Application Note

SIMPLIFYING 5G NR 3GPP R&D RF CONFORMANCE TESTING

SA Mode According to 3GPP 38.521-1

Products: R&S[®]CMX500

Markus Bühler | 1C111 | Version 0e | 06.2025 https://www.rohde-schwarz.com/appnote/1C111

Contents

1	Overview	3
2	Introduction	.4
2.1	Preparation	4
3	RF Conformance Test Cases	.9
3.1	6.2.1 UE maximum output power	9
3.2	6.2.2 UE maximum output power reduction (MPR)	11
3.3	6.2.3 UE additional maximum output power reduction (A-MPR)	13
3.4	6.2.4 Configured transmitter power	15
3.5	6.3.1 Minimum output power	
3.6	6.3.3.2 General ON/OFF time mask	18
3.7	6.3.4.2 Absolute power tolerance	
3.8	6.3.4.3 Relative power tolerance	
3.9	6.3.4.4 Aggregate power tolerance PUCCH/PUSCH	
3.10	6.4.1 Frequency error	
3.11	6.4.2.1 Error Vector Magnitude PUCCH/PUSCH	26
3.12	6.4.2.2 Carrier leakage	
3.13	6.4.2.3 In-band emissions PUCCH/PUSCH	30
3.14	6.4.2.4 EVM equalizer spectrum flatness	32
3.15	6.4.2.5 EVM equalizer spectrum flatness for Pi/2 BPSK	34
3.16	6.5.1 Occupied bandwidth	35
3.17	6.5.2.2 Spectrum emission mask	37
3.18	6.5.2.3 Additional spectrum emission mask	
3.19	6.5.2.4.1 NR ACLR	41
3.20	6.5.2.4.2 UTRA ACLR	43
3.21	7.3.2 Reference sensitivity power level	45
3.22	7.4 Maximum input level	47
4	Literature	48
5	Ordering information	48

1 Overview

Device certification for compliance with 3GPP specifications is a crucial step in the launch of 5G NR user equipment (UE). As the demand for high-performance connectivity continues to rise, ensuring that devices meet industry standards is essential for delivering reliable and efficient service. To ensure optimal modem performance, RF conformance testing needs to be initiated early in the product development process. This approach enables teams to swiftly identify and address potential issues, minimizing delays and enhancing the overall quality of the final product.

The R&S®CMX500 3GPP RF conformance WebGUI solution offers a fast and intuitive platform for executing NR-FR1 Standalone (SA) test cases in accordance with the 3GPP 38.521-1 specification. Its manual verification capabilities make it particularly well-suited for early-stage validation, debugging, and step-by-step verification of test cases, leveraging the comprehensive toolset provided by the R&S®CMX500 WebGUI.

This application note serves as a comprehensive guide for R&D professionals, detailing the setup, configuration, execution, and verification of selected 3GPP test cases with just a few clicks in the GUI. Please note that the test steps outlined in this document require the CMX-KC661B license (SA FR1 3GPP RF Test Scenarios), in addition to the NR signaling license CMX-KS600B and the NR FR1 measurement license CMX-KM600. All descriptions, configurations and limits are based on [1].

2 Introduction

Procedures described in this application note may be streamlined or simplified compared to the full 3GPP conformance requirements, ensuring an intuitive and user-friendly interface while still delivering meaningful RF conformance results. Users have the flexibility to configure signaling and cell-related settings to align with their specific test objectives. The test case will automatically adjust relevant settings, including reference measurement channel (RMC) configurations, UL power control settings, and additional spectrum emission values, based on the selected test case and test ID as specified in [1].

The R&S®CMSequencer 3GPP 5G SA pre-conformance solution, included with the KC661 license, enhances the GUI test cases by providing automated execution, validation, and comprehensive reporting capabilities. For testing with CMSequencer, please refer to this dedicated application note: https://www.rohde-schwarz.com/appnote/1C110.

For strict conformance testing, Rohde & Schwarz offers dedicated solutions, such as the R&S®TS8980 for 3GPP RF conformance.

2.1 Preparation

- 1. Make sure that the signal path attenuation is compensated
 - Attenuation tables can be defined in the *Frequency Dependent Attenuation* tab

fda_400MHZ_8G	iHz				Attenuation [dB]			
Frequency		Attenuation			3.5	·		+
0.40000000	GHz	1.50	dB	Ē				
2.00000000	GHz	2.50	dB	Ē	2.8			
6.00000000	GHz	3.50	dB	面				
					2.1			
					0.7			

0

• Attenuation tables / fixed values are linked to a specific RF path in the *RF Connections* tab

ands & Connectors	RF Connections	Band Restrictions	Auton	action Sim	n Slot 1 💼	Sim Sto	t2 💼	+
	The second se			1978-1817 - 1850 - 1850 - 1850 - 1850 - 1850 - 1850 - 1850 - 1850 - 1850 - 1850 - 1850 - 1850 - 1850 - 1850 - 1				
Hide Default Connecti	0.05							
Hide Default Connecti	ons							
240000 MUNICIPALITY	ons							
Hide Default Connecti	ions							
Connections								
		IT Connector	•	Test System Con	nnector	🛊 FDA M	RT to DU	т
		T Connector	\$	Test System Con	nnector	🗘 FDA M	RT to DU	

Rohde & Schwarz | Application Note Simplifying 5G NR 3GPP R&D RF Conformance Testing 4

o Alternatively, tables and offsets can be set directly in the cell settings

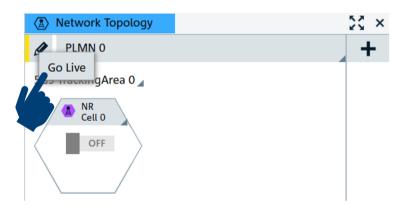
 Network Configu 	ration					
Navigation Collapse Exp	and N		Iite Mode	T Pin	★ Favorite	
General Cell 0	(seneral A					
Filter parameters						
	OFF					
Cell Name	NR Cell 0)				
Supported UE Type	Normal U	E			~	
Max Config						
 Attenuation 						
NR Main						
FDA DUT to MRT	0.00	dB +			•	
FDA MRT to DUT	0.00	dB +	🗌 fda	_400MH	Z_8GHz	

2. Open the 3GPP Pre-conformance testing workspace via Home \rightarrow Use Cases or

Applications							
Test Environment	Current Workspaces	Message Analyzer	Sequencer	XLAPI Interactive Tutorials			
Use Cases							
	LTE NR			Q	NR NR	?	چ ((۹)) ۲
RF Test LTE	RF Test NSA	RF Test SA	Max Throughput	IP Analysis	RF SA Preconformance	RF Test WLAN Station	RF Test WLAN AP
User Defined Use Cases							
RedCap.dfl	UL-MIMO.dfl	WIST2023.dfl					
Library File Explorer		(i) X (i) About Maintenance Use	Installation	Utilization / Security			

via the menu

=	
1 Home	
Test Environment	
L Current Workspaces	
⇄ Message Analyzer	
Sequencer	_
🐺 Use Cases	RF Test LTE
🕅 Library	RF Test NSA
🐔 File Explorer	RF Test SA
🔑 License	Max Throughput
Settings	IP Analysis
i About	RF SA Preconformance
🔀 Maintenance	RF Test WLAN Station
Oser Assistance	RF Test WLAN AP
lnstallation Service	
📮 Data Services	
Utilization / Security	
× Exit	•


3. The CMX will load the RF SA Preconformance workspace:

-D- Test Environment Morkspace RF	SA Preconformance X	+
-----------------------------------	---------------------	---

4. In the workspace, configure the band and frequency settings to test using the configuration sidebar

NR Cell 0			Μ
 Frequency a 	nd Band		Pre Conformanc
Duplex Mode	TDD 🗸		
Frequency Band Indicator	N 78 🗸		
Carrier Bandwidth	100 MHz 🗸		
Range	User Defined 🗸	I	

5. Start the network emulation (right click , then select Go Live)

6. Switch the cell on by clicking the toggle button

7. Make sure the DUT is connected

- 8. Select a test case and Test ID to execute
 - Test IDs are based on tables for the respective test cases in 38-521-1.
 - Choosing a Test ID ¹ will configure the RB allocation and modulation scheme according

to the specification. The DL and UL configuration per Test ID can be read from the GUI

2

Test Name	6.2.1 UE maximum output power	~
Multi-Cluster		
Power Control	 Image: A start of the start of	
UE Power Class	Not Applicable	~
Additional Spectrum Emission	Not Applicable 🗸 🗸	
Test ID	1	(1)
 Downlink 		
Modulation Scheme	Not Applicable	~
RB Allocation	Not Applicable	~
No. of RB	Not Applicable	~
Start RB	Not Applicable	~
▼ Uplink		0
Transform Precoding	✓ DFT-s-OFDM	2
Modulation Scheme	PI Half BPSK	~
RB Allocation	Inner Full	~
No. of RB	135	~
Start RB	67	~
	Apply	

• Click Apply to execute the test case

Important notes:

1. The TC descriptions in chapter 3 assume that the setting for automatic DUT UL power

configuration is active: Power Control 🗸

- 2. Users should be aware of the respective UE capabilities as these are not processed by the TCs.
- 3. Selecting a test case will not overwrite user configured signaling parameters. Users need to make sure that the current configuration is suitable for the selected test case.
- 4. Test IDs are sometimes only specified for a certain frequency + BW combination. The CMX will display "not applicable" for the UL scheduling if there is no matching configuration for the chosen Test ID. The event log at the bottom of the interface will display a corresponding warning:

🔥 NR: UL scheduling not defined in 3GPP Spec for test case '6.2.3 UE additional maximum output power reduction', test Id 1, n1, Scs15Khz, Mhz10

Applying the settings in this case will revert to a generic default configuration.

- 5. For PUCCH TCs:
 - PUCCH TCs will by default show "not applicable" as the Uplink section only displays PUSCH related settings.
 - UL parameters will show *not applicable* for the PUCCH subtests, as only the PUSCH scheduling is displayed. The PUCCH configuration will be applied according to 38.521-1.
 - There is no UL PUSCH scheduled for PUCCH subtests according to 38.521-1. It is recommended to switch data on the UE off. Every scheduling request for UL resources from the UE will lead to call drops, as no PUSCH resources are available.

3 RF Conformance Test Cases

3.1 6.2.1 UE maximum output power

Purpose:

This test case is for verifying that the error for the UE maximum output power does not exceed the range prescribed by the specified nominal maximum output power and tolerance.

An excessively high maximum output power could interfere with other channels or systems. Insufficient maximum power would decrease the coverage area.

