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With advances in digital signal processing techniques modern wireless communications systems and radar 

systems have become increasingly digital and more constraints have been placed on packing more 

information into less and less bandwidth.  On the wireless side, modulation formats have become more 

complicated with less margin for symbol error.  On the radar side, modern radar systems are trying to 

extract more information about the targets they track and provide the ability to track slow moving targets 

such as automobiles and personnel in the presence of clutter.   

For both communications and radar systems one of the key RF parameters that limits system performance 

is phase noise.  As systems engineers develop new and more advanced RF systems, phase noise of 

oscillators and transmitters can no longer be overlooked. 

This application note will focus on phase noise measurements for pulsed RF carriers such as those used 

for radar systems.  We will address some of the physical limitations relating to pulsed phase noise 

measurement and introduce the capabilities of the new Rohde & Schwarz FSWP phase noise analyzer. 

                                                                                                                           

  
Note: 

Please find the most up-to-date document on our homepage http://www.rohde-schwarz.com/appnote/1EF94. 
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1 Introduction 

The word radar is an acronym standing for radio detection and ranging.  From this we 

know that the primary purposes for radar systems is to detect targets and determine 

their range or distance.  Other key characteristics of the target may also be of interest 

such as:  location, bearing from the radar, velocity of the target, and size of the target 

or possibly even some form of target identification. 
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Figure 1.  Simplified Radar Concept 

 

Most radar systems employ pulse modulation, transmitting a short burst or pulse of RF 

energy then wait for the signal to travel to the target, reflect off of the target, and return 

to the radar system.  By measuring the total elapsed time for the signal to travel to and 

return from the target the distance to the target can be determined by knowing the 

velocity of propagation of the RF signal.  The bearing to the target can be determined 

by using a narrow-beam antenna and measuring angular displacement of the antenna 

from North to the target. 

1.1.1 Radar Velocity Measurements 

Before getting started with a discussion of pulsed phase noise, it would be good to 

provide some background relating to why pulse phase noise is important to radar 

systems engineers.  The following discussion will provide some examples of typical 

radar applications illustrating what frequency offsets may be of importance. 

The velocity of radar targets can be determined by measuring the Doppler shift of the 

radar's received signal relative to that of the transmitter.  Essentially, if the target is 

moving toward the radar the effective wavelength of the transmitted signal is reduced 

or compressed by the relative motion of the target during each RF cycle.  The Doppler 

frequency for a moving target can be expressed as: 

 

Where: 

 fd  = Doppler frequency 

 f0 = radar transmit frequency 
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 v = target velocity vector 

 R = the radial unit vector relative to the radar antenna 

 Θ = the angle between the velocity vector of the target and the radar 

Target velocity is not only important for predicting target track, but it many cases it is 

more important to differentiate moving targets from those that are stationary.  Radars 

with the capability of tracking moving targets in the presence of large stationary targets 

such as buildings, mountains, and other forms of ground clutter are known as moving 

target indicator (MTI) radars.  This becomes very important when we consider that the 

radar returns from clutter can be many times larger than that of a typical target of 

interest, sometimes as much as 80 to 100 dB larger. 

A couple of simple examples might illustrate the Doppler frequency ranges of interest 

to a radar systems engineer.  Let's consider two examples:   

▪ First, let us consider a small low-velocity general aviation aircraft as seen by 

an airport surveillance radar.   

▪ Second, we will consider the case of two fighter aircraft in a nose to nose 

engagement 

Case 1: 

For this example consider a Cesena 150 aircraft that is making an approach at a full-

service airport equipped with an airport surveillance radar operating at a frequency of 

2.7 GHz.  Assume that the aircraft is flying at a speed of 80 km/Hr. on a direct radial to 

the radar (no cosine term in the Doppler equation.)  Therefore: 

𝑓𝑑 =  
2𝑓0𝑉

𝑐
=  

2(2.7 𝑋 109)(8 𝑋 104 𝑚

𝐻𝑟
)

(3 𝑋 108𝑚

𝑠
)(3600 

𝑠

𝐻𝑟
)

= 400 𝐻𝑧   

Case 2: 

For this example consider a fire control radar used on a fighter aircraft.  Assume a 

radar with a transmitter frequency of 10 GHz that is designed to handle a maximum 

closing velocity of 500 m/s (~Mach 1.5).  The maximum Doppler frequency for this 

radar would be: 

 

From these examples we can see that common Doppler frequencies for many radars 

are primarily in the audio range and that they are often very close to the carrier.  We 

can also see that if the oscillators used in the radar systems have high phase noise in 

this frequency range it will limit the radar's ability determine the velocity of the target.  

This is very important when we consider that the radar target returns from large clutter 

blocks also have the phase noise of the radar transmitter impressed on them and will 

generally over power the small return from targets of interest. 

