
How to use Rohde & Schwarz®

IVI.NET instrument drivers
Application Note

This paper is a guide for C# programmers wanting to automate a measurement task using the native
Rohde & Schwarz IVI.NET instrument drivers in Visual Studio development environment.

The IVI (Interchangeable Virtual Instruments) define new level of quality, completeness, usability, and
functionality that reduces the cost of test system development and ownership.

.NET is a programming framework created by Microsoft that developers can use to create applications
more easily. Without writing a single line of code, .NET provides a scalable and powerful environment to
code upon.

Note:

Please find the most up-to-date Application Note on our homepage:

www.rohde-schwarz.com/appnote/1MA268

Ap
pli

ca
tio

n N
ote

IVI.NET ─ 1MA268_2e

Mi
los

lav
 M

ac
ko

http://www.rohde-schwarz.com/appnote/1MA268

Contents

2Application Note IVI.NET ─ 1MA268_2e

Contents
1 Introduction.. 3

2 Starting with Rohde & Schwarz IVI.NET Drivers.................................5

3 Creating a Console Application..8

4 Additional Information...37

5 Rohde & Schwarz...38

Introduction

3Application Note IVI.NET ─ 1MA268_2e

1 Introduction

1.1 Document Version History

Revision # Description Date

0e Initial Version 19.10.2015

1e - Changes to match the changes in RsScope IVI.NET driver version
3.0.0:

- All exceptions types were changed to Ivi.Driver exceptions

- Removed Extended function Extended_Synchro, since the *OPC?
and *WAI commands were added to the RsScope driver 3.0.0

- Changed screenshots from the new help file and the new VS proj-
ect 1MA268_RsScopeIVI.NET version 2.0.0

- Minor formatting and text changes

31.05.2016

2e - Updated for RsScope driver 3.0.1 08/2016. The RsScope 3.0.1
update includes new installation path for the driver assembly to com-
ply with the IVI-3.17

24.11.2016

1.2 Used Abbreviations

The following abbreviations are used in this application note:

● RTx is the name used for both Rohde & Schwarz RTO or RTE Digital Oscillo-
scopes.

● API stands for Application Programming Interface - a set of function prototypes,
types and protocols for building software applications.

● The Repeated Capabilities are referred to as RepCaps.
● Interchangeable Virtual Instruments are referred to as IVI.

See more at ivifoundation.org
● The IVI.NET driver is referred to as IVI driver.
● The driver documentation RsScope.chm help file is referred to as help file.
● Microsoft Intellisense® is referred to as Intellisense.

1.3 Required Software

To follow the steps, described in this Application Note the following additional software
is required:

● Windows 7/8 32-bit/64-bit operating system
● Microsoft Visual Studio 2012 or later
● VISA I/O library (e.g. Rohde & Schwarz VISA), download from:

Required Software

http://www.ivifoundation.org

Introduction

4Application Note IVI.NET ─ 1MA268_2e

https://www.rohde-schwarz.com/RS_Visa.html

RsScope driver and the required IVI packages:

● IVI Shared Components 2.2.1 or newer, download from:
http://www.ivifoundation.org/shared_components/

● IVI.NET Shared Components 1.1.2 or newer, download from:
http://www.ivifoundation.org/shared_components/

● RsScope 3.0.1 or newer, download from:
IVI.NET RsScope driver

1.3.1 32-bit vs 64-bit Operating System

While 32-bit operating system allows only for installation of 32-bit software components
and running of only 32-bit applications, 64-bit OS allows for both 32-bit and 64-bit
applications to be used. For this reason, the 64-bit installers install both 64-bit and 32-
bit components.

1.4 Used Software Configuration

The software configuration used in this Application Note:

● Windows 7 64-bit
● Microsoft Visual Studio 2015
● Rohde & Schwarz VISA 5.5.5
● IVI compliance package 14.0
● IviSharedComponents64_2.2.1
● IviNetSharedComponents64_Fx20_1.1.2
● RsScope 3.0.1.0 x64
● 1MA268_RsScopeIVI.NET example project version 2.0.0

1.5 Used Instruments

The instruments used in this Application Note:

● RTO 1044, 4 Channel, Firmware 2.70.1.0
● Passive Voltage Probe RT-ZP10, Attenuation rate 1:10

The RT-ZP10 is connected to the CH1 input and the Probe Compensation output on
the front panel.

Used Instruments

https://www.rohde-schwarz.com/RSVISA.html
http://www.ivifoundation.org/shared_components/
http://www.ivifoundation.org/shared_components/
https://www.rohde-schwarz.com/en/driver/rto/?&facet=facet.DriverTechnologie&facet.DriverTechnologie=IVI.NET

Starting with Rohde & Schwarz IVI.NET Drivers

5Application Note IVI.NET ─ 1MA268_2e

2 Starting with Rohde & Schwarz IVI.NET
Drivers
Rohde & Schwarz provides a range of free Instrument Drivers (follow the link Rohde &
Schwarz drivers) to simplify the development process of instrument remote control
applications. Rohde & Schwarz have been driving the introduction of IVI.NET drivers
as a new standard in the industry. The first IVI.NET driver RsScope was introduced in
08.2013 for the RTO Digital Oscilloscope.

IVI.NET drivers come in a form of .NET assembly, e.g. for RsScope x64:

C:\Program Files\IVI Foundation\IVI\Microsoft.NET\Framework64\
v4.0.30319\RohdeSchwarz.RsScope 3.0.1.0\Bin\
RohdeSchwarz.RsScope.Fx40.dll
This application note focuses only on Instrument-specific interface of the drivers.
Currently the IVI.NET drivers are available for the following instruments:

● Vector Signal Generators: SMW200A, SMVB100A, SMU200A, SMJ100A,
AMU200A, SMATE200A

● Spectrum Analyzers: FSW, FPS, FSV, FSVA, FSVR
● Oscilloscopes: RTO, RTE, RTM2000
● EMI Test Receivers: ESR, ESRP, ESW, FSWT
● New family of Power Sensors: NRPxxS(N)
● Power Supplies: HMC

2.1 Installation of IVI.NET Driver

For demonstration purposes, the driver for Oscilloscopes (RsScope) is used in this
paper. However, the presented procedures are applicable to all Rohde & Schwarz
IVI.NET drivers.

IVI.NET Shared components and IVI Shared Components must be installed
before the installation of the IVI.NET driver. If you do not follow this order, the
RsScope driver installation will not succeed.