Test Procedure:

1. Follow the initial steps in chapter 2.1 then choose a Test ID

 \frown

a.	The Test ID 🛄	configures RB Allocation and modu	lation scheme
	▼ 3GPP Testcas	se	
	Test Name	6.2.1 UE maximum output power	~
	Multi-Cluster		
	Power Control	✓	
	UE Power Class	Not Applicable	~
	Additional Spectrum Emission	Not Applicable 🗸	
	Test ID	1	
	 Downlink 		
	Modulation Scheme	Not Applicable	~
	RB Allocation	Not Applicable	~
	No. of RB	Not Applicable	~
	Start RB	Not Applicable	~
	 Uplink 	G	
	Transform Precoding	✓ DFT-s-OFDM	
	Modulation Scheme	PI Half BPSK	~
	RB Allocation	Inner Full	~
	No. of RB	135	~
	Start RB	67	~

2. Apply the configuration and verify the measured DUT UL power to be within the specified range

Verification:

The DUT output power must be within the specified level according to 38.521-1 table 6.2.1.5-1 to 6.2.1.5-2a.

The expected power per UE power class is the same over all bands, while the specification allows a tolerance of at least ± 2 dB for the given values, with a higher tolerance for certain bands.

	UE Power Class			
Specified Maximum UE Power				
PC 3	23 dB			
PC 2	26 dB			
PC 1	31 dB			

The specification additionally allows a frequency dependent Test Tolerance (TT):

	Test Tolerance (TT)	
Frequency Range	BW ≤ 40MHz	40MHz < BW ≤ 100MHz
f ≤ 3.0GHz	0.7 dB	1 dB
3.0GHz < f ≤ 6 GHz	1 dB	1 dB

Example: Power Class 3 (PC3) DUT on n78

- 1. Specified max power range for PC3 is 23 dBm with a tolerance of +2+TT /-3-TT dB for n78 with TT being 1 dB.
- 2. CMX TX power measurement within 3GPP limits

Statistic Count	Allocation	Modulation
20/20	No. RB: 25 Offset RB: 12	π/2-BPSK
▼ Power		
	Current	
TX Power (dBm)	23.42	

3.2 6.2.2 UE maximum output power reduction (MPR)

Purpose:

The UE is allowed to reduce the maximum output power due to higher order modulations and transmit bandwidth configurations, which will cause higher crest factors presenting a challenge for power amplifier design.

Test Procedure:

→

1. Follow the steps in chapter 2.1 then choose a Test ID

 \sim

The Test ID 💶 confi	gures RB Allocation and modulation sc	heme depending on DUT
power class and	frequency resource allocation (Single-/I	Multi-Cluster)
▼ 3GPP Testca	se	
Test Name	6.2.2 UE maximum output power reductic ~	
Multi-Cluster		
Power Control	\checkmark	
UE Power Class	Power Class 3	
Additional Spectrum Emission	Not Applicable	
Test ID	1	
 Downlink 	•	
Modulation Scheme	Not Applicable 🗸	
RB Allocation	Not Applicable 🗸 🗸	
No. of RB	Not Applicable 🗸	
Start RB	Not Applicable 🗸 🗸	
▼ Uplink		
Transform Precoding	DFT-s-OFDM	
Modulation Scheme	PI Half BPSK 🗸	
RB Allocation	Inner Full 🗸	
No. of RB	135 ~	
Start RB	67 ~	

Note: PC 3 UEs tested on band n40, n41, n77, n78 and n79 supporting the UE capability powerBoosting-pi2BPSK need to have the setting *powerBoostPi2BPSK* enabled for Test IDs 1,2,3

and 4 (38.521-1 Table 6.2.2.4.1-1): powerBoostPi2BPSK

2. Apply the configuration

Verification:

The DUT output power must be within the limits specified in 38.521-1 Tables 6.2.2.5-1 to 6.2.2.5-10 with a frequency dependent Test Tolerance (TT).

Test Tolerance (TT)					
Frequency Range	BW ≤ 40MHz	40MHz < BW ≤ 100MHz			
f ≤ 3.0GHz	0.7 dB	1 dB			
3.0GHz < f ≤ 6 GHz	1 dB	1 dB			

The specification additionally allows a frequency dependent Test Tolerance (TT) (see 6.2.1 UE maximum output power)

Following tables are extracts from [1] for the most common configurations:

Table 6	Table 6.2.2.5-1 Contiguous allocation for Power Class 3 n1, n2, n3, n5, n7, n8, n12, n13, n14, n20, n25, n26, n30, n31, n34, n38, n39, n40, n41, n50, n51, n53, n54, n65, n66, n70, n72, n74, n85, n91, n92, n93, n94, n100, n101, n106												
Test ID					6-8.37-		14-				24- 26.28-		
	1	2-3	4	5,9,39	38	10-13	16,27	18-19	20-22	23	20,20- 30	31-32	34-36
Upper limit (dBm)	28.0 + TT	28.0 + TT	28.0 + TT	25.0 + TT	25.0 + TT	25.0 + TT							
Lower limit (dBm)	23.8 - TT	20.5 - TT	22.8 - TT	21.0 - TT	20.5 - TT	20.0 - TT	19.0 - TT	18.0 - TT	14.5 - TT	19.5 - TT	17.5 - TT	16.0 - TT	11.5 - TT

Note: Relaxed lower limits apply for Table 6.2.2.5-1 in case that the transmission BW is confined within +/- 4 MHz of the lowest/highest specified frequency for band n2, n3, n7, n8, n12, n20, 25, n26, n41

			Table 6.2.	2.5-3 Cor	ntiguous	allocatior	for Pow	er Class 3	3 n48, n77	7, n78, n7	9		
Test ID	1	2-3	4	5, 9, 39	6-8, 37-38	10-13	14-16, 27	17-19	20-22	23	24-26, 28-30	31-33	34-36
Upper limit (dBm)	28.0 + TT	28.0 + TT	28.0 + TT	25.0 + TT	25.0 + TT	25.0 + TT	25.0 + TT	25.0 + TT	25.0 + TT	25.0 + TT	25.0 + TT	25.0 + TT	25.0 + TT
Lower limit (dBm)	22.8 - TT	19.5 - TT	21.8 - TT	20.0 - TT	19.5 - TT	19.0 - TT	18.0 - TT	17.5 - TT	14.5 - TT	18.5 - TT	17.0 - TT	16.0 - TT	11.5 - TT

Example: PC3 DUT on n78 with Test ID 22 (256 QAM; full allocation)

- Specified max power range for these settings with MPR is between 14.5 dBm TT (*Lower limit*) and 25 dBm + TT (*upper limit* as in *Table 6.2.2.5-3*) with *TT* being 1 dB (BW 100 MHz; 3 GHz < f ≤ 4.2 GHz)
- 2. CMX TX power measurement within 3GPP limits:

Statistic Count	Allocation	Modulation
20/20	No. RB: 270 Offset RB: 0	E256_QAM
▼ Power		
	Current	
TX Power (dBm)	19.27	

3.3 6.2.3 UE additional maximum output power reduction (A-MPR)

Purpose:

Additional emission requirements can be signaled for various reasons by the network through unique network signaling (NS) values. Additional maximum power reduction (A-MPR) is allowed for the maximum output power. The total reduction to UE maximum output power is MPR (from 6.2.2) or A-MPR (from 6.2.3), whichever is larger.

NS values are mapped to different bands, while not every band is linked to a NS value.

Test Procedure:

- 1. Follow the steps in chapter 2.1 then choose an applicable NS value
 - → The CMX allows the selection of all applicable NS values through the Additional Spectrum

Emission dropdown menu . Band n1 with an Additional Spectrum Emission value of 2 is for example mapped to NS_05.

▼ 3GPP Testcas	je	
Test Name	6.2.3 UE additional maximum output pow \sim	•
Multi-Cluster		
Power Control	✓	
UE Power Class	Power Class 3	•
Additional Spectrum Emission	2 VS_05	
Test ID	63 ~	•
Downlink		
 Uplink 		
Transform Precoding	✓ DFT-s-OFDM	
Modulation Scheme	256 QAM ~	^
RB Allocation	Outer Full 🗸	1
No. of RB	100 ~	1
Start RB	0 ~	/

- 2. Select a valid Test ID
 - a. The Test ID configures RB Allocation and modulation scheme depending on DUT power class
 - ➔ The CMX allows the selection of all Test IDs. Resulting modulation and RB allocation are displayed for each valid Test ID upon selection.
 - ➔ Test IDs in 38.521-1 Tables 6.2.3.4.1-1 to 6.2.3.4.1-33 for this test case are specified for a certain BW + frequency configuration resulting in many "not applicable" selections. Please check the event log at the bottom of the GUI and refer to *Notes* section in chapter 2.1.

🔥 NR: UL scheduling not defined in 3GPP Spec for test case '6.2.3 UE additional maximum output power reduction', test Id 1, n1, Scs15Khz, Mhz10

3. Apply the configuration

Verification

The DUT output power must be within the limits specified in 38.521-1 Tables 6.2.3.5-1 to 6.2.3.5-39 with a frequency dependent Test Tolerance (see 6.2.1 UE maximum output power). Tables 6.2.3.5-1 to 6.2.3.5-39 are very extensive and thus not included in this application note.

Example: PC3 DUT on n1 using NS_05 with Test ID 63 (256 QAM; outer full allocation)

- Specified max power range for these settings with A-MPR is between 4 dBm TT (*Lower limit*) and 25 dBm + TT (*upper limit* as in *Table 6.2.3.5-6*) with *TT* being 1 dB (BW 100 MHz; 3 GHz < f ≤ 4.2 GHz)
- 2. CMX TX power measurement within 3GPP limits:

Statistic Count	Allocation	Modulation	
20/20	No. RB: 100 Offset RB: 0	E256_QAM	
▼ Power			
	Current		
TX Power (dBm)	17.07		

3.4 6.2.4 Configured transmitter power

Purpose:

To verify that the UE does not exceed the minimum between the allowed maximum UL TX power signaled by the network through the p-Max parameter, and the maximum UE power for the UE power class.

Test Procedure:

1. Follow the steps in chapter 2.1 then configure the p-Max parameter to one of the 4 specified test points:

p-Max can be configured in the	Power Control section: p-Max
Test Point	p-Max
1	-10
2	10
3	15
4	20

- 2. Choose Test ID
 - a. The Test ID configures RB Allocation and modulation scheme
- 3. Apply the configuration

Verification

The DUT output power must be within the limits specified in 38.521-1 Tables 6.2.4.5-1 to 6.2.4.5-1b with a frequency dependent Test Tolerance (see 6.2.1 UE maximum output power)

Test Point	p-Max	Measured UE output power / dBm		
1	-10	-10 dBm ± (7+TT)		
2	10		10 dBm ± (6+TT)	
3	15	15 dBm ± (5+TT)		
4	20	Test ID 1, 2 20 dBm + 2.5+TT/-3-TT (n24, n77, n78, 79 20 dBm ±(2.5+TT) (all other bands)		
		Test ID 3	23 dBm +2+TT/-2-TT (n40, n41) 23 dBm +2+TT/-3-TT (n77, n78, n79)	

Example: PC3 DUT on n78 with Test ID 1 ($\pi/2$ BPSK; Inner full allocation) on Test Point 1

- 1. Specified max power range for these settings within -10 dBm ± (7+TT) with TT being 1 dB
- 2. CMX TX power measurement within 3GPP limits:

Statistic Count	Allocation	Modulation		
20/20	No. RB: 135 Offset RB: 67	π/2-BPSK		
▼ Power				
	Current			
TX Power (dBm)	-12.15			

3.5 6.3.1 Minimum output power

Purpose:

To verify the UE's ability to transmit with a broadband output power below the value specified in the test requirement when the power is set to a minimum value.

