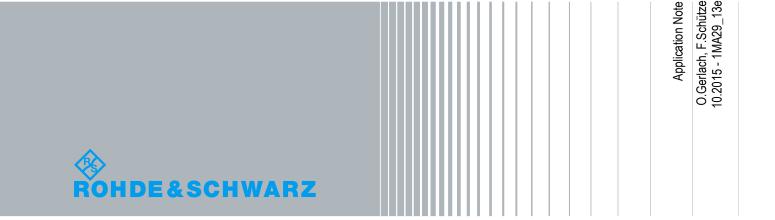
NPR – Noise Power Ratio Signal Generation and Measurement Application Note

Products:

- I R&S[®]SMW200A I R&S[®]FSW
- I R&S[®]SMU200A I R&S[®]FSVR
- I R&S®AFQ100A/B I R&S®FSV
- I R&S®SMBV I


>				R&S NPR				- • ×
File Tools	Help							
Notch	-	Center/MHz	Width/MHz	Start Freq/MHz	Stop Freq/MHz	Start Index	Stop Index	Depth/dB
Sample Rate	2000.000000 🗘 MHz	1 -349.998474	100.000000	-399.998474	-299.998474	-52428	-39321	-100.00
NBW/SRate	0.900000 🗘	2 99.998474	100.000000	49.998474	149.998474	6553	19660	-100.00
Noise BW	1800.000000 MHz	3 549.995422	100.000000	499.995422	599.995422	65535	78642	-100.00
FFT Length	262144 ~							
Line Spacing	7.629395 kHz							
Count	3 🛟							
Width	100.000000 🗘 MHz	-						
Offset	100.000000 🗘 MHz							
Depth	-100.000000 🗘 dB							
A	uto-Calculate							
VQ Generation	n: 💿 Internal 🛛 Load	Mag/Pha 🌔 Load VQ	Sin(x) Comp.	Calculate FFT 0	Crest Factor:		• (connected
Phase Distr.	Rnd (const. seed 👻 Cor	nst. Seed 1	Compensate	Data valid	10.7893 dB			/IP Port 1000 🛟
Signal Power	/dBm NPR Lower/dB	NPR Upper / dB	Preset	Measure				
-10.	78 0.39	-43.38	Notch Nr. 2 🛟	Mode Single -				Quit

R&S[®]FSL

Noise Power Ratio (NPR) is an add-on tool for WinIQSIM / WinIQSIM2[™] to generate noise power ratio stimulus signals and measure the resulting noise power ratio of a device under test (DUT) using Rohde & Schwarz instruments via IEEE or LAN interface.

Please find the most up-to-date document on our homepage http://www.rohde-schwarz.com/appnote/1MA29.

This document is complemented by software. The software may be updated even if the version of the document remains unchanged

Table of Contents

1	Overview
2	Software Features
3	Hardware and Software Requirements5
3.1	Hardware Requirements
3.2	Software Requirements
4	Connecting the Computer and Instrument
5	Installing NPR7
6	Starting the Software / Measurement
6.1	Parameters16
6.1.1	Sampling Parameters16
6.1.2	Notch Related Parameters18
6.1.3	Phase / Magnitude Distribution
6.1.4	Notch List
6.1.5	Calculate FFT
6.1.6	Connected22
6.2	Menu23
6.2.1	Load / Save Configuration or Data File23
6.2.2	Devices
6.2.3	Optimize Crest Factor
6.2.4	Performing NPR Measurements
6.2.5	Using NPR with Microwaves
7	Additional Information 37
8	Ordering Information

Hardware Requirements

1 Overview

Noise Power Ratio (NPR) is an add-on tool for WinIQSIM / WinIQSIM2[™] to generate noise power ratio stimulus signals and measure the resulting noise power ratio of a device under test (DUT) using Rohde & Schwarz instruments via IEEE or LAN interface. The Noise Power Ratio measurement technique can characterize the linearity of a wide band amplifier over a custom frequency range. Since NPR drastically reduces measurement time compared to classic gain wobbling, it is particularly interesting for production specific applications.

The following abbreviations are used in the following text for R&S® test equipment:

- R&S® is a registered trademark of Rohde & Schwarz GmbH und Co. KG.
- The R&S®FSW Spectrum Analyzer is referred to as FSW.
- The R&S®FSQ Spectrum Analyzer is referred to as FSQ.
- The R&S®SMW200A Vector Signal Generator is referred to as SMW.
- The R&S®SMU200A Vector Signal Generator is referred to as SMU.
- I The R&S®SMBV Vector Signal Generator is referred to as SMBV.

2 Software Features

The software offers:

- Custom notch definition
- Frequency response compensation
- Generator and analyzer control
- Load / save device configuration
- Automatic measurement of specified notch with adjacent channel power (ACP) option

Hardware Requirements

3 Hardware and Software Requirements

3.1 Hardware Requirements

The software runs on a PC with:

- CPU: 1 GHz or faster
- RAM: 2 GBytes or more
- Monitor: VGA color monitor
- GPIB bus: VISA compatible GPIB controller board and / or LAN Standard onboard 100/1000 MBit/s controller or switch / hub.

It supports following instruments:

- AFQ100, AMIQ: I/Q modulation generator
- SMW, SMBV, SMJ, SMV03, SMU, SFU, SMIQ, SMHU58: Vector Signal Generator with I/Q inputs or internal I/Q modulator.
- FSL, FSP, FSQ, FSU, FSV, FSW, FSE, FSIQ spectrum analyzer with ACP capability.
- SMF, SMR microwave generator supported, but not mandatory.

