Application Note

R&S®AREG800A SCENARIO
GENERATION USING PYTHON

Using the Open Simulation Interface and Python for creating dynamic radar scenarios

Products:
» R&SPAREGS00A

» R&S®PAREGS8-24/81/81W

» R&S®QAT100

A. Meyer-Giesow | 1GP152 | Version 1 | 11.2025
https://www.rohde-schwarz.com/appnote/1GP152

ROHDE&SCHWARZ
Make ideas real

Contents

1
2
3

3.1
3.2
3.3

4

4.1
4.2

5
5.1

6
7

0T - 3
INtrodUCtioN........cccciiicre e ——————— 4
Open Simulation Interface........ccccocvvrvrernrrnerr e 5
AREGB800A OSI Message Format..........ccoooeieiiiiiiiiiiiii e 5
AREGBS800A Scenario File Binary Format ... 6
Simulating Objects with Constant Echo Powerccccooiiiiiiiiiiii e, 6
Using Python for Scenario Generationc.cccovreerienrnesnesesesesssesnnnes 7
e =T =T o [T (=T 7
Example Script Walk Throughoooiii e 7
Running a Scenario on the AREG800A.............ccorrirniennsmsnsesessesesnnns 11
Monitoring Simulated Objects in the Overview Screen............cccooeeeeeivvieieinennnnn. 12
Related Links ... 13
Ordering information...........c.ccceininnnn e —————— 13

Rohde & Schwarz | Application Note R&S®AREGS800A Scenario Generation Using Python 2

1 Overview

The R&S®PAREGB800A is a powerful automotive radar echo generator, capable of over the air stimulation of
automotive radar sensors with multiple dynamic radar objects. It can either be paired with R&S®AREGS
mmWave frontends for RF performance testing, or with the R&S®QAT100 antenna array for simulating ADAS
scenarios.

The R&S®PAREGB800A has a scenario player built in for replaying predefined, dynamic scenarios. Scenarios
come in the form of binary files containing a sequence of timestamped ASAM Open Simulation Interface
(OSI) messages describing the radar objects that should be simulated. The R&S®AREG800A can replay
these scenario files and provides convenient playback and remote-control functions, as well as automatic
mapping of simulated objects to the connected RF frontends.

This application note presents background information and details about how to create said scenarios using
Python and how to replay them on a R&S®AREG800A. Examples for scripting dynamic scenario in Python
are provided as well.

The abbreviations “AREG” and “QAT” are used in this application note for the Rohde&Schwarz products
R&S®PAREG800A and R&S®QAT100.

Rohde & Schwarz | Application Note R&S®AREGS800A Scenario Generation Using Python 3

2 Introduction

Objects simulated by the AREG represent point targets, with each object having an individual range, Doppler
speed, radar cross-section (RCS), and azimuth value. The AREG can simulate up to eight objects on a single
mmWave frontend and up to four objects on a single QAT. Multiple frontends can be controlled by a single
AREG. This can be used to create setups with an increased field of view, or to stimulate multiple sensors at
once.

To test radar sensors and associated systems in dynamic scenarios, the AREG can simulate moving objects.
Unlike in static object mode, no manual object assignment to individual frontends or QAT segments is
necessary. Instead, objects are provided to the AREG as a global object list. They are automatically mapped
to a suitable frontend and channel. Objects that cannot be simulated will be listed as invalid.

Each dynamic object is defined by individual range, azimuth, Doppler, and RCS values. The AREG simulates
dynamic scenarios by processing timestamped object lists, with the new object updates becoming active at a
user defined timestamp. These object lists are always defined in the ASAM Open Simulation Interface (OSI)
message format.

There are two ways of getting OSI messages to the AREG:

» The scenario mode allows to do open loop testing by replaying *.osi scenario files. These scenario files
contain a timestamped list of OSI messages that are played back by the AREG according to their
timestamps. This application note deals with creating these scenario files by using Python scripts.

» The real time control interface can be used to do open or closed loop testing. Instead of using *.osi files
like the scenario mode, the object list is updated by streaming the same OSI| messages to the AREG
interface. The real time control interface can also be used by a third-party environment simulation. The
real time interface is not covered in this application note.

Dynamic Scenarios

/\

Real Time Control

Offline Replay Interface
| / \

OSI Messages 0S| Messages RAW Messages
4

e e

Figure 1: Overview of different modes and formats for generating dynamic scenarios on the AREG800A.

