LTE-A Base Station Transmitter Tests According to TS 36.141 Rel. 14

Application Note

Products:

ı

I R&S[®]FSW I R&S[®]SMW200A

R&S®FSV I R&S®SMBV100A

- R&S®FSVA
- I R&S®FPS
- I R&S®VSE

3GPP TS36.141 defines conformance tests for E-UTRA base stations (eNodeB). Release 14 added several tests, especially for enhanced License Assisted Accsess (eLAA).

This application note describes how all required transmitter (Tx) tests (TS36.141 Chapter 6) can be performed quickly and easily by using signal and spectrum analyzers from Rohde & Schwarz. A few tests additionally require signal generators from Rohde & Schwarz.

Examples illustrate the manual operation. A free software program enables and demonstrates remote operation.

The LTE base station receiver (Rx) tests (TS36.141 Chapter 7) are described in Application Note 1MA195.

The LTE base station performance (Px) tests (TS36.141 Chapter 8) are described in Application Note 1MA162.

Application Note Bernhard Schulz 5.2019 - 1MA154_9e

Table of Contents

1	Introduction	4
2	General Transmitter Test Information	7
2.1	Note	7
2.2	NB-IoT Modes of Operation	7
2.3	Multicarrier Test Scenarios	7
2.3.1	Intra-band Contiguous Carrier Aggregation	8
2.3.2	Intra-band Non-contiguous Carrier Aggregation	8
2.3.3	Inter-band Non-contiguous Carrier Aggregation	9
2.3.4	Test Scenarios for Multicarrier and/or CA Tests	9
2.4	Tx Test Setup	20
2.5	Instruments and Options	21
2.6	Multistandard Radios and TS 37.141	23
3	Transmitter Tests (Chapter 6)	25
3.1	Basic Operation	28
3.1.1	FSx Spectrum and Signal Analyzer	28
3.1.2	SMx Vector Signal Generator	34
3.1.3	R&S TSrun Demo Program	37
3.2	Base Station Output Power (Clause 6.2)	43
3.2.1	Home BS Output Power Measurements (Clause 6.2.66.2.8)	46
3.3	Output Power Dynamics (Clause 6.3)	67
3.3.1	Total Power Dynamic Range (Clause 6.3.2)	67
3.3.2	NB-IoT RB power dynamic range for in-band or guard band operation (6.3.3)	69
3.4	Transmit ON/OFF Power (Clause 6.4)	71
3.5	Transmitted Signal Quality (Clause 6.5)	75
3.5.1	Frequency Error (Clause 6.5.1) and Error Vector Magnitude (Clause 6.5.2)	75
3.5.2	Time Alignment Error (Clause 6.5.3)	78
3.5.3	DL RS Power (Clause 6.5.4)	82
3.6	Unwanted Emissions (Clause 6.6)	84
3.6.1	Occupied Bandwidth (Clause 6.6.1)	84
3.6.2	Adjacent Channel Leakage Power (ACLR) (Clause 6.6.2)	88
3.6.3	Operating Band Unwanted Emissions (SEM) (Clause 6.6.3)	101
3.6.4	Transmitter Spurious Emissions (Clause 6.6.4)	107

3.7	Transmitter Intermodulation (Clause 6.7)	110
4	Appendix	121
4.1	R&S TSrun Program	121
4.2	References	126
4.3	Additional Information	127
4.4	Ordering Information	127

The following abbreviations are used in this Application Note for Rohde & Schwarz test equipment:

- The R&S[®]SMW200A vector signal generator is referred to as the SMW.
- The R&S[®]SMBV100A vector signal generator is referred to as the SMBV.
- The R&S[®]FSV spectrum analyzer is referred to as the FSV.
- The R&S[®]FSVA spectrum analyzer is referred to as the FSVA.
- The R&S[®]FPS spectrum analyzer is referred to as the FPS.
- The R&S[®]FSW spectrum analyzer is referred to as the FSW.
- The SMW and SMBV are referred to as the SMx.
- I The FSW, FSV, FSVA and FPS are referred to as the FSx.
- The software R&S[®]TSrun is referred to as the TSrun.

Note:

Please find the most up-to-date document on our homepage

http://www.rohde-schwarz.com/appnote/1MA154.

This document is complemented by software. The software may be updated even if the version of the document remains unchanged

1 Introduction

Long Term Evolution (LTE) networks or Evolved Universal Terrestrial Radio Access (E-UTRA) (from Releases 8, 9 and 10) have long since been introduced into daily usage. As a next step, 3GPP has added several extensions in Releases 11 and 12, known as LTE- Advanced (LTE-A). These include a contiguous and non-contiguous multicarrier and/or carrier aggregation (CA) option, changes to MIMO (up to 8x8 in the downlink and introduction of MIMO in the uplink). Release 13 (now called LTE advanced pro) introduces a 3GPP solution for the Internet of Things, called NB-IoT as a new physical layer. In Release 14, the new innovations are the enhanced Licensed Assisted Access (eLAA) in Unlicensed Spectrum, the support for Vehicle-to-Everything (V2x) services as well as 4-band and inter-band Carrier Aggregation (CA).

An overview of the technology behind LTE and LTE-Advanced is provided in Application Note 1MA111, 1MA232 and 1MA252. The white papers 1MA166 and the application note 1MA296 handle NB-IoT.

The LTE-A conformance tests for base stations (eNodeB) are defined in 3GPP TS 36.141 Release 13 [1] and include transmitter (Tx), receiver (Rx) and performance (Px) tests. T&M instruments from Rohde & Schwarz can be used to perform all tests easily and conveniently.

This application note describes the transmitter (Tx) tests in line with TS36.141 Chapter 6. It explains the necessary steps in manual operation for signal and spectrum analyzers and signal generators. A free remote-operation software program is additionally provided. With this software, users can remotely control and demo tests on base stations quickly and easily. It also provides the SCPI commands required to implement each test in user-defined test programs.

The receiver (Rx) tests (TS36.141 Chapter 7) are described in Application Note 1MA195 and the performance (Px) tests (TS36.141 Chapter 8) are covered in Application Note 1MA162.

Abbreviations for 3GPP standards					
TS 36.141	Application Note				
E-UTRA FDD or TDD	LTE (FDD or TDD)				
UTRA-FDD	W-CDMA				
UTRA-TDD	TD-SCDMA				
GSM, GSM/EDGE	GSM				

The following abbreviations are used in this application note:

Table 1-1: Abbreviations for 3GPP standards

 Table 1-2 gives an overview of the Transmitter tests defined in line with Chapter 6 of

 TS36.141. All can be carried out using instruments from Rohde & Schwarz. These

 tests are individually described in this application note.

Covered TX test	s
Chapter (TS36.141)	Test
Base station ou	tput power
6.2	Base station output power
6.2.6	Home BS output power for adjacent channel WCDMA protection
6.2.7	Home BS output power for adjacent channel LTE protection
6.2.8	Home BS output power for co-channel LTE protection
Output power d	ynamics
6.3.1	RE power control dynamic range – no dedicated test, covered by 6.5.2
6.3.2	Total dynamic range
6.3.3	NB-IoT RB power dynamic range for in-band or guard band operation
Transmit ON/OF	F power
6.4	Transmit ON/OFF power
Transmitter sign	nal quality
6.5.1	Frequency error
6.5.2	Error vector magnitude
6.5.3	Time alignment error
6.5.4	DL RS power
Unwanted emis	sions
6.6.1	Occupied bandwidth
6.6.2	Adjacent channel leakage power ratio
6.6.3	Operating band unwanted emissions
6.6.4	Transmitter spurious emissions
Transmitter inte	rmodulation
6.7	Transmitter intermodulation

Table 1-2: Covered TX tests

Ready for RED?

The new radio equipment directive RED 2014/53/EU adopted by the European Union replaces the previous directive RTTED 1999/5/EC, better known as R&TTE. With RED, not only radio transmitters, but also radio receivers have to meet minimum regulatory performance requirements and need to be tested. Article 3.2 contains fundamental technical requirements.

The Harmonised European Standard **ETSI EN 301 908 Part 14** covers essential requirements of article 3.2 for E-UTRA Base Stations. The tests refer to **ETSI TS 136 141**, which is the same as **3GPP TS36.141**.

The Harmonised European Standard **ETSI EN 301 908** covers essential requirements of article 3.2 for Mobile Communication On Board Aircraft (MCOBA) systems. Chapter 4.2. defines tests for E-UTRA-OBTS (Onboard Base Transceiver Station), which refer to **ETSI TS 136 141**, which is the same as **3GPP TS36.141**.

2 General Transmitter Test Information

2.1 Note

Very high power occurs on base stations! Be sure to use suitable attenuators in order to prevent damage to the test equipment.

2.2 NB-IoT Modes of Operation

NB-IoT has a channel bandwidth of 200 kHz but occupies 180 kHz only. This is equal to one resource block in LTE (1RB). This bandwidth enables three modes of operation:

- Standalone operation: NB-IoT operates independently, for example on channels previously used for GSM.
- Guard band operation: NB-IoT utilizes resource blocks in the guard bands of an LTE channel.
- In-band operation: NB-IoT re-uses frequencies that are not used by LTE inside the LTE channel bandwidth.

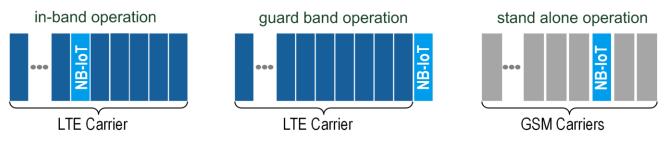
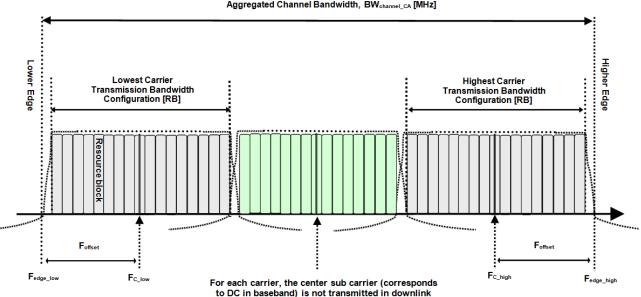


Fig. 2-1: The three NB-IoT modes of operation. (NB-IoT operates independently in standalone mode (right). The GSM channels are shown only to illustrate coexistence.)

2.3 Multicarrier Test Scenarios


Multicarrier configurations are a significant portion of LTE-A according to Rel. 12. These allow multiple carriers (even those using a different radio access technology) to be transmitted simultaneously, but independently of one another, from a single base station (multicarrier, MC). Another special attribute of LTE-A is the ability to link multiple carriers using carrier aggregation (CA). This allows an increase in the data rate to an individual subscriber (user equipment, UE). Overlapping of adjacent carriers is also possible, making more effective use of the bandwidth.

A distinction is made between the following CA scenarios:

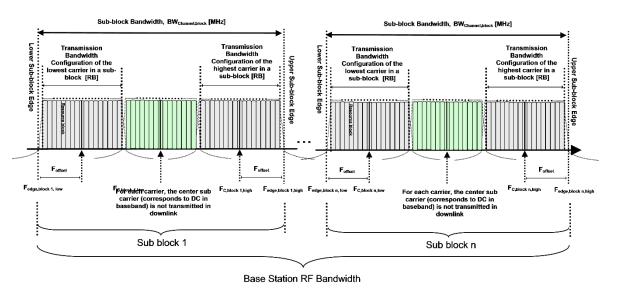
- Intra-band contiguous I.
- Inter-band non-contiguous I.

2.3.1 Intra-band Contiguous Carrier Aggregation

In this scenario, multiple carriers are transmitted in parallel within a single bandwidth of an LTE operating band (bands 1 to 32 and 65 to 68 for FDD and 33 to 46 for TDD; see [1]). Fig. 2-2 defines carrier aggregation. For a complete list see Table 5.5-2 in [1]. The notation is CA_x where x defines the used band (example CA_1).

Aggregated Channel Bandwidth, BW_{channel CA} [MHz]

Fig. 2-2: Definition of intra-band carrier aggregation [1].


The distance between the individual carriers is calculated as follows:

$$\frac{BW_{Channel_1} + BW_{Channel_2} - 0.1 \left| BW_{Channel_1} - BW_{Channel_2} \right|}{0.6} 0.3$$

Fig. 2-3: Possible offset between two carriers.

2.3.2 Intra-band Non-contiguous Carrier Aggregation

In this scenario, multiple non-contiguous carriers are transmitted in parallel within a single bandwidth of an LTE operating band. Fig. 2-4 defines the sub-block bandwidth for a base station operating in non-contiguous spectrum. For a complete list with two

sub-blocks see Table 5.5-4 in [1]. The notation is CA_x_x where x defines the used band (example CA_2_2).

Fig. 2-4: Definition of intra-band non-contiguous carrier aggregation [1].

2.3.3 Inter-band Non-contiguous Carrier Aggregation

Carrier aggregation is also possible across multiple frequency bands. The notation is the same as for intra-band CA. For example, CA_1-3 refers to band 1 and band 3, CA_2-2-5 to band 2 (with two sub-blocks) and band 5. For three or four bands, the notation is analog. For a complete list see tables 5.5-3 for two bands, 5.5-3A for three bands and 5.5-3B for four bands in [1].

2.3.4 Test Scenarios for Multicarrier and/or CA Tests

The various test configurations ETC1 to ETC5 for multicarrier and/or CA tests can be found in TS36.141 Chapter 4.10 [1]. Table 2-1 gives an overview of the test configurations.

Overview of Te	Overview of Test Configurations							
Section	Test Configuration	Description						
2.3.4.1	ETC1	Contiguous spectrum operation						
-	ETC2	Contiguous CA occupied bandwidth						
2.3.4.2	ETC3	Non-contiguous spectrum operation						
2.3.4.3	ETC4	Multi-band test configuration for full carrier aggregation						
2.3.4.4	ETC5	Multi-band test configuration with high PSD per carrier						
2.3.4.5	ETC6	NB-IoT standalone						
2.3.4.6	ETC7	E-UTRA and NB-IoT standalone						
2.3.4.7	ETC8	E-UTRA and NB-IoT in-band						
2.3.4.8	ETC9	E-UTRA and NB-IoT guard band						

Table 2-1: Overview of test configurations for multicarrier and/or CA tests

ETC2 is not described in this application note, as the test configuration only explains all carrier combinations that are possible for CA tests.

2.3.4.1 Contiguous spectrum operation (ETC1)

To make transmitter tests easy and comparable, the ETC1 test configuration in TS36.141 Chapter 4.10 [1] defines multicarrier and/or CA test scenarios. All Tx tests, with the exception of the occupied bandwidth test, follow these basic steps:

- Within the maximum available bandwidth, the narrowest supported LTE carrier is placed at the lower edge.
- A 5 MHz carrier is placed at the upper edge.
- The remaining free spectrum, starting from the right, is filled with 5 MHz carriers until no more carriers fit into the remaining bandwidth.
- If the base station does not support 5 MHz carriers, then the narrowest supported carrier is used instead.

The offset to the edges is as shown in Table 2-2. There are no precise specifications for the bandwidths 1.4 MHz and 3 MHz.

Definition of F _{offset}					
Channel bandwidth [MHz]	F _{offset} [MHz]				
1.4, 3.0	Not defined				
5, 10, 15, 20	BW _{Channel} /2				

Table 2-2: Calculation of Foffset

Example

The process for multicarrier configuration is explained based on an example (fictitious) base station using the following parameters:

- Aggregated channel bandwidth (BW_{Channel_CA}) = 20 MHz
- Support for 1.4 MHz and 5 MHz
- The 1.4 MHz carrier is placed at the lower edge; the offset is not defined. F_{offset} = 0.7 MHz is used.
- 2. The first 5 MHz carrier is placed at the upper edge at an offset of 2.5 MHz.
- The remaining two 5 MHz carriers are placed following the above formula at an offset of 4.8 MHz from the adjacent carrier to the right (carrier aggregation, CA). No additional carriers fit in the spectrum, leaving a free area of 4 MHz (Fig. 2-5).

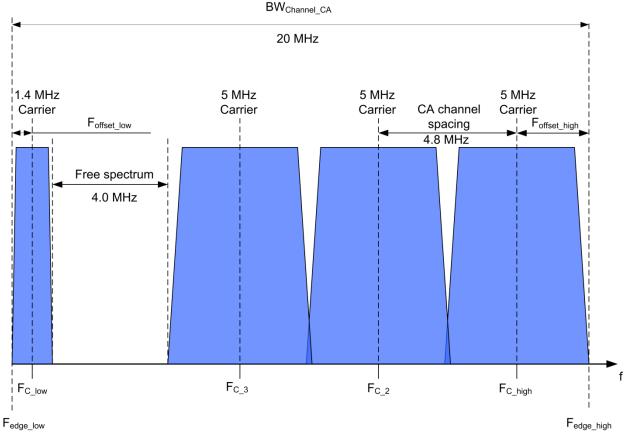


Fig. 2-5: Example MC scenario. $BW_{Channel_{CA}}$ is 20 MHz. One 1.4 MHz carrier and three 5 MHz carriers fit into the 20 MHz bandwidth.

2.3.4.2 Non-contiguous spectrum operation (ETC3)

The ETC3 test configuration in TS36.141 Chapter 4.10 [1] describes test scenarios that are constructed on a per band basis. All Tx tests, with the exception of the occupied bandwidth test, follow these basic steps:

- Within the maximum available bandwidth for non-contiguous spectrum operation, locate two sub-blocks at the edges of the bandwidth with one sub-block gap in between.
- A 5 MHz carrier is placed at the upper edge of the bandwidth.
- A 5 MHz carrier is placed at the lower edge of the bandwidth.

- If the base station does not support 5 MHz carriers, then the narrowest supported carrier is used instead.
- The offset to the edges and to the sub-block gap is as shown in Table 2-2.

Example

The process for non-contiguous spectrum operation is explained based on an example (fictitious) base station using the following parameters:

- RF channel bandwidth (BW_{Channel_RF}) = 20 MHz
- Support for two 5 MHz carriers
- One 5 MHz carrier is placed at the upper edge. The offset is defined according to Table 2-2. F_{offset} = 2.5 MHz.
- 5. Another 5 MHz carrier is placed at the lower edge at an offset of 2.5 MHz.
- 6. Sub-block 1 and 2 consist of one carrier each, with a sub-block gap of 10 MHz in between (Fig. 2-6).

Fig. 2-6: Example for non-contiguous spectrum operation. BW_{Channel_RF} is 20 MHz. Two 5 MHz carriers are located in the 20 MHz bandwidth with one sub-block gap of 10 MHz in between.

2.3.4.3 Multiband test configuration for full carrier allocation (ETC4)

The purpose of the ETC4 test configuration in TS36.141 Chapter 4.10 [1] is to test multiband operation aspects considering maximum supported number of carriers. It is constructed using the following method:

- The supported operation bands for Tx tests with the available bandwidths are chosen according to TS36.141 Chapter 5.5 [1].
- The declared maximum number of supported carriers in multiband operation is equal to the number of carriers each supported operation band.
- Carriers are first placed at the upper and lower edges of the declared maximum radio bandwidth. Additional carriers shall next be placed at the edges of the RF bandwidths, if possible.
- The allocated RF bandwidths of the outermost bands shall be located at the upper and lower edges of the declared maximum radio bandwidth.
- Each band is independent and the carriers within the bands are located according to the tests for contiguous spectrum operation.

Example

The process for multiband test configuration for full carrier allocation is explained based on an example (fictitious) base station using the following parameters:

- Radio channel bandwidth (BW_{Radio}) = 365 MHz
- Support for bands 1 and 3. Band 1: 2110 MHz 2170 MHz; Band 3: 1805 MHz – 1880 MHz
- 1. $F_{C_{low}B3} = 1805 \text{ MHz}, F_{C_{high}B3} = 1880 \text{ MHz}; F_{C_{low}B1} = 2110 \text{ MHz}, F_{C_{high}B1} = 2170 \text{ MHz}.$
- 2. $BW_{RF_lower} = 75$ MHz according to band 3; $BW_{RF_upper} = 60$ MHz according to band 1.
- 3. In total, two 1.4 MHz carriers and two 5 MHz carriers are located in band 1 and band 3 according to the example for contiguous spectrum operation. Theoretically, more carriers can be used.
- 4. Each band consists of two sub-blocks and one gap in between (Fig. 2-7).

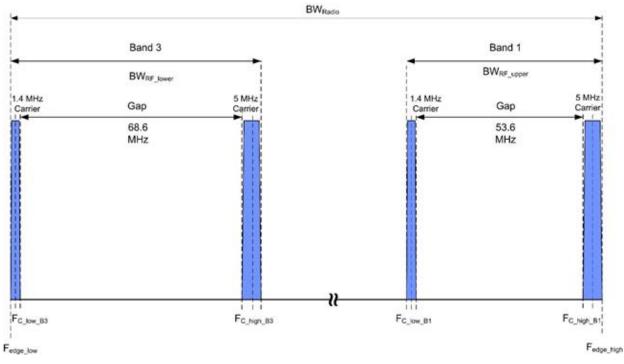
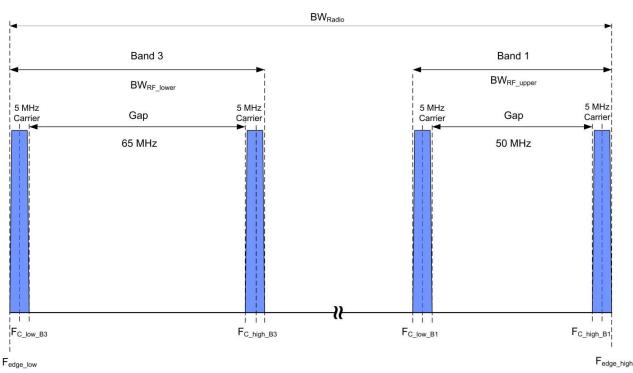


Fig. 2-7: Example multiband test configuration for full carrier allocation. BW_{Radio} is 365 MHz. In total, two 1.4 MHz and two 5 MHz carriers are located in band 1 and band 3.

2.3.4.4 Multiband test configuration with high PSD per carrier (ETC5)

The purpose of the ETC5 test configuration in TS36.141 Chapter 4.10 [1] is to test multiband operation aspects considering higher power spectrum density (PSD) cases with reduced number of carriers. It is constructed using the following method:


- The supported operation bands for Tx tests with the available bandwidths are chosen according to TS36.141 Chapter 5.5 [1].
- The maximum number of carriers is limited to two per band.
- Carriers are first placed at the upper and lower edges of the declared maximum radio bandwidth. Additional carriers shall next be placed at the edges of the RF bandwidths, if possible.
- The allocated RF bandwidths of the outermost bands shall be located at the upper and lower edges of the declared maximum radio bandwidth.
- Each band is independent and the carriers within the bands are located according to the tests for non-contiguous spectrum operation.

Example

The process for multiband test configuration with high PSD per carrier is explained based on an example (fictitious) base station using the following parameters:

Radio channel bandwidth (BW_{Radio}) = 365 MHz

- Support for bands 1 and 3. Band 1: 2110 MHz 2170 MHz; Band 3: 1805 MHz – 1880 MHz
- 5. $F_{C_{low}B3} = 1805 \text{ MHz}, F_{C_{high}B3} = 1880 \text{ MHz}; F_{C_{low}B1} = 2110 \text{ MHz}, F_{C_{high}B1} = 2170 \text{ MHz}.$
- 6. $BW_{RF_lower} = 75$ MHz according to band 3; $BW_{RF_upper} = 60$ MHz according to band 1.
- 7. In total, four 5 MHz carriers are located in band 1 and band 3 according to the example for contiguous spectrum operation.

8. Each band consists of two sub-blocks and one gap in between

Fig. 2-8: Example multiband test configuration with high PSD per carrier. BWRadio is 365 MHz. In total, four 5 MHz carriers are located in band 1 and band 3.

2.3.4.5 **NB-IoT standalone multi-carrier operation (ETC6)**

- Place a NB-IoT carrier at the upper edge and a NB-IoT carrier at the lower Base Station RF Bandwidth edge.
- For transmitter tests, add NB-IoT carriers at the edges using 600 kHz spacing until no more NB-IoT carriers are supported or no more NB-IoT carriers fit.
- Set the power of each carrier to the same level

Example

The process for multiband test configuration for NB-IoT standalone is explained based on an example (fictitious) base station using the following parameters:

1. Aggregated channel bandwidth (BW_{Channel_RF}) = 10 MHz

- 2. The basestation supports 8 carriers
- A NB-IoT carrier is placed at the upper edge; the offset is not defined. F_{offset} = 0.1 MHz is used.
- 4. A NB-IoT carrier is placed at the lower edge at an offset of 0.1 MHz.
- 5. The remaining six NB-IoT carriers are placed with an offset of 600 kHz. (Fig. 2-9).

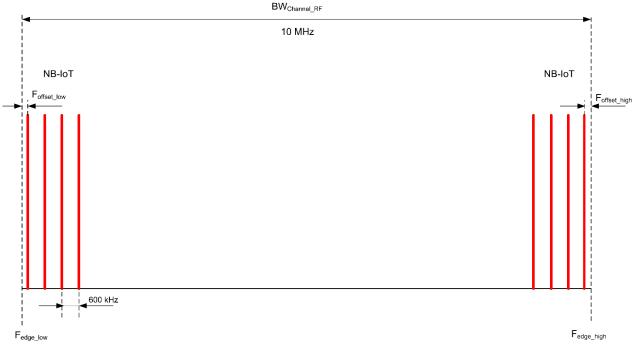
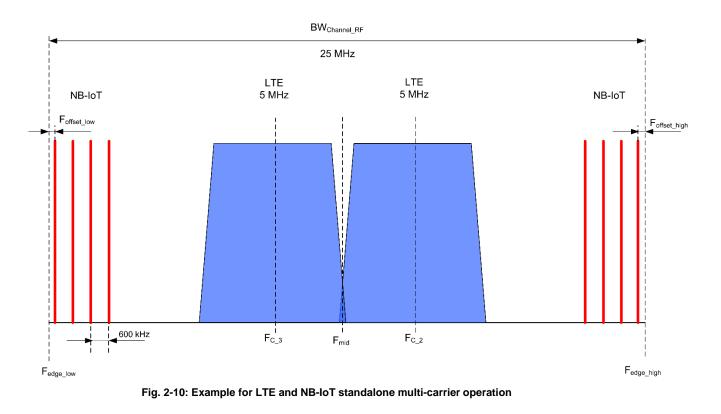


Fig. 2-9: Example for NB-IoT standalone multi-carrier

2.3.4.6 E-UTRA and NB-IoT standalone multi-carrier operation (ETC7)


- Receiver Tests
 - Place a NB-IoT carrier at the lower edge and a 5 MHz carrier at the upper Base Station RF Bandwidth edge. If the BS does not support 5 MHz channel BW use the narrowest supported BW.
- Transmitter Tests, if BS supports only one NB-IoT carrier
 - Add additional E-UTRA carriers of the same bandwidth as the already allocated E-UTRA carriers in the middle if possible. Set the power of each carrier to the same level
- Transmitter Tests, if BS supports more than one NB-IoT carrier
 - Place a NB-IoT carrier at the upper edge and a NB-IoT carrier at the lower Base Station RF Bandwidth edge.
 - Place two 5 MHz E-UTRA carriers in the middle of the Base Station RF Bandwidth. If the BS does not support 5 MHz channel BW use the narrowest supported BW, if only one carrier is supported or two carriers do not fit place only one carrier.
 - Add NB-IoT carriers at the edges using 600 kHz spacing until no more NB-IoT carriers are supported or no more NB-IoT carriers fit.

 Add additional E-UTRA carriers of the same bandwidth as the already allocated E-UTRA carriers in the middle if possible.

Example

The process for LTE and NB-IoT multi-carrier test configuration is explained based on an example (fictitious) base station using the following parameters:

- 1. Aggregated channel bandwidth (BW_{Channel_RF}) = 25 MHz
- 2. The basestation supports 8 NB-IoT carriers
- A NB-IoT carrier is placed at the upper edge; the offset is not defined. F_{offset} = 0.1 MHz is used.
- 4. A NB-IoT carrier is placed at the lower edge at an offset of 0.1 MHz.
- 5. Two LTE carriers of 5 MHz are placed in the middle.
- The remaining six NB-IoT carriers are placed with an offset of 600 kHz. (Fig. 2-10).

2.3.4.7 E-UTRA and NB-IoT in-band multi-carrier operation (ETC8)

 Place a 5 MHz carrier at the lower Base Station RF Bandwidth edge and a NB-IoT PRB at the outermost in-band position at the lower edge 5 MHz carrier.