So, as we can see, phase noise is very important to the radar systems engineer, but 

since most radar systems utilize pulse modulated carriers the ability to measure the 

phase noise of pulse carriers is fundamentally necessary. 

Next we will review some of the basic characteristics of pulse modulated RF signals. 
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1.2 Characteristics of Pulse Waveforms 

A good place to begin thinking about the characteristics of pulsed RF is to start with a 

basic pulse or even better, a square wave.  Recall that a square wave can be created 

by plotting a sine wave and its odd harmonics.  If you add up enough harmonics at the 

correct amplitudes you can start to see the square wave take shape. 

In the following figure we have plotted a sign wave, its third, fifth, and seventh 

harmonics with the amplitude of each harmonic reduced by 1/n, where n is the 

harmonic number. 

 

Figure 2.  A sine wave and its odd harmonics 

As you can see by the black trace, the sum of fundamental and the first three odd 

harmonics starts to pretty closely resemble a square wave.  If we were to continue this 

exercise, by adding more odd harmonics, we could generate a nearly perfect square 

wave. 

Creating a rectangular pulse is simply a continuation of this process where we force all 

of the harmonics to go through a positive or negative maximum at the same time as 

the fundamental.  To create a perfect rectangular pulse we would need an infinite 

number of harmonics, but as you can see from our example above the amplitude of the 

higher order harmonics taper off pretty fast so we can build a reasonable pulse with a 

limited number of harmonics. 

To create a pulse train whose amplitude varies from 0 Volts to some positive value we 

will need to add a DC component to compensate for the negative going portion of the 

sine waves we used to create the pulse train.  This DC component represents the 

average value of the waveform. 

As we think about pulsed waveforms it is also useful to think about their frequency 

content, basically the reverse process we have just gone through.   
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Figure 3.  A pulse waveform and its Fourier transform 

 

For the pulse train shown above two key parameters are the pulse width designated by 

the Greek character τ and the pulse period or pulse repetition interval (PRI) 

represented by the letter T.   

Other key parameters describing the pulse train, shown in Figure 3 are: 

Amplitude The peak amplitude of the pulse is usually 
designated by the character A and generally is 
expressed in units of Voltage 

PRF The pulse repetition frequency (PRF) is the number 
of pulses per second and is equal to 1 divided by the 
pulse repetition interval (1/T) 

duty cycle The duty cycle or duty factor is the ratio of pulse 
width divided by the period (τ/T) 

A avg. The average amplitude of the pulse waveform.  A 
avg. = A X duty cycle 

 

In Figure 2, above, we plotted the various harmonics of a sine wave to obtain a time-

domain view of a square wave.  In Figure 3 we have effectively done the reverse 

process to obtain the frequency spectrum of a pulse train.  Since all of the frequencies 

are integer multiples of the fundamental PRF the spacing between the frequency lines 

is equal to the PRF.  The shape takes on the familiar sin (x)/x form, where the nulls in 

the spectrum occur at a spacing of 1/τ. 

Since pulsed waveforms are periodic they can be expanded into a Fourier series to 

determine their frequency content, as follows: 

 

Where τ/T is the duty cycle or the average value of the waveform. 

1.3 Pulsed RF Waveforms 

Pulse modulated RF is produced by amplitude modulating the RF carrier with the 

desired pulsed waveform.  Pulsed carriers can also be produced by gating an oscillator 

on and off; however, gated oscillators, such as magnetrons, are not phase continuous 

causing the starting phase of each pulse to be random.   This random nature limits 

gated oscillators use in radars that process Doppler.  In addition, the random phase 
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relationship from pulse to pulse generally prevents phase noise measurements on 

these sources when techniques such as phase detectors or synchronous detectors are 

used.  Since the phase detector requires a stable reference to compare the measured 

signal to, it is impossible to measure phase noise with the phase of each pulse 

changing by large amounts. 

Because of the limitations of gated oscillators we will focus our discussion of pulsed 

phase noise measurements to pulsed sources that use amplitude modulation to 

impress the pulse modulation on the RF carrier.  Amplitude modulation results in the 

desired effect of producing an RF pulse train with continuous phase. 

When thinking of the modulation process it is beneficial to remember that multiplication 

of the pulse waveform and the RF, carrier in the time domain, is the same as 

convolution of the pulse spectrum and the spectrum of the RF carrier in the frequency 

domain. 

From AM modulation theory we know that when a carrier is modulated with a single 

tone a modulation side tone is produced on each side of the carrier.  This can be 

verified by analyzing the trigonometry identity that describes the multiplication of two 

sine waves.  Since the spectrum of the pulse train is a series of harmonics of the PRF 

we can then deduce that the AM modulation of a carrier with a pulsed waveform will 

result in a carrier with modulation sidebands on each side of the carrier.  As mentioned 

above, the modulation process will convolve the carrier spectrum with the spectrum of 

the pulsed waveform, essentially sliding the pulse spectrum up to the carrier frequency.  

