cdma2000® Base Station Test with R&S® Equipment

Application Note

This Application Note describes measurements compliant with the cdma2000 base station standard described in 3GPP2 C.S0010 / TIA/EIA-97 / ARIB STD-T64-C.S0010.

The primary focus is on solutions for generating and analyzing cdma2000 signals. The special characteristics that make the selected signal generators and signal analyzers eminently suitable for this purpose are detailed, and remote control programming is demonstrated by a free of charge program.

cdma2000® is a registered certification mark of the Telecommunications Industry Association. Used under license in the U.S.
Contents

1. Overview, cdma2000 lower layer test basics.. 4
 Frequency Allocation .. 4
 Channel guide ... 6
 Data Rate and Chip Rate, Radio Configuration... 6
 Test Models and Test Signals .. 8

2. Rohde & Schwarz Solutions for cdma2000 BS tests.. 11
 Signal Generators .. 11
 Signal Analyzers .. 12
 Other Instruments .. 13
 Instruments as required in the standard ... 14
 Complete test setup .. 16
 Test and demo software .. 17

3. cdma2000 Receiver Minimum Requirements.. 20
 General aspects .. 20
 Instruments and Signal list ... 21
 3.1 Frequency Coverage Requirements ... 24
 3.2 Access Probe Acquisition ... 25
 3.3 R-CCCH Demodulation Performance .. 27
 3.3.1 Performance in AWGN ... 27
 3.3.2 Performance in Multipath Fading - Closed Loop 30
 3.4 R-TCH Demodulation Performance ... 34
 3.4.1 Performance in AWGN ... 34
 3.4.2 Performance in Multipath Fading - Open Loop 36
 3.4.3 Performance in Multipath Fading - Closed Loop 40
 3.5 Receiver Performance ... 44
 3.5.1 Receiver Sensitivity ... 44
 3.5.2 Receiver Dynamic Range ... 46
 3.5.3 Single Tone Desensitization ... 48
 3.5.4 Intermodulation Spurious Response Attenuation 51
 3.5.5 Adjacent Channel Selectivity ... 54
 3.6 Limitations on Emissions ... 56
 3.6.1 Conducted Spurious Emissions .. 56
 3.6.2 Radiated Spurious Emissions ... 58
 3.7 Receiver Signal Quality Indicator - RSQI ... 59

4. cdma2000 Transmitter Minimum Standards... 61
 General Aspects ... 61
 Instruments and signal list ... 62
 4.1 Frequency Requirements ... 64
 4.1.1 Frequency Coverage ... 64
 4.1.2 Frequency Tolerance ... 65
 4.2 Synchronization and Timing .. 67
 4.2.1 Pilot Timing Tolerance .. 67
 4.2.2 Pilot Channel to Code Channel Timing Tolerance 69
 4.3 Waveform Quality .. 73
 4.4 RF Output Power Requirements .. 75
 4.3.1 Total Power ... 75
 4.3.2 Pilot Power .. 77
 4.3.3 Code Domain Power ... 79
 4.4 Limitations on Emissions ... 81
 4.4.1 Conducted Spurious Emissions .. 81
 4.4.2 Radiated Spurious Emissions ... 83
 4.4.3 Inter-Base Station Transmitter Intermodulation 84
4.4.4 Occupied Bandwidth

5. Manual fading simulator configuration
 General Settings
 Configurations

6. Notes
 Enabling the WinIQSIM Option for cdma2000
 Loading WinIQSIM Files onto AMIQ
 Straightforward Setups in WinIQSIM

7. Frequently Asked Questions

8. Appendix
 Abbreviations
 Enclosed WinIQSIM Files and SMIQ-B60 operation

9. Additional Informations

10. Literature

11. Ordering Information

The R&S logo, Rohde & Schwarz and R&S are registered trademarks of Rohde & Schwarz GmbH & Co. KG and their subsidiaries.
1. Overview, cdma2000 lower layer test basics

cdma2000 as described by Third Generation Partnership 2 (3GPP2) is an access method for use in the IMT-2000 proposal for Third Generation (3G) cellular phone systems. The system is based on spread-spectrum codes and provides high and variable data rates.

This Application Note provides a brief introduction to the cdma2000 standard. However its main focus is on solutions for generating and analyzing cdma2000 signals using equipment from Rohde & Schwarz. The features that make R&S SMIQ Vector Signal Generator and R&S AMIQ I/Q Modulation Generator and the R&S FSP and R&S FSU Spectrum Analyzers and R&S FSQ Signal Analyzer eminently suitable for this purpose are detailed.

Each measurement as described in the standard 3GPP2 C.S0010-A is shown, special implementation hints are given, and typical measurement results are presented as instrument screenshots.

The application note covers receiver and transmitter tests according to

- 3GPP2 C.S0010
- TIA/EIA-97 and
- ARIB STD-T64-C.S0010.

Additionally, a small free of charge test sequencer software (called "GDE") is included to show the necessary IEEE bus commands, and to run all cdma2000 tests for demonstration and evaluation.

The following abbreviations are used in this application note for R&S test equipment:

- The R&S SMIQ Vector Signal Generator is referred to as SMIQ.
- The R&S SMIQ-B60 Arbitrary Waveform Generator option is referred to as SMIQ-B60.
- The R&S AMIQ I/Q Modulation Generator is referred to as AMIQ.
- The R&S ABFS Baseband Fading Simulator is referred to as ABFS.
- The R&S FSP and FSU Spectrum Analyzer are referred to as FSP and FSU.
- The R&S FSQ Signal Analyzer is referred to as FSQ.
- FSP, FSU and FSQ in general is referred to as FSx.
- The R&S NRP Power Meter is referred to as NRP.

Frequency Allocation

Due to local regulations, there are 13 different band classes defined in the cdma2000 standard.

The frequency ranges and parameters are listed in the table below:
For each band class, different subclasses and blocks are defined.

Not every frequency channel is used. For detailed information, please refer to the standard ([5], Chapter 3.1).
cdma2000 defines several channels, new compared to IS-95, for accessing the Physical Layer via the MAC Layer. The following list summarises then channels and their function. For detailed informations, please refer to standard C.S0003-C: "Medium Access Control (MAC) Standard for cdma2000 Spread Spectrum Systems".

- **Pilot and Sync Channels**
 Pilot channels are used to synchronize between mobile and base station (F/R-PICH), implementation of transmit diversity (F-TDPICH, F-ATDPICH), and improved mobil synchronization (F-APICH). Additional information like system time and PN Codes are transmitted using the Sync Channel (F-SYNCH).

- **Common Control Channels**
 Transport forward and reverse informations (F/R-CCCH) that are not assigned to a dedicated traffic channel.

- **Traffic Channels**
 The primary traffic takes place on the Fundamental Channels (F/R-FCH) and the Supplemental Code Channels (F/R-SCCH). For high Radio Configurations, the Supplemental Channels (F/R-SCH) can also be used. Special messages during a call are transmitted using a Dedicated Control Channel (F/R-DCCH).

- **Paging and Broadcast Channels**
 Paging Channel (F-PCH) for standard demands and additionally Quick Paging Channel (F-QPCH) to indicate configuration changes quickly are used by cdma2000. For broadcast purpose (e.g. SMS), a Broadcast Control Channel (F-BCCH) is provided.

- **Access Channels**
 Used to initiate a call and get a base station slot. Channels used are Access Channel (R-ACH) and Enhanced Access Channel (R-EACH).

Data Rate and Chip Rate, Radio Configuration

cdma2000 is based on Code Domain Multiple Access (CDMA) on the air interface. This means that individual channels are separated from each other by individual codes (the codes used for cdma2000 are known as Walsh codes).

The basic chip rate, on which all other data, symbol, and bit rates are based, is 1.2288 MHz.

cdma2000-I is compatible with cdmaOne and supports only Direct Sequence (DS) access at 1.2288 Mchips/s.

The basics of the air interface are described by the Radio Configuration (RC). RCs differ in the data rates they support, in the mode of access to the air interface, DS or MC, modulation type, and error protection coding methods.

The various radio configurations are outlined in the table below:
cdma2000 BS Measurement According to C.S0010-A

This table is no more than a rough guide to the code channels and channel configurations. More information can be obtained using WinIQSIM. This IQ simulation software computes possible channel configurations quickly and easily. It is available as a free download from the Rohde & Schwarz homepage (www.rohde-schwarz.com).

<table>
<thead>
<tr>
<th>RC</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR</td>
<td>FL</td>
<td>RL</td>
<td>FL</td>
<td>RL</td>
<td>FL</td>
<td>RL</td>
<td>FL</td>
<td>RL</td>
<td>FL</td>
</tr>
<tr>
<td></td>
<td>1x</td>
<td>1x</td>
<td>1x</td>
<td>3x</td>
<td>3x</td>
<td>3x</td>
<td>3x</td>
<td>3x</td>
<td>3x</td>
</tr>
<tr>
<td>RL</td>
<td>1x</td>
<td>1x</td>
<td>1x</td>
<td>1x</td>
<td>3x</td>
<td>3x</td>
<td>3x</td>
<td>3x</td>
<td>3x</td>
</tr>
<tr>
<td>FL</td>
<td>1/2</td>
<td>1/2</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/8</td>
</tr>
<tr>
<td>RL</td>
<td>1/2</td>
<td>1/2</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/8</td>
</tr>
<tr>
<td>Mod</td>
<td>FL</td>
<td>RL</td>
<td>FL</td>
<td>RL</td>
<td>FL</td>
<td>RL</td>
<td>FL</td>
<td>RL</td>
<td>FL</td>
</tr>
<tr>
<td></td>
<td>BPSK</td>
<td>BPSK</td>
<td>QPSK</td>
<td>QPSK</td>
<td>QPSK</td>
<td>QPSK</td>
<td>QPSK</td>
<td>QPSK</td>
<td>QPSK</td>
</tr>
<tr>
<td></td>
<td>64-array</td>
<td>BPSK</td>
<td>BPSK</td>
<td>BPSK</td>
<td>BPSK</td>
<td>BPSK</td>
<td>BPSK</td>
<td>BPSK</td>
<td>BPSK</td>
</tr>
<tr>
<td></td>
<td>64-array</td>
<td>64-array</td>
<td>64-array</td>
<td>64-array</td>
<td>64-array</td>
<td>64-array</td>
<td>64-array</td>
<td>64-array</td>
<td>64-array</td>
</tr>
</tbody>
</table>

| FL: Forward Link, RL: Reverse Link |
| Mod: Modulation, W: Walsh code, x: Chips/Sample |

1) R=1/2 |
2) R=1/3 |
3) R=1/2 |

SR: Symbol Rate, R: Rate of the code | 1MA61_1e 7 Rohde & Schwarz
cdma2000 BS Measurement According to C.S0010-A

Test Models and Test Signals

cdma2000 describes some basic test signal configurations like a nominal base station model, pilot or access channel only,

Typical test files are provided as WinIQSIM setting files (*.iqs) and waveform files (*.wv) which can be uploaded via the demo software direct into an AMIQ modulation generator (using software option AMIQ-K12) or SMIQ signal generator (using software option SMIQ-K21). The SMIQ must include the optional Arbitrary Waveform Generator (SMIQ-B60).

BS Test Model

The nominal test model is defined for testing the Tx part of the Base Station (BS). The model is structured as follows:

<table>
<thead>
<tr>
<th>Channel</th>
<th>No.</th>
<th>Fraction of power</th>
<th>Comment*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot (F-PICH)</td>
<td>1</td>
<td>20 %</td>
<td>W_0^{128}</td>
</tr>
<tr>
<td>Paging (F-PCH)</td>
<td>1</td>
<td>4.71 %</td>
<td>W_1^{64}</td>
</tr>
<tr>
<td>Sync (F-SYNC)</td>
<td>1</td>
<td>18.82 %</td>
<td>W_32^{64}</td>
</tr>
<tr>
<td>Traffic (F-FCH + F-SCH)</td>
<td>6</td>
<td>9.412 % each</td>
<td>Full rate, equal power</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.412 % each</td>
<td></td>
</tr>
</tbody>
</table>

*The comment is primarily a designator for the code. W_32^{64}, for example, stands for the 32nd Walsh code of the Walsh code group, used with a spread factor of 64.

This signal is normally generated by the base station, so the BS Test Model file is only used if the capabilities of the signal analyser need to be demonstrated using SMIQ and a cdma2000 signal.

The signal must be generated by the base station for tests 4.2.1.2, 4.2.1.3, 4.3.1, 4.3.2, 4.4.1, 4.4.3 and 4.4.4.

Provided test signal (1xBSMod.iqs / 1xBSMod.wv)
The test file provided has F-PICH, F-PCH, F-SYNC, F-FCH and 5 F-SCH as active channels, 1 frame, oversampling 2.

F-PICH only

The F-PICH configuration is used for basic BS transmitter test (test 4.1.2 and 4.2.2).
The signal constellation is equal to a simple QPSK because only 1 channel is active.

This signal is normally generated by the base station, so the BS Test Model file is only used if the capabilities of the signal analyser need to be demonstrated using SMIQ and a cdma2000 signal.

The signal must be generated by the base station for tests 4.1.2 and 4.2.2.
Provided test signal (1xPilot.iqs / 1xPilot.wv)
The test signal provided has F-PICH as active channel, 1 frame, oversampling 2.

R-ACH only
The R-ACH configuration is used to test the Access Probe Acquisition capability of the BS (test 3.2).

Provided test signal (1xRACH.isq / 1xRACH.wv)
The test file provided has the R-ACH as active channel, 1 frame, oversampling 2.

R-CCCH only
R-CCCH only is used to test the demodulation performance of the BS in the presence of noise and fading (test 3.3.1 and 3.3.2).

Provided test file (1xRCCCH.iqs / 1xRCCCH.wv)
The test file provided has 1 R-CCCH as active channel, configured with 20 ms frame length and 19.2 kbps data rate.

FCH / Fundamental Channel Test Modes
The Fundamental Channel Test Modes are used to generate traffic on the channel and measure BER under various conditions like fading or noise.

The standard defines 9 different test modes with additional options for each test mode.
The 9 different test modes describe different configurations of the different so called “Service Options” of cdma2000 (Loopback, Test Data and Markov).
There are different multiplex options, transmission rates and traffic types for each model and each service option.