Test Procedure:

- 1. Follow the steps in chapter 2.1 then choose a Test ID
 - a. The Test ID configures RB Allocation and modulation scheme
- 2. Apply the configuration and verify the measured DUT UL power to be within the specified range

Verification:

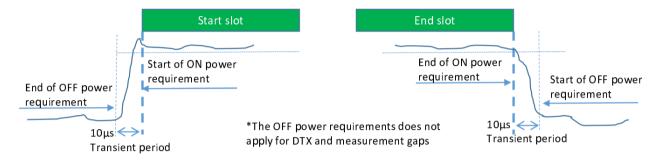
The DUT output power must be within the specified level according to 38.521-1 Table 6.3.1.5-1 with a frequency dependent Test Tolerance from Table 6.3.1.5-2:

BW / MHz	Minimum output power / dBm
3	-40+TT
5	-40+TT
10	-40+TT
15	-40+TT
20	-40+TT
25	-39+TT
30	-38.2+TT
35	-37.6+TT
40	-37+TT
45	-36.5+TT
50	-36+TT
60	-35.2+TT
70	-34.6+TT
80	-34+TT
90	-33.5+TT
100	-33+TT

Test Tolerance (TT)									
Frequency Range	BW ≤ 40MHz	40MHz < BW ≤ 100MHz							
f ≤ 3.0GHz	1 dB	1.3 dB							
3.0GHz < f ≤ 6 GHz	1.3 dB	1.3 dB							

Example: DUT on n78 with 100 MHz BW:

- 1. Specified min power range for 100 MHz BW is -33 dBm + TT (1.3 dB):
- 2. CMX TX power measurement within 3GPP limits


 Detected and Statistics 		
Statistic Count	Allocation	Modulation
20/20	No. RB: 50 Offset RB: 0	QPSK
▼ Power		
	Current	
TX Power (dBm)	-45.56	

3.6 6.3.3.2 General ON/OFF time mask

Purpose:

To verify that the general ON/OFF time mask meets the requirements. The transmit power time mask for transmit ON/OFF defines the transient period(s) allowed between transmit OFF power and transmit ON power symbols (transmit ON/OFF). Transmission of the wrong power increases interference to other channels or increases transmission errors in the uplink channel.

Figure 6.3.3.2.3-1 in 38.521-1 specifies the ON/OFF requirements as follows:

Test Procedure:

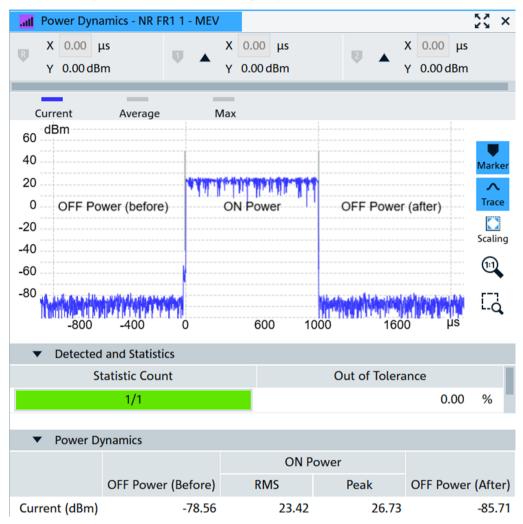
- 1. Follow the steps in chapter 2.1 then choose a Test ID
 - a. The Test ID configures RB Allocation and modulation scheme
- 2. Apply the configuration and verify the measured DUT ON/OFF power using the Power Dynamics square.

Verification:

The DUT OFF power is automatically verified by the Power Dynamics measurement using the specified limits. The limit verification in the measurement can be disabled or modified in the Multi Eval measurement

tab under Limits 	\rightarrow	Power Dynamics		:
Power Dynamics Limits				×
Enable Off Power -50.0	dBm			
▼ Test Tolerance				
	Carrier Freq	uency <= 3.0 GHz	3.0 GHz < Ca	rrier Frequency <= 6.0 GHz
Bandwidth <= 40MHz	1.5	dB	1.8	dB
40MHz < BW <= 100MHz	1.7	dB	1.8	dB

The DUT ON power requirement are the same as in test case 6.2.1.


Note: For best results, enable High Dynamic Mode in the Multi Eval measurement tab. Make sure that no BLER measurement is running before enabling this mode.

Power Dynamics

High Dynamic Mode 🗸

Example: PC3 DUT on n78 with 100 MHz BW:

- 1. Specified OFF power range for 100 MHz BW is ≤-50 dBm TT (1.8 dB)
- Specified ON power range is 23 dBm with a tolerance of +2+TT /-3-TT dB with TT being 1 dB (See 6.2.1 UE maximum output power)
- 3. CMX Power Dynamics measurement (High Dynamic Mode) within 3GPP limits

3.7 6.3.4.2 Absolute power tolerance

Purpose:

To verify the ability of the UE transmitter to set its initial output power to a specific value at the start of a contiguous transmission or non-contiguous transmission with a long transmission gap.

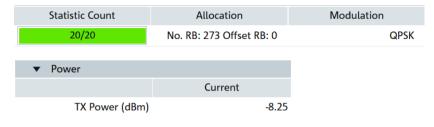
Test Procedure:

- 1. Follow the steps in chapter 2.1 then choose a Test ID
 - a. The Test ID configures RB Allocation and modulation scheme
- 2. The CMX will automatically set the required initial UL power values from which to continue
 - a. Configure the power control related settings to following values:
 - i. TPC: Keep
 - ii. ss-PBCH-BlockPower: 18 dBm (15 kHz SCS) or 21 dBm (30 kHz SCS)
- 3. Configure the setting pO-Nominal with Grant to one of the specified test points

Test Point	p0-Nominal with Grant
1	-114
2	-100

4. Apply the configuration and verify the measured DUT UL power to be within the specified range

Verification:


The DUT output power must be within the limits specified in 38.521-1 Tables 6.3.4.2.5-1 (TP1) and 6.3.4.2.5-2 (TP2) with a frequency dependent Test Tolerance (TT) as part of the power tolerance (\pm 9+TT dB)

	'		BW / dBm													
		5	10	15	20	25	30	35	40	45	50	60	70	80	90	100
Test	SCS15	-17.6	-14.4	-12.6	-11.3	-10.4	-9.6	-8.9	-8.3	-7.8	-7.3	N/A	N/A	N/A	N/A	N/A
Point	SCS30	-18.2	-14.8	-12.8	-11.5	-10.5	-9.7	-9	-8.3	-7.8	-7.4	-6.5	-5.8	-5.2	-4.7	-4.2
1	SCS60	N/A	-15.2	-13	-11.8	-10.7	-9.8	-9.1	-8.5	-7.9	-7.5	-6.6	-5.9	-5.3	-4.8	-4.3
Test	SCS15	-3.6	-0.4	1.4	2.7	3.6	4.4	5.1	5.7	6.2	6.7	N/A	N/A	N/A	N/A	N/A
Point	SCS30	-4.2	-0.8	1.2	2.5	3.5	4.3	5	5.7	6.2	6.6	7.5	8.2	8.8	9.3	9.8
2	SCS60	N/A	-1.2	1	2.3	3.3	4.2	4.9	5.5	6.1	6.5	7.4	8.1	8.7	9.2	9.7

Test Tolerance (TT)									
Frequency Range	BW ≤ 40MHz	40MHz < BW ≤ 100MHz							
f ≤ 3.0GHz	1 dB	1.4 dB							
3.0GHz < f ≤ 6 GHz	1.4 dB	1.4 dB							

Example: DUT on n78 with 100 MHz BW and TP1:

- 1. Specified expected measured power: -4.2 dBm with a tolerance of ±(9+1.4) dB
- 2. CMX TX power measurement within 3GPP limits

3.8 6.3.4.3 Relative power tolerance

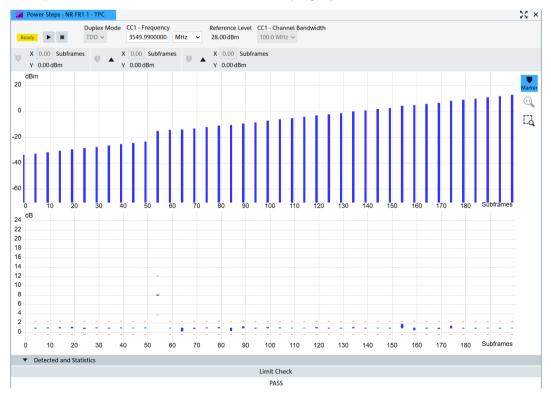
Purpose:

To verify the ability of the UE transmitter to set its output power in a target sub-frame relatively to the power of the most recently transmitted reference sub-frame if the transmission gap between these sub-frames is less than or equal to 20ms.

Test Procedure:

Note: This TC is initially accessible via *NR Cell Configuration: Power* \rightarrow *Power Control* \rightarrow *TPC* \rightarrow *Relative Power Tolerance.* It will be added to the 3GPP workspace configuration in later SW versions

- 1. Follow the steps in chapter 2.1 and click Apply
 - o The CMX will prepare the signaling and measurement for testing
- 2. Choose the test *Pattern*, *Direction* and *Sub Test ID* for testing in the configuration tab on the right and click *Execute*


TPC	Relative Power Tolerance	~
Pattern	Α	~
Direction	Ramping Up	~
Sub Test ID	1	
	Execute	

Length Slot: 450

Verification:

The CMX will execute the test pattern and measure the respective UL power steps. The measurement automatically performs limit checks according to 38.521-1

Example: DUT on n78 with with Pattern A, Ramping Up, Sub Test ID 1

Rohde & Schwarz | Application Note Simplifying 5G NR 3GPP R&D RF Conformance Testing 22

3.9 6.3.4.4 Aggregate power tolerance PUCCH/PUSCH

Purpose:

To verify the ability of the UE transmitter to maintain its power during non-contiguous transmissions within 21ms in response to 0 dB commands with respect to the first UE transmission and all other power control parameters kept constant.