The RsScope driver can be downloaded from: IVI.NET RsScope driver link. On the 64-
bit OS you have to use x64 installer which installs both 32-bit and 64-bit assemblies
(dlls). On the 32-bit OS, use the x86 installer. According the IVI-3.17 the driver installa-
tions can exist side-by-side that is, more than one version of the driver can be installed
at the same time.

The previous version of the driver must be uninstalled manually.

Installation of IVI.NET Driver

http://www.rohde-schwarz.com/en/driver/remote-control/overview_110753.html
http://www.rohde-schwarz.com/en/driver/remote-control/overview_110753.html
https://www.rohde-schwarz.com/en/driver/rto/?&facet=facet.DriverTechnologie&facet.DriverTechnologie=IVI.NET

Starting with Rohde & Schwarz IVI.NET Drivers

6Application Note IVI.NET ─ 1MA268_2e

Installation paths on 64-bit OS:

c:\Program Files\IVI Foundation\IVI\Microsoft.NET\Framework64\
v4.0.30319\RohdeSchwarz.RsScope 3.0.1.0
Installation paths on 32-bit OS:

c:\Program Files (x86)\IVI Foundation\IVI\Microsoft.NET\
Framework32\v4.0.30319\RohdeSchwarz.RsScope 3.0.1.0
Both locations have the same folder structure:

● Bin - the folder containing the driver assembly
RohdeSchwarz.RsScope.Fx40.dll

● Documentation - driver help file folder: RsScope.chm This file is also accessible
through the Start Menu -> Rohde-Schwarz -> RsScope -> RsScope

● Sample - simple example Visual Studio project ReadWaveformExample
● Source - complete source files of the driver.

2.2 Introduction to IVI Drivers

The IVI (Interchangeable Virtual Instruments) defines new level of quality, complete-
ness, usability, and functionality that reduces the cost of test system development and
ownership.

The first IVI drivers started as IVI-C drivers: the drivers were programmed in ANSI-C.
Later, as the COM technology became more popular, especially due to the C++ lan-
guage, the IVI-COM drivers were introduced. Today, the main choice of the object-ori-
ented programmers is .NET languages, meaning either C# or Visual Basic. Therefore,
the next logical step for IVI was to introduce the IVI.NET drivers.

Regardless of the technology (IVI-C, IVI-COM, IVI.NET), an IVI driver always consists
of two parts:

● IVI class interface - this interface (API) is mandatory, defined in IVI class specifi-
cations. There are several classes in IVI definition depending on type of instrument
- e.g. IviScope for Oscilloscopes, IviSpecAn for Spectrum Analyzers, IviRFSigGen
for RF Signal Generators, etc... The main idea is, that as long as the programmer
sticks to using only this interface, he is granted the advantage of instrument inter-
changeability without having to change the source code. The only thing he needs
to change when swapping the instruments is a database configuration connecting
an instrument with an IVI driver (this database is called IVI Config Store). Because
of IVI class standardized API, the program works without a further change.

● Instrument-specific interface - this part of the driver is not mandatory. However,
if the programmer wants to use the capabilities of an instrument that are beyond
the scope of class interface specification, he will have to make use of this part of
the IVI driver. From that moment on, the interchangeability feature is compromised.
For example, the IviScope interface class provides the capability of changing the
vertical, horizontal scale, input coupling, basic trigger settings, reading the acquired
traces, etc. But the advanced features that the R&S RTx offers - e.g. math, FFT,

Introduction to IVI Drivers

Starting with Rohde & Schwarz IVI.NET Drivers

7Application Note IVI.NET ─ 1MA268_2e

bus protocol analysis, Power analysis, Mixed Signal characterizations are only
available in the instrument-specific IVI driver interface.

The common component of all the IVI drivers - IVI Engine was built to communicate
with ANSI-C libraries only. As a consequence, to use ANSI-C IVI class driver API, e.g.
the function:
ViStatus IviScope_init (ViRsrc Logical_Name, ViBoolean ID_Query,
ViBoolean Reset_Device, ViPSession Instrument_Handle);
in your code, you have to use an IVI-C driver. The IVI-COM and IVI.NET drivers need
an adapter that converts the class driver calls to ANSI-C formats. Currently, these
adapters exist only for IVI-COM. IVI.NET adapters are still under development. You
can find the IVI-COM adapters included in the IVI compliance software package (avail-
able at ni.com).

Introduction to IVI Drivers

Creating a Console Application

8Application Note IVI.NET ─ 1MA268_2e

3 Creating a Console Application
This chapter describes creating of a new console application from scratch. The com-
plete project 1MA268_RsScopeIVI.NET is available in the attachment to this applica-
tion note. The entire source code is placed in a file Program.cs, all the code screen-
shots are taken from that file.

The #region pragma names in the attached example correspond to the chapter
names in this application note.
E.g.: the chapter 3.11 Hardcopy describes the part of the example code enclosed by
the #region 3.11 Hardcopy

To make the hardware set up easy, the RTx setting is adjusted to measure the front
panel Probe Compensation square signal. Connect the passive probe to the CH1 input
and the Probe Compensation output.

This example performs the following actions:

● Sets up the RTx channels CH1 and CH2 for measurement of a probe compensa-
tion signal (available on a RTx front panel).

● Sets up the trigger system to normal edge mode.
● Starts two acquisitions, each with different types of synchronization. The second

one includes a workaround for repeated acquisition in case of unsuccessful one.
● Performs post-acquisition measurements of amplitude and frequency on both

channels.
● Reads two waveforms from both channels and stores the results in one csv file.
● Takes a RTx screenshot and transfers the picture to the Control PC.
● Reads the RTx folder content.