3.2 Software Requirements

- MICROSOFT WINDOWS 7/8/10 32- or 64-bit operating system.
- Optional GPIB bus driver.
- WINIQSIM v4.4 or WINIQSIM2[™] v2.20.xxx (or higher) installed. This is a software tool that generates standard and custom I/Q signals e.g. for ACP measurements. It can upload I/Q data to an AFQ / SMU I/Q modulation generator and control one of the SMx signal generators named above. NPR communicates with WinIQSIM / WinIQSIM2[™] via the TCP/IP network protocol. Both programs must run simultaneously to enable data transfer. Download the latest WINIQSIM version from http://www.rohde-schwarz.com.
- **VISA** compatible driver. See manufacturer's website for latest revision.

4 Connecting the Computer and Instrument

Connect the computer running NPR to the instruments that are involved with the measurement, such as a SMx signal generator and an FSx spectrum analyzer.

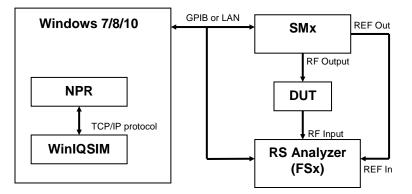


Fig. 4-1: Connecting Instruments

5 Installing NPR

Make sure that **WINIQSIM** or **WINIQSIM2**[™] is installed on your hard disc. Execute **1MA29_NPR_x64_******.EXE or **1MA29_NPR_x86_******.EXE and follow the installation instructions.

6 Starting the Software / Measurement

Execute **NPR.EXE**. The example setup below shows three notches generated with **AUTO-CALCULATE**. NPR configuration is stored in **NPR.CFG** at exit:

ф.				R&S NPR				- 🗆 🗙
File Tools	Help							
Notch	-	Center/MHz	Width/MHz	Start Freq/MHz	Stop Freq/MHz	Start Index	Stop Index	Depth/dB
Sample Rate	2000.000000 🗘 MHz	1 -349.998474	100.000000	-399.998474	-299.998474	-52428	-39321	-100.00
NBW/SRate	0.900000	2 99.998474	100.000000	49.998474	149.998474	6553	19660	-100.00
Noise BW	1800.000000 MHz	3 549.995422	100.000000	499.995422	599.995422	65535	78642	-100.00
FFT Length	262144 -							
Line Spacing	7.629395 kHz							
Count	3 🗘							
Width	100.000000 🗘 MHz							
Offset	100.000000 🗘 MHz							
Depth	-100.000000 🗘 dB							
Αι	uto-Calculate							
VQ Generation	n: 💿 Internal 🛛 🔵 Load I	/lag/Pha 🔵 Load VQ	Sin(x) Comp.	Calculate FFT C	rest Factor:			connected
Phase Distr.	Rnd (const. seed 👻 Con	st. Seed 1 🛟	Compensate 🔹	Data valid	10.7893 dB		тср	/IP Port 1000 🛟
Signal Power	/dBm NPR Lower / dB	NPR Upper / dB	Preset	Measure				
-10.	78 0.39	-43.38	Notch Nr. 2 🛟	Mode Single 👻				Quit

Fig. 6-1: Main Menu

Devices can be configured in the device menu. See **Devices** for details.

- Define a custom signal with the sampling and notch specific parameters (SAMPLE RATE, FFT LENGTH, NOTCH COUNT, etc.).
- Prepare the IQ data for transmission to WinIQSIM by pressing CALC FFT. The DATA VALID LED indicates that the data is ready for transfer.
- After transferring the data to the SMU/AMU via WinIQSIM (see following section, step 4) press the PRESET NPR MEAS button to put the analyzer in ACP measurement mode.
- Select a **NOTCH NR** and press the **MEASURE** button to receive the signal's **NPR** and calculated **SIGNAL POWER**.

Execute **WINIQSIM.Exe** / **WINIQSIM2.Exe** and load the configuration file **NPR.IQS**. / **NPR.SAVRCL** This affects following settings:

1. **IMPORT** settings for TCP/IP link.

Import Filter	Q Impairments Off III On
Import Info	
Import Mode C DDE C TCP/IP TCP/IP Parameter Server Name <mark>localhost</mark> Local Server C Port Number <mark>1000</mark>	
Server ID Noise Power Ratio	

Fig. 6-2: WinIQSIM Import Settings

🗮 Import			a ×
State		On	
Set To Default		Save/Recall	
		arameters	
Use Local Server			V
Server Name	ocalhost		
Port Number			1 000
Transmission Timeout (s)			20
Update Server Connection	Server II) Noise Power Ratio	

Fig. 6-3: WinIQSIM2™ Import Settings

IQ Impairm	ents Phase Noise
Off I	On Off 🔟 On
Import Filte	ering
Filter / Window Filter Function	Ideal Low Pass 🔻
iiie Info	
Fit Para	0.00
Window Function	Hanning
Chabyshav Ripple All: Impulse Length	0 00 128 1
Oversampling Auto	↓120
Baseband Impulse	Dirac 🔻
<u></u> K	Cancel

2. FILTER set to ideal low pass.

Fig. 6-4: WinIQSIM Filter Settings

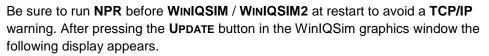

🧱 Import: Filter/Clipping Settings	
	Filter
Filter	Lowpass 🗾
Cut Off Frequency Factor	0.50
Impulse Length 🔲 Auto	128
Oversampling 🦵 Auto	1
Sample Rate Variation	10.000 000 000 MHz 💌