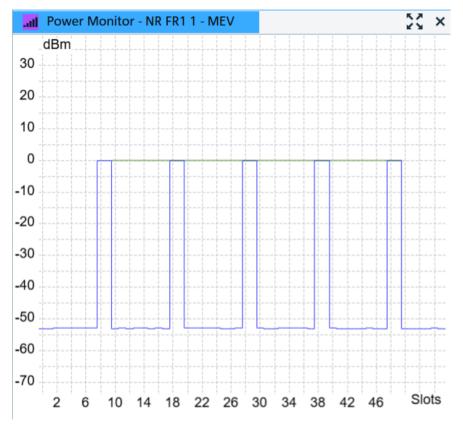
Test Procedure:

- 1. Follow the steps in chapter 2.1 then choose a Test ID
 - a. The Test ID configures RB Allocation and modulation scheme.
 - b. See notes for PUCCH subtests in chapter 2.1.
- 2. Set TPC to Keep to verify the ability of the DUT to maintain its UL power
- 3. Apply the configuration and measure the power of 5 consecutive PUCCH/PUSCH transmissions to verify that the DUT is able to maintain its power within the required time

Verification:

The DUT must maintain its UL power over 5 consecutive PUCCH/PUSCH transmissions within the tolerance defined in Table 6.3.4.4.5-1 with a test tolerance (TT) of 0.7 dB:

UL channel	Test requirement for consecutive 2 nd and later power measurements
PUCCH	Measurements shall be within \pm (2.5 + TT) dB of the 1st measurement.
PUSCH	Measurements shall be within \pm (3.5 + TT) dB of the 1st measurement.


Note: Set the measurement to 30 Subframes to measure PUCCH/PUSCH within the required time window

Example: DUT on n78 30 kHz SCS measured with PUSCH

- 1. Specified expected measured deviation from the first measured slot: ±(3.5+0.7) dB
- 2. CMX TX power measurement within 3GPP limits

all TX Measurement - NR FR1 1 - MEV										
 Detected and Statistics 										
Statistic Count	Allocation		Modul	ation	Channel	Туре				
20/20	No. RB: 273 Offse	(QPSK	PU	ISCH					
 Power 										
	Current	Aver	age		Min	ſ	Max			
TX Power (dBm)	-0.00		-0.12		-0.24		-0.			

Power monitor measurement with 5 consecutive PUSCH transmissions. Green line from the first measured PUSCH transmission added for better illustration:

3.106.4.1 Frequency error

Purpose:

This test verifies the ability of both, the receiver and the transmitter, to process frequency correctly.

Receiver: to extract the correct frequency from the stimulus signal, offered by the System simulator, under ideal propagation conditions and low level.

Transmitter: to derive the correct modulated carrier frequency from the results, gained by the receiver.

Test Procedure:

- 1. Follow the steps in chapter 2.1 then choose a Test ID
 - a. The Test ID configures RB Allocation and modulation scheme
- 2. Set *Total Cell Power* to the REFSENS value defined in Table 7.3.2.5-1.

Note: The DL power will be adapted automatically in future FW versions

3. Apply the configuration and verify the measured DUT frequency error to be within the specified range

Verification:

The frequency error results must be within $|\Delta f| \le (0.1 PPM + 15 Hz)$

Example: DUT on n78 with center frequency of 3549.99 MHz

can be seen in the \checkmark Limits \rightarrow

1. Specified absolute max frequency error is $\leq (350 Hz + 15 Hz)$

The CMX automatically checks the Frequency error limit of 0.1 PPM in the TX Measurement. This

Modulation...

											setting.							
Modulation Limits																		×
 Modulation 																		
		π/2-BPSK		Ţ	τ/2-BPSK with shap	ing		QPSK			16-QAM			64-QAM			256-QAM	
EVM RMS	~	30.0	%	~	30.0	%	~	17.5	%	 Image: A start of the start of	12.5	%	~	8.0	%	~	3.5	%
EVM Peak		60.0	%		60.0	%		35.0	%		25.0	%		16.0	%		7.0	%
Magnitude Error RMS		30.0	%		30.0	%		17.5	%		12.5	%		8.0	%		3.5	%
Magnitude Error Peak		60.0	%		60.0	%		35.0	%		25.0	%		16.0	%		7.0	%
Phase Error RMS		30.0	۰		30.0	•		17.5	۰		12.5	۰		8.0	۰		3.5	۰
Phase Error Peak		60.0	۰		60.0	۰		35.0	۰		25.0	۰		16.0	۰		7.0	۰
Frequency Error	 Image: A start of the start of	0.10	ppm	 Image: A start of the start of	0.10	ppm	 Image: A start of the start of	0.10	ppm	 Image: A start of the start of	0.10	ppm	\checkmark	0.10	ppm	 Image: A start of the start of	0.10	ppm

setting.

2. CMX frequency error measurement within 3GPP limits

 Detected and Statistic 	s							
Statistic Count	Allocatio	n	Modulation					
20/20	No. RB: 270 Off	set RB: 0	QPSK					
 TX Measurement 								
	Cur	rent	Aver	age	Extreme			
	Low	High	Low	High	Low	High		
Frequency Error (Hz)		-10.53		-11.71		-24.38		

Automatically highlighted in red if out of limits

 TX Measurement 							
	Cur	rent	Ave	rage	Ext		
	Low	High	Low	High	Low	High	
Frequency Error (Hz)		▲ <u>391.93</u>		▲ <u>388.21</u>		A	393.71

3.11 6.4.2.1 Error Vector Magnitude PUCCH/PUSCH

Purpose:

The Error Vector Magnitude is a measure of the difference between the reference waveform and the measured waveform.

Test Procedure:

- 1. Follow the steps in chapter 2.1 then choose a Test ID
 - a. The Test ID configures RB Allocation and modulation scheme
 - b. See notes for PUCCH subtests in chapter 2.1.
- 2. Apply the configuration and verify the measured DUT EVM to be within the specified range
- 3. The TC requires EVM measurements at DUT max and min power.
 - a. The CMX will automatically set max power first.

After the max power EVM verification, the DUT needs to be configured to min power using *TPC Closed Loop* settings

Below table lists required minimum power (Pmin) according to 38.521-1 Table 6.3.1.3-1. Target power for 256QAM Test IDs is Pmin + 10 dB.

Channel BW / MHz	Minimum output power
3-20 MHz	-40
25-100 MHz	-40+10log10(BWChannel/20)

Verification:

The EVM measurement results must be lower than the maximum error % in Table 6.4.2.1.5-1 with a TT defined in Table 6.4.2.1.5-2.

Modulation	Average EVM Level / %
Pi/2-BPSK	30 + TT
QPSK	17.5 + TT
16 QAM	12.5 + TT
64 QAM	8 + TT
256 QAM	3.5 + TT

Modulation	TT / %
All except 256QAM	0
256 QAM @max power	0.3
256 QAM @min power	1.1

Example: DUT on n78 with 100 MHz BW with PUCCH Test ID 1 (QPSK)

- 1. Specified maximum EVM is 17.5 + 0 %
- 2. CMX EVM measurement within 3GPP limits

	Duplex Mode	CC1 - Frequency	F	epetition	Reference	ce Level	CC1 - Channel	9 h 1	Used SCS	No. of Si	ubframes	mes Measure S	
Run II 🔳	TDD ~	3549.9900000 N	1Hz 🗸	Continuous N	11.00 dl	Bm	100.0 MHz ~		30 kHz 🗸	10		8 All	
X 1 @ 0 Sym Hi Y 0.00%	U 🔺 👘	1 @ 0 Sym High 0.00 %	V 🔺 👘	1 @ 0 Sym 0.00%	High								
AS Peak EVM vs S	ymbol Currer	nt Average	Max										
%													
													N
													9
10h 11	h 2h	13h 14	h 15	h I 6	h 7	h	18h 1	9 h	10 h	11 h	12 h	I h DM Symbo	ol
 Detected and St 	atistics												
Statistic Count		Allocation	N	odulation		Char	nnel Type	C	out of Tolera	nce	View F	ilter Throu	ghpu
20/20	No.	RB: 1 Offset RB: 0		(QPSK		PUCCH			0.00 %			100
20/20													
	_												
	Cur	rent		Averag	e		E	xtreme			Std	Dev	
	Cur Low	rent High	Lo		e High		E		High	Lo		Dev Hig	h
▼ EVM					High	0.88		1	High 0.96	Lo			
▼ EVM EVM	Low	High	6	w	High	0.88 2.55	Low 0.	1	-	Lo	w		h 0 0

3. Measure EVM at min power using TPC closed loop power settings. For 100 MHz BW, the min power according to Table 6.3.1.3-1 is slightly lower than 33 dB:

	Closed Loop	~	
Target Power Total RMS	-34.0	dBm	

3.12 6.4.2.2 Carrier leakage

Purpose:

Carrier leakage expresses itself as unmodulated sine wave with the carrier frequency or center frequency of aggregated transmission bandwidth configuration. It is an interference of approximately constant amplitude and independent of the amplitude of the wanted signal.

The purpose of this test is to exercise the UE transmitter to verify its modulation quality in terms of carrier leakage.

Test Procedure:

- 1. Follow the steps in chapter 2.1 then choose a Test ID
 - a. The Test ID configures RB Allocation and modulation scheme
- 2. Apply the configuration and verify the measured DUT carrier leakage to be within the specified range
 - a. The measurements are specified for different UL target power ranges, which can be set using the *TPC Closed Loop* settings. Test Step 1 UL target power is set automatically upon test case selection:

ТРС	Closed Loop 🗸
Target Power Total RMS	10.0 dBm
Test Step	Target Power Level / dBm
1	10
2	0
3	-30
4	Pmin from Table 6.3.1.3-1 (see TC 6.4.2.1)

Note: The target power is defined to be within a specific range given by the Test system uncertainty and UE step size and tolerances. Using the CMX target power control will ensure that the UL power is well within the specified range.

Verification:

The carrier leakage results must not exceed the relative limits from Table 6.4.2.2.5-1 with a TT of 0.8 dB.