- Place a 5 MHz carrier at the upper Base Station RF Bandwidth edge. If the basestation supports more than one NB-IoT carrier, place a NB-IoT PRB at the outermost in-band position of the upper 5 MHz carrier.
- For transmitter tests, select as many 5 MHz E-UTRA carriers that the BS supports and that fit in the rest of the Base Station RF Bandwidth. Place the carriers adjacent to each other starting from the high Base Station RF Bandwidth edge. The nominal carrier spacing defined in the formula of Fig. 2-3 shall apply
- If 5 MHz E-UTRA carriers are not supported by the BS the narrowest supported channel BW shall be selected instead.
- Set the power of each carrier to the same level

Example

The process for in-band E-UTRA and NB-IoT in-band multi carrier test configuration is explained based on an example (fictitious) base station using the following parameters:

- 1. Aggregated channel bandwidth (BW_{Channel_RF}) = 25 MHz
- 2. The basestation supports 2 NB-IoT carriers
- 3. One 5 MHz LTE carrier with in-band NB-IoT carrier is placed at the upper edge and one is placed at the lower edge.
- 4. The remaining two 5 MHz carriers are placed following the above formula at an offset of 4.8 MHz from the adjacent carrier to the right (carrier aggregation, CA). No additional carriers fit in the spectrum (Fig. 2-11).

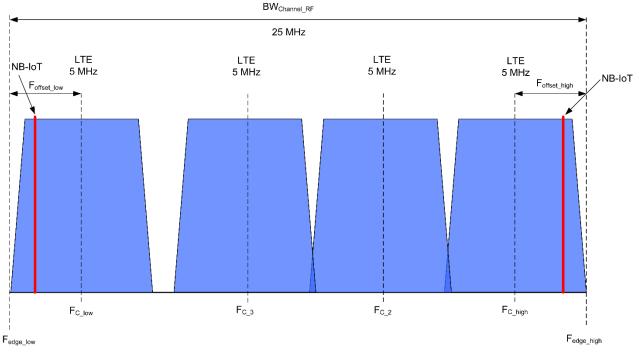
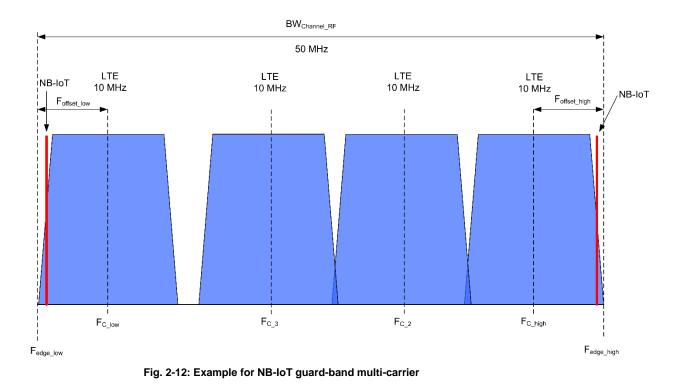


Fig. 2-11: Example for NB-IoT in-band multi-carrier


2.3.4.8 E-UTRA and NB-IoT guard-band multi-carrier operation (ETC9)

- Place a 10 MHz carrier at the lower Base Station RF Bandwidth edge and a NB-IoT PRB at the outermost guard-band position at the lower edge 10 MHz carrier.
- Place a 10 MHz carrier at the upper Base Station RF Bandwidth edge. If the basestation supports more than one NB-IoT carrier, place a NB-IoT PRB at the outermost guard-band position of the upper 10 MHz carrier.
- For transmitter tests, select as many 10 MHz E-UTRA carriers that the BS supports and that fit in the rest of the Base Station RF Bandwidth. Place the carriers adjacent to each other starting from the high Base Station RF Bandwidth edge. The nominal carrier spacing defined in the formula of Fig. 2-3 shall apply
- If 10 MHz E-UTRA carriers are not supported by the BS the narrowest supported channel BW shall be selected instead.
- Set the power of each carrier to the same level

Example

The process for in-band E-UTRA and NB-IoT guard-band multi carrier test configuration is explained based on an example (fictitious) base station using the following parameters:

- 1. Aggregated channel bandwidth (BW_{Channel_RF}) = 50 MHz
- 2. The basestation supports 2 NB-IoT carriers
- 3. One 10 MHz LTE carrier with guard-band NB-IoT carrier is placed at the upper edge and one is placed at the lower edge.
- 4. The remaining two 10 MHz carriers are placed following the above formula at an offset of 9.6 MHz from the adjacent carrier to the right (carrier aggregation, CA). No additional carriers fit in the spectrum (Fig. 2-11).

2.4 Tx Test Setup

Fig. 2-13 shows the basic setup for the Tx test. An FSx is used to perform the test. An attenuator connects the FXs to the DUT. An external trigger is additionally required for some tests (such as TDD tests). In several tests, the SMx feeds an additional signal via a circulator. A few tests (on/off power and time alignment) require special setups; these are described in the respective sections.

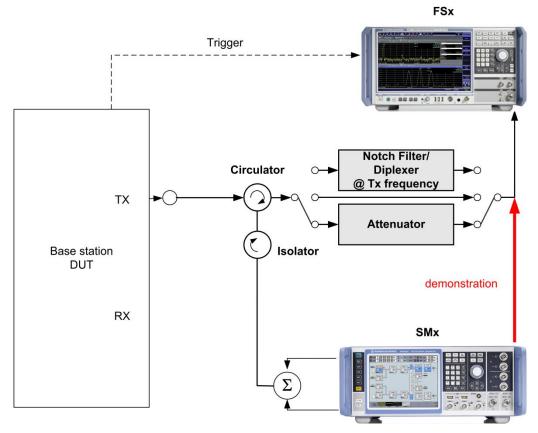


Fig. 2-13: Basic Tx test setup; some tests require a special setup.

2.5 Instruments and Options

Several different spectrum analyzers can be used for the tests described here:

- I FSW
- FSV(A)
- FPS

The **E-UTRA/LTE measurements** software option is available for each of the listed analyzers. The following are needed for the Tx tests:

- FSx-K100 E-UTRA/LTE FDD downlink measurements
- FSx-K102 E-UTRA/LTE downlink MIMO measurements
- FSx-K104 E-UTRA/LTE TDD downlink measurements

The **E-UTRA/LTE NB-IoT downlink measurements** software option is available for the FSW and for the other analyzers in the VSE.

- FSW-K106 E-UTRA/LTE NB-IoT downlink measurements
- VSE-K106 E-UTRA/LTE NB-IoT measurements

A few tests require additional signals; for example, to simulate adjacent carriers. These are provided via vector signal generators. The following are suitable:

- I SMW
- I SMBV

One of the tests (Home BS output power with co-channel LTE and option 2) requires two LTE signals. These signals can be generated by using a two-path generator or by adding a generator. The following software options are required:

- I SMx-K55 LTE
- SMx-K115 Cellular IoT (here NB-IoT)
- SMx-K42 W-CDMA
- ∎ SMx-K62 AWGN

 Table 2-3 gives an overview of the required instruments and options.

					Instru	ments an	d option	s	-62 & A -62 & A -72 &			
Numbe	er Measurement		Ľ	TE		NB-IoT	I	nterferer	Simulation			
numbe	a measurement	LTE	FS K100 FDD	FS K104 TDD	FS K104 MIMO	FS K106	SMX	SMX Option	SMX			
i	Transmitter Tests		•									
6.2	Basestation output power		\$	\$					æ			
6.2.6	Home BS with adjacent W-CDMA		\$	*			ф	K-42, K-62	ær			
6.2.6	Home BS with adjacent LTE		\$	\$			ф	K-55, K-62	æ			
6.2.6	Home BS with co-channel LTE		\$	\$			ф	K-55 (two paths) K-62				
6.3	Output power dynamics											
6.3.2	? Total power dynamic range		\$	\$					æ			
6.3.3	NB-IoT RB dynamic range											
6.4	Transmit ON/OFF		\$	\$					ær			
6.5	Transmitted signal quality											
6.5.1	Frequency error		\$	\$					ær			
6.5.2	Error vector magnitude		*	*					ær			
6.5.3	Time alignment		\$	\$	\$				&√			
6.5.4	DL RS power		\$	\$					ær			
6.6	Unwanted emissions		•	•								
6.6.1	Occupied bandwidth	в				В			ær			
6.6.2	ACLR		\$	\$					æ			
6.6.3	Operating band unwanted emissions		\$	\$					æ			
6.6.4	Transmitter spurious emissions	в				в			ær			
6.7	Transmitter intermodulation	с				с	ф	K-55, K-115	æ			

needed for the measurement

can do the measurement

B uses basic function of Spectrum Analyzer

Combined measurements: ACLR, SEM and Spurious emissions

G_∕ needed for demonstration program

Table 2-3: Overview of required instruments and software options

Notes:

ı

- 6.2.6 Home BS co-channel LTE: Simulation requires 3 LTE signals
- 6.3.3 not implemented yet

2.6 Multistandard Radios and TS 37.141

TS 37.141 applies when more than one radio access technology (RAT) is supported on a signal base station (multi-RAT). The conformance specifications overlap for some Tx

С

tests, which can alternatively be performed in line with 37.141. See TS37.141 [5] and Chapter 4.9 from TS36.141 [1]. Refer also to the application note **Measuring Multistandard Radio Base Stations according to TS 37.141** [6].

TS36.141 and TS37.141						
RF requirement	Clause in TS36.141	Clause in TS 37.141				
Base station output power	6.2.5	6.2.1.5				
Transmit ON/OFF power	6.4	6.4				
Transmitter spurious emissions	6.6.4.5	6.6.1.5				
Operating band unwanted emissions	6.6.3.5.1, 6.6.3.5.2	6.6.2.5				
Transmitter intermodulation	6.7.5	6.7.5.1				

Table 2-4: Overlaps between TS36.141 and TS37.141

3 Transmitter Tests (Chapter 6)

Specification TS36.141 defines the tests required in the various frequency ranges (bottom, middle, top, **B M T**) of the operating band. The same applies for multicarrier scenarios. In instruments from Rohde & Schwarz, the frequency range can be set to any frequency within the supported range independently of the operating bands.

In order to allow comparisons between tests, test models (TMs) standardize the resource block (RB) allocations. For LTE, these are called enhanced TMs (E-TM) to differentiate them from the TMs for W-CDMA. The E-TMs are stored as predefined settings in instruments from Rohde & Schwarz.

Table 3-1 and Table 3-2 provide an overview of the basic parameters for the individual tests. The chapter in TS36.141 and the corresponding chapter in the application note are both listed. Both the required E-TMs and the frequencies to be measured (B M T) are included. There is also a column listing the single carriers (SC) and multicarriers (MC) to be used for the test. The following terms are used:

- Any: Any supported channel BW
- Max: The maximum supported channel BW
- EVM: Error Vector Magnitude
- C Spectrum: The base station is capable of multi-carrier and/or CA operation in contiguous spectrum for single band. ETC2 is only applicable when contiguous CA is supported.
- C and NC Multi-carrier/CA: The base station is capable of multi-carrier and/or CA operation in contiguous (C) and non-contiguous (NC) spectrum for single band. It is distinguished between same parameters and different parameters when regarding contiguous and non-contiguous operations. The test configurations are for both cases, if not pointed out differently. ETC2 is only applicable when contiguous CA is supported.
- Multi-band: For multi-band operations, multiple bands are either mapped on common antenna connectors or mapped on separate antenna connectors. If not pointed out differently, the test configurations are for both cases. ETC1 and/or ETC 3 shall be applied in each supported operating band. ETC2 is only applicable when contiguous CA is supported.
- SC: For C Spectrum, C and NC Multicarrier/CA and multi-band operations, single carrier (SC) means that every carrier is regarded individually for measurement.
- The occupied bandwidth shall be measured using several different MC combinations.

Chapter TS36.141	Chapter AppNote	Name	Test models	Channels	Single- Carrier	Multi-Carrier: C Spectrum C and NC Multi-carrier/CA Multi-band	Comment
6.2	3.2	BS Max Output Power	E-TM1.1	ВМТ	Max SC	ETC1	
					ETC1, ETC3*		
						ETC1/3***,ETC4	
6.2.6	3.2.1	Home BS Output Power adjacent W-CDMA	E-TM1.1 (TM1)	М	Any SC	-	
6.2.7		Home BS Output Power adjacent LTE	E-TM1.1 (E-TM1.1)	М	Any SC	-	
6.2.8		Home BS Output Power co-channel LTE	E-TM1.1 (any)	М	Any SC	-	
6.3.2	3.3.1	Total Power Dynamic Range	E-TM3.1	ВМТ	Any SC	SC	
			E-TM2			SC	
						SC	
6.4	3.4	Transmit ON/OFF Power	E-TM1.1	М	Max SC	ETC1	TDD only
						ETC1, ETC3*	
						ETC4	
6.5.1	3.5.1	Frequency Error	E-TM3.1 E-TM3.2 E-TM3.3	ВМТ	Any SC	Tested with EVM	
						Tested with EVM	
						Tested with EVM	
6.5.2		Error Vector Magnitude (EVM)	E-TM2		Any SC	ETC1	
					Any SC	ETC1, ETC3*	
						ETC1/3,ETC4	
6.5.3	3.5.2	Time Alignment Error	E-TM1.1	М	Max SC	ETC1	TX, MIMO
						ETC1, ETC3*	CA
						ETC1/3,ETC5***	
6.5.4	3.5.3	Reference Symbol Power	E-TM1.1	ВМТ	Any SC	SC	
						SC	
						SC	
5.6.1	3.6.1	Occupied Bandwidth	E-TM1.1	ВМТ	Any SC	SC,ETC2	Different
						SC,ETC2	MCs
						SC,ETC2	
6.6.2	3.6.2	Adjacent Channel Leakage Power (ACLR)	E-TM1.1	ВМТ	Any SC	ETC1	
			E-TM1.2			ETC1*,ETC3	
						ETC1/3,ETC5	
6.6.2.6	3.6.2	Cumulative ACLR requirement in non-			Any SC	-	
		contiguous spectrum				ETC3	
						ETC3,ETC5**	

***Note: ETC5 is only applicable when inter-band CA is supported Table 3-1: Basic parameter overview, part 1

		rview, part 2					
Chapter C	Chapter	Name	Test	Channels	Single-	Multi-Carrier:	Comment
TS36.141	AppNote		models		Carrier	C Spectrum	
						C and NC Multi-carrier/CA	
						Multi-band	
6.6.3	3.6.3	Operating Band Unwanted Emissions	E-TM1.1	ВМТ	Any SC	ETC1	
		(SEM)	E-TM1.2			ETC1,ETC3	
						ETC1/3,ETC5	
6.6.4	3.6.4	Transmitter Spurious Emissions	E-TM1.1	ВМТ	Any SC	ETC1	
						ETC1*, ETC3	
						ETC1/3,ETC5	
6.7	3.7	Transmitter Intermodulation	E-TM1.1	ВМТ	Max SC	ETC1	
						Analog to 6.6	
						ETC1/3	
*Note:	Applicable	only for different parameters					
**Note:	Applicable	only for common antenna connector					

Table 3-2: Basic parameter overview, part 2

When measuring unwanted transmission according to chapter 3.6 or transmitter intermodulation according to chapter 3.7 for multi-band with separate antenna connectors, single-band requirements apply to each antenna connector for both multiband operation test and single band operation test. Other antenna connectors are terminated for single-band operation tests.

For ACLR and CACLR measurement, it is possible that ETC5 is only applicable for Inter RF bandwidth gap.

		ith NB-IoT	Single	Muli-carrier	Muli-carrier	Muli-carrier	Muli-carrier
Chapter TS36.141	Chapter AppNote	Name	Single Carrier NB-IoT Standalone	NB-IoT Standalone	NB-IoT / LTE Standalone	NB-IoT / LTE In-band	NB-IoT / LTE In-band and / or guard-band
6.2	3.2	Base station output power	N-TM	ETC6	ETC7	ETC8	ETC9
6.3		Output power dynamics					
6.3.1	3.3.1	RE Power control dynamic range	N/A	N/A	With EVM	With EVM	With EVM
6.3.2	3.3.2	Total power dynamic range	N/A	N/A	SC	SC	SC
6.3.3	3.3.3	NB-IoT RB power dynamic range	N/A	N/A	N/A	SC	SC
6.4	3.4	Transmit ON/OFF power	N/A	N/A	N/A	N/A	N/A
6.5		Transmitted signal quality					
6.5.1		Frequency error	With EVM	With EVM	With EVM	With EVM	With EVM
6.5.2	3.5.1	Error Vector Magnitude	N-TM	ETC6	ETC7	ETC1	ETC1
6.5.3	3.5.2	Time alignment error	N-TM TxDiversity	ETC6	ETC7	ETC1	ETC1
6.5.4	3.5.3	DL RS power	N-TM	SC	SC	SC	SC
6.6		Unwanted emissions					
6.6.1	3.6.1	Occupied bandwidth	N-TM	SC	SC	SC	SC
6.6.2	3.6.2	ACLR	N-TM	ETC6	SC	ETC8, ETC1	ETC9, ETC1
6.6.3	3.6.3	SEM	N-TM	ETC6	ETC7	ETC8, ETC1	ETC9, ETC1
6.6.4	3.6.4	Transmitter spurious emissions	N-TM	ETC6	ETC7	ETC8	ETC9
6.7	3.7	Transmitter intermodulation	N-TM	ETC6	ETC7	ETC8	ETC9
		Table 3-3: NB-IoT					

Basestations with NB-IoT support

Table 3-3: NB-IoT

3.1 Basic Operation

3.1.1 FSx Spectrum and Signal Analyzer

LTE

Most of the tests described here follow the same initial steps. They are explained here once:

1. Launch the LTE test application: Press the MODE hardkey. Select LTE.

Aft 10 d Mode Frequency Swee		3 MHz Mode Auto Swe	ep	- O	
Signal + Spe	ectrum Analyzer	Multi-Standard Rac	lio Analyzer		
New Channel	Spectrum	1xEV-DO BTS	1xEV-DO MS	P3G 3G FDD BTS	3G FDD UE
Replace Current Channel	Analog Demod	CDMA2000 BTS	CDMA2000 MS	GSM	IQ Analyzer
dBm	Ite LTE	MC Group Delay	Noise	Phase Noise	Pulse
dBm	TD-SCDMA BTS	TD-SCDMA UE	VSA	WLAN	
ye, bile kelenen på polatik store	Duplicate Current Channel				

Fig. 3-1: FSW: launching the LTE option.

- 2. Choose Downlink as the direction
- 3. Set the duplex mode (FDD or TDD)
- 4. Select the wanted test model (E-TM) (example: 10 MHz with E-TM1.1)

signal DescriptionSpectrum 🔺 🗴 LTE ! 🗵 🔹 🔷 🗕 🔜 🛑							
Signal Description MIMO Setup PDSCH Settings Advanced Settings							
Mode	FDD Downlink	÷ Test N	Nodel: E-TM1_	_110MHz.allo	cation		
Physical Settings							
Channel Bandwidth	10MHz(50 RB)	Sample Rate	15.36 MHz	Occupied BW	9.015 MHz		
Cyclic Prefix	Normal	+ FFT Size	1024	Occ Carriers	601		
0 Physical Layer Cell Identit							
Auto Detection	On Off	Cell ID	Points Measu	1			
Cell Identity Group	0	Identity		1			

Fig. 3-2: FSW: setting duplex mode, direction, and test model.

Tx tests can be fundamentally divided into demodulation tests and spectrum measurements. In demodulation tests, the LTE signal is acquired and then various test results are calculated based on the I/Q data. Spectrum measurements determine the level versus frequency of a selected signal. Fig. 3-3 shows the available selection in the FSW.

Fig. 3-3: FSW: selecting the LTE tests (On/Off power is available only for TDD).

For MC scenarios a special MC filter is available for the demodulation tests. It can be set under DEMOD. The filter minimizes influences from adjacent carriers:

Demodulation 14 %	
Multicarrier Filter	Demodulated Data
Use Multicarrier Filter	Descramble Coded Bits On Off
(Multicarrier BS)	Decode All Control Channels On Off Off
2.01 ms/ 20.1 ms -3.84 MHz	Score Score <th< td=""></th<>
Compensate Crosstalk On Off	Min Points Measured 1 0 Calculation Method EVM 3GPP Definition +
It is a QAM (%) Dur Y FSx 9.00 Ibr Selection Sub Y FSx Y Ibr Selection Sub Y FSx Y	PDSCH Reference Data
p) Error (Hz)	

Fig. 3-4: Enabling the MC filter.

An FSW is used whenever possible in the sections below to illustrate the test examples. Special settings such as external triggers for TDD signals are discussed in the individual sections.

- 5. Set the frequency
- 6. Set the **attenuation** and **reference level** (these settings are available via hardkey AMPT)

MultiView 📰 Spectru	ım 💌		×					×.
RefLevel 0.00 dBm Freq Att 10 dB TRG:EXT1	2.11 GHz Mod MIM	e DLFDD, 51 10 1 Tx / :		reTime 20.1 n eCount 1 of 1 (e All		SGL
1 Capture Buffer		01 Clrw	BEVM vs Ca	arric 🜼 1 Avg 🔍 2	2 Min • 3 Max	5 Power Spe	ctrum	01 Clrw
Frame ^l Start Offset : 13.199102 ns 6 dBm -6 dBm -18 dBm			18 %			-58 dBm/Hz -66 dBm/Hz -74 dBm/Hz 82 dBm/Hz		
			10 %			-90 dBm/Hz	10, Martin particular de la competencia	
111. AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA			4 %	faterine population		-114 dBm/Hz		
0.0 ms 2.01	ms/	20.1 ms	-3.84 MHz	768.0 kHz/	3.84 MHz	-3.84 MHz	768.0 kHz/	3.84 MHz
2 Result Summary					4 Constellat	ion Diagram		
Frame Results 1/1	Mean	Max	Limit	Min	Points Measure	d:41424	•	
EVM PDSCH QPSK (%)	0.86	0.86	18.50	0.86				
EVM PDSCH 16QAM (%)			13.50					
EVM PDSCH 64QAM (%)			9.00					
EVM PDSCH 256QAM (%)						, ,	,	
	oframes All, Se		, Frame Re			· ·	· · · · ·	
EVM All (%)	0.85	0.91		0.82				
EVM Phys Channel (%)	0.85	0.91		0.82				
EVM Phys Signal (%)	0.81	0.87		0.74				
Frequency Error (Hz)	-0.00	0.83		-0.85				
Sampling Error (ppm)	0.09	0.37		-0.14				
IQ Offset (dB)	-58.42	-57.57		-59.55				
IQ Gain Imbalance (dB)	-0.00 -0.00	-0.00 0.02		-0.01 -0.01				
IQ Quadrature Error (°) RSTP (dBm)	-0.00 -58,48	-58,47		-0.01 -58.48		1. Contraction 1. Con		
OSTP (dBm)	-38.48 -33.70	-38,47 -33,70		-58.48 -33.71				
RSSI(dBm)	-33.70	-33,70		-33.71				
Power (dBm)	-33,76	-33.76		-33.82				
Crest Factor (dB)	10.39			00102				
							•	
		_0,	nc Found			¢ R	eady and a	III 🖊 🖽 🗩
		Sy	ne Found			→ R	eauy	LLL REF 🗸

Fig. 3-5 shows the LTE demodulation measurement in the FSW.

Fig. 3-5: LTE overview in the FSW: Under Result Summary (bottom left), the test values are summarized in scalar form.

NB-IoT

Measurements on basestations capable of NB-IoT require an additional firmware option on the FSW (FSW-K106: NB-IoT Downlink) or the VSE with option VSE-K106.

Most of the tests described here follow the same initial steps. They are explained here once:

1. Launch the NB-IoT test application

Press the MODE hardkey. Select NB-IoT.

ignal + Spe	ctrum Analyzer	Multi-Standard Radio	o Analyzer Multi-	Standard Real-Time	echnum 🔹
New Channel	Spectrum	Real-Time Spectrum	1xEV-DO BTS	1xEV-DO MS	3G FDD BTS
Replace Current Channel	3G FDD UE	802.11ad	Amplifier	Analog Demod	Avionics
uis sult Summar All, Selection	CDMA2000 BTS	CDMA2000 MS	DOCSIS 3.1	GSM	IQ Analyzer
1 All (%) 1 Phys Charinel (1 Phys Signal (%) guency Error (H	LTE	MC Group Delay	₩ NB-IoT	Noise	DneWeb
npling Error (ppr P (dBm) P (dBm) I (dBm)	Phase Noise	Pulse	Spurious	TD-SCDMA BTS	TD-SCDMA UE
rer (dBm) st Factor (dB)	Transient Analysis	VSA	WLAN		
	$\begin{array}{c} \begin{array}{c} & & & \\ & & \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array}$				

Fig. 3-6: FSW: launching the LTE option.

- 2. FDD Downlink is the only possible direction
- 3. Select the wanted Deployment: Stand-alone, inband or guard band

nal Description			
Signal Description MIMO	Setup Advanced S	Capture fine 40.1 ms Subi	
Mode	FDD Downlink		
Deployment	Inband		
Physical Settings			
E-UTRA Center Frequency	2.11 GHz	NB-IoT Channel Bandwidth	.8825 MHz 200 kH :
S E-UTRA Channel Bandwidth	10MHz(50 RB)	NB-IoT Center Frequency	
E-UTRA CRS Sequence Info	19 19 1.72 9.78	Sample Rate 57.68 MHz Occupie	ed BW 180.0 kHz
E-UTRA PRB Index	1.72 9.78 0 <mark>4</mark> 23 -50.93 3.68 -40.13 4.05 -40.14	FFT Size 128 Occ Car	riers 12
Auto Detection	2.95 ~40.19 Off		
NCell Identity Group	NCell ID	0 Identity	

Fig. 3-7: FSW: setting deployment, channel bandwidth and frequency.

- 4. Set the frequency and for inband or guard band deployments the E-UTRA channel bandwidth and the CRS Sequence Info. Alternatively, just set the wanted PRB index. The firmware calculates and sets the NB-IoT frequency automatically.
- For Demodulation measurements the firmware automatically detects the used N-TM.

Tx tests can be fundamentally divided into demodulation tests and spectrum measurements. In demodulation tests, the NB-IoT signal is acquired and then various test results are calculated based on the I/Q data. Spectrum measurements determine the level versus frequency of a selected signal. Fig. 3-3 shows the available selection in the FSW.

Fig. 3-8: FSW: selecting the NB-IoT tests.

6. Set the **attenuation** and **reference level** (these settings are available via hardkey AMPT)

Fig. 3-9 shows the NB-IoT demodulation measurement in the FSW.

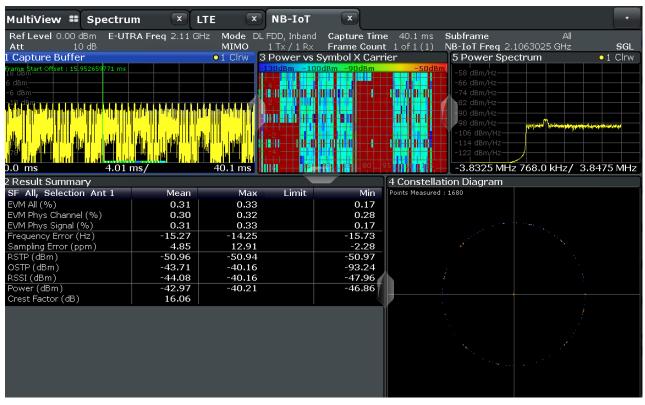


Fig. 3-9: NB-IoT overview in the FSW: Under Result Summary (bottom left), the test values are summarized in scalar form.

3.1.2 SMx Vector Signal Generator

The SMx is used here to generate additional LTE or W-CDMA signals, such as interferers or adjacent channel signals. Only the basic steps for LTE are provided here. Several special settings are needed for the individual tests. Significantly different settings, such as those for W-CDMA, are discussed directly in the corresponding chapters.

- 1. Set the center frequency and the levels (Freq and Lev)(Fig. 3-10)
- 2. Select the LTE standard in baseband block A (E-UTRA/LTE) (Fig. 3-11)

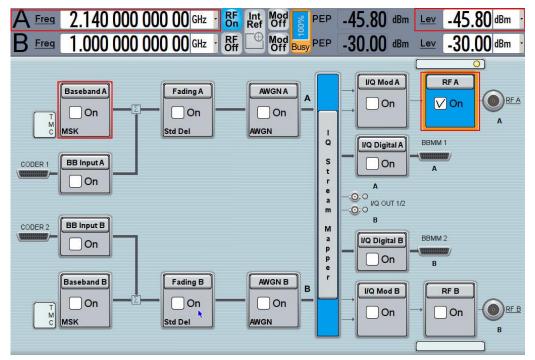


Fig. 3-10: SMW: Setting the frequency and level. Digital standards such as LTE are set in the baseband block.