Fig. 6-5: WinIQSIM2™ Filter Settings

3. Graphic Display

		Graphic Setting	
Format Para	meter-		
Forn	nat	FFT MAG	Show Show wrap around
FFT W	ïn. Βε	ect	Evensity Coloring
FFT AV	/G] 1		
FFT Leng	gth 13	1072 (2^17)	
FFT De	lay 🌒	.000	
Con Off.		.000	
Scaling		Min	Maz
t/Tsum	🔽 Áu	lo 2000	100 000
		io 🌲 - 1000	200
Q	🔽 Áu	lo 🌲 🕮 000	2000
r	17 Au	lo 🤹 0 (00)	1 100
phi	🔽 Áu	lo 🤹 -45.000	200.000
f	🔽 Áu	lo 🤹 -94.000	150 000
FFT F	🗹 Au	to 0.000	0.000
FFT MAG	🗖 Au	to	\$10.000
FFT Phase	🔽 Áu	lo 🤤 -150.000	180 (00)
FFT GD	🔽 Áu	lo 🤹 • 1.000	1 (0)
Freq/Tin	ne At	is 🔻 Ey	ve Length 🌲 4
ACP Measu	irement	Show SM	IIQ ARB Cut Off Range
<u>0</u> K		Cancel	<u>P</u> lot Graph

Fig. 6-6: WinIQSIM Graphic Setting

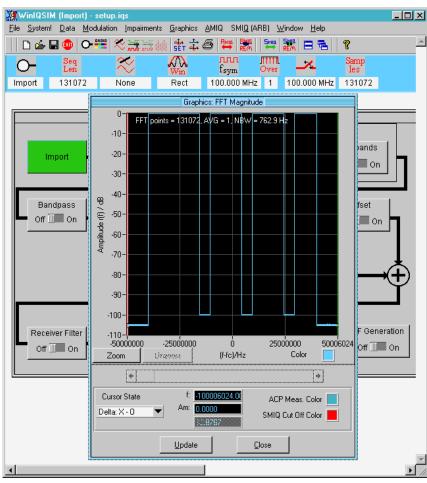
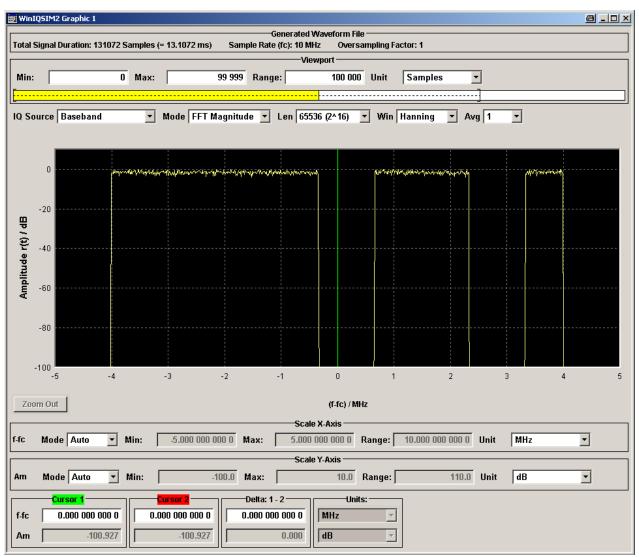



Fig. 6-7: WinIQSIM Graphic Display

The WinIQSIM2TM graphic display is automatically updated when a parameter is changed in NPR.

Fig. 6-8: WinIQSIM2™ Graphic Setting and Display

 To transfer the signal to the arbitraty IQ generator press the WinIQSim menu item ARB -> SELECT TARGET ARB and choose one from the list.

	<u>G</u> raphics	<u>A</u> RB	<u>W</u> indow	Help		
4	🎆 Targe	t ARB	Selectio	n	8	×
I	Target Al	RB		SMU-B10, SMJ-B10, SMATE-B10		-
	ARB Para	ameter		AMIQO2 AMIQO3 AMIQO4 SMIQB60 SMU-B9, SMJ-B9, SMATE-B9		
	FFT AV		<u>Q</u> K 0	 SM0-03, SM0-03, SMATE-03 SMU-B10, SMJ-B10, SMATE-B10 SMU-B11, SMJ-B11, SMATE-B11 SFU-K35 (64 MS) SFU-K35 (128 MS) AM300 		

Fig. 6-9: WinIQSIM Target ARB Selection

Then choose ARB \rightarrow SMU, SMJ, SMATE (ARB) \rightarrow **TRANSMISSION**.

ARB Window Help		
Select Target ARB		→ 10
AMIQ		
SMI <u>Q</u> (ARB)		· · · 10 · 24
SMU, SMJ, SMATE (ARB)	•	Iransmission
SEU (ARB)		Signal Statistics and Quantization
AM <u>3</u> 00	Þ	Marker Setting
Preserve ARB Options on Setti	ngs Load	DLIST Transmission
Y Open ARB Options	-	on 🔽
¿Save ARB Options	manannun	Sidebands

Fig. 6-10: WinIQSIM AMIQ Transmission

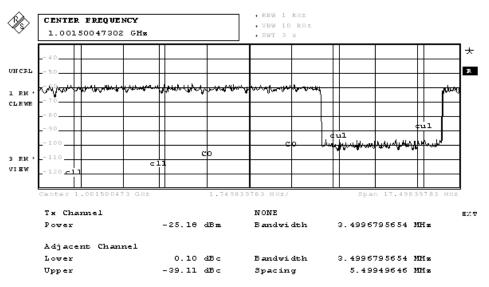

🧱 WinIQSIM2: Waveform Transmiss	WinIQSIM2: Waveform Transmission To Arbitrary Waveform Generator "SMU-101538"			
User Comment for File/Waveform				
	Source			
Internal (WinIQSIM2) 💌	File			
	Destination			
Instrument 🔹	File			
🔽 Automatically Load And Start Wa	aveform In Path A 💌			
	Transmit Waveform			
	Transmit			

Fig. 6-11: WinIQSIM2™ SMU Transmission

5. **NPR** can set up the analyzer for Noise Power Ratio measurement of a specified notch automatically (see *Performing NPR Measurements*). Following analyzer parameters are affected.