By performing these actions, the following commonly used features are presented:

● Using of IVI.NET driver Help, that is available here:
Start Menu -> Rohde-Schwarz -> RsScope -> RsScope

● Creating a driver session in HISLIP mode:
Chapter 3.3, "Initializing of a HISLIP session", on page 12

● Changing the common IVI.NET driver session properties - Simulation mode, Status
Checking, Range checking:
Chapter 3.3.1, "driver.DriverOperation.Simulate", on page 13

● Showing a direct SCPI write/query actions and measuring the execution time:
Chapter 3.5, "Direct SCPI write/query", on page 17

● Showing how to use Repeated Capabilities:
Chapter 3.6, "Channels Setup, Using Repeated Capabilities", on page 18

● Explaining different type of synchronization methods used for signal acquisitions:
Chapter 3.8.1, "Acquisition Synchronization Methods", on page 22

Creating a Console Application

9Application Note IVI.NET ─ 1MA268_2e

● Working with waveforms - Fetching, changing capacity, reusing waveforms:
Chapter 3.8.3, "Acquisition #2 and Converting Waveforms", on page 25

● Showing parsing of an RTx response using Regex object:
Chapter 3.12, "Reading RTx Folder List", on page 31

● Basic handling of exceptions raised by the driver:
Chapter 3.13, "Handling of Exceptions", on page 32

● Assuming that a certain feature is missing in the driver, extending the RsScope
object by new methods:
Chapter 3.14, "RunSingle() with Repeat Workaround", on page 35

Note that the #region pragma names in the attached example correspond to the
chapter names in this application note.
E.g.: chapter 3.11 Hardcopy describes the part of the example code enclosed by the
#region 3.11 Hardcopy

3.1 Creating Visual Studio Project

To create a project in Visual Studio, select File -> New -> Project:

Figure 3-1: Visual Studio New Project window.

Creating Visual Studio Project

Creating a Console Application

10Application Note IVI.NET ─ 1MA268_2e

3.1.1 Changing the Active Solution Platform

This setting in Visual Studio allows for changing or adding the target application type:
32-bit (x86) or 64-bit (x64). Avoid using the setting Any CPU and choose the desired
target platform explicitly:

Figure 3-2: Adding new solution platform x64 in Visual Studio 2012.

3.2 Adding Assembly References

The next step is adding references to the assemblies:

● IVI.Driver.dll
● IVI.Scope.dll
● RohdeSchwarz.RsScope.Fx40.dll

Adding Assembly References

Creating a Console Application

11Application Note IVI.NET ─ 1MA268_2e

Figure 3-3: Adding reference to an existing assembly. You can select multiple assemblies at once.

Assembly paths for 64-bit target application (also used in the attached example):

c:\Program Files\IVI Foundation\IVI\Microsoft.NET\Framework64\
v2.0.50727\IviFoundationSharedComponents 1.1.0\Ivi.Driver.dll
c:\Program Files\IVI Foundation\IVI\Microsoft.NET\Framework64\
v2.0.50727\IviFoundationSharedComponents 1.1.0\Ivi.Scope.dll
c:\Program Files\IVI Foundation\IVI\Microsoft.NET\Framework64\
v4.0.30319\RohdeSchwarz.RsScope 3.0.1.0\Bin\
RohdeSchwarz.RsScope.Fx40.dll

Assembly paths for 32-bit target application:

c:\Program Files (x86)\IVI Foundation\IVI\Microsoft.NET\
Framework64\v2.0.50727\IviFoundationSharedComponents 1.1.0\
Ivi.Driver.dll
c:\Program Files (x86)\IVI Foundation\IVI\Microsoft.NET\
Framework64\v2.0.50727\IviFoundationSharedComponents 1.1.0\
Ivi.Scope.dll
c:\Program Files (x86)\IVI Foundation\IVI\Microsoft.NET\
Framework32\v4.0.30319\RohdeSchwarz.RsScope 3.0.1.0\Bin\
RohdeSchwarz.RsScope.Fx40.dll

After adding the references, you need to add the using directives to the code
(Program.cs) file:

using Ivi.Driver;

Adding Assembly References

Creating a Console Application

12Application Note IVI.NET ─ 1MA268_2e

using Ivi.Scope;
using RohdeSchwarz.RsScope;
Afterwards, you can use the RsScope driver methods and properties. In addition, the
Intellisense for RsScope will also be available.

If you choose an incorrect reference processor architecture, you receive the following
warning:

Figure 3-4: Visual Studio mismatching processor architecture warnings.

In this case, remove the mismatching assembly and add the correct one.

3.3 Initializing of a HISLIP session

HISLIP stands for High Speed LAN Instrument Protocol. A dedicated application
note www.rohde-schwarz.com/appnote/1MA208 describes the HISLIP principles and
differences to VXI-11 in great detail.

Initializing a new session is performed by creating a RsScope object:

RsScope driver = new RsScope("TCPIP::192.168.1.100::HISLIP",
true, true, "Simulate=False");

The third parameter in the constructor specifies whether to reset the instrument during
the initialization. You can invoke the reset separately by calling:
driver.Utility.Reset();

The IVI.NET inherent capabilities are organized into several interfaces:

● IIviDriverOperation: driver.DriverOperation - settings for operation
of the driver

● IIviDriverIdentity: driver.Identity - general info about the driver
● IIviDriverUtility: driver.Utility - basic set of utility operations
● IIviDriverLock: driver.Utility.Lock() - multi-thread locking of the ses-

sion

See the full description (chapter 4.1) here: http://www.ivifoundation.org/downloads/
Architecture%20Specifications/IVI-3.2_Inherent_Capabilities_2015-03-09.doc

Initializing of a HISLIP session

http://www.rohde-schwarz.com/appnote/1MA208
http://www.ivifoundation.org/downloads/Architecture%20Specifications/IVI-3.2_Inherent_Capabilities_2015-03-09.doc
http://www.ivifoundation.org/downloads/Architecture%20Specifications/IVI-3.2_Inherent_Capabilities_2015-03-09.doc

Creating a Console Application

13Application Note IVI.NET ─ 1MA268_2e

Below is the selection of the most-common used IVI inherent capabilities:

3.3.1 driver.DriverOperation.Simulate

Default value after initialization: false
When this property is set to true, the driver operates in simulation mode, an instrument
presence is not required:

● A send command performs no action.
● A query returns a fixed response that is equal to the default value of the property -

e.g. reading the for Channel property Range returns the value 0.04 (see the blue-
framed part in Figure 3-5.

Use the Simulate property only if you would like to change the settings ON and OFF
during the run of your application, or in parts of your program.
However, in case you do not have the physical instrument, you need to switch the sim-
ulationON already during the initialization. This is achieved by initializing with the fol-
lowing option string (the last input parameter):
RsScope driver = new RsScope("TCPIP::192.168.1.100::HISLIP",
true, true, "Simulate=True");
After that, you cannot switch the simulation OFF anymore.