TDMA Standards
GSM/EDGE
Bluetooth
TETRA
CDMA Standards
3GPP FDD
CDMA2000
TD-SCDMA
1xEV-DO
WLAN Standards
IEEE 802.11
Beyond 3G Standards
IEEE 802.16 WiMAX
EUTRA/LTE
Broadcast Standards
DVB

Fig. 3-11: SMW: selecting LTE in the baseband block.

3. Make the basic settings such as **Duplexing** (FDD or TDD) and the **Link Direction** (normally **Downlink (OFDMA)**; one test requires **Uplink**) (Fig. 3-12)

EUTRA/LTE A		_ ×
General Stop Trigger In Auto Marker Clock	Info	
Off On On Default	Recall 🕒 Save 💋	Generate Waveform
Test Case Wizard		
Duplexing	FDD	-
Link Direction	Downlink (OFDMA)	•
Test Models		
General DL Settings	Frame Configuratio	on
Filter/Clipping/ARB/TDW/Power	LTE / Clip Off	/ 1 Frames

Fig. 3-12: SMW: general LTE settings: duplexing, link direction.

 Select a filter. No filters are defined in the LTE. The SMx therefore offers several optimizations (Fig. 3-13).

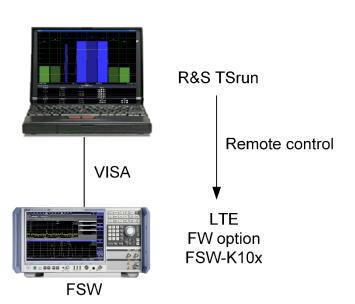
EUTRA/LTE A: Filter/Clipping/ARB/TDW/Power Settings							×		
Filter	Clipping	ARB	O Time Domain Windowing Power		Power		2		
Filter				EUtra/LTE -					
Optimization				Best EVM					
Roll Off Factor				Best EVM					
				Best ACP					
Cut Off Frequency Shift				Best ACP (Narrow)					
Sample Rate Variation			Best EVM (no upsampling)						

Fig. 3-13: SMW: selecting the LTE filter settings.

3.1.3 R&S TSrun Demo Program

This Application Note comes with a demonstration program module called LTE BS Tx Test for the software **R&S TSrun** which is free of charge. The module covers all required tests (see table below).

The **LTE BS Tx Test** module represents a so called test for the TSrun software. See Section 4.1 for some important points on the basic operation of TSrun.


Each test described in this application note can be executed quickly and easily using the module. Additional individual settings can be applied.

The program offers a straightforward user interface, and SCPI remote command sequence export functions for integrating the necessary SCPI commands into any user-specific test environment. A measurement report will be generated on each run. It can be saved to a file in different formats including PDF and HTML.

Following SCPI resources are needed:

- I FSx
- ı SMx

Please note that the module allows the control of the internal LTE FW options on the FSW only (Fig. 3-14).

Demo-Programm with internal FW option

Fig. 3-14: TSrun directly controls the LTE FW option on the FSx via VISA.

		FS	SW
Chapter	Name	SC	МС
6.2	BS Max Output Power	V	V
6.2.6	Home BS Output Power adjacent W-CDMA	V	
6.2.7	Home BS Output Power adjacent LTE	V	
6.2.6	Home BS Output Power co-channel LTE	V	
6.3.2	Total Power Dynamic Range	V	_
6.3.3	NB-IoT RB power Dynamic Range	V	
6.4	Transmit ON/OFF Power	V	V
6.5.1	Frequency Error	_	
6.5.2	Error Vector Magnitude (EVM)		_
6.5.3	Time Alignment Error	V	V
6.5.4	Reference Symbol Power	V	
6.6.1	Occupied Bandwidth	√ ¹	⊡ 1
6.6.2	Adjacent Channel Leakage Power (ACLR)	V	V
6.6.3	Operating Band Unwanted Emissions (SEM)	V	V
6.6.4	Transmitter Spurious Emissions	√ ¹	⊡ 1
6.7	Transmitter Intermodulation	V	×

 \blacksquare Supported by the demo program

1: Uses a basic function on FSx

- not stipulated (but can be done

carrier by carrier)

Not supported.

Getting started

This section describes only the module for the **LTE BS Tx tests**. Double-click the test to open the window for entering parameters.

LTE BS Tx Tests								×
Help						1 1 1	1 1	
ROHDE&SCHWARZ								
Transmitter Test: 6.2 BS Ma	x Output Po	wer				•		
Main Additional								
Measured Signal Parameters		-Multi-Carr	ier Configuratio	on				Reset Devices 🔽
Center Frequency (CF) 2	110 MHz		BW [MHz]	CF [MHz]	NB-lo	T Deployment	RB	Simulation
E-TM 1.1	•	Tx 1 🔽	10 -	2110		In-band -	4	Ext. Ref.
Duplexing Mode FDD	•	Tx 2 🔽	10 -	2120		In-band 👻	4	
Ref. Level	0 dBm	Tx 3	10 -	2130		In-band -	4	
Bandwidth Configuration		Tx 4	10 -	2140		In-band -	4	
Multi-Carrier		Tx 5	10 -	2150		In-band -	4	
Bandwidth (BW) 10	✓ MHz	Tx 6	10 -	2160		In-band -	4	
NB-loT In-band - RE	3 4	Tx 7	10 -	2170		In-band -	4	
Attenuation		Tx 8	10 -	2180		In-band -	4	
FSx Attenuation	0 dB	Tx 10	10 - 10 -	2190 2200		In-band -	4	
SMx Attenuation	0 dB	174 10	10	2200			-4	
Comments :		Taa	t Cotup for Ty	Taata :				
6.2 BS Max Output Power:		les	t Setup for Tx	iesis .				
Measures the output power by democ signal. E-TM1.1 at maximum power sh and MC configurations are possible. Note: Simulation uses path 1 of SMx.		SC	BS ATT			Wanted LTE Carrier		
							C	OK Cancel

Fig. 3-15: Full overview: setting parameters for the LTE BS Tx test.

General settings

The basic parameters are set at the top right:

- Reset Devices: Sends a reset command to all connected instruments
- **Simulation**: Generates a signal using the SMx for demonstration purposes.
- **External ref**: Switches the FSx over to an external reference source (typ. 10 MHz).

Reset Devices	✓
Simulation	
Ext. Ref.	

Fig. 3-16: General settings.

The **Attenuation** section is used to enter compensations for external path attenuations.

Attenuation	
FSx Attenuation	0 dB
SMx Attenuation	0 dB

Fig. 3-17: Attenuation settings.

Test cases

This is the main parameter. Select the wanted test case here. All other remaining parameters in the window are grayed out or set active based on the requirements for the selected test case. These parameters are described in detail in the individual sections below.

6.2 BS Max Output Power
6.2 BS Max Output Power
6.2.6 Home BS Output Power for Adjacent UTRA Channel Protection
6.2.7 Home BS Output Power for Adjacent E-UTRA Channel Protection
6.2.8 Home BS Output Power for Co-Channel E-UTRA Channel Protection
6.3.2 Total Power Dynamic Range
6.3.3 NB-IoT RB power dynamic range
6.4 Transmit ON/OFF Power
6.5.1 / 6.5.2 Frequency Error / EVM
6.5.3 Time Alignment Error
6.5.4 DL RS Power
6.6.1 Occupied Bandwidth
6.6.2 ACLR
6.6.3 Operating Band Unwanted Emissions (SEM)
6.6.4 Transmitter Spurious Emissions
6.7 Transmitter Intermodulation

Based on the selected test case, helpful hints are provided in the **Comments** section and an illustration of the basic test setup is displayed.

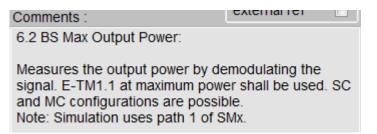
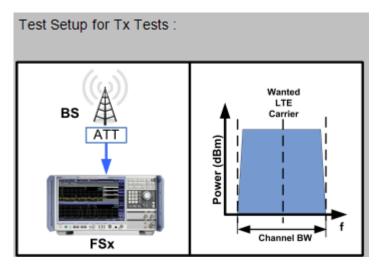
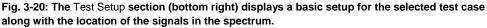




Fig. 3-19: Brief notes are provided in the Comments section (top right) based on the selected test case.

The settings are split in two main tabs:

- Main: for main parameters of the wanted signal
- Additional: for test specific parameters

Settings for measured signal

Use this section to define the basic parameters for the LTE signal to be measured:

- Center Frequency for SC
- The test model E-TM (E-TM1.1 is required for most test cases)
- Duplexing Mode
- **Ref. Level**: Set here the expected reference level.
- I Bandwidth
 - 0.2 MHz: Standalone NB-IoT
 - Others: Mark NB-IoT do deploy a NB-IoT RB with the LTE signal. The RB has to be set separately.

Measured Signal Parameters					
Center Frequency (CF)	2110 MHz				
E-TM	1.1 •				
Duplexing Mode	FDD -				
Ref. Level	0 dBm				
-Bandwidth Configuration	·				
Multi-Carrier					
Bandwidth (BW)	10 • MHz				
NB-IoT In-band	RB 4				

Fig. 3-21: Main settings for measured signal.

Multi-Carrier

Several tests can be carried out with MC. Selecting the **Multi-Carrier** option grays out the center frequency and bandwidth parameters and allows you to enter up to ten carriers along with their frequency and bandwidth. Again, mark **NB-IoT** in the individual carrier to deploy a NB-IoT RB.

Note: No logical checks of the MC settings are made. The frequencies must be entered in rising sequence. In other words, start with TX1 for the lowest frequency and then enter each subsequent frequency, ending with the highest frequency.

Multi-Carrier Configuration						
	BW [MHz]	CF [MHz]	NB-IoT	Deployment	RB	
Tx 1 🔽	10 -	2110	📃 🗖 Ir	n-band 🚽 👻	4	
Tx 2 🔽	10 -	2120	🗌 🗖 Ir	i-band 👻	4	
Tx 3 📃	10 -	2130	l Ir	-band 👻	4	
Tx 4	10 -	2140	l Ir	-band 👻	4	
Tx 5	10 -	2150	l Ir	-band 👻	4	
Tx 6	10 -	2160	l 🗌 Ir	i-band 🚽	4	
Tx 7	10 -	2170	Ir	n-band 🚽	4	
Tx 8	10 -	2180	l 🗌 Ir	i-band 🚽	4	
Tx 9	10 -	2190	l 🗌 Ir	n-band 🚽	4	
Tx 10	10 -	2200	l Ir	-band 👻	4	

Fig. 3-22: Multicarrier settings.

Main	Additional				
	Home BS Parameter	DL Level (dBm)	AWGN (dBm)	ACLR Neighbour Channel	E-UTRA 🔻
	6.2.6 adj W-CDMA	-80	-50	ACLR + Tx On/Off	
	6.2.7 adj LTE	-65	-50	Noise Cancellation	
	6.2.8 co LTE	-10	-50	Intermodulation	
	opt 2: UL:	-98		Intermodulation offset	- 2.5 👻 MHz
	Category				
	Category	A	*		
	Home BS Aggr. Pow		0 dBm		

More advanced settings for specific tests cases are described in the corresponding sections below (see Fig. 3-23).

Fig. 3-23: The tab Additional

3.2 Base Station Output Power (Clause 6.2)

The rated output power (PRAT) of the base station is the mean power level per carrier for BS operating in single carrier, multicarrier, or carrier aggregation configurations that the manufacturer has declared to be available at the antenna connector during the transmitter ON period [1].

The test is performed for SC as well as MC.

The power declared by the manufacturer must not exceed the values specified in Table 3-4. Table 3-5 shows the allowed tolerances.

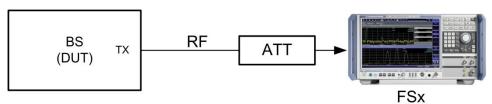

Maximum rated output power for different BS classes				
BS class	PRAT			
Wide Area BS	No upper limit			
Medium Range BS	≤ ±38 dBm			
Local Area BS	≤ ±24 dBm			
Home BS	≤ ±20 dBm			
The limit is lower by 3 dB for two ports, by 6 dB for four ports and 9 dB for eight ports for Home BS				

Table 3-4: Maximum rated output power

Requirements for BS output power			
Frequency range	Limit		
f ≤ 3.0 GHz	±2.7 dB		
3.0 GHz < f ≤ 4.2 GHz	±3.0 dB		
Relaxed limits apply for extreme c	onditions		

Table 3-5: Limits for BS output power

Test setup

Fig. 3-24: Test setup for BS output power.

The DUT (base station) transmits at the declared maximum PRAT. E-TM1.1 is required.

Procedure

The test can be performed in one of two different ways:

- Demodulation -> Result Summary: This method uses a single data record from the same test to obtain different values, such as EVM, frequency error, etc. The procedure follows the basic instructions provided in Section 3.1.1. The calculated power is displayed under **Power** (see Fig. 3-25).
- Channel Power / ACLR: This method can be used to determine the output power and the adjacent channel power simultaneously. Use as channel filter 'Rect'.

2 Result Summary						
Frame Results 1/1	Mean	Мах	Limit	Min		
EVM PDSCH QPSK (%)	0.86	0.86	18.50	0.86		
EVM PDSCH 16QAM (%)			13.50			
EVM PDSCH 64QAM (%)			9.00			
EVM PDSCH 256QAM (%)						
Results for Selection Subframes All, Selec	tion Ant 1, Frame Result	ts 1/1				
EVM All (%)	0.85	0.88		0.80		
EVM Phys Channel (%)	0.85	0.88		0.80		
EVM Phys Signal (%)	0.80	0.84		0.75		
Frequency Error (Hz)	0.19	0.67		-0.38		
Sampling Error (ppm)	0.00	0.33		-0.28		
IQ Offset (dB)	-57.91	-56.56		-58.81		
IQ Gain Imbalance (dB)	-0.00	-0.00		-0.01		
IQ Quadrature Error (°)	0.00	0.01		-0.02		
RSTP(dBm)	-58.50	-58,49		-58.50		
OSTP(dBm)	-33.72	-33.72		-33.73		
RSSI (dBm)	-33.91	-33.91		-33.96		
Power (dBm)	-33.78	-33.78		-33.83		
Crest Factor (dB)	10.80					

Fig. 3-25: Output power in the result summary.

For MC scenarios, each carrier must be tested individually.

NB-IoT stand-alone Procedure

The DUT (base station) transmits at the declared maximum PRAT. N-TM is required.

The test can be performed in one of two different ways:

Demodulation -> Result Summary: This method uses a single data record from the same test to obtain different values, such as EVM, frequency error, etc. The procedure follows the basic instructions provided in Section 3.1.1. The calculated power is displayed under **Power** (see Fig. 3-26).

2 Result Summary					
SF All, Selection Ant 1	Mean	Мах	Limit	Min	
EVM All (%)	0.31	0.33		0.17	
EVM Phys Channel (%)	0.30	0.32		0.28	
EVM Phys Signal (%)	0.31	0.33		0.17	
Frequency Error (Hz)	-15.27	-14.25		-15.73	
Sampling Error (ppm)	4.85	12.91		-2.28	
RSTP (dBm)	-50.96	-50.94		-50.97	
OSTP (dBm)	-43.71	-40.16		-93.24	
RSSI (dBm)	-44.08	-40.16		-47.96 🧹	
Power (dBm)	-42.97	-40.21		-46.86	
Crest Factor (dB)	16.06			<u> </u>	

• Channel Power / ACLR: This method can be used to determine the output power and the adjacent channel power simultaneously. Use as channel filter 'Rect'.

Fig. 3-26: NB-IoT Output power in the result summary.

The limits for NB-IoT standalone are \pm 3 dB. Relaxed limits apply for extreme conditions.

NB-IoT inband and guard band Procedure

For NB-IoT inband and guard band, the signal shall be seen as a combination between LTE carriers and NB-IoT carriers. The DUT (base station) transmits at the declared maximum PRAT. E-TM1.1 for the LTE part and N-TM for NB-IoT part are required.

Use the Channel Power / ACLR to determine the output power and the adjacent channel power simultaneously. Use as channel filter 'Rect'.

The limits are the same as in Table 3-5.

Demo program

No further special settings are needed for this test. The test is carried out as a demodulation. The output power and other measurements are reported. In the case of MC tests, each individual carrier is tested in sequence.

********** 6.2 Basestation Output Power ***********

_	-	-			

Duplex mode: FDD						
Test Item	Carrier Frequency (MHz)	Carrier BW (MHz)	Test Model	Power (dBm)	Status	
6.2 Basetstaion Output Power						
Output Power	2110	10	E-TM1.1	-10.49	Ignored	
Test Item	Carrier Frequency (MHz)	Carner	Test Model		Status	
Additional Measurements						
Frequency Error Hz	2110	10	E-TM1.1	0.00	Ignored	
EVM %	2110	10	E-TM1.1	0.20	Ignored	
OSTP dBm	2110	10	E-TM1.1	-10.49	Ignored	

FSx: 0, "No error"

Fig. 3-27: Example report for test case 6.2.

3.2.1 Home BS Output Power Measurements (Clause 6.2.6...6.2.8)

In addition to the general output power requirements, Release 12 also introduced special tests for home BS. There is no conventional network planning for home BS. Instead, they are installed as a supplement to the various existing provider networks. This increases the risk of interference because the home BS can transmit on adjacent channels as well as on the same channels as an existing network. As a result, a home BS must adapt (reduce) its output power to the specific conditions. These scenarios are covered by the following requirements.

All three tests are required only for SC.

3.2.1.1 Home BS Output Power for Adjacent UTRA Channel Protection (Clause 6.2.6)

The Home BS shall be capable of adjusting the transmitter output power to minimize the interference level on the adjacent channels licensed to other operators in the same geographical area while optimizing the Home BS coverage. These requirements are only applicable to Home BS. The requirements in this clause are applicable for AWGN radio propagation conditions [1].

A W-CDMA signal is provided for the test on the adjacent channel. In addition, AWGN is simulated in the same channel of the wanted signal. The output power of the home BS is measured at different levels of the W-CDMA and the AWGN signals. Pout must not exceed the values in Table 3-6 for the four different input parameter sets.

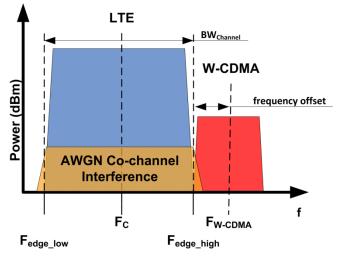


Fig. 3-28: Home BS with adjacent W-CDMA signal.

Requirements based on input conditions								
Testcase	Р _{СРІСН} (dBm)	P _{Total} (dBm)	P _{AWGN} (dBm)	Carrier/Noise (dB)	P _{out} (dBm)	Limits (normal conditions)		
1	-80	-70	-50		≤ 20			
2	-90	-80	-60		≤ 10	+ 2.7 dB (f \leq 3 GHz) + 3.0 dB (3 GHz \leq f \leq 4.2 GHz)		
3	-100	-90	-70	- 20	≤ 8	= + 5.0 dB (5 GHz = 1 = 4.2 GHz)		
4	-100	-90	-50		≤ 10			

Table 3-6: Requirements for home BS with adjacent W-CDMA signal

Test setup

The following setup is used for this test. The FSx measures via a circulator the output power (Tx) of the home BS. The SMx generates both the adjacent W-CDMA carrier and the AWGN and feeds the signal to the home BS via a circulator.

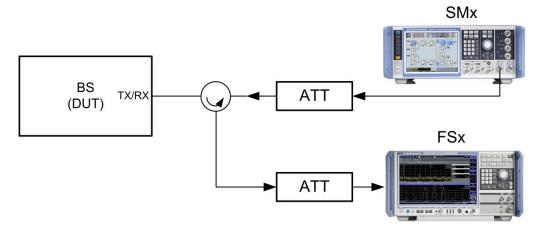


Fig. 3-29: Test setup for a home BS with adjacent W-CDMA signal. The SMW generates both the W-CDMA signal and the AWGN. The analyzer measures the Tx power.

Overview of settings:

- The DUT (base station) generates the wanted signal at F_c with BW_{Channel} and E-TM1.1.
- The SMx generates the W-CDMA signal as adjacent channel with TM1, offset $F_c \pm BW_{Channel}/2 \pm 2.5$ MHz (to the right or left of the wanted signal)
- The SMx generates AWGN on the same channel as the wanted LTE signal of the DUT. The bandwidth corresponds to BW_{Channel}.

Procedure

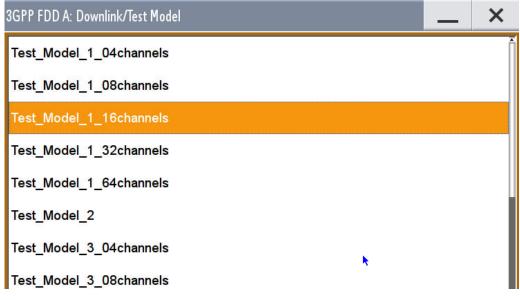
The procedure is shown with an example of $BW_{Channel} = 20$ MHz and Testcase 1.

1. Set the frequency of the SMx to the center frequency of the wanted signal

Generating the W-CDMA signal in the adjacent channel

2. Select W-CDMA (3GPP FDD) in baseband block A (Fig. 3-30)

TDMA Standards	
GSM/EDGE.	
Bluetooth	
TETRA	
CDMA Standards	
3GPP FDD	• 🕞
CDMA2000.	
TD-SCDMA.	
1xEV-DO	
WLAN Standards	
IEEE 802.11	
Beyond 3G Stando	ards
IEEE 802.16	Wimax
EUTRA/LTE	


Fig. 3-30: SMW: selecting the 3GPP FDD (W-CDMA) signal in the baseband block.

3. Go to the **Basestations** tab (Fig. 3-31)

			_	×
ker Clock	Bas	sestations		
		opy Basestation		
Predefined Settings				
-Select Ba	asestation	n	14 Xo	
		BS3	BS4	1
	Select Ba		Internal Basestations Image: Copy Basestation Test Setups/Mode Select Basestation BS2 BS3	Internal Dasestations Image: Copy Basestation Image: Copy Basestation

Fig. 3-31: SMW: W-CDMA base stations.

- 4. Click Test Setups/Models
- 5. Select a TM1 (any number of channels) (Fig. 3-32)

- Fig. 3-32: SMW: selecting TM1 for W-CDMA.
- 6. Switch on the baseband and set the frequency offset of the wanted LTE carrier in order to set the W-CDMA carrier in the adjacent channel: $F_{off} = BW_{LTE} / 2 + 2.5$ MHz (example: $F_{off} = 20$ MHz / 2 + 2.5 MHz = 12.5 MHz) (Fig. 3-33 and Fig. 3-34)

Fig. 3-33: SMW: offsets in the baseband.

Baseband Offset	_	_	×		
	Frequency Offset <i>I</i> Hz	Phase Offset <i>I</i> °			n Gain dB
Baseband A	12 500 000.00	(0.00		0.000
BB Input A	0.00				0.000
BB Input B	0.00				0.000
Baseband B	0.00	(0.00		0.000

Fig. 3-34: Setting the frequency offset for the W-CDMA carrier (e.g. 12.5 MHz).

7. In the SMx, the default level for the P-CPICH is -10 dB relative to the total level of the SMx. Set the total level accordingly (example: Test Case 1: $P_{CPICH} = -80 \text{ dBm}$: $P_{total} = -80 \text{ dBm} - (-10 \text{ dB}) = -70 \text{ dBm}$)

0	Common Cha	nnel Table Char	inel Gi	raph Code I	Domair	n						
9	Multi Channe	I Assistant	R	eset All Cha	nnels		Preset	O HSDPA H	l-Set			
				Prede	efined 10	Symbol	s					
	Channel Type	Enh/HSDPA Settings	Slot Fmt	Symb Rate /ksps	Chan Sode	Power /dB	Data	DList / Pattern	T Offs	DPCCH Settings	State	Dom Conf
	Type										-	
)	Р-СРІСН	Config		15	0	-10.00					On	
0				15 15	0						On Off	

Fig. 3-35: SMW: CPICH level in W-CDMA.

AWGN

Click the AWGN block and set the bandwidths (Fig. 3-36).(example: System BW = 18 MHz)

		_	×
	Off (0	On
Noise			•
18.	000 0	MHz	-
			1.5
•	Noise		U

Fig. 3-36: AWGN: setting the bandwidth (e.g. BW_{LTE} = 20 MHz – System BW: 18 MHz).

Go to the Noise Power / Output Results tab and enter the appropriate carrier/noise ratio from Table 3-6 (Fig. 3-37). (example: C/N = - 20 dB, Noise Power = -50 dBm)

AWGN Settings A			_	×
General Noise Power / Output Results				
Show Powers For Output	RFA			
Set Noise Power Via	C/N			
Reference Mode	Carrier			•
Bit Rate		270.833 333	kbps	•
Carrier/Noise Ratio		-20.00	dB	•
Eb/N0		-1.77	dB	•
Carrier Power		-70.00	dB	·
Noise Power (System Bandwidth)		-50.00	dB	•
Noise Power (Total Bandwidth)		-50.00	dB	-

Fig. 3-37: AWGN: Setting the noise power relative to the carrier power via the carrier/noise ratio (e.g. the carrier power is -70 dBm, so the noise power in test case 1 should be -50 dBm: -70 dB - (-50 dB) = -20 dB).

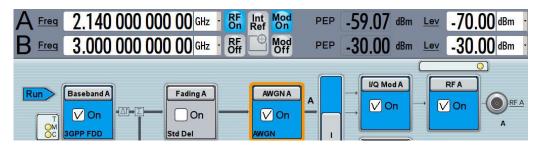


Fig. 3-38: Overview of the SMW for W-CDMA with AWGN. The W-CDMA signal is offset to the adjacent channel in the baseband.

Measurement with FSx

Measure the Pout of the home BS for all test cases (Table 3-6) and both offsets.

The test can be performed in one of two different ways:

Demodulation -> Result Summary: This method uses a single data record from the same test to obtain different values, such as EVM, frequency error, etc. The procedure follows the basic instructions provided in Section 3.1.1. The calculated power is displayed under **Power** (see Fig. 3-39).

Channel Power / ACLR: This method can be used to determine the output power and the adjacent channel power simultaneously. Use as channel filter 'Rect'.

2 Result Summary				
Frame Results 1/1	Mean	Мах	Limit	Min
EVM PDSCH QPSK (%)	0.86	0.86	18.50	0.86
EVM PDSCH 16QAM (%)			13.50	
EVM PDSCH 64QAM (%)			9.00	
EVM PDSCH 256QAM (%)				
Results for Selection Subframes All, Selec	ction Ant 1, Frame Resul	ts 1/1		
EVM All (%)	0.85	0.88		0.80
EVM Phys Channel (%)	0.85	0.88		0.80
EVM Phys Signal (%)	0.80	0.84		0.75
Frequency Error (Hz)	0.19	0.67		-0.38
Sampling Error (ppm)	0.00	0.33		-0.28
IQ Offset (dB)	-57.91	-56.56		-58.81
IQ Gain Imbalance (dB)	-0.00	-0.00		-0.01
IQ Quadrature Error (°)	0.00	0.01		-0.02
RSTP (dBm)	-58.50	-58.49		-58.50
OSTP(dBm)	-33.72	-33.72		-33.73
RSSI(dBm)	-33.91	-33.91		-33.96
Power (dBm)	-33.78	-33.78		-33.83
Crest Factor (dB)	10.80			

Fig. 3-39: Output power in der result summary.

Demo program

For this test, additional parameters must be defined. The test is carried out as a demodulation measurement. The output power and other measurements are reported.

Home BS Parameter	DL Level (dBm)	AWGN (dBm)
6.2.6 adj W-CDMA	-80	-50
6.2.7 adj LTE	-65	-50
6.2.8 co LTE	-10	-50
opt 2: UL:	-98	

Fig. 3-40: Special settings for output power with adjacent W-CDMA.

The level for the adjacent W-CDMA carrier and AWGN can be entered directly. Please note the settings from the specification listed in Table 3-6.

By default, the W-CDMA carrier is set to the right of the wanted signal. Checking **mirror** sets it to the left.

********** 6.2.6 Home BS Output Power with adjacent WCDMA************

Duplex mode: FDD	
W-CDMA carrier with TM1.1 at offset: 7.5 MHz W-CDMA carrier level: -80 dBm	
AWGN level: -50 dBm	

Test Item	Carrier Frequency (MHz)		Test Model	Power (dBm)	Status
6.2.6 Home BS Output Power with adjacen					
Output Power	2110	10	E-TM1.1	-10.54	Ignored
Test Item	Carrier Frequency (MHz)	Carner BW (MHz)	Test Model		Status
Additional Measurements					
Frequency Error Hz	2110	10	E-TM1.1	0.01	Ignored
EVM %	2110	10	E-TM1.1	0.19	Ignored
OSTP dBm	2110	10	E-TM1.1	-10.53	Ignored

FSx: 0,"No error"

Fig. 3-41: Example report for test case 6.2.6.