Detector RMS
Resolution bandwidth: manual < 30ms depending on sample rate.
Sweep time > 0.5s
Channel bandwidth = notch width * 0.8.
Channel spacing = notch width * 1.1
Center frequency is moved so adjacent channel fits inside notch.

The analyzer (e.g. FSP) would show following display. The adjacent channel fits perfectly into the second notch (cu1 - ACP upper). If the notch's mid frequency is smaller than the generator's center frequency then cl1 - ACP lower channel is used.

6.1 Parameters

6.1.1 Sampling Parameters

Sample Rate	50.000000	\$	MHz
NBW/SRate	1.000000	\$	
Noise BVV		50	MHz
FFT Length	4096	Ŧ	
Line Spacing	12.2	07	kHz

Fig. 6-13: Sampling Parameters

SAMPLE RATE – Configures the ARB sample rate. This value affects the **LINE SPACING** display. A noise and notch pattern can be minimized by decreasing and expanded by increasing the sample rate. Range: 10 kHz – 10 GHz.

NOISE BW / SAMP.RATE – Configures the noise bandwidth to sample rate ratio. This limits the noise bandwidth to prevent upper and lower side band aliasing effects from influencing the signal. Range: 0.01 to 1.

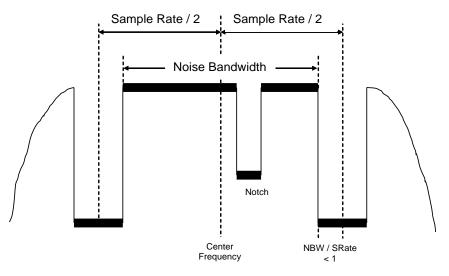


Fig. 6-14: Noise BW / Sample Rate

NOISE BANDWIDTH (NBW) – Displays the valid spectral area for custom notch insertion, which is:

NBW = Sample Rate * NBW / Srate

FFT LENGTH – the number of points in the frequency domain axis that are inversely Fourier transformed into time domain mode for download to WinIQSIM. This value affects the **LINE SPACING** display.

FFT Length	131072	-
	4194304	
Line Spacing	2097152	
	1048576	
Count	524288	=
	262144	
Width	131072	
Offset	65536	
011001	32768	
Depth	16384	
	8192	Ŧ
A.,	to Coloulato	

Fig. 6-15:FFT Length

The latest WinIQSIM revision 3.5 can only display FFT lengths up to 128kS correctly.

LINE SPACING – Displays the frequency resolution of FFT lines, which is:

LINE SPACING = SAMPLE RATE / FFT LENGTH

6.1.2 Notch Related Parameters

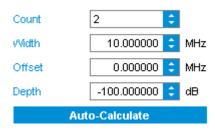


Fig. 6-16: NPR Notch Related Parameters

NOTCH COUNT – Specifies the number of notches within the current noise bandwidth. With **AUTO CALC NOTCHES** the number of notches is restricted to:

NOTCH COUNT < NBW / NOTCH WIDTH

- **NOTCH WIDTH** The notch width is limited by the current noise bandwidth. With **AUTO CALC NOTCHES** all notches have equal widths. If the notch width is smaller than the line spacing no notch will be generated. Range: 0.01 MHz - Noise Bandwidth.
- **NOTCH DEPTH** With **AUTO CALC NOTCHES** all notches have equal depths. Range: 0 100 dB.
- **NOTCH OFFSET** Specifies a frequency offset that is added to the notch center frequencies with **AUTO CALC NOTCHES**. Avoid effects from insufficiently suppressed carriers by moving the notch out of the "*danger zone*".

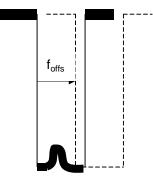


Fig. 6-17:NPR Notch Offset

AUTO-CALCULATE – Automatically produces notches with the specified parameters to fit perfectly into the noise bandwidth range. The *Notch Count* is reduced, if necessary.

NOTCH / CARRIER – Generates Notches as defined above, if set to Notch.

Fig. 6-18: Notch / Carrier selction

Generates <Count> carriers after pressing Auto-Calculate if set to Carrier.

Carrier	~		Center/MHz	Index
Sample Rate	2000.000000 🗧 MHz	1	-893.000000	-117047
NBW/SRate	0.900000	2	7.000000	917
Noise BVV	1800 MHz	3	907.000000	118882
FFT Length	262144 -			
Line Spacing	7.62939 kHz			
Count	3			
Width	10.000000 0 MHz			
Offset	7.000000 🗧 MHz			
Depth	-100.000000 🔅 dB			
Au	rto-Calculate			

Fig. 6-19: Generate Carriers

6.1.3 Phase / Magnitude Distribution

Fig. 6-20: Phase / Magnitude Distribution

PHASE DISTRIBUTION

RANDOM (CONST. SEED) – I/Q-phase arrays are filled with random values between $-\pi$ and $+\pi$. The random generator always starts with **Const.Seed**.

RANDOM (CONTINUE) – as above except that the random generator's seed depends on the last value.

PARABOLIC – I- and Q- phase arrays are filled with an unsymmetrical chirp signal ranging from $-\pi$ to $+\pi$. This signal can be used to simulate a wobble generator.

CONSTANT – I/Q phase arrays are filled with constant values. This signal results in one or more peaks in time domain mode due to identical phases of numerous frequency lines.

I/Q GENERATION – Allows **INTERNAL** I/Q generation with the Phase Distributions above, loading a Magnitude / Phase (*.pmc) or I/Q data file.

Fig. 6-21: I/Q Generation

In case of LOAD I/Q, the FFT Length is changed to the number of samples in the file.