This will result in a spectrum that is symmetrical on either side of the carrier and is 

composed of spectral lines spaced n•PRF.  The amplitude of the spectral lines will 

have the expected sin(x)/x shape with the spectral nulls occurring at 1/τ. 

The following diagram illustrates what happens as we hold the PRF constant and 

change the pulse width.  This change is shown as a change in the lobe width of the 

spectrum and is seen by moving left and right on the diagram.  Additionally, the change 

in the spectrum due to changing the PRF is shown by moving up and down in the 

diagram.  Notice as the PRF is decreased the density of the spectral lines is increased. 

 



 

 

Figure 4, Changes in the pulsed RF spectrum as pulse width and PRF are changed. 

 

Note:  When the PRF is increased the spacing between the spectral lines increases.  

This is an important point for radar engineers that want to measure the velocity of 

targets.  IF the PRF is low the spectral lines will be close together and may interfere 

Doppler processing.  Likewise in phase noise measurements, greater spacing of the 

frequency lines in the pulse spectrum allows more opportunity for measuring the phase 

noise between the frequency lines. 

Figures 3 and 4 correctly show line spectra where the spectral lines extend above and 

below the baseline.  The lines extending below the baseline represent harmonics of the 

modulating waveform whose phase is 180° out of phase with the fundamental of the 

modulating waveform.  If viewed on a spectrum analyzer all of the lines would appear 

above the baseline since the spectrum analyzer discards phase information. 

1.4 Phase Noise of Pulsed Carriers 

From our previous discussion you will recall that the AM modulation process created a 

spectrum with symmetrical side bands on either side of the carrier, where the side 

bands are composed of frequency lines at the PRF rate of the modulating waveform.  

In addition to all of the pulse modulation components, each PRF line in the spectrum 

will also have the phase noise of the carrier impressed on it through the convolution 

process.  This added noise on each of the spectral lines can easily be identified by 

viewing the pulse spectrum (resolution bandwidth (RBW) << PRF) of a pulse 

modulated signal on a spectrum analyzer and zooming the span down to where just a 

few spectral lines are visible.  

The following figure shows the spectrum of a 1 GHz carrier modulated with a 10 µs 

wide pulse with a PRF of 10 kHz.  Only the carrier and the adjacent PRF lines on either 

side are shown. 

 

PRF/2 



 

 

Figure 5, Spectrum of a pulse modulated carrier 

 

From the above figure, the phase noise side bands of the carrier can be clearly 

identified and it can be noted that the carrier's phase noise has been impressed on 

each of the PRF lines of the pulsed RF spectrum.  Notice also that a characteristic 

bath-tub curve is formed between each line of the spectrum.  From this we also notice 

that there is no new phase noise information in the spectrum for frequency offsets 

greater than PRF/2.  Because of this, phase noise measurements of pulsed carriers 

are usually made between the carrier and a maximum offset frequency less than or 

equal to PRF/2. 

The general practice for pulsed phase noise measurements is to insert a low-pass filter 

following the phase detector.  The filter has a corner frequency less than PRF/2 and 

ensures the phase noise measurement is made over a valid offset frequency range.  

1.4.1 Differences Between Pulsed and CW Phase Noise 

When comparing phase noise of a pulsed RF source to that of the same RF source 

without pulse modulation the first question that is generally asked is:  Why is the phase 

noise of the pulsed carrier higher than for CW, particularly at higher offset frequencies?   

Below is a graphic showing the phase noise of a signal generator with and without 

pulse modulation. 

 

Figure 6, CW vs pulsed phase noise 

 

The above figure shows the CW and pulse phase noise of a 1 GHz carrier, as 

measured on a Rohde & Schwarz FSWP phase noise analyzer.  The pulse modulation 

had a pulse width of 10 µs with a PRF of 10 kHz.  Note that the maximum offset 

frequency show for the pulsed measurement is 5 kHz (PRF/2).  From the figure, you 
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can see that the pulsed phase noise starts to deviate from the CW phase noise at an 

offset of approximately 400 Hz. and is about 8 dB higher at PRF/2 (5 kHz).  Comparing 

this graph to the spectrum we measured in Figure 5 you can see a similar shape 

starting in the curve. 

Recalling our explanation of the AM modulation process of a CW carrier with a pulse 

waveform, the sine wave represented by each spectral line in the pulse spectrum (see 

Figure 3) produces two side bands, an upper sideband and a lower sideband.  The 

convolution of the individual spectra produces all possible sums and differences of the 

CW carrier and all of the harmonic components of the modulating pulse.  If phase 

noise sidebands are present on the carrier and the carrier is pulse modulated the 

spectrum of the pulsed waveform is convolved with the carrier and its noise sidebands. 