3.2.1.2 Home BS Output Power for Adjacent E-UTRA Channel Protection (Clause 6.2.7)

The Home BS shall be capable of adjusting the transmitter output power to minimize the interference level on the adjacent channels licensed to other operators in the same geographical area while optimizing the Home BS coverage. These requirements are only applicable to Home BS. The requirements in this clause are applicable for AWGN radio propagation conditions [1].

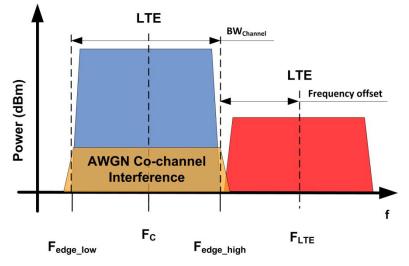


Fig. 3-42: Home BS with adjacent LTE signal.

An LTE signal is provided for the test on the adjacent channel. AWGN is also simulated in the same channel of the wanted signal. The output power measurements

for the home BS is to be measured at different levels of the LTE signal and the AWGN. P_{out} must not exceed the values in Table 3-7 for the four different input parameter sets. In the specification, the level of the adjacent LTE signal is set via the reference symbol power using the formula $10 \cdot \log_{10} (N_{RB}^{DL} \cdot N_{sc}^{RB})$. Because the required test model E-TM1.1 assigns all RBs, the total level (P_{total}) can be entered directly and set on the

Require	Requirements based on input conditions for adjacent LTE								
Test case	P _{total} (dBm)	P _{AWGN} (dBm)	Carrier/Noise (dB)	P _{out} (dBm)	Limits (normal conditions)				
1	-65	-50	-15	≤ 20					
2	-75	-60	-15	≤ 10	+2.7 dB (f ≤ 3 GHz) +3.0 dB (3 GHz ≤ f ≤ 4.2 GHz)				
3	-90	-70	-20	≤ 8	+5.0 dB (5 GHz = 1 = 4.2 GHz)				
4	-90	-50	-40	≤ 10					

Table 3-7: Requirements for home BS with adjacent LTE signal

Test setup

SMx.

The following setup is used for this test. The FSx measures via a circulator the output power (Tx) of the home BS. The SMx provides both the adjacent LTE carrier and the AWGN and feeds the signal to the home BS via a circulator.

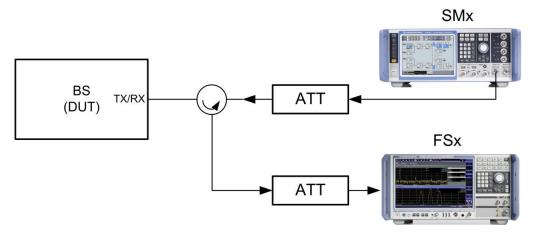


Fig. 3-43: Test setup for a home BS with adjacent LTE signal. The SMW generates both the LTE signal and the AWGN.

Overview of settings:

- The DUT (base station) generates the wanted signal at F_c with BW_{channel} and E-TM1.1.
- The SMx generates the LTE signal as an adjacent channel with the same BW_{Channel} and E-TM1.1, offset F_c ± BW_{Channel} (to the right or left of the wanted signal)
- The SMx generates AWGN on the same channel as the wanted LTE signal of the DUT. The bandwidth corresponds to BW_{Channel}.

Procedure

The procedure is shown with an example of $BW_{Channel} = 20$ MHz and Testcase 1.

1. Set the frequency of the SMx to the center frequency of the wanted signal

Generating the adjacent LTE signal

- 2. Generate an LTE signal that is equivalent to the wanted signal (see 3.1.2)
- 3. Select test model E-TM1.1. (Fig. 3-44)(example E-TM1.1 with 20 MHz)

EUTRA/LTE A	EUTRA/LTE A: Import FDD/DL Testmodel		_	-	×
General Contraction In Ma	E-TM1_110MHz				Ī
	E-TM1_115MHz				
	E-TM1_11_4MHz				
Test Case Wizard	E-TM1_120MHz				
Duplexing	E-TM1_13MHz				
	E-TM1_15MHz				
Link Direction	E-TM1_210MHz				
Test Models	E-TM1_215MHz				
General DL Setting	E-TM1_21_4MHz				
	E-TM1_220MHz				×
Filter/Clipping/ARB/TDV	Select	Recent Files	And a second sec	File Manag	jer

Fig. 3-44: Selecting the test model in LTE.

Switch on the baseband and set the frequency offset of the wanted LTE carrier in order to set the LTE carrier in the adjacent channel: F_{off} = BW_{LTE} (example. 20 MHz) (Fig. 3-45 and Fig. 3-46)

Fig. 3-45: SMW: offsets in the baseband.

Baseband Offset	S		_	_	×
	Frequency Offset /Hz	Phase Off <i>I</i> °	iset		h Gain dB
Baseband A	20 000 000.00	0	00.0		0.000
BB Input A	0.00				0.000
BB Input B	0.00	5			0.000
Baseband B	0.00	0	.00		0.000

Fig. 3-46: Setting the frequency offset for the W-CDMA carrier (example: 20.0 MHz).

5. In the SMx, the total level is set over all RBs and the reference symbol power for each RE is entered relative to the total level (Fig. 3-47). Therefore, just set the total level based on Table 3-7.

EUTRA/LTE	A: General DL S	Settings								_	×
OCA		Physical 20 MHz	Scheduling Manual	Cell	Signals	OPRS	Ocsi	Anter 1 TxAn	nna Ports		
	Downlink Reference Signal Structure										
Reference	ce Signal Pov	ver						0.00	dB		-
RS Powe	er per RE rela	ative to Lev	vel Display			-30.790 dB			dB		·
			S	nchroniza/	ation Sign	al Setting	s				
P-/S-SYNC Tx Antenna			All					-			
P-SYNC	Power							0.000	dB		•
S-SYNC	Power			N				0.000	dB		•

Fig. 3-47: LTE: displaying the RS power per RE.

AWGN

 Click the AWGN block and set the bandwidths (Fig. 3-48). (example System Bandwidth = 18 MHz)

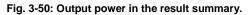
AWGN Settings A		_	×
OGeneral Noise Power / Output R	esults		
State	Off	\odot	On
Mode	Additive Noise		•
System Bandwidth	18.000 0	MHz	-
Min Noise/System Bandwidth Ratio			1.5
Noise Bandwidth			

Fig. 3-48: AWGN: setting the bandwidth (example: BW_{LTE} = 20 MHz -> System BW: 18 MHz).

7. Go to the Noise Power / Output Results tab and enter the appropriate carrier/noise ratio from (Fig. 3-49).

AWGN Settings A		_	×
OGeneral Noise Power / Output Results			
Set Noise Power Via	C/N]
Reference Mode	Carrier		-
Bit Rate	270.833 333	kbps	-
Carrier/Noise Ratio	-15.00	dB	-
Eb/N0	3.23	dB	•
Carrier Power	-65.00	dB	-
Noise Power (System Bandwidth)	-50.00	dB	
Noise Power (Total Bandwidth)	-46.34	dB	•

Fig. 3-49: AWGN: Setting the noise power relative to the carrier power via the carrier/noise ratio (example: the carrier power is -65 dBm, so the noise power in test case 1 should be -50 dBm: -65 dB - (-50 dB) = -15 dB).


Measurement with FSx

Measure the Pout of the home BS for all test cases (Table 3-7) and both offsets.

The test can be performed in one of two different ways:

- Demodulation -> Result Summary: This method uses a single data record from the same test to obtain different values, such as EVM, frequency error, etc. The procedure follows the basic instructions provided in Section 3.1.1. The calculated power is displayed under **Power** (see Fig. 3-50).
- Channel Power / ACLR: This method can be used to determine the output power and the adjacent channel power simultaneously. Use as channel filter 'Rect'.

2 Result Summary				
Frame Results 1/1	Mean	Мах	Limit	Min
EVM PDSCH QPSK (%)	0.86	0.86	18.50	0.86
EVM PDSCH 16QAM (%)			13.50	
EVM PDSCH 64QAM (%)			9.00	
EVM PDSCH 256QAM (%)				
Results for Selection Subframes All, Sele	ction Ant 1, Frame Results	5 1/1		
EVM All (%)	0.85	0.88		0.80
EVM Phys Channel (%)	0.85	0.88		0.80
EVM Phys Signal (%)	0.80	0.84		0.75
Frequency Error (Hz)	0.19	0.67		-0.38
Sampling Error (ppm)	0.00	0.33		-0.28
IQ Offset (dB)	-57.91	-56.56		-58.81
IQ Gain Imbalance (dB)	-0.00	-0.00		-0.01
IQ Quadrature Error (°)	0.00	0.01		-0.02
RSTP (dBm)	-58.50	-58.49		-58.50
OSTP (dBm)	-33.72	-33.72		-33.73
RSSI (dBm)	-33.91	-33.91		-33.96
Power (dBm)	-33.78	-33.78		-33.83
Crest Factor (dB)	10.80			

Demo program

For this test, additional parameters must be defined. The test is carried out as a demodulation measurement. The output power and other measurements are reported.

- Home BS Parameter	DL Level (dBm)	AWGN (dBm)
6.2.6 adj W-CDMA	-80	-50
6.2.7 adj LTE	-65	-50
6.2.8 CO LI E	-10	-50
opt 2: UL:	-98	

Fig. 3-51: Special settings for output power with adjacent LTE.

The level for the adjacent LTE carrier and AWGN can be entered directly. Please note the settings from the specification listed in Table 3-7.

By default, the LTE carrier is set to the right of the wanted signal. Checking **mirror** sets it to the left.

********* 6.2.7 Home BS Output Power with adjacent LTE************

Duplex mode: FDD LTE carrier with E-TM1.1 at offset: 10 MHz LTE carrier level: -65 dBm AWGN level: -50 dBm						
Test Item	Carrier Frequency (MHz)	Carrier BW (MHz)	Test Model	Power (dBm)	Status	
6.2.7 Home BS Output Power with adjacent LTE						
Output Power	2110	10	E-TM1.1	-10.55	Ignored	
Test Item	Carrier Frequency (MHz)	Carrier BW (MHz)	Test Model		Status	
Additional Measurements						
Frequency Error Hz	2110	10	E-TM1.1	0.02	Ignored	
EVM %	2110	10	E-TM1.1	0.20	Ignored	
OSTP dBm	2110	10	E-TM1.1	-10.55	lanored	

FSx: 0,"No error"

Fig. 3-52: Example report for test case 6.2.7.

3.2.1.3 Home BS Output Power for Co-Channel E-UTRA Protection (Clause 6.2.8)

To minimize the co-channel DL interference to non-CSG macro UEs operating in close proximity while optimizing the CSG Home BS coverage, Home BS may adjust its output power according to the requirements set out in this clause. These requirements are only applicable to Home BS. The requirements in this clause are applicable for AWGN radio propagation conditions [1].

A downlink LTE signal with different levels is provided for the test on the same channel. AWGN is also simulated in the same channel. The output power for the home BS is to be measured. For so called option 2, an LTE signal is additionally generated for the uplink.

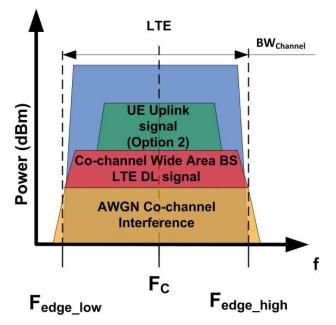


Fig. 3-53: Home BS with co-channel LTE signal.

Because no configurations are defined for the co-channel LTE signals, the test parameters can vary widely:

Home BS output power for co-channel LTE	
Input Conditions	Pout
loh (DL) > CRS Ês + 10log10($N_{RB}^{DL} N_{sc}^{RB}$) + 30 dB	≤ 10 dBm
loh (DL) ≤ CRS Ês + 10log10($N_{RB}^{DL} N_{sc}^{RB}$) + 30 dB	\leq max (- 10 dBm, min (Pmax, CRS Ês + 10log10($N_{RB}^{DL} N_{sc}^{RB}$) + 30 dB))

Table 3-8: Home BS output power for co-channel E-UTRA channel protection [1]

Test	P _{total} DL	PAWGN	P _{total} UL	Pout	Limits	
case	(dBm)	(dBm)	(dBm)	(dBm)	(normal conditions)	
1	$-10 - 10\log_{10}(N_{RB}^{DL} N_{sc}^{RB})$	-50		See condition defined in	+2.7 dB (f ≤ 3 GHz)	
2	-20 - 10log10($N_{RB}^{DL} N_{sc}^{RB}$)	-60	-98	table +3.0 dB (3 GHz ≤ 3-6	lable	+3.0 dB (3 GHz ≤ f ≤ 4.2 GHz)
3	-40 - 10log10($N_{RB}^{DL} N_{sc}^{RB}$)	-70				
4	$-90 - 10\log_{10}(N_{RB}^{DL} N_{sc}^{RB})$	-50				

Table 3-9: Requirements based on input conditions for co-channel LTE

The example below uses E-TM1.1 for the downlink signal and FRC1 for the uplink signal, which simplifies the settings (see Table 3-10).

Test setup

The following setup is used for this test. The FSx measures via circulator the output power (Tx) of the home BS. The SMx provides both the adjacent downlink LTE carrier and the AWGN and feeds the signal to the home BS via a circulator. For option 2, the SMx additionally provides the LTE uplink signal via the second path.

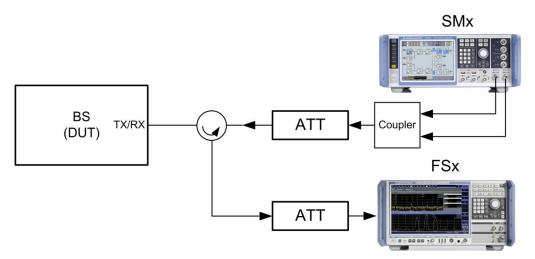


Fig. 3-54: Test setup for a home BS with co-channel LTE signal. The SMW generates both the LTE signal and the AWGN.

Overview of settings:

- The DUT (base station) generates the wanted signal at F_c with BW_{channel} and E-TM1.1.
- The SMx generates the co-channel LTE downlink signal with the same BW_{Channel}. There is no special configuration required.
- The SMx generates AWGN on the same channel as the wanted LTE signal of the DUT. The bandwidth corresponds to BW_{Channel}.
- For option 2, the SMx additionally generates an LTE uplink signal. There is no special configuration required.

Procedure

The procedure is shown with an example of $BW_{Channel} = 20$ MHz and Testcase 1. To simplify the settings, E-TM1.1 is used (see Table 3-10).

1. Set the frequency of the SMx to the center frequency of the wanted signal

Generating the downlink LTE signal

- 2. Generate an LTE signal that is equivalent to the wanted signal (see 3.1.2)
- 3. Select test model E-TM1.1. (Fig. 3-55) (example with 20 MHz)

EUTRA/LTE A	EUTRA/LTE A: Import FDD/DL Testmodel	_	×
General Contrigger In Auto	E-TM1_110MHz		Î
	E-TM1_115MHz		
	E-TM1_11_4MHz		
Test Case Wizard	E-TM1_120MHz		- 1
Duplexing	E-TM1_13MHz		- 1
	E-TM1_15MHz		- 1
Link Direction	E-TM1_210MHz		- 1
Test Models	E-TM1_215MHz		- 1
General DL Setting	E-TM1_21_4MHz		- 1
	E-TM1_220MHz		Ŧ
Filter/Clipping/ARB/TDV	Select Recent Files	File Mar	nager

Fig. 3-55: Selecting the test model in LTE.

4. In the SMx, the total level is set over all RBs and the reference symbol power for each RE is entered relative to the total level (Fig. 3-56). Therefore, set the total level based on Table 3-10.

UTRA/LTI	A: General DL	Settings									×
OCA	OMBSFN	Physical 20 MHz	Scheduling Manual	Cell	Signals	ignals O PRS O CSI Antenna Ports					
			Dow	nlink Refe	rence Sig	nal Struct	ture				
Reference Signal Power						0.00	dB				
RS Pow	RS Power per RE relative to Level Display			-30.790 dB				dB			
			S	nchroniza	ation Sign	al Settings	s —				
P-/S-SYNC Tx Antenna					All						
P-/S-SY											
P-/S-SY	Power							0.000	dB		

Fig. 3-56: LTE: displaying the RS power per RE.

AWGN

 Click the AWGN block and set the bandwidths (Fig. 3-57). (example: System BW = 18 MHz)

AWGN Settings A			×
OGeneral Noise Power / Output R	esults		
State	Off	\odot	On
Mode	Additive Noise		•
System Bandwidth	18.000 0	MHz	•
Min Noise/System Bandwidth Ratio			1.5
Noise Bandwidth			

Fig. 3-57: AWGN: setting the bandwidth (example: $BW_{LTE} = 20 \text{ MHz} - \text{System BW}$: 18 MHz).

6. Go to the Noise Power / Output Results tab and enter the appropriate carrier/noise ratio from (Fig. 3-58).

AWGN Settings A		_	×
OGeneral Noise Power / Output Res	ults		
Set Noise Power Via	C/N		Ţ
Reference Mode	Noise		-
Bit Rate	100.000 000	kbps	·
Carrier/Noise Ratio	40.00	dB	-
Eb/N0	62.55	dB	•
Carrier Power	-10.00	dB	•
Noise Power (System Bandwidth)	-50.00	dB	•
Noise Dower (Total Randwidth)	-16 3/	AR	Ţ

Fig. 3-58: AWGN: setting the noise power relative to the carrier power via the carrier/noise ratio (example: the carrier power is -10 dBm, so the noise power in test case 1 should be -50 dBm: -10 dB - (-50 dB) = + 40 dB).

Option 2 only: Generating the uplink LTE signal

- 7. Set the link direction to Uplink (SC-FDMA).
- 8. Set the corresponding bandwidth.

EUTRA/LTE A	_ ×
General Stop Trigger In Auto Marker Clock	Info
Off On On Set To Default	Recall Save Generate Waveform
Test Case Wizard	
Duplexing	FDD
Link Direction	Uplink (SC-FDMA)
General UL Settings	Frame Configuration
Filter/Clipping/ARB/TDW/Power	LTE / Clip Off / 1 Frames

Fig. 3-59: Setting the uplink in the LTE.

UTRA/LTE A	: General	UL Settings					_	×
Physical 20 MHz	Cell	Signals	PRACH	PUSCH	PUCCH			
Channel B	andwidth	1		20 MHz		Number of Resource Blocks per Slot		100
FFT Size				2048	•			
Physical F	Resource	Block Bar	ndwidth	12	* 15 kHz	Occupied Bandwidth	18.00	0 MHz
Sampling	Rate			30.	720 MHz	Number of Occupied Subcarriers		1 200
Number o	of Left Gu	lard Subca	rriers		424	Number of Right Guard Subcarriers		424

Fig. 3-60: Setting the bandwidth BW in the uplink.

- 9. Click UE1.
- 10. Select the corresponding FRC and switch FRC state On. (example: FRC A3-7)

EUTRA/LTE A: Frame Config	uration			_ ×
General Time Plan	Subframe			
	UE1	UE2	UE3	UE4
	V On	On	On	On
3GPP Release	Release 8/9	Release 8/9	Release 8/9 -	Release 8/9
No. of PUCCH Config.	1	1	1	1
No. of PUSCH Config.	1	1	1	1

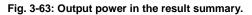
EUTRA/LTE A: U	Jser Equipn	nent Configuration (U	E1)				×
Common	OFRC	ORT Feedback	PUSCH	DRS	OSRS		
FRC State					Off		On
FRC			-	TS 36.14	1: A3-7		•
Allocated Re	esource B	locks					100
Modulation						(QPSK
Payload Size	e					1	0296
Physical Bits	s per Subi	frame (Unshortene	d PUSCI	H)		2	28800
Offset VRB							0
		with a LIF (assessmentary (

Fig. 3-62: Setting the FRC for the UE. (example: A3-7)

Measurement with FSx

If E-TM1.1 is used for the wanted signal, Table 3-9 is simplified as follows:

Require	Requirements based on input conditions for adjacent LTE									
Test case	P _{total} DL (dBm)	P _{AWGN} (dBm)	Carrier/Noise (dB)	P _{total} UL (dBm)	P _{out} (dBm)	Limits (normal conditions)				
1	-10	-50	+ 40		≤ 20					
2	-20	-60	+ 40	-98	≤ 10	+2.7 dB (f \leq 3 GHz) +3.0 dB (3 GHz \leq f \leq 4.2 GHz)				
3	-40	-70	+ 30	-30	≤ Pmax					
4	-90	-50	- 40	1	≤ 10					


Table 3-10: Requirements for home BS with co-channel LTE signal for an example using E-TM1.1

Measure the Pout of the home BS for all test cases (Table 3-10) and both offsets.

The test can be performed in one of two different ways:

- Demodulation -> Result Summary: This method uses a single data record from the same test to obtain different values, such as EVM, frequency error, etc. The procedure follows the basic instructions provided in Section 3.1.1. The calculated power is displayed under **Power** (see Fig. 3-63).
- Channel Power / ACLR: This method can be used to determine the output power and the adjacent channel power simultaneously. Use as channel filter 'Rect'.

2 Result Summary				
Frame Results 1/1	Mean	Мах	Limit	Min
EVM PDSCH QPSK (%)	0.86	0.86	18.50	0.86
EVM PDSCH 16QAM (%)			13.50	
EVM PDSCH 64QAM (%)			9.00	
EVM PDSCH 256QAM (%)				
Results for Selection Subframes All, Selec	ction Ant 1, Frame Results	1/1		
EVM All (%)	0.85	0.88		0.80
EVM Phys Channel (%)	0.85	0.88		0.80
EVM Phys Signal (%)	0.80	0.84		0.75
Frequency Error (Hz)	0.19	0.67		-0.38
Sampling Error (ppm)	0.00	0.33		-0.28
IQ Offset (dB)	-57.91	-56.56		-58.81
IQ Gain Imbalance (dB)	-0.00	-0.00		-0.01
IQ Quadrature Error (°)	0.00	0.01		-0.02
RSTP (dBm)	-58.50	-58.49		-58.50
OSTP (dBm)	-33.72	-33.72		-33.73
RSSI (dBm)	-33.91	-33.91		-33.96
Power (dBm)	-33.78	-33.78		-33.83
Crest Factor (dB)	10.80			

Demo program

For this test, additional the parameters must be defined. The test is carried out as a demodulation measurement. The output power and other measurements are reported.

Home BS Parameter		
interior mirror	DL Level (dBm)	AWGN (dBm)
6.2.6 adj W-CDMA	-80	-50
6.2.7 adj LTE	-65	-50
6.2.8 co LTE	-10	-50
✓ opt 2: UL:	-98	

Fig. 3-64: Special settings for output power with co-channel LTE.

The level for the co-channel LTE carrier and AWGN can be entered directly. The uplink level is needed only for option 2. Please note the settings from the specification listed in Table 3-9.

********** 6.2.8 Home BS Output Power with co	o-channel L	TE*******	***		
Duplex mode: FDD LTE carrier with E-TM1.1 at co-channel: LTE carrier Downlink level: -10 dBm AWGN level: -50 dBm LTE carrier option 2: Uplink level: -98 dBm					
Test Item	Carrier Frequency (MHz)	BW (MHz)	Test Model	Power (dBm)	Status
6.2.8 Home BS Output Power with co-chan	nel LTE				
Output Power	2110	10	E-TM1.1	-10.93	Ignored
Test Item	Carrier Frequency (MHz)	BW (MHz)	Test Model		Status
Additional Measurements					
Frequency Error Hz	2110	10	E-TM1.1	0.07	Ignored
EVM %	2110	10	E-TM1.1	1.04	Ignored
OSTP dBm	2110	10	E-TM1.1	-10.92	Ignored

FSx: 0, "No error"

Fig. 3-65: Example report for test case 6.2.8.

3.3 Output Power Dynamics (Clause 6.3)

3.3.1 Total Power Dynamic Range (Clause 6.3.2)

The total power dynamic range is the difference between the maximum and the minimum transmit power of an OFDM symbol for a specified reference condition [1].

The measured OFDM symbols shall not contain RS, PBCH or synchronization signals. The test software includes this automatically in the calculation and displays the result as OSTP (OFDM symbol transmit power) in the Result Summary. The test is performed only for SC.

Dynamic range requirements			
Channel bandwidth (MHz)	Power dynamic range		
1.4	7.3		
3	11.3		
5	13.5		
10	16.5		
15	18.3		
20	19.6		

Table 3-11: BS total power dynamic range, paired spectrum

Test setup

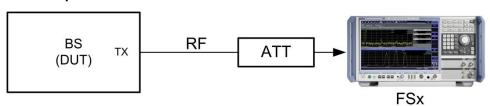


Fig. 3-66: Test setup for BS output power.

The DUT (base station) transmits at the declared maximum PRAT sequentially with two different configurations.

- ∎ E-TM3.1
- ∎ E-TM2

Procedure

The test can be performed in one of two different ways:

- Demodulation -> Result Summary: This method uses a single data record from the same test to obtain different values, such as EVM, frequency error, etc. The procedure follows the basic instructions provided in Section 3.1.1. The calculated power is displayed under **Power** (see Fig. 3-67).
- Channel Power / ACLR: This method can be used to determine the output power and the adjacent channel power simultaneously. Use as channel filter 'Rect'.

2 Result Summary				
Frame Results 1/1	Mean	Мах	Limit	Min
EVM PDSCH QPSK (%)	0.86	0.86	18.50	0.86
EVM PDSCH 16QAM (%)			13.50	
EVM PDSCH 64QAM (%)			9.00	
EVM PDSCH 256QAM (%)				
Results for Selection Subframes All, Selec	ction Ant 1, Frame Result	ts 1/1		
EVM All (%)	0.85	0.88		0.80
EVM Phys Channel (%)	0.85	0.88		0.80
EVM Phys Signal (%)	0.80	0.84		0.75
Frequency Error (Hz)	0.19	0.67		-0.38
Sampling Error (ppm)	0.00	0.33		-0.28
IQ Offset (dB)	-57.91	-56.56		-58.81
IQ Gain Imbalance (dB)	-0.00	-0.00		-0.01
IQ Quadrature Error (°)	0.00	0.01		-0.02
RSTP (dBm)	-58.50	-58.49		-58.50
OSTP (dBm)	-33.72	-33.72		-33.73
RSSI(dBm)	-33.91	-33.91		-33.96
Power (dBm)	-33.78	-33.78		-33,83
Crest Factor (dB)	10.80			

Fig. 3-67: Result summary: OSTP (OFDM symbol transmit power).

Two measurements are taken. The total power dynamic range is the difference between the two measurements $OSTP_{E-TM3.1} - OSTP_{E-TM2}$.

Demo program

No further special settings are needed for this test. The test is carried out as a demodulation measurement. Two measurements for the different TMs are performed one after the other. The difference is reported as Dynamic range. A dialog box tells the user when to change to the next TM. Simulation is not supported.

********* 6.3.2 Total Power Dynamic Ranger ***********					
Duplex mode: FDD					
Test Item	Carrier Frequency (MHz)	Carrier BW (MHz)	Test Model	Power	Status
6.3.2 Total power Dynamic Range					
OSTP dBm	2110	10	E-TM3.1	-10.73	Ignored
OSTP dBm	2110	10	E-TM2	-27.20	Ignored
Dymamic Range dB	2110	10	-	16.47	Ignored

********* 6.3.2 Total Power Dynamic Ranger ******	*****
---	-------

Fig. 3-68: Example report for test case 6.3.2.

3.3.2 NB-IoT RB power dynamic range for in-band or guard band operation (6.3.3)

The NB-IoT RB power dynamic range (or NB-IoT power boosting) for guard band operation is the difference between the power of NB-IoT RB (which occupies 180kHz in guard band of an E-UTRA carrier) and the average power over all RBs (from both NB-IoT and the E-UTRA carrier containing the NB-IoT RB). [1]

The NB-IoT RB power dynamic range (or NB-IoT power boosting) for in-band operation is the difference between the average power of NB-IoT REs (which occupy certain REs in a RB of an E-UTRA carrier) and the average power over all REs (from both NB-IoT and the E-UTRA carrier containing the NB-IoT REs). [1]

NB-IoT power dynamic range shall be larger than or equal to +5.6 dB, except for guard band operation with E-UTRA 5 MHz channel bandwidth signal where BS manufacturer shall declare the NB-IoT dynamic range power it could support (in this version of the specification).

Test setup

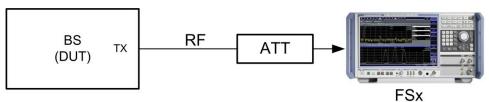


Fig. 3-69: Test setup for NB-IoT power dynamic range.