If Load Mag/Pha is checked, the selected *.pmc file is loaded. After loading the file the FFT length input field is dimmed and the number of FFT elements in the file is used. The file has the structure shown below.

4096 Element count (usually based on 2ⁿ)

6.1.4 Notch List

All active fields (not dimmed) of the notch list can be edited except *Notch* index. If there are more than 10 items use the scroll bar to display the desired notch configuration line. Since all values are based on a discrete 2^N array it is likely that a straight value, e.g. 10.00000 is locked to the nearest point in the array, e.g. 9.987654. The resolution depends on the FFT length.

				Stop Freq/MHz		Stop Index	Depth/dB
1	982.000351	5.000000	979.500351	984.500351	-53738	-40631	-100.00
2	1006.999969	5.000000	1004.499969	1009.499969	11796	24903	-100.00
3	1031.999969	5.000000	1029.499969	1034.499969	77332	90439	-100.00

Fig. 6-22: Notch List

<u>Note:</u> All values displayed in one line depend on each other. The last input value reconfigures the other ones to make sense.

NOTCH – Displays the notch index number.

CENTER FREQ – Edit notch center frequency. Range:

 $f_{carrier} - NBW / 2 \le f_{center} \le f_{carrier} + NBW / 2$

WIDTH – Specifies the notch width. Range: 0 - *NBW*.

START FREQUENCY – The start frequency is calculated as:

 $f_{start} = f_{center} - Width / 2$

STOP FREQUENCY – The stop frequency is calculated as:

 $f_{stop} = f_{center} + Width / 2$

START INDEX – Notch's first frequency line number. Range:

FFT Length / 2 - FFT length * (NBW / SRate) / 2 \leq Start Index < FFT Length / 2 + FFT length * (NBW / SRate) / 2

STOP INDEX - Notch's last frequency line number. Range: see Start Index.

<u>Note</u>: An automatic plausibility check avoids Start Frequency (Start Index) being larger than Stop Frequency (Stop Index) and switches them, if necessary. If Start- and Stop Index are equal, the notch consists of only one frequency line. On the other hand a single frequency can be generated by defining two notches ranging from minimum index to frequency index-1 and frequency index + 1 to maximum index.

DEPTH – Specifies the notch depth. Range: 0 - -100 dB.

Note: While WinIQSIM displays correct notch depths, the depth of the actual signal is limited to > -70dB by the AMIQ.

Parameters

6.1.5 Calculate FFT

Sin(x) Comp.	Calculate FFT	Crest Factor:
Compensate	Data valid	11.1492 dB

Fig. 6-23: Calculate FFT

Press the **CALCULATE FFT** button to calculate the NPR signal in WinIQSIM compliant I/Q format. The green LED indicates that the data is valid and can be imported by WinIQSIM via TCP/IP. The crest factor of the signal is also calculated. The **COMPENSATE** checkbox is undimmed as soon as a trace file has been loaded from File

 \rightarrow Load Trace Data (Text). The trace data file can be generated for instance with RSCommander (1MA74). When **COMPENSATE** is checked, the data from the trace file loaded previously is used to linearize the frequency response in the baseband.

6.1.6 Connected

e connecte	∋d	
TCP/IP Port	1000	¢

Fig. 6-24: TCP/IP Connection Status

- When NPR and WinIQSIM / WinIQSIM2[™] (TCP/IP import mode) are running the CONNECTED LED turns green to indicate that NPR has been recognized by WinIQSIM / WinIQSIM2[™].
- The **TCP/IP Port** number may be varied to enable multiple client access to WinIQSIM / WinIQSIM2[™].

6.2 Menu

6.2.1 Load / Save Configuration or Data File

All program and device specific data can be loaded / saved from / to a configuration file.

🚸 R	&S NPR		
File) Tools Help		
	Load Cfg File	Ctrl+O	
	Save Cfg File	Ctrl+S	
	Load SAN Mag		
	Save Data File (ASCII)		
	Save Data File (Wave no Hdr)		
	Quit	Ctrl+Q	

Fig. 6-25: File Menu

LOAD CONFIGURATION - the default file extension is *.cfg. х 🚸 Load Cfg File -------C→ C→ W KS + 1MAA_AN + 1MA029 - Npr + src + cfg 👻 🍫 cfg durchsuchen Q Organisieren 👻 🛛 Neuer Ordner ? · · · 퉬 1MA028 - IQWiz 🔦 Name Änderungsdatum Тур 퉬 1MA029 - Npr 📄 NPR.cfg 11.02.2003 13:19 CFG-Datei 퉬 appnote] bin 🚺 doc 📔 src] backup 🌗 cfg 🐌 cvibuild.Npr 🗉 퉬 cvibuild.Npr 칠 distr 鷆 tags 퉬 1MA074 - RSCor 퉬 1MA242 - R&S@ 퉬 1MA250 - Mirac 퉬 1MA253 - LTE V 1MAA_common + • 📜 ЕКИСАТ О НА Dateiname: NPR.cfg Config File (*.cfg) • Öffnen Abbrechen

Fig. 6-26: Load Configuration

🚯 Save Cfg File	
G v → WAA_AN → 1MA029 - Npr → src → cfg	← ← ← cfg durchsuchen
Organisieren 🔻 Neuer Ordner	≣≕ ▼ 🔞
MP3 Name	Änderungsdatum Typ Größ
RS	11.02.2003 13:19 CFG-Datei
1045001	
🍌 1MA028 -	
1MA028 -	
IMA029 - ■ appnot	
🐌 bin	
doc	
l lags	
1043 IMA074 -	
🛺 1MA242 -	
1MA250 · · ·	III.
Dateiname: NPR.cfg	
Dateityp: Config File (*.cfg)	
······································	
💿 Ordner ausblenden	Speichern Abbrechen

SAVE CONFIGURATION - the default file extension is *.cfg.