Y

Rohde & Schwarz | Application Note R&S®AREGS800A Scenario Generation Using Python 4

3 Open Simulation Interface

The Open Simulation Interface defines interfaces between components of distributed simulations, focusing
on environmental perception for automated driving functions. It provides an object-based environment
description and uses Google Protocol Buffers for serialization. Key top-level messages include:

» GroundTruth: complete simulated environment in the global coordinate frame over time.

» SensorView: input to sensor models, derived from GroundTruth; environment expressed in the virtual
sensor frame.

» SensorData: emulates real sensor output, may be derived from GroundTruth, SensorView, or
FeatureData. Used by automated driving functions, sensor models, and fusion.

» [FeatureData: detected features in a sensor’s reference frame, derived from GroundTruth. Used for
object detection and feature fusion.

The AREG uses the SensorData interface. SensorData includes a timestamp for when the update should
occur and a sensor ID identifying the source sensor. The objects to be simulated are carried in the
FeatureData interface.

3.1 AREGBS800A OSI Message Format

The AREG expects protobuf-serialized OSI SensorData messages. Each SensorData message must include
a timestamp (the time the update should occur), and sensor_id (identifying which of the sensors configured
on the AREG should be used). The payload is a FeatureData message containing RadarDetectionData,
which holds one or more RadarDetection entries. Figure 2 shows the fields populated in the AREG OSI
message format.

[interface_version] SensorData

FeatureData

RadarDetectionData

RadarDetection

radial_velocity

L~

[position

“—

[timestamp] [sensor_id]

Figure 2: OSI message format for the AREG800A.

A RadarDetection provides position (in the sensor’s coordinate frame), radial_velocity, and rcs (radar cross
section). Each RadarDetection entry corresponds to a single object simulated by the AREG.

Table 1 describes the message fields in more detail, including data types and units. Note that the timestamp
of the OSI message is split into a second and nanoseconds part.

Rohde & Schwarz | Application Note R&S®AREGS800A Scenario Generation Using Python 5

Parameter Data type JDescription

interface_version major uint32 Major version number.
(optional)
minor uint32 Minor version number.
patch uint32 Patch version number.
timestamp seconds int64 The number of seconds since the start of the simulation
Unit: s
nanos uint32 The number of nanoseconds since the start of the last second.
Unit: ns
sensor_id uint64 The ID of the sensor.
position distance double The radial distance.
Unit: m
azimuth double The azimuth (horizontal) angle. Counter-clockwise is positive.
Unit: rad
elevation double The elevation (vertical) angle. Up is positive.
Unit: rad
radial_velocity double Radial velocity of the detection, positive when moving away from the sensor..
Unit: m/s
rcs double The radar cross section (RCS) of the radar detection.
Unit: dBm?

Conversion from m? to dBm? RCSggmz = 10 * 10g10(RCSm2)

Table 1: Field description for the AREG800A OSI message format.

3.2 AREGS800A Scenario File Binary Format

OSI messages are serialized using Google Protocol Buffers (protobuf). On a binary level, they are
representations of top-level OSI messages such as the SensorData message used by the AREG. The
message structure is defined by the OSI .proto files, while the binary encoding follows the protobuf wire-
format specification. The protobuf compiler (protoc) produces language specific bindings from the OSI .proto
files. These bindings implement serialization and deserialization, removing the need to handle the binary
layout manually.

To generate an OSI message for the AREG, generate language-specific bindings with the protobuf compiler,
populate the message fields of the SensorData message as described in the AREG800A OSI message
format, and invoke the library’s serialization method. When writing to a file, each message is prefixed with a
with a length field containing the size of the following message in bytes.

An OSI scenario file is therefore a list of individual OSI messages containing one or multiple radar objects,
with increasing timestamps. The AREG simulates the list of radar objects described in each OSI message. A
new object list becomes active at each new timestamp.

3.3 Simulating Objects with Constant Echo Power

OSI messages specify objects via RCS only, so echo power varies with range: nearer objects yield higher
echo power. Some tests need a constant echo power regardless of range. AREG supports this in static mode
by specifying a signal attenuation value directly. When using OSI messages, the same effect can be
achieved by adjusting RCS over time to offset path loss: increase RCS as range increases and decrease it
as range decreases.