Procedure Inband

Measure with the FSx the NB-IoT part according to chapter 3.1.1. with the 1 Deployment to Inband and the right E-UTRA PRB Index. Read and save the value RB power excluding E-UTRA.

2 Result Summary				
Subframes All, Selection Ant 1	Mean	Мах	Limit	Min
EVM All (%)	0.32	0.48		0.17
EVM Phys Channel (%)	0.21	0.31		0.15
EVM Phys Signal (%)	0.44	0.48		0.23
Frequency Error (Hz)	3.76	4.67		2.43
Sampling Error (ppm)	-0.60	8.57		-12.75
RSTP (dBm)	-54.16	-54.15		-54.18
OSTP (dBm)	-37.70	-33.37		-92.79
RSSI (dBm)	-37.80	-34.08		-51.17
Power (dBm)	-38,89	-34,37		-50,08
RB power excluding E-UTRA (dBm)	-35.89	-33.63		-43.39
Crest Factor (dB)	13.66			

Fig. 3-70: NB-IoT dynamic range inband: RB power without E-UTRA

- Measure with the option LTE the power of the whole signal according to chapter 3.1.1.
- 3. Calculate the average in Watt of the whole signal by

Power Average whole signal = Power LTE (in Watt) / (number of RBs + 1)

4. Calculate the Dynamic Range in dB by:

Power NB-IoT dynamic range = RB power excluding E-UTRA (in dBm) – Power Average whole signal (in dBm)

Procedure Guard-band

- Measure with the FSx the NB-IoT part according to chapter 3.1.1.with the Deployment to *Guardband* and the right E-UTRA PRB Index. Read and save the value Power NB.
- Measure with the option LTE the power according to chapter 3.1.1. Read and save the value Power LTE.
- 3. Calculate the average in Watt of the whole signal by:

Power Average whole signal = (Power NB (in Watt) + Power LTE (in Watt)) / (number of RBs + 1)

4. Calculate the Dynamic Range in dB by:

Power NB-IoT dynamic range = Power NB (in dBm) – Power Average whole signal (in dBm)

Demo program

No further special settings are needed for this test. Just set the relevant NB-IoT parameter. The test is carried out as a demodulation measurement. Two measurements for the LTE and NB-IoT part are performed one after the other. The difference is reported as NB-IoT Dynamic range. Simulation is not supported.

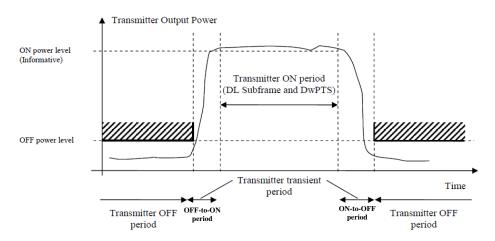
Duplex Mode: FDD

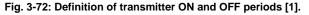
LTE Carrier + NB-IoT... NB-IoT Deployment: In-Band NB-IoT RB: 4

Test Item	Carrier Frequency (MHz)	Carrier BW (MHz)	Test Model	Power	Status
6.3.3 NB-IoT RB Power Dynamic Range					
NB-IoT Carrier excluding E-UTRA dBm	1000	10	E-TM1.1	-34.66	Ignored
Average Power over all Carriers dBm	1000	10	E-TM1.1	-30.38	Ignored
Power Dymamic Range dB				12.79	Ignored

FSx: 0,"No error"!

Fig. 3-71: Example report for test case 6.3.3.


3.4 Transmit ON/OFF Power (Clause 6.4)


Transmitter OFF power is defined as the mean power measured over 70 μ s filtered with a square filter of bandwidth that is equal to the transmission bandwidth configuration of the base station (BW_{Config}) centered on the assigned channel frequency during the transmitter OFF period. [1]

For BS supporting intra-band contiguous CA, the transmitter OFF power is defined as the mean power measured over 70 μ s filtered with a square filter of bandwidth equal to the aggregated channel bandwidth BW_{Channel_CA} centered on (F_{edge_high+Fedge_low})/2 during the transmitter OFF period. [1]

This test applies only for TDD and is defined for both SC and MC.

Fig. 3-72 shows the definition of the ranges and Table 3-12 lists the limits.

Transmitter OFF power limit			
Frequency range	Limit		
f ≤ 3 GHz	-83 dBm/MHz		
3 GHz < f ≤ 4.2 GHz	-82.5 dBm/MHz		

Table 3-12: Transmitter OFF limits

Multi-band test configuration for full carrier allocation

- 1. With separate antenna connector: The antenna connector not being under test shall be terminated.
- 2. Test requirement is only applicable during the transmitter OFF period in all supported operating bands. [1]

Test setup

Additional hardware is required for this test. An RF limiter is used to limit the power received at the analyzer during the transmitter ON periods. This enables the full dynamic range for the measurements in the OFF periods. In addition, an attenuator is used to absorb the reflected power for limiters without optimal VSWR.

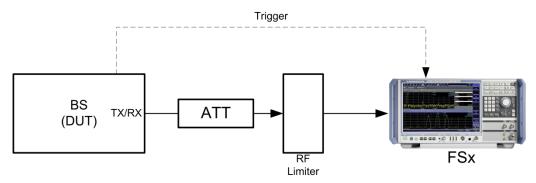


Fig. 3-73: Test setup: transmit ON/OFF.

The DUT (base station) generates the wanted signal at Fc with BWChannel and E-TM1.1.

The ON/OFF measurement for SC and MC is included in all options.

Single and Multi Carrier

The procedure for single carrier is shown with the FSW.

Procedure

- 1. Select in **Duplexing Mode** "TDD Downlink". After this, the measurement **Transmit ON/OFF Power** is available under Meas.
- 2. Set the **Number of Component Carriers**, the **center frequency** and the **bandwidth**.
- 3. Set the **UL/DL Configuration** and the **special subframe** (to measure in accordance with the specification UL/DL is 3 and Special subframe is 8)
- 4. Set the number of frames (specification: 50)

Ref L Att Mode	TDD Downlink +	Test M	odel: N
Number of Component Carriers	2		
ffPower Density Limit : -83.0 dBm/MUz	rier Configuration		
Center Frequency	Freq Offset to CC1	Bandwidth	
CC 1 2.11 GHz		5MHz(25 RB)	•
CC 2 2.13 GHz	20.0 MHz	5MHz(25 RB)	•
Low Edge Frequency High Edge Frequency	2.1075 GHz 2.1325 GHz	● 1 Avg 4 Falling Per -44 dBm	iod 2
Signal Description 🚔 📩 🔿		R? 8	• -
NultiView = Spectrum Reflore 25.00 dBm Freq 2.11 Att Mode odd	TDD Downlink +		
Number of Component Carriers	2		
Physical Settings Carri	er Configuration	n	
Channel Bandwidth	Carrier Configuration		
Cyclic Prefix	Auto ÷		
TDD UL/DL Allocations	Conf 3 ÷ Tr	DD Allocations DL,S	UL,UL,UL DL,DL,DL,DL,DL
Conf of Special Subframe	Conf 8		
Auto Detection	On Off Ce	ell ID	
Cell Identity Group	0 Ic	lentity	
Ref Level -25 00 dBm Fr Trigger/Signal Capture _{dB}	eq 2.11 GHz Mode DL MIMO	IDD, 5MHz Capt 1Tx/1Rx Aver	
Signal Capture Trig			
Common Settings		PASS	
Sample Rate	7.68 M	Hz <mark>rit : -69.02 dBm</mark>	
Capture Time	10.005	ms	
Noise Cancellation	On	Off	
- 1.0 ms	Falling Periou 1	RISING P	
Swap IQ	Avg 3 Rising On	Off	
Frame/Subframe Count			
Number of Frames to A	Analyze 50		

5. Press ADJ Timing.

Signal Description 🚢 🛛 🗢 🖉 🏲 🖉 🕿 🖉 🔤 🖾 🖓

Fig. 3-74: Configuring the Tx ON/OFF Power measurement in the FSW

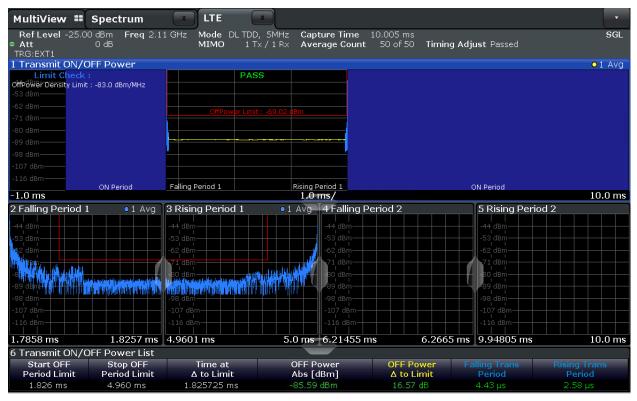


Fig. 3-75: The Tx ON/OFF measurement in the FSW

Demo program

This test is possible for TDD only. The measured OFF power is displayed. By default, the test uses **Noise Cancellation**. At present, the measurement with the PC SW uses one frame only, while the FSW option measurement uses 50 frames. The times for the **Rising and Falling Period** are also measured and reported.

Fig. 3-76: Noise cancellation at transmit On/Off.

********** 6.4 Transmit ON / OFF **********	*				
Duplex mode: TDD Number of frames: 1					
Test Item	Carrie Frequenc (MHz	y B	W Mo	est del dBm	Status
6.4 Transmit ON / OFF					
Period 1:	2110) ·	10 E-TM ⁺	1.1 -15.13	Ignored
Test Item	Carrier Frequency (MHz)	Carrier BW (MHz)	Test Model	I IIC	Status
Additional Measurements					
Period 1 Falling Period	2110	10	E-TM1.1	51.95313	Ignored
Period 1 Rising Period	2110	10	E-TM1.1	0.00000	Ignored

FSx: 0, "No error"

Fig. 3-77: Example report for test case 6.4.

3.5 Transmitted Signal Quality (Clause 6.5)

3.5.1 Frequency Error (Clause 6.5.1) and Error Vector Magnitude (Clause 6.5.2)

The two tests are defined only for SC.

Frequency error is the measure of the difference between the actual BS transmit frequency and the assigned frequency [1].

Table 3-13 shows the limits for the various base stations.

Frequency error requirements				
BS class	Accuracy			
Wide Area BS	± (0.05 ppm + 12 Hz)			
Medium Range BS	± (0.1 ppm + 12 Hz)			
Local Area BS	± (0.1 ppm + 12 Hz)			
Home BS	± (0.25 ppm + 12 Hz)			

Table 3-13: Frequency error requirements [1]

For this measurement the FSx must be synchronized via **External Reference** to the basestation under test.

The error vector magnitude is a measure of the difference between the ideal symbols and the measured symbols after the equalization. This difference is called the error vector. The EVM result is defined as the square root of the ratio of the mean error vector power to the mean reference power expressed in percent.

Table 3-14 shows the limits for the various modulation modes. The EVM requirement for 256QAM applies to Home BS, Local Area BS and Medium Range BS [1].

EVM requirements	
Modulation scheme PDSCH	EVM [%]
QPSK	18.5
16QAM	13.5
64QAM	9
256QAM	4.5

Table 3-14: EVM requirements [1]

Test setup

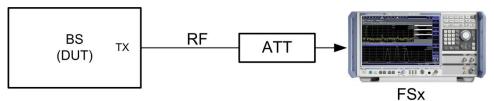


Fig. 3-78: Test setup for BS output powerThe DUT (base station) transmits with the declared maximum PRAT. The following configurations are specified:

- ∎ E-TM3.1
- E-TM3.2
- E-TM3.3
- ∎ E-TM2

Procedure

The signal is demodulated for the test. The test results are displayed in a scalar overview under RESULT SUMMARY. This method uses a single data record from the same test to obtain different values, such as power, crest factor, etc. The procedure follows the basic instructions provided in Section 3.1.1. The calculated power is displayed under **EVM PDSCH** and **Frequency Error** (see Fig. 3-79).

2 Result Summary				
Frame Results 1/1	Mean	Мах	Limit	Min
EVM PDSCH QPSK (%)	0.86	0.86	18.50	0.86
EVM PDSCH 16QAM (%)			13.50	
EVM PDSCH 64QAM (%)			9.00	
EVM PDSCH 256QAM (%)				
Results for Selection Subframes All, Selec	ction Ant 1, Frame Resul	ts 1/1		
EVM All (%)	0.85	0.88		0.80
EVM Phys Channel (%)	0.85	0.88		0.80
EV/M Phys Signal (%)	0.80	0.84		0.75
Frequency Error (Hz)	0.19	0.67		-0.38
Sampling Error (ppm)	0.00	0.33		-0.28
IQ Offset (dB)	-57.91	-56.56		-58.81
IQ Gain Imbalance (dB)	-0.00	-0.00		-0.01
IQ Quadrature Error (°)	0.00	0.01		-0.02
RSTP (dBm)	-58.50	-58.49		-58.50
OSTP (dBm)	-33.72	-33.72		-33.73
RSSI (dBm)	-33.91	-33.91		-33.96
Power (dBm)	-33.78	-33.78		-33.83
Crest Factor (dB)	10.80			

Fig. 3-79: Result summary: EVM and frequency error.

In addition to the required measured values for frequency errors and EVM, the summary also includes results such as sample error, I/Q imbalance, etc.

NB-IoT Procedure

The required EVM for QPSK modulation in NB-IoT is 18.5 %. The DUT (base station) transmits with the declared maximum PRAT with N-TM.

The signal is demodulated for the test. The test results are displayed in a scalar overview under RESULT SUMMARY. This method uses a single data record from the same test to obtain different values, such as power, crest factor, etc. The procedure follows the basic instructions provided in Section 3.1.1. The calculated power is displayed under **EVM PDSCH** and **Frequency Error** (see Fig. 3-80).

2 Result Summary								
SF All, Selection Ant 1	Mean	Мах	Limit	Min				
EVM All (%)	0.31	0.33		0.17				
EVM Phys Channel (%)	0.30	0.32		0.28				
EVM Phys Signal (%)	0.31	0.33		0.17				
Frequency Error (Hz)	-15.27	-14.25		-15.73				
Sampling Error (ppm)	4.85	12.91		-2.28				
RSTP(dBm)	-50.96	-50.94		-50.97				
OSTP(dBm)	-43.71	-40.16		-93.24				
RSSI (dBm)	-44.08	-40.16		-47.96				
Power (dBm)	-42.97	-40.21		-46.86				
Crest Factor (dB)	16.06							

Fig. 3-80: NB-IoT Result summary: EVM and frequency error.

In addition to the required measured values for frequency errors and EVM, the summary also includes results such as sample error, I/Q imbalance, etc.

Demo program

No further special settings are needed for this test. The test is carried out as a demodulation measurement. The frequency error and EVM are reported. In the case of MC tests, each individual carrier is measured in sequence.

********** 6.5.1 / 6.5.2 Frequency Error / EVM ************

Duplex mode: FDD Test Item	Carrier Frequency (MHz)	BW (MHz	r Tes) Mode		Status		
6.5.1 / 6.5.2 Frequency Error / EVM							
Frequency Error Hz	2110	10	E-TM1.1	0.06	Ignored		
EVM %	2110	10	E-TM1.1	0.18	Ignored		
Test Item	Carrier Frequency (MHz)	Carrier BW (MHz)	Test Model		Status		
Additional Measurements							
Output Power	2110	10	E-TM1.1	-10.51	Ignored		
OSTP dBm	2110	10	E-TM1.1	-10.51	Ignored		

FSx: 0, "No error"

Fig. 3-81: Example report for test case 6.5.1.

3.5.2 Time Alignment Error (Clause 6.5.3)

Frames of the LTE signals present at the BS transmitter antenna ports are not perfectly aligned in time. In relation to each other, the RF signals present at the BS transmitter antenna ports experience certain timing differences. [1]

Time alignment error (TAE) is defined as the largest timing difference between any two signals. This test is only applicable for base stations supporting TX diversity, MIMO transmission, carrier aggregation and their combinations.

The test is performed for SC as well as MC.

Table 3-15 lists the limits for various combinations.

	Time alignment error limits	
	Transmission combination	Limit
	MIMO/TX diversity single carrier	90 ns
	Intra-band CA with or without MIMO or TX diversity	155 ns
	Intra-band non-contiguous CA with or without MIMO or TX diversity	285 ns
	Inter-band CA with or without MIMO or TX diversity	285 ns
٦	Table 3-15: Time alignment error limits [1]	

The DUT (basestation) transmits typically with E-TM1.1.

NB-loT

NB-IoT support Tx Diversity, so the limit of 90 ns applies here, too. The procedures mentioned below are valid for NB-IoT as well (see section 3.5.2.1). The DUT (basestation) transmits with N-TM.

Demo program

No further special settings are needed for this test. Take note of the special test setup. The difference is output in ns. Please note that the simulation with the SMW allows two possibilities:

- NB-IoT: Tx Diversity signal
- LTE: Multicarrier with 2 CCs and 2 Tx Antennas each

********* 6.5.3 Time Alignment Error ***********

Duplex mode: FDD					
Test Item	Carrier Frequency (MHz)	Carrier BW (MHz)	Test Model	ns	Status
6.5.3 Time Alignment Error					
Time delay Tx2:	2110	10	E-TM1.1	1.24051	Ignored
Test Item	Carrier Frequency (MHz)	BV	V Mode	a diam	Status
Additional Measurements					
Output Power	2110	10	E-TM1.	1 -12.17	Ignored

FSx: 0, "No error"

Fig. 3-82: Example report for test case 6.5.3.

3.5.2.1 Single Carrier (MIMO, Tx Diversity)

Test setup

The following setup is used for this test. The antennas to be measured are connected via a hybrid coupler. The FSx is connected via an attenuator. To achieve precise measurements, the RF cables being used should be equal in electrical length.

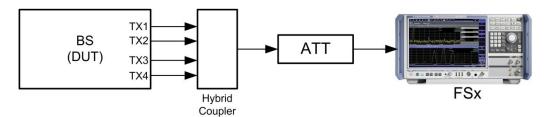


Fig. 3-83: Test setup: time alignment for SC.

Procedure

Up to 4 antennas can be measured in parallel. The measurement is taken on the reference signals (RS) of the individual antennas, and PDSCHs are ignored.

- 1. Start the test using MEAS and "Time Alignment"
- 2. The measurement is always relative to one reference antenna. The antenna can be changed under "Reference Antenna".

1 Capture Memory						⊙1 Clrw
Frame Start Offset : 3.896165 ms 18.001 dBm-						
6.001 dBm						
-5.999 dBm						
-17.999 dBm						
	t deut troch web, an bleide, fersteht troch hert beiten, aller			n de selected de la faction de la faction La faction de la faction de		ha ing phang ang talan shi bilan sa kata
la survey le contrator de de deserverte terre de la	and the contract of the later by the later	لا بيو بالاستان		n nako konta antra	and a tradition of the	المراجبالي مسا
				والأرباط الشابل والا		
	al « The Maches I - I he t		1 HIL	th, true	l li li luni	and a second second
-77.999 UBIN						
0.0 ms	2.01	-ms/				20.1 ms
2 Time Alignment between Transmitter Bran	iches	4 Power Spe	ectrum			●1 Clrw
Reference Antenna : Antenna 1 🗧 🗘	Limit : 90 ns	-58 dBm/Hz				
Time Alignment to Antenna	a 1	i î				
Antenna Min Mea		-66 dBm/Hz I				
Antenna 2 741.47	ps	-74 dBm/Hz				
	4	-82 dBm/Hz				
	1	-90 dBm/Hz				
		, -98 dBm/Hz				
		 -106 dBm/Hz	Parate and Sugar Dig to Date and an article of	1	*****	
		 -114 dBm/Hz				
		-122 dBm/Hz-				
		-122 UBIII/H2				
		-7.68 MHz		1.54 MHz/		7.68 MHz

Fig. 3-84: Time alignment: Up to 4 antennas can be measured. The measurement is displayed relative to one selectable reference antenna.

3.5.2.2 Multicarrier (CA)

The CA measurement (including intra-band) can be performed with one FSx : Simple, precise measurement, in parallel with MIMO. For configurations with very high bandwidth needed, two FSx may needed.

Test setup

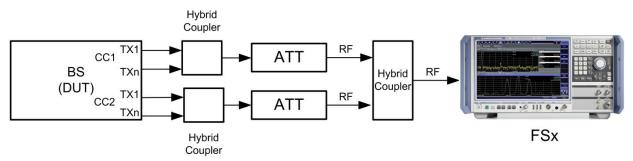


Fig. 3-85: Test setup for the time alignment error measurement for CA with FSx.

Procedure

- 1. Select the **Time Alignment** measurement
- 2. Set the relevant settings.

Signal Description	MIMO/CA Setup	Advanced	d Settings	Canture T	ime 20.1 ms Subfra	me Al
t 10 dB	CC1	1 Tx / 1 Rx	CC2 2 Tx / 1 F	Rx - Frame Co	unt iofi(i)	
Mode CC 2	FDD Downlin	< 🗧				
Number of Component Carriers	s 2		Number of Device to Me	asure	1	
Physical Settings -		ettings - C	C 2 Carrie	r Configura	tion	aste tielastic turba
Channel Bandwidth	5MHz(25 RB)) +	Sample Rate	7.68 MHz	Occupied BW 4.515	MHz
Cyclic Prefix	Auto	÷	FFT Size	512	Occ Carriers 301	
Auto Detection		Off	Cell ID AI			
Cell Identity Group	Error to at Error t		Identity		1	

Signal Desci	ription	мімо,	/CA Setup	Advance	d Setti	ngs	oture Time	20.1 ms Subframe All
t 10 c apture Buffer			CC1	1 Tx / 1 Rx	CC2 21			
Modo			FDD Downlin	k 🗘				
Number of Componen	t Carriers		2	÷	Numbe Device	r of to Measure	t : 9.03870-	1
Physical Se	ettings -	CC 1 (Physical S	ettings - C	C 2 C	arrier Conf	iguration	
Cente	er Frequei	ncy	Freq Offset	to CC1	Bandw	vidth		
CC 1 2.11	GHz				5MHz	(25 RB)	÷	
CC 2 2.12	GHz		10.0 MHz		5MHz	(25 RB)	÷	
Occ BW			1 1 1	5.0000 MHz				
Sample Ra	tequency		CC1 : -6.33 3 (0.7200 MHz				
Signal Desci	rintion	мтмо	/CA Setup	Advance	d Satti	pag		
10 d		111107			CC2 21	- Ca	pture Time ame Count	20.1 ms Subframe All 1 of 1 (1)
Number of Component	t Carriers	1	2	÷	Numbe Device	r of to Measure	1	
CC 1 CC	2 6 ms							
DUT MIMO	Configura	ation	1 Tx Antenna	a 🗘				
			a de ser de ser de ser des	ang				
Simultaneou	s signal ca	apture s	etup using 4	Rx Channe	ls			
Input Source	Sta	te	Analyz	er IP Addre	ss	Assign	ment	under the dealer of
1	Mast	ter	10	.85.0.183		Anten	na 1	2.01 ms/
im 🕒	On	Off				Anten	na 2	

Fig. 3-86: Configuring the time alignment measurement in the FSW

3. The timing of the start of the frame relative to the external trigger is displayed in the Capture Buffer (Fig. 3-87).

MultiView	# Spectru	m 🔍	LTE	X			
	00 dBm Freq		Mode DL FDD			Time 20.1 ms Subframe /	All SGL
Att 1 Capture Bu	10 dB		CC1 1⊤	x/1Rx CC2	2 Tx / 1 Rx Frame Co	ount 1 of 1 (1)	•1 Clrw
1.1 CC 1					1.2 CC 2		1
Frame Start Offse	et : 9.038706 ms				Frame Start Offset : 9.03	8704 ms	
18 dBm 6 dBm							
-6 dBm					-6 dBm		
	ومعاور وبالبالة ألبالانا ومعاديا	and all there are set of	اللا ومعاديا والمأط بالمعادي أو	in a state of the second state of the	18. (B.)	and minutes success products filestic a groups, and and proposity in the	a tadam dalkali dikata natara matali iladist
· · · ·							
				1		and the second sec	
	I . I I . I.				alle i cile i ci ciè		
in a second second	وارتاد البالية التلبية المالية	hite in the state of the state	الريبة المعملانا المرا	ووالا يورا الباران البليان والبقر	an a	tall had a to all and a later to be made a difficult on the models. I shok all not all	in the state of the second state of the second states of the second stat
0.0 ms		2.01 ms/		20.1 m	s 0.0 ms	2.01 ms/	20.1 ms
2 Time Alignr					3 Power Spectrum	1	20.1 ms • 1 Clrw
2 Time Alignr	tenna (CC1) :	Antenna 1		20.1 m it : 285 ns	3 Power Spectrum	1 C 2	
2 Time Alignr	tenna (CC1) : Frequency	Antenna 1 Error to CC1	: -6.33 Hz	iit : 285 ns	3 Power Spectrum	1	
2 Time Alignr Reference An	tenna (CC1) :	Antenna 1 Error to CC1	: -6.33 Hz	iit : 285 ns	3 Power Spectrum All CC 1 CC 3.1 CC 1	3.2 CC 2 3.2 CC 2	
2 Time Alignr	tenna (CC1) : Frequency	Antenna 1 Error to CC1	: -6.33 Hz	iit : 285 ns	3 Power Spectrum All CC 1 CC 3.1 CC 1 -58 dBm/Hz -66 dBm/Hz	3.2 CC 2 -58 dBm/Hz- -66 dBm/Hz-	
2 Time Alignr Reference An Component Carrier CC2	tenna (CC1) : Frequency Time Alignmer Antenna Antenna 1	Antenna 1 Frror to CC1 The Error to An	: : -6.33 Hz tenna 1 (CC1	iit : 285 ns .)	3 Power Spectrum All CC 1 CC 3.1 CC 1 -58 dBm/Hz -66 dBm/Hz 74 dBm/Hz	3.2 CC 2 	
2 Time Alignr Reference An Component Carrier	tenna (CC1) : Frequency Time Alignmer Antenna	Antenna 1 / Error to CC1 nt Error to An Min	tenna 1 (CC1 Mean	iit : 285 ns .) Max	3 Power Spectrum All CC 1 CC 3.1 CC 1 -58 dBm/Hz -66 dBm/Hz 74 dBm/Hz -92 dBm/Hz	3.2 CC 2 -58 dBm/Hz -66 dBm/Hz -74 dBm/Hz -82 dBm/Hz	
2 Time Alignr Reference An Component Carrier CC2	tenna (CC1) : Frequency Time Alignmer Antenna Antenna 1	Antenna 1 / Error to CC1 nt Error to An Min	tenna 1 (CC1 Mean	iit : 285 ns .) Max	3 Power Spectrum All CC 1 CC 3.1 CC 1 -58 dBm/Hz -66 dBm/Hz 74 dBm/Hz	3.2 CC 2 	
2 Time Alignr Reference An Component Carrier CC2	tenna (CC1) : Frequency Time Alignmer Antenna Antenna 1	Antenna 1 / Error to CC1 nt Error to An Min	tenna 1 (CC1 Mean	iit : 285 ns .) Max	3 Power Spectrum All CC 1 CC 3.1 CC 1 -58 dBm/Hz -66 dBm/Hz -74 dBm/Hz -90 dBm/Hz	3.2 CC 2 -58 dBm/Hz -66 dBm/Hz -74 dBm/Hz -82 dBm/Hz -90 dBm/Hz	
2 Time Alignr Reference An Component Carrier CC2	tenna (CC1) : Frequency Time Alignmer Antenna Antenna 1	Antenna 1 / Error to CC1 nt Error to An Min	tenna 1 (CC1 Mean	iit : 285 ns .) Max	3 Power Spectrum All CC 1 CC 3.1 CC 1 -56 dBm/H2 -66 dBm/H2 -74 dBm/H2 -90 dBm/H2 -99 dBm/H2	3.2 CC 2 3.2 CC 2 -58 dBm/Hz -66 dBm/Hz -74 dBm/Hz -90 dBm/Hz -98 dBm/Hz	
2 Time Alignr Reference An Component Carrier CC2	tenna (CC1) : Frequency Time Alignmer Antenna Antenna 1	Antenna 1 / Error to CC1 nt Error to An Min	tenna 1 (CC1 Mean	iit : 285 ns .) Max	3 Power Spectrum All CC 1 CC 3.1 CC 1 -66 dBm/H2 -74 dBm/H2 -90 dBm/H2 -98 dBm Al2 -106 dBm/H2	3.2 CC 2 -58 dBm/Hz -66 dBm/Hz -74 dBm/Hz -90 dBm/Hz -98 dBm/Hz -106 dBm/Hz	

Fig. 3-87: Time alignment error measurement.