3.3.2 driver.DriverOperation.IOResourceDescriptor

If you used the logical name in the session init e.g.:

RsScope driver = new RsScope("MyRTO1024", true, true);
string ioResource = driver.DriverOperation.IOResourceDescriptor;
string logName = driver.DriverOperation.LogicalName;
The result of ioResource is the actual IO-resource descriptor as it is declared in the
IVI Configuration store. The value of logName is "MyRTO1024". In our case when we
are using the direct IO-resource descriptor, both string values are identical.

3.3.3 driver.DriverOperation.RangeCheck

Default value after initialization: true
Setting of this property enables/disables the driver functionality of checking whether
the entered value is within the allowed range defined in the driver - for example the
channel property Range has a valid range of values from 0.01V to 10V (red rectangle).
The blue rectangle shows the value of the property returned when the driver is in simu-
lation mode.

Initializing of a HISLIP session

Creating a Console Application

14Application Note IVI.NET ─ 1MA268_2e

Figure 3-5: Channel property Range with valid values 0.01...10V.

If you try to set value outside this defined range, the driver does not send any com-
mand to the instrument and throws the Ivi.Driver.OutOfRangeException.

In rare cases an instrument can accept the values outside the driver-defined valid
range. In this case, you can disable the driver range checking and send the value to
the instrument anyway. Since the instrument also has its own checking of valid param-
eter values, it reports an error in its error queue. To react properly on instrument errors,
set the property driver.DriverOperation.QueryInstrumentStatus (see the
next chapter) to true.

3.3.4 driver.DriverOperation.QueryInstrumentStatus

Default value after initialization: true
If this property is set to true, it causes the driver to query the instrument status byte
("*STB?" command) after every command or query. This brings the advantage of
detecting an error immediately after the command that caused it. We recommend to
keep the QueryInstrumentStatus set to true.

The trade-off is a slightly decreased performance. When you perform a repeated num-
ber of short acquisitions where every microsecond counts, set this property to false
before the acquisitions, but set it back to true afterwards. This approach combines
fast execution with proper error handling.

In case an instrument error is detected, the driver generates an
Ivi.Driver.InstrumentStatusException. For more details on handling the
exceptions, refer to the Chapter 3.13, "Handling of Exceptions", on page 32

Initializing of a HISLIP session

Creating a Console Application

15Application Note IVI.NET ─ 1MA268_2e

3.4 Reading Basic Info

To read out how many channels does the instrument have, use the Help Search tab
with "count" search word:

Figure 3-6: Searching for a term in the driver help file.

After selecting the RSSCOPE_ATTR_CHANNEL_COUNT item, copy the Example snippet
to your code. In the Contents tab, you see where in which interface (tree branch) is the
property ChannelCount available:

Figure 3-7: Selected element ChannelCount in Help Contents.

Reading Basic Info

Creating a Console Application

16Application Note IVI.NET ─ 1MA268_2e

Another example is reading out the instrument firmware version - the property
FirmwareVersion also belongs to the System interface:

string fwVersion = driver.System.FirmwareVersion;
Enabling the Channel 1: To find out the proper syntax, use either the Example in the
instrument help, or use the Intellisense. Type "driver." and the Intellisense shows all
available methods and properties:

Figure 3-8: The driver Intellisense suggestions.

Use CTRL+Space to force the Intellisense suggestions.

The suggested list corresponds to the help file tree structure (the Intellisense shows
the alphabetical order):

Figure 3-9: The driver help tree structure.

Reading Basic Info

Creating a Console Application

17Application Note IVI.NET ─ 1MA268_2e

3.5 Direct SCPI write/query

The driver still offers the option of using direct SCPI commands and queries. An exam-
ple sending the command "SYST:DISP:UPD ON" and the query "*IDN?" performed
in a loop with measuring the execution time:

Figure 3-10: Direct SCPI command write and query example plus measuring the query execution
time.

By default, at the end of each WriteCommand() and QueryCommand() the driver
queries the RTx status with the SCPI query "*STB?". Therefore an attempt to send a
query with the WriteCommand() causes the instrument error "query
interrupted".

You have to either use the QueryCommand() or disable querying of the status byte
before. A small example of write/read combination with disabled instrument status
querying:
bool oldStatus = driver.DriverOperation.QueryInstrumentStatus;
driver.DriverOperation.QueryInstrumentStatus = false;
driver.Miscellaneous.WriteCommand("*IDN?");
string response = driver.Miscellaneous.ReadCommand();
driver.DriverOperation.QueryInstrumentStatus = oldStatus;

For more details on QueryInstrumentStatus, refer to Chapter 3.3.4, "driver.Driver-
Operation.QueryInstrumentStatus", on page 14

Direct SCPI write/query

Creating a Console Application

18Application Note IVI.NET ─ 1MA268_2e

3.6 Channels Setup, Using Repeated Capabilities

Horizontal settings of the acquisition can be adjusted by 2 different ways: Resolution or
Record length (see the RTx GUI Horizontal -> Resolution). The example chooses the
latter. In this mode, you have to define the length of the entire acquisition and the num-
ber of samples. The acquisition time is a special IVI object type called
Ivi.Driver.PrecisionTimeSpan

Figure 3-11: Configuring Horizontal scale by defining Record length and Acquisition time.

Many instruments have capabilities which are duplicated. For example, an oscilloscope
can have several channels with identical functionality. RepCap instances (e.g. selec-
tion of a certain channel) in IVI.NET drivers are specified by selecting one of the enu-
merable objects from the available list.

By default, Visual Studio adds the directive using System.Linq; to a new C# proj-
ect. This has an effect on Intellisense suggestions for all classes that implement
IEnumerable interface. For example, our driver.Channel has RepCaps (it has
four channels), therefore it implements IEnumerable interface as well. To limit the num-
ber of Intellisense suggestions remove the directive using System.Linq; from your
code.

When the Intellisense offers the suggestion including GetEnumerator method, this
means that the addressed object (driver.Channel) represents a collection of
objects, or in other words - has RepCaps. You must select only one of from the collec-
tion - the subsystem (in this case channel) you would like to address. The driver help
helps you to recognize which object has the RepCaps - all objects with RepCaps have
the first available RepCaps string added after the object name in the driver tree struc-
ture (e.g. Channel["CH1"]) After addressing the desired subsystem, the methods and
properties are available:

Channels Setup, Using Repeated Capabilities

Creating a Console Application

19Application Note IVI.NET ─ 1MA268_2e

Figure 3-12: Adding the objects indexing. All possible indexing strings are mentioned in the Channel
Subsystem help text.