Fig. 6-27: Save Configuration

LOAD SAN MAG (POLYNOMIAL) – Loads a trace file (*.txt) that has been generated for instance with RSCommander (1MA74) with following format:

<frequency0[Hz]>;<level0[dB]>

.....

<frequency n-1[Hz]>;<level n-1[dB]>

This menu item compensates the frequency response of an IQ modulated signal with a polynomial function.

LOAD SAN MAG (DIRECT) – Loads a trace file (*.txt) that has been generated for instance with RSCommander (1MA74) with the same format as above. The compensation is performed by adding the negative offset of the trace file from the nominal level (as defined in the devices menu) to the internally generated signal.

6.2.1.1 Magnitude Compensation Example

1. Generate a wideband noise signal without notches (Notch Count = 0)

Notch			-		
Sample Rate	2000.000000	\$	MHz		
NBVV/SRate	1.000000	\$			
Noise BVV	20	100	MHz		
FFT Length	262144	-			
Line Spacing	7.629	39	kHz		
Count	0	\$			
Width	100.000000	\$	MHz		
Offset	100.000000	¢	MHz		
Depth	-100.000000	¢	dB		
Auto-Calculate					

Fig. 6-28: Noise signal without notches

- 2. Press CALC FFT to generate the according I- and Q- arrays.
- Either transmit the data to an R&S SMx generator via WinIQSIM2 or save the data to ASCII (*.i and *.q) or WAVE files (*_I.wav and *_Q.wav) e.g. for Tabor WX2182 Arbitrary Waveform Generator series.

🚸 R	&S NPR	Lat.
File) Tools Help	
	Load Cfg File	Ctrl+O
	Save Cfg File	Ctrl+S
	Load SAN Mag	
	Save Data File (ASCII)	
	Save Data File (Wave no Hdr)	
	Quit	Ctrl+Q

Fig. 6-29: Save I/Q Data as Wave without Header

- 4. Generate an IQ modulated RF signal and trace it with an FSx spectrum analyser. The span should be a bit larger than the NPR sample rate, set **Sweep Time** to 1 second and use a **RMS** detector.
- 5. Start RSCommander, perform a **TRACE** a save the trace data, e.g. Reference.txt.
- 6. Load the trace data into NPR (either with polynomial or direct offset compensation).

🔶 R	&S NPR	Lat.
File) Tools Help	
	Load Cfg File	Ctrl+O
	Save Cfg File	Ctrl+S
	Load SAN Mag	
	Save Data File (ASCII)	
	Save Data File (Wave no Hdr)	
	Quit	Ctrl+Q

Fig. 6-30: Load FreRes curve and compensate with 20-degree polynomial function

- 7. Turn ON the **COMPENSATE** checkbox and generate a 'real' NPR signal with notches (Fig. 6-25).
- 8. Press CALC FFT to generate a compensated I/Q signal.
- 9. Transmit the signal as described in 3.).

SAVE DATA (ASCII) – Saves I- and Q-files (<filename>.i and <filename>.in ASCII format.

SAVE DATA (WAVE) – Saves I- and Q-files in RIFF wave format <filename>_i.wav and <filename>_q.wav.

6.2.2 Devices

🚸 Devices		Contract Contract	×
Signal Generator	Analyzer	Microwave Generator	
		0000001, 02.20.360.405.01, 20 Init	14-05-16; 11:15:32, Set Reset
Frequency 1000.000000	MHz		
Level	dBm		
			ок

Fig. 6-31: Signal Generator Configuration

Signal Generator	Analyzer	Microwave Gen	erator	
	e Message			
FSQ - Erro	r at rsOpen: -1073	807343		
Interface Addr LAN (VXI-11 - FSQ	ess 8-200391		Init	Set Reset
Frequency	¬	n Bandwidth	Video Bandw	
1000.000000	MHz 3 kHz	-	30 kHz	Ψ.
Span	Attenuati		Sweep Time	
50.00000	MHz 10	¢ dB	3.000000	S
Level	Auto dBm		🗌 Auto	

Fig. 6-32: Analyzer Configuration

SIGNAL GENERATOR

Түре	SMBV, SMG, SMHU58, SMIQ, SMJ, SMU(A), SMU(B) , SMV, SMW(A), SMW(B)			
INTERFACE	GPIB0, GPIB1, LAN (RSIB), LAN (VXI-11)			
Pad	GPIB Primary ADdress. Range 131			
IP Addr	IP Address e.g. 192.168.1.1 or instrument name e.g. FSQ8-100234			
RESET	Performs an instrument reset when pressing INIT or SET .			
Ινιτ	Initializes generator and ID string.			
Set	Sets generator frequency and RF level.			
Freq	Specifies the generator's carrier frequency. Range depends on the generator type. With no generator connected, this value ranges from $-\infty$ to $+\infty$.			
Level	RF output level. Range depends on the generator option.			

ANALYZER

Түре	FSEx, FSG, FSIQ, FSL, FSP, FSQ, FSU, FSV, FSW			
PAD, IP ADDR, Reset, Init, Set	See above			
FREQ	Center frequency			
SPAN	Displayed frequency range.			
RLEV	RF reference level. Range depends on the analyzer option.			
Atten	RF input attenuation. With Auto checked the Atten value is calculated by the analyzer and depends on RF input and mixer level (in certain FSEx models).			
RBW	Video bandwidth. Auto overrides manual setup.			
VBW	Specifies the time needed to sweep over the complete frequency span. Auto overrides manual setup.			
SWP.TIME	Specifies the time needed to sweep over the complete frequency span. <i>Auto</i> overrides manual setup.			