3.5.3 DL RS Power (Clause 6.5.4)

DL RS power is the resource element power of downlink reference symbol. The absolute DL RS power is indicated on the downlink shared channel (DL-SCH) in Layer 2.

The test is defined only for SC.

Table 3-16 lists the tolerances dependent on the frequency range.

DL RS power	
Frequency range	Deviation to indicated power
≤ 3 GHz	± 2.9 dB
$3 \text{ GHz} \le f \le 4.2 \text{ GHz}$	± 3.2 dB

Table 3-16: DL RS power requirements

Test setup

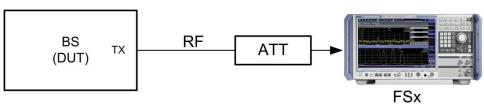


Fig. 3-88: Test setup for BS output power.

The DUT (base station) transmits with the declared maximum PRAT. E-TM1.1 is required.

Procedure

The signal is demodulated for the test. The test results are displayed in a scalar overview under RESULT SUMMARY. This method uses a single data record from the same test to obtain different values, such as power, crest factor, etc. The procedure follows the basic instructions provided in Section 3.1.1. The calculated power is displayed under **RSTP** (see Fig. 3-89).

2 Result Summary				
Frame Results 1/1	Mean	Мах	Limit	Min
EVM PDSCH QPSK (%)	0.86	0.86	18.50	0.86
EVM PDSCH 16QAM (%)			13.50	
EVM PDSCH 64QAM (%)			9.00	
EVM PDSCH 256QAM (%)				
Results for Selection Subframes All, Sele	ction Ant 1, Frame Resul	ts 1/1		
EVM All (%)	0.85	0.88		0.80
EVM Phys Channel (%)	0.85	0.88		0.80
EVM Phys Signal (%)	0.80	0.84		0.75
Frequency Error (Hz)	0.19	0.67		-0,38
Sampling Error (ppm)	0.00	0.33		-0.28
IQ Offset (dB)	-57.91	-56.56		-58.81
IQ Gain Imbalance (dB)	-0.00	-0.00		-0.01
IO Ouadrature Error (°)	0.00	0.01		-0.02
RSTP (dBm)	-58.50	-58.49		-58.50
OSTP(dBm)	-33.72	-33.72		-33.73
RSSI (dBm)	-33.91	-33.91		-33.96
Power (dBm)	-33.78	-33.78		-33.83
Crest Factor (dB)	10.80			

Fig. 3-89: Result summary: display of the DL RS power (RSTP).

NB-loT

DL NRS power is the resource element power of downlink reference symbol. The absolute DL RS power is indicated on the downlink shared channel (DL-SCH) in Layer 2.

The DUT (base station) transmits with the declared maximum PRAT. N-TM is required.

The limit is ± 2.9 dB of the indicated power.

The signal is demodulated for the test. The test results are displayed in a scalar overview under RESULT SUMMARY. This method uses a single data record from the same test to obtain different values, such as power, crest factor, etc. The procedure follows the basic instructions provided in Section 3.1.1. The calculated power is displayed under **RSTP** (see Fig. 3-89).

2 Result Summary					
SF All, Selection Ant 1	Mean	Мах	Limit	Min	
EVM All (%)	0.31	0.33		0.17	
EVM Phys Channel (%)	0.30	0.32		0.28	
EVM Phys Signal (%)	0.31	0.33		0.17	
Frequency Error (Hz)	-15.27	-14.25		-15.73	
Sampling Error (ppm)	4.85	12.91		-2.28	
RSTP (dBm)	-50.96	-50.94		-50.97	
OSTP (dBm)	-43.71	-40.16		-93.24	
_RSSI (dBm)	-44.08	-40.16		-47.96	
Power (dBm)	-42.97	-40.21		-46.86	
Crest Factor (dB)	16.06				

Fig. 3-90: NB-IoT Result summary: display of the DL RS power (RSTP).

Demo program

No further special settings are needed for this test. The test is carried out as a demodulation measurement. The reference symbol power is reported.

********* 6.5.4 Reference Symbol Power ***********

Duplex mode: FDD Test Item	Carrier Frequency (MHz)	Carrier BW (MHz)	Test Model		Status
6.5.4 Reference Symbol Power					
RS Power dBm	2110	10	E-TM1.1	-38.28	Ignored
Test Item	Carrier Frequency (MHz)	Carrier BW (MHz)	Test Model		Status
Additional Measurements					
Output Power	2110	10	E-TM1.1	-10.51	Ignored
OSTP dBm	2110	10	E-TM1.1	-10.50	Ignored
Frequency Error Hz	2110	10	E-TM1.1	0.11	Ignored
EVM %	2110	10	E-TM1.1	0.20	Ignored

FSx: 0,"No error"

Fig. 3-91: Example report for test case 6.5.4.

3.6 Unwanted Emissions (Clause 6.6)

Unwanted emissions consist of out-of-band emissions and spurious emissions. Out-ofband emissions are unwanted emissions immediately outside the channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. Spurious emissions are emissions, which are caused by unwanted transmitter effects such as harmonics emission, parasitic emission, intermodulation products and frequency conversion products, but exclude out-of-band emissions [1].

3.6.1 Occupied Bandwidth (Clause 6.6.1)

Occupied Bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage $\beta/2$ of the total mean transmitted power. It defines the spectral properties of emission in a simple manner.

The value of $\beta/2$ shall be taken as 0.5%. This results in a power bandwidth of 99%.

The measurement of the spectrum is carried out with resolution bandwidth (RBW) of 30 kHz or less and the measurement points mentioned in Table 3-17.

Span and measurement points for OBW measurement								
Channel bandwidth [MHz]	0.2	1.4	3	5	10	15	20	>20
Span [MHz]	0.4	10	10	10	20	30	40	$2*BW_{Channel_CA}$
Minimum number of measurement points	400	1429	667	400	400	400	400	$\left\lceil \frac{2*BW_{Channel_CA}}{100kHz} \right\rceil$

Table 3-17: OBW: span and measurement points

The measured bandwidth (OBW) shall be smaller than the nominal bandwidth (see Table 3-17, top row). For multicarrier scenarios, the OBW should be smaller than the aggregated bandwidth. Multiple combinations shall be tested as described in Section 4.10.2 [1].

Test setup

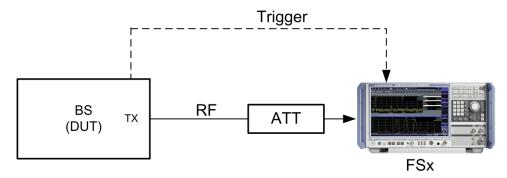


Fig. 3-92: Test setup for BS output power.

The DUT (base station) transmits with the declared maximum PRAT. E-TM1.1 is required.

The general base unit function "OBW" is used for the test. For TDD signals, the trigger must be set to external.

Procedure (example: 10 MHz bandwidth)

- 1. Press MODE and then select Spectrum
- 2. Press MEAS and select OBW
- 3. Verify the %Power Bandwidth default setting of 99%
- 4. Set the Channel Bandwidth (example: 10 MHz)
- 5. Press Overview and select "Bandwidth"

Bandwidth	•	
Bandwidth Sweep		
RBW	VBW	
Auto Manual	Auto Manual	Auto Manual
30.0 kHz	100.0 kHz	69.72 μs
Span/RBW	RBW/VBW	Filter Type
Auto[100] ÷	Sine[1.0] +	Normal(3dB) ÷
100	1.0	
	Coupling Default	

Fig. 3-93: OBW: set the bandwidth and sweep.

- 6. On the SWEEP tab, set the sweep points and Optimization to "speed"
- 7. Set the **Span** per Table 3-17 (example: 20 MHz)
- 8. The spectrum and the calculated OBW are displayed.

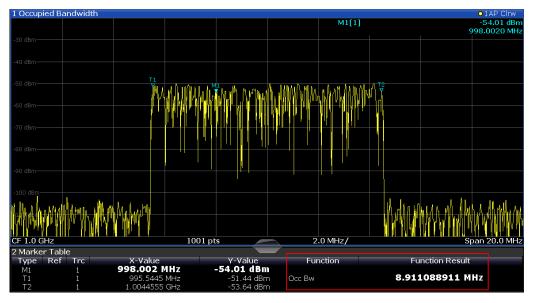


Fig. 3-94: OBW measurements (in the example, an OBW of 8.91 MHz is calculated for a 10 MHz channel).

The measurement is performed in the same way for multicarrier scenarios. In this case, the aggregated bandwidth is entered manually as the bandwidth (see step 4).

NB-IoT stand-alone Procedure

The DUT (base station) transmits at the declared maximum PRAT. N-TM is required.

- 1. Press MODE and then select Spectrum
- 2. Press MEAS and select OBW
- 3. Verify the %Power Bandwidth default setting of 99%

- 4. Set the Channel Bandwidth to 200 kHz
- 5. Press Overview and select "Bandwidth"

Bandwidth		
Bandwidth Sweep		
RBW	VBW	Sweep Time
Auto Manual	Auto Manual	Auto Manual
1.0 kHz	1.0 MHz	10.0 ms
Span/RBW	RBW/VBW	Filter Type
Auto[100] •	Pulse[0.1]	Normal(3dB)
100	0.1	

Fig. 3-95: OBW: set the bandwidth and sweep.

- 6. On the SWEEP tab, set the sweep points and Optimization to "speed"
- 7. Set the Span to 400 kHz
- 8. The spectrum and the calculated OBW are displayed.

Fig. 3-96: NB-IoT OBW measurements.

The limit is the NB-IoT channel bandwidth of 200 kHz.

NB-IoT inband and guard band Procedure

For NB-IoT inband and guard band, the signal shall be seen as a combination between LTE carriers and NB-IoT carriers. The DUT (base station) transmits at the declared maximum PRAT. E-TM1.1 for the LTE part and N-TM for NB-IoT part are required.

The limits are the same as in Table 3-5.

Demo program

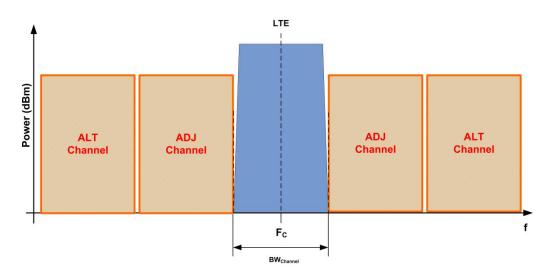
No further special settings are needed for this test. It is performed in the base unit as a general spectrum measurement, which means that it cannot be performed directly using the PC SW. The measured bandwidth OBW is reported.

********** 6.6.1 Occupied Bandwidth ***	********				
Duplex mode: FDD					
Test Item	Carrier Frequency (MHz)	Carner	Test Model	MHz	Status
6.6.1 Occupied Bandwidth					
OBW	2110	10	E-TM1.1	8.93	Ignored

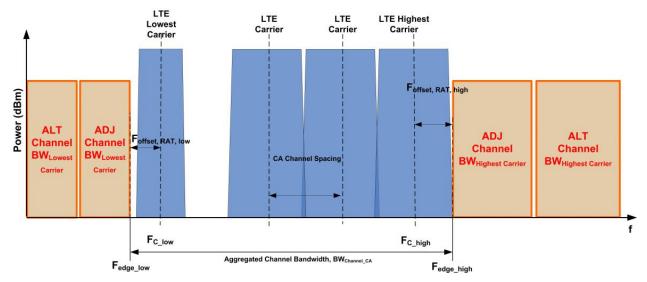
FSx: 0, "No error"

Fig. 3-97: Example report for test case 6.6.1.

3.6.2 Adjacent Channel Leakage Power (ACLR) (Clause 6.6.2)


The requirements for Adjacent channel leakage power ratio (ACLR) applies outside the used RF bandwidth for single or multi-carrier configurations. In multi-carrier scenarios with certain gap sizes (spectrum between two wanted channels) the requirements also apply inside the unused gap. In addition, for multi-carrier special gap sizes the Cumulative Adjacent channel Leakage power ratio (CACLR) applies.

ACLR				
5	Scenario	A	CLR	CACLR
Carrier	Gap	Inside gap	Outside RF bandwidth	
Single Carrier	-	-		×
	5 MHz ≤ Gap ≤ 15 MHz	×		\checkmark
Multi-Carrier / CA	15 MHz ≤ Gap < 20 MHz			\checkmark
	Gap ≥ 20 MHz			×


Table 3-18: Overview ACLR measurements

Adjacent Channel Leakage Power (ACLR)

Adjacent channel leakage power ratio (ACLR) is the ratio of the filtered mean power centered on the assigned channel frequency to the filtered mean power centered on an adjacent channel frequency. The requirements shall apply outside the base station RF bandwidth or maximum radio bandwidth edges regardless of the type of transmitter (single carrier, multicarrier and/or CA). [1]

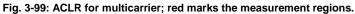


Table 3-20 through Table 3-19 list the relative and absolute limits.

Test requirements for A	CLR	
	BS Type	Minimum Absolute Value
	Wide Area	-13 dBm/MHz
Category A	Medium Range BS	-25 dBm/MHz
	Local Area	-32 dBm/MHz
	Home BS	-50 dBm/MHz
Category B	Wide Area	-15 dBm/MHz

Table 3-19: ACLR: absolute minimum requirements

Base station ACLR in paired spectrum						
Channel bandwidth of LTE lowest (highest) carrier transmitted BWChannel [MHz]	BS adjacent channel center frequency offset below the lowest or the above the highest carrier center frequency transmitted	Assumed adjacent channel carrier	Filter on the adjacent channel frequency and corresponding filter bandwidth	ACLR limit [dB]		
1.4, 3.0, 5, 10, 15,	BWChannel	LTE of same BW	Square (BWConfig)	44.2		
20	2 x BWChannel	LTE of same BW	Square (BWConfig)	44.2		
	BWChannel/2 + 2.5 MHz	3.84 Mcps WCDMA	RRC (3.84 Mcps)	44.2		
	BWChannel/2 + 7.5 MHz	3.84 Mcps WCDMA	RRC (3.84 Mcps)	44.2		

Table 3-20: ACLR paired spectrum (FDD)

Base station ACLR i	n unpaired spectrum			
Channel bandwidth of LTE lowest (highest) carrier transmitted BWChannel [MHz]	BS adjacent channel center frequency offset below the lowest or the above the highest carrier center frequency transmitted	Assumed adjacent channel carrier	Filter on the adjacent channel frequency and corresponding filter bandwidth	ACLR limit [dB]
1.4, 3.0	BWChannel	LTE of same BW	Square (BWConfig)	44.2
	2 x BWChannel	LTE of same BW	Square (BWConfig)	44.2
	BWChannel/2 + 0.8 MHz	1.28 Mcps WCDMA	RRC (1.28 Mcps)	44.2
	BWChannel/2 + 2.4 MHz	1.28 Mcps WCDMA	RRC (1.28 Mcps)	44.2
5, 10, 15, 20	BWChannel	LTE of same BW	Square (BWConfig)	44.2
	2 x BWChannel	LTE of same BW	Square (BWConfig)	44.2
	BWChannel/2 + 0.8 MHz	1.28 Mcps WCDMA	RRC (1.28 Mcps)	44.2
	BWChannel/2 + 2.4 MHz	1.28 Mcps WCDMA	RRC (1.28Mcps)	44.2
	BWChannel/2 + 2.5 MHz	3.84 Mcps WCDMA	RRC (3.84 Mcps)	44.2
	BWChannel/2 + 7.5 MHz	3.84 Mcps WCDMA	RRC (3.84 Mcps)	44.2

Table 3-21: ACLR unpaired spectrum (TDD)

Non-contiguous Spectrum

For a base station in non-contiguous spectrum, the ACLR applies additionally for the first adjacent channel inside any sub-block gap with a gap size $W_{gab} \ge 15$ MHz. The ACLR requirement for the second adjacent channel applies inside any sub-block gap with a gap size $W_{gap} \ge 20$ MHz (see Table 3-22). [1]

ACLR measurement channels inside gap				
Gap	Channel Offset 2.5 MHz	Channel Offset 7.5 MHz		
15 MHz ≤ Gap < 20 MHz	\checkmark	×		
Gap ≥ 20 MHz	\checkmark	\checkmark		

Table 3-22: Measurements channels inside the gap

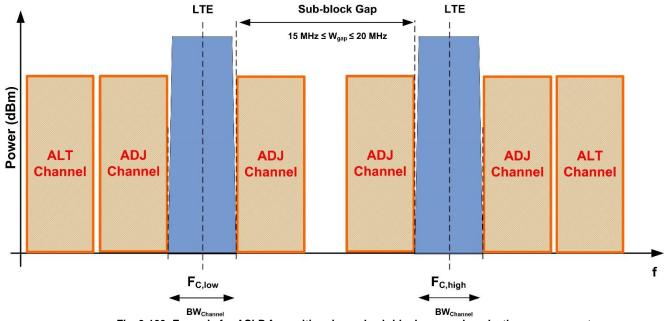


Fig. 3-100: Example for ACLR for multicarrier and sub-block gap; red marks the measurement regions. As $W_{gap} \le 20$ MHz, only the adjacent channels are measured in the gap.

Base station ACLR in non-contiguous paired spectrum or multiple bands					
Sub-block or inter RF bandwidth gap size (W _{gap}) where the limit applies	BS adjacent channel center frequency offset below or above the sub- block edge or the RF bandwidth edge (inside the gap)	Assumed adjacent channel carrier	Filter on the adjacent channel frequency and corresponding filter bandwidth	ACLR limit [dB]	
W _{gap} ≥ 15 MHz	2.5 MHz	3.84 Mcps WCDMA	RRC (3.84 Mcps)	44.2	
W _{gap} ≥ 20 MHz	7.5 MHz	3.84 Mcps WCDMA	RRC (3.84 Mcps)	44.2	

Table 3-23: ACLR in non-contiguous paired spectrum (FDD) or multiple bands

Base station ACLR in	n non-contiguous unpaired s	spectrum or multiple bar	nds	
Sub-block or inter RF bandwidth gap size (W _{gap}) where the limit applies	BS adjacent channel center frequency offset below or above the sub- block edge or the RF bandwidth edge (inside the gap)	Assumed adjacent channel carrier	Filter on the adjacent channel frequency and corresponding filter bandwidth	ACLR limit [dB]
W _{gap} ≥ 15 MHz	2.5 MHz	5 MHz LTE	Square (BWConfig)	44.2
W _{gap} ≥ 20 MHz	7.5 MHz	5 MHz LTE	Square (BWConfig)	44.2

Table 3-24: ACLR in non-contiguous unpaired spectrum (TDD) or multiple bands

Multi-band Operations

For a base station operating in multiple bands, where multiple bands are mapped onto the same antenna connector, the ACLR applies additionally for the first adjacent channel inside any inter RF bandwidth gap with a gap size $W_{gab} \ge 15$ MHz. The ACLR

requirement for the second adjacent channel applies inside any inter RF bandwidth gap with a gap size $W_{gap} \ge 20$ MHz. [1]

For multi-bands, measure ACLR independently for every available band.

The setting is similar to Fig. 3-100, except the gap between the operating bands is regarded instead of the sub-block gap.

Test setup

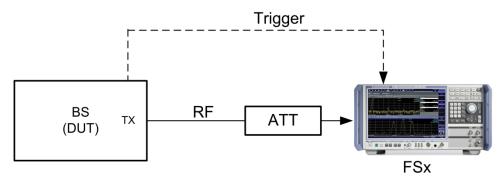


Fig. 3-101: Test setup for BS output power.

The DUT (base station) transmits with the declared maximum PRAT. E-TM1.1 and E-TM1.2 are required.

For TDD signals, the trigger must be set to external.

Both cases -- LTE and WCDMA as adjacent channels-- are handled (see tables). Both relative and absolute limits apply, although the easier to fulfill have to be met (see Table 3-19 for absolute values). "Paired spectrum" applies to FDD and "unpaired spectrum" to TDD configurations.

Single carrier

- 1. In the LTE option, start the measurement using MEAS and "Channel Power ACLR"
- Under CP/ACLR CONFIG, set the corresponding parameters. The measurement for single carrier scenarios automatically takes data such as the bandwidth and spacing from the signal description. Set the base station to transmit according to E-TM 1.1. Use the applicable test configuration and corresponding power setting.

ACLR Setup	RBW 100 kHz			×
General Settings	Channel Settings			
Standard		Channel C	ount	
1 Signal	Description	Тх 1		
Manage	User Standards	ADJ 2		
Reference Channel	Max Power Tx Channel	÷	ACLR Mode	Abs
Noise Cancellation	On Of	f	Power Unit	Abs /Hz
Fast ACLR	On Of		Power Mode	CLRW Max Hold
Selected Trace Bandwidth 9.015 MHz	1001 pts 1 Offset	Ire		
Set Cl			Adjust Set	tings

Fig. 3-102: ACLR: general settings.

ACLR Setup = RBW 100 kHz	
General Settings Channel Settings	
Standard	Channel Count
Signal Description	Тх 1
Manage User Standards	ADJ 2
Bandwidths Spacing Limits Weight	ing Filters Names
Tx Channels	Adjacent Channels
▲ Tx 1 9.015 MHz	Adj 9.015 MHz
Tx 2 9.015 MHz =	Alt 1 9.015 MHz
Tx 3 9.015 MHz	Alt 2 9.015 MHz
Tx 4 9.015 MHz	Alt 3 9.015 MHz
Tx 5 9.015 MHz	Alt 4 9.015 MHz
Tx 6 9.015 MHz	Alt 5 9.015 MHz
Tx 7 9.015 MHz 20 000 MHz	Alt 6 9.015 MHz

Fig. 3-103: ACLR: channel settings: bandwidth for Tx and adjacent channels.

Bandwidths Spacing Limit	ts Weighting Filters Names
Limit Checking	On Off
Relative Limit	Absolute Limit
Adj -44.2 dBc	▲ Adj -13.0 dBm
Alt 1 -44.2 dBc	Alt 1 -13.0 dBm
Alt 2 -44.2 dBc	Alt 2 0.0 dBm
Alt 3 -44.2 dBc	Alt 3 0.0 dBm
Alt 4 -44.2 dBc	Alt 4 0.0 dBm
9.015 MHz	10.00074112 J - 5 1.10 dB 5 4 20.000 MHz - 51.50 dB - 50

Fig. 3-104: ACLR relative and absolute limits are based on the BS category (see also Table 3-19).

FDD Downlink	÷	Test Model:	Not selected yet
10MHz(50 RB)	Sample Rate	15.36 MHz	Occupied BW 9.015 MHz
	FFT Size	1024	Occ. Carriers 601
E-UTRA of same BW	•		
	FDD Downlink 10MHz(50 RB)	FDD Downlink 10MHz(50 RB) FFT Size	FDD Downlink Test Model: 10MHz(50 RB) Sample Rate 15.36 MHz FFT Size 1024

Fig. 3-105: ACLR: signal description with switch for adjacent channels (LTE or WCDMA).



Fig. 3-106: ACLR for single carrier.

Multicarrier

For multicarrier and/or CA operation, set the base station to transmit according to E-TM 1.1 on all carriers.

The procedure is illustrated here using the multicarriers example from chapter 2.3 (see Fig. 2-5):

1. In the LTE option, start the measurement using MEAS and "Multi Carrier ACLR"

surement	
9 Signal Quality/Power	
EVM/Frequency Err/Power	514
Time Alignment Error	
9 Unwanted Emissions	
Channel Power ACLR	
Multi Carrier ACLR	
Cumulative ACLR	MI
Spectrum Emission Mask	Pov 02 57
Multi Carrier SEM	56 47 R
	EVM/Frequency Err/Power Time Alignment Error Unwanted Emissions Channel Power ACLR Multi Carrier ACLR Cumulative ACLR Spectrum Emission Mask

2. Under SIGNAL DESCRIPTION, set the corresponding parameters. Set the Number of Component Carriers (example: 4) and the frequencies and bandwidths.

Signal Description	RBW 30 kHz		
Mode Number of Component Carriers Physical Settings Carr	FDD Downlink +	E Auto FFT Test Mod	el: Not selected yet Adj Upper Adj Upper
Center Frequency CC 1 2.3928 GHz CC 2 2.4 GHz CC 3 2.4048 GHz CC 4 2.4096 GHz	Freq Offset to CC1 7.2 MHz 12.0 MHz 16.8 MHz	Bandwidth 1.4MHz(6 RB) ÷ 5MHz(25 RB) ÷ 5MHz(25 RB) ÷ 5MHz(25 RB) ÷	Lower E-UTRA of same BW ÷ Upper E-UTRA of same BW ÷
	1.4 MHz 5	CC 2 CC 3 CC 4	Frequency

Fig. 3-107: Setting the 4 carriers and bandwidths. You can enter the center frequencies or the offsets.

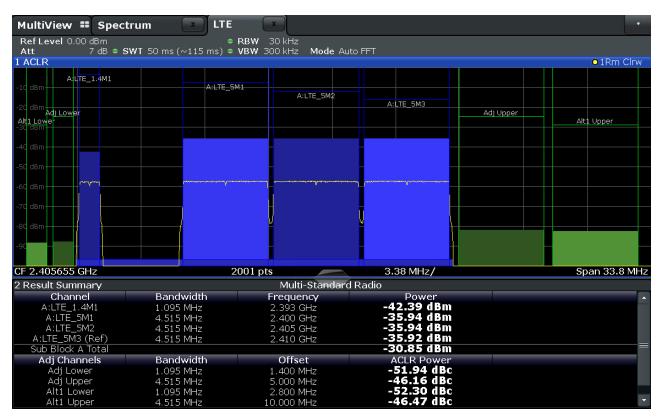


Fig. 3-108: ACLR with multicarriers.

The LTE option automatically sets the right measurement channels and bandwidths, even for the measurements in the gap.

Measurements inside the gap and Cumulative ALCR (CALCR)

In non-contiguous spectrum for certain gap sizes the ACLR applies also inside the gap. In addition also the CALCR applies.

CACLR in a sub-block gap or inter RF bandwidth gap is the ratio of:

- a) the sum of the filtered mean power centered on the assigned channel frequencies for the two carriers adjacent to each side of the sub-block gap or inter RF bandwidth gap, and
- b) the filtered mean power centered on a frequency channel adjacent to one of the respective sub-block edges or RF bandwidth edges.

Test requirements for CACLR		
	BS Type	Minimum Absolute Value
Category A	Wide Area	-13 dBm/MHz
	Medium Range BS	-25 dBm/MHz
	Local Area	-32 dBm/MHz
Category B	Wide Area	-15 dBm/MHz

Table 3-25: CACLR: absolute minimum requirements

Base station CACLR in non-contiguous paired spectrum or multiple bands					
Sub-block or inter RF bandwidth gap size (W_{gap}) where the limit applies	BS adjacent channel center frequency offset below or above the sub-block edge or the RF bandwidth edge (inside the gap)	Assumed adjacent channel carrier	Filter on the adjacent channel frequency and corresponding filter bandwidth	CACLR limit [dB]	
5 MHz \leq W _{gap} $<$ 15 MHz	2.5 MHz	3.84 Mcps WCDMA	RRC (3.84 Mcps)	44.2	
10 MHz < W_{gap} < 20 MHz	7.5 MHz	3.84 Mcps WCDMA	RRC (3.84 Mcps)	44.2	

Table 3-26: CACLR in non-contiguous paired spectrum (FDD) or multiple bands

Base station CACLR in non-contiguous unpaired spectrum or multiple bands					
Sub-block or inter RF bandwidth gap size (W_{gap}) where the limit applies	BS adjacent channel center frequency offset below or above the sub-block edge or the RF bandwidth edge (inside the gap)	Assumed adjacent channel carrier	Filter on the adjacent channel frequency and corresponding filter bandwidth	CACLR limit [dB]	
5 MHz \leq W _{gap} $<$ 15 MHz	2.5 MHz	5 MHz LTE	Square (BWConfig)	44.2	
$10 \text{ MHz} < W_{gap} < 20 \text{ MHz}$	7.5 MHz	5 MHz LTE	Square (BWConfig)	44.2	

Table 3-27: CACLR in non-contiguous unpaired spectrum (TDD) or multiple bands

Filter parameters for the assigned channe	
RAT of the carrier adjacent to the sub- block or inter RF bandwidth gap	Filter on the assigned channel frequency and corresponding filter bandwidth
LTE	LTE of same bandwidth

Table 3-28: CACLR: Filter parameters for the assigned channel

The CALCR is automatically measured in the multi-carrier ACLR, if applicable. In addition it can be measured separately with the function **Cumulative ACLR** under **MEAS**.

The following screenshots show an example with a measurement inside the gap. As the gap is 17.5 MHz, only the cannels with 2.5 MHz offsets are measured (see Table 3-22).