Options to select a desired subsystem:

● With the RepCap name (e.g."CH2"), the valid strings are to be found in the help
file:
driver.Channel["CH2"].Enabled = true;

● With the 0-based index using the method ElementAt(index):
driver.Channel.ElementAt(1).Enabled = true;

The following code snippet creates a list of all available RepCap names for the
driver.Channel subsystem:
Console.Write("\nRepCap '{0}' count {1}, all values: ",
 driver.Channel.Name, driver.Channel.Count);
//loop-operation with all the elements
foreach (var element in driver.Channel)
 Console.Write("'{0}' ", element.RCKey);

Channels Setup, Using Repeated Capabilities

Creating a Console Application

20Application Note IVI.NET ─ 1MA268_2e

You can now create a variable called CH1 and assign one object
driver.Channel["CH1"] to it to use it later for all operations related to Channel 1,
e.g. configuring the basic parameters with the Configure method:

var CH1 = driver.Channel["CH1"];
CH1.Configure (2.000, 0.0,
RohdeSchwarz.RsScope.VerticalCoupling.AC, true);
The same approach can be applied to the second channel:

Figure 3-13: Creating CH1 and CH2 objects, using them later for accessing the subsystems.

The objects CH1 and CH2 are of a type IRsScopeChannel. You can use the explicit
or implicit type declarations. The following two declarations are equivalent:
IRsScopeChannel CH1 = driver.Channel["CH1"];
var CH1 = driver.Channel["CH1"];
Using implicit type is easier than finding out the actual type of the CH1 object. Hovering
a cursor over the word "var" shows the help text for the interface, including the availa-
ble RepCap strings:
Channel (CH1, CH2, CH3, CH4, CHExt)

Channels Setup, Using Repeated Capabilities

Creating a Console Application

21Application Note IVI.NET ─ 1MA268_2e

3.7 Trigger Settings

Next section sets up the trigger system Trigger Subsystem with the Trigger A
selected:

Figure 3-14: Configuring Trigger A for Channel 1 and Channel 2.

TriggerModifier can be set to:

● Normal - standard trigger function, the scope waits for the trigger event until it rea-
ches the specified trigger timeout.

● Auto - the scope waits for the trigger event, but when it does not arrive within a
certain time (based on horizontal settings), it performs the acquisition anyway.

● Free Run - the trigger is disabled, an acquisition starts immediately.

3.8 Acquisition and Reading Waveforms

The proper measurement synchronization is the critical part of any remote-control
application. Therefore a special attention needs to be dedication to this issue with the
clear understanding of the application progress in relation to the status of the instru-
ment.

While on some instruments it is usually not critical at which exact moment a measure-
ment starts, the oscilloscope-triggered measurement is all about the correct timing. An
improper waveform acquisition synchronization leads to suboptimal performance or
unreliable results. User may read the waveform out of the oscilloscope at an incorrect
moment - too soon (the result from previous acquisition) or too late (it is already over-
written by the next acquisition).

It is often much harder to filter out the improper measurement results than to prepare
the instrument to capture the correct wanted signal only by proper synchronization.
The next chapter will discuss some of the basic synchronization principles that the
RsScope driver offers.

Acquisition and Reading Waveforms

Creating a Console Application

22Application Note IVI.NET ─ 1MA268_2e

3.8.1 Acquisition Synchronization Methods

For all the types of synchronization methods, it is required that the RTx instrument has
been set to single acquisition mode. Therefore the option of using the method
driver.WaveformAcquisition.RunContinuous() is not discussed here.

The following examples contain IWaveform<T>, types that are explained here: Chap-
ter 3.8.2, "Acquisition #1 and Reading Waveforms", on page 24.

3.8.1.1 RunSingle() Method

For a basic waveform acquisition the driver offers the following method:

driver.WaveformAcquisition.RunSingle();

This method arms the oscilloscope to wait for a trigger and perform a single acquisi-
tion. Then, it waits for the acquisition to be finished.

Next step usually involves fetching of one or more acquired waveforms:

waveform_CH1 =
driver.Channel["CH1"].Waveform["W0"].FetchWaveform(waveform_CH1);
waveform_CH2 =
driver.Channel["CH2"].Waveform["W0"].FetchWaveform(waveform_CH2);

Synchronization provided: The remote-control application waits inside the
RunSingle() method until the acquisition has successfully finished. If the waiting
time exceeds the timeout defined by driver.UtilityFunctions.OPCTimeout,
the Ivi.Driver.MaxTimeExceededException is raised by the method.

3.8.1.2 ReadWaveform() Method

This method combines calling the RunSingle() with the option to define the timeout
and reading of one waveform - see the equivalent codes below:

waveform_CH1 =
driver.Channel["CH1"].Waveform["W0"].ReadWaveform(timeout,
waveform_CH1);
is equivalent to:

oldTimeout = driver.Miscellaneous.OPCTimeout;
driver.Miscellaneous.OPCTimeout = timeout;
driver.WaveformAcquisition.RunSingle();
driver.Miscellaneous.OPCTimeout = oldTimeout;
waveform_CH1 =
driver.Channel["CH1"].Waveform["W0"].FetchWaveform(waveform_CH1);

Acquisition and Reading Waveforms

Creating a Console Application

23Application Note IVI.NET ─ 1MA268_2e

Synchronization provided: Same as in the case of RunSingle(), the method
ReadWaveform() waits until the acquisition has successfully finished. If the waiting
time exceeds the provided timeout, the Ivi.Driver.MaxTimeExceededException
is raised.

3.8.1.3 RunSingleWithoutWait() + WaitForMeasurementComplete()

This method splits the method RunSingle()to two separate methods where the user
has an option of inserting another action in between the arming of the scope and wait-
ing for the acquisition to be finished. That is often the case when a measurement of
non-periodical event needs to be recorded.

Consider the following case: A DUT (Device Under Test) generates a non-periodical
burst signal after remotely commanded to do so - let us call the method
DUT.GenerateBurst(). How to reliably acquire this signal?

Option 1, producing Race Condition:

DUT.GenerateBurst();
driver.WaveformAcquisition.RunSingle();
This may just work if the DUT is slow enough with generating a signal and the RTx
manages to get to the armed state initiated by ReadWaveform method. The behavior
of such order of commands is undefined and therefore shall be avoided.

Option 2, always raising a timeout exception:

driver.WaveformAcquisition.RunSingle();
DUT.GenerateBurst();
Swapping the order will always cause raising of a timeout exception by RunSingle()
method because it waits for a signal that will only be generated after it finishes waiting.