Test Step	Relative limit / dBc
1	-28 + TT
2	-25 + TT
3	-20 + TT
4	-10 + TT

Example: DUT on n78 with 100 MHz BW on Test Step 1 (10 dBm target power)

1. Relative limit for Test Step 1 is -27.2 dBc

2. CMX Carrier leakage measurement within 3GPP limits

)			
Run II 🔳	Duplex Mode	CC1 - Frequency 3549.9900000	MHz 🗸	Repetition Continuous ~	Reference Level 28.20 dBm	CC1 - Channel Ban 100.0 MHz V	dwidth Used SCS 30 kHz ~	No. of Subframes	8 All 🗸			
 Detected and Stati 	stics											
Statistic Count		Allocation		Modulation	Cha	nnel Type	Out of Tolerar	ice View	Filter Throughpu			
20/20	No	. RB: 1 Offset RB:	1	QP	SK	PUSCH	C	0.00 %	100			
 Power 												
		Current		Average		Min	Max		Std Dev			
TX Power (d	Bm)	9	9.52		9.48	9.31		9.65	C			
Peak Power (d	Bm)	13	3.27	1	3.29	13.14		14.23	C			
RB Power (d	Bm)	9	9.58		9.53	9.37		9.71	C			
 TX Measurement 												
		Current		Ave	verage Extreme Std Dev							
	Lov	v F	ligh	Low	High	Low	High	Low	High			
EVM RMS (%)	1.69	1.69	2.31	2.3	1 2.9	2.94	4 0.3	8 0			
EVM Peak (%)	8.90	8.91	11.17	11.1	8 14.6	6 14.6	5 1.8	0 1			
EVM DMRS (%)	0.86	0.86	1.31	1.3	1 1.6	i9 1.7 0	0.2	6 0			
agnitude Error RMS (%)	1.57	1.57	2.14	2.1	4 2.7	2.7	7 0.3	5 0			
agnitude Error Peak (%)	8.85	8.86	11.07	11.0	9 14.6	6 14.6	5 1.8	0 1			
gnitude Error DMRS (%)	0.80	0.80	1.23	1.2	3 1.6	io 1.60	0.2	4 0			
Phase Error RMS	(°)	0.36	0.36	0.51	0.5	0.6	61 0.61	1 0.0	9 0			
Phase Error Peak	(°)	1.09	1.09	2.17	2.1	7 3.0	3.00	0.6	8 0			
Phase Error DMRS	(°)	0.13	0.13	0.19	0.1	9 0.3	0.3	1 0.0	5 C			
IQ Offset (dl	Bc)		-63.93	[-64.9	8	-60.7	1	1			
Frequency Error (H	łz)		-7.25		-10.1	0	-23.20)	3			
Frequency Error (pp	m)		-0.00		-0.0	0	-0.0	1	C			
mple Clock Error (pp	m)		-2.03		-1.3	1	-11.73	3	4			
Timing Error (Ts)		-0.76		-0.9	1	2.82	2	C			
OBW (MH	łz)		0.42		0.4	8	0.54	4	C			

3.13 6.4.2.3 In-band emissions PUCCH/PUSCH

Purpose:

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks.

The in-band emission is defined as the average emission across 12 sub-carriers and as a function of the RB offset from the edge of the allocated UL transmission bandwidth. The in-band emission is measured as the ratio of the UE output power in a non–allocated RB to the UE output power in an allocated RB.

The purpose of this test is to exercise the UE transmitter to verify its modulation quality in terms of in-band emissions.

Test Procedure:

- 1. Follow the steps in chapter 2.1 then choose a Test ID
 - a. The Test ID configures RB Allocation and modulation scheme

Notes for PUCCH Subtests:

- Parameters will show not applicable for the PUCCH subtests, as only the PUSCH scheduling is displayed. The PUCCH configuration will be applied according to 38.521-1
- There is no UL PUSCH scheduled according to 38.521-1. It is recommended to switch data on the UE off. Every scheduling request for UL resources from the UE will lead to call drops, as no PUSCH resources are available.
- 2. Apply the configuration and verify the measured DUT in-band emissions to be within the specified range
 - a. The measurements are specified for different UL target power ranges, which can be set using the *TPC Closed Loop* settings:

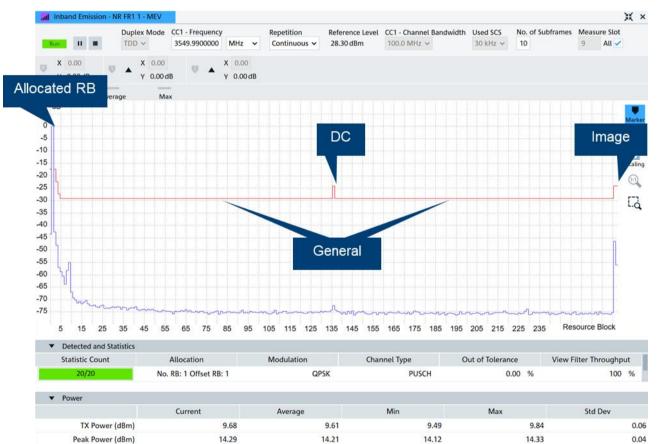
TPC	Closed Loop 🗸
Target Power Total RMS	10.0 dBm
Test Step	Target Power Level / dBm
1	10
2	0
3	-30
4	Pmin from Table 6.3.1.3-1 (see TC 6.4.2.1)

Note: The target power is defined to be within a specific range given by the Test system uncertainty and UE step size and tolerances. Using the CMX target power control will ensure that the UL power is well within the specified range.

Verification:

The in-band emissions results must not exceed the values from Table 6.4.2.3.5-1. The specification defines separate limits over the whole carrier BW. Limits are automatically checked by the CMX500 within the *Inband Emission* measurement.

Example: DUT on n78 with 100 MHz BW on Test Step 1 (10 dBm target power)


1. The CMX500 automatically checks the Frequency error limit of 0.1 PPM in the TX Measurement.

his can be	seen in th	e 🔻	$\stackrel{\text{Limits}}{\rightarrow}$		Modula	tion	:	setting:				
Modulation Limits												×
 Modulation 												
IQ Offset												
▼ IBE												
	π/2-BPSK		π/2-BPSK with	n shaping	QPSI	к	16-0	AM	64-G	AM	256-0	AM
Enable	 Image: A start of the start of		 Image: A start of the start of		✓		~		~		~	
General Min	-29.2	dB	-29.2	dB	-29.2	dB	-29.2	dB	-29.2	dB	-29.2	dB
General EVM	30.0	%	30.0	%	17.5	%	12.5	%	8.0	%	3.5	%
General RB Power	-57.0	dBm	-57.0	dBm	-57.0	dBm	-57.0	dBm	-57.0	dBm	-57.0	dBm
IQ Image > 10 dBm	-27.2	dB	-27.2	dB	-27.2	dB	-27.2	dB	-27.2	dB	-27.2	dB
IQ Image <= 10 dBm	-24.2	dB	-24.2	dB	-24.2	dB	-24.2	dB	-24.2	dB	-24.2	dB

2. CMX in-band emissions measurement within 3GPP limits

9.74

RB Power (dBm)

9.67

9.53

9.88

0.06

3.14 6.4.2.4 EVM equalizer spectrum flatness

Purpose:

The zero-forcing equalizer correction applied in the EVM measurement process must meet a spectral flatness requirement for the EVM measurement to be valid. The EVM equalizer spectrum flatness is defined in terms of the maximum peak-to-peak ripple of the equalizer coefficients (dB) across the allocated uplink block, at which the equalizer coefficients are generated by the EVM measurement process.

Test Procedure:

- This test distinguishes between 2 frequency ranges within a band that are defined for normal and extreme conditions. This description will focus on normal conditions, as these are generally used. The frequency ranges are calculated based on the specified range for the respective band with F_{UL_Low} and F_{UL_High} being the minimum and maximum frequencies and F_{UL_Meas} the measured subcarrier frequency.
 - a. Range 1 (normal conditions): $F_{UL_Meas} F_{UL_Low} \ge 3 \text{ MHz}$ and $F_{UL_High} F_{UL_Meas} \ge 3 \text{ MHz}$
 - b. Range 2 (normal conditions): F_{UL_Meas} F_{UL_Low} < 3 MHz or F_{UL_High} F_{UL_Meas} < 3 MHz

Example: n78 (3300 MHz - 3800 MHz); normal conditions

- i. Range 1: 3303 3797 MHz
- ii. Range 2: 3300 3302.99 MHz and 3797.01 3800 MHz

Note: This test covers either one or both frequency ranges depending on the chosen range within the NR band (low – mid - high). Using a low or high range setting will generally cover both frequency Range 1 and Range 2 while a mid-range cell is likely only located within frequency Range 1

- 2. Follow the steps in chapter 2.1 then choose a Test ID
 - a. The Test ID configures RB Allocation and modulation scheme
- 3. Apply the configuration and verify the measured DUT in-band emissions to be within the specified range

Verification:

The measured peak-to-peak variation of the EVM equalizer coefficients shall not exceed the maximum ripple as specified in 38.521-1 Tables 6.4.2.4.5-1 to 6.4.2.4.5-2. The maximum variation of coefficients is defined in Figure 6.4.2.4.5-1.

Limits are automatically checked by the CMX500 within the Equalizer Spectrum Flatness measurement.

Example: DUT on n78 with 100 MHz BW on low-range (carrier center at 3350.01 MHz)

1. The CMX automatically checks the specified limits in the *Equalizer Spectrum Flatness*

measurement. The parameters from the relevant tables and figures are reflected in the \checkmark Limits \rightarrow

Modulat	ion	S	etting:									
Modulation Limits												×
Modulation												
IQ Offset												
▶ IBE												
IQ Offset @ Output Powe	er											
 Spectrum Flatness 												
	π/2-	BPSK	π/2-BPSK w	ith shaping	Q	PSK	16-	QAM	64-	QAM	256-	QAM
Enable	✓		 Image: A set of the set of the		 Image: A start of the start of		 Image: A set of the set of the		✓		✓	
Range 1	5.4	dBpp	7.4	dBpp	5.4	dBpp	5.4	dBpp	5.4	dBpp	5.4	dBpp
Range 2	9.4	dBpp	15.4	dBpp	9.4	dBpp	9.4	dBpp	9.4	dBpp	9.4	dBpp
Max(Range 1) - Min(Range 2)	6.4	dB	0.0	dB	6.4	dB	6.4	dB	6.4	dB	6.4	dB
Max(Range 2) - Min(Range 1)	8.4	dB	0.0	dB	8.4	dB	8.4	dB	8.4	dB	8.4	dB
Band Edge Distance	3.0	MHz	0.0	MHz	3.0	MHz	3.0	MHz	3.0	MHz	3.0	MHz

2. CMX Equalizer Spectrum Flatness measurement within 3GPP limits:

	TDD ~		requency 0100000		• •		tition tinuous ∨		ence Level 0 dBm		Channel DMHz ∨	Bandwidtl		SCS Hz ∨	No. o 10	f Subfr	ames	Meas 0		ilot I 🖌							
X 0.00 Sym Y 0.00 dB	- U 🔺	X 0.00 Y 0.00 d			Ø 🔺		0.00 Sym 0.00 dB																				
Current																											
dB										Ra	ange 1																
2 Range 1																											
2		8*******				*****	*****	~~~~		4		****		war of the	~~~	***					-				•		
i																											
	400 500	600 7	700 80	0 90	0 100	0 11	00 1200	1300 1	400 1500	1600	1700 1	800 190	2000	2100	2200	2300	2400	2500	26	00 2	700	2800	2900	300) S	ubcarrie	r
 Detected and Statis 	stics																										
Statistic Count			Alloca	ation				Modul	ation			Chanr	el Type				Out	of Tol	eran	ce			Vie	ew Filt	er Thro	oughput	
20/20			No. RB:	270 Of	fset RB	: 0				QPSK				PUS	СН					0.00) %					100	
 Equalizer Spectrum 	- Flata and																										
Equalizer spectrum	Fiduless				Curre	at				Δν	erage					Extr	reme							Ste	l Dev		
	Ripple 1 (d	(Boo)			curre		1	1.12		-	cruge		1.13			LAU	enne			1.22	2			5.0			
	Ripple 2 (d							0.24					0.21							0.30							
May/Panas 1)	Min(Range 2)							0.15					0.12							0.20							
								1.21					1.22							1.31							
Max(Range 1)-I Max(Range 2)-I	win(kange I)																										
																Exte	reme							Sto	l Dev		
Max(Range 2)-I					Curre	nt				Av	erage					LAU								500	1 Dev		
Max(Range 2)-I		(dBc)			Curre	nt	-79	9.26		Av	erage	-	73.98			LAU			-	63.37	7			510			
Max(Range 2)-I	al				Curre	nt		9.26 1.38		Av	erage		73.98 -3.61			LAU				63.37 26.01				5.0			
Max(Range 2)-I ▼ Modulation Genera Fre	al IQ Offset (r (Hz)			Curre	nt	-4			Av	erage					LAU			-		1			510			
Max(Range 2)-I ▼ Modulation Genera Free Frequ	al IQ Offset (equency Error	r (Hz) ppm)			Curre	nt	-4 -0	1.38		Av	erage		-3.61			LAU			-	26.01	1 1			510			

