

 Application Note

R&S®AREG800A SCENARIO
GENERATION USING PYTHON

Using the Open Simulation Interface and Python for creating dynamic radar scenarios

Products:
► R&S®AREG800A

► R&S®AREG8-24/81/81W

► R&S®QAT100

A. Meyer-Giesow | 1GP152 | Version 1 | 11.2025

https://www.rohde-schwarz.com/appnote/1GP152

Rohde & Schwarz | Application Note R&S®AREG800A Scenario Generation Using Python 2

Contents

1 Overview .. 3

2 Introduction ... 4

3 Open Simulation Interface.. 5

3.1 AREG800A OSI Message Format ...5

3.2 AREG800A Scenario File Binary Format ..6

3.3 Simulating Objects with Constant Echo Power ...6

4 Using Python for Scenario Generation ... 7

4.1 Prerequisites ...7

4.2 Example Script Walk Through ...7

5 Running a Scenario on the AREG800A ... 11

5.1 Monitoring Simulated Objects in the Overview Screen...................................... 12

6 Related Links .. 13

7 Ordering information .. 13

Rohde & Schwarz | Application Note R&S®AREG800A Scenario Generation Using Python 3

1 Overview

The R&S®AREG800A is a powerful automotive radar echo generator, capable of over the air stimulation of

automotive radar sensors with multiple dynamic radar objects. It can either be paired with R&S®AREG8

mmWave frontends for RF performance testing, or with the R&S®QAT100 antenna array for simulating ADAS

scenarios.

The R&S®AREG800A has a scenario player built in for replaying predefined, dynamic scenarios. Scenarios

come in the form of binary files containing a sequence of timestamped ASAM Open Simulation Interface

(OSI) messages describing the radar objects that should be simulated. The R&S®AREG800A can replay

these scenario files and provides convenient playback and remote-control functions, as well as automatic

mapping of simulated objects to the connected RF frontends.

This application note presents background information and details about how to create said scenarios using

Python and how to replay them on a R&S®AREG800A. Examples for scripting dynamic scenario in Python

are provided as well.

The abbreviations “AREG” and “QAT” are used in this application note for the Rohde&Schwarz products

R&S®AREG800A and R&S®QAT100.

Rohde & Schwarz | Application Note R&S®AREG800A Scenario Generation Using Python 4

2 Introduction

Objects simulated by the AREG represent point targets, with each object having an individual range, Doppler

speed, radar cross-section (RCS), and azimuth value. The AREG can simulate up to eight objects on a single

mmWave frontend and up to four objects on a single QAT. Multiple frontends can be controlled by a single

AREG. This can be used to create setups with an increased field of view, or to stimulate multiple sensors at

once.

To test radar sensors and associated systems in dynamic scenarios, the AREG can simulate moving objects.

Unlike in static object mode, no manual object assignment to individual frontends or QAT segments is

necessary. Instead, objects are provided to the AREG as a global object list. They are automatically mapped

to a suitable frontend and channel. Objects that cannot be simulated will be listed as invalid.

Each dynamic object is defined by individual range, azimuth, Doppler, and RCS values. The AREG simulates

dynamic scenarios by processing timestamped object lists, with the new object updates becoming active at a

user defined timestamp. These object lists are always defined in the ASAM Open Simulation Interface (OSI)

message format.

There are two ways of getting OSI messages to the AREG:

► The scenario mode allows to do open loop testing by replaying *.osi scenario files. These scenario files

contain a timestamped list of OSI messages that are played back by the AREG according to their

timestamps. This application note deals with creating these scenario files by using Python scripts.

► The real time control interface can be used to do open or closed loop testing. Instead of using *.osi files

like the scenario mode, the object list is updated by streaming the same OSI messages to the AREG

interface. The real time control interface can also be used by a third-party environment simulation. The

real time interface is not covered in this application note.

Figure 1: Overview of different modes and formats for generating dynamic scenarios on the AREG800A.

Rohde & Schwarz | Application Note R&S®AREG800A Scenario Generation Using Python 5

3 Open Simulation Interface

The Open Simulation Interface defines interfaces between components of distributed simulations, focusing

on environmental perception for automated driving functions. It provides an object-based environment

description and uses Google Protocol Buffers for serialization. Key top-level messages include:

► GroundTruth: complete simulated environment in the global coordinate frame over time.