Option 3:

driver.WaveformAcquisition.RunSingleWithoutWait();
DUT.GenerateBurst();
driver.WaveformAcquisition.WaitForMeasurementComplete(timeout);
waveform_CH1 =
driver.Channel["CH1"].Waveform["W0"].FetchWaveform(waveform_CH1);
In this case as first, the RTx is armed and prepared to acquire the signal from the DUT
before the DUT is commanded. The key difference is, that the application passes
through the RunSingleWithoutWait() method without waiting.

Acquisition and Reading Waveforms

Creating a Console Application

24Application Note IVI.NET ─ 1MA268_2e

The methods starting with Read always start a new measurement, wait for the results
and then provide the data.
The methods starting with Fetch only provide an actual data without starting any new
measurement.

An actual synchronization is performed after commanding the DUT in the method
WaitForMeasurementComplete() where the RTx trigger system is with certainty
prepared to react on the signal from the DUT.

Synchronization provided: The remote-control application waits inside the
WaitForMeasurementComplete() method until the acquisition has successfully fin-
ished. If the acquisition has already finished before this method is called, the method
finishes immediately. If the waiting time exceeds the defined timeout, the
Ivi.Driver.MaxTimeExceededException is raised.

3.8.2 Acquisition #1 and Reading Waveforms

In remote-control application utilizing of continuous measurement mode shall be limited
to none, there are only few special cases where it is justified. Most of the times it can
be substituted for properly synchronized on-request invoked single measurements.

The following two chapters perform two acquisitions to show reuse of the waveform
resources and the usage of two different synchronization methods.

Acquisition #1:

RunSingleWithoutWait() + WaitForMeasurementComplete(timeout)

Figure 3-15: Acquisition #1 with the option to perform a middle action after arming the RTx.

After this code, the latest waveforms from all enabled channels are available for read-
ing. Compared to other drivers (VXIpnp, LabVIEW) where the traces are read into a
simple array, IVI.NET driver uses an IWaveform<T> interface (or its extensions
IMemoryWaveform<T>, ISpectrum<T>, IMemorySpectrum<T>). <T>stands for
a generic type from which you can choose (equivalents to double array, I32 array, I8
array...), but not all methods accept all types. For example, the method
FetchWaveform() only accepts double or sbyte types.

Acquisition and Reading Waveforms

Creating a Console Application

25Application Note IVI.NET ─ 1MA268_2e

Initialization of two new waveforms:

IWaveform<double> waveform_CH1 = null;
IWaveform<double> waveform_CH2 = null;
According to the IVI.NET specification all functions returning waveforms must also
have waveforms as input parameters. There are 2 main reasons for this:

● Defining the output variable type - in this case the waveform_CH1 is of double
type, hence the output from the FetchWaveform() is of IWaveform<double>
type as well.

● It allows for reusing the previously allocated resources - if the waveform_CH1 is
not yet initialized (null), the FetchWaveform(waveform_CH1) initializes it with
the required capacity (number of samples). With the subsequent calls of
FetchWaveform(waveform_CH1), the method does not do any reallocation of
the resources. Therefore, the performance is optimized by reusing the existing
ones. To change the size of the expected waveform (recordLength), you need to
use the propertywaveform_CH1.Capacity. The capacity means maximum
capacity; smaller recordLength can be accommodated without a change. The
actual record length is in a separate property:
waveform_CH1.ValidPointCount

In this example, that is the first reading of the waveforms - the required capacity is allo-
cated by the FetchWaveform(), because the waveform_CH1 / waveform_CH2
objects have not been yet initialized:

Figure 3-16: First reading of the waveforms.

3.8.3 Acquisition #2 and Converting Waveforms

Second acquisition is done with increased number of samples. To simulate repeating
of an unsuccessful acquisition, the driver.WaveformAcquisition.RunSingle()
is wrapped in an extension method Extended_RunSingleWithRepeat(). For more
details, refer to Chapter 3.14, "RunSingle() with Repeat Workaround", on page 35

Acquisition and Reading Waveforms

Creating a Console Application

26Application Note IVI.NET ─ 1MA268_2e

Figure 3-17: Acquisition #2 - Extended_RunSingleWithRepeat() method with repeated workaround.

With the fetching of the waveforms, you can reuse the objects waveform_CH1 /
waveform_CH2. If the increased capacity is required, you have to change it with the
Capacity property:

Figure 3-18: Fetching the waveforms, reusing of the existing waveforms, but with increased capacity.

RTx allows only for even number of samples. Setting the odd number causes the RTx
to coerce real number of samples to the closest higher even number (e.g. 1101 ->
1102). Changing the variable newRecordLength from 1100 to 1101 (Figure 3-17)
would cause the FetchWaveform()method to raise an exception
Ivi.Driver.DataArrayTooSmallException, because the actual capacity
required would be 1102 samples.

Notice, that before the call of Extended_RunSingleWithRepeat(), the trigger
source is changed to Channel 2. Since the hardware cabling is feeding the Probe
Compensation signal to the Channel 1, the first attempt to acquire a new waveform

Acquisition and Reading Waveforms

Creating a Console Application

27Application Note IVI.NET ─ 1MA268_2e

results in timeout. The Extended_RunSingleWithRepeat() gives you an option to
change the trigger source back to Channel 1 or reconnect the probe to the Channel 2
and repeat the acquisition. The workaround of repeated unsuccessful acquisition is
often the case in real remote-control applications.

Conversion to an array object is achieved by using the GetAllElements() method:

Figure 3-19: Reading all the waveform elements into a double array.

The horizontal scale is represented by the waveform properties: StartTime,
EndTime, TotalTime, IntervalPerPoint. Use the Intellisense to explore all the
methods and properties that the IWaveform<T> object offers.

3.9 Measurements

Often it is not necessary to transfer the entire waveform sample by sample to the con-
trol PC, but instead it is sufficient to analyze the properties of the signal: amplitude, fre-
quency, pulse width, etc. For this purpose, the RTx offers the measurement subsys-
tem.

A measurement is always performed on the last acquired waveform. A change in the
measurement settings immediately produces an updated result (in remote-control
application you need to use a synchronization ("*OPC?" query or "*WAI" command
after a change in measurement settings). There is no need to perform a new acqui-
sition.