MICROWAVE GENERATOR

Түре	None, SMF, SMR	
PAD, IP ADDR, RESET, INIT, SET	see above.	
Freq	Microwave signal generator frequency. Acts as local oscillator (LO) frequency in the mixer stage (see USING NPR WITH MICROWAVES).	
Level	RF output level.	
Atten	IFI input attenuation.	
IF INPUT	Mixer input. LEVEL control is dimmed when IF INPUT is active.	

(Optimize Crest Fac	tor		×
1	Crest Factor	* III	Seed Count	Current Index 4
2	10.5875		Seed Min CF	Min Crest Fact
3	10.7888 10.7078		Seed Max CF	Max Crest Fact
5	12.0643	-	6 Mean	12.1453 StdDev
	100%		11.1292	0.508463
	Start S	top		ОК

6.2.3 Optimize Crest Factor

Fig. 6-33: Optimize Crest Factor

The **OPTIMIZE CREST FACTOR** option enables calculation of crest factors depending on the seed value. Enter **SEED COUNT** and press **START** to begin calculation. **STOP** halts the calculation and **QUIT** closes the window. All calculated values are listed in the left table. The **MIN**imum and **MAX**imum **CREST FACTOR**, the corresponding indexes (**SEED MIN CF**, **SEED MAX CF**) and **MEAN** and **STDDEV** (standard deviation) values are also displayed. The crest factor is defined as the ratio P_{peak} / P_{RMS} and usually ranges from 10 to 12 dB for NPR signals.

To calculate an NPR signal with a crest factor displayed in the list just enter the according seed in the **CONST SEED** control of the main program window and press **CALC FFT**.

6.2.4 Performing NPR Measurements

The program can set up the devices to automatically perform a NPR measurement of a desired notch. The NPR program uses the *ACP* measuring capabilities of the supported *FSx* spectrum analyzers to obtain the noise power ratio of the notch.

Signal Power / dBm	NPR Lower / dB	NPR Upper / dB	Preset	Measure
-16.11	-6.84	-46.38	Notch Nr. 2 🛟	Mode Single 👻

Fig. 6-34: NPR Measurements

- **PRESET** analyzer frequency, span, resolution bandwidth and sweep time are set up to get an overview of the complete sample rate.
- NOTCH NR configures the analyzer for NPR measurement of a selected notch. The center frequency is changed so the adjacent channel bandwidth area fits perfectly into the notch. The span is zoomed to increase precision. ACP CHANNEL / ADJACENT CHANNEL BANDWIDTH is set to 80% of the notch width while CHANNEL SPACING is 110% of the notch width. If the notch's mid-frequency is smaller than the generator's center *NPR* automatically chooses *ACP Lower* display (yellow background) else *ACP Upper*.
- **MODE** there are two measurement modes: *Cont*inous and *Single* shot. When choosing *Single* a measurement can be triggered by pressing the **MEASURE** button.
- <u>Note:</u> Automatic measurement only works correctly if gaps between notches are at least as wide as the notches themselves. The following figure shows how the channel bandwidth power suddenly drops in the left notch and leads to an incorrect NPR Upper display.

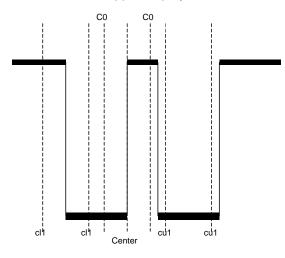


Fig. 6-35: Correct ACP Readout

6.2.5 Using NPR with Microwaves

An interesting application is NPR measurements of microwave amplifiers. For frequencies exceeding the range of standard signal generators (> 6 GHz) it is necessary to use an additional microwave generator e.g. SMR40 with the SMR-B24 or B23 mixer option. The schematic below shows an application consisting of SMU, SMR with a mixer option for signal generation and an FSx listed in the ORDERING INFORMATION table) for signal analysis.

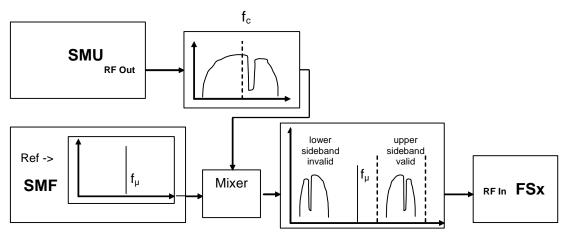
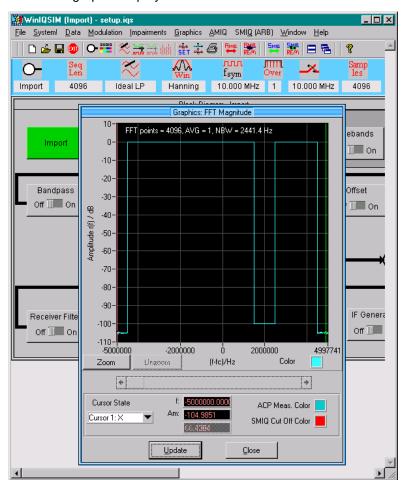


Fig. 6-36: NPR with Microwaves


The carrier frequency of the SMU (f_c) is mixed with the SMR microwave carrier frequency (f_μ) resulting in an upper ($f_\mu + f_c$) and lower ($f_\mu - f_c$) sideband. The most important SMR parameters (frequency, level and IF input attenuation and IF input on/off) can be controlled from the NPR device configuration menu.

In case the DUT is not frequency selective suppress the SMR carrier frequency and lower sideband with an external filter.

The resulting RF frequency is $f\mu$ + fc (upper sideband). The lower sideband is mirrored and therefore not adequate for our purposes. Our example uses the following setup: $f\mu$ = 10 GHz, fc = 500 MHz. Note that the resolution bandwidth is set to < 2 kHz and the sweep time is > 2 s. It is also possible to merge both signals via an external mixing component. This is necessary with an SMF microwave generator.