Please refer to standards C.S0013, C.S0025 and C.S0026 ([7]..[9]) for the different service option configurations.

The Forward Channel Test Mode signal must be generated by the Base Station for tests 4.2.3 and 4.3.3.
The Reverse Channel Test Mode signal must be generated by the Mobile Station Simulator for tests 3.4.x, 3.5.x and 3.7.

Provided test file (1xFFCH1.iqs / 1xFFCH1.wv)
The test file provided is equal to Forward Fundamental Channel Test Mode 1, LSO, Service Option 2, and has F-PICH and 1 F-FCH as active channel, configured with 20 ms frame length and 9.6 kbps data rate.

Provided test file (1xFFCH1.iqs / 1xFRFCH1.wv)
The test file provided is equal to Reverse Fundamental Channel Test Mode 1, LSO, Service Option 2, and has 1 R-FCH as active channel, configured with 20 ms frame length and 9.6 kbps data rate.
Test Modes

For receiver test purpose, a number of test modes are defined in the standard. The tables below summarise the different settings.

<table>
<thead>
<tr>
<th>Test Mode</th>
<th>Forward Traffic Channel</th>
<th>Reverse Traffic Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fundamental</td>
<td>Supplemental</td>
</tr>
<tr>
<td>1</td>
<td>SO 2 / 54 / 55</td>
<td>RC01</td>
</tr>
<tr>
<td>2</td>
<td>SO 9 / 54 / 55</td>
<td>RC02</td>
</tr>
<tr>
<td>3</td>
<td>SO 32 / 54 / 55</td>
<td>SO32</td>
</tr>
<tr>
<td>4</td>
<td>SO 32 / 54 / 55</td>
<td>RC03</td>
</tr>
<tr>
<td>5</td>
<td>SO 32 / 54 / 55</td>
<td>SO32</td>
</tr>
<tr>
<td>6</td>
<td>SO 32 / 54 / 55</td>
<td>SO32</td>
</tr>
<tr>
<td>7</td>
<td>SO 32 / 54 / 55</td>
<td>SO32</td>
</tr>
<tr>
<td>8</td>
<td>SO 32 / 54 / 55</td>
<td>SO32</td>
</tr>
<tr>
<td>9</td>
<td>SO 32 / 54 / 55</td>
<td>SO32</td>
</tr>
</tbody>
</table>

Table 1 – Test Modes and Service Options / Radio Configurations

<table>
<thead>
<tr>
<th>Service Option</th>
<th>Type</th>
<th>Forward Channel</th>
<th>Reverse Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Transmission Rate</td>
<td>Transmission Rate</td>
</tr>
<tr>
<td>SO2 Loopback</td>
<td>0x01</td>
<td>1, 1/2, 1/4 or 1/8</td>
<td>0x01</td>
</tr>
<tr>
<td>SO9 Loopback</td>
<td>0x02</td>
<td>1, 1/2, 1/4 or 1/8</td>
<td>0x02</td>
</tr>
<tr>
<td>SO30 Loopback</td>
<td>0x03</td>
<td>1, 1/2, 1/4 or 1/8</td>
<td>0x03</td>
</tr>
<tr>
<td>SO31 Loopback</td>
<td>0x04</td>
<td>1, 1/2, 1/4 or 1/8</td>
<td>0x04</td>
</tr>
<tr>
<td>SO32 Test Data</td>
<td>0x05, 0x06</td>
<td>various channel dependent</td>
<td>0x05, 0x06</td>
</tr>
<tr>
<td>SO54 Markov</td>
<td>0x01, 0x02</td>
<td>1, 1/2, 1/4 or 1/8</td>
<td>0x01, 0x02</td>
</tr>
<tr>
<td>SO55 Loopback</td>
<td>0x01, 0x02</td>
<td>1, 1/2, 1/4 or 1/8</td>
<td>0x01, 0x02</td>
</tr>
</tbody>
</table>

Table 2 – Details for Service Options

For more details, please refer to the related standard documents as mentioned in the reference list at the end of this application note.
2. Rohde & Schwarz Solutions for cdma2000 BS tests

The following chapter gives an overview of the available R&S instruments for cdma2000 testing and the necessary instruments as required in the standard.

Signal Generators

SMIQ vector signal generators are particularly suitable for generating cdma2000 signals. As an SMIQ is equipped with high-performance modulators, the baseband signal input to an SMIQ is modulated with minimal distortion into the RF band.

SMIQ can also be used for channel simulation, as a result of the wide range of options such as a fading simulator and an Additive White Gaussian Noise (AWGN) generator. Channel simulation is required, for example, for receiver sensitivity measurements and is often needed for customer-specific measurements.

Baseband signals are generated by the SMIQ’s internal Arbitrary Waveform Generator (ARB) SMIQ-B60 with the WinIQSIM simulation software. This combination can generate cdma2000 signals of any configuration and superimpose faults such as fading, clipping, etc. Excellent values for Error Vector Magnitude (EVM) and Adjacent Channel Power (ACP) are characteristic of this solution.

The AMIQ I/Q modulation generator is an alternative to the internal ARB in SMIQ. With its high-end technical specifications (100 MHz clock rate, 14-bit D/A converter, 16 Msamples memory depth, differential outputs, digital outputs), AMIQ provides improved performance for receiver test, baseband test and out-of-standard applications.
The various options for signal generation are listed in the table below:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SMIQ + SMIQ-B60</th>
<th>SMIQ + AMIQ 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>300 kHz ... 6.4 GHz</td>
<td>300 kHz ... 6.4 GHz</td>
</tr>
<tr>
<td>Level range</td>
<td>-140 ... +13 dBm PEP</td>
<td>-140 ... +13 dBm PEP</td>
</tr>
<tr>
<td>Max. waveform length</td>
<td>512 ksamples</td>
<td>16 Msamples</td>
</tr>
<tr>
<td>[frames] 2)</td>
<td>1 ... 2</td>
<td>1 ... 40</td>
</tr>
<tr>
<td>Nonvolatile memory</td>
<td>1.441.594</td>
<td>approx. 8.000.000.000</td>
</tr>
<tr>
<td>Chip rate 3)</td>
<td>1 kcps ... 40 Mcps</td>
<td>10 cps ... 100 Mcps</td>
</tr>
<tr>
<td>Spreading rate</td>
<td>1x (SR1), 3x (SR3)</td>
<td>1x (SR1), 3x (SR3)</td>
</tr>
<tr>
<td>Carrier spacing</td>
<td>0 ... 2 MHz</td>
<td>0 ... 10 MHz</td>
</tr>
<tr>
<td>Channel power</td>
<td>0 ... –60 dB</td>
<td>0 ... –60 dB</td>
</tr>
<tr>
<td>Data sources</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Data pattern</td>
<td>All 0, all 1, PRBS, pattern (-79 bits), file</td>
<td>All 0, all 1, PRBS, pattern (-79 bits), file</td>
</tr>
<tr>
<td>Data rate</td>
<td>All in standard</td>
<td>All in standard</td>
</tr>
</tbody>
</table>

1) With AMIQ04
2) Frames with 80 ms, 1x DS mode
3) Oversampling 2 is sufficient for SMIQ-B60 due to the hardware filter, AMIQ requires >4 oversampling

Signal Analyzers

There is a choice of 3 devices for signal analysis:

- For a high-performance cdma2000 code domain analysis, either the **FSQ** signal analyzer or the FSU spectrum analyzer is an ideal choice. It offers both excellent dynamic range and comprehensive modulation-analysis capability including **Code Domain Power (CDP)** using option FS-K82 and **CCDF measurement** capability.

- When highest performance is not required, the **FSP** spectrum analyzer is an ideal choice. Its many features including **fast ACP measurement** and **CCDF measurement** enable the FSP to cover a wide range of RF measurements. With option FS-K82, the FSP also provides Code Domain Power analysis and has nearly the same software capabilities as an FSU or FSQ (number of slots and EVM performance is slightly different).
The FSIQ signal analyzer can complete all the spectrum measurements plus modulation analysis and Code Domain Power (CDP) measurement for IS95 signals which are a subset of cdma2000. cdmaOne measurements with FSIQ are not discussed in this Application Note. Please refer to 1MA34 ([1]) for a detailed description on cdma2000 measurements with FSIQ.

Other Instruments

- To set up the exact power at the BS Rx port, Power Meter NRP in combination with Power Sensor NRP-Z11 is ideal for this purpose.

- For measurements on the cdma2000 Mobile Stations (MS), you can use CMU200 Universal Radio Communication Tester in combination with CMU-B83 (cdma2000 signaling unit) and CMU-K83 .. 87 (software personalities for different cdma2000 band classes).
cdma2000 BS Measurement According to C.S0010-A

Instruments as required in the standard

The following paragraph describes the necessary instruments according to the Standard ([5], Chapter 6.4 - Standard Test Equipment) and the corresponding Rohde & Schwarz instruments:

Channel Simulation (Chapter 6.4.1)

The channel simulator applies different fading profiles to the signal in order to test the receiver part of the base station.

The hardware option SMIQ-B14 (fading simulator) for SMIQ can generate all the required fading profiles quickly and easily.

If only baseband fading is required, an ABFS Baseband Fading Simulator can be used to generate fading in the IQ domain.

Waveform Quality Measurement (Chapter 6.4.2)

This calculates the difference between the ideal and the measured signal in a vector oriented way (I and Q components) and calculates parameters like the rho factor or the phase error. The calculation is done in IQ or code domain.

The software option FS-K82 (cdma2000 personality) for FSQ / FSU / FSP is the ideal instrument for this kind of measurement task. It provides automatic channel detection, fast measurement in the code domain and many different functions to evaluate cdma2000 signals.

Mobile Station Simulator (Chapter 6.4.3)

The simulator provides a signal to the Rx port of the base station under test for FER measurement or power measurement tests.

An SMIQ Signal Generator, incorporating with the hardware option SMIQ-B60 (arbitrary waveform generator) and the software option SMIQ-K12 (cdma2000 signal generation) or the AMIQ I/Q modulation generator and the software option AMIQ-K12 (cdma2000 signal generation), can generate all types of cdma2000 signal for 1x or 3x mode. It provides flexible signal setup for all parameters.

Please note that an SMIQ is NOT capable to perform an FER (Frame Error Rate) or BER (Bit Error Rate) measurement of a cdma2000 signal. For FER and BER measurement, the base station must provide a “service mode” to make the FER and BER measurement in the base station.

AWGN Generator (Chapter 6.4.4)

The AWGN generator simulates additive noise which is generated in reality by different sources like other base stations or poor amplifiers.

The hardware option SMIQ-B17 (noise and distortion simulator) for SMIQ can generate all the required types of noise with fast setup time and very good settability and gain flatness.
If only baseband noise generation is required, an ABFS Baseband Fading Simulator with the ABFS-B1 Noise Generator option can be used in conjunction to generate noise in the IQ domain.

CW Generator (Chapter 6.4.5)

The CW generator is used to generate a CW signal which may perhaps mix with local base station oscillator frequencies and fall into the receiver band of the base station. This may cause interference that leads to decreased BER or FER performance.

You may use a high performance CW generator from R&S like SMIQ or SMV to generate the CW signal.

Spectrum Analyzer (Chapter 6.4.6)

The spectrum analyzer is used to make power and spurious signal measurements.

You may use any R&S spectrum analyzer like the FSP, FSU or FSQ. In combination with the cdma2000 personality FS-K82, this is the ideal choice to make cdma2000 transmitter measurements and evaluate receiver spurious signals.

Average Power Meter (Chapter 6.4.7)

The average power meter is used to measure the exact input power at the BS Rx port. This is important because minute discrepancies in the level can result in high BER and FER changes.

The Power Meter NRP used in conjunction with the Power Sensor NRP-Z11 is ideal for this purpose. It offers a innovative multipath sensor technology, 90 dB dynamic range, high measurement speed and accurate measurement results regardless of bandwidth and modulation.

You can use the NRP-Z11 in combination with the basic instrument NRP or connect it to your PC direct via USB bus (using option NRP-Z3 or NRP-Z4).
Complete test setup

The following overview shows a recommended complete test setup for cdma2000 BS tests.

For each individual test, only a part of the components is used. Please refer to the corresponding chapter in order to check which instruments are necessary.
Test and demo software

This application note comes with a small demo program called "GDE" (=Generic Demonstration Engine) which is free of charge.

Each test described in this application note can be executed fast and easy using the demo program. Results and test times can be evaluated with a single mouse click.

The program offers an easy-to-use User Interface, benchmarking and IEEE command sequence export functions to integrate the programming code in any user-specific test environment.

NOTE - Demonstration:
To demonstrate or evaluate the functions of the instruments, please connect the SMIQ Vector Signal Generator direct to the FSx Signal Analyzer via the RF port.
Please connect also option SMIQ-Z5 (BNC Adapter for rear panel) to the SMIQ and connect TRIG OUT 1 to EXT TRIGGER of FSx in order to demonstrate e.g. trigger to sync measurement.

PC Requirements

Minimum requirements to run GDE on your PC:

- **Operating system:**
 Windows 95 / 98 / NT 4.0 / 2000 / Me / XP

- **Generic PC requirements:**
 - Pentium 133 MHz
 - 32 MByte
 - 10 MByte free harddisc space
 - VGA monitor

- **IEC/IEEE bus interface:**
 Rohde & Schwarz IEEE-488.2 bus interface PS-B4, 1006.6207.04, or National Instruments GPIB card

Recommended system configuration:

- **Operating system:**
 Windows 98 / 2000 / Me / XP
 Microsoft Internet Explorer 5.0 or higher

- **Generic PC requirements:**
 - Pentium II 450 MHz or higher
 - 128 MByte
 - 50 MByte free harddisc space (to store WV files and test cases)
 - XGA monitor (1024x768)

- **IEC/IEEE bus interface:**
 National Instruments GPIB card, driver software version 1.7 or higher
Installation

The file 1MA61_<Version Number>.EXE is required to install the sequencer GDE and the cdma2000 test cases on the controlling PC.