Essentially, the modulation process aliased the noise sidebands of the carrier onto 

each of the PRF lines of the pulse spectrum weighted by a sin(x)/x function, see Figure 

8. 

Note:  No matter how great the offset between the CW carrier and the phase noise 

sidebands of the carrier, an alias of the noise sidebands will appear within an offset of 

range of ±PRF/2 from the carrier and will not be filtered off by the PRF/2 low-pass filter. 

Fc
 

Figure 7, Spectrum of a carrier and its noise sidebands 
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Figure 8, Spectra of noise sidebands aliased onto each PRF line 

 

Note:  For a fixed pulse width the increase in noise at Fc will be inversely proportional 

to the PRF (low PRF corresponds to high spectral line density and more noise; 

whereas, increasing the PRF will decrease the noise at Fc).  Also, for a constant PRF 

increasing the duty cycle results in decreased noise at Fc—due to narrowing of the 

spectral lobes.  From a worst-case standpoint the noise will increase by: 

 

Noise increase ≤ 10 Log10 (Number of PRF lines to the first sin(x)/x null) 

 

As mentioned above, this is a worst-case approximation and assumes that the noise 

contribution at each PRF line out to the first sin (x)/x null is equal.  The reason this is 

not an exact relationship is because of the spectral shape of the phase noise 

sidebands.  Generally, near the carrier the noise level is falling very fast, probably 20 to 

40 dB per decade.  Because of the sin (x)/x envelope of the pulse modulated spectrum 

aliased noise at these offsets will be well below the CW noise; however, at higher 

offset frequencies, up to PRF/2, the degradation will be more apparent, especially if the 

CW noise curve has a pedestal.  Since a pedestal in the phase noise curve represents 

a relatively constant energy level over a range of offset frequencies the combined 

energy of the aliased noise will be greater than for a region with constantly decreasing 

slope. 

1.4.2 Trying to Visualize How Noise Changes with Pulse Parameters 

From the discussion above, you can see how the phase noise of a pulsed carrier can 

change as a function of PRF and pulse width.  This can best be visualized by looking 

at an actual phase noise measurement at different pulse widths. 

 

Figure 9, Differences in phase noise caused by changing pulse width 



 

 

 

Figure 9, above, shows three phase noise measurements of a pulsed carrier 

superimposed over one another.  All of these measurements were made at a constant 

PRF of 10 kHz. 

The first measurement was made using a 10 µs pulse width and is shown on the blue 

(middle) trace of Figure 9.  For the second measurement the pulse width was 

increased to 50 µs and is shown on the green (or lower) trace.  From the trace you can 

see that the phase noise decreased about 6 dB.  For this measurement, the pulse 

width was increased by a factor of 5 which decreased the width of the pulsed spectrum 

main lobe by a factor of five also decreasing the number of PRF lines under the main 

lobe by a factor of five.  Using the equation shown above we can see that we could 

expect a maximum reduction in phase noise for the above scenario of: 

10*Log10 (1/5) = -6.9dB 

Again, this is simply a worst case approximation of the change in phase noise.   

For the last measurement shown in Figure 9 the pulse width was reduced to 1 us.  

Therefore, the pulse width was reduced by a factor of 10 from the first measurement 

(blue trace) which increased the width of the main lobe of the sin(x)/x spectrum by a 

factor of 10 also increasing the number of PRF lines under the main lobe by a factor of 

ten, which should increase the phase noise of the carrier, see yellow (top) trace of 

Figure 9. 

From this it is apparent that one should not expect the pulsed carrier phase noise of an 

oscillator to be the same as its CW phase noise.  In addition, it is also apparent that 

engineers and technicians making phase noise measurements of pulsed carriers 

should have a good understanding of their signal generation chain and the pulse 

modulation used to fully understand if their measurement results reasonable. 



 

 

2 Rohde & Schwarz FSWP 

The Rohde & Schwarz FSWP is a self-contained one-box cross correlation phase 

noise analyzer.  The FSWP can perform phase noise and AM noise measurements on 

CW as well as pulsed carriers for carrier frequencies up to 50 GHz, without additional 

external hardware.  In addition to phase noise measurements the FSWP, with Option 

B1, provides a full featured signal and spectrum analyzer with up to 80 MHz of digital 

analysis bandwidth. 