AREG relates attenuation, RCS, range, and center frequency by the following formula:

Rohde & Schwarz | Application Note R&S®AREGS800A Scenario Generation Using Python 6

with A = ¢/f, ¢ = 299700000 m/s, f the radar center frequency, R the object distance, A the air gap between
sensor and AREG antennas, and Att, the object attenuation (linear, not dB).

By setting Att, constant and computing RCS for each timestamp from the current range, the echo power
then remains constant across the scenario. An example script for generating a constant echo power range
sweep is supplied together with this application note.

4 Using Python for Scenario Generation

The following Section describes how to generate an OSl file for a simple range sweep scenario, using Python
and the publicly available Python bindings for the OSI interface.

4.1 Prerequisites

To generate OSI messages using Python, the official OSI Python package containing the protobuf bindings
can be used. The minimum required OSI version is 3.5.0. The installation process differs depending on which
operating system is used. Official instructions on how to install the Python and C++ bindings are available in
the ASAM OSI documentation:

» Windows: https://opensimulationinterface.github.io/osi-antora-
generator/asamosi/latest/interface/setup/installing windows python.html

» Linux: https://opensimulationinterface.github.io/osi-antora-
generator/asamosi/latest/interface/setup/installing linux python.html

4.2 Example Script Walk Through

To generate OSI messages, we need to import the SensorData class from the Python OSI package. The
SensorData interface is the base for communication with the AREG800A. We also need the struct package
to pack the serialized OSI| messages into a binary file.

from osi3.osi sensordata pb2 import SensorData
import struct

Next, we define helper functions to deal with the OSI| messages. the OsiRadarSensor class creates an OSI
message as expected by the AREG. For each update, an OsiRadarSensor is initialized with a sensor ID and
timestamp. The timestamp defines the scenario time at which this OSI message becomes active. Radar
objects are added with the add_detection function. Internally, the add_detection function adds a sensor
detection to the SensorData message and populates the field necessary for the AREG. To simulate multiple
objects, call the add_detection function multiple times. Finally, the message can be serialized with the
serialize_to_byte _msg function. The serialization of the OSI message is provided by the Python OSI package
and uses Google Protobuf.

Rohde & Schwarz | Application Note R&S®AREGS800A Scenario Generation Using Python 7

https://opensimulationinterface.github.io/osi-antora-generator/asamosi/latest/interface/setup/installing_windows_python.html
https://opensimulationinterface.github.io/osi-antora-generator/asamosi/latest/interface/setup/installing_windows_python.html
https://opensimulationinterface.github.io/osi-antora-generator/asamosi/latest/interface/setup/installing_linux_python.html
https://opensimulationinterface.github.io/osi-antora-generator/asamosi/latest/interface/setup/installing_linux_python.html

The generate_osi_msg function does all the above for a single radar object:

class OsiRadarSensor:

"""Wrapper for OSI Python interface"""

def init (self, sensor id=1l, timestamp sec=0, timestamp nanos=0) :
self.sensordata = SensorData ()
self.sensordata.sensor id.value = sensor_ id
self.sensordata.timestamp.seconds = timestamp sec
self.sensordata.timestamp.nanos = timestamp nanos
self.radar sensor = self.sensordata.feature data.radar sensor.add()

def add detection(self, distance, azimuth, radial velocity, rcs):
detection = self.radar sensor.detection.add()
detection.position.distance = distance
detection.position.azimuth = azimuth
detection.radial velocity = radial velocity
detection.rcs = rcs

def serialize to byte msg(self):
bytes buffer = self.sensordata.SerializeToString()
return bytes buffer

def generate osi msg(ts sec, ts nanos, range, azimuth, velocity, rcs):

Generates OSI message for the specified target.

Returns:

buffer containing serialized OSI message
rad = OsiRadarSensor(l, ts_sec, ts_nanos)
rad.add detection(range, azimuth, velocity, rcs)
msg = rad.serialize to byte msg()
return msg

Rohde & Schwarz | Application Note R&S®AREGB800A Scenario Generation Using Python 8

We also need a function that generates positions for the object’'s movement. In this example, the
range_sweep function calculates the positions of an object moving towards the radar sensor at a specified
speed. After the range_sweep generator function is initialized with the desired parameters, we can then
iterate on it to obtain serialized OSI| messages that we can write to the .osi scenario file.

def

range sweep (interval, range start, range stop, vel, rcs, az):