The following example sets three different measurements on two channels. Although in
manual operation the measurement results are immediately available after switching
them ON, the remote-control operation requires the synchronization using "*OPC?"
query before fetching any measurement result. This is achieved by reading the prop-
erty QueryOPC highlighted in the red rectangle:

Measurements

Creating a Console Application

28Application Note IVI.NET ─ 1MA268_2e

Figure 3-20: Measurements of three different parameters - settings and fetching of the results are
separated by reading the property driver.UtilityFunctions.QueryOPC

Skipping the QueryOPC property read can cause a reading timeout during one of the
FetchMainMeasurement() calls, because the result of the measurement is not
available that fast after switching it on. The alternative is including a fixed-time pause,
but it is much more time-efficient to let the instrument to decide how fast it can pro-
ceed.

Note the difference between the following two synchronization approaches:
var opc = driver.UtilityFunctions.QueryOPC waits inside until all the previ-
ous commands have been processed.
driver.UtilityFunctions.ProcessAllPreviousCommands() does not wait,
your program continues immediately, it only tells the instrument that it should not con-
tinue with processing any further commands before it has finished all the previous
ones. The actual necessary pause is achieved by waiting for the instrument response
further on, in our case the first call of FetchMainMeasurement().

Measurements

Creating a Console Application

29Application Note IVI.NET ─ 1MA268_2e

3.10 Exporting the Waveforms to a csv File

This part of the example exports the waveforms to a csv file:

Figure 3-21: Exporting the waveforms to a csv file.

3.11 Hardcopy

This chapter shows the steps for capturing an RTx screenshot and transferring the pic-
ture to the Control PC. The picture settings can be changed in the set-up part. For this
example, the setting that produces the exact copy of the RTx screen is chosen.

The code snippet below shows the set-up of the hardcopy format, taking a screenshot
with Hcpy.Print() and afterwards transferring the created screenshot file to the
Control PC. If the file with the same name already exists, it is overwritten.

The method ReadToFileFromInstrument() is universal for file transfer from the
instrument to the Control PC. Note that both parameters of the method require the
entire path including the file name; therefore the target file in the PC can have a differ-
ent name than the original file.

Here, the original file name is: 1MA268_screenshot_RTx.png
while the target file name is: 1MA268_screenshot_PC.png

To transfer a file in the opposite direction: PC -> RTx, use the following method:
driver.DataManagement.WriteFromFileToInstrument (filePathPC,
filePathRTx);

Hardcopy

Creating a Console Application

30Application Note IVI.NET ─ 1MA268_2e

Figure 3-22: RTx hardcopy code snippet. Included at the end is the transfer of the file from the RTx to
the PC.

Figure 3-23: RTx screenshot transferred to the Control PC - the default PC path is in the example set
to C:\Temp\1MA268_screenshot_PC.png

Hardcopy

Creating a Console Application

31Application Note IVI.NET ─ 1MA268_2e

3.12 Reading RTx Folder List

This part of the example code shows how to obtain a content of an RTx folder. Method
for reading of a desired folder content:

string folderContent =
driver.DataManagement.FileDirectoryContent(folderPathRTx);
The response string comes in the following format:

<UsedMemory>,<FreeMemory>,<ParentFolder>,<ParentFolder>,
<FolderContent>
For more details, refer to the SCPI query MMEMory:CATalog? in the RTx user man-
ual.

Figure 3-24: Code snippet that performs reading and parsing of the RTx folder content response.

The first match (red rectangle) parses the header part which is always present.

The second match (blue rectangle) is performed in a loop to parse the
folderContent for all available entries.

Reading RTx Folder List

Creating a Console Application

32Application Note IVI.NET ─ 1MA268_2e

3.13 Handling of Exceptions

One of the significant advantages of C# over ANSI-C programming is handling of
errors in a form of raising exceptions. The basic construct is as follows:

Figure 3-25: Visual Studio try-catch construct.

Our entire code starting from the #region 3.3 is enclosed in the try{} construct. If
any exception is raised by the code enclosed within, the program looks for that specific
type of catch{} case. If it exists, the inside code is executed and the exception is
suppressed. All unhandled exceptions break the program and show the default excep-
tion info window:

Figure 3-26: Unhandled exception window.

Handling of Exceptions

Creating a Console Application

33Application Note IVI.NET ─ 1MA268_2e

3.13.1 Ivi.Driver.IOException

Handling of all the exceptions coming from VISA I/O library - low-level communication
problems, for example disconnection of an instrument. More details are provided in the
exception message:

Figure 3-27: Ivi.Driver.IOException catch case.

3.13.2 Ivi.Driver.InstrumentStatusException

Handling of the exceptions that are raised when the instrument signals an internal
error, that is followed by sending SCPI query "SYST:ERR?" in a loop until the instru-
ment error queue is empty. All the read out error messages are appended into the
exception message string:

Figure 3-28: Ivi.Driver.InstrumentStatusException catch case.

3.13.3 Ivi.Driver.DataArrayTooSmallException

The next catch case handles the exception coming from IVI library called
Ivi.Driver.DataArrayTooSmallException that is raised by e.g. the
FetchWaveform() method in case the given waveform capacity is smaller than the
data to be read from the instrument:

Figure 3-29: Ivi.Driver.DataArrayTooSmallException catch case.

Handling of Exceptions

Creating a Console Application

34Application Note IVI.NET ─ 1MA268_2e

3.13.4 Ivi.Driver.MaxTimeExceededException

This exception is generated when a maximum defined time is reached e.g. by the
methods driver.WaveformAcquisition.RunSingle() or
driver.WaveformAcquisition.WaitForMeasurementComplete(). The
exception message provides details of the timeout value and a hint how to change it.

Figure 3-30: Ivi.Driver.MaxTimeExceededException catch case.

3.13.5 Ivi.Driver.OutOfRangeException

This exception is generated when you try to set a value that is out of the driver's
defined range e.g.:

The allowed Channel Vertical range is 0.04V..10V. Executing
driver.Channel["CH1"].Range = 10000; raises this exception. The
exception.Message contains more detailed explanation on the attempted value and
the allowed range. In case this exception is raised, no command is sent to the
instrument. Using driver.DriverOperation.RangeCheck = false; can sup-
press invoking this exception by disabling the range check inside the driver. In this
case, the command is always sent to the instrument, which can lead to raising
Ivi.Driver.InstrumentStatusException.

Figure 3-31: Ivi.Driver.OutOfRangeException catch case.