 

 

Figure 10, FSWP Phase Noise Analyzer 

 

The following FSWP options can be added to extend the analyzer's performance and 

capabilities: 

Option Description 

B1 Signal and Spectrum Analyzer 

B4 High stability OCXO 

B60 Cross correlation 

B64 Residual (two-port) phase noise measurements 

B80 80 MHz analysis bandwidth 

K4 Pulsed phase noise measurements  Note:  This option is 
required for pulse phase noise measurements 

K6 Pulse measurements--detailed pulse analysis and trends--
not necessary for phase noise measurement 

K7 Analog modulation analysis for AM, FM, and Φm 

K30 Noise figure measurements 

K70 Vector Signal Analysis 

 



 

 

The R&S FSWP brings a new level of performance, speed, and ease of use to phase 

noise measurements.  Most measurements can be made by simply connecting the 

signal to the analyzer and pressing a button.  Once the measurement has completed 

both AM and phase noise traces can be displayed, this is also the case for pulsed 

carrier noise measurements.  In the case of pulsed carriers, the analyzer automatically 

measures the RF carrier frequency, pulse width, and PRF of the signal and then 

configures the analyzer to make the measurement; without user intervention.   

2.1 Phase Noise Measurement with the FSWP 

Before getting into how the FSWP performs a phase noise measurement it would be 

good to review the classic phase detector method of phase noise measurement. 

2.1.1 Phase Detector Method of Phase Noise Measurement 

Generally, high performance phase noise measurements are made using a calibrated 

phase detector, where phase deviations around the carrier are converted to a voltage.  

Following the phase detector the detector's output is filtered with a low-pass filter and 

amplified before being fed to a high-performance analog to digital converter or Fourier 

analyzer.  

 

 

Figure 11, Phase detector method for phase noise measurement 

 

In most cases a mixer is used as the phase detector with the device under test (DUT) 

connected to the input port of the mixer and a reference oscillator connected to the LO 

port.  The reference oscillator is set up to be at the same frequency as the DUT and in 

phase quadrature.  With the two input signals in quadrature the DC output voltage of 

the mixer is zero and short-term phase fluctuations are converted to an AC voltage.  

The Fourier analyzer then displays the spectral density of phase fluctuations which is 

converted to phase noise. 

The above technique is often referred to as the reference oscillator phase lock loop 

method because it is generally necessary to provide a feedback path from the phase 



 

 

detector's output to the reference oscillator to maintain a quadrature relationship 

between the DUT and the reference oscillator. 

For pulsed carrier phase noise measurements the above block diagram provides some 

limitations.  When the pulsed carrier is compared to a CW reference oscillator the 

output voltage of the phase detector also becomes pulsed and will contain an average 

DC component (due to the duty cycle of the pulsed waveform) that often saturates the 

low-noise amplifier.  To prevent this condition it is generally necessary to also pulse 

modulate the reference source with the same pulse waveform that is used to modulate 

the DUT, essentially time-gating the measurement.   

Adding pulse modulation to the reference source adds the complication that the user is 

often required to view the output of the phase detector on an oscilloscope to ensure 

that the DUT and reference source pulse modulation are synchronized.  If these 

modulation signals are not perfectly synchronized the output of the phase detector will 

exhibit so called "rabbit ears" and video feed through which can also overdrive the low-

noise amplifier. 

In addition, the user must also select an appropriate low-pass filter to filter off the 

higher offset frequencies that are greater than PRF/2.  For most phase noise test 

systems the filters are generally analog filters and in many systems the filter needed 

may not be available by a simple selector settings.  For these cases where the correct 

PRF/2 filter isn't available the user is forced to use an external phase detector and an 

external low-pass filter, which greatly increase the chances of external noise corrupting 

the phase noise measurement.   

2.1.2 Cross Correlation Phase Noise Analyzers 

One of the limitations of the reference oscillator phase lock loop method of phase noise 

measurement is that phase noise performance of the system is limited by the phase 

noise of the reference oscillator.  The common rule of thumb is that the phase noise of 

the reference oscillator must be about ten times better than the device being 

measured.  This can often be a serious performance limitation.  One way around this 

limitation has been to use two identical oscillators and assume that the actual phase 

noise is 3 dB lower than measured.  In many cases the identical source concept is not 

valid and a better solution is desired.  For many years the better way was to make 

three phase noise measurements on three similar oscillators moving each of the 

oscillators from the reference position to the DUT position.  Following these 

measurements the phase noise of each oscillator could be determined by solving three 

equations in three unknowns. 
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(3 to 6 dB difference)  

Figure 12, Three-source comparison method 

Continuing the quest for a simpler phase noise measurement technique with an 

improved noise floor, engineers recognized that that if the DUT signal were split and 

fed to two independent reference oscillator phase lock loop systems the internally 

generated noise of the measurement system would be uncorrelated in both channels 

while the noise from the DUT would be correlated in both channels.  With this concept 

cross correlation could be used to reduce the noise generated by the instrumentation. 