Yields OSI messages for an object moving towards radar at constant velocity

Parameters:
interval: interval at which the movement should be updated in seconds
range start: start of range sweep in m
range stop: stop of range sweep in m
vel: radial velocity of target in m/s
rcs: radar-cross section of target in dBsm
az: azimuth of target in radians (positive turns counter-clockwise)

Returns:
serialized OSI message
if range start < range_ stop:
raise ValueError ("range start must be greater than range stop")
if vel > 0.0:
raise ValueError ("Radial velocity must be negative for a target moving

towards the radar")

vel,

if interval < 0.01:
raise ValueError ("Update interval for scenarios should be >= 10ms")

timestamp sec = 0
timestamp nanos = 0
range step = vel * interval
curr_range = range start
while curr range >= range stop:
msg = generate osi msg(timestamp sec, timestamp nanos, curr range, az,
rcs)
curr range += range step
timestamp nanos += int(interval * 1le9)
if timestamp nanos >= 1000000000:
timestamp sec += 1
timestamp nanos = 0
yield msg

Rohde & Schwarz | Application Note R&S®AREGS800A Scenario Generation Using Python 9

In the final step, everything is put together. We set the scenario parameters, allocate a buffer to write the OSI
messages to, and initialize the range_sweep position generator. We then iterate over the position generator
until it reaches its stop condition and append each OS| message to the buffer. Finally, the filled buffer is
written to a file.

if name == " main
scenario settings

update interval = 0.1 # scenario update rate in seconds
start = 120 # m

stop = 20.0 # m

velocity = -10.0 # m/s

rcs = 10 # dBsm

azimuth = 0.0 # rad

buf = bytes|()

osl msg = range sweep (update interval, start, stop, velocity, rcs, azimuth)
while True:
try:
next msg = next(osi_msg)

except Stoplteration:
print ('End of scenario')
break
buf += struct.pack("<L", len(next msg)) + next msg

f = open("range sweep example.osi", "wb")
f.write (buf)
f.close ()

The complete script can be found in the additional files provided with this application note.

Rohde & Schwarz | Application Note R&S®AREGS800A Scenario Generation Using Python 10

5 Running a Scenario on the AREG800A

Once an OSI scenario file has been generated, it must be transferred to the AREG. This can be done via SD
Card or USB flash drive. A more convenient method is to transfer the OSI file to the AREG via network (SMB
or FTP). For more details see the chapter “Transferring files from and to the instrument” in the instrument
manual (link to online manual).

If the scenario generation/instrument control is done using Python, you can also use the Rsinstrument
Python package, which contains a convenient function for file transfer directly out of your Python script. See
the Related Links section for more details.

To enable the scenario replay mode on the AREG:

1. Go to the Operation Setup tile and select “Mode > Dynamic” and “Data Source > Scenario”.

‘ﬁ‘ . Operation Bandwidth | Realtime Control .Sys1em Control x
= Setup Config Network Network
3

! Radar (YRR Data Source
Power

Dynamic Scenario

Operation
pSeiup Use Switching Unit []

Settings

Object
Marker

Multi
Instr.

Figure 3: Operation Setup of the AREG800A set to scenario replay mode.

On the home screen, go to “Radar Objects > Scenario”.

Radar Objects

Logging ...
Units ...
Radar Power ...

Overview ...

Graphics ...

Figure 4: Access to the scenario player via the home screen.

Rohde & Schwarz | Application Note R&S®AREGS800A Scenario Generation Using Python 11

https://www.rohde-schwarz.com/webhelp/AREG_HTML_UserManual_en/Content/67b2894dc08d46f2.htm

3. The scenario player screen will open and provide options to select and play an OSI file on the AREG.

X

G Stop 00:00:00.000 00:00:40.000”
ZUCH 00:00:00.00008 |

Scenario e Select File ...

Start [hh:mm:ss.fff] Stop [hh:mm:ss.fff]
00:00:00.000 00:00:40.000

Position [hh:mm:ss.fff] @| Replay Mode .
00:00:00.000 Single

Reset Play Pause Stop
©w | Orw |] |

* Scenario

/var/user/acc.osi

Figure 5: Scenario player screen of the AREG800A.

For more details on the scenario player, see the chapter “Scenario settings” in the user manual (link to online
user manual). All actions, including starting the replay can be automated via SCPl commands.

5.1 Monitoring Simulated Objects in the Overview Screen

The AREG overview screen provides real-time monitoring of scenario inputs and frontend mappings. It
displays the received OSI objects within a polar view. The AREG evaluates each object against the current
frontend setup, considering simulation restraints like field of view and minimum distance, and marks non-
simulatable objects as invalid.