3.13.6 Case "finally"

Using the block finally{} ensures that this code is performed always regardless
whether any exception was raised or not. Usually it is the place to call all the cleanup
methods, in our case closing of the session and showing the error message:

Handling of Exceptions

Creating a Console Application

35Application Note IVI.NET ─ 1MA268_2e

Figure 3-32: Case 'finally' - the path of the code which is always performed.

3.14 RunSingle() with Repeat Workaround

An extended method of the RsScope driver is defined as a static method with the fol-
lowing syntax:

public static bool Extended_RunSigleWithRepeat(this RsScope
driver, IRsScopeTrigger trigger, int maxRepeats)
The fact that it can be used as a standard RsScope method is achieved by the follow-
ing:

● It is defined in a static class. The class name is not important:
public static class Extensions_of_RsScope{}

● It is defined as a static method:
public static bool Extended_RunSigleWithRepeat()

● Its first parameter is defined as:
this RsScope driver

Inside, the acquisition itself is done with RunSingle(). The repetition workaround is
achieved by catching an exception raised by the method in case the acquisition was
not performed within the defined time (set by the property
driver.UtilityFunctions.OPCTimeout):

RunSingle() with Repeat Workaround

Creating a Console Application

36Application Note IVI.NET ─ 1MA268_2e

Figure 3-33: RunSingle() method with catching of the Ivi.Driver.MaxTimeExceededException.

The next steps are capturing the keystrokes and changing the TriggerA settings or
canceling the acquisition (see the code in Program.cs).

Notice that the original and the extended methods are treated the same way. To recog-
nize the extended method, a different method icon with a small arrow down is shown:

Figure 3-34: RsScope extended method Intellisense suggestion.

For the extended methods to be available, you need to add the using directive:
using RsScopeExtensions;
The RsScopeExtensions is the namespace in which the extension methods are pro-
grammed. The class name itself is not important.

RunSingle() with Repeat Workaround

Additional Information

37Application Note IVI.NET ─ 1MA268_2e

4 Additional Information
Please send your comments and suggestions regarding this Application Note to:

TM-Applications@rohde-schwarz.com

Using tag “[1MA268]” in the mail subject helps us to identify quickly the topic and
speed up the response process.

mailto:TM-Applications@rohde-schwarz.com

Rohde & Schwarz

38Application Note IVI.NET ─ 1MA268_2e

5 Rohde & Schwarz
The Rohde & Schwarz electronics group offers innovative solutions in the following
business fields: test and measurement, broadcast and media, secure communications,
cybersecurity, radiomonitoring and radiolocation. Founded more than 80 years ago,
this independent company has an extensive sales and service network and is present
in more than 70 countries.

The electronics group is among the world market leaders in its established business
fields. The company is headquartered in Munich, Germany. It also has regional head-
quarters in Singapore and Columbia, Maryland, USA, to manage its operations in
these regions.

Sustainable product design

● Environmental compatibility and eco-footprint
● Energy efficiency and low emissions
● Longevity and optimized total cost of ownership

Certified Quality Management

ISO 9001
Certified Environmental Management

ISO 14001

Regional contact

● Europe, Africa, Middle East - customersupport@rohde-schwarz.com
Phone +49 89 4129 12345

● North America - customer.support@rsa.rohde-schwarz.com
Phone 1-888-TEST-RSA (1-888-837-8772)

● Latin America - customersupport.la@rohde-schwarz.com
Phone +1-410-910-7988

● Asia/Pacific - customersupport.asia@rohde-schwarz.com
Phone +65 65 13 04 88

● China - customersupport.china@rohde-schwarz.com
Phone +86-800-810-8228 / +86-400-650-5896

Headquarters

Rohde & Schwarz GmbH & Co. KG

Mühldorfstraße 15 | D - 81671 München

+ 49 89 4129 - 0 | Fax + 49 89 4129 – 13777

www.rohde-schwarz.com

This application note and the supplied programs may only be used subject to the conditions of use set forth
in the download area of the Rohde & Schwarz website.

R&S® is a registered trademark of Rohde & Schwarz GmbH & Co. KG. Trade names are trademarks of the
owners.

mailto:customersupport@rohde-schwarz.com
mailto:customer.support@rsa.rohde-schwarz.com
mailto:customersupport.la@rohde-schwarz.com
mailto:customersupport.asia@rohde-schwarz.com
mailto:customersupport.asia@rohde-schwarz.com
http://www.rohde-schwarz.com

	Contents
	1 Introduction
	1.1 Document Version History
	1.2 Used Abbreviations
	1.3 Required Software
	1.3.1 32-bit vs 64-bit Operating System

	1.4 Used Software Configuration
	1.5 Used Instruments

	2 Starting with Rohde & Schwarz IVI.NET Drivers
	2.1 Installation of IVI.NET Driver
	2.2 Introduction to IVI Drivers

	3 Creating a Console Application
	3.1 Creating Visual Studio Project
	3.1.1 Changing the Active Solution Platform

	3.2 Adding Assembly References
	3.3 Initializing of a HISLIP session
	3.3.1 driver.DriverOperation.Simulate
	3.3.2 driver.DriverOperation.IOResourceDescriptor
	3.3.3 driver.DriverOperation.RangeCheck
	3.3.4 driver.DriverOperation.QueryInstrumentStatus

	3.4 Reading Basic Info
	3.5 Direct SCPI write/query
	3.6 Channels Setup, Using Repeated Capabilities
	3.7 Trigger Settings
	3.8 Acquisition and Reading Waveforms
	3.8.1 Acquisition Synchronization Methods
	3.8.1.1 RunSingle() Method
	3.8.1.2 ReadWaveform() Method
	3.8.1.3 RunSingleWithoutWait() + WaitForMeasurementComplete()

	3.8.2 Acquisition #1 and Reading Waveforms
	3.8.3 Acquisition #2 and Converting Waveforms

	3.9 Measurements
	3.10 Exporting the Waveforms to a csv File
	3.11 Hardcopy
	3.12 Reading RTx Folder List
	3.13 Handling of Exceptions
	3.13.1 Ivi.Driver.IOException
	3.13.2 Ivi.Driver.InstrumentStatusException
	3.13.3 Ivi.Driver.DataArrayTooSmallException
	3.13.4 Ivi.Driver.MaxTimeExceededException
	3.13.5 Ivi.Driver.OutOfRangeException
	3.13.6 Case "finally"

	3.14 RunSingle() with Repeat Workaround

	4 Additional Information
	5 Rohde & Schwarz