3.15 6.4.2.5 EVM equalizer spectrum flatness for Pi/2 BPSK

Purpose:

The zero-forcing equalizer correction applied in the EVM measurement process must meet a spectral flatness requirement for the EVM measurement to be valid. The EVM equalizer spectrum flatness is defined in terms of the maximum peak-to-peak ripple of the equalizer coefficients (dB) across the allocated uplink block, at which the equalizer coefficients are generated by the EVM measurement process.

Test Procedure:

- Similar to 6.4.2.4, this test distinguishes between 2 frequency ranges within a band. The frequency ranges are calculated based on the center frequency of the allocated BW F_{Center} and the measured sub-carrier frequency F_{UL_Meas}.
 - a. Range 1: $||F_{UL-Meas} F_{Center}| \le X$; with X being 25% of the allocated PRBs
 - b. Range 2: $||F_{UL-Meas} F_{Center}| > X$; with X being 25% of the allocated PRBs

 \rightarrow The allocated BW is divided into 4 parts, with the outer 2 parts belonging to Range 2 and the inner parts to Range 1

- 2. Follow the steps in chapter 2.1 then choose a Test ID
 - a. The Test ID configures RB Allocation and modulation scheme

Note: This test case only applies to PC3 UEs with support for the UE capability powerBoosting-pi2BPSK powerBoostPi2BPSK (Test ID1) or lowPAPR-DMRS-PUSCHwithPrecoding-r16 (Test ID 2)

3. Apply the configuration and verify the measured DUT in-band emissions to be within the specified range

Verification:

The measured peak-to-peak variation of the EVM equalizer coefficients shall not exceed the maximum ripple as specified in 38.521-1 Table 6.4.2.5.5-1 and Figure 6.4.2.5.5-1. Limits are automatically checked by the CMX500 within the *Equalizer Spectrum Flatness* measurement.

Example: DUT on n78 with 100 MHz BW

Modulation...

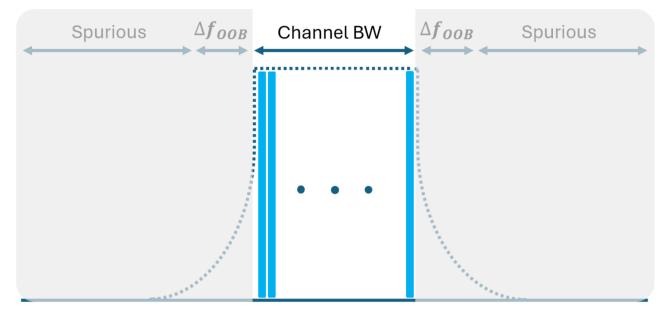
1. The parameters from Figure 6.4.2.5.5-1 are reflected in the \checkmark Limits \rightarrow

setting:

Modulation Limits												×
Modulation												
 IQ Offset 												
▶ IBE												
IQ Offset @ Output Powe	er											
 Spectrum Flatness 												
	π/2-BPSK		π/2-BPSK wit	th shaping	QPSK		16-QA	М	64-QAM		256-QAM	
Enable	 Image: A start of the start of				✓		 Image: A set of the set of the		✓		 Image: A set of the set of the	
Range 1	5.4	dBpp	7.4	dBpp	5.4	dBpp	5.4	dBpp	5.4	dBpp	5.4	dBp
Range 2	9.4	dBpp	15.4	dBpp	9.4	dBpp	9.4	dBpp	9.4	dBpp	9.4	dBpp
Max(Range 1) - Min(Range 2)	6.4	dB	0.0	dB	6.4	dB	6.4	dB	6.4	dB	6.4	dB
Max(Range 2) - Min(Range 1)	8.4	dB	0.0	dB	8.4	dB	8.4	dB	8.4	dB	8.4	dB
Band Edge Distance	3.0	MHz	0.0	MHz	3.0	MHz	3.0	MHz	3.0	MHz	3.0	MHz

2. CMX Equalizer Spectrum Flatness measurement within 3GPP limits:

Equivalent to 6.4.2.4 EVM equalizer spectrum flatness


Rohde & Schwarz | Application Note Simplifying 5G NR 3GPP R&D RF Conformance Testing 34

3.16 6.5.1 Occupied bandwidth

Purpose:

To verify that the UE occupied bandwidth for all transmission bandwidth configurations supported by the UE are less than their specific limits.

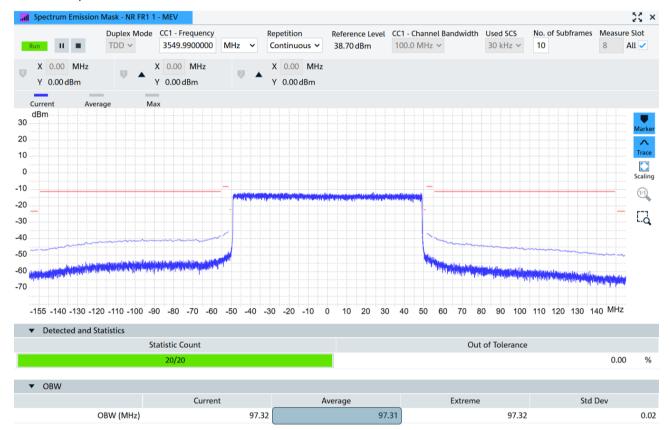
Occupied bandwidth is defined as the bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on the assigned channel.

Test Procedure:

- 1. Follow the steps in chapter 2.1 then choose a Test ID
 - a. The Test ID configures RB Allocation and modulation scheme
- 2. Apply the configuration and verify the measured DUT occupied bandwidth to be within the specified range

Verification:

The measured occupied bandwidth shall not exceed the values from 38.521-1 Table 6.5.1.5-1:

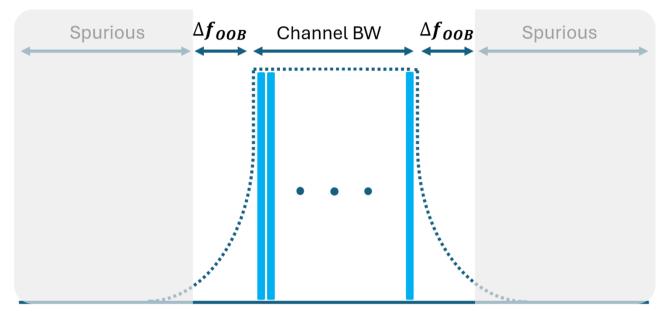

•	NR channel BW / MHz															
	3	5	10	15	20	25	30	35	40	45	50	60	70	80	90	100
Occupied BW / MHz	3	5	10	15	20	25	30	35	40	45	50	60	70	80	90	100

Limits are automatically checked by the CMX500 within the Spectrum Emission Mask measurement.

1. The parameters from Table 6.5.1.5-1 are reflected in the Limits → Spectrum Emission Mask...
setting:

Spectrum Emission Mask Limits															
3.0 MHz	5.0 MHz	10.0 MHz	15.0 MHz	20.0 MHz	25.0 MHz	30.0 MHz	35.0 MHz	40.0 MHz	45.0 MHz	50.0 MHz	60.0 MHz	70.0 MHz	80.0 MHz	90.0 MHz	100.0 MHz
▼ OB	w														
✓ 100.0	1		MHz												

2. CMX Occupied Bandwidth measurement within 3GPP limits:



3.17 6.5.2.2 Spectrum emission mask

Purpose:

To verify that the power of any UE emission shall not exceed specified level for the specified channel bandwidth.

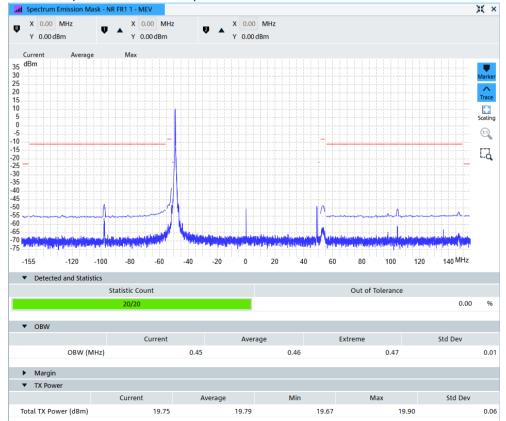
Out-of-band emissions are unwanted emissions immediately outside the nominal channel. They result from the modulation process and from non-linearity in the transmitter, but they do not include spurious emissions.

Test Procedure:

- 1. Follow the steps in chapter 2.1 then choose a Test ID
 - a. The Test ID configures RB Allocation and modulation scheme depending on DUT power class
- 2. Apply the configuration and verify the measured DUT occupied bandwidth to be within the specified range

Verification:

The measured mean power of the UE in the channel bandwidth shall meet the requirements from testcase 6.2.2 UE maximum output power reduction (MPR).

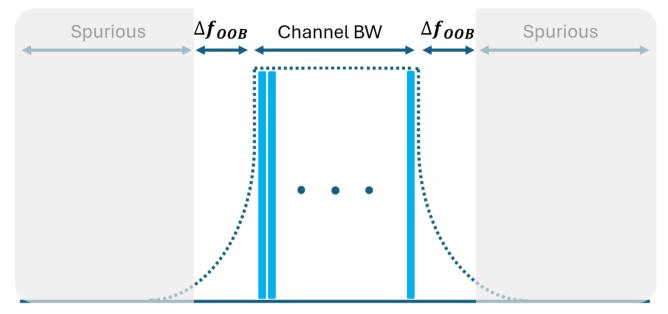

The power of any UE out of band emission (within Δf_{OOB}) shall be within the requirements in 38.521-1 Table 6.5.2.2.5-1.

Limits are automatically checked by the CMX500 within the Spectrum Emission Mask measurement.