 

Figure 13, Cross correlation phase noise measurement 

 

In a cross correlation phase noise measurement system, as depicted in Figure 13, all 

of the instrumentation noise form Channel 1 is uncorrelated with that generated in 

Channel 2; therefore, when cross correlation is performed on the outputs of the two 

independent channels only the DUT signal correlates and measurement noise is 

reduced by 5 Log10 (M), where M is the number of correlations.  Using this technique 

we can reduce the system noise by 10 dB if we perform 100 cross correlations. 



 

 

Phase detector based cross correlation systems have been leading the industry for the 

past decade or so, but they still have the disadvantage that the phase noise 

measurement still is dependent on analog components and their limitations as signal 

processing elements.  In an effort to further improve the state-of-the-art of phase noise 

measurements Rohde and Schwarz developed a new phase noise analyzer that 

moved the majority of the signal processing to the digital domain where performance 

would be more repeatable and system level calibration could be simplified. 

2.1.3 FSWP Block Diagram 

As mentioned previously, the R&S FSWP phase noise analyzer is a cross correlation 

analyzer.  Like the cross correlation system mentioned above, the FSWP splits the 

input signal and feeds it to two independent measurement channels for processing, but 

that is where the similarity ends. 

 

Figure 14, FSWP RF block diagram 

 

Figure 14 shows a simplified block diagram of the FSWP.  From the diagram the two 

cross correlation channels can clearly be identified, with dedicated local oscillators and 

reference oscillators shown on the left.  As with other cross correlation systems the 

signal is split between channel 1 and 2.  Following the splitter the signal for each 

channel is filtered by a band-pass filter and then fed to the input of an I-Q mixer.  The 

analog I-Q mixer using an extremely low noise internal reference oscillator shifts the 

signal to a low frequency or zero IF, depending on the offset frequency to be 

measured.  The outputs of the channel 1 and 2 I-Q mixers are fed to either a low-noise 

or limiting amplifier and then to a dedicated 100 Msa/s ADC.  The outputs of all four 

ADCs are then fed to an FPGA and PC software for further signal processing. 

The complex baseband signals from each channel, I and Q, are sampled and digital 

signal processing is performed in real time on an FPGA. 

 



 

 

 

Figure 15, FSWP FPGA signal processing 

 

Figure 15 shows the overall flow of the FPGA processing for one channel.  The signals 

from the I and Q digitizers are next equalized and fed to a digital down converter that 

provides an I-Q data stream for subsequent signal processing.  The combination of an 

analog I-Q mixer and a digital equalizer keeps the AM rejection above 40 dB compared 

to 15 to 30 dB of a traditional analog PLL, thus reducing the chance of cross-spectrum 

collapse.1  Cross-spectrum collapse can occur when AM noise contaminates both 

inputs to a cross-spectrum analyzer and becomes phase inverted due to the non-ideal 

behavior of mixers that are used as phase detectors. 

The digital down converter provides precise I and Q signals that are not corrupted by 

common I-Q demodulator impairments such as I-Q imbalance and quadrature errors.  

Following the digital down converter the signal is low-pass filtered to remove higher 

order mixing products.  From here the signal is routed to the pulse detector and 

squelch circuit that is used for pulsed carrier measurements, we will describe this 

processing in more detail in a few paragraphs.  For CW carriers, the signal is fed to a 

digital FM demodulator, which would replace the traditional phase detector in the 

reference oscillator phase lock loop system shown in Figures 11 and 13. 

The digital FM demodulator provides low frequency drift information to the digital down 

converter to correct for drift of the DUT signal and provides short-term frequency 

fluctuations to the instrument PC for FFT processing into the spectral density of 

frequency fluctuations Sv(f) which is easily converted into the spectral density of phase 

fluctuations SΦ(f) and single sideband phase noise.  In addition, a digital AM 

demodulator operates in parallel with the FM demodulator providing concurrent 

measurements of amplitude and phase noise. 

2.1.4 Pulsed Carrier Phase Noise Measurements with FSWP 

As mentioned previously, several issues complicate phase noise measurements of 

pulsed carriers, such as:  lack of unique phase noise information for offset frequencies 

greater than PRF/2, the need for a low-pass filter at PRF/2, and problems with pulse 

modulating the reference source to minimize overdrive of the low-noise amplifier.  One 

additional problem worth mentioning is that of pulse desensitization. 

                                                      

 

1 Nelson, C.W.; Hati, A.; Howe, D.A., "A collapse of the cross-spectral function in phase noise metrology", Rev. Sci. 

Instrum., vol. 85, 2014. 



 

 

  

   

Figure 16, Spectrum showing pulse desensitization 

 

Figure 16 shows the spectrum of a CW carrier (blue trace) and the spectrum of the 

same carrier with pulse modulation (yellow trace).  Notice that the center line of the 

pulse spectrum has been reduced in amplitude by 20.07 dB from the CW carrier.  