Execute the installation programm and select the installation directory. During installation, program files are copied to a directory of your choice. A new menu item “R&S cdma2000 Tests” is created in the START menu of your windows system.
Getting started

When started the first time, you are requested to register.

We kindly ask you to register GDE. Registration is free of charge and does not obligate you or your company. The unregistered version has full functionality and no expiration date.

Please follow the instructions on the screen in order to register GDE. After clicking "Continue" or entering Name and Key, the user interface will come up:

- You can select between Transmitter and Receiver Tests or load all required test files for transmitter or receiver tests to SMIQ-B60 Arbitrary Waveform Generator. Select the feature you want to use with the "TEST GROUP" list box.
- Each test described in this application note is listed in the list box "TEST CASE".
- When selected, you can set up all required parameters ("TEST CASE PARAMETERS")
- Test are always divided into Configuration and Measurement. Use the buttons in the TEST CASE COMMANDS frame to start the individual test steps.
- Results and messages are displayed in the RESULT SUMMARY frame.

For details about information and installation please refer to the manual of GDE or use the online manual by pressing the <F1>-key in GDE.
3. cdma2000 Receiver Minimum Requirements

General aspects

- **Waveform files**
 Because the waveform files which must be loaded to the AMIQ / SMIQ-B60 are quite large and need about 40 seconds to transfer, please run the loading routine in the GDE first and start the required test afterwards.
 All IEEE example files use SMIQ-B60 because this is a one-box solution and sufficient for all tests.

- **Frequencies**
 The supplied IEEE example sequences are independent from the band class. Select any frequency for both signal generator and spectrum analyser. Please select the proper frequencies for the band class to test.
 If test setups are different to for different band classes, band class BC 0 is used.

- **Test signals**
 If a test requires more than one test model or signal configuration to be set up and measured, the test sequences are only built up for one test model (usually the first mentioned in the standard). Additional test models can be added very easily by using another test signal file.

- **Levels**
 Levels for generator and analyzer are set for demonstration purpose. You can connect them via a normal RF cable and get the best performance values.
 If other requirements need to be met, please set the levels in the demonstration program according to your needs.

- **Demonstration / Evaluation**
 To evaluate the capabilities of the instruments without a BS under test, please connect a signal analyzer or a spectrum analyzer (R&S FSx) instead of the BS to show the generated receiver test signals.
 Detailed information can be found in the table at the beginning of each test.
Using the power meter in the Rx tests

All Rx measurements (except tests 3.1 and 3.6.x) require a power meter to measure the power at the Rx port of the BS. Because of the high accuracy of the SMIQ signal generator and the built-in attenuator, it is not necessary to use a power meter for setting up the output power of the mobile station simulator. The following instructions outline the use of the power meter for special lab applications where a real mobile station simulator should be used.

The standard requires a dynamic range of 117 dB (-70 .. +47 dBm) for the power sensor. This can not be measured with any existing power sensor. But it is very easy to extend the dynamic range by simply adding additional attenuators to the setup:

The basic setup direct at the Rx port of the base station is shown in this picture:

![Power Meter setup](image)

The dynamic range of the NRP-Z11 Power Meter is -67..+23 dBm = 90 dB.

- In order to extend the dynamic range to measure the HIGHEST specified power (+47 dBm), insert a 30 dB attenuator direct before the power meter. This will lead to a dynamic range of -36 .. +53 dBm and meet the specifications of +47 dBm as highest power. (You could also use a 20 dB attenuator in combination with a 3 dB attenuator (to meet the requirements more exactly) resulting in a dynamic range of -44 .. +46 dBm)

- In order to extend the dynamic range to measure the LOWEST specified power (-70 dBm), insert a additional 6 dB attenuator between the BS Rx port and the already inserted attenuator. This will lead to a dynamic range of -73 .. +17 dBm and meet the specifications of -70 dBm as lowest power.

The basic value of the attenuation between the mobile station simulator and the Rx port of the BS is not defined in the standard.

The use of the power meter is the same for all Rx test (measure the power and adjust the MS simulator), so the example sequences do not use the NRP power sensor.

Instruments and Signal list

The lists below show all the measurements for receiver tests and the required instruments and signals (for the purpose of measurement and evaluation):
cdma2000 BS Measurement According to C.S0010-A

<table>
<thead>
<tr>
<th>Class</th>
<th>Number</th>
<th>Measurement</th>
<th>Conf.</th>
<th>Instruments needed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RF generator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SMIQ</td>
</tr>
<tr>
<td>3.1</td>
<td></td>
<td>Frequency Coverage Requirements</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3.2</td>
<td></td>
<td>Access Probe Acquisition</td>
<td>1 ☑️</td>
<td>☑️</td>
</tr>
<tr>
<td>3.3</td>
<td></td>
<td>R-CCCH Demodulation Performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.1</td>
<td></td>
<td>Performance in Additive White Gaussian Noise</td>
<td>1 ☑️</td>
<td>☑️</td>
</tr>
<tr>
<td>3.3.2</td>
<td></td>
<td>Performance in Multi-path Fading with Closed Loop Power Control</td>
<td>2 ☑️</td>
<td>☑️</td>
</tr>
<tr>
<td>3.4</td>
<td></td>
<td>R-Traffic Channel Demodulation Performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4.1</td>
<td></td>
<td>Performance in Additive White Gaussian Noise</td>
<td>1 ☑️</td>
<td>☑️</td>
</tr>
<tr>
<td>3.4.2</td>
<td></td>
<td>Performance in Multi-path Fading without Closed Loop Power Control</td>
<td>2 ☑️</td>
<td>☑️</td>
</tr>
<tr>
<td>3.4.3</td>
<td></td>
<td>Performance in Multi-path Fading with Closed Loop Power Control</td>
<td>2 ☑️</td>
<td>☑️</td>
</tr>
<tr>
<td>3.5</td>
<td></td>
<td>Receiver Performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.1</td>
<td></td>
<td>Receiver Sensitivity</td>
<td>1 ☑️</td>
<td>☑️</td>
</tr>
<tr>
<td>3.5.2</td>
<td></td>
<td>Receiver Dynamic Range</td>
<td>1 ☑️</td>
<td>☑️</td>
</tr>
<tr>
<td>3.5.3</td>
<td></td>
<td>Single Tone Desensitization</td>
<td>3 ☑️</td>
<td>☑️</td>
</tr>
<tr>
<td>3.5.4</td>
<td></td>
<td>Intermodulation Spurious Response Attenuation</td>
<td>4 ☑️</td>
<td>☑️</td>
</tr>
<tr>
<td>3.5.5</td>
<td></td>
<td>Adjacent Channel Selectivity</td>
<td>8 ☑️</td>
<td>☑️</td>
</tr>
<tr>
<td>3.6</td>
<td></td>
<td>Limitations on Emissions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6.1</td>
<td></td>
<td>Conducted Spurious Emissions</td>
<td>any</td>
<td>---</td>
</tr>
<tr>
<td>3.6.2</td>
<td></td>
<td>Radiated Spurious Emissions</td>
<td>any</td>
<td>---</td>
</tr>
<tr>
<td>3.7</td>
<td></td>
<td>Receiver Signal Quality Indicator (RSQI)</td>
<td>1 ☑️</td>
<td>☑️</td>
</tr>
</tbody>
</table>

☑️	needed for the measurement (exact this one)
☑️	can do the measurement (one of them)
☑️	needed for demonstration
---	not used

Table 3 – Required Instruments for cdma2000 receiver tests
Table 4 – Required Test Signals for cdma2000 receiver tests

(refer to "Test Models and Test Signals" for a more detailed description of the test signals)
3.1 Frequency Coverage Requirements

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Basic instrument</th>
<th>Options</th>
<th>Used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement</td>
<td>---</td>
<td>---</td>
<td>BS software setup only</td>
</tr>
<tr>
<td>+ demonstration</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Test purpose

The cdma2000 BS must cover the assigned frequency range and be able to receive the dedicated cdma2000 channels.

Test method

There are no measurements necessary here because this is a software setup in the BS.

Test implementation hints

Remote Control Programming Example

Because this is only a software test for the BS, there is no IEEE example provided for this test.

Typical Measurement Result

This is only a software setup of the BS, so no special measurements need to be made here.
3.2 Access Probe Acquisition

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Basic instrument</th>
<th>Options</th>
<th>Used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement</td>
<td>SMIQ + SMIQB60 or SMIQ + AMIQ</td>
<td>SMIQ-K12 or AMIQ-K12</td>
<td>generate required cdma2000 signal (MS simulator)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SMIQ-B17</td>
<td>signal type: access channel</td>
</tr>
<tr>
<td></td>
<td>NRP + NRP-Z11</td>
<td>...</td>
<td>add AWGN signal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>signal type: noise</td>
</tr>
<tr>
<td>+ demonstration</td>
<td>FSP, FSU or FSQ</td>
<td>optional FS-K82</td>
<td>show spectrum overview</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>measure BS Rx port input power</td>
</tr>
</tbody>
</table>

Test purpose

The Access test computes the probability for the MS to access the BS with a paging action in the presence of noise.

Test method

The function setup for this test is shown below:

![Access Probe Acquisitation Test Setup](image)

Fig. 3.2.1 - Access Probe Acquisitation Test Setup

The test must be performed for all supported band classes and for Access Channel (R-ACH) and Enhanced Access Channel (R-EACH) in both 1x and 3x mode.
Test implementation hints

- **Signal power:**
 The MS simulator signal power is defined as a minimum noise power value and a specific E_b / N_0 value. So, the total input power as the BS Rx input can be selected freely.

- **Notation of noise level:**
 In other standards, AWGN scenarios are described by the total output power of the signal source and the E_b / N_0 value. The cdma2000 standard specifies the spectral density of the AWGN generator and the E_b / N_0 value for each test. The signal power for the cdma2000 signal source must be calculated from these two values.

Remote Control Programming Example

The Remote Control Programming Example will:

- generate the R-ACH signal using SMIQ and SMIQ-B60
- adjust the noise level to the value as required in the standard
- show both the noise-free and noise-added signal using 2 traces on the spectrum analyzer in frequency domain mode.
 (for demonstration purposes only)

Typical measurement result

![Fig. 3.2 – Access Probe Acquisition measurement result](image-url)
3.3 R-CCCH Demodulation Performance

3.3.1 Performance in AWGN

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Basic instrument</th>
<th>Options</th>
<th>Used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement</td>
<td>SMIQ + SMIQB60 or SMIQ + AMIQ</td>
<td>SMIQ-K12 or AMIQ-K12</td>
<td>generate required cdma2000 signal (MS simulator)</td>
</tr>
<tr>
<td></td>
<td>SMIQ-B17</td>
<td></td>
<td>signal type: R-CCCH</td>
</tr>
<tr>
<td></td>
<td>NRP + NRP-Z11</td>
<td>...</td>
<td>add AWGN signal signal type: noise</td>
</tr>
<tr>
<td>+ demonstration</td>
<td>FSP, FSU or FSQ</td>
<td>optional FS-K82</td>
<td>measure BS Rx port input power</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>show spectrum overview</td>
</tr>
</tbody>
</table>

Test purpose

The tests verify that the BS has proper demodulation performance for the Reverse Common Control Channel (R-CCCH) in an AWGN (no fading or multipath) environment by calculating the Frame Error Rate (FER).

Test method

The function setup for this test is shown below:

![Test Setup Diagram]

Fig. 3.3.1.1 - R-CCCH Demodulation Performance - AWGN Test Setup

The test describes 6 different test scenarios with different data rates and frame lengths, and specifies a lower and upper FER level for a certain E_b / N_0 for each scenario. The corresponding E_b / N_0 values are in the range between 3.1 and 4.6 dB.

Each test scenario must be run for each supported spreading rate (1 and/or 3).
Test implementation hints

- **Signal power:**
 The MS simulator signal power is defined as a noise power value and a specific E_b / N_0 value. So, the total input power as the BS Rx must be calculated from these two values.

- **FER calculation**
 The frame error rate (FER) must be calculated by the BS using its own test capabilities.

- **Call setup**
 Because SMIQ can't set up a call using the e.g. Enhanced Access channel, the BS must be set in a proper mode by specific service options.

- **Notation of noise level:**
 Other standards AWGN scenarios are described by the total output power of the signal source and the E_b / N_0 value.
 The cdma2000 standard specifies the spectral density of the AWGN generator and the E_b / N_0 value for each test. The signal power for the cdma2000 signal source must be calculated from these two values.

Remote Control Programming Example

The Remote Control Programming Example will:

- generate an R-CCCH signal using SMIQ and SMIQ-B60 (19.2 kbps, 20 ms frame)
- adjust the noise level to the maximum and minimum value as required in the standard (values are taken from standard table A.2.1-1.)
- show the 3 traces (noise-free, upper and lower noise level signal) using 3 traces on the spectrum analyzer in frequency domain mode. *(for demonstration purposes only)*
Typical measurement result

Fig. 3.3.1.2 – R-CCCH Demodulation Performance: AWGN measurement result
3.3.2 Performance in Multipath Fading - Closed Loop

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Basic instrument</th>
<th>Options</th>
<th>Used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement</td>
<td>SMIQ + SMIQB60 or SMIQ + AMIQ</td>
<td>SMIQ-K12 or AMIQ-K12</td>
<td>generate required cdma2000 signal (MS simulator)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SMIQ-B17</td>
<td>signal type: R-CCCH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SMIQ-B14</td>
<td>add AWGN signal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>signal type: noise</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NRP + NRP-Z11</td>
<td>measure BS Rx port input power</td>
</tr>
<tr>
<td>+ demonstration</td>
<td>FSP, FSU or FSQ</td>
<td>optional FS-K82</td>
<td>show spectrum overview</td>
</tr>
</tbody>
</table>

Test purpose

The tests verify that the BS has proper demodulation performance of the Reverse Common Control Channel (R-CCCH) in an Multipath Fading and AWGN environment.

Test method

The function setup for this test is shown below:

Fig. 3.3.2.1 - R-CCCH Demodulation Performance: Fading + AWGN (closed loop) Test Setup

The test describes 6 different test scenarios - as already used in test 3.3.1, with different data rates and different frame lengths, and specifies a certain E_b/N_0 ratio to be met.