Signal Description	RBW 30 kHz	e Auto EFT	
Mode	FDD Downlink 🗧		el: Not selected yet
Number of Component Carriers	2		
Physical Settings Carr	ier Configuration	AU.Gapio	Alti Upger
Center Frequency CC 1 2.4 GHz	Freq Offset to CC1	Bandwidth 5MHz(25 RB)	Lower E-UTRA of same BW 🗢
CC 2 2.4225 GHz	22.5 MHz	5MHz(25 RB) +	Upper E-UTRA of same BW +
25 G Sum 5M 55 Nanc	CC 1	Gap: 17.5 MHz	CC 2 Frequency
ock B Total	and the second s	-34.07 dBm	

Fig. 3-109: Signal description for an example with measurements inside the gap



Fig. 3-110: ACLR with a measurement inside the gap. The FSW automatically measure the in-gap channels if necessary.

LTE-Band 46

LTE band 46 is the unlicensed band for Licensed Assisted Access (LAA).

Please note that for band 46 different gap settings and different limits apply:

Base station ACLR band 46					
Channel bandwidth of LTE lowest (highest) carrier transmitted BWChannel [MHz]	BS adjacent channel center frequency offset below the lowest or the above the highest carrier center frequency transmitted	Assumed adjacent channel carrier	Filter on the adjacent channel frequency and corresponding filter bandwidth	ACLR limit [dB]	
10	BWChannel	LTE of same BW	Square (BWConfig)	34.2	
	2 x BWChannel	LTE of same BW	Square (BWConfig)	39.2	
20	BWChannel	LTE of same BW	Square (BWConfig)	35	
	2 x BWChannel	LTE of same BW	Square (BWConfig)	40	

Table 3-29: ACLR band 46

Base station ACLR in non-contiguous spectrum band 46				
Sub-block or inter RF bandwidth gap size (W _{gap}) where the limit applies	BS adjacent channel center frequency offset below or above the sub- block edge or the RF bandwidth edge (inside the gap)	Assumed adjacent channel carrier	Filter on the adjacent channel frequency and corresponding filter bandwidth	ACLR limit [dB]
W _{gap} ≥ 60 MHz	10 MHz	20 MHz LTE	Square (BWConfig)	35
W _{gap} ≥ 80 MHz	30 MHz	20 MHz LTE	Square (BWConfig)	40

Table 3-30: ACLR in non-contiguous spectrum band 46

Base station CACLR in non-contiguous band 46				
Sub-block or inter RF bandwidth gap size (W _{gap}) where the limit applies	BS adjacent channel center frequency offset below or above the sub-block edge or the RF bandwidth edge (inside the gap)	Assumed adjacent channel carrier	Filter on the adjacent channel frequency and corresponding filter bandwidth	CACLR limit [dB]
20 MHz \leq W _{gap} $<$ 60 MHz	10 MHz	20 MHz LTE	Square (BWConfig)	34.2
$40 \text{ MHz} < W_{gap} < 80 \text{ MHz}$	30 MHz	20 MHz LTE	Square (BWConfig)	34.2

Table 3-31: CACLR in non-contiguous paired spectrum (FDD) or multiple bands

NB-IoT stand-alone Procedure

Base station ACLR	NB-IoT stand alone			
Channel bandwidth of LTE lowest (highest) carrier transmitted BWChannel [MHz]	BS adjacent channel center frequency offset below the lowest or the above the highest carrier center frequency transmitted	Assumed adjacent channel carrier	Filter on the adjacent channel frequency and corresponding filter bandwidth	ACLR limit [dB]
0.2	300 kHz	Stand alone NB-IoT	Square (180 kHz)	39.2
	500 kHz	Stand alone NB-IoT	Square (180 kHz)	49.2

Table 3-32: NB-IoT ACLR

The DUT (base station) transmits at the declared maximum PRAT. N-TM is required.

- 1. In the NB-IoT option, start the measurement using MEAS and "Channel Power ACLR"
- 2. Under CP/ACLR CONFIG, set the corresponding parameters. The measurement for single carrier scenarios automatically takes data such as the bandwidth and spacing from the signal description.

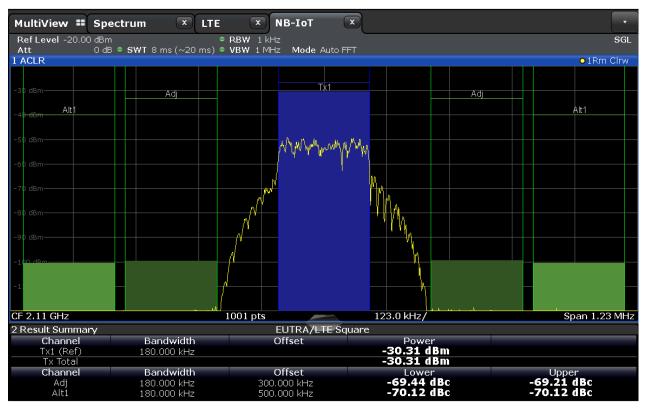


Fig. 3-111: Nb-IoT ACLR for single carrier.

NB-IoT inband and guard band Procedure

For NB-IoT inband and guard band, the signal shall be seen as combination between LTE carriers and NB-IoT carriers. The DUT (base station) transmits at the declared maximum PRAT. E-TM1.1 for the LTE part and N-TM for NB-IoT part are required.

The procedure is the same as for LTE.

Demo program

This test requires additional settings. The BS category affects the limit settings. The adjacent channel to be measured must also be specified. **Noise Cancellation** is enabled by default.

Category Category	Home
Home BS Aggr. Pow	0 dBm
ACLR Neighbour channel	E-UTRA •
ACLR + Tx On/Off Noise Cancellation	

Fig. 3-112: Special settings for ACLR.

The measured power values for the individual channels are output together with a global limit check. MC tests are not supported by the PC SW.

Duplex mode: FDD Multi carrier configuration Carrier 0: BW 10 MHz, @ 2110 MHz Carrier 1: BW 10 MHz, @ 2150 MHz			
Power (Range)		Level (dBm)	Status
6.6.2 ACLR			
Power Tx Channel 0		-12.82	Ignored
Power Tx Channel 1		-13.12	Ignored
Power Adjacent Channel lower		-63.29	Ignored
Power Adjacent Channel higher		-63.54	Ignored
Power Alternate Channel lower		-63.74	Ignored
Power Alternate Channel higher		-64.06	Ignored
CACLR (Gap0): Lower Adjacent	-68.91	dBc	Ignored
CACLR (Gap0): Higher Adjacent	-69.12	dBc	Ignored
CACLR (Gap0): Lower Alternate	-69.43	dBc	Ignored
CACLR (Gap0): Higher Alternate	-69.39	dBc	Ignored
ACLR (Gap0): Lower Adjacent	-66.04	dBc	Ignored
ACLR (Gap0): Higher Adjacent	-65.96	dBc	Ignored
ACLR (Gap0): Lower Alternate	-66.57	dBc	Ignored
ACLR (Gap0): Higher Alternate	-66.23	dBc	Ignored
Over all		True	Ignored

Fig. 3-113: Example report for test case 6.6.2 with a two-carrier MC configuration and measurements inside the gap.

3.6.3 Operating Band Unwanted Emissions (SEM) (Clause 6.6.3)

The operating band unwanted emission limits are defined from 10 MHz below the lowest frequency of the downlink operating band up to 10 MHz above the highest frequency of the downlink operating band.

For a base station operating in non-contiguous spectrum, the requirements apply inside any sub-block gap. In addition, for multiband operation, the requirements apply inside any inter RF bandwidth gap.

For base station capable of multi-band operation where multiple bands are mapped on separate antenna connectors, the single-band requirements apply and the cumulative evaluation of the emission limit in the inter RF bandwidth gap are not applicable [1].

In multicarrier or intra-band contiguous or non-contiguous carrier aggregation, the test measurement is applicable below the lower edge of the lowest carrier and above the upper edge of the highest carrier in the aggregated channel bandwidth present in an operating band.

The test requirements shall apply as per categories either A or B. The minimum mandatory requirement is mentioned in subclause 6.6.3.5.1 or subclause 6.6.3.5.2 [1], whichever is applicable to the different type of base stations.

There are other optional requirements applicable regionally in subclause 6.6.3.5[2-3] [1].

Test setup

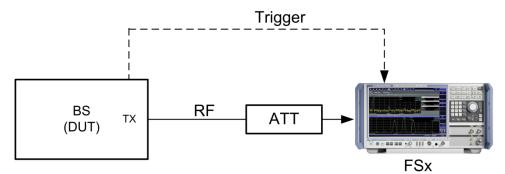


Fig. 3-114: Test setup for BS output power.

The DUT (base station) transmits with the declared maximum PRAT. E-TM1.1 and E-TM1.2 are required.

For TDD signals, the trigger must be set to external.MC is not supported at this time. It will follow later in the internal FSW.

Procedure

The test is implemented in the LTE as a spectrum emission mask (SEM).

- 1. Under MEAS, select "Spectrum Emission Mask" in LTE.
- The parameters defined under Signal Description (see Fig. 3-115) cause the correct settings for the SEM test to be entered automatically. The BS category is also important in that it determines the limits.

	PASS	
Mode	FDD Downlink	Test Model: E-TM1_110MHz.allocation
Physical Settings		
Channel Bandwidth	10MHz(50 RB)	Sample Rate 15.36 MHz Occupied BW 9.015 MHz
Cyclic Prefix	Normal	FFT Size 1024 Occ. Carriers 601
SEM Settings		
Category	Category B, Opt. 2	Aggregated Max Power

Fig. 3-115: SEM: selecting the predefined settings in LTE.

Fig. 3-116 shows a SEM test. The Result Summary displays the results of the individual ranges. The global limit check is displayed along the top.

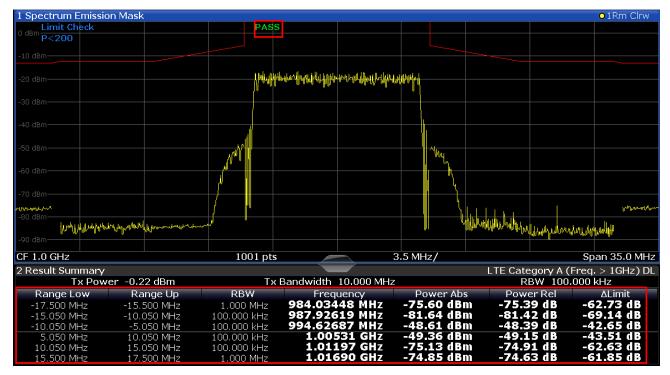


Fig. 3-116: Operating band unwanted emission (SEM).

Multi-Carrier SEM

The test is implemented in the LTE as a spectrum emission mask (SEM).

- 1. Under MEAS, select "Multi Carrier SEM" in LTE.
- The parameters defined under Signal Description (see Fig. 3-117 and Fig. 3-118) cause the correct settings for the SEM test to be entered automatically. The BS category is also important in that it determines the limits.

el Mode A	uto Sweep		 - 	X
Mode	FDD Downlink 🗘	Test Model:	: E-TM1_15MHz.a	allocation
Number of Component Carriers	2			
Physical Settings Car	rier Configuration		okungi wa caki natakat	
Center Frequency	Freq Offset to CC1	Bandwidth		
CC 1 2.4 GHz		5MHz(25 RB)	÷	
CC 2 2.42 GHz	20.0 MHz	10MHz(50 RB)	•	
k Ar Center	2.40 GHz	Tx Power -33.92	dBm	RBW 100.00
	5 MHZ CC 1 Gap	: 12.5 MHz	↓ 10 MH2 ← CC 2	Frequency

Fig. 3-117: Multi Carrier SEM: selecting the predefined settings in LTE.

esignal Description Mo				-	X
üm Emission Mask		~			
Mode	FDD Downlink	• те	st Model: E-TM1_:	L5MHz.allocatio	n
Number of Component Carriers	2				
Physical Settings	Carrier Configuration				
Channel Bandwidth	Carrier Configuration				
Cyclic Prefix	Normal	+			
25 GHz	3001 pts				
Category	er 2. Category A	+ Aggregat	ed Max Power	0.0 dBm	
je Ll <u>ow Range Up</u> 5 GHz 2.387 GHz	Category A	ency FGHz			
7 GHz 2.392 GHz 2 GHz 2.397 GHz up blocks A and B	Category B, Opt. 1	2 GHZ 2 GHZ			
e Low Range Up	Category B, Opt. 2	ency 2 GHz			
3 GHZ 2.400 GHZ 3 GHZ 2.409 GHZ 9 GHZ 2.410 GHZ	Local Area BS	5 GHZ			
k B Cent	er 2. Home BS	x Power	-33.76 dBm	RBW	100.0
je Low Range Up	Medium Range	indwidth ency	10.000 MHz Power Abs	Power Rel	

Fig. 3-118: Multi Carrier SEM: BS category.

Fig. 3-119 shows a Multi Carrier SEM test. The Result Summary displays the results of the individual ranges. The global limit check is displayed along the top.

Care course of Marco	C C					
MultiView 🎞 S	pectrum 🔄 💌					
Ref Level 0.00 dBm	n Mode A	uto Sweep				
1 Spectrum Emissio	on Mask					o1Rm Clrw
Limit Check		PASS				
-20 dBm						
-40 dBm		1 .				
	, 1444 417 48 474			小小小小小小小小小小小小		
-60 dBm						
-80 dBm						ileter.
and state of the second states	and have the Arrest Heart State	the standard	heres/militritefilmplersesterenteringenigener/interneteringenteringe/	وغموار ال	Mit We Lawrence alconation and an and	handhilaulattikiteyyelletaisikaa
CF 2.41125 GHz		3001 pts		5.25 MHz/		Span 52.5 MHz
2 Result Summary		5001 pt3		5120 ((112)		opun 02.0 Minz
Sub Block A	Center	2.40 GHz	Tx Power	-33.81 dBm	RBW	100.000 kHz
SUD DIOCK A	Genter	2110 012	Tx Bandwidth	5.000 MHz		LTE DL
Range Low	Range Up	RBW	Frequency	Power Abs	Power Rel	∆Limit
2.385 GHz	2.387 GHz	1.000 MHz	2.38643 GHz	-84.45 dBm	-50.64 dB	-69.43 dB
2.387 GHz	2.392 GHz	100.000 kHz	2.39239 GHz	-89.84 dBm	-56.03 dB	-77.34 dB
2.392 GHz Gap of sub blocks	2.397 GHz	100.000 kHz	2.39274 GHz	-93.49 dBm	-59.68 dB	-81.41 dB
Range Low	Range Up	RBW	Frequency	Power Abs	Power Rel	ΔLimit
2.403 GHz	2.408 GHz	100.000 kHz	2.40694 GHz	-92.55 dBm	-58.74 dB	-80.88 dB
2.408 GHz	2.409 GHz	100.000 kHz	2.40761 GHz	-92.28 dBm	-58.47 dB	-79.78 dB
2.409 GHz	2.410 GHz	100.000 kHz	2.40878 GHz	-92.56 dBm	-58.53 dB	-80.06 dB
2.410 GHz	2.415 GHz	100.000 kHz	2.41006 GHz	-93.79 dBm	-59.76 dB	-81.46 dB
Sub Block B	Center	2.42 GHz	Tx Power		RBW	100.000 kHz
Range Low	Range Up	RBW	Tx Bandwidth	10.000 MHz Power Abs	Power Rel	LTE DL ALimit
2.425 GHz	2.430 GHz	коу 100.000 kHz	Frequency 2.43001 GHz	-93.15 dBm	-59.12 dB	-80.70 dB
2.420 GHz	2.435 GHz	100.000 kHz	2.43171 GHz	-89.72 dBm	-55.70 dB	-77.22 dB
2.436 GHz	2.438 GHz	1.000 MHz	2.43656 GHz	-82.92 dBm	-48.90 dB	-69.92 dB

Fig. 3-119: Operating band unwanted emission (SEM).

Band 46

LTE band 46 is the unlicensed band for Licensed Assisted Access (LAA). Please note that for band 46 different gap settings and different limits apply.

NB-loT

The DUT (base station) transmits with the declared maximum PRAT with N-TM.

The test is implemented in the NB-IoT as a spectrum emission mask (SEM).

- 1. Under MEAS, select "Spectrum Emission Mask" in NB-IoT.
- 2. The parameters defined under Signal Description (see Fig. 3-115) cause the correct settings for the SEM test to be entered automatically.

Fig. 3-120 shows a SEM test. The Result Summary displays the results of the individual ranges. The global limit check is displayed along the top.

MultiView 🕷	Spectru	m 💌	LTE	x	NB-IoT	x			•
Ref Level -40.0	00 dBm	Mod	e Auto FFT						
1 Spectrum Em	ission Mask								•1Rm Clrw
Limit Check				PAS	5	n – – – – – – – – – – – – – – – – – – –			
P<200									
-60 dBm									
-80 dBm									
					/				
-100 dBm					<u>}</u>	ļ			
					hand				
-120 dBm									
05.0.11.011									
CF 2.11 GHz			100	1 pts		\rightarrow	2.52 MHz/		Span 25.2 MHz
2 Result Summ	ary								
Sub Block A		Center	2.11 GHz			x Power andwidth	-29.04 dBm 200.000 kHz	RBW	30.000 kHz
Range Low	Rar	nge Up	RBW		Frequ		Power Abs	Power Rel	ΔLimit
-12.600 MHz		500 MHz	1.000 M		2.0980		-94.08 dBn		-79.08 dB
-10.600 MHz		500 MHz	1.000 M		2.1080		-93.39 dBn		-81.89 dB
-1.600 MHz	-1.1	15 MHz	30.000 kl		2.1084:		-108.84 dBn		-84.34 dB
-1.115 MHz		000 kHz	30.000 kl		2.1089		-109.49 dBn		-85.18 dB
-315.000 kHz		000 kHz	30.000 kl		2.1097		-106.99 dBn		-94.49 dB 💻
-265.000 kHz		<u>000 kHz</u>	<u> </u>		2.1098		-68.49 dBn		-55.99 dB
-165.000 kHz 115.000 kHz		000 kHz 000 kHz	30.000 kl 30.000 kl		2.1098		-60.00 dBn -60.07 dBn		-47.50 dB -47.57 dB
165.000 kHz		300 кнг 300 kHz	30.000 ki 30.000 ki		2.1101		-68.73 dBn		-56.23 dB
265.000 kHz		000 kHz	30.000 ki		2.1102		-107.06 dBn		-94.56 dB
315.000 kHz		15 MHz	30.000 ki		2.1111		-108.87 dBn	າ -79.83 dB	-84.56 dB
1.115 MHz	1.6	500 MHz	30.000 kl	Ηz	2.1115		-108.55 dBn		-84.05 dB
1 200 1411							02.66 48.	· 64 63 4B	

Fig. 3-120: NB-IoT Operating band unwanted emission (SEM).

For NB-IoT in-band and guard band, the signal shall be seen as a combination between LTE carriers and NB-IoT carriers. The DUT (base station) transmits at the declared maximum PRAT. E-TM1.1 for the LTE part and N-TM for NB-IoT part are required.

The procedure is the same as for LTE.

Demo program

No further special settings are needed for this test. The test is carried out as a spectrum measurement. The measured power values for the individual ranges are output together with a global limit check. MC tests are not yet supported.

********* 6.6.3 Operating Band Spurious E	Emissions (SEM)	*********
---	-----------------	-----------

Duplex mode: FDD							
SEM (Range)	Start (MHz)	Stop (MHz)		Level (dBm)	Status		
6.6.3 Operating Band Spurious Emissions (SEM)							
Power 0	-17.5	-15.5	1.0	-81.02	Ignored		
Power 1	-15.1	-10.1	0.1	-87.98	Ignored		
Power 2	-10.1	-5.1	0.1	-56.91	Ignored		
Power 3	5.1	10.1	0.1	-57.34	Ignored		
Power 4	10.1	15.1	0.1	-88.07	Ignored		
Power 5	15.5	17.5	1.0	-80.65	Ignored		
Over all	-	-	-	True	Ignored		

FSx: 0, "No error"

Fig. 3-121: Example report for test case 6.6.3.

3.6.4 Transmitter Spurious Emissions (Clause 6.6.4)

Spurious emissions are emissions, which are caused by unwanted transmitter effects such as harmonics emission, parasitic emission, intermodulation products and frequency conversion products, but exclude out-of-band emissions [1].

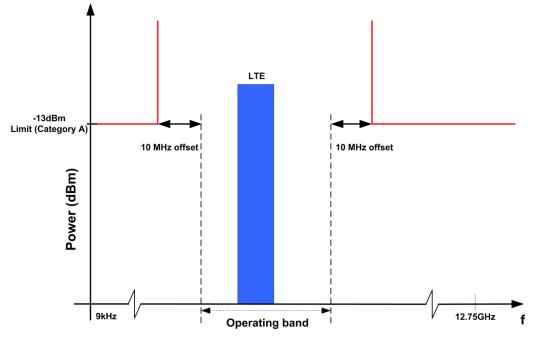


Fig. 3-122: Spurious emissions.

The transmitter spurious emission limits apply from 9 kHz to 12.75 GHz, excluding the frequency range from 10 MHz below the lowest frequency of the downlink operating band up to 10 MHz above the highest frequency of the downlink operating band. For BS capable of multi-band operation where multiple bands are mapped on the same antenna connector, this exclusion applies for each supported operating band. For BS capable of multi-band operation where multiple bands are mapped on separate antenna connectors, the single-band requirements apply and the multi-band exclusions and provisions are not applicable. For some operating bands, the upper frequency limit is higher than 12.75 GHz [1].

The test is performed for SC as well as MC and/or CA.

Spurious emissions (Category A)						
Frequency range	Maximum level	Measurement bandwidth				
9 kHz – 150 kHz		1 kHz				
150 kHz – 30 MHz		10 kHz				
30 MHz – 1 GHz	-13 dBm	100 kHz				
1 GHz – 12.75 GHz	-	1 MHz				
12.75 GHz – 5th harmonic of the upper frequency edge of the DL operating band in GHz. Applies only for bands 22, 42 and 43.		1 MHz Applies only for bands 22, 42 and 43.				

Table 3-33: Spurious emissions requirement for Cat A

Spurious emissions (Category B)					
Frequency range	Maximum level	Measurement bandwidth			
9 kHz – 150 kHz		1 kHz			
	-36 dBm				
150 kHz – 30 MHz		10 kHz			
30 MHz – 1 GHz		100 kHz			
1 GHz – 12.75 GHz	- 30 dBm	1 MHz			
12.75 GHz – 5th harmonic of the upper frequency edge of the DL operating band in GHz. Applies only for bands 22, 42 and 43.	- 30 dBm	1 MHz Applies only for bands 22, 42 and 43.			

Table 3-34: Spurious emissions requirement for Cat B

The following parameters additionally apply for the protection of the base station receiver:

Protection of the BS receiver						
BS	Frequency range	Maximum level	Measurement bandwidth			
Wide Area BS	$F_{UL_low} - F_{UL_high}$	-96 dBm	100 kHz			
Medium Range BS	$F_{UL_{low}} - F_{UL_{high}}$	-91 dBm	100 kHz			
Local Area BS	$F_{UL_{low}} - F_{UL_{high}}$	-88 dBm	100 kHz			
Home BS	$F_{UL_{low}} - F_{UL_{high}}$	-88 dBm	100 kHz			

Table 3-35: BS spurious emissions limits for protection of the BS receiver

Note:

Additional limits apply for regional coexistence scenarios. These are dependent on the operating band in accordance with Tables 6.6.4.5.4-1 through 6.6.4.5.5-3 [1].

Test setup

The test requires a notch (or a diplexer) filter that suppresses the frequency range of the LTE carrier on the base station. This makes it possible to meet high dynamic requirements (e.g. DUT transmits with 24 dBm, Limit in Protection receiver test –96 dBm -> dynamic is 120 dB).

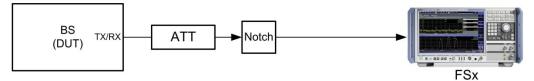


Fig. 3-123: Test setup: spurious emissions.

The DUT (base station) transmits with the declared maximum PRAT. E-TM1.1 is required.

Procedure

- 1. In spectrum mode, select MEAS and then "Spurious Emissions".
- 2. Under **Sweep List** check the settings and adapt them as necessary. The predefined level values apply for Category A.
- 3. Press Adjust X-Axis. The settings are prefilled.

Spurious Emissions ctrum						
	Range 1	Range 2	Range 3	Range 4		
Range Start	9 kHz	150 kHz	30 MHz	1 GHz		
Range Stop	150 kHz	30 MHz	1 GHz	12.75 GHz		
Filter Type	Normal(3	Normal(3	Normal(3	Normal(3		
Res BW	1 kHz	10 kHz	100 kHz	1 MHz		
Video BW	3 kHz	30 kHz	300 kHz	3 MHz		
Sweep Time Mode	Auto	Auto	Auto	Auto		
Sweep Time	14.1 ms	29.9 ms	32.1 ms	35.3 ms		
Detector	RMS	RMS	RMS	RMS		
Ref. Level	0 dBm	0 dBm	0 dBm	0 dBm		
RF Att. Mode	Auto	Auto	Auto	Auto		
RF Attenuator	10 dB	10 dB	10 dB	10 dB		
Preamp	Off	Off	Off Off			
Sweep Points	701	4001	32001	32001		
Stop After Sweep	Off	Off	Off	Off		
Transducer	None	None	None	None		
Limit Check	Absolute	Absolute	Absolute	Absolute		
Abs Limit Start	-13 dBm	-13 dBm	-13 dBm	-13 dBm		
Abs Limit Stop	-13 dBm	-13 dBm	-13 dBm	-13 dBm		
Insert before Range	Rar 1.0(Insert after Range	RBW 0.000 L	Delete Range		

Fig. 3-124: Spurious emissions: predefined sweep list.

1 Spurious Emission	าร				O1 Clrw
SPUR Elmit Check		PASS			
-30 df Line _SPURIOU	JS_LINE_ABS_	PASS			
-40 dBm					
-50 dBm					
-50 dBm	المراجب والمتلاطية الماليك وروار	التعامية المتعار	ويتراور والمراجع		
han all the	a south a state of the state of	The RETAIL DESIGNATION AND A DESCRIPTION OF THE REAL PROPERTY OF THE REA	وحاذاته والمربسة وإداعه وتشاط الأتعرية وباش	a na sa ang tang tang tang tang tang tang tang	a de la la companya de la companya da la companya da companya da companya da companya da companya da companya d
POTTO Blood to also			and the second second second second		a te traducate
	والواسرية ولفرس المتقاط فتشاط والشاها ويتطله	of the difference of the second s	i iskaanti tala taanii ka	and the all concentres to the	and the second second second
		Andres London and Addition of the	i she dalama i ka ni ika ni ba a ka	Addited (Constants) in the state of the stat	in ter bland i sin ei it, ter iv, juler, tet vinseter.
		I I . IIII and a .	a dust out and a she date	I Second I Law	the second fill with the second
L. B. B. B. B. B. B.					
-100 dBm					
-110 dBm					
-120 dBm					
CF 6.3750045 GHz		68704 pts	1.27 GHz/		Span 12.749991 GHz
2 Result Summary					
Range Low	Range Up	RBW	Frequency	Power Abs	ΔLimit
9.000 kHz	150.000 kHz	1.000 kHz	98.20613 kHz	-42.24 dBm	-29.24 dB
150.000 kHz	30.000 MHz	10.000 kHz	243.25794 kHz	-41.65 dBm	-28.65 dB
30.000 MHz	1.000 GHz	100.000 kHz	889.55986 MHz	-55.06 dBm	-42.06 dB
1.000 GHz	12.750 GHz	1.000 MHz	1.86855 GHz	-46.03 dBm	-33.03 dB

Fig. 3-125: Spurious emissions up to 12.75 GHz. The carrier is suppressed using filters. The results for the individual ranges are displayed at the bottom, and at the top is the limit check.

NB-IoT

The DUT (base station) transmits with the declared maximum PRAT with N-TM.

For NB-IoT inband and guard band, the signal shall be seen as combination between LTE carriers and NB-IoT carriers. The DUT (base station) transmits at the declared maximum PRAT. E-TM1.1 for the LTE part and N-TM for NB-IoT part are required.

The limits in Table 3-33 and Table 3-34 apply.

Demo program

This test requires additional settings. The BS category affects the limit settings. The test is performed in the base unit as a spectrum measurement, which means that it cannot be performed directly using the PC SW. The measured ranges and a limit check are reported.

Category	
Category	Home 🔻
Home BS Aggr. Pow	0 dBm

Fig. 3-126: Special settings for spurious emissions.

```
********** 6.6.4 Tx Spurious Emissions ***********
```

Duplex mode: FDD							
Test Item	Start (MHz)	Stop BW (MHz)	RBW (MHz)	dBm	Status		
6.6.4 Tx Spurious Emissions							
Power 0	0.0	0.2	0.001	-97.26	Ignored		
Power 1	0.2	30.0	0.010	-88.53	Ignored		
Power 2	30.0	1000.0	0.100	-78.80	Ignored		
Power 3	1000.0	12750.0	1.000	-14.81	Ignored		
Over all	-	-	-	True	Ignored		

FSx: 0,"No error"

Fig. 3-127: Example report for test case 6.6.4.