Pulse desensitization occurs because the pulse modulation on the carrier spreads the 

spectral energy over a very large frequency span.  The total signal power is still the 

same, it's just been spread over a much wider span (carrier and all sidebands).  The 

difference between the carrier power when modulated and unmodulated is often 

referred to as pulse desensitization factor, where: 

 

Pulse desensitization (dB) = 20 Log10(τ/T) or 20 Log10(duty cycle)  

 

For the pulsed spectrum shown in Figure 16, the pulse width was 10 µs and the PRI 

was 100 µs and as we can see the pulse desensitization is 20 dB.   

How does this affect measurement of phase noise?  For the signal we have been 

looking at the pulse modulation reduced the carrier power by 20 dB which moves the 

measurement 20 dB closer to the analyzer’s noise floor.  As may be recalled from 

phase noise theory, thermal noise can limit the extent to which you can measure phase 

noise.  Thermal noise, as described by kTB at room temperature, is -174 dBm/Hz.  

Since phase noise and AM noise contribute equally to kTB, the phase noise portion of 

kTB is equal to -177 dBm/Hz (3 dB less than the total kTB power). 



 

 

If the power in the carrier signal becomes 

a small value, for example -20 dBm, the 

limit to which you can measure phase 

noise is the difference between the carrier 

signal power and the phase noise portion 

of kTB (-177 dBm/Hz - (-20 dBm) = -157 

dBc/Hz).  Higher signal powers allow 

phase noise to be measured to a lower 

dBc/Hz level.    

 The bottom line is that pulse 

desensitization decreases the 

measurement sensitivity of phase noise 

measurements and systems using a phase detector require that a pulsed phase 

detector constant be used to compensate for the change in output level of the phase 

detector. 

2.1.4.1 FSWP Pulse Carrier Signal Processing 

The above discussion of pulse desensitization was included to clarify one important 

difference between the FSWP and classic phase noise measurement systems.  From 

the FSWP DSP diagram shown in Figure 15 a sampling of the pulse waveform is 

routed to the PC software of the FSWP where an advanced pulse detection algorithm 

establish markers at the beginning and end of each pulse. 

The pulse markers are used by the pulse detector block in Figure 15 to automatically 

determine the pulse width and PRI of the pulse modulated signal.  The pulse width is 

used to establish a time gate around the pulse, such that the FSWP only processes 

phase noise information during the pulse on time.  Since very high frequency resolution 

is required to measure phase noise close to the carrier the FSWP must use a long time 

records (many times longer than the PRI) for signal processing.  Using gating type 

"Edge" the FSWP applies a precise time gate (typically 75% of the pulse width) inside 

the pulse and calculates a duty cycle based on the gate width and period of the 

waveform.  Since the squelch block completely blanks the signal off during the time 

between pulses the noise level is reduced by a factor of 10•Log10(duty cycle), 

eliminating half of the pulse desensitization loss.  In addition, knowing the duty cycle of 

the pulse waveform the FSWP DSP can apply gain to overcome most of the remaining 

pulse desensitization losses.  For best pulsed carrier phase noise performance, use of 

the Edge trigger is required, see figure 17 and explanation, below. 

         



 

 

    

Figure 17, FSWP Pulse Configuration Menu. 

 

Figure 17 shows the FSWP pulse configuration screen.  From this menu the user can 

select whether he wants to use automatic or manual pulse detection.  The default 

condition is to use automatic pulse detection.  In this mode the analyzer will 

automatically find the pulse and center the analyzer's time gate over the central 75% of 

the pulse.  Time gating can be turned off with the Gate Type radio buttons (resulting in 

lower system sensitivity) or can be set to a level mode where the user must specify a 

desired gate level.  Finally, in manual pulse detection mode the user can specify the 

gate delay and gate length to focus the measurement on a specific region of the pulse.  

Looking at the graphic at the top of the menu, the gate delay is shown as a blue bar at 

the lower left of the pulse and is marked GD.  The magenta bar shows the time that the 

gate is open and the FSWP is making its phase noise measurement.  Generally, 

hundreds of pulses must be integrated together to make a phase noise measurement.  

This would suggest that waveforms with constant PRFs are most desirable.  Advanced 

users might want to manually change the gate delay and length to measure phase 

noise in a particular region of the pulse.  However, it should be noted that if the gate is 

moved outside the main area of the pulse additional noise will be introduced into the 

measurement, which will limit analyzer performance. 