The 10 different band classes are grouped in 3 different band class groups. For this test scenario, both AWGN and channel simulation (fading) are applied. There are 4 different fading profiles to apply to the test scenario, and a upper and lower E_b/N_0 ratio for the AWGN generator is specified.
Test implementation hints

- **Signal power:**
 The MS simulator signal power is defined as a noise power value and a specific E_b / N_0 value. So, the total input power as the BS Rx must be calculated from these two values.

- **FER calculation**
 The FER must be calculated by the BS using its own test capabilities.

- **Call setup**
 Because SMIQ can’t set up a call (e.g. by using the Enhanced Access Channel), the BS must be set in a proper mode by specific service options.

Remote Control Programming Example

The Remote Control Programming Example will:

- generate a R-CCCH signal using SMIQ and SMIQ-B60 (19.2 kbps, 20 ms frame)
- switch between all 4 defined fading profiles, then adjust the noise level to the maximum and minimum value as required in the standard (values is taken from standard table A.2.1-1, BC0, Case A-D.)
- show the noise-free signal using trace 1 and the 8 different test cases subsequent in time domain. *(for demonstration purposes only)*

The values are used as specified for band class 0.
Typical measurement result

Fig. 3.3.2.2 - R-CCCH Demodulation Performance: Fading + AWGN (closed loop) measurement result – Fading Profil A
Fig. 3.3.2.3 - R-CCCH Demodulation Performance: Fading + AWGN (closed loop) measurement result – Fading Profil D
3.4 R-TCH Demodulation Performance

3.4.1 Performance in AWGN

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Basic instrument</th>
<th>Options</th>
<th>Used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement</td>
<td>SMIQ + SMIOB60 or SMIQ + AMIQ</td>
<td>SMIQ-K12 or AMIQ-K12</td>
<td>generate required cdma2000 signal (MS simulator)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>signal type: Fund. Test Modes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SMIQ-B17</td>
<td>add AWGN signal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>signal type: noise</td>
</tr>
<tr>
<td>+ demonstration</td>
<td>NRP + NRP-Z11</td>
<td>---</td>
<td>measure BS Rx port input power</td>
</tr>
<tr>
<td></td>
<td>FSP, FSU or FSQ</td>
<td>optional FS-K82</td>
<td>show spectrum overview</td>
</tr>
</tbody>
</table>

Test purpose

The tests verify that the BS has proper demodulation performance of the Reverse Traffic Channel (R-TCH) in an AWGN (no fading or multipath) environment by calculating the Frame Error Rate (FER).

Test method

The function setup for this test is shown below:

Fig. 3.4.1.1 - R-TCH Demodulation Performance: AWGN Test Setup

The test must be performed for each band class and each radio configuration (on R-FCH, R-DCCH, R-SCCH and R-SCH) the base station can demodulate, and must be done for convolutional and / or turbo coding if the feature is supported by the BS.

A upper and lower E_b / N_0 ratio for the AWGN generator is specified.
Test implementation hints

- **Signal power:**
 The MS simulator signal power is defined as a noise power value and a specific E_b/N_0 value. So, the total input power as the BS Rx must be calculated from these two values.

- **FER calculation**
 The FER must be calculated by the BS using it's own test capabilities.

- **Call setup**
 Because SMIQ can't set up a call (e.g. by using the Enhanced Access Channel), the BS must be set in a proper mode by specific service options.

Remote Control Programming Example

The Remote Control Programming Example will:

- generate a Reverse Fundamental Channel test mode 1 signal using the SMIQ and SMIQ-B60 (9.6 kbps, 20 ms frame)
- adjust the noise level to the maximum and minimum value as required in the standard (values are taken from standard table A.3.1-1)
- show the 3 traces (noise-free, upper and lower noise level signal) using 3 traces on the spectrum analyzer in frequency domain mode. (for demonstration purposes only)

Typical measurement result

![Graph](image_url)

Fig. 3.4.1.2 - R-TCH Demodulation Performance: AWGN measurement result
3.4.2 Performance in Multipath Fading - Open Loop

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Basic instrument</th>
<th>Options</th>
<th>Used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement</td>
<td>SMIQ + SMIQB60 or SMIQ + AMIQ</td>
<td>generate required cdma2000 signal (MS simulator)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMIQ-K12 or AMIQ-K12</td>
<td>signal type: Fund. Test Modes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMIQ-B17</td>
<td>add AWGN signal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMIQ-B14</td>
<td>signal type: noise</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>channel simulation (fading)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NRP + NRP-Z11</td>
<td>measure BS Rx port input power</td>
<td></td>
</tr>
<tr>
<td>+ demonstration</td>
<td>FSP, FSU or FSQ</td>
<td>optional FS-K82</td>
<td>show spectrum overview</td>
</tr>
</tbody>
</table>

Test purpose

The tests verify that the BS has proper demodulation performance of the Reverse Common Control Channel in a Multipath Fading and AWGN environment with open loop power control.

Test method

The function setup for this test is shown below:

![Test Setup Diagram](image)

Fig. 3.4.2.1 - R-CCCH Demodulation Performance: Fading + AWGN (open loop) Test Setup

The test must be performed for each band class and each radio configuration (on R-FCH, R-DCCH, R-SCCH and R-SCH) the base station can demodulate.

The channels simulator uses 3 of the 4 channel simulator configurations defined in the standard, and a upper and lower \(E_b / N_0 \) ratio for the AWGN generator is specified.
Test implementation hints

- **Signal power:**
 The MS simulator signal power is defined as a noise power value and a specific E_b/N_0 value. So, the total input power as the BS Rx must be calculated from these two values.

- **FER calculation**
 The FER must be calculated by the BS using its own test capabilities.

- **Call setup**
 Because SMIQ can't set up a call (e.g. by using the Enhanced Access Channel), the BS must be set in a proper mode by specific service options.

- **Fading profiles**
 The fading profiles used in this test can be found in the appendix – Manual fading simulator configuration.
 Case C is equal to Configuration 2, C to 3 and D and D2 as equal to Configuration 4.

Remote Control Programming Example

The Remote Control Programming Example will:

- generate a Reverse Fundamental Channel test mode 1 signal using SMIQ and SMIQ-B60 (9.6 kbps, 20 ms frame)
- switch between all 3 defined fading profiles, then adjust the noise level to the maximum and minimum value as required in the standard (values are taken from standard table A.3.2-1, RC1, BC0, Case B-D2)
- show the 3 traces (noise-free, upper and lower noise level signal) using 3 traces on the spectrum analyzer in frequency domain mode subsequent for all 3 fading models.
 (for demonstration purposes only)
Typical measurement result

![Graph showing R-CCCH Demodulation Performance: Fading + AWGN (open loop) measurement result – Fading Profile B](image-url)

Fig. 3.4.2.2 - R-CCCH Demodulation Performance: Fading + AWGN (open loop) measurement result – Fading Profile B
Fig. 3.4.2.3 - R-CCCH Demodulation Performance: Fading + AWGN (open loop) measurement result – Fading Profile D2
3.4.3 Performance in Multipath Fading - Closed Loop

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Basic instrument</th>
<th>Options</th>
<th>Used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement</td>
<td>SMIQ + SMIQB60 or SMIQ + AMIQ</td>
<td>SMIQ-K12 or AMIQ-K12</td>
<td>generate required cdma2000 signal (MS simulator)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SMIQ-B17</td>
<td>signal type: Fund. Test Modes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SMIQ-B14</td>
<td>add AWGN signal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>signal type: noise</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NRP + NRP-Z11</td>
<td>channel simulation (fading)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>signal type: rayleigh fading</td>
</tr>
<tr>
<td>+ demonstration</td>
<td>FSP, FSU or FSQ</td>
<td>optional FS-K82</td>
<td>measure BS Rx port input power</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>show spectrum overview</td>
</tr>
</tbody>
</table>

Test purpose

The tests verify that the BS has proper demodulation performance of the Reverse Common Control Channel in an Multipath Fading and AWGN environment with closed loop power control.

Test method

The function setup for this test is shown below:

![Diagram](image)

Fig. 3.4.3.1 - R-CCCH Demodulation Performance: Fading + AWGN (closed loop) Test Setup

The test must be performed for each band class and each radio configuration (on R-FCH, R-DCCH, R-SCCH and R-SCH) the base station can demodulate, and must be done for convolutional and / or turbo coding if the feature is supported by the BS.

The channels simulator uses 4 channel simulator configurations defined in the standard, and a upper and lower E_b / N_0 ratio for the AWGN generator is specified. Some RC's only use 2 different fading models.
Test implementation hints

- **Signal power:**
 The MS simulator signal power is defined as a noise power value and a specific E_b / N_0 value. So, the total input power as the BS Rx must be calculated from these two values.

- **FER calculation**
 The FER must be calculated by the BS using its own test capabilities.

- **Call setup**
 Because SMIQ can't set up a call (e.g. by using the Enhanced Access Channel), the BS must be set in a proper mode by specific service options.

- **Fading profiles**
 The fading profiles used in this test can be found in the appendix – Manual fading simulator configuration.
 Case A is equal to Configuration 1, B to 2, C to 3 and D to 4.

Remote Control Programming Example

The Remote Control Programming Example will:

- generate a Reverse Fundamental Channel test mode 1 signal using SMIQ and SMIQ-B60 (9.6 kbps, 20 ms frame)
- switch between 2 defined fading profiles (as required for RC1 Fundamental Channel Tests), then adjust the noise level to the maximum and minimum value as required in the standard (values are taken from standard table A.3.3-1, BC0)
- show the 3 signals (noise-free, upper and lower noise level signal) using 3 traces on the spectrum analyzer in frequency domain mode subsequent for the 2 fading models.
 (for demonstration purposes only)
Typical measurement result

![Typical measurement result diagram](image)

Fig. 3.4.3.2 - R-CCCH Demodulation Performance: Fading + AWGN (closed loop) measurement result – Fading Profile B
Fig. 3.4.3.3 - R-CCCH Demodulation Performance: Fading + AWGN (closed loop) measurement result – Fading Profile C
3.5 Receiver Performance

3.5.1 Receiver Sensitivity

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Basic instrument</th>
<th>Options</th>
<th>Used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement</td>
<td>SMIQ + SMIQB60 or SMIQ + AMIQ</td>
<td>SMIQ-K12 or AMIQ-K12</td>
<td>generate required cdma2000 signal (MS simulator)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>signal type: Fund. Test Modes Uded. Test Modes</td>
</tr>
<tr>
<td></td>
<td>NRP + NRP-Z11</td>
<td>***</td>
<td>measure BS Rx port input power</td>
</tr>
<tr>
<td>+ demonstration</td>
<td>FSP, FSU or FSQ</td>
<td>optional FS-K82</td>
<td>show spectrum overview measure channel power</td>
</tr>
</tbody>
</table>

Test purpose

The receiver sensitivity of the BS has to maintain a R-TCH FER of 1 % at a certain minimum received power, measured at the BS RF input ports.

Test method

The function setup for this test is shown below:

The test must be performed for each band class and each radio configuration the base station can demodulate.

Test implementation hints

- **FER calculation**
 The FER must be calculated by the BS using its own test capabilities.

- **Call setup**
 Because SMIQ can't set up a call (e.g. by using the Enhanced Access Channel), the BS must be set in a proper mode by specific service options.
Remote Control Programming Example

The Remote Control Programming Example will:

- generate a Reverse Fundamental Channel test mode 1 signal using SMIQ and SMIQ-B60 at a user-defined level (9.6 kbps, 20 ms frame)
- reduce the MS simulator power in 2 user-defined steps
- show the 3 signals (full power, reduced power step 1 and 2) using 3 traces on the spectrum analyzer in frequency domain mode and measure the channel power.

(for demonstration purposes only)

Typical measurement result

![Typical measurement result](image_url)

Fig. 3.5.1.2 - Receiver Performance: Sensitivity measurement result
3.5.2 Receiver Dynamic Range

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Basic instrument</th>
<th>Options</th>
<th>Used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement</td>
<td>SMIQ + SMIQB60 or SMIQ + AMIQ</td>
<td>SMIQ-K12 or AMIQ-K12</td>
<td>generate required cdma2000 signal (MS simulator)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>signal type: Fund. Test Modes Ded. Test Modes</td>
</tr>
<tr>
<td></td>
<td>NRP + NRP-Z11</td>
<td>---</td>
<td>measure BS Rx port input power</td>
</tr>
<tr>
<td>+ demonstration</td>
<td>FSP, FSU or FSQ</td>
<td>optional FS-K82</td>
<td>show spectrum overview</td>
</tr>
</tbody>
</table>

Test purpose

The receiver dynamic range is the input power range at the BS RF input ports over which the FER does not exceed a specific value, calculated as the difference between the sensitivity as measured by the test in 3.5.1 and the maximum total power per RF input port at which an FER of 1% is maintained.

Test method

The function setup for this test is shown below:

![Fig. 3.5.2.1 - Receiver Performance: Dynamic Range Test Setup](image)

The test must be performed for each band class and each radio configuration the base station can demodulate.

Test implementation hints

- **FER calculation**
 The FER must be calculated by the BS using its own test capabilities.

- **Call setup**
 Because SMIQ can't set up a call (e.g. by using the Enhanced Access Channel), the BS must be set in a proper mode by specific service options.
Remote Control Programming Example

The Remote Control Programming Example will:

- generate a Reverse Fundamental Channel test mode 1 signal using SMIQ and SMIQ-B60 at a user-defined level (9.6 kbps, 20 ms frame)
- show the signal using 1 trace on the spectrum analyzer in frequency domain mode and measure the channel power.
 (for demonstration purposes only)

Typical measurement result

![Diagram](chart.png)

Fig. 3.5.2.2 - Receiver Performance: Dynamic Range measurement result
3.5.3 Single Tone Desensitization

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Basic instrument</th>
<th>Options</th>
<th>Used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement</td>
<td>SMIQ + SMIQB60 or SMIQ + AMIQ</td>
<td>SMIQ-K12 or AMIQ-K12</td>
<td>generate required cdma2000 signal (MS simulator)</td>
</tr>
<tr>
<td></td>
<td>R&S CW generator</td>
<td>---</td>
<td>signal type: Fund. Test Modes</td>
</tr>
<tr>
<td></td>
<td>(SMIQ, SML, SMR, ...)</td>
<td></td>
<td>Ded. Test Modes</td>
</tr>
<tr>
<td></td>
<td>NRP + NRP-Z11</td>
<td>---</td>
<td>generate interferer</td>
</tr>
<tr>
<td>+ demonstration</td>
<td>FSP, FSU or FSQ</td>
<td>FS-K82</td>
<td>measure BS Rx port input power</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>show spectrum overview</td>
</tr>
</tbody>
</table>

Test purpose

Single tone desensitization is a measure of the ability to receive a CDMA signal on the assigned channel frequency in the presence of a single tone that is offset from the center frequency of the assigned channel.