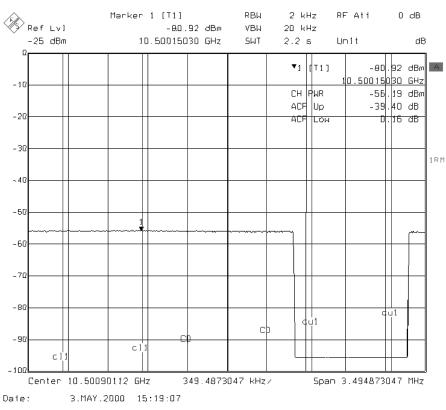

¢		R&S NPF	R			- 🗆 🗙
File Tools Help						
Notch -	Center/MHz	Width/MHz	Start Freq/MHz	Stop Freq/MHz	Start Index	Stop Index
Sample Rate 50.000000 🗘 MHz	1 -5.493164	5.000000	-7.993164	-2.993164	-654	-24
NBW/SRate 1.000000 🗘	2 6.994629	5.000000	4.494629	9.494629	368	7
Noise BW 50.000000 MHz	3 19.494629	5.000000	16,994629	21,994629	1392	18(
FFT Length 4096 -						
Line Spacing 12.207031 kHz						
Count 3 🛟						
Width 5.000000 \$ MHz						
Offset 7.000000 🗘 MHz						
Depth -100.000000 🗘 dB	<					>
Auto-Calculate						
VQ Generation: • Internal • Load	Maq/Pha 💽 Load VQ	Sin(x) Comp.	Calculate FFT 0	Crest Factor:	conr	acted
Phase Distr. Rnd (const. seed - Cor			Data valid	9.78088 dB		ort 1000 🛟
				3.70000 db		
Signal Power / dBm NPR Lower / dB	NPR Upper / dB	Preset	Measure			
-16.11 -6.84	-46.38	Notch Nr. 2 🛟	Mode Single 👻			Quit

Fig. 6-37: NPR Microwave Example

WinIQSim graphic display.

Fig. 6-38: WinIQSIM Microwave Example

FSx screenshot.

Fig. 6-39: FSx Microwave Example

7 Additional Information

Please contact **TM-APPLICATIONS@ROHDE-SCHWARZ.COM** for comments and further suggestions.

8 Ordering Information

Ordering Information	on				
Vector Signal Gene	erator				
SMW200A	Vector Signal Generator	1412.0000.02			
SMW-B10	Baseband Generator 64MS	1413.1200.02			
SMW-B13	Baseband Main Module	1413.2807.02			
SMJ100A	Vector Signal Generator	1403.4507.02			
SMJ-B10	Baseband Generator 64MS	1403.8902.02			
SMJ-B11	Baseband Generator 16MS	1403.9009.02			
SMU-B13	Baseband Main Module	1403.9109.02			
SMU200A	Vector Signal Generator				
SMBV100A	Vector Signal Generator	1407.6004.02			
SMJ100A	Vector Signal Generator	1403.4507.02			
SMV03	Vector Signal Generator	1147.7509.13			
SFU	Broadcast Test System	2110.2500.02			
IQ Modulator					
AFQ100A	200 MHz Bandwidth	1401.3003.02			
AFQ100B	528 MHz Bandwidth	1410.9000.02			
Spectrum Analyzer					
FSWxx	(2 Hz to 67 GHz)	1312.8000.xx			
FSW-B17	Digital Baseband Interface	1313.0784.02			
FSLx	(9 kHz to 6 GHz)	1300.2502.xx			
FSVx	(9 kHz to 7 GHz)	1307.9002.0x			
FSV-B70	Extension to 40MHz signal analysis bandwidth	1310.9645.02			
EX-IQ-BOX	Digital I/O Adapter	1409.5505.02			
Microwave Generat	tor				
SMF100A	MF100A (1 GHz to 43.5 GHz) 1167.0000.xx				

Rohde & Schwarz

The Rohde & Schwarz electronics group offers innovative solutions in the following business fields: test and measurement, broadcast and media, secure communications, cybersecurity, radiomonitoring and radiolocation. Founded more than 80 years ago, this independent company has an extensive sales and service network and is present in more than 70 countries.

The electronics group is among the world market leaders in its established business fields. The company is headquartered in Munich, Germany. It also has regional headquarters in Singapore and Columbia, Maryland, USA, to manage its operations in these regions.

Regional contact

Europe, Africa, Middle East +49 89 4129 12345 customersupport@rohde-schwarz.com

North America 1 888 TEST RSA (1 888 837 87 72) customer.support@rsa.rohde-schwarz.com

Latin America +1 410 910 79 88 customersupport.la@rohde-schwarz.com

Asia Pacific +65 65 13 04 88 customersupport.asia@rohde-schwarz.com

China +86 800 810 82 28 |+86 400 650 58 96 customersupport.china@rohde-schwarz.com

Sustainable product design

- Environmental compatibility and eco-footprint
- Energy efficiency and low emissions
- Longevity and optimized total cost of ownership

Certified Quality Management

Certified Environmental Management ISO 14001

This technical information and the supplied programs may only be used subject to the conditions of use set forth in the download area of the Rohde & Schwarz website.

 $\mathsf{R}\&\mathsf{S}^{\circledast}$ is a registered trademark of Rohde & Schwarz GmbH & Co. KG; Trade names are trademarks of the owners.

Rohde & Schwarz GmbH & Co. KG Mühldorfstraße 15 | D - 81671 München Phone + 49 89 4129 - 0 | Fax + 49 89 4129 - 13777

www.rohde-schwarz.com