In Figure 6, three objects are received: two are simulated (blue) and one is invalid (gray) because it is outside
the QAT100 frontend’s field of view; the shaded orange wedges indicate the available frontend sectors and
the red cross marks the sensor position.

ﬁ‘ FErE ;lalid Objects Ilnvalid Objects Object Monitoring m

Radar
b oer Autoscale [|

. Max. Distance
Overview

Scenario

N Om. :7.5m 15m :22.5m30m
%

Figure 6: Object overview screen during scenario replay.

Rohde & Schwarz | Application Note R&S®AREGS800A Scenario Generation Using Python 12

https://www.rohde-schwarz.com/webhelp/AREG_HTML_UserManual_en/Content/b0f7b8c29f0442c5.htm
https://www.rohde-schwarz.com/webhelp/AREG_HTML_UserManual_en/Content/b0f7b8c29f0442c5.htm

6 Related Links

ASAM OSI website: https://www.asam.net/standards/detail/osi/

Python OSI repository: https://github.com/OpenSimulationinterface/open-simulation-interface

OSI user guide: https://opensimulationinterface.qgithub.io/osi-antora-
generator/asamosi/latest/specification/index.html

AREGB800A online manual: https://www.rohde-
schwarz.com/webhelp/AREG HTML UserManual en/Content/welcome.htm

Rsinstrument Python Package: https://pypi.org/project/RsInstrument/

File transfer with RsInstrument: https://rsinstrument.readthedocs.io/en/latest/StepByStepGuide.html#pc-
instrument

7 Ordering information

Designation Type Order No.
Base unit

Automotive radar echo generator R&S®AREGB800A 1437.4400.02
R&S®QAT100 advanced antenna

array

Advanced antenna array, from 76 GHz R&S®QAT100 1341.0004.02
to 81 GHz

mmWave remote frontends

76 GHz to 81 GHz, single antenna, 5 R&S®AREGS8-81WS 1437.9153K02
GHz RF bandwidth

76 GHz to 81 GHz, two antennas, 5 R&S®AREG8-81WD 1437.9160K02

GHz RF bandwidth

Rohde & Schwarz | Application Note R&S®AREGS800A Scenario Generation Using Python 13

https://www.asam.net/standards/detail/osi/
https://www.asam.net/standards/detail/osi/
https://github.com/OpenSimulationInterface/open-simulation-interface
https://opensimulationinterface.github.io/osi-antora-generator/asamosi/latest/specification/index.html
https://opensimulationinterface.github.io/osi-antora-generator/asamosi/latest/specification/index.html
https://www.rohde-schwarz.com/webhelp/AREG_HTML_UserManual_en/Content/welcome.htm
https://www.rohde-schwarz.com/webhelp/AREG_HTML_UserManual_en/Content/welcome.htm
https://pypi.org/project/RsInstrument/
https://rsinstrument.readthedocs.io/en/latest/StepByStepGuide.html%23pc-instrument
https://rsinstrument.readthedocs.io/en/latest/StepByStepGuide.html%23pc-instrument

Rohde & Schwarz

The Rohde & Schwarz electronics group offers
innovative solutions in the following business fields: test
and measurement, broadcast and media, secure
communications, cybersecurity, monitoring and network
testing. Founded more than 80 years ago, the
independent company which is headquartered in
Munich, Germany, has an extensive sales and service
network with locations in more than 70 countries.

www.rohde-schwarz.com

Certified Quality Management

1SO 9001

Rohde & Schwarz training

www.rohde-schwarz.com/training

EiE

Rohde & Schwarz customer support
www.rohde-schwarz.com/support

[m]:7h 25 =]
1

L

=]

R&S® is a registered trademark of Rohde & Schwarz GmbH & Co. KG

Trade names are trademarks of the owners.

1GP152 | Version 1| 11.2025

Application Note | R&S®AREGS800A Scenario Generation Using Python
Data without tolerance limits is not binding | Subject to change

© 2025 Rohde & Schwarz GmbH & Co. KG | 81671 Munich, Germany
www.rohde-schwarz.com

https://www.rohde-schwarz.com/
http://www.rohde-schwarz.com/training
https://www.rohde-schwarz.com/support
https://www.rohde-schwarz.com/support
https://www.rohde-schwarz.com/