One additional point that is worthy of mention is that of required minimum pulse width 

to support a phase noise measurement.  Recall from the block diagram that the four 

analog to digital converters following the I-Q mixers are 100 Msa/s digitizers.  The 

FSWP requires at least ten samples in the pulse to make a phase noise measurement; 

therefore, establishing a minimum pulse width of 100 ns.  Most phase lock loop based 

phase noise measurements systems experience fairly severe limitations for minimum 

duty cycle because of pulse desensitization.  The R&S FSWP is not as limited 

pertaining to minimum duty cycle and can still make accurate measurements with duty 

cycles less than 1%.  

Referring again to Figure 15, the blue highlighted block shows the signal processing 

used for measurement of pulsed carriers.  Again, using the pulse start and stop 

markers from the K6 software the pulse detector generates a gate that is fed to the 

squelch block.  The squelch block blanks the signal during pulse off time, which 

eliminates all broad band noise during the pulse off time, improving measurement 

dynamic range. 



 

 

The next block is the IQLP.  This is a DSP low-pass filter that is executed in FPGA to 

filter off the frequency components greater than PRF/2 which contain no unique phase 

noise information.  This is a key advantage of the FSWP compared to most phase 

noise measurement systems.  In most legacy phase noise measurement systems the 

user must determine the waveform PRF and manually select an appropriate analog 

low-pass filter.  Generally, the correct filter is not implemented in the measurement 

system and the user is forced to use an external filter.  To make matters worse, most 

of these systems have no provision for the user to connect the proper filter and he is 

forced to use an external phase detector to provide a connection point for the external 

filter.   

The FSWP greatly simplifies this process by building the correct filter on-the-fly, freeing 

the user from having to do all of the work himself.  In addition, the measurement is not 

corrupted by having to use external filters and phase detectors which provide more 

entry points for interfering signals and noise.  Another key advantage of the FSWP’s 

DSP based pulse detection and processing is that once we have gated the pulse and 

executed our measurements on a clean region from the center of the pulse we no 

longer have to deal with the switching transient portions of the pulse and do not suffer 

from the dramatic signal losses associated with pulse desensitization, as mentioned 

above.  

Finally, it would be good to show an example of an FSWP noise measurement of a 

pulsed carrier.  Again, we will use the 10µs pulse width we have previously discussed 

in this paper. 

 

Figure 18, FSWP pulsed carrier noise measurement 

Figure 18 shows AM noise and phase noise as simultaneously measured by the 

FSWP.  From a few simple set up parameters to a completed pulsed phase noise 

measurement with just a few button presses and less than one minute of measurement 

time. 



 

 

3 Conclusion 

In summary, the Rohde & Schwarz FSWP brings a new level of performance and 

improved user experience to RF and microwave phase noise measurements.  By 

moving the processing of phase noise from traditional analog phase detectors to a 

DSP based digital frequency discriminator the FSWP exhibits improved sensitivity with 

simplified system set up and calibration.  By combining all required hardware in the box 

the user is freed from complicated intersystem cabling and experiences a significant 

reduction in system foot print.  FSWP key contributions include: 

▪ Simple graphical user interface with touch screen operation to improve user 

experience 

▪ 1 MHz to 50 GHz frequency range, without external mixers or down 

converters 

▪ Internal signal source (Option B64) for residual (two-port) phase noise 

measurements.  In addition, no external delay lines are required for residual 

noise measurements. 

▪ Pulse phase noise measurement with an automatic pulse detection system 

and PRF/2 low-pass filters implemented in DSP 

▪ Two independent base band channels with DC to 40 MHz bandwidth 

▪ Three built in low-noise power supplies to power external DUTs and provide 

tune voltages for VCOs.  Power supply can source up to 2 Amperes of 

current. 

▪ Simultaneous measurement of amplitude and phase noise without the need 

for an external AM detector 

▪ 15 to 30 dB better AM suppression than traditional phase detector systems 

▪ Optional built in signal/spectrum analyzer (Option B1) with up to 80 MHz of 

analysis bandwidth 

▪ Optional built in Vector Signal Analyzer (Option K70) 

▪ Optional pulse radar/EW pulse analysis software (K6) 

▪ Optional analog AM, FM, and ΦM demodulation software (K7) 

▪ Optional noise figure personality (Option K30) 

▪ Instrument security (Option K33) 

 

Lastly, in addition to the above FSWP contributions to the state-of-the-art in phase 

noise measurements the FSWP exhibits approximately a one-hundred fold speed 

improvement, as compared to the previous generation of Rohde and Schwarz phase 

noise measurement systems.  The FSWP should be a welcome addition to any RF and 

microwave laboratory involved in pulsed carrier and CW phase noise measurements. 
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The Rohde & Schwarz electronics group offers 
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Sustainable product design 
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This application note and the supplied programs 

may only be used subject to the conditions of use 

set forth in the download area of the Rohde & 

Schwarz website. 

 

R&S® is a registered trademark of Rohde & Schwarz GmbH & Co. 

KG; Trade names are trademarks of the owners. 
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