1. The parameters from Table 6.5.2.2.5-1 are reflected in the Limits → Spectrum Emission Mask...
setting:

Spectrum	Emission Mask	Limits													
8.0 MHz	5.0 MHz 10	.0 MHz	15.0 MHz	20.0 MHz	25.0 MHz	30.0 MHz	35.0 MHz	40.0 MHz	45.0 MHz	50.0 MHz	60.0 MHz	70.0 MHz	80.0 MHz	90.0 MHz	100.0 MHz
▼ OE	3W														
/ 100.	D		MHz												
▼ Em	nission Mask														
General L	imits are active!														
▼ Ge	neral Limits														
		!	Start			Sto	p			Power				RBW	
 Image: A set of the set of the	0.0			MHz	0.9			MHz	-24.0		dB	m 30kl	lz		~
 Image: A set of the set of the	1.5			MHz	4.5			MHz	-10.0		dB	m 1MH	lz		~
 Image: A set of the set of the	5.5			MHz	99.5			MHz	-13.0		dB	m 1MH	lz		•
/	100.5			MHz	104.5			MHz	-25.0		dB	m 1MH	lz		``
	100.5			MHz	104.5			MHz	-25.0		dB	m 1MH	łz		```
	100.5			MHz	104.5			MHz	-25.0		dB	m 1MH	łz		```
	100.5			MHz	104.5			MHz	-25.0		dB	m 1MH	lz		、
	100.5			MHz	104.5			MHz	-25.0		dB	m 1MH	łz		•
	100.5			MHz	104.5			MHz	-25.0		dB	m 1MH	łz		•
	100.5			MHz	104.5			MHz	-25.0		dB	m 1MH	iz		、
	100.5			MHz	104.5			MHz	-25.0		dB	m 1MH	lz		~
	100.5			MHz	104.5			MHz	-25.0		dB	m 1MH	lz		``
► Ad	ditional Limits 1										Limits Not Sp	ecified for T	his Bandwidt	٦	
► Ad	Iditional Limits 2										@ NS_04 & n	41			
	Iditional Limits 3												his Bandwidt		
	Iditional Limits 4										Limits Not Sp	ecified for T	his Bandwidt	n	
	st Tolerance														
	equency <= 3GHz		1.5	dB											
GHz < Ca	arrier Frequency	<= 4.2GH		dB											
.2GHz <	Carrier Frequenc	:y <= 6GH:	z 1.8	dB											

2. CMX Occupied Bandwidth and power measurement within 3GPP limits:


Rohde & Schwarz | Application Note Simplifying 5G NR 3GPP R&D RF Conformance Testing 38

3.18 6.5.2.3 Additional spectrum emission mask

Purpose:

To verify that the power of any UE emission shall not exceed specified level for the specified channel bandwidth under the deployment scenarios where additional requirements are specified.

Out-of-band emissions are unwanted emissions immediately outside the nominal channel. They result from the modulation process and from non-linearity in the transmitter, but they do not include spurious emissions.

Test Procedure:

- 1. Choose a valid band mapped to an applicable NS value
 - a. Only following NS values are used for additional spectrum emissions calculations

NS_03 NS_03U NS	S_04 NS_06	NS_07	NS_21	NS_27	NS_35
n2, n25, n2, n25, n4 n66, n66, n86 n70, n86	41 n12, n85, n14	n13	n30 (rel- 17)	n48	n71

- ➔ The CMX allows the selection of all applicable NS values through the Additional Spectrum Emission dropdown menu. Band n2 with an Additional Spectrum Emission value of 2 is for example mapped to NS_03.
- 2. Follow the steps in chapter 2.1 then choose a Test ID
 - a. The Test ID configures RB Allocation and modulation scheme depending on DUT power class
 - ➔ The CMX allows the selection of all Test IDs. Resulting modulation and RB allocation are displayed for each valid Test ID upon selection.
 - ➔ Test IDs for this test case are specified in 6.2.3 UE additional maximum output power reduction (A-MPR). Please check the event log at the bottom of the GUI and refer to *Notes* section in chapter 2.1.

🔺 NR: UL scheduling not defined in 3GPP Spec for test case '6.2.3 UE additional maximum output power reduction', test Id 1, n1, Scs15Khz, Mhz10

3. Apply the configuration

The measured mean power of the UE in the channel bandwidth shall meet the requirements from testcase 6.2.3 UE additional maximum output power reduction (A-MPR).

The additional requirements for the respective NS values are specified in Tables 6.5.2.3.5.1-1 to 6.5.2.3.5.9-1. Limits are automatically checked by the CMX500 within the *Spectrum Emission Mask* measurement.

Example: PC3 DUT on n2 using NS_04 with Test ID 6 (QPSK; Outer Full)

1. The parameters from Tables 6.5.2.3.5.1-1 to 6.5.2.3.5.9-1 are reflected in the \checkmark Limits \rightarrow

Spectrum Emission Mask... setting in the Additional Limits tab:

Spectrum	Emission Mask I	Limits													>
3.0 MHz	5.0 MHz 10.	0 MHz	15.0 MHz	20.0 MHz	25.0 MHz	30.0 MHz	35.0 MHz	40.0 MHz	45.0 MHz	50.0 MHz	60.0 MHz	70.0 MHz	80.0 MHz	90.0 MHz	100.0 MHz
▼ OB	▼ OBW														
✓ 20.0			MHz												
▼ Emi	ission Mask														
Additional	Limits 3 are acti	ive!													
► Ger	neral Limits														
	ditional Limits 1										@ NS_35				
 Add 	ditional Limits 2										@ NS_04 & n	41			
~			Start			Sto	P		10.0	Power	10			RBW	
~ ~	0.2			MHz	0.8			MHz	-10.0		dB		rCent		~
	1.5			MHz	4.5			MHz	-10.0		dB				~
~	5.5			MHz	17.8				-13.0		dB				•
~	18.8			MHz	24.5			MHz	-25.0		dB				~
	20.0			MHz	25.0			MHz	-25.0		dB				~
	20.0			MHz	25.0			MHz	-25.0		dB				~
	20.0			MHz	25.0			MHz	-25.0		dB				~
	20.0			MHz	25.0			MHz	-25.0		dB				~
	20.0			MHz	25.0			MHz	-25.0		dB		lz		~
	20.0			MHz	25.0			MHz	-25.0		dB	m 1Mł	lz		~
	20.0			MHz	25.0			MHz	-25.0		dB	m 1Mł	lz		~
	20.0			MHz	25.0			MHz	-25.0		dB	m 1Mł	Ηz		~
Add	ditional Limits 3										@ NS_03 or I	NS_21			
Additional Limits 4 Limits Not Specified for This Bandwidth															
▼ Tes	t Tolerance														
Carrier Fre	quency <= 3GHz		1.5	dB											

2. CMX Occupied Bandwidth and power measurement within 3GPP limits:

Rohde & Schwarz | Application Note Simplifying 5G NR 3GPP R&D RF Conformance Testing 40

3.196.5.2.4.1 NR ACLR

Purpose:

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR).

Adjacent channel leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency.

Test Procedure:

- 1. Follow the steps in chapter 2.1 then choose a Test ID
 - a. The Test IDs from 6.2.2 UE maximum output power reduction (MPR) are used for this TC
 - b. Test IDs configure RB Allocation and modulation scheme depending on DUT power class
 - ➔ The CMX allows the selection of all Test IDs. Resulting modulation and RB allocation are displayed for each valid Test ID upon selection.

Note: PC 3 UEs tested on band n40, n41, n77, n78 and n79 supporting the UE capability powerBoosting-pi2BPSK need to have the setting *powerBoostPi2BPSK* enabled for Test IDs 1,2,3 and 4 (38.521-1 Table 6.2.2.4.1-1)

Note: PC 1 and PC2 UEs: Testing required with and without setting the parameter p-Max 23 dBm.

p-Max can be configured in the Vertex Power Control section: P-Max 23 dBm

2. Apply the configuration

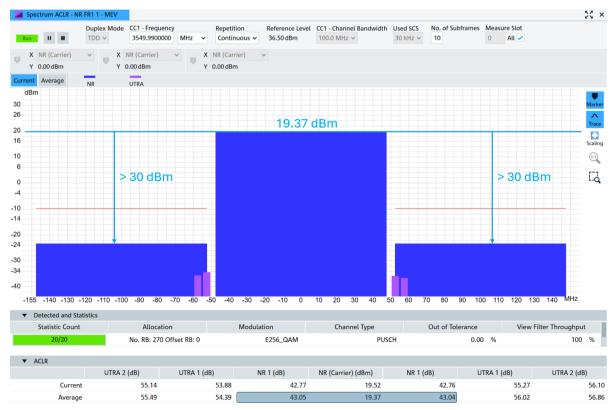
The measured UE mean power in the channel bandwidth shall be within the limits defined for 6.2.2 UE maximum output power reduction (MPR).

If the measured adjacent channel power is > -50 dBm, then the measured NR ACLR shall be higher than the limits in Table 6.5.2.4.1.5-2 with a TT of 0.8 dB:

	PC1	PC2	PC3
NR ACLR / dB	37	31	30

Limits are automatically checked by the CMX500 within the Spectrum ACLR measurement.

o ottin au


Example: PC3 DUT on n78 with Test ID 22 (256 QAM; full allocation)

Spectrum ACLR...

1. The parameters from Table 6.5.2.4.1.5-2 for PC3 DUTs are reflected in the \checkmark Limits \rightarrow

					settin	g.										
Spectrum ACLR Limits									>							
▼ Tes	t Tolerance															
Carrier Fre	equency <= 4	lGHz	0.8	dB												
4GHz < Ca	rrier Freque	ncy <= 6GHz	1.0	dB												
3.0 MHz	5.0 MHz	10.0 MHz	15.0 MHz	20.0 MHz	25.0 MHz	30.0 MHz	35.0 MHz	40.0 MHz	45.0 MHz	50.0 MHz	60.0	MHz	70.0 MHz	80.0 MHz	90.0 MHz	100.0 MHz
\$							1	Relative						Absolute		
UTRA 1						33.0				dB		-50.0				dBm
UTRA 2						36.0				dB		-50.0				dBm
NR					~	30.0				dB		-50.0				dBm

- 2. The measured mean power within the channel BW must be within 6.2.2 UE maximum output power reduction (MPR) limits. In this case: 14.5 dBm TT and 25 dBm + TT (see section 3.2).
- 3. CMX NR ACLR measurement within 3GPP limits:

Rohde & Schwarz | Application Note Simplifying 5G NR 3GPP R&D RF Conformance Testing 42

3.20 6.5.2.4.2 UTRA ACLR

Purpose:

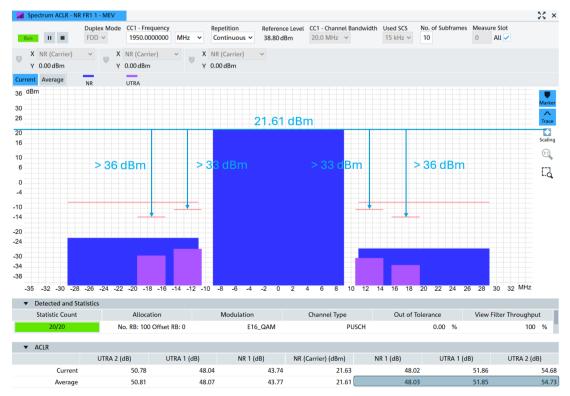
To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR).