3.7 Transmitter Intermodulation (Clause 6.7)

The transmitter intermodulation requirement is a measure of the capability of the transmitter to inhibit the generation of signals in its nonlinear elements caused by presence of the own transmit signal and an interfering signal reaching the transmitter via the antenna. The requirement applies during the transmitter ON period and the transmitter transmitter period.

The transmit intermodulation level is the power of the intermodulation products when an E-UTRA signal of channel bandwidth 5 MHz as an interfering signal is injected into an antenna connector at a mean power level of 30 dB lower than that of the mean power of the wanted signal. The interfering signal offset is defined relative to the channel edges. [1] The test is performed for SC as well as MC and/or CA, for both contiguous and non-contiguous spectrum operation.

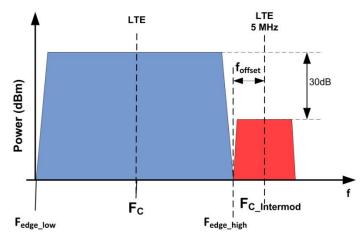


Fig. 3-128: Transmit intermodulation.

Transmit intermodulation						
Wanted signal	Interfering signal	Parameter	Frequency offset			
LTE signal with maximum bandwidth with E-TM1.1	5 MHz LTE signal with E-TM1.1	Interfering signal center	±2.5 MHz			
		frequency offset from the lower (upper) edge of	±7.5 MHz			
	- 30 dBc	the wanted signal or edge of sub-block inside a sub-block gap	±12.5 MHz			

 Table 3-36: Transmit intermodulation parameters

Non-contiguous Spectrum

For a base station operating in non-contiguous spectrum, the interfering signal falls completely within the sub-block gap. The interfering signal is linked to the gap edge relative to the signal offset (see Fig. 3-129).

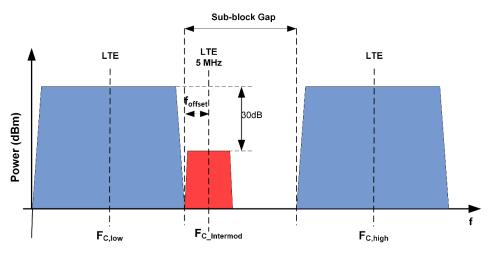


Fig. 3-129: Transmit intermodulation for non-contiguous spectrum. The interfering signal falls in the sub-block gap.

Multi-band Operation

When multiple bands are mapped on separate antenna connectors, the single-band requirements apply regardless of the interfering signals position. The interfering signals are located relative to the inter RF bandwidth gap and shall fall completely within the inter RF bandwidth gap.

Test setup

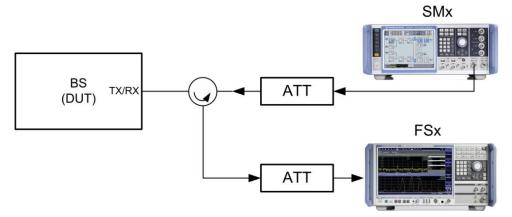


Fig. 3-130: Test setup: transmitter intermodulation.

Overview of settings:

- The DUT (base station) generates the wanted signal at F_c with BW_{Channel} and E-TM1.1.
- The SMx generates a 5 MHz LTE signal with E-TM1.1 and the offsets in accordance with Table 3-36, without interfering frequencies that are outside of the allocated downlink operation band or interfering frequencies that are not completely within the sub-block gap or within the inter RF bandwidth gap.

Procedure

Use the SMx to generate a 5 MHz LTE signal with E-TM1.1 as described in Section 3.1.2. The frequency offset is entered directly under Frequency as described in Table 3-36. Set the level so that it is 30 dB under the level of the wanted signal.

The measurements shall be limited to the frequency ranges of all third and fifth order intermodulation products, considering the width of these products and excluding the channel bandwidths of the wanted and interfering signals.

The measurement regions are then calculated according to the table:

Measurement regions calculation							
Order of intermodulation products	Center frequency	Intermodulation width					
3rd order	$2F_1 \pm F_2$	2*BW _{Channel} + 1*5 MHz					
	$2F_2 \pm F_1$	2*5 MHz + 1*BW _{Channel}					
	$3F_1 \pm 2F_2$	3*BW _{Channel} + 2*5 MHz					
5th order	$3F_2 \pm 2F_1$	3*5 MHz + 2*BW _{Channel}					
Sin order	$4F_1 \pm F_2$	4*BW _{Channel} + 1*5 MHz					
	$4F_2 \pm F_1$	4*5 MHz + 1*BW _{Channel}					

Note: F₁: Wanted signal, F₂: Interferer

 Table 3-37: Calculating the measurement regions for the intermodulation product

Ranges, which are calculated with subtraction and which have small distance to the wanted signal, may overlap with the wanted signal or the interferer (see example in Fig. 3-131). The ranges must be adjusted accordingly. In principle, the following intermodulation products (ranges) can be affected:

- 2F1 + F2
- 2F₁ F₂
- 2F₂ + F₁
- 2F₂ F₁

The settings are explained in this example:

- Wanted signal: F₁ = 2140 MHz with BW_{Channel} = 20 MHz
- Interferer offset: + 2.5 MHz: F₂ = 2140 MHz + BW_{Channel}/2 + 2.5 MHz = 2152.5 MHz
- 3rd order
 - $2F_1 + F_2 = 6432.5$ MHz, Intermodulation BW = 45 MHz
 - $2F_1 F_2 = 2127.5 \text{ MHz}$, Intermodulation BW = 45 MHz
 - $2F_2 + F_1 = 6445$ MHz, Intermodulation BW = 30 MHz
 - $2F_2 F_1 = 2165 \text{ MHz}$, Intermodulation BW = 30 MHz

The ranges for the 5th order can be calculated using the same method.

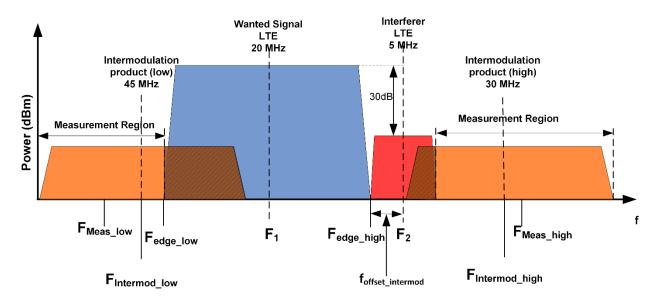


Fig. 3-131: Measurement regions for the intermodulation test. Regions that overlap with the wanted signal or the interferer must be excluded (example: with a wanted signal of 20 MHz and an offset of 2.5 MHz for the interferer).

The regions to be measured can be calculated as follows:

BW_{Meas_low} = F₁ - BW_{RFBW} / 2 - (F_{Intermod_low} - BW_{Intermod_width_low} / 2) BW_{Meas_high} = F_{Intermod_high} + BW_{Intermod_width_high} / 2 - (F₂ + BW_{Interferer} / 2) with the corresponding middle frequencies F_{Meas_low} and F_{Meas_high} F_{Meas_low} = F₁ - BW_{Channel_wanted} / 2 - BW_{Meas_low} / 2 F_{Meas_high} = F₂ + BW_{Channel_Interferer} / 2 + BW_{Meas_high} / 2

The following regions result for the example:

BW_{Meas_low} = 2140 MHz - 2127.5 MHz - 20 MHz / 2 + 45 MHz / 2 = 25 MHz BW_{Meas_high} = 2165 MHz - 2140 MHz - 20 MHz / 2 - 5 MHz + 30 MHz / 2 = 25 MHz F_{Meas_low} = 2140 MHz - 10 MHz - 12.5 MHz = 2117.5 MHz F_{Meas_high} = 2152.5 MHz + 2.5 MHz + 12.5 MHz = 2167.5 MHz

Summary Example		
Wanted Signal	F ₁ = 2140 MHz	BW _{Channel} = 20 MHz
Interferer (Offset: + 2.5 MHz)	F ₂ = 2152.5 MHz	BW _{nterferer} = 5 MHz
F _{Intermod_low}	2F ₁ - F ₂ = 2127.5 MHz	BW _{ntermod_low} = 45 MHz
F _{Intermod_high}	2F ₂ - F ₁ = 2165 MHz	$BW_{ntermod_high} = 30 MHz$
Measurement Region low	F _{Meas_low} = 2117.5 MHz	BW _{Meas_low} = 25 MHz
Measurement Region high	F _{Meas_high} = 2167.5 MHz	BW _{Meas_high} = 25 MHz

Table 3-38: Summary example for Tx intermodulation (3rd order products)

NB-loT

For NB-IoT standalone the same rules apply, the channel bandwidth is 200 kHz.

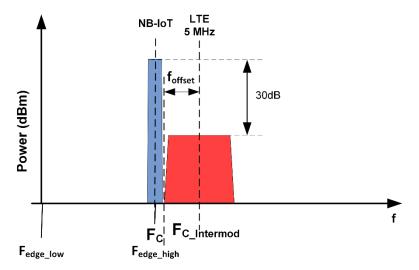


Fig. 3-132: NB-IoT Transmit Intermodulation

Measurements

The same conditions apply for these measurements as for:

- I ACLR
- Operating band unwanted emissions (SEM)
- Spurious emissions

The measurement regions can be limited to the regions containing the intermodulation products.

ACLR

The procedure for the ACLR measurement is the same as described for ACLR in Section 3.6.2, except that the measurement regions must be adapted:

- 1. Start the ACLR test
- 2. Set the bandwidth for TX1 (example: 18 MHz) and for the ADJ channel on the intermodulation bandwidth (e.g. 25 MHz)

1 ACLR Setup RBW 100 kHz	
General Settings Channel Setti	ings
Standard	Channel Count
Signal Description	TX 1
Manage User Standards	ADJ 1
Bandwidths Spacing Limits	Weighting Filters Names
Tx Channels	Adjacent Channels
TX 1 18.0 MHz	ADJ 25.0 MHz
TX 2 18.0 MHz	ALT 1 25.0 MHz

Fig. 3-133: Transmit intermodulation: Setting the bandwidths (18 MHz for the wanted signal and 25 MHz for the intermodulation bandwidth in the example).

3. Set the offset of the lower intermodulation product (e.g. $F_C - F_{C_meas_low} = 22.5 \text{ MHz}$).

1 ACLR Setup RBW 100 kHz	
General Settings Channel Settings	
Standard	Channel Count
Signal Description	TX 1
Manage User Standards	ADJ 1
Bandwidths Spacing Limits Weighting	g Filters Names
Tx Channels	Adjacent Channels
TX 1-2 10.0 MHz	ADJ 22.5 MHz
TX 2-3 10.0 MHz =	ALT 1 45.0 MHz

Fig. 3-134: Transmit intermodulation: set the intermodulation product spacing ($F_c - F_{C_{meas}low} = 22.5$ MHz in the example).

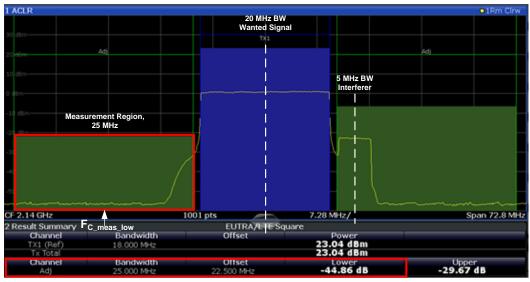


Fig. 3-135: Transmit intermodulation: measuring the lower intermodulation product.

 Set the spacing of the upper intermodulation product (example: F_{C_meas_high} - F_C = BW_{Meas_region_low} / 2 + BW_{Channel} / 2 + BW_{Interferer} = 27.5 MHz).

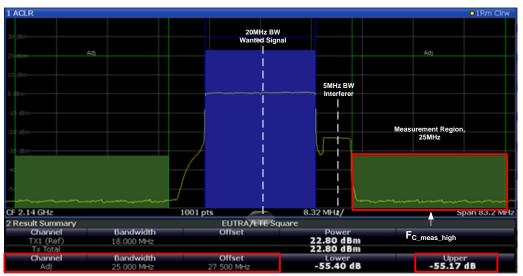


Fig. 3-136: Transmit intermodulation: Measuring the upper intermodulation product. The interferer is excluded from the test.

5. Repeat the procedure for the other tests (3rd + 5th order, each with different offsets)

Operating band unwanted emission (SEM)

The procedure for the SEM measurement is the same as described for SEM in Section 3.6.3, except that the measurement regions must be adjusted:

 Adjust the measurement region to the intermodulation products. This is done via SPAN (example: intermodulation regions to be measured = 25 MHz on both sides, SPAN = 2 * 25 MHz + 20 MHz (BW_{wanted signal}) = 70 MHz) 2. Adjust the SWEEP times for the modified regions in the SWEEP LIST, e.g. by setting to AUTO (Fig. 3-137).

Sweep List Reference Range Power Classes Standard Files							
	Range 1	Range 2	Range 3	Range 4	Range 5	Range 6	Range 7
Range Start	-17.5 MHz	-15.05 MHz	-10.05 MHz	-5 MHz	5.05 MHz	10.05 MHz	15.5 MHz
Range Stop	-15.5 MHz	-10.05 MHz	-5.05 MHz	5 MHz	10.05 MHz	15.05 MHz	17.5 MHz
Fast SEM	Off	Off	Off	Off	Off	Off	Off
Filter Type	Channel	Normal(3	Channel	Normal(3	Channel	Normal(3	Channel
RBW	1 MHz	100 kHz	100 kHz	100 kHz	100 kHz	100 kHz	1 MHz
VBW	3 MHz	300 kHz	300 kHz	300 kHz	300 kHz	300 kHz	3 MHz
Sweep Time Mode	Auto	Manual	Manual	Manual	Manual	Manual	Auto
Sweep Time	1 ms	10 ms	100 ms	10 ms	100 ms	10 ms	1 ms
Ref Level	0 dBm	0 dBm	0 dBm	0 dBm	0 dBm	0 dBm	0 dBm
RF Att Mode	Auto	Auto	Auto	Auto	Auto	Auto	Auto
RF Attenuation	10 dB	10 dB	10 dB	10 dB	10 dB	10 dB	10 dB
Preamp	Off	Off	Off	Off	Off	Off	Off
Transducer	None	None	None	None	None	None	None
Limit Check 1	Absolute	Absolute	Absolute	Absolute	Absolute	Absolute	Absolute
Abs Limit Start 1	-13 dBm	-12.5 dBm	-12.5 dBm	300 dBm	-5.5 dBm	-12.5 dBm	-13 dBm
Abs Limit Stop 1	-13 dBm	-12.5 dBm	-5.5 dBm	300 dBm	-12.5 dBm	-12.5 dBm	-13 dBm

Fig. 3-137: Setting the sweep time.

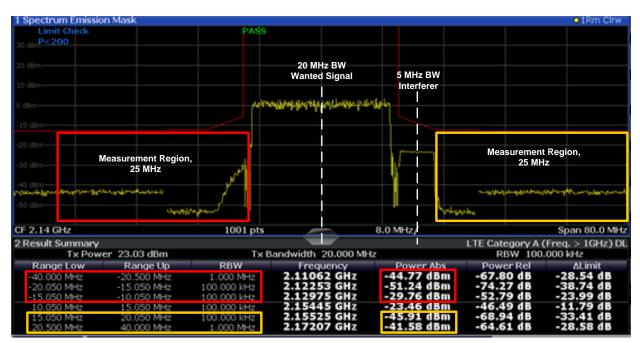


Fig. 3-138: Transmit intermodulation: adjusted SEM test.

Spurious emissions

The procedure for the spurious emissions test is the same as described for Spurious Emissions in Section 3.6.4.

Demo program

This test requires additional settings. The BS category affects the limit settings. The offset must be selected under Intermodulation. The test is a combination of ACLR, SEM and Spurious Emission. The measured regions are reported. The level of the intermodulation signal is set at 30 dB under the reference level.

Category	
Category	Home 🔻
Home BS Aggr. Pow	0 dBm
Intermodulation offset	-2.5 VMHz
internodulation onset	- 2.5 VIII2

Fig. 3-139: Special settings for transmitter intermodulation.

Duplex mode: FDD					
Power (Range)	Meas Freq (MHz)	Channel BW (MHz)		Level (dBm)	Status
6.7 TX Intermodulation ACLR @ 2f1 - f2					
Power Tx Channel					Ignored
Power Meas Range higher	2122.5	15.00		-74.94	Ignored
Power (Range)	Meas Freq (MHz)	Channel BW (MHz)		Level (dBm)	Status
6.7 TX Intermodulation ACLR @ 2f2 - f1					
Power Tx Channel		1		-77.08	Ignored
Power Meas Range lower	2092.5	15.00		-74.88	Ignored
Power (Range)	Meas Freq (MHz)	Channel BW (MHz)		Level (dBm)	Status
6.7 TX Intermodulation ACLR @ 3f1 - 2f2					
Power Tx Channel		1			Ignored
Power Meas Range higher	2130	30.00		-72.00	Ignored
Power (Range)	Meas Freq (MHz)	Channel BW (MHz)		Level (dBm)	Status
6.7 TX Intermodulation ACLR @ 3f2 - 2f1					
Power Tx Channel				-77.10	Ignored
Power Meas Range lower	2085	30.00		-71.96	Ignored
SEM (Range)	Start (MHz)	Stop (MHz)		Level (dBm)	Status
6.7 TX Intermodulation SEM					
Power 0	-50.0	-15.5			Ignored
Power 1	-15.1	-10.1			Ignored
Power 2	-10.1	-5.1			Ignored
Power 3	5.1	10.1			Ignored
Power 4	10.1	15.1			Ignored
Power 5	15.5	50.0	1.0		Ignored
Over all	-	-	-	True	Ignored

*******	6.7	' Transmittei	r Intermodu	lation	*********
---------	-----	---------------	-------------	--------	-----------

FSx: 0,"No error"

Test Item	Start (MHz)			I MIHZ	Status	
6.7 Tx Intermodulation Spurious Emissions						
Power 0	0.0	0.2	0.001	-99.68	Ignored	
Power 1	0.2	30.0	0.010	-92.97	Ignored	
Power 2	30.0	1000.0	0.100	-80.45	Ignored	
Power 3	1000.0	12750.0	1.000	-72.51	Ignored	
Over all	-	-	-	True	Ignored	

FSx: 0,"No error"

Fig. 3-140: Example report for test case 6.7. The measurement is taken on the intermodulation products.

4 Appendix

4.1 R&S TSrun Program

The TSrun software application makes it possible to combine tests (modules) provided by Rohde & Schwarz into test plans to allow rapid and easy remote control of test instruments. This program is available free of charge from our website.

Requirements

Operating system:

- Microsoft Windows XP / Vista / Windows 7 / Windows 8 / Windows 10
- .NET framework V4.0 or higher

General PC requirements:

- Pentium 1 GHz or faster
- I GByte RAM
- 100 Mbyte space harddisk
- XGA monitor (1024x768)

Remote control interface:

- National Instruments VISA
- GPIB card
- Or
- LAN connection

After TSrun is launched, the following splash screen appears:

File View Resources Options	Testplan Favorites Help	
File Browsers	🞦 New 📴 Open 🗊 Save All 💷 Abort All	
est Plans Tests Reports	No Testplan Loaded	
Add 🔄 Remove 🖼 Favorite		
Add Remove 4 Favorite		
⊡		
Application Notes		
_		

Fig. 4-1: Overview TSrun

Tests and test plans

Tests are separate, closed modules for TSrun. A test plan can consist of one or more tests.

LTE_BS_Tx_Tests ×					
🕨 Run 🗏 Abort 🖡	Step	[dle	Parameters	📲 Resources 🔹	Ŧ
IC 🖆 🖗 🗈 🛡	h n × 🗐 '	⊒ ©, @			
Steps		Description			
LTE BS Tx Test		,			
	_				
Testplan Details Yield	Measurement Report	SCPI Report	Progress Log		

Fig. 4-2: Overview of a test plan in TSrun. The test plan in the example contains only one test (LTE_BS_Tx_Tests). After the test is completed, the bar along the bottom can be used to display the measurement and SCPI reports.

The LTE BS tests can be found under Tests/ApplicationNotes.

Click RUN to start the current test plan.

SCPI connections

Under Resources|SCPI Connections you can add all required instruments for remote control.

🏇 R&S	TSrun				Care Care	autors include an
File	View	Resources	Options	Testplan	Favorites	Help
🔍 File B	Browsers	Bar Co	de Reader		pen 🗐 🤅	Save All 🛛 🗇 Abort All
Test Pla	ns Tes	CMW Instrument			oaded	
Add 🖻 Re		Measu	Measurement Report			
		CMW-	CMW-ZASB Instrument			
Ē	My Test	SCPI C	onnections			
🗄 🕛 🚹 Applicat	Applicati	SCPI R	eport			
		Serial F	Port			
		Test Se	etup			

Fig. 4-3: Setting the SCPI connections.

Use **Configure...** to open a wizard for entering the VISA parameters (Fig. 4-5). Enter "localhost" for the external PC SW. Use the **Test Connection** button to test the connection to the instrument. When the **Demo Mode** button is enabled, no instruments need to be connected because TSrun will run in demo mode and output a fictitious test report.

SCPI Connections		×
Globals		
D Alias	Resource Name	Timeout 🔺
SMx	TCPIP::RSSMU200A103455::I	10000
FSx	TCPIP::FSW13-101157::INSTR	10000
		-
Reporting	Break test after 10	successive timeouts
Demo Mode		
Add Delete	Configure	Test Connection
		OK Cancel

Fig. 4-4: SCPI connections.

Resource Name Composer	
Alias FSx	Remote Interface Assistant VISA: National Instruments; V5.2.0f0
Resource Name	Interface Type: VXI11 (Network)
TCPIP::FSW13-101157::INSTR	TCPIP
Timeout (ms)	IP Address O Host Name O Host Name FSW13-101157
OK Cancel	

Fig. 4-5: Wizard for entering VISA parameters. Both the IP address and a host name can be entered directly.

Reports: Measurement and SCPI

After the test is completed, TSrun automatically generates both a measurement and a SCPI report.

The measurement report shows the actual results and the selected settings.

The SCPI report returns a LOG file of all transmitted SCPI commands. These can then be copied and easily used in separate applications.

Ξ

Protocol

Test Case 1: Measurement

0:00:00.048.359: Initializing testcase! 0:00:00.048.710: TCPIP::FSW13-101157::INSTR already open. Opening new channel! 0:00:00.049.308: Opening new remote channel: FSx 0:00:00.050.740: Connection to FSx(TCPIP::FSW13-101157::INSTR) established! 0:00:00.051.207: Session handle: 1 0:00:00.051.898: Resource Name: TCPIP0::FSW13-101157::INSTR 0:00:00.052.318: VISA Manufacturer: National Instruments 0:00:00.052.728: [-->TCPIP::FSW13-101157::INSTR] *IDN? 0:00:00.053.519: [<--TCPIP::FSW13-101157::INSTR] Rohde&Schwarz,FSW-13,1312.8000 K13/101157,1.81 11 Beta 0:00:00.062.515: [-->TCPIP::FSW13-101157::INSTR] *RST;*CLS;*OPC; 0:00:00.063.483: [-->TCPIP::FSW13-101157::INSTR] INST:SEL LTE;*OPC? 0:00:00.389.506: [<--TCPIP::FSW13-101157::INSTR] 1 0:00:00.391.530: Opening new remote channel: SMx 0:00:00.416.394: Connection to SMx(TCPIP::RSSMU200A103455::INSTR) established! 0:00:00.428.844: Session handle: 2 0:00:00.431.486: Resource Name: TCPIP0::RSSMU200A103455::INSTR 0:00:00.433.090: VISA Manufacturer: National Instruments 0:00:00.434.619: [-->TCPIP::RSSMU200A103455::INSTR] *IDN? 0:00:00.437.948: [<--TCPIP::RSSMU200A103455::INSTR] Rohde&Schwarz,SMU200A,114 1.2005k02/103455,2.7.15.1-02.20.360.142 0:00:00.440.240: [-->TCPIP::RSSMU200A103455::INSTR] SYST:ERR:ALL? 0:00:00.442.742: [<--TCPIP::RSSMU200A103455::INSTR] 0,"No error" 0:00:00.444.658: [-->TCPIP::RSSMU200A103455::INSTR] *RST;*CLS;*OPC? 0:00:01.340.916: [<--TCPIP::RSSMU200A103455::INSTR] 1 0.00.01 342 753. [--- TOTD-RCCMI 12004103455-TNISTRI COLIR1-DOW/OFEC 0 Testplan Details Yield Measurement Report SCPI Report Progress Log

Fig. 4-6: SCPI report.

4.2 References

[1] Technical Specification Group Radio Access Network; E-UTRA Base station conformance testing, Release 14; 3GPP TS 36.141, V 14.9.0, March 2019

[2] Rohde & Schwarz: **UMTS Long Term Evolution (LTE) Technology Introduction**, Application Note 1MA111, October 2012

[3] Rohde & Schwarz: LTE-A Base Station Receiver Tests according to TS 36.141 Rel. 14, Application Note 1MA195, May 2019

[4] Rohde & Schwarz: LTE-A Base Station Performance Tests according to TS 36.141 Rel. 14, Application Note 1MA162, May 2019

[5] Technical Specification Group Radio Access Network; E-UTRA, UTRA and GSM/EDGE; Multistandard Radio (MSR) Base Station (BS) conformance testing, Release 10; 3GPP TS 37.141, V 10.10.0, July 2013

[6] Rohde & Schwarz: Measuring Multistandard Radio Base Stations according to TS 37.141, Application Note 1MA198, July 2012 [7] Rohde & Schwarz: LTE-Advanced (3GPP Rel.11) Technology Introduction, White Paper 1MA232, July 2013

[8] Rohde & Schwarz: **LTE-Advanced (3GPP Rel.12) Technology Introduction,** White Paper 1MA252, June 2014

4.3 Additional Information

Please send your comments and suggestions regarding this white paper to

TM-Applications@rohde-schwarz.com

4.4 Ordering Information

Ordering information for analyzers						
Signal and spectrum analyzers						
Up to 8, 13, 26, 43, 67 or 85 GHz	FSW	1312.8000Kxx				
E-UTRA/LTE FDD Downlink	FSW-K100	1313.1545.02				
E-UTRA/LTE DL/MIMO Measurements (Requires FSW-K100 and/or FSW-K104)	FSW-K102	1313.1568.02				
E-UTRA/LTE TDD Downlink	FSW-K104	1313.1574.02				
EUTRA/LTE NB-IoT Downlink Measurements	FSW-K106	1331.6351.02				
Up to 3, 7, 13, 30, or 40 GHz	FSV	1307.9002Kxx				
Up to 4, 7, 13, 30, or 40 GHz	FSVA	1321.3008.xx				
E-UTRA/LTE FDD-Downlink	FSV-K100	1310.9051.02				
E-UTRA/LTE DL/MIMO Measurements (Requires FSV-K100)	FSV-K102	1310.9151.02				
E-UTRA/LTE TDD Downlink	FSV-K104	1309.9774.02				

Rohde & Schwarz

The Rohde & Schwarz electronics group offers innovative solutions in the following business fields: test and measurement, broadcast and media, secure communications, cybersecurity, radiomonitoring and radiolocation. Founded more than 80 years ago, this independent company has an extensive sales and service network and is present in more than 70 countries.

The electronics group is among the world market leaders in its established business fields. The company is headquartered in Munich, Germany. It also has regional headquarters in Singapore and Columbia, Maryland, USA, to manage its operations in these regions.

Regional contact

Europe, Africa, Middle East +49 89 4129 12345 customersupport@rohde-schwarz.com

North America 1-888-TEST-RSA (1-888-837-8772) customer.support@rsa.rohde-schwarz.com

Latin America +1-410-910-7988 customersupport.la@rohde-schwarz.com

Asia/Pacific +65 65 13 04 88 customersupport.asia@rohde-schwarz.com

China +86-800-810-8228 /+86-400-650-5896 customersupport.china@rohde-schwarz.com

Sustainable product design

- Environmental compatibility and eco-footprint
- Energy efficiency and low emissions
- Longevity and optimized total cost of ownership

Certified Quality Management

Certified Environmental Management ISO 14001

This application note and the supplied programs may only be used subject to the conditions of use set forth in the download area of the Rohde & Schwarz website.

 $\mathsf{R}\&\mathsf{S}^{\texttt{B}}$ is a registered trademark of Rohde & Schwarz GmbH & Co. KG; Trade names are trademarks of the owners.