Test method

The function setup for this test is shown below:

![Test setup diagram]

Fig. 3.5.3.1 - Receiver Performance: Single Tone Desensitization Test Setup

The test must be performed for each band class except Band Class 6 and each radio configuration the base station can demodulate.

4 different CW generator offset frequencies and levels are defined for this test according to the table below:

<table>
<thead>
<tr>
<th>Rate and Band Class</th>
<th>Offset frequency</th>
<th>CW level above MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR1, BC 0</td>
<td>± 750 kHz</td>
<td>50 dB</td>
</tr>
<tr>
<td>SR1, BC 0,2,3,5</td>
<td>± 900 kHz</td>
<td>87 dB</td>
</tr>
<tr>
<td>SR1, BC 1,4,7</td>
<td>± 1,25 MHz</td>
<td>80 dB</td>
</tr>
<tr>
<td>SR3</td>
<td>± 2,50 MHz</td>
<td>87 dB</td>
</tr>
</tbody>
</table>
Test implementation hints

- **MS simulator power**
 This value is not specified in the standard. So, select a MS simulator power level to ensure that the CW generator can generate a CW signal at the specified power level.
 If, for example, ± 900 kHz offset frequency sensitization is tested and the maximum available CW generator power is +10 dBm, the MS simulator power must be below (+10-87=) –77 dBm.

- **FER calculation**
 The FER must be calculated by the BS using it's own test capabilities.

- **Call setup**
 Because SMIQ can't set up a call (e.g. by using the Enhanced Access Channel), the BS must be set in a proper mode by specific service options.

- **CW generator performance**
 Additional filters may be necessary to suppress unwanted spurious of the CW generator at the MS simulator frequency.

Remote Control Programming Example

The Remote Control Programming Example will:

- generate a Reverse Fundamental Channel test mode 1 signal using the SMIQ and SMIQ-B60 at a user-defined level (9.6 kbps, 20 ms frame)

- use the same SMIQ to generate all CW carriers for BC 0 (± 750 and ± 900 kHz) subsequently

- show the MS simulator signal using trace 1 and the CW carriers using trace 2 and 3 (maximum hold) with a spectrum analyzer in frequency domain mode.
 (for demonstration purposes only)

The Channel Power to CW ratio is 50 dB as required for ± 750 kHz offset. 87 dB as required for ± 900 kHz offset can not be displayed on the analyzer, so 50 dB are set here as well for demonstration purpose.
Typical measurement result

![Graph showing receiver performance: Single Tone Desensitization measurement result](attachment:image.png)

Fig. 3.5.3.2 - Receiver Performance: Single Tone Desensitization measurement result
3.5.4 Intermodulation Spurious Response Attenuation

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Basic instrument</th>
<th>Options</th>
<th>Used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement</td>
<td>SMIQ + SMIQB60 or SMIQ + AMIQ</td>
<td>SMIQ-K12 or AMIQ-K12</td>
<td>generate required cdma2000 signal (MS simulator)</td>
</tr>
<tr>
<td></td>
<td>R&S CW generator (SMIQ, SML, SMR, ...)</td>
<td>---</td>
<td>generate 1. interferer</td>
</tr>
<tr>
<td></td>
<td>R&S CW generator (SMIQ, SML, SMR, ...)</td>
<td>---</td>
<td>generate 2. interferer</td>
</tr>
<tr>
<td></td>
<td>NRP + NRP-Z11</td>
<td>---</td>
<td>measure BS Rx port input power</td>
</tr>
</tbody>
</table>

Test purpose

This is a measure of a receiver's ability to receive a CDMA signal in the presence of two interfering CW tones which are assigned to frequencies such that the third order mixing of the interferers can occur in the non-linear elements of the receiver, producing an interfering signal in the CDMA signal band.

Test method

The function setup for this test is shown below:

![Function setup diagram](image)

Fig. 3.5.4.1 - Receiver Performance: Intermodulation Attenuation Test Setup

The test must be performed for each band class except Band Class 6 and each radio configuration the base station can demodulate.

3 different CW generator offset frequencies are defined for this test according to the table below (the IM3 products which are generated in the used band are marked in bold).

The level for the CW carriers must be 72 dB (BC 0,2,3,5,7) or 70 dB (BC 1,4,6,8) above the MS simulator output power.
<table>
<thead>
<tr>
<th>Rate and Band Class</th>
<th>Offset 1</th>
<th>Offset 2</th>
<th>IM3 products</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR1, BC 0,2,3,5</td>
<td>± 900 kHz</td>
<td>± 1700 kHz</td>
<td>± 100 kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>± 2.50 MHz</td>
</tr>
<tr>
<td>SR1, BC 1,4,6,7</td>
<td>± 1.25 MHz</td>
<td>± 2.05 MHz</td>
<td>± 450 kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>± 2.85 MHz</td>
</tr>
<tr>
<td>SR3</td>
<td>± 2.50 MHz</td>
<td>± 3.30 MHz</td>
<td>± 1,70 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>± 4,10 MHz</td>
</tr>
</tbody>
</table>

Please note that the ± indicates the signal for the whole row, so for example + 900 kHz must be combined with +1700 kHz and not –1700 kHz.

Test implementation hints

- **MS simulator power**
 This value is not specified in the standard. So, select a MS simulator power level to ensure that the CW generator can generate a CW signal at the specified power level (as already described for test 3.5.3).

- **FER calculation**
 The FER must be calculated by the BS using its own test capabilities.

- **Call setup**
 Because SMIQ can’t set up a call (e.g. by using the Enhanced Access Channel), the BS must be set in a proper mode by specific service options.

Remote Control Programming Example:

The Remote Control Programming Example will

- generate a Reverse Fundamental Channel test mode 1 signal using SMIQ and SMIQ-B60 at a user-defined level (9.6 kbps, 20 ms frame)

- use the same SMIQ to generate the CW carrier pairs for BC 0 (± 900 kHz and ± 1700 kHz) subsequently

- show the MS simulator signal using trace 1 and the CW carrier pairs using trace 2 and 3 with a spectrum analyzer in frequency domain mode.
 (for demonstration purposes only)

Because 70 dB dynamic range can not be displayed on the analyzer, 50 dB are used for this demonstration.
Fig. 3.5.4.2 - Receiver Performance: Intermodulation Attenuation Test Setup
3.5.5 Adjacent Channel Selectivity

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Basic instrument</th>
<th>Options</th>
<th>Used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement</td>
<td>SMIQ + SMIQB60 or SMIQ + AMIQ</td>
<td>SMIQ-K12 or AMIQ-K12</td>
<td>generate required cdma2000 signal (MS simulator)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>signal type: Fund. Test Modes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ded. Test Modes</td>
</tr>
<tr>
<td></td>
<td>SMIQ + SMIQB60 or SMIQ + AMIQ</td>
<td>SMIQ-K12 or AMIQ-K12</td>
<td>generate interfering cdma2000 signal (MS simulator)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>signal type: RC5 full rate</td>
</tr>
<tr>
<td></td>
<td>NRP + NRP-Z11</td>
<td></td>
<td>measure BS Rx port input power</td>
</tr>
<tr>
<td>+ demonstration</td>
<td>FSP, FSU or FSQ</td>
<td>FS-K82</td>
<td>show spectrum overview</td>
</tr>
</tbody>
</table>

Test purpose

This is a measure of the ability to receive a CDMA signal on the assigned channel frequency in the presence of another strong CDMA signal that is offset from the center frequency of the assigned channel.

Test method

The function setup for this test is shown below:

![Figure 3.5.5.1 - Receiver Performance: Adjacent Channel Selectivity Test Setup](image)

The test must be performed for Band Class 6 and each radio configuration the base station can demodulate.

2 different scenarios are described in the standard:

<table>
<thead>
<tr>
<th>Operation Mode</th>
<th>Frequency Offset</th>
<th>Interferer Power</th>
<th>Interferer Signal Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR1</td>
<td>± 2,50 MHz</td>
<td>-53 dBm</td>
<td>Full rate RC 3</td>
</tr>
<tr>
<td>SR3</td>
<td>± 5,00 MHz</td>
<td>-49 dBm</td>
<td>Full rate RC 5</td>
</tr>
</tbody>
</table>
Test implementation hints

- **FER calculation**
 The FER must be calculated by the BS using its own test capabilities.

- **Call setup**
 Because SMIQ can't set up a call (e.g. by using the Enhanced Access Channel), the BS must be set in a proper mode by specific service options.

Remote Control Programming Example

The Remote Control Programming Example will:

- generate a Reverse Fundamental Channel test mode 1 signal using SMIQ and SMIQ-B60 at a user-defined level (9.6 kbps, 20 ms frame)
- use the same SMIQ to generate the MS interferer signal at both possible offset frequencies for SR 1 (± 2.5 MHz @ user-defined level)
- show the MS simulator signal using trace 1 and the MS interferer using trace 2 with a spectrum analyzer in frequency domain mode.
 (for demonstration purposes only)

Typical measurement result

![Typical measurement result](image)

Fig. 3.5.5.2 - Receiver Performance: Adjacent Channel Selectivity measurement result
3.6 Limitations on Emissions

3.6.1 Conducted Spurious Emissions

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Basic instrument</th>
<th>Options</th>
<th>Used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement</td>
<td>FSP, FSU or FSQ</td>
<td>---</td>
<td>measurement item: spurious emission level</td>
</tr>
</tbody>
</table>

Test purpose

Conducted spurious emissions are spurious emissions generated or amplified in the base station equipment and appearing at the receiver RF input ports.

This measurement verifies spurious emissions when all transmitter RF outputs are switched off.

Test method

The function setup for this test is shown below:

![Diagram of Test Setup](image)

There are 5 different measurement ranges specified in the standard:

1. Measurement within the BS receiver bands (Rx)
2. Measurement within the BS transmitter bands (Tx)
3. Measurement within the PHS band at the input port
4. Measurement within all other bands (not for band class 6)
5. Region specific (no values specified)

The *lower* sweep end is specified as lowest intermediate / oscillator frequency or 1 MHz. In practice, this value will be 1 MHz because no lower intermediate frequency will occur in a base station.

The *upper* sweep end is specified to:

- 2.6 GHz for Band Classes 0,2,5,7
- 3.0 GHz for Band Class 3
- 6.0 GHz for Band Classes 1,4,6,8
Test implementation hints

- **Measurement "within all other bands":**

 For "measurement within all other bands", take the complete sweep spectrum and exclude the Rx and Tx bands covered from the base station.

 In the IEEE example, the spectrum analyzer reference level is set 10 dB higher than the emission limit in the standard, and the input attenuation is set to 0 dB. So, for example, if the standard requires -80 dBm emission limit, set the reference level to -70 dBm and the input attenuation to 0 dB for a better performance.

Remote Control Programming Example

The Remote Control Programming Example will either:

- measure all conducted spurious emission limits using a spectrum analyzer in high resolution single sweep mode

 OR

- measure all conducted spurious emission limits using a spectrum analyzer in individual single sweep mode.

Measurements "within all other bands" are assumed to be for a base station supporting all band classes.

Typical measurement result

![Graph showing emission limits measurement](image)

Fig. 3.6.1.2 - Emission Limits: Conducted Spurious Emissions measurement result (high resolution)
3.6.2 Radiated Spurious Emissions

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Basic instrument</th>
<th>Options</th>
<th>Used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement</td>
<td>FSP, FSU or FSQ</td>
<td>---</td>
<td>measurement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>item: spurious emission level</td>
</tr>
</tbody>
</table>

Test purpose

The measurements for radiated spurious emissions are carried out within the transmitter radiated spurious emissions (Test 4.4.2). Current region-specific radio regulation rules shall apply.

Test method

For testing radiated spurious emissions, an antenna must be connected to the spectrum analyzer, and the radiated power must be measured.

No receiver radiated spurious emissions are explicitly stated. Current region-specific radio regulation rules shall apply.

Please refer to the standard documents for your region in order to test radiated spurious emissions.

Test implementation hints

Remote Control Programming Example

Because this is a region-specific tests, there is no IEEE example provided for this test.

The structure is the same as in test 3.6.1 - Conducted Spurious Emissions.

Typical measurement result

3.7 Receiver Signal Quality Indicator - RSQI

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Basic instrument</th>
<th>Options</th>
<th>Used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement</td>
<td>SMIQ + SMIQ60 or</td>
<td>SMIQ-K12 or</td>
<td>generate required cdma2000</td>
</tr>
<tr>
<td></td>
<td>SMIQ + AMIQ</td>
<td>AMIQ-K12</td>
<td>signal (MS simulator)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SMIQ-B17</td>
<td>signal type: Fund. Test Modes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ded. Test Modes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>add AWGN signal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>signal type: noise</td>
</tr>
<tr>
<td></td>
<td>NRP + NRP-Z11</td>
<td>---</td>
<td>measure BS Rx port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>input power</td>
</tr>
<tr>
<td>+ demonstration</td>
<td>FSP, FSU or FSQ</td>
<td>optional FS-K82</td>
<td>show spectrum overview</td>
</tr>
</tbody>
</table>

Test purpose

Received signal quality indicator (RSQI) refers to a measurement of signal quality performed by the basestation. RSQI measurement results are used for comparisons of signal strength between different basestations.

Test method

The function setup for this test is shown below:

![Test Setup Diagram](image)

Fig. 3.7.1 - Receiver Signal Quality Indicator Test Setup

The test must be performed for each band class and each radio configuration the base station can demodulate.