UTRA adjacent channel leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned NR channel frequency to the filtered mean power centered on an adjacent UTRA channel frequency.

Test Procedure:

- 1. Choose a valid band mapped to an applicable NS value
 - a. Only following NS values are used for additional spectrum emissions calculations (38.521-1 Table 6.5.2.4.2.4.3-1)

NS_03U	NS_05U	NS_43U	NS_100
n2, n25, n66, n86	n1, n84	n8, n81	n1, n2, n3, n5, n8, n25, n66


- 2. Follow the steps in chapter 2.1 then choose a Test ID
 - 1. The Test IDs and requirements from 6.2.3 UE additional maximum output power reduction (A-MPR) are used for this TC
 - 2. Test IDs configure RB Allocation and modulation scheme depending on DUT power class
 - ➔ The CMX allows the selection of all Test IDs. Resulting modulation and RB allocation are displayed for each valid Test ID upon selection.
- 3. Apply the configuration

The measured UE mean power in the channel bandwidth shall be within the limits defined for the appropriate configuration in 6.2.3 UE additional maximum output power reduction (A-MPR).

If the measured adjacent channel power is > -50 dBm, then the measured UTRA ACLR shall be higher than the limits in Table 6.5.2.4.2.5-2 with a TT of 0.8 dB:

	PC3	U	TRA 1 / dB		UTR	A 2 / dB		
	UTRA ACLR / dB		33			36		
_imits a	re automatically checked by	y the CM	X500 within tl	ne Spectrur	n ACLI	R measurem	ent.	
Tyomple	- DC2 DUT on p1 uping N	S 100 wit	h Toot ID 12		Jutor E			
xampie	e: PC3 DUT on n1 using N	5_100 WI		(64 QAIVI, C		ull)		
1.	The parameters from Tabl	le 6.5.2.4	2.5-2 for PC	3 DUTs are	reflect	ed in the	$\stackrel{\text{Limits}}{\rightarrow}$	
	Spectrum ACLR	setti						
		3011	iy.					
	Spectrum ACLR Limits							
	▼ Test Tolerance							
	Carrier Frequency <= 4GHz 0.8 dB							
	4GHz < Carrier Frequency <= 6GH 1.0 dB							
	 MHz 10.0 MHz 15.0 MHz 20.0 MHz 25 	.0 MHz 30.0 MHz	2 35.0 MHz 40.0 MHz	45.0 MHz 50.0 MH	iz 60.0 MHz	70.0 MHz 80.0 MHz	90.0 MHz 100.0	MHz
	\$		Relat	ive		Ab	solute	
	UTRA 1	~ 3	✓ 33.0			-50.0		dBi
	UTRA 2	✓ 3	6.0		dB 🗸	✓ -50.0		
			30.0					

- 2. The measured mean power within the channel BW must be within 6.2.3 UE additional maximum output power reduction (A-MPR) limits.
 - a. Lower limit: 17.5 dBm TT and Upper limit 25 dBm + TT (38-521-1 Table 6.2.3.5-12).
- 3. CMX UTRA ACLR measurement within 3GPP limits:

3.21 7.3.2 Reference sensitivity power level

Purpose:

The test purpose is to verify the ability of the UE to receive data with a given average throughput for a specified reference measurement channel, under conditions of low signal level, ideal propagation and no added noise.

The reference sensitivity power level REFSENS is the minimum mean power applied to each one of the UE antenna ports for all UE categories, at which the throughput shall meet or exceed the requirements for the specified reference measurement channel.

Test Procedure:

1. Choose the NS value to match the values specified in Tables 7.3.2.4.3.2-1 to 7.3.2.4.3.8-1

NS_01	NS_03	NS_06	NS_21	NS_27	NS_35	NS_45	NS_56
OTHERS		n12, n13, n14	n30	n48	n71	n53	n24

- 2. Follow the steps in chapter 2.1 then choose a Test ID
 - a. Test IDs configure RB Allocation and modulation scheme depending on DUT power class
- 3. Apply the configuration
- 4. Set the appropriate REFSENS DL signal level as defined in 38.521-1
 - a. Table 7.3.2.5-1a (FDD) or 7.3.2.5-1b (TDD) for 2 RX antennas connected or
 - b. Table 7.3.2.5-2a (FDD) or 7.3.2.5-2a (TDD) if 4 RX antennas connected
 - c. Table 7.3.2.5-2c and Table 7.3.2.5-2d for PC2 UE on FDD bands

REFSENS equals the Total Cell Power configuration in the NR Cell settings

Note: The DL power will be adapted automatically in future FW versions

- 5. Verify the DUT throughput against test requirements with 2 RX antenna ports tested
 - a. The test needs to be repeated with 4 RX antennas connected if supported by the UE

The measured TP shall be ≥ 95% of the maximum possible TP using the specified PREFSENS

Example 1: PC3 DUT on n1 (15 kHz SCS) with 20 MHz BW using NS_01

1. Configure PREFSENS = -93.8 dBm (Table 7.3.2.5-1a) as Total Cell Power

Example 2: PC3 DUT on n78 (30 kHz SCS) with 100 MHz BW using NS_01

1. Configure PREFSENS = -85.5 dBm (Table 7.3.2.5-1b) as *Total Cell Power:*

•
$$P_{REFSENS} = -96.1 + 10 \log_{10} \left(\frac{N_{RB}}{24} \right) + TT$$

2. CMX TP measurement with TP $\ge 95\%^{-1}$

S BLER - RX Meas				
Run				
Downlink				
	Overa	u	NR C	ell 0
			SSB EPRE (dBm)	Total Cell Pow
			-120.7	-85.5
	Relative	Absolute	Relative	Absolute
ACK	100.00 %	11440	100.00 %	11440
NACK	0.00 %	0	0.00 %	(
DTX	0.00 %	0	0.00 %	(
BLER	0.00 %		0.00 %	
Throughput	Relative	MBit/s	Relative	MBit/s
Average	100.00 %	19.72	100.00 %	19.72
Scheduled	-	19.72		19.72
 Streams 				
Uplink				
			NR C	ell 0
	Relative	Absolute	Relative	Absolute
CRC Passed	100.00 %	4160	100.00 %	4160
CRC Failed	0.00 %	0	0.00 %	(
DTX	0.00 %	0	0.00 %	(
BLER	0.00 %		0.00 %	
Throughput	Relative	MBit/s	Relative	MBit/s
CRC Passed	100.00 %	5.33	100.00 %	5.3
Scheduled		5.33) 	5.33

3.227.4 Maximum input level

Purpose:

Maximum input level tests the UE's ability to receive data with a given average throughput for a specified reference measurement channel, under conditions of high signal level, ideal propagation and no added noise. A UE unable to meet the throughput requirement under these conditions will decrease the coverage area near to a gNodeB.

Test Procedure:

- 1. Follow the steps in chapter 2.1 then choose a Test ID
 - a. Test IDs configure RB Allocation and modulation scheme
- 2. Apply the configuration
- 3. Set the appropriate DL signal level for *Total Cell Power* as defined in 38.521-1 Table 7.4.5-1 (TT = 0.7 dB up to 3 GHz; else 1 dB):

Channel	BW / MHz	3, 5, 10, 15, 20	25, 30, 35, 40, 45, 50	60, 70, 80, 90, 100
Total	64 QAM	-25 – TT	-25 + 10log ₁₀ (BW/20) -TT	-20 - TT
Cell Power / dBm	256 QAM 1024 QAM	-27 – TT	-27 + 10log ₁₀ (BW/20) -TT	-22 - TT

Note: The DL power will be adapted automatically in future FW versions

4. Verify the DUT throughput against test requirements

Verification:

The measured TP shall be ≥ 95% of the maximum possible TP using the specified Total Cell Power

Example: DUT on n78 (30 kHz SCS) with 100 MHz BW

Configure <i>Total</i> CMX TP measu		20 dBm:	ell Power -20.0	dBm
🐴 BLER - RX Meas				
Run				
Downlink				
	Ove	erall	NR C	Cell O
			SSB EPRE (dBm)	Total Cell Pow
			-55.2	-20.0
	Relative	Absolute	Relative	Absolute
ACK	100.00 %	11000	100.00 %	11000
NACK	0.00 %	0	0.00 %	0
DTX	0.00 %	0	0.00 %	0
BLER	0.00 %		0.00 %	
Throughput	Relative	MBit/s	Relative	MBit/s
Average	100.00 %	148.82	100.00 %	148.82
Scheduled		148.82	_	148.82

4 Literature

[1] 3GPP TS38.521-1 V18.4.0 (2024-11), "5G; NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 1: Range 1 Standalone".

5 Ordering information

Designation	Туре	Order No.
CMX500 Radio Communication Tester	R&S [®] CMX500	1201.0002K70
CMX500 Basic Assembly	R&S [®] CMX-PB70H	1222.0676.09
Accelerator Unit	R&S [®] CMX-B200A	1222.0747.02
CMX Processing Unit	R&S [®] CMX-B300C	1222.0801.04
CMX RF Unit	R&S [®] CMX-B600B	1222.0953.03
NR Signaling Enabler Rel.15, Basic Level	R&S [®] CMX-KS600B	1222.1672.02
NR Signaling Enabler Rel. 15	R&S [®] CMX-KS600B	1222.1672.02
NR SA FR1 3GPP RF Test Scenarios	R&S [®] CMX-KC661B	1222.4513.02
NR FR1 measurements	R&S [®] CMX-KM600	1222.4013.02

Rohde & Schwarz

The Rohde & Schwarz electronics group offers innovative solutions in the following business fields: test and measurement, broadcast and media, secure communications, cybersecurity, monitoring and network testing. Founded more than 80 years ago, the independent company which is headquartered in Munich, Germany, has an extensive sales and service network with locations in more than 70 countries.

www.rohde-schwarz.com

Rohde & Schwarz training

www.rohde-schwarz.com/training

Rohde & Schwarz customer support

www.rohde-schwarz.com/support

R&S® is a registered trademark of Rohde & Schwarz GmbH & Co. KG Trade names are trademarks of the owners.

1C111 | Version 0e | 06.2025

Application Note | Simplifying 5G NR 3GPP R&D RF Conformance Testing

Data without tolerance limits is not binding | Subject to change © 2025 Rohde & Schwarz GmbH & Co. KG | 81671 Munich, Germany www.rohde-schwarz.com