► SensorView: input to sensor models, derived from GroundTruth; environment expressed in the virtual

sensor frame.

► SensorData: emulates real sensor output, may be derived from GroundTruth, SensorView, or

FeatureData. Used by automated driving functions, sensor models, and fusion.

► FeatureData: detected features in a sensor’s reference frame, derived from GroundTruth. Used for

object detection and feature fusion.

The AREG uses the SensorData interface. SensorData includes a timestamp for when the update should

occur and a sensor ID identifying the source sensor. The objects to be simulated are carried in the

FeatureData interface.

3.1 AREG800A OSI Message Format

The AREG expects protobuf-serialized OSI SensorData messages. Each SensorData message must include

a timestamp (the time the update should occur), and sensor_id (identifying which of the sensors configured

on the AREG should be used). The payload is a FeatureData message containing RadarDetectionData,

which holds one or more RadarDetection entries. Figure 2 shows the fields populated in the AREG OSI

message format.

Figure 2: OSI message format for the AREG800A.

A RadarDetection provides position (in the sensor’s coordinate frame), radial_velocity, and rcs (radar cross

section). Each RadarDetection entry corresponds to a single object simulated by the AREG.

Table 1 describes the message fields in more detail, including data types and units. Note that the timestamp

of the OSI message is split into a second and nanoseconds part.

Rohde & Schwarz | Application Note R&S®AREG800A Scenario Generation Using Python 6

Parameter Data type Description

interface_version

(optional)

major uint32 Major version number.

minor uint32 Minor version number.

patch uint32 Patch version number.

timestamp seconds int64 The number of seconds since the start of the simulation

Unit: s

nanos uint32 The number of nanoseconds since the start of the last second.

Unit: ns

sensor_id uint64 The ID of the sensor.

position distance double The radial distance.

Unit: m

azimuth double The azimuth (horizontal) angle. Counter-clockwise is positive.

Unit: rad

elevation double The elevation (vertical) angle. Up is positive.

Unit: rad

radial_velocity double Radial velocity of the detection, positive when moving away from the sensor..

Unit: m/s

rcs double The radar cross section (RCS) of the radar detection.

Unit: dBm2

Conversion from m2 to dBm2: RCSdBm2 = 10 * log10(RCSm2)

Table 1: Field description for the AREG800A OSI message format.

3.2 AREG800A Scenario File Binary Format

OSI messages are serialized using Google Protocol Buffers (protobuf). On a binary level, they are

representations of top-level OSI messages such as the SensorData message used by the AREG. The

message structure is defined by the OSI .proto files, while the binary encoding follows the protobuf wire-

format specification. The protobuf compiler (protoc) produces language specific bindings from the OSI .proto

files. These bindings implement serialization and deserialization, removing the need to handle the binary

layout manually.

To generate an OSI message for the AREG, generate language-specific bindings with the protobuf compiler,

populate the message fields of the SensorData message as described in the AREG800A OSI message

format, and invoke the library’s serialization method. When writing to a file, each message is prefixed with a

with a length field containing the size of the following message in bytes.

An OSI scenario file is therefore a list of individual OSI messages containing one or multiple radar objects,

with increasing timestamps. The AREG simulates the list of radar objects described in each OSI message. A

new object list becomes active at each new timestamp.

3.3 Simulating Objects with Constant Echo Power

OSI messages specify objects via RCS only, so echo power varies with range: nearer objects yield higher

echo power. Some tests need a constant echo power regardless of range. AREG supports this in static mode

by specifying a signal attenuation value directly. When using OSI messages, the same effect can be

achieved by adjusting RCS over time to offset path loss: increase RCS as range increases and decrease it

as range decreases.

AREG relates attenuation, RCS, range, and center frequency by the following formula:

Rohde & Schwarz | Application Note R&S®AREG800A Scenario Generation Using Python 7

RCS =
𝜆2

4π

𝑅4

𝐴4

1

𝐴𝑡𝑡0

with 𝜆 = 𝑐/𝑓, 𝑐 = 299700000 m/s, 𝑓 the radar center frequency, 𝑅 the object distance, 𝐴 the air gap between

sensor and AREG antennas, and 𝐴𝑡𝑡0 the object attenuation (linear, not dB).