The measurement starts with a certain MS simulator output power and a E_b/N_0 value of 8 dB. The MS simulator power is then lowered by 6 dB in the first measurement step, and increased in 1 dB steps up to a level where a E_b/N_0 of 14 dB is reached (during this process, the noise power is held constant while the MS simulator power is changed). For each step, the RSQI reported from the base station must be recorded.
Test implementation hints

- **Call setup**
 Because SMIQ can’t set up a call (e.g. by using the Enhanced Access Channel), the BS must be set in a proper mode by specific service options.

Remote Control Programming Example

The Remote Control Programming Example will:

- generate a Reverse Fundamental Channel test mode 1 signal using SMIQ and SMIQ-B60 at a user-defined level
- run through the different level steps and E_b/N_0 ratios
- show the first MS simulator signal power step using trace 1 and the different level steps using trace 2 using a spectrum analyzer in frequency domain mode, switching between carrier and noise and noise only, measure the total output power and the noise output power, calculate the S/N ratio and display it.
 (for demonstration purposes only)

Typical measurement result

![Typical measurement result](image_url)

Fig. 3.7.2 - Receiver Signal Quality Indicator measurement result
4. cdma2000 Transmitter Minimum Standards

General Aspects

- **Waveform files**
 Because the waveform files which must be loaded to the AMIQ / SMIQ-B60 are quite large and need about 40 seconds to transfer, please run the loading routine in the GDE first and start the required test afterwards.
 All IEEE example files use SMIQ-B60 because this is a one-box solution and sufficient for all tests.

- **Frequencies**
 The supplied IEEE example sequences are independent from the band class. Select any frequency for both signal generator and spectrum analyser. Please select the proper frequencies for the band class to test.
 If test setups are different for different band classes, BC 0 is used.

- **Test signals**
 If a test requires more then one test model or signal configuration to be set up and measured, the test sequences are only built up for one test model (usually the first mentioned in the standard). Additional test models can be added very easily by using another test signal file.

- **Levels**
 Levels for generator and analyzer are set for demonstration purpose. You can connect them via a normal RF cable and get the best performance values.
 If other requirements need to be met, please set the levels in the demonstration program according to your needs.

- **Demonstration / Evaluation**
 To evaluate the capabilities of the instruments without a BS under test, please connect a SMIQ and SMIQ-B60 instead of the BS. It will generate the required test signal to simulate the BS.
 Detailed informations can be found in the table at the beginning of each test.
Instruments and signal list

The lists below show all measurements for transmitter tests and the required instruments and signals (for measurement and evaluation purpose):

<table>
<thead>
<tr>
<th>Class</th>
<th>Number</th>
<th>Measurement</th>
<th>Conf</th>
<th>Instruments needed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RF generator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SMIQ</td>
</tr>
<tr>
<td>4.1</td>
<td>Frequency Requirements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.1</td>
<td>Frequency Coverage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.2</td>
<td>Frequency Tolerance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Modulation Requirements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.1</td>
<td>Synchronization and Timing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.1.1</td>
<td>Pilot Timing Tolerance</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.1.2</td>
<td>Pilot Channel to Code Channel Time Tolerance</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.1.3</td>
<td>Pilot Channel to Code Channel Phase Tolerance</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.2</td>
<td>Waveform Quality</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.3</td>
<td>Forward Power Control Subchannel</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>RF Output Power Requirements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3.1</td>
<td>Total Power</td>
<td>any</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3.2</td>
<td>Pilot Power</td>
<td>any</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3.3</td>
<td>Code Domain Power</td>
<td>6 / 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Limitations on Emissions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4.1</td>
<td>Conducted Spurious Emissions</td>
<td>any</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4.2</td>
<td>Radiated Spurious Emissions</td>
<td>any</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4.3</td>
<td>Inter-Base Station Transmitter Intermodulation</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4.4</td>
<td>Occupied Bandwidth</td>
<td>any</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Needed for the measurement
- Can do the measurement
- Needed for demonstration
- Not used

--- Conf Functional Setup according to Standard Chapter 6.5.1

Table 5 – Required Instruments for cdma2000 transmitter tests
Frequency Requirements

<table>
<thead>
<tr>
<th>Measurement</th>
<th>F-PICH</th>
<th>F-TDPICH</th>
<th>F-Pilot(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.1 Frequency Coverage</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>4.1.2 Frequency Tolerance</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modulation Requirements

Synchronization and Timing

<table>
<thead>
<tr>
<th>Measurement</th>
<th>F-PICH</th>
<th>F-TDPICH</th>
<th>F-Pilot(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1.1 Pilot Timing Tolerance</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.1.2 Pilot Channel to Code Channel Time Tolerance</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.1.3 Pilot Channel to Code Channel Phase Tolerance</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.2 Waveform Quality</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Forward Power Control Subchannel

<table>
<thead>
<tr>
<th>Measurement</th>
<th>F-PICH</th>
<th>F-TDPICH</th>
<th>F-Pilot(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.3 Forward Power Control Subchannel</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

RF Output Power Requirements

<table>
<thead>
<tr>
<th>Measurement</th>
<th>F-PICH</th>
<th>F-TDPICH</th>
<th>F-Pilot(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.1 Total Power</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3.2 Pilot Power</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3.3 Code Domain Power</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Limitations on Emissions

<table>
<thead>
<tr>
<th>Measurement</th>
<th>F-PICH</th>
<th>F-TDPICH</th>
<th>F-Pilot(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.1 Conducted Spurious Emissions</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>4.4.2 Radiated Spurious Emissions</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>4.4.3 Inter-Base Station Transmitter Intermodulation</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4.4 Occupied Bandwidth</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CTM: Channel Test Mode

Table 6 – Required Test Signals for cdma2000 transmitter tests

(refer to "Test Models and Test Signals" for a more detailed description of the test signals)
4.1 Frequency Requirements

4.1.1 Frequency Coverage

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Basic instrument</th>
<th>Options</th>
<th>Used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement</td>
<td>---</td>
<td>---</td>
<td>BS software setup only</td>
</tr>
<tr>
<td>+ demonstration</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Test purpose

The cdma2000 BS must cover the assigned frequency range and be able to receive the dedicated cdma2000 channels.

Test method

There are no measurements necessary, as this is a software setup in the BS.

Test implementation hints

Remote Control Programming Example

As this is only a software test for the BS, there is no IEEE example provided for this test.

Typical measurement result

As this is only a software setup for the base station, so no special measurements need to be made here.
4.1.2 Frequency Tolerance

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Basic instrument</th>
<th>Options</th>
<th>Used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement</td>
<td>FSP, FSU or FSQ</td>
<td>FS-K82</td>
<td>measurement item: carrier frequency error</td>
</tr>
<tr>
<td>+ demonstration</td>
<td>SMIQ + SMIQB60 or SMIQ + AMIQ</td>
<td>SMIQ-K12 or AMIQ-K12</td>
<td>generate cdma2000 signal (BS simulation) signal type: F-PCH only</td>
</tr>
</tbody>
</table>

Test purpose

This measurement evaluates the difference between the actual CDMA transmit carrier frequency and the specified CDMA transmit frequency assignment. This test shall apply to every band class that the base station supports.

Test method

The function setup for this test is shown below:

![Frequency Tolerance Test Setup](image)

Fig. 4.1.2.1 - Frequency Tolerance Test Setup

The test must be done for all supported band classes.

Frequency tolerance must be tested with Forward Pilot Channel (F-PICH) and - if supported - Transmit Diversity Pilot Channel only setup of the BS. The test should be done as part of the waveform quality test (Test 4.2.2).

Test implementation hints

- **Use of external trigger**

The standard describes the use of an external trigger (system time reference signal) from the base station. Because the cdma2000 personality FS-K82 can synchronize to the test signal, the external trigger need not be used for this test.
Remote Control Programming Example

The Remote Control Programming Example will:

- generate a F-PICH signal using the SMIQ and SMIQ-B60 (for demonstration purposes only)
- setup the FS-K82 for frequency tolerance measurement
- read out the measurement value in ppm and Hz and display it.

Typical measurement result

![Measurement Result](image)

Fig. 4.1.2.2 - Frequency Tolerance measurement result
4.2.1 Synchronization and Timing

4.2.1.1 Pilot Timing Tolerance

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Basic instrument</th>
<th>Options</th>
<th>Used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement</td>
<td>FSP, FSU or FSQ</td>
<td>FS-K82</td>
<td>measurement item: trigger to frame</td>
</tr>
<tr>
<td>+ demonstration</td>
<td>SMIQ + SMIQB60 or SMIQ + AMIQ</td>
<td>SMIQ-K12 or AMIQ-K12</td>
<td>generate cdma2000 signal (BS simulation) signal type: F-pilot channels only</td>
</tr>
</tbody>
</table>

Test purpose

The time base reference shall be time-aligned to CDMA System Time. Reliable external means should be provided at each base station to synchronize each base station time base reference to CDMA System Time. Each base station should use a frequency reference with sufficient accuracy to maintain time alignment to CDMA System Time.

Test method

The function setup for this test is shown below:

![Fig. 4.2.1.1.1 - Pilot Timing Tolerance Test Setup](image)

The test must be done for all CDMA channels (sector or alternate frequencies).

Test implementation hints

- **Use of external trigger**
 Select external trigger in order to make this measurement.
 If free-run trigger is selected, the result is --.-- instead of a correct measurement value because the timing difference cannot be measured.
 For demonstration, the SMIQ generates a frame trigger using TRIG OUT 1. Please connect option SMIQ-Z5 (BNC Adapter for rear panel) to the SMIQ and connect TRIG OUT 1 to EXT TRIGGER of FSx.
- **Cable length compensation for external trigger**
 If the external trigger cable is very long, set up an external trigger delay to compensate the signal propagation delay.

Remote Control Programming Example

The Remote Control Programming Example will:

- generate a BS signal using SMIQ and SMIQ-B60 *(for demonstration purposes only)*
- setup the FS-K82 for pilot timing tolerance measurement
- read the trigger to frame value and display it.

Typical measurement result

![Typical measurement result](image)

Fig. 4.2.1.1.2 - Pilot Timing Tolerance measurement result
4.2.1.2 Pilot Channel to Code Channel Timing Tolerance

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Basic instrument</th>
<th>Options</th>
<th>Used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement</td>
<td>FSP, FSU or FSQ</td>
<td>FS-K82</td>
<td>measurement item: timing offset</td>
</tr>
<tr>
<td>+ demonstration</td>
<td>SMIQ + SMIQB60 or SMIQ + AMIQ</td>
<td>SMIQ-K12 or AMIQ-K12</td>
<td>generate cdma2000 signal (BS simulation) signal type: BS test model</td>
</tr>
</tbody>
</table>

Test purpose

This test measures the error in timing between the radiated pilot channel and the other code channels transmitted out of the RF output port containing the same pilot channel within one Forward CDMA Channel.

Test method

The function setup for this test is shown below:

![Fig. 4.2.1.2.1 - Pilot to Code Timing Tolerance Test Setup](image)

The test must be done for all supported band classes.

Test implementation hints

- **Dedicated code number measurement**
 - The measurement is only done for the active channels. The test model which is used in this test contains the pilot, the sync channel and 6 traffic channels.
 - If the corresponding code numbers are known, query the results direct from the FSx using the `SENS:CDP:CODE<x>` command.
 - If the code numbers are unknown, use the channel table mode and the `TRACE` query command.
Remote Control Programming Example

The Remote Control Programming Example will:

- generate a BS signal using SMIQ and SMIQ-B60
 (for demonstration purposes only)
- setup the FS-K82 for pilot to code timing tolerance measurement
- read the pilot to code timing errors for all channels contained in the BS test model and display it.

Typical measurement result

![Measurement Result](image)

- **Channel Summary**
 - Channel 63.64 19.21 GHz, active, -30.92 dBm, 0.27 ns
 - Symbol Rate: 19.2 kbps, Timing Offset: 0.27 ns

- **Result Summary**
 - Total Power: -20.66 dBm, Carrier Frequency Error: 0.0 Hz
 - Pilot Power: -27.63 dBm, Chip Rate Error: 0.0 ppm
 - Rho: 0.99996
 - Composite EVM: 0.65 %
 - Pk CDE (SF 64): -60.15 dB, Active Channels: 9

- **IQ Imbal/Offset**: 0.07/0.41 %

Fig. 4.2.1.2.2 - Pilot to Code Timing Tolerance measurement result
4.2.1.3 Pilot Channel to Code Channel Phase Tolerance

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Basic instrument</th>
<th>Options</th>
<th>Used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement</td>
<td>FSP, FSU or FSQ</td>
<td>FS-K82</td>
<td>measurement item: phase offset</td>
</tr>
<tr>
<td>+ demonstration</td>
<td>SMIQ + SMIQB60 or SMIQ + AMIQ</td>
<td>SMIQ-K12 or AMIQ-K12</td>
<td>generate cdma2000 signal (BS simulation)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>signal type: BS test mode</td>
</tr>
</tbody>
</table>

Test purpose

This test measures the error in phase between the radiated pilot channel and the other code channels transmitted out of the RF output port containing the same pilot channel within one Forward CDMA Channel.

Test method

The function setup for this test is shown below:

![Fig. 4.2.1.3.1 - Pilot to Code Phase Tolerance Test Setup](image)

The test must be done for all supported band classes.

Test implementation hints

- **Dedicated code number measurement**
 The measurement is only done for the active channels. The test model which is used in this test contains the pilot, the sync channel and 6 traffic channels.
 If the corresponding code numbers is known, you can query the results direct from the FSx using the `SENS:CDP:CODE<x>` command.
 If the code numbers is unknown, you can use the channel table mode and the `TRACE` query command.
Remote Control Programming Example

The Remote Control Programming Example will:

- generate a BS signal using the SMIQ and SMIQ-B60 (for demonstration purposes only)
- setup the FS-K82 for pilot to code phase tolerance measurement
- read the pilot to code phase errors for all channels contained in the BS test model and display it.

Typical measurement result

<table>
<thead>
<tr>
<th>Channel</th>
<th>Symb Rate</th>
<th>Att. Power Rel</th>
<th>Att. Power Abs</th>
<th>Code Rate Error</th>
<th>Chip Rate Error</th>
<th>Active Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>63.64</td>
<td>19.2</td>
<td>-3.29 dB</td>
<td>-30.90 dBm</td>
<td>-23.21 Hz</td>
<td>-0.02 ppm</td>
<td>9</td>
</tr>
</tbody>
</table>

Fig. 4.2.1.3.2 - Pilot to Code Phase Tolerance measurement result
4.2.2 Waveform Quality

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Basic instrument</th>
<th>Options</th>
<th>Used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement</td>
<td>FSP, FSU or FSQ</td>
<td>FS-K82</td>
<td>measurement item: rho factor</td>
</tr>
<tr>
<td>+ demonstration</td>
<td>SMIQ + SMIQB60 or SMIQ + AMIQ</td>
<td>SMIQ-K12 or AMIQ-K12</td>
<td>generate cdma2000 signal (BS simulation) signal type: F-PCH only</td>
</tr>
</tbody>
</table>

Test purpose

This measurement verifies the correlation between ideal and real waveform. Errors like wrong filter coefficients or IQ modulator problems can be seen very easily using this test setup.

Test method

The function setup for this test is shown below:

Fig. 4.2.2.1 - Waveform Quality Test Setup

The test must be done for all supported band classes.

The test must be done for both normal and - if supported - transmit diversity mode.

The test is done with a signal containing only the Forward Pilot Channel (F-PICH) or - if supported and tested - the Transmit Diversity Pilot Channel (F-TDPICH).

Test implementation hints

- **Use of external trigger**
 The standard describes the use of an external trigger (system time reference signal) from the base station.
 Because the cdma2000 personality FS-K82 can synchronize to the test signal, the external trigger need not be used for this test.
Remote Control Programming Example

The test signal can be provided from either the base station or SMIQ (for demonstration and evaluation). The Remote Control Programming Example will:

- generate a F-PICH signal using the SMIQ and SMIQ-B60 (for demonstration purposes only)
- setup the FS-K82 for waveform quality measurement
- read the RHO factor and display it.

Typical measurement result

![Typical measurement result image]

Fig. 4.2.2.1 - Waveform Quality measurement result
4.3 RF Output Power Requirements

4.3.1 Total Power

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Basic Instrument</th>
<th>Options</th>
<th>Used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement</td>
<td>FSQ, FSU or FSP</td>
<td>---</td>
<td>measurement item: total signal power</td>
</tr>
<tr>
<td>+ demonstration</td>
<td>SMIQ + SMIQB60 or SMIQ + AMIQ</td>
<td>SMIQ-K12 or AMIQ-K12</td>
<td>generate cdma2000 signal (BS simulation) signal type: BS test model</td>
</tr>
</tbody>
</table>

Test purpose

The total power is the mean power delivered to a load with resistance equal to the nominal load impedance of the transmitter.

This test verifies that the power control and output RF components work correctly and provide the specified output power.

Test method

The function setup for this test is shown below:

![Fig. 4.3.1.1 - Total Power Test Setup](image)

The test must be done for all supported band classes with the standard test model.

Test implementation hints

- **Measurement with power meter**

 This measurement can also be done very easily using the NRP power meter and NRP-Z11 power sensor. Please refer to the manual of the NRP in order to get more informations about the cdma2000 functionality.
Demo IEEE bus example

The two Remote Control Programming Examples will:

- generate a BS signal using SMIQ and SMIQ-B60 (for demonstration purposes only)
- setup either the FS-K82 or the normal analyzer function for channel power measurement
- read the power value and display it.

Typical measurement result

The measurement result is shown for the FS-K82 power measurement function.
The standard spectrum analyzer function has a similar display.

Fig. 4.3.1.1 - Total Power measurement result
4.3.2 Pilot Power

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Basic instrument</th>
<th>Options</th>
<th>Used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement</td>
<td>FSP, FSU or FSQ</td>
<td>FS-K92</td>
<td>measurement item: pilot power</td>
</tr>
<tr>
<td>+ demonstration</td>
<td>SMIQ + SMIQB60 or</td>
<td>SMIQ-K12 or AMIQ-K12</td>
<td>generate cdma2000 signal (BS simulation) signal type: BS test model</td>
</tr>
</tbody>
</table>

Test purpose

The Pilot Channel power to total power ratio is the power attributed to the Pilot Channel divided by the total power. The Code Domain Power Analyzer is used to determine the ratio of the Pilot Channel power to the total power.

This ensures that the spreading rate and the baseband I/Q data scaling are implemented correct.

Test method

The function setup for this test is shown below:

![Fig. 4.3.2.1 - Pilot Power Test Setup](image)

The test must be done for all supported band classes.

The ratio between the Pilot Channel power and the total power is measured in this test.

Test implementation hints

Remote Control Programming Example

The Remote Control Programming Example will:

- generate a BS signal using SMIQ and SMIQ-B60 (for demonstration purposes only)
- setup the FS-K82 for code domain measurement to measure total and pilot power
- read out the total and pilot power and display it.

Typical measurement result

Fig. 4.3.2.2 - Pilot Power measurement result
4.3.3 Code Domain Power

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Basic instrument</th>
<th>Options</th>
<th>Used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement</td>
<td>FSP, FSU or FSQ</td>
<td>FS-K82</td>
<td>measurement item: code domain power</td>
</tr>
<tr>
<td>+ demonstration</td>
<td>SMIQ + SMIQB60 or SMIQ + AMIQ</td>
<td>SMIQ-K12 or AMIQ-K12</td>
<td>generate cdma2000 signal (BS simulation) signal type: Fund. Test Modes</td>
</tr>
</tbody>
</table>

Test purpose

This measurement evaluates the orthogonality between the different codes. It ensures that the spread code generation and the I/Q-modulator are working correctly. Error can be verified if the code domain power in unused slots gets too high.

Test method

The function setup for this test is shown below:

![Code Domain Power Test Setup](image)

Fig. 4.3.3.1 - Code Domain Power Test Setup

The test must be done for all supported band classes and all supported radio configurations (grouped in 3 different sub-groups 1+2, 3+4 and 5+6) at maximum output power.

It must be done for transmit diversity if supported by the base station.

Depending on the radio configuration, the power in all inactive channels must be 27 to 33 dB below the total output power of the carrier.

Test implementation hints

Remote Control Programming Example

The Remote Control Programming Example will:

- generate a BS signal using SMIQ and SMIQ-B60 (for demonstration purposes only)
- setup the FS-K82 for code domain measurement to measure total and pilot power
- read out the power of the individual channels and display it.
Typical measurement result

![Measurement Result Diagram]

Fig. 4.3.3.2 - Code Domain Power measurement result
4.4 Limitations on Emissions

4.4.1 Conducted Spurious Emissions

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Basic instrument</th>
<th>Options</th>
<th>Used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement</td>
<td>FSP, FSU or FSQ</td>
<td>---</td>
<td>measurement item: spurious emission level</td>
</tr>
<tr>
<td>+ demonstration</td>
<td>SMIQ + SMIQB60 or SMIQ + AMIQ</td>
<td>SMIQ-K12 or AMIQ-K12</td>
<td>generate cdma2000 signal (BS simulation) signal type: BS test model</td>
</tr>
</tbody>
</table>

Test purpose

This measurement verifies that there are no harmonic or oscillator breakdowns which have significant influence on the Tx output signal.

Test method

The function setup for this test is shown below:

![Conducted Spurious Emissions Test Setup](image)

Fig. 4.4.1.1 - Conducted Spurious Emissions Test Setup

This test must be done for all supported band classes. Run the test in the presence of a standard test model signal at the Tx output. If the feature is supported by the base station, the test must also be done for multi carrier output.

Test implementation hints

- **Spectrum emission mask measurement using FS-K82 personality**
 The test must be performed with different frequency limits and different resolution bandwidth filters (RBW). For the measurement close to the carrier (with up to 4 MHz spacing from the carrier), the spectrum emission mask measurement feature from the cdma2000 personality FS-K82 can be used. This feature takes into account the selected band class and the channel power (for relativ limits) and does a very quick limit check.
• **Special 1MHz bandwidth measurement**
 For a standard measurement with setting start and stop frequency and resolution bandwidth, the bandwidth of 1 MHz for measurement in the range of 2.25 to 4 MHz around the carrier is not sufficient to suppress the carrier. So, a different filter type (channel filter) must be selected to get a sufficient suppression.

• **Band Class 6 limits**
 The additional defined limits for BC 6 are hard to measure. Use an additional filter to suppress the Tx signal and then measure the spurious signals.

![Fig. 4.4.1.2 - BC 6 Tx spurious emission limits](image)

Remote Control Programming Example

The Remote Control Programming Example will:

- generate a BS signal using SMIQ and SMIQ-B60 *(for demonstration purposes only)*
- measure all conducted spurious emission limits using a spectrum analyzer in individual single sweep mode and display it.
4.4.2 Radiated Spurious Emissions

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Basic instrument</th>
<th>Options</th>
<th>Used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement</td>
<td>FSP, FSU or FSQ</td>
<td>---</td>
<td>measurement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>item: spurious emission level</td>
</tr>
</tbody>
</table>

Test purpose

Current region-specific radio regulation rules shall apply.

Test method

For testing radiated spurious emissions, an antenna must be connected to the spectrum analyzer, and the radiated power must be measured.

No receiver radiated spurious emissions are explicitly stated. Current region-specific radio regulation rules shall apply.

Please refer to the standard documents for your region in order to test radiated spurious emissions.

Test implementation hints

Remote Control Programming Example

Because this is a region-specific tests, there is no IEEE example provided for this test.

The structure is the same as in test 4.4.1 - Conducted Spurious Emissions.

Typical measurement result

4.4.3 Inter-Base Station Transmitter Intermodulation

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Basic instrument</th>
<th>Options</th>
<th>Used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement</td>
<td>FSP, FSU or FSQ</td>
<td>---</td>
<td>measurement item: spurious emission level</td>
</tr>
<tr>
<td></td>
<td>SMIQ + SMIQB60 or SMIQ + AMIQ</td>
<td>SMIQ-K12 or AMIQ-K12</td>
<td>generate interfering BS signal (External Base Station) signal type: BS test model</td>
</tr>
<tr>
<td>+ demonstration</td>
<td>SMIQ + SMIQB60 or SMIQ + AMIQ</td>
<td>SMIQ-K12 or AMIQ-K12</td>
<td>generate cdma2000 signal (BS simulation) signal type: BS test model</td>
</tr>
</tbody>
</table>

Test purpose

The test verifies that conducted spurious emissions are still met with the presence of an external base station signal at a level 30 dB below the usefull base station signal and with offset frequency at the Tx output.

Test method

The function setup for this test is shown below:

![Inter-Base Station Transmitter Intermodulation Test Setup](image)

This test must be done for all supported band classes. The test is done in the presence of a standard test model signal at the Tx output.

Test implementation hints

- **Spectrum Analyzer frequency choice:**
 The center frequency must be set to a frequency equal to 2 x the BS Under Test frequency minus the External BS frequency.
 So, if the BS Under Test frequency is 1000 MHz, the External BS frequency must be set to (1000 + 1.25) MHz and (1000 - 1.25) MHz, the Spectrum Analyzer must be set to (1000 - 1.25) and (1000 + 1.25) MHz.

- **Emission Limits**
 The emission limits are the same as required in test 4.4.1 – Conducted Spurious Emissions.
 For the Remote Control Programming Example, the channel power in the adjacent channel region is measured. For spurious emission measurement, you can use the sequences provided with test 4.4.1 for the BC you want to measure.
Remote Control Programming Example

The Remote Control Programming Example will:

- generate a BS signal using SMIQ and SMIQ-B60 (for demonstration purposes only)
- setup the FSx to measure channel power and measure the channel power of the BS
- set the SMIQ level and frequency to generate the signal as required for the interfering BS for positiv and negativ offset frequency
- measure the power in the adjacent channel relativ to the power of the BS and display it.

Typical measurement result

Ref -10 dBm
Att 5 dB
RBW 10 kHz
VBW 300 kHz
SWT 300 ms

Fig. 4.4.3.2 - Inter-Base Station Transmitter Intermodulation measurement result
4.4.4 Occupied Bandwidth

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Basic instrument</th>
<th>Options</th>
<th>Used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement</td>
<td>FSP, FSU or FSQ</td>
<td>--</td>
<td>measurement item: OBW</td>
</tr>
<tr>
<td>+ demonstration</td>
<td>SMIQ + SMIQB60 or SMIQ + AMIQ</td>
<td>SMIQ-K12 or AMIQ-K12</td>
<td>generate cdma2000 signal (BS simulation) signal type: BS test model</td>
</tr>
</tbody>
</table>

Test purpose

This test verifies the correct width of the transmitted signal. Effects such as wrong modulation filter or clock rate can lead to an occupied bandwidth that is too wide.

Test method

The function setup for this test is shown below:

![Fig. 4.4.4.1 - Occupied Bandwidth Test Setup](image)

The test applies to Band Classes 3 and 6 only and calculates the bandwidth where 99% of the signal power can be found.

The test is done using a 30 kHz RBW filter.

Test implementation hints

Remote Control Programming Example

The Remote Control Programming Example will:

- generate a BS signal using SMIQ and SMIQ-B60 (for demonstration purposes only)
- setup the FS-K82 for occupied bandwidth measurement
- read out the measurement value and display it.
Typical measurement result

Fig. 4.4.4.2 - Occupied Bandwidth measurement result
5. Manual fading simulator configuration

Measurements under fading conditions are specified as part of the receiver tests of base stations. The specified profiles are easily implemented with the SMIQ fading simulator SMIQ-B14.

The individual profiles are listed in the table below:

<table>
<thead>
<tr>
<th>Configuration</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base station fading configuration according to 3GPP2 C.S0010-A</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Speed [km/h]</td>
<td>3</td>
<td>8</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>Number of paths</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Power, path 2 [dB]</td>
<td>---</td>
<td>0</td>
<td>---</td>
<td>0</td>
</tr>
<tr>
<td>Power, path 3 [dB]</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-3</td>
</tr>
<tr>
<td>Delay, path 1 [µs]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Delay, path 2 [µs]</td>
<td>0</td>
<td>2.0</td>
<td>---</td>
<td>2.0</td>
</tr>
<tr>
<td>Delay, path 3 [µs]</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>14.5</td>
</tr>
</tbody>
</table>

General Settings

Configurations

Configuration I

This configuration has to be set manually:

Configuration II

This configuration corresponds to the predefined standard “CDMA 8”:
Configuration III

This configuration corresponds to the predefined standard “CDMA 30”:

Configuration IV

This configuration corresponds to the predefined standard “CDMA 100”:
6. Notes

Enabling the WinIQSIM Option for cdma2000

The AMIQ-K12 or the SMIQ-K12 option as applicable must be enabled to generate cdma2000 signals with the AMIQ or the SMIQ-B60.

Enabling the AMIQ-K12 Option

Connect the AMIQ to the computer using the IEC bus, start WinIQSIM and proceed as follows:

1. Open the dialog box for remote control of the AMIQ:

2. Select “Test and Adjustment”:

3. Select the cdma2000 option “AMIQ-K12”:

4. Enter the enabling code and click on “Install”. The option is installed and is immediately usable.

Enabling the SMIQ-K12 Option

To install the option in SMIQ, select the following submenu:
Enter the installation key.

Loading WinIQSIM Files onto AMIQ

This Application Note includes a number of demo files with predefined cdma2000 signals. To load these signals onto AMIQ, start WinIQSIM and proceed as follows:

1. Open the dialog box for loading settings:

2. Select the appropriate file:
3. Select the option for transmission to AMIQ:

4. Select the destination for the waveform:

5.

- “Destination – AMIQ RAM”: The waveform is loaded directly into the main memory of the AMIQ.
- “Destination – AMIQ HD”: The waveform is copied onto the hard disk.

NOTE:
To generate cdma2000 signals the cdma2000 option for the AMIQ must be enabled.
Straightforward Setups in WinIQSIM

WinIQSIM has an easy-to-use interface for conveniently configuring cdma2000 setups.

1. Select “CDMA2000 Configuration” from the Block Diagram window:

2. Select “Predef. Settings”:

3. The combo box shown here appears on the screen:

Simply check the boxes to set Link Direction, Chip Rate and Mode in order to generate a suitable signal.
This feature is available for forward link only.

See Section 12.2.2.4 of the WinIQSIM User Guide for a detailed description of the various parameters.
7. Frequently Asked Questions

Some frequently asked questions relating to the generation and measurement of cdma2000 signals are answered below:

- **Why is it that I cannot run CDP measurement?** _SYNC FAILED_ appears on the screen, and all channels show nearly the same power.

 - Is RF power applied at the correct frequency and level?
 - Is there a cdma2000 signal with correct PN offset?
 - Are I and Q swapped? (Make sure that “IQ SWAP” is activated on the SMIQ and in WinIQSim – this parameter is under “VECTOR MOD” on the SMIQ).

- **Why is it that code power of the unused channels is too high?**

 The send signal is perhaps being filtered by a reverse filter. In WinIQSIM, switch to the filter for cdma2000 1x Forward Link.

- **Why is it that I cannot find a cdma2000 reverse filter in WinIQSIM: I can find only “CDMA2000 1x” and “CDMA2000 1x + Equalizer (LEVM)”**

 The standard is open to interpretation in this respect, and for this reason there is no reverse filter as such, only a reverse filter and an equalizer filter that is used in conjunction with the reverse filter in the forward link. Consequently, you should use the following:

 – “CDMA2000 1x + Equalizer (LEVM)” for the _forward_ link
 – “CDMA2000 1x” for the _reverse_ link.

- **Why is it that when I set a fading speed of 30 km/h, the SMIQ switches to 30.002 km/h?**

 The speed is set in steps and the width of the steps in which the fading simulator can be set depends on the RF frequency, so in some instances the specified speed cannot be set exactly. When this happens the fading processor selects the value closest to the specified speed.

- **Why are there so many filter selections in WinIQSIM for cdmaOne and cdma2000?**

 The cdmaOne and cdma2000 standards recommend forward and reverse link filters. However, many manufacturers have elected to use custom filters to optimize adjacent channel performance. These filters can cause degradation of IQ waveform quality, resulting in higher Error Vector Magnitude. Rohde-Schwarz has created filters for WinIQSIM that are optimized for best ACPR performance when used for ACPR measurements, and also includes the standards-defined EVM optimized filters. It is recommended that you use EVM optimized filters when creating signals for vector signal evaluation. WinIQSIM can also be used to create manufacturer-specific filters for proprietary applications.
8. Appendix

Abbreviations

<table>
<thead>
<tr>
<th>Abbrev.</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACH</td>
<td>Access Channel</td>
</tr>
<tr>
<td>ACP</td>
<td>Adjacent Channel Power</td>
</tr>
<tr>
<td>ACPR</td>
<td>Adjacent Channel Power Ratio</td>
</tr>
<tr>
<td>AWGN</td>
<td>Additive White Gaussian Noise</td>
</tr>
<tr>
<td>BC</td>
<td>Band Class (set of uplink and downlink frequencies)</td>
</tr>
<tr>
<td>BER</td>
<td>Bit Error Rate</td>
</tr>
<tr>
<td>BS</td>
<td>Base Station</td>
</tr>
<tr>
<td>CCH</td>
<td>Common Control Channel</td>
</tr>
<tr>
<td>CDMA</td>
<td>Code Division Multiple Access</td>
</tr>
<tr>
<td>CDP</td>
<td>Code Domain Power</td>
</tr>
<tr>
<td>CW</td>
<td>Continuous Wave (unmodulated signal)</td>
</tr>
<tr>
<td>DS</td>
<td>Direct Sequence (mode for accessing the air interface)</td>
</tr>
<tr>
<td>F-...</td>
<td>Forward ...</td>
</tr>
<tr>
<td>FCH</td>
<td>Fundamental Channel</td>
</tr>
<tr>
<td>FCH</td>
<td>Fundamental Channel</td>
</tr>
<tr>
<td>FER</td>
<td>Frame Error Rate</td>
</tr>
<tr>
<td>FL</td>
<td>Forward Link (from BS to MS)</td>
</tr>
<tr>
<td>LSO</td>
<td>Loopback Service Option</td>
</tr>
<tr>
<td>MAC</td>
<td>Medium Access Control</td>
</tr>
<tr>
<td>MC</td>
<td>Multi Carrier (mode for accessing the air interface)</td>
</tr>
<tr>
<td>MS</td>
<td>Mobile Station</td>
</tr>
<tr>
<td>MSO</td>
<td>Markov Service Option</td>
</tr>
<tr>
<td>PCH</td>
<td>Paging Channel</td>
</tr>
<tr>
<td>PEP</td>
<td>Peak Average Power</td>
</tr>
<tr>
<td>PICH</td>
<td>Pilot Channel</td>
</tr>
<tr>
<td>PRBS</td>
<td>Pseudo Random Noise Sequence</td>
</tr>
<tr>
<td>R-...</td>
<td>Reverse ...</td>
</tr>
<tr>
<td>RBW</td>
<td>Resolution Bandwidth</td>
</tr>
<tr>
<td>RC</td>
<td>Radio Configuration</td>
</tr>
<tr>
<td>RL</td>
<td>Reverse Link (from MS to BS)</td>
</tr>
<tr>
<td>RSQI</td>
<td>Received Signal Quality Indicator</td>
</tr>
<tr>
<td>Rx</td>
<td>Receive</td>
</tr>
<tr>
<td>SCCH</td>
<td>Supplemental Code Channel</td>
</tr>
<tr>
<td>SCH</td>
<td>Supplemental Channel</td>
</tr>
<tr>
<td>SO</td>
<td>Service Option</td>
</tr>
<tr>
<td>SR</td>
<td>Spreading Rate</td>
</tr>
<tr>
<td>SYNC</td>
<td>Sync Channel</td>
</tr>
<tr>
<td>TD</td>
<td>Transmit Diversity</td>
</tr>
<tr>
<td>TDPICH</td>
<td>Transmit Diversity Pilot Channel</td>
</tr>
<tr>
<td>TDSO</td>
<td>Test Data Service Option</td>
</tr>
<tr>
<td>Tx</td>
<td>Transmit</td>
</tr>
</tbody>
</table>
Enclosed WinIQSIM Files and SMIQ-B60 operation

The following files are provided with this Application Note:

<table>
<thead>
<tr>
<th>File Name</th>
<th>Mode</th>
<th>RC</th>
<th>Channels</th>
<th>Crest</th>
<th>Used for Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>1xBSMod</td>
<td>Forward 1x</td>
<td>1</td>
<td>PICH, SYNC, PCH, FCH, 5xSCH</td>
<td>10,32</td>
<td>4.2.1.2, 4.2.1.3, 4.3.1, 4.3.2, 4.4.1, 4.4.3, 4.4.4</td>
</tr>
<tr>
<td>1xFFCH1</td>
<td>Forward 1x</td>
<td>1</td>
<td>PICH, FCH @ 9.6 kbps</td>
<td>7,57</td>
<td>4.2.3, 4.3.3</td>
</tr>
<tr>
<td>1xPilot</td>
<td>Forward 1x</td>
<td>1</td>
<td>PICH</td>
<td>6,81</td>
<td>4.1.2, 4.2.1.1, 4.2.2</td>
</tr>
<tr>
<td>1xRACH</td>
<td>Reverse 1x</td>
<td>1</td>
<td>ACH</td>
<td>5,37</td>
<td>3.2</td>
</tr>
<tr>
<td>1xRCCCH</td>
<td>Reverse 1x</td>
<td>1</td>
<td>CCCH</td>
<td>4,47</td>
<td>3.3.1, 3.3.2</td>
</tr>
<tr>
<td>1xRFCH1</td>
<td>Reverse 1x</td>
<td>1</td>
<td>FCH @ 9.6 kbps</td>
<td>5,33</td>
<td>3.4.1, 3.4.2, 3.4.3, 3.5.1, 3.5.2, 3.5.3, 3.5.4, 3.5.5, 3.7</td>
</tr>
</tbody>
</table>

For all signals (unless otherwise stated):
- **Length**: 1 Frame (80 ms)
- **Oversampling**: 2
- **Used AMIQ blocks**: 4
- **Forward filter**: is95eq320.ifl

In order to generate a correct cdma2000-signal, please make sure that IQSWAP is selected in both WinIQSim and the SMIQ (in the sub-menu [VECTOR MOD]).

Due to the internal memory organization, the SMIQ always uses the internal memory in blocks of 65.527 samples and can hold 22 blocks in its nonvolatile memory. A frame with 80 ms length uses 196.608 samples and occupies 4 blocks. So, 5 different cdma2000 waveforms can be stored in SMIQ-B60 at one time.
9. Additional Informations

Please contact TM-Applications@rsd.rohde-schwarz.com for comments and further suggestions.

10. Literature

1. Generating and Analyzing cdma2000 Signals, Application Note 1MA34, Rohde & Schwarz
2. Digital standards IS-95 and CDMA2000 – Supplement to SMIQ, AMIQ and WinIQSIM, PD 757.5908.2
3. cdmaOne Base Station Tests – Application Firmware Module FSIQK71, Operation Manual
8. Loopback Service Options (LSO) for cdma2000 Spread Spectrum Systems, 3GPP2 C.S0013
9. Test Data Service Option (TDSO) for cdma2000 Spread Spectrum Systems, 3GPP2 C.S0026
10. Markov Service Option (MSO) for cdma2000 Spread Spectrum Systems, 3GPP2 C.S0025
11. Ordering Information

I/Q Modulation Generator

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Features</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&S AMIQ</td>
<td>AMIQ-K12</td>
<td>cdma2000 option</td>
<td>1122.2503.02</td>
</tr>
<tr>
<td>R&S SMIQ-B60</td>
<td>SMIQ-K12</td>
<td>Max. 512 Msamples I and Q</td>
<td>1136.4390.02</td>
</tr>
<tr>
<td>R&S WinIQSIM</td>
<td></td>
<td>IQ simulation software (Version 3.50 or later)</td>
<td>1110.3600.02</td>
</tr>
</tbody>
</table>

Vector Signal Generator

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Features</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&S AMIQ</td>
<td>AMIQ-K12</td>
<td>Parametrical Option</td>
<td>1122.2503.02</td>
</tr>
<tr>
<td>R&S SMIQ-B60</td>
<td>SMIQ-K12</td>
<td>Max. 512 Msamples I and Q</td>
<td>1136.4390.02</td>
</tr>
<tr>
<td>R&S WinIQSIM</td>
<td></td>
<td>IQ simulation software (Version 3.50 or later)</td>
<td>1110.3600.02</td>
</tr>
</tbody>
</table>

Signal Analyzer, Spectrum Analyzer and Options

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Features</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&S AMIQ</td>
<td>AMIQ-K12</td>
<td>Parametrical Option</td>
<td>1122.2503.02</td>
</tr>
<tr>
<td>R&S SMIQ-B60</td>
<td>SMIQ-K12</td>
<td>Max. 512 Msamples I and Q</td>
<td>1136.4390.02</td>
</tr>
<tr>
<td>R&S WinIQSIM</td>
<td></td>
<td>IQ simulation software (Version 3.50 or later)</td>
<td>1110.3600.02</td>
</tr>
</tbody>
</table>

Power Meter and Options

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Features</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&S AMIQ</td>
<td>AMIQ-K12</td>
<td>Parametrical Option</td>
<td>1122.2503.02</td>
</tr>
<tr>
<td>R&S SMIQ-B60</td>
<td>SMIQ-K12</td>
<td>Max. 512 Msamples I and Q</td>
<td>1136.4390.02</td>
</tr>
<tr>
<td>R&S WinIQSIM</td>
<td></td>
<td>IQ simulation software (Version 3.50 or later)</td>
<td>1110.3600.02</td>
</tr>
</tbody>
</table>

Utilization of this Application Note and the programs supplied with it is permitted subject to acceptance of the Terms of Use as stated in the download area of the Rohde & Schwarz website.