

ı Energy efficiency and low emissions

ı Longevity and optimized total cost of ownership

This Choose an item. and the supplied programs

may only be used subject to the conditions of use

set forth in the download area of the Rohde &

Schwarz website.

R&S
®
 is a registered trademark of Rohde & Schwarz GmbH & Co.

KG; Trade names are trademarks of the owners.

Rohde & Schwarz GmbH & Co. KG

Mühldorfstraße 15 | 81671 Munich, Germany

Phone + 49 89 4129 - 0 | Fax + 49 89 4129 – 13777

www.rohde-schwarz.com

P
A

D
-T

-M
:
3
5
7
3
.7

3
8
0
.0

2
/0

2
.0

5
/E

N
/

mailto:customersupport@rohde-schwarz.com
mailto:customer.support@rsa.rohde-schwarz.com
mailto:customersupport.la@rohde-schwarz.com
mailto:customersupport.asia@rohde-schwarz.com
mailto:customersupport.china@rohde-schwarz.com