By setting 𝐴𝑡𝑡0 constant and computing RCS for each timestamp from the current range, the echo power

then remains constant across the scenario. An example script for generating a constant echo power range

sweep is supplied together with this application note.

4 Using Python for Scenario Generation

The following Section describes how to generate an OSI file for a simple range sweep scenario, using Python

and the publicly available Python bindings for the OSI interface.

4.1 Prerequisites

To generate OSI messages using Python, the official OSI Python package containing the protobuf bindings

can be used. The minimum required OSI version is 3.5.0. The installation process differs depending on which

operating system is used. Official instructions on how to install the Python and C++ bindings are available in

the ASAM OSI documentation:

► Windows: https://opensimulationinterface.github.io/osi-antora-

generator/asamosi/latest/interface/setup/installing_windows_python.html

► Linux: https://opensimulationinterface.github.io/osi-antora-

generator/asamosi/latest/interface/setup/installing_linux_python.html

4.2 Example Script Walk Through

To generate OSI messages, we need to import the SensorData class from the Python OSI package. The

SensorData interface is the base for communication with the AREG800A. We also need the struct package

to pack the serialized OSI messages into a binary file.

from osi3.osi_sensordata_pb2 import SensorData

import struct

Next, we define helper functions to deal with the OSI messages. the OsiRadarSensor class creates an OSI

message as expected by the AREG. For each update, an OsiRadarSensor is initialized with a sensor ID and

timestamp. The timestamp defines the scenario time at which this OSI message becomes active. Radar

objects are added with the add_detection function. Internally, the add_detection function adds a sensor

detection to the SensorData message and populates the field necessary for the AREG. To simulate multiple

objects, call the add_detection function multiple times. Finally, the message can be serialized with the

serialize_to_byte_msg function. The serialization of the OSI message is provided by the Python OSI package

and uses Google Protobuf.

https://opensimulationinterface.github.io/osi-antora-generator/asamosi/latest/interface/setup/installing_windows_python.html
https://opensimulationinterface.github.io/osi-antora-generator/asamosi/latest/interface/setup/installing_windows_python.html
https://opensimulationinterface.github.io/osi-antora-generator/asamosi/latest/interface/setup/installing_linux_python.html
https://opensimulationinterface.github.io/osi-antora-generator/asamosi/latest/interface/setup/installing_linux_python.html

Rohde & Schwarz | Application Note R&S®AREG800A Scenario Generation Using Python 8

The generate_osi_msg function does all the above for a single radar object:

class OsiRadarSensor:

 """Wrapper for OSI Python interface"""

 def __init__(self, sensor_id=1, timestamp_sec=0, timestamp_nanos=0):

 self.sensordata = SensorData()

 self.sensordata.sensor_id.value = sensor_id

 self.sensordata.timestamp.seconds = timestamp_sec

 self.sensordata.timestamp.nanos = timestamp_nanos

 self.radar_sensor = self.sensordata.feature_data.radar_sensor.add()

 def add_detection(self, distance, azimuth, radial_velocity, rcs):

 detection = self.radar_sensor.detection.add()

 detection.position.distance = distance

 detection.position.azimuth = azimuth

 detection.radial_velocity = radial_velocity

 detection.rcs = rcs

 def serialize_to_byte_msg(self):

 bytes_buffer = self.sensordata.SerializeToString()

 return bytes_buffer

def generate_osi_msg(ts_sec, ts_nanos, range, azimuth, velocity, rcs):

 """

 Generates OSI message for the specified target.

 Returns:

 buffer containing serialized OSI message

 """

 rad = OsiRadarSensor(1, ts_sec, ts_nanos)

 rad.add_detection(range, azimuth, velocity, rcs)

 msg = rad.serialize_to_byte_msg()

 return msg

Rohde & Schwarz | Application Note R&S®AREG800A Scenario Generation Using Python 9

We also need a function that generates positions for the object’s movement. In this example, the

range_sweep function calculates the positions of an object moving towards the radar sensor at a specified

speed. After the range_sweep generator function is initialized with the desired parameters, we can then

iterate on it to obtain serialized OSI messages that we can write to the .osi scenario file.

def range_sweep(interval, range_start, range_stop, vel, rcs, az):

 """

 Yields OSI messages for an object moving towards radar at constant velocity

 Parameters:

 interval: interval at which the movement should be updated in seconds

 range_start: start of range sweep in m

 range_stop: stop of range sweep in m

 vel: radial velocity of target in m/s

 rcs: radar-cross section of target in dBsm

 az: azimuth of target in radians (positive turns counter-clockwise)

 Returns:

 serialized OSI message

 """

 if range_start < range_stop:

 raise ValueError("range_start must be greater than range_stop")

 if vel > 0.0:

 raise ValueError("Radial velocity must be negative for a target moving

towards the radar")

 if interval < 0.01:

 raise ValueError("Update interval for scenarios should be >= 10ms")

 timestamp_sec = 0

 timestamp_nanos = 0

 range_step = vel * interval

 curr_range = range_start

 while curr_range >= range_stop:

 msg = generate_osi_msg(timestamp_sec, timestamp_nanos, curr_range, az,

vel, rcs)

 curr_range += range_step

 timestamp_nanos += int(interval * 1e9)

 if timestamp_nanos >= 1000000000:

 timestamp_sec += 1

 timestamp_nanos = 0

 yield msg

Rohde & Schwarz | Application Note R&S®AREG800A Scenario Generation Using Python 10

In the final step, everything is put together. We set the scenario parameters, allocate a buffer to write the OSI

messages to, and initialize the range_sweep position generator. We then iterate over the position generator

until it reaches its stop condition and append each OSI message to the buffer. Finally, the filled buffer is

written to a file.

if __name__ == "__main__":

 # scenario settings

 update_interval = 0.1 # scenario update rate in seconds

 start = 120 # m

 stop = 20.0 # m

 velocity = -10.0 # m/s

 rcs = 10 # dBsm

 azimuth = 0.0 # rad

 buf = bytes()

 osi_msg = range_sweep(update_interval, start, stop, velocity, rcs, azimuth)

 while True:

 try:

 next_msg = next(osi_msg)

 except StopIteration:

 print('End of scenario')

 break

 buf += struct.pack("<L", len(next_msg)) + next_msg

 f = open("range_sweep_example.osi", "wb")

 f.write(buf)

 f.close()

The complete script can be found in the additional files provided with this application note.

Rohde & Schwarz | Application Note R&S®AREG800A Scenario Generation Using Python 11

5 Running a Scenario on the AREG800A

Once an OSI scenario file has been generated, it must be transferred to the AREG. This can be done via SD

Card or USB flash drive. A more convenient method is to transfer the OSI file to the AREG via network (SMB

or FTP). For more details see the chapter “Transferring files from and to the instrument” in the instrument

manual (link to online manual).

If the scenario generation/instrument control is done using Python, you can also use the RsInstrument

Python package, which contains a convenient function for file transfer directly out of your Python script. See

the Related Links section for more details.

To enable the scenario replay mode on the AREG:

1. Go to the Operation Setup tile and select “Mode > Dynamic” and “Data Source > Scenario”.

Figure 3: Operation Setup of the AREG800A set to scenario replay mode.

2. On the home screen, go to “Radar Objects > Scenario”.

Figure 4: Access to the scenario player via the home screen.

https://www.rohde-schwarz.com/webhelp/AREG_HTML_UserManual_en/Content/67b2894dc08d46f2.htm

Rohde & Schwarz | Application Note R&S®AREG800A Scenario Generation Using Python 12

3. The scenario player screen will open and provide options to select and play an OSI file on the AREG.

Figure 5: Scenario player screen of the AREG800A.

For more details on the scenario player, see the chapter “Scenario settings” in the user manual (link to online

user manual). All actions, including starting the replay can be automated via SCPI commands.

5.1 Monitoring Simulated Objects in the Overview Screen

The AREG overview screen provides real-time monitoring of scenario inputs and frontend mappings. It

displays the received OSI objects within a polar view. The AREG evaluates each object against the current

frontend setup, considering simulation restraints like field of view and minimum distance, and marks non-

simulatable objects as invalid.

In Figure 6, three objects are received: two are simulated (blue) and one is invalid (gray) because it is outside

the QAT100 frontend’s field of view; the shaded orange wedges indicate the available frontend sectors and

the red cross marks the sensor position.

Figure 6: Object overview screen during scenario replay.

https://www.rohde-schwarz.com/webhelp/AREG_HTML_UserManual_en/Content/b0f7b8c29f0442c5.htm
https://www.rohde-schwarz.com/webhelp/AREG_HTML_UserManual_en/Content/b0f7b8c29f0442c5.htm

Rohde & Schwarz | Application Note R&S®AREG800A Scenario Generation Using Python 13

6 Related Links

ASAM OSI website: https://www.asam.net/standards/detail/osi/

Python OSI repository: https://github.com/OpenSimulationInterface/open-simulation-interface

OSI user guide: https://opensimulationinterface.github.io/osi-antora-

generator/asamosi/latest/specification/index.html

AREG800A online manual: https://www.rohde-

schwarz.com/webhelp/AREG_HTML_UserManual_en/Content/welcome.htm

RsInstrument Python Package: https://pypi.org/project/RsInstrument/

File transfer with RsInstrument: https://rsinstrument.readthedocs.io/en/latest/StepByStepGuide.html#pc-

instrument

7 Ordering information

Designation Type Order No.

Base unit

Automotive radar echo generator R&S®AREG800A 1437.4400.02

R&S®QAT100 advanced antenna
array

Advanced antenna array, from 76 GHz
to 81 GHz

R&S®QAT100 1341.0004.02

mmWave remote frontends

76 GHz to 81 GHz, single antenna, 5
GHz RF bandwidth

R&S®AREG8-81WS 1437.9153K02

76 GHz to 81 GHz, two antennas, 5
GHz RF bandwidth

R&S®AREG8-81WD 1437.9160K02

https://www.asam.net/standards/detail/osi/
https://www.asam.net/standards/detail/osi/
https://github.com/OpenSimulationInterface/open-simulation-interface
https://opensimulationinterface.github.io/osi-antora-generator/asamosi/latest/specification/index.html
https://opensimulationinterface.github.io/osi-antora-generator/asamosi/latest/specification/index.html
https://www.rohde-schwarz.com/webhelp/AREG_HTML_UserManual_en/Content/welcome.htm
https://www.rohde-schwarz.com/webhelp/AREG_HTML_UserManual_en/Content/welcome.htm
https://pypi.org/project/RsInstrument/
https://rsinstrument.readthedocs.io/en/latest/StepByStepGuide.html%23pc-instrument
https://rsinstrument.readthedocs.io/en/latest/StepByStepGuide.html%23pc-instrument

Rohde & Schwarz
The Rohde & Schwarz electronics group offers

innovative solutions in the following business fields: test

and measurement, broadcast and media, secure

communications, cybersecurity, monitoring and network

testing. Founded more than 80 years ago, the

independent company which is headquartered in

Munich, Germany, has an extensive sales and service

network with locations in more than 70 countries.

www.rohde-schwarz.com

Rohde & Schwarz training
www.rohde-schwarz.com/training

Rohde & Schwarz customer support
www.rohde-schwarz.com/support

Certified Quality Management

ISO 9001

P
A

D
-T

-M
:
3
5
7
2
.7

1
8
6
.0

0
/0

2
.0

0
/E

N

R&S® is a registered trademark of Rohde & Schwarz GmbH & Co. KG

Trade names are trademarks of the owners.

1GP152 | Version 1 | 11.2025

Application Note | R&S®AREG800A Scenario Generation Using Python

Data without tolerance limits is not binding | Subject to change

© 2025 Rohde & Schwarz GmbH & Co. KG | 81671 Munich, Germany

www.rohde-schwarz.com

https://www.rohde-schwarz.com/
http://www.rohde-schwarz.com/training
https://www.rohde-schwarz.com/support
https://www.rohde-schwarz.com/support
https://www.rohde-schwarz